
Redpaper 

IBM Security Key Lifecycle Manager for z/OS: 
Deployment and Migration Considerations

Overview 

This IBM® Redpaper™ publication discusses IBM Security Key Lifecycle Manager (ISKLM) 
for IBM z/OS® V1.1 and includes topics that discuss encryption capabilities, installation 
considerations, keystores, auditing, troubleshooting, and migration considerations. We also 
discuss common practices for key management and provide a sample REXX code procedure 
for exporting a data key.

This IBM Redpaper publication contains the following sections:

� “Device-based encryption overview” on page 1
� “IBM Security Key Lifecycle Manager overview” on page 3
� “Installation considerations on z/OS” on page 3
� “Keystore options” on page 5
� “Sysplex considerations” on page 14
� “Auditing options” on page 29
� “Troubleshooting on z/OS” on page 35
� “Migration from IBM Encryption Key Manager” on page 37
� “Common practices” on page 40
� “Sample of ICSF API usage” on page 41

Device-based encryption overview

Security Key Lifecycle Manager for z/OS supports encryption-enabled 3592 and Linear 
Tape-Open (LTO) tape drives. Drives without encryption enablement are not supported.

Security Key Lifecycle Manager for z/OS supports the following drive types:

� TS1120, TS1130, and TS1140 tape drives that are enabled to encrypt data
� LTO Ultrium 4 and LTO Ultrium 5 tape drives that are enabled to encrypt data

Encryption is performed at full line speed in the tape drive after compression.

Axel Buecker
William C. Johnston
© Copyright IBM Corp. 2011. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/


Security Key Lifecycle Manager for z/OS also supports the IBM DS8000® Storage Controller. 
This support requires the appropriate microcode bundle version on the DS8000 Storage 
Controller, Licensed Internal Code (LIC) level 64.2 or higher.

Encryption

Tape write requests flow from the requesting systems to the Automated Tape Libraries and 
tape drives. The decision to encrypt is made either at the library or at the system. After the 
decision to encrypt is made, that indication is sent to the tape drive. The tape drive makes a 
request to the key manager for an encryption key across a secure network session. The data 
encryption key is delivered to the tape drive. The data encryption key is installed into the 
encryption engine on the tape drive. The I/O stream to the drive is then compressed, 
encrypted, and written to the tape.

Decryption

Tape read requests flow from the requesting systems to the tape drive. The decision to 
decrypt is made at the drive based on whether the cartridge is encrypted. The tape drive 
makes a request to the key manager for the decryption key across a secure network session. 
The key manager retrieves the key from the keystore and delivers it to the drive. The data 
decryption key is installed into the decryption engine. The data is then read from the drive, 
decrypted, decompressed, and sent up the channel path. After the cartridge is unmounted, 
the key is discarded by the drive.

LTO encryption

TS1040 is LTO-4 compliant and so uses pre-generated symmetric keys for data encryption. 
An administrator generates multiple Advanced Encryption Standard (AES) data keys and 
stores them directly in the keystore.

As scratch tapes are mounted, the key manager selects a key from the keystore for 
distribution to the device. The same key is used for all data on the cartridge. The label of this 
key is written to the media and also stored in cartridge memory. Subsequent read and write 
operations require a connection to a key manager where the specific key resides under the 
same label. Keys can reside in multiple key manager keystores.

3592 encryption

When contacted to deliver an encryption key for 3592 devices, the key manager creates a 
unique 256-bit AES symmetric key using a random number generator. This key is sent to the 
device. The symmetric data key is encrypted with a public keypair, which is stored in the key 
manager. This encrypted data key is written to the media and also stored in cartridge 
memory. For 3592 encryption, individual datakeys are not stored by the key manager in its 
keystore; only the keypairs are stored. Subsequent read and write operations require a 
connection to a key manager where the specific keypair resides. The TS1130 sends the 
encrypted data key to the key manager, which decrypts and returns the data key back to the 
device over a secure session. Keypairs can reside in multiple key manager keystores.
2 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



IBM Security Key Lifecycle Manager overview

IBM Security Key Lifecycle Manager for z/OS V1.1 addresses the dynamics that make key 
lifecycle management a vital initiative:

� Supports storage management solutions: Encryption is a critical capability for storage 
management, and effective key lifecycle management must be a critical control point in a 
computing infrastructure.

� Helps reduce the cost of data loss: The costs that are associated with the loss of data can 
be significant. Clearly, investment now to develop a data security strategy can help avoid 
the much higher costs that are associated with cleaning up after a breach. To get ahead of 
this data breach risk, encryption and key lifecycle management need to be high on clients’ 
priority lists.

� Includes Security Key Lifecycle Manager for z/OS V1.1 enhancements:

– Removes the dependency on the system service runtime environment (SSRE) and 
IBM DB2®, making the migration from the IBM Encryption Key Manager (EKM) (key 
server for the IBM System Storage® TS1120, TS1130, and IBM LTO Ultrium 4 tape 
drives) and the installation of Security Key Lifecycle Manager for z/OS simpler.

– Serves keys for data encryption with IBM System Storage TS1120, TS1130, TS1140, 
DS8000 Turbo drive, IBM LTO Ultrium 4, and IBM LTO Ultrium 5 tape drives. It provides 
the administration and maintenance of the keys and allows for automatically adding 
drives to the device table.

– Supports System Management Facility (SMF) for audit records.

Installation considerations on z/OS

When installing IBM Security Key Lifecycle Manager on z/OS, it is important to prepare Java 
for IBM Security Key Lifecycle Manager on z/OS. It is equally important to be consistent in the 
configuration of the IBM Security Key Lifecycle Manager for z/OS environment. Various 
settings are made when implanting hardware or non-hardware-based keystores.

File placement 

Several files must be moved for IBM Security Key Lifecycle Manager to operate correctly on 
z/OS. The Java Virtual Machine Load Module, JVMLDMxx, is copied to the z/OS link list 
concatenation, security files are placed in the proper Java directory, and the IBM Security Key 
Lifecycle Manager for z/OS jar must be accessible to the Java virtual machine (JVM).

The Java Virtual Machine Load Module
Copy the Java Virtual Machine Load Module JVMLDMxx into the linklist concatenation:

cp -X ./mvstools/JVMLDM60 "//'SYS1.SIEALNKE(JVMLDM60)'"

Java Security Policy Files
Copy unrestricted policy files into Java’s security directory:

cp $JAVA_HOME/demo/jce/policy-files/unrestricted/*    $JAVA_HOME/lib/security
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 3



IBMSKLM for z/OS jar
Copy the IBMSKLM jar file into the Java library extensions:

cp /usr/lpp/ISKLM/IBMSKLM.jar $JAVA_HOME/lib/ext

Configuration consistency 

It is important to be consistent in the configuration of the IBM Security Key Lifecycle Manager 
for z/OS environment. Various settings are made when implanting hardware or 
non-hardware-based keystores. The settings across the JzOS environment file, the IBM 
Security Key Lifecycle Manager configuration file, and the java.security API providers list must 
match.

Software-based JCERACFKS
Software-based JCERACFKS keystores need a non-hardware cryptographic services 
provider. The provider is listed in the JzOS environment file whose location is indicated by the 
started task procedure STDENV DD card:

//STDENV DD DSN=USER.PARMLIB(CKLENV),DISP=SHR

# for JCERACFKS, following IJO definition is required:

IJO="-Djava.protocol.handler.pkgs=com.ibm.crypto.provider"           

The Java cryptographic services providers that are listed in 
$JAVA_HOME/security/java.security also need to include the IBMJCE provider:

security.provider.2=com.ibm.crypto.provider.IBMJCE

The keystores defined in the configuration file and indicated by the started task procedure 
STDENV DD card must all be of the same type. The following line points to the IBM Security 
Key Lifecycle Manager configuration properties file:

export ISKLMARGS="/ftssuser/SKLMSRV/config/ISKLMConfig.properties.zos"

Example 1 shows the properties within the configuration file that denote the type of keystores 
in use.

Example 1   Keystore properties

config.keystore.type = JCERACFKS                  
Admin.ssl.keystore.type = JCERACFKS               
Admin.ssl.truststore.type = JCERACFKS             
TransportListener.ssl.truststore.type = JCERACFKS

Additionally, you must configure the correct service provider, as shown in Example 2.

Example 2   Keystore providers

Admin.ssl.keystore.provider = IBMJCE              
TransportListener.ssl.truststore.provider = IBMJCE
config.keystore.provider = IBMJCE                 
Admin.ssl.truststore.provider = IBMJCE            
TransportListener.ssl.keystore.provider = IBMJCE  
4 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Hardware-based JCECCAKS and JCECCARACFKS
Hardware-based JCECCARACFKS keystores need a hardware cryptographic services 
provider listed in the JzOS environment file:

# for JCECCARACFKS, following IJO definition is required

IJO="-Djava.protocol.handler.pkgs=com.ibm.crypto.hdwrCCA.provider"   

The Java cryptographic services providers that are listed in 
$JAVA_HOME/security/java.security also need to include the IBMJCECCA provider:

security.provider.2=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA

The keystores defined in the configuration file and indicated by the started task procedure 
STDENV DD card must all be of the same type. The following line points to the IBM Security 
Key Lifecycle Manager configuration properties file:

export ISKLMARGS="/ftssuser/SKLMSRV/config/ISKLMConfig.properties.zos"

Example 3 shows the properties within the configuration file that denote the type of keystores 
in use.

Example 3   Keystore properties

config.keystore.type = JCECCARACFKS                  
Admin.ssl.keystore.type = JCECCARACFKS               
Admin.ssl.truststore.type = JCECCARACFKS             
TransportListener.ssl.truststore.type = JCECCARACFKS

Additionally, you must configure the correct service provider, as shown in Example 4.

Example 4   Keystore providers

Admin.ssl.keystore.provider = IBMJCECCA              
TransportListener.ssl.truststore.provider = IBMJCECCA
config.keystore.provider = IBMJCECCA
Admin.ssl.truststore.provider = IBMJCECCA            
TransportListener.ssl.keystore.provider = IBMJCECCA

Keystore options

Keys and certificates are accessed in Java through the Java Cryptographic Element (JCE). 
The keystore that is selected must support the types of keys that are required by the devices. 
The 3592 device-based encryption uses wrapper keys. The keystore holds the key wrapping 
key in the form of X.509v3 digital certificates. The LTO drives require an unwrapped key, so 
the keystore must hold the actual 256-bit AES key. Specific keystores work in conjunction with 
Integrated Cryptographic Services Facility (ICSF) to provide the protection of the mainframe 
cryptographic hardware.

Four types of keystores are available:

� JCEKS: For all types of keys. A password-protected UNIX-based file is the key repository.

� JCERACFKS: Can only hold certificates. Certificates and keys exist in a System 
Authorization Facility (SAF)-based keyring.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 5



� JCECCAKS: For all types of keys. A UNIX-based file points to keys residing in ICSF’s 
cryptographic key dataset (CKDS). 

� JCECCARACFKS: Can only hold certificates. Certificates reside in a SAF-based keyring; 
keys reside in ICSF’s public key dataset (PKDS).

Table 1 shows the various keystore types and their relationships to the key repository.

Table 1   Keystore types

Table 2 pairs the Java Cryptographic Provider with the appropriate Java keystores.

Table 2   Java cryptographic providers

Java file-based keystore: JCEKS

Use this keystore type if you only use Java software. For all operating systems and a 3592 
tape drive, LTO tape drive, or DS8000 Turbo drive, ensure that the flat file JCEKS keystore 
resides in a restricted area of the file system on the IBM Tivoli® Key Lifecycle Manager 
system. Use a JCEKS keystore for all operating systems other than z/OS. You might also use 
this keystore type on a z/OS system if you want to use JCE software and a flat file to store 
keys.

Implementing JCEKS
Keytool is a key and certificate management utility. It enables users to administer their own 
public/private key pairs and associates. The keytool utility stores the keys and certificates in a 
keystore. The JCEKS deployment implements the keystore as a file. It protects private keys 
with a password.

Keytool is part of the Java deployment. It resides in the /usr/lpp/java/J5.0/bin/keytool bin 
directory.

The command to generate the AES keys is –genseckey. Example 5 on page 7 shows the 
complete usage for the command.

Name Recommended Key 
management tool

Key backing store type Platforms Hardware Crypto?

JCEKS Keytool UNIX file All UNIX No

JCERACFKS RACF/ACF2/Top Secret Proprietary database z/OS No

JCECCAKS Hwkeytool with ICSF UNIX file and ICSF z/OS Yes

JCECCARACFKS RACF/ACF2/Top Secret 
with ICSF

Proprietary database 
and ICSF

z/OS Yes

Provider Valid keystores/truststores

IBMJCE JCEKS
JCERACFKS

IBMJCECCA JCECCAKS
JCECCARACFKS
6 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Example 5   -genseckey command

keytool -genseckey {-alias alias | -aliasrange aliasRange} {-keyalg keyalg} 
{-keysize keysize} {-keypass keypass} {-storetype storetype} {-keystore keystore} 
[-storepass storepass] [-providerClass provider_class_name] {-v} {-Jjavaoption}

The command to generate a Rivest-Shamir-Adleman algorithm (RSA) keypair using keytool is 
–genkey. Example 6 shows the complete usage for the command.

Example 6   -genkey command

keytool –genkey {-alias alias} {-keyalg keyalg} {-keysize keysize} {-sigalg 
sigalg} [-dname dname] [-keypass keypass] {-validity valDays} {-storetype 
storetype} {-keystore keystore} [-storepass storepass] [-provider 
provider_class_name] {-v} {-Jjavaoption}

For more information, refer to the following website:

http://www.ibm.com/developerworks/java/jdk/security/50/secguides/keytoolDocs/KeyTo
olUserGuide-150.html

SAF-based keystore: JCERACFKS

JCERACFKS is a keystore that uses keys on a keyring in the SAF external security manager 
(ESM). Examples of an ESM are IBM RACF® from IBM, and ACF2 and Top Secret from 
Computer Associates.

Use this keystore type to store key material in your ESM keyring that does not use ICSF. 
JCERACFKS keystores are compatible with both IBMJCECCA and IBMJCE, that is, with both 
hardware and software providers.

If you use an ESM keyring for the master keystore, you will need to give the IBM Security Key 
Lifecycle Manager-started task ID user access to that keyring before you start the key 
manager.

The command to generate an RSA keypair using RACF is RACDCERT GENCERT.

Implementing JCERACFKS
Use the following procedure to allow IBM Security Key Lifecycle Manager to use a 
JCERACFKS keystore. Assume that the IBM Security Key Lifecycle Manager started task 
user ID is SKLMSRV and the case-sensitive keyring name is ISKLMRing:

1. Configure Java to use the correct service providers. This example assumes that Java 6.0 
is installed at /usr/lpp/java/J6.0. Ensure that the IBMJCE Java Security Service 
Provider is listed in /usr/lpp/java/J6.0/lib/security/java.security. See Example 7.

Example 7   Procedure to use a JCERACFKS keystore

#..............................................................................
..........................
#This example assumes Java 6.0
# List of providers and their preference orders (see above):

LTO restrictions: A SAF-based keyring cannot be used to store symmetric keys for LTO 
tape drives. 
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 7

http://www.ibm.com/developerworks/java/jdk/security/50/secguides/keytoolDocs/KeyToolUserGuide-150.html


#..............................................................................
..........................
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.security.jgss.IBMJGSSProvider
security.provider.4=com.ibm.security.cert.IBMCertPath
security.provider.5=com.ibm.security.sasl.IBMSASL

2. Perform the SAF keyring operations for IBM Security Key Lifecycle Manager. These 
commands assume that RACF is the installed external security manager on z/OS.

a. Add the keyring for encryption certificates using RACDCERT:

RACDCERT ID(SKLMSRV) ADDRING(ISKLMRing)

b. Add the keyring for Secure Sockets Layer (SSL) communications using RACDCERT:

RACDCERT ID(SKLMSRV) ADDRING(ISKLMSSL)

c. Add an x.509v3 digital certificate to the RACF keyring:

RACDCERT GENCERT
ID(SKLMSRV)
SUBJECTSDN(CN('Key Encrypting Key for device based encryption'))
SIZE(4096)
NOTBEFORE( DATE( date cert_becomes_valid ))
NOTAFTER( DATE( date_cert_expires ))
WITHLABEL('Use.An.Agreed.Upon.Naming.Convention') 

d. Add an x.509v3 digital certificate to the RACF keyring:

RACDCERT GENCERT
CERTAUTH
SUBJECTSDN(CN('ISKLM CA'))
SIZE(4096)
NOTBEFORE( DATE( date cert_becomes_valid ))
NOTAFTER( DATE( date_cert_expires ))
WITHLABEL('ISKLM.CA')

e. Connect the certificates to the keyring:

i. RACDCERT ID(SKLMSRV) 

CONNECT(ID(SKLMSRV)

LABEL('Use.An.Agreed.Upon.Naming.Convention')

RING(ISKLMRing)

USAGE(PERSONAL))

ii. It is also necessary to connect a CERTAUTH certificate to the keyring:

RACDCERT ID(SKLMSRV) 

CONNECT(ID(SKLMSRV)

LABEL(‘ISKLM.CA’)

RING(ISKLMRing)

USAGE(CERTAUTH))

iii. Connect a CERTAUTH certificate to the SSL keyring:

RACDCERT ID(SKLMSRV) 

CONNECT(ID(SKLMSRV)
8 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



LABEL(‘ISKLM.CA’)

RING(ISKLMSSL)

USAGE(CERTAUTH))

3. Configure IBM Security Key Lifecycle Manager to use a SAF keyring. You must consider 
several keyring-related configuration options:

a. Admin.ssl.keystore.name: 

• This database contains the key pairs and certificates that are used for Secure 
Sockets Layer client operations. They are used in operations, such as sync 
commands, between the Security Key Lifecycle Manager for z/OS servers. In a 
sync operation, the certificate that the Secure Sockets Layer client presents to the 
Secure Sockets Layer server comes from this keystore.

• This keystore is optional but advised.

• An example is Admin.ssl.keystore.name = safkeyring://SKLMSRV/ISKLMSSL.

b. Admin.ssl.truststore.name:

• This database file is used to check the trust of the Secure Sockets Layer server 
certificate that the server presents to the Secure Sockets Layer client.                    

• This keystore is optional but advised.

• An example is Admin.ssl.truststore.name = safkeyring://SKLMSRV/ISKLMSSL.

c. config.keystore.file:

• This file specifies the keystore to be used to store device-based encryption keys 
and certificates.

• This keystore is required.

• An example is config.keystore.file = safkeyring://SKLMSRV/ISKLMRing.

d. TransportListener.ssl.keystore.name:

• This database is used by the Security Key Lifecycle Manager for z/OS server to 
hold the certificate and private keys for the Secure Sockets Layer server. This 
certificate is given to the Secure Sockets Layer client for authentication and trust 
checking. This keystore is also used by the Security Key Lifecycle Manager for z/OS 
client to talk to the Security Key Lifecycle Manager for z/OS server. It acts as a 
Secure Sockets Layer client.

• This keystore is required.

• An example is TransportListener.ssl.keystore.name = 
afkeyring://SKLMSRV/ISKLMSSL.

e. TransportListener.ssl.truststore.name:

• This database contains the public keys and signed certificates that are used to 
verify the identities of other clients and servers. If the 
TransportListener.ssl.clientauthentication property is not set to the default 
value of 0, the Security Key Lifecycle Manager for z/OS server, acting as the Secure 
Sockets Layer server, must authenticate the client by using this file. This truststore 
is also used by the Security Key Lifecycle Manager for z/OS client. It is used to talk 
to the Security Key Lifecycle Manager for z/OS server and act as a Secure Sockets 
Layer client.

• This keystore is required.

• An example is TransportListener.ssl.truststore.name = 
afkeyring://SKLMSRV/ISKLMSSL.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 9



4. The IBM Security Key Lifecycle Manager Started Task user ID must have the proper 
authority to key management activities:

a. Read the keyring:

i. RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

ii.PERMIT IRR.DIGTCERT.LIST CL(FACILITY) ID(SKLMSRV) ACCESS(READ)

b. Read the keys on the keyring:

i. RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

ii.PERMIT IRR.DIGTCERT.LISTRING CL(FACILITY) ID(SKLMSRV) ACCESS(READ)

5. The Security Administrator must have the proper authority to key management activities:

a. Read and write to the IBM Security Key Lifecycle Manager keyrings:

i. RDEFINE RDATALIB SKLMSRV.ISKLMRing.UPD UACC(NONE)

ii.DEFINE RDATALIB SKLMSRV.ISKLMSSL.UPD UACC(NONE)

iii.PERMIT SKLMSRV.ISKLMRing.UPD ID(<Security_Admin user ID>) CL(RDATALIB) 
ACCESS(READ) 

iv.PERMIT SKLMSRV.ISKLMSSL.UPD ID(<Security_Admin user ID>) CL(RDATALIB) 
ACCESS(READ)

ICSF: Cryptographic hardware keystores

Two types of keystores are available to take advantage of cryptographic hardware: 
JCECCAKS, which uses a UNIX-based file to point to the ICSF CKDS and PKDS, and 
JCERACFKS, which holds certificates on a keyring with pointers to keys in ICSF PKDS.

ICSF-only keystore: JCECCAKS
JCECCAKS uses the Java tool hwkeytool to manage key material. JCECCAKS manages 
symmetric and asymmetric keys residing in ICSF. The keystore file in z/OS UNIX System 
Services contains the key labels that are used by ICSF to access protected keys (Figure 1 on 
page 10).

Figure 1   ICSF-only keystore

Implementing JCECCAKS
The Java tool hwkeytool is part of the Java deployment. It resides in the bin directory:

/usr/lpp/java/J5.0/bin/hwkeytool

The command to generate AES keys is –genseckey. Example 8 shows the complete usage for 
the command.
10 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Example 8   -genseckey command

hwkeytool -genseckey {-alias alias | -aliasrange aliasRange} {-keyalg keyalg} 
{-keysize keysize} {-keypass keypass} {-storetype storetype} {-keystore keystore} 
[-storepass storepass] [-providerClass provider_class_name] {-v} {-Jjavaoption}

The command to generate an RSA keypair using keytool is –genkey. Example 9 shows the 
complete usage for the command.

Example 9   -genkey command

hwkeytool -genkey {-alias alias} {-keyalg keyalg} {-keysize keysize} {-sigalg 
sigalg} [-dname dname] [-keypass keypass] {-validity valDays} {-storetype 
storetype} {-keystore keystore} [-storepass storepass] {-keylabel keylabel} 
{-hardwaretype hardwaretype} {-hardwareusage hardwareusage} [-provider 
provider_class_name] {-v} {-Jjavaoption}

For more information, go to the following website:

ftp://ftp.software.ibm.com/s390/java/jce4758/hwkeytool.html 

RACF and ICSF keystore: JCECCARACFKS
JCECCARACFKS is a SAF keyring/ICSF-based keystore that is supported on the z/OS 
operating system only. This keystore uses certificates that are generated in a RACF or SAF 
equivalent where the key material is stored in ICSF. The JCECCARACFKS keystore makes 
use of all the security advantages of both RACF/SAF and ICSF/CryptoExpress ( ).

Figure 2   RACF and ICSF keystore

You must set the hardware JCE provider in the Java security properties file. Use this keystore 
type to store key material in your RACF keyring that uses ICSF for a z/OS operating system 
with a 3592 tape drive or DS8000 Turbo drive.

If you use a RACF keyring for the master keystore, you will need to give the IBM Security Key 
Lifecycle Manager started task ID user access to that RACF keyring before you select and 
configure the RACF keyring using a JCECCARACFKS.

Implementing JCECCARACFKS
Use the following procedure to allow IBM Security Key Lifecycle Manager to use a 
JCECCARACFKS keystore. Assume that the IBM Security Key Lifecycle Manager STC user 
ID is SKLMSRV and the case-sensitive keyring name is ISKLMRing.

LTO restrictions: You cannot use SAF-based keystores to manage symmetric keys for 
LTO devices. No connection exists to the ICSF CKDS through JCECCARACFKS. 
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 11

ftp://ftp.software.ibm.com/s390/java/jce4758/hwkeytool.html


1. Configure Java to use the correct service providers. This example assumes that Java 6.0 
is installed at /usr/lpp/java/J6.0. Ensure that the IBMJCECCA Java Security Service 
Provider is listed in /usr/lpp/java/J6.0/lib/security/java.security. See Example 10.

Example 10   Procedure to use a JCECCARACFKS keystore

#..............................................................................
..........................
#This example assumes Java 6.0
# List of providers and their preference orders (see above):
#..............................................................................
..........................
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

2. Perform the SAF keyring operations for IBM Security Key Lifecycle Manager. These 
commands assume that RACF is the installed external security manager on z/OS.

a. Add the keyring for encryption certificates using RACDCERT:

RACDCERT ID(SKLMSRV) ADDRING(ISKLMRing)

b. Add the keyring for SSL communications using RACDCERT:

RACDCERT ID(SKLMSRV) ADDRING(ISKLMSSL)

c. Generate an x.509v3 CERTAUTH digital certificate to RACF. The PCICC keyword is 
optional for the certificate authority (CA) certificate:

RACDCERT GENCERT
CERTAUTH
SUBJECTSDN(CN('ISKLM CA'))
SIZE(4096)
NOTBEFORE( DATE( date cert_becomes_valid ))
NOTAFTER( DATE( date_cert_expires ))
WITHLABEL('ISKLM.CA')

d. Generate an x.509v3 digital certificate to RACF using the PCICC keyword. Sign this 
certificate with the CERTAUTH certificate:

RACDCERT GENCERT
ID(SKLMSRV)
SUBJECTSDN(CN('Key Encrypting Key for device based encryption'))
SIZE(4096)
NOTBEFORE( DATE( date cert_becomes_valid ))
NOTAFTER( DATE( date_cert_expires ))
WITHLABEL('Use.An.Agreed.Upon.Naming.Convention')
SIGNWITH(CERTAUTH LABEL(‘ISKLM.CA’))
PCICC 

e. Connect the certificates to the keyring:

i. RACDCERT ID(SKLMSRV)

CONNECT(ID(SKLMSRV)
LABEL('Use.An.Agreed.Upon.Naming.Convention’)
RING(ISKLMRing)
USAGE(PERSONAL))
12 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



ii. It is also necessary to connect a CERTAUTH certificate to the keyring: 

RACDCERT ID(SKLMSRV) 
CONNECT(ID(SKLMSRV)
LABEL(‘ISKLM.CA’)
RING(ISKLMRing)
USAGE(CERTAUTH))

iii. Connect a CERTAUTH certificate to the SSL keyring:

RACDCERT ID(SKLMSRV) 
CONNECT(ID(SKLMSRV)
LABEL(‘ISKLM.CA’)
RING(ISKLMSSL)
USAGE(CERTAUTH))

3. Configure IBM Security Key Lifecycle Manager to use a SAF keyring. Consider the 
following keyring-related configuration options:

a. Admin.ssl.keystore.name: 

• This database contains the key pairs and certificates that are used for Secure 
Sockets Layer client operations. They are used in operations, such as sync 
commands, between the Security Key Lifecycle Manager for z/OS servers. In a 
sync operation, the certificate that the Secure Sockets Layer client presents to the 
Secure Sockets Layer server comes from this keystore.

• This keystore is optional but advised.

• An example is Admin.ssl.keystore.name = safkeyring://SKLMSRV/ISKLMSSL.

b. Admin.ssl.truststore.name:

• This database file is used to check the trust of the Secure Sockets Layer server 
certificate that the server presents to the Secure Sockets Layer client.                    

• This keystore is optional but advised.

• An example is Admin.ssl.truststore.name = safkeyring://SKLMSRV/ISKLMSSL.

c. config.keystore.file:

• This file specifies the keystore to be used to store device-based encryption keys 
and certificates.

• This keystore is required.

• An example is config.keystore.file = safkeyring://SKLMSRV/ISKLMRing.

d. TransportListener.ssl.keystore.name:

• This database is used by the Security Key Lifecycle Manager for z/OS server to 
hold the certificate and private keys for the Secure Sockets Layer server. This 
certificate is given to the Secure Sockets Layer client for authentication and trust 
checking. This keystore is also used by the Security Key Lifecycle Manager for z/OS 
client to talk to the Security Key Lifecycle Manager for z/OS server. It acts as a 
Secure Sockets Layer client.

• This keystore is required.

• An example is TransportListener.ssl.keystore.name = 
safkeyring://SKLMSRV/ISKLMSSL.

e. TransportListener.ssl.truststore.name:

• This database contains the public keys and signed certificates that are used to 
verify the identities of other clients and servers. If the property 
TransportListener.ssl.clientauthentication is not set to the default value of 0, 
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 13



the Security Key Lifecycle Manager for z/OS server, acting as the Secure Sockets 
Layer server, must authenticate the client by using this file. This truststore is also 
used by the Security Key Lifecycle Manager for z/OS client. It is used to talk to the 
Security Key Lifecycle Manager for z/OS server and act as a Secure Sockets Layer 
client.

• This keystore is required.

• An example is TransportListener.ssl.truststore.name = 
safkeyring://SKLMSRV/ISKLMSSL.

4. The IBM Security Key Lifecycle Manager Started Task user ID must have the proper 
authority to key management activities:

a. Read the keyring:

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CL(FACILITY) ID(SKLMSRV) ACCESS(READ)

b. Read the keys on the keyring:

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CL(FACILITY) ID(SKLMSRV) ACCESS(READ)

5. The Security Administrator must have the proper authority to key management activities:

a. Read and write to the IBM Security Key Lifecycle Manager keyrings:

RDEFINE RDATALIB SKLMSRV.ISKLMRing.UPD UACC(NONE)
RDEFINE RDATALIB SKLMSRV.ISKLMSSL.UPD UACC(NONE)
PERMIT SKLMSRV.ISKLMRing.UPD ID(<Security_Admin user ID>) CL(RDATALIB) 
ACCESS(READ) 
PERMIT SKLMSRV.ISKLMSSL.UPD ID(<Security_Admin user ID>) CL(RDATALIB) 
ACCESS(READ)

Sysplex considerations

It is important to avoid the collisions of file writes by separate IBM Security Key Lifecycle 
Manager instances. In a sysplex configuration, it is possible to share z/OS UNIX System 
Services file systems. However, because multiple IBM Security Key Lifecycle Manager 
instances are not serialized, sharing common files might cause corruption and data loss.

File sharing considerations

IBM Security Key Lifecycle Manager writes to the following files:

� Keystore files 
� Drivetable
� Audit metadata file 
� Configuration file 
� Audit log 
� Debugging log 

Keystore files
These files are used by the JCE to store encryption key material. IBM Security Key Lifecycle 
Manager uses several keystores. They might all be the same file, or various files might be 
used. The IBM Security Key Lifecycle Manager properties file points to the keystore files:

� Admin.ssl.keystore.name=safkeyring\://SKLMSRV/SKLMRing
14 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



� TransportListener.ssl.truststore.name=safkeyring\://SKLMSRV/SKLMRing
� TransportListener.ssl.keystore.name=safkeyring\://SKLMSRV/SKLMRing
� config.keystore.file=safkeyring\://SKLMSRV/SKLMRing
� Admin.ssl.truststore.name=safkeyring\://SKLMSRV/SKLMRing

Refer to the IBM Security Key Lifecycle Manager for z/OS Version 1.1 Planning, and User’s 
Guide, SC14-7628-00, for detailed descriptions and usage information about these keystores.

Drivetable
This file is for information about drives that are known to the Security Key Lifecycle Manager 
for z/OS. This file is not required before starting the server or command-line interface (CLI) 
client. The IBM Security Key Lifecycle Manager properties file points to this file:

config.drivetable.file.url=FILE\:/etc/SKLMSRV/drivetble/filedrive.table

Audit metadata file 
The audit metadata file is Audit.metadata.file.name=/etc/SKLMSRV/metafile.xml.

Configuration file 
The IBM Security Key Lifecycle Manager environment file, which is located through the 
STDENV file, points to this file:

export ISKLMARGS="/ftssuser/SKLMSRV/config/ISKLMConfig.properties.zos"

Audit log
The IBM Security Key Lifecycle Manager properties file points to these files:

� Audit.handler.file.directory = /u/SKLMSRV/ISKLMCfg/logs
� Audit.handler.file.name = isklm_audit.log
� Audit.handler.class = com.ibm.ltklm.audit.file.SimpleFileSecurityEventHandler

You can write audit records to SMF instead by setting the following property:

Audit.handler.class = com.ibm.ltklm.audit.smf.SMFSecurityEventHandler

Debugging log
The IBM Security Key Lifecycle Manager properties file points to this file: 

debug.output.file = /u/SKLMSRV/ISKLMCfg/debug

Using started task JCL

The IBM Security Key Lifecycle Manager on z/OS is typically started using JCL and JzOS. 
The IBM JZOS Batch Toolkit for z/OS software development kit (SDK) is a set of tools that 
enhances Java batch capabilities and the use of system interfaces on z/OS. It includes a 
native launcher for running Java applications directly as batch jobs or started tasks. It also 
includes a toolkit of Java classes that make access to traditional z/OS data and key system 
services directly available from Java applications.

IBM Security Key Lifecycle Manager is a Java application that executes under z/OS UNIX 
Systems Services. It is started and controlled by a console wrapper that is implemented using 
JzOS. The console wrapper starts and stops the IBM Security Key Lifecycle Manager class. It 

Important: IBM Security Key Lifecycle Manager for z/OS must not be running when you 
edit the configuration file. If you have previously started the Security Key Lifecycle 
Manager for z/OS server, you must exit it, or any changes that you make are not saved.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 15



acts as a proxy between the z/OS operator console and the IBM Security Key Lifecycle 
Manager CLI. See Figure 3.

Figure 3   z/OS platform for IBM Security Key Lifecycle Manager

Sample JCL
The JOB statement in the sample JCL that is shown in Example 11 defines the following 
process variables. The EXEC statement of the STC JCL describes the Java Virtual Machine 
Load Module for the installed Java.

Example 11   Sample JCL

JAVACLS – this names the ISKLM Console Wrapper instantiated at startup
ARGS - Arguments to Java class (typically blank)
LIBRARY – STEPLIB dataset for JVMLDM load module
VERSION – Java version: 14, 50, 56, 60, etc.
LOGLVL – ISKLM debugging level when debug = on us configured +I(info) +T(trc)
REGSIZE – Region size required for heap and other storage (typically 0M)
LEPARM – parameters for the Language Environment (typically a null string)

JCL DD cards
The DD cards in Example 12 are used in the started task JCL.

Example 12   JCL DD cards

STEPLIB – Over-rides normal z/OS search path for load modules - optional
SYSPRINT – JOB output processing destination   
SYSOUT – Unix process output processing destination
STDOUT - Unix process normal output processing destination
STDERR - Unix process error output processing destination
CEEDUMP - Unix process traceback and dump output processing destination
ABNLIGNR - shuts off Abend-AID allowing a normal IBM dump when set to DUMMY
STDENV – Location of the variable definition file for the ISKLM environment

The JCL in Figure 4 on page 17 represents a sample started task.
16 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Figure 4   JCL started task

Using the CLI as z/OS commands

The IBM Security Key Lifecycle Manager CLI provides commands to interact with the key 
manager. Starting IBM Security Key Lifecycle Manager as a started task using JzOS provides 
a console command wrapper Java class:

com.ibm.jzosekm.ISKLMConsoleWrapper

 When the STC is started, it in turn starts the IBM Security Key Lifecycle Manager for z/OS 
key manager Java class:

com.ibm.ltklm.ISKLMServer

z/OS operator commands can be issued to the console wrapper, which will pass the 
command to IBM Security Key Lifecycle Manager. The console wrapper also retrieves output 
from the command and writes it to SYSOUT.

You issue commands to IBM Security Key Lifecycle Manager for z/OS using the z/OS 
MODIFY command:

MODIFY ISKLM,APPLID='command'

Figure 5 on page 17 shows the structure of the command console wrapper.

Figure 5   IBM Security Key Lifecycle Manager console wrapper
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 17



Refer to the IBM Security Key Lifecycle Manager for z/OS Information Center for a complete 
list of available commands:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.isklm.
doc_11/top_EKMipug_cmd_line_interace.html

Sharing keys between sysplex members

To share keys between IBM Security Key Lifecycle Manager instances, it is necessary to take 
explicit actions based on the type of keystore in use.

Using Sysplex Distributor VIPA
The use of a Sysplex Distributor virtual IP address (VIPA) allows the installation to roll IPLs 
across the sysplex and not lose access to the key manager, as shown in Figure 6.

Figure 6   Sysplex Distributor VIPA

Using JCEKS
Keys that are maintained in a shared file system can be accessed by multiple members of a 
sysplex. The configuration of each IBM Security Key Lifecycle Manager can point to the same 
keystore through the config.keystore.file property. 

Figure 7   Sysplex sharing JCEKS
18 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.isklm.doc_11/top_EKMipug_cmd_line_interace.html


Using JCERACFKS 
There are two methods for key sharing using JCERACFKS:

� Using the same security manager database for all logical partitions (LPARS) in the sysplex
� Using a separate security manager database for LPARS in the sysplex

Using the same security manager database for all LPARS in the sysplex
Keys that are maintained on a SAF keyring can be accessed by multiple members of a 
sysplex if the external security manager (RACF, ACF2, or Top Secret) is in a sysplex sharing 
configuration. The configuration of each IBM Security Key Lifecycle Manager can point to the 
same keyring through the config.keystore.file property. No explicit action is required to 
move keys between LPARs. See Figure 8.

Figure 8   JCERACFKS shared in a sysplex

Using a separate security manager database for LPARS in the sysplex
Keys can be maintained on several SAF keyrings, either within or outside of the sysplex. In 
this case, it is necessary to export the key material from one keyring and import into the other 
keyring. See Figure 9 on page 20.

Important: Do not share other IBM Security Key Lifecycle Manager files using this 
method.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 19



Figure 9   Multiple SAF databases in a sysplex

Certificates that are stored on a SAF keyring can be exported using the commands from the 
installed security manager. For RACF, use the RACDCERT command.

Issue the RACDCERT EXPORT command to export a digital certificate and its associated 
public and private keys to a password-protected sequential file. See Example 13.

Example 13   RACDCERT EXPORT command

RACDCERT ID(ISKLM_SERVER_ID)
EXPORT(LABEL('label-name')) 
DSN('dataset_for_saved_cert')
PASSWORD(‘new_dataset_password’)
FORMAT(PKCS12DER)

The PKCS12DER keyword indicates to export the certificate and the private key (which must 
exist and must not be an ICSF or PCICC key). The package that is produced by specifying 
one of the PKCS #12 keywords is encrypted using the password that is specified according to 
the PKCS #12 standard.

Transfer the exported certificate dataset to the target z/OS image.

Add the certificate to the SAF keystore on the target image. For RACF, use the RACDCERT 
command. Issue the RACDCERT ADD command to add the certificate to RACF. See 
Example 14.

Example 14   RACDCERT ADD command

RACDCERT ID(ISKLM_SERVER_ID) ADD('dataset_for_saved_cert') 
PASSWORD(‘new_dataset_password’) PCICC

LTO restrictions: SAF-based keystores cannot be used to manage symmetric keys for 
LTO devices. 
20 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Connect the certificate to the keyring. See Example 15.

Example 15   RACDCERT CONNECT command

RACDCERT ID(ISKLM_SERVER_ID) CONNECT( 
ID(ISKLM_SERVER_ID)
LABEL('label_name')
RING(ISKLMRing)
USAGE(PERSONAL) 
)

Refresh the keystore cache for the active IBM Security Key Lifecycle Manager instance. Issue 
the REFRESHKS command at the z/OS operator console:

F ISKLM,APPL='REFRESHKS'

Using JCECCAKS
Keys maintained in a shared file system can be accessed by multiple members of a sysplex. 
The configuration of each IBM Security Key Lifecycle Manager can point to the same keystore 
through the config.keystore.file property. JCECCAKS uses a combination of a z/OS UNIX 
System Services file and the ICSF CKDS to store symmetric keys, and the ICSF PKDS to 
store asymmetric keys. The z/OS UNIX file, the CKDS, and the PKDS must be shared across 
the sysplex. See Figure 10.

Figure 10   JCECCAKS keystore

Using JCECCARACFKS
Keys maintained on a SAF keyring can be accessed by multiple members of a sysplex if the 
external security manager (RACF, ACF2, or Top Secret) is in a sysplex-sharing configuration. 
JCECCARACFKS uses a combination of a SAF keyring and the ICSF CKDS to store 
asymmetric keys. The configuration of each IBM Security Key Lifecycle Manager can point to 
the same keyring through the config.keystore.file property only if the same ICSF PKDS is 
used. See Figure 11 on page 22.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 21



Figure 11   JCECCARACFKS shared in a sysplex

Sharing keys across multiple sysplexes

In order to share keys between IBM Security Key Lifecycle Manager instances in separate 
sysplexes, it is necessary to take explicit actions based on the type of keystore in use. Keys 
need to be exported from the keystore and imported into the keystore at the target sysplex.

Using JCEKS
When using a JCEKS keystore file, it is possible to copy the keystore file from one IBM 
Security Key Lifecycle Manager instance to another. In order to perform this operation cleanly, 
follow these steps:

1. Stop the target IBM Security Key Lifecycle Manager instance. 

2. Create a backup copy of the current keystore file in use by the target IBM Security Key 
Lifecycle Manager instance.

3. Using FTP, Secure Copy Protocol (SCP), or another means, transfer the keystore file from 
the source IBM Security Key Lifecycle Manager to the target IBM Security Key Lifecycle 
Manager instance.

4. Rename the keystore file to match the config.keystore.file property at the target 
instance.

5. Restart the target IBM Security Key Lifecycle Manager instance.

Using JCERACFKS
SAF-based keystores cannot be used to manage symmetric keys for LTO devices. 

Certificates that are stored on a SAF keyring can be exported using the commands from the 
installed security manager. For RACF, use the RACDCERT command.

Issue the RACDCERT EXPORT command to export a digital certificate and its associated 
public and private keys to a password-protected sequential file. See Example 16 on page 23.
22 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Example 16   RACDCERT EXPORT command

RACDCERT EXPORT(LABEL('label-name')) 
DSN('dataset_for_saved_cert')
PASSWORD(‘new_dataset_password’)
FORMAT(PKCS12DER)

The PKCS12DER keyword indicates to export the certificate and the private key (which must 
exist and must not be an ICSF or PCICC key). The package that is produced by specifying 
one of the PKCS #12 keywords is encrypted using the password that is specified according to 
the PKCS #12 standard.

Transfer the exported certificate dataset to the target z/OS image.

Add the certificate to the SAF keystore on the target image. For RACF, use the RACDCERT 
command. Issue the RACDCERT ADD command to add the certificate to RACF. See 
Example 17.

Example 17   RACDCERT ADD command

RACDCERT ID(ISKLM_SERVER_ID) ADD('dataset_for_saved_cert') 
PASSWORD(‘new_dataset_password’) PCICC

Connect the certificate to the keyring. See Example 18.

Example 18   RACDCERT CONNECT command

RACDCERT ID(ISKLM_SERVER_ID) CONNECT( 
ID(ISKLM_SERVER_ID)
LABEL('label_name')
RING(ISKLMRing)
USAGE(PERSONAL) 
)

Refresh the keystore cache for the active IBM Security Key Lifecycle Manager instance. Issue 
the REFRESHKS command at the z/OS operator:

F ISKLM,APPL=’REFRESHKS’

Using JCECCAKS
JCECCAKS uses hwkeytool, as depicted in Figure 10 on page 21. The methods that are 
used to transfer keys depends on the keytype. Keys that are stored in ICSF on z/OS are 
encrypted using the hardware master key. Symmetric keys are stored in the CKDS encrypted 
using the symmetric master key (SYM-MK). Asymmetric keys are stored in the PKDS 
encrypted using the asymmetric master key (ASYM-MK). See Figure 12 on page 24.

Sharing keys: This example shows sharing specific keys, but it is acceptable to share 
whole datasets (CKDS and PKDS) using an IDCAMS REPRO job if the master keys are 
the same on each system. Full *KDS sharing is the preferred method.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 23



Figure 12   Sysplex sharing: JCECCAKS multiple sysplexes

Sharing symmetric keys 
Symmetric keys, including Data Encryption Standard (DES), Triple DES, and AES keys, are 
copied from one ICSF system to another with the assistance of additional keys called 
transporter keys. Transporter keys are generated in ICSF using the Key Generation Utility 
(KGUP). They have two parts: the EXPORTER key and the IMPORTER key.

Using KGUP, create the EXPORTER key:

ADD TYPE(EXPORTER) CLEAR LABEL(JCECCAKSEXPORT)

As a result of the ADD command, the CSFKEYS dataset has an entry. This entry will become 
the IMPORTER key, but you first must perform several tasks with the data.

Turn HEX on in the browser. The key is in the clear as character data. We need to get the 
EBCDIC values. For example, a space is x'40' and the number 1 is x'F1', but they are shown 
vertically in HEX mode in the Interactive System Productivity Facility (ISPF) browser. See 
Example 19.

Example 19   ISPF browser character data

`O)_/.¶ZÀ._ê.@mº          <<<<<< Character data
7D5662BE61651799          <<<<<< first nibble of character
96DD1C694AD26C4B          <<<<<< last nibble of character

Copy this key to a string that is a flattened view of the HEX data. The translation of this 
example looks like the following line: 

79D65D6D612CB6E9641A6D52167C949B

Split this value into two 16-digit values using a comma: 

79D65D6D612CB6E9,641A6D52167C949B

Create another KGUP command to create the IMPORTER key on the target system:

ADD TYPE(IMPORTER) CLEAR LABEL(JCECCAKSIMPORT),
KEY(79D65D6D612CB6E9,641A6D52167C949B)  
24 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



After it has been added, the CKDS on the source system contains this information:

JCECCAKSEXPORTER                                                         
EXPORTER2011060213110520......................{..........GýR..Ý~H.þ..¼ø.. '.. ... 
'.............

And at the target system, the CKDS contains this information:

JCECCAKSIMPORTER                                                         
IMPORTER2011060213192384......................{.........Åä.¢öøÿ4SÕ£3úò3Ù.â'.. 
...â'.............

Refresh the in-storage CKDS on each system to ensure that the keys are available. It is now 
possible to move symmetric keys between the systems using ICSF Common Cryptographic 
Architecture (CCA) APIs.

Use the key export callable service to re-encipher any type of key (except an ANSI 
key-encrypting key (AKEK) or an IMPORTER key-encrypting key (IMP-PKA)) from encryption 
under a master key variant to encryption under the same variant of an exporter 
key-encrypting key. The re-enciphered key can be exported to another system.

If the key to be exported is a DATA key, the key export service generates a key token with the 
same key length as the input token’s key. See Example 20.

Example 20   Generating a key token

CALL CSNBKEX(
             return_code,
             reason_code,
             exit_data_length,
             exit_data,
             key_type,
             source_key_identifier,
             exporter_key_identifier,
             target_key_identifier )

The source key is exported from the CKDS encrypted under the exporter key and placed in 
the target key. That string can then be written to a file to be transferred to another system. The 
associated importer key is used to decrypt the source key. The source key is then encrypted 
with the local SYM-MK and placed in the local CKDS. See “Sample of ICSF API usage” on 
page 41 for a sample REXX exec implementing this service.

Labels must be consistent across both implementations to maintain access to the key 
material. After the keys are copied between systems, also copy the JCECCAKS file. Use this 
JCECCAKS file as the value for the config.keystore.file property in the IBM Security Key 
Lifecycle Manager configuration file. 

Sharing asymmetric keys
Hardware-protected asymmetric keys are shared using a two-step process: 

1. Transfer the keys from the ICSF PKDS using KEYXFER. 
2. Copy the JCECCAKS file using scp or secure FTP.

KEYXFER facilitates the transfer of public key algorithm (PKA) key tokens (RSA keys) 
between systems that use the Integrated Cryptographic Services Facility (ICSF).

This tool is available from the following website:

http://www-03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 25

http://www-03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
http://www-03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html


The key transfer tool (KEYXFER) is a REXX exec that runs on z/OS.

The KEYXFER tool assumes that the following conditions exist:

� ICSF runs on the systems that are involved in the key transfer.
� ICSF has an active PKDS.
� All systems that are involved in the transfer use the same ASYM master key.

The tool retrieves a PKA key token from the active PKDS and writes it to a dataset. The 
dataset can then be transmitted to any number of systems. On each system, the tool can be 
used to read the key token from the transmitted dataset and store it into the active PKDS. The 
tokens are referenced by PKDS label.

The command uses the following format:

KEYXFER OPER, PLABEL, DSN, OPTION

Where:

OPER READ from the dataset or WRITE to the dataset.

PLABEL The label of the PKDS record to be retrieved or stored.

DSN The name of the dataset that holds the token.

OPTION OVERWRITE a label in the PKDS. If OVERWRITE is specified in the option 
field, an existing PKDS label will be overwritten with the token from the 
input dataset.

For the dataset, a physical sequential (PS) dataset or partitioned dataset (PDS) can be used. 
An LRECL=80 is recommended, but it is not required.

The information that is stored in the KEYXFER dataset consists of the following information:

� Date
� PKDS label
� Length of token
� Token

If ICSF services are RACF-protected (CSFSERV), access will be required by the user for the 
CSNDKRC, CSNDKRR, and CSNDKRW services.

KEYXFER command examples
The following examples use KEYXFER:

� Use the following command to write the key token that is stored in the active PKDS under 
the label PKDS.KEY.LABEL to the dataset TEMP.MEM:

KEYXFER WRITE, PKDS.KEY.LABEL, TEMP.MEM

� Use the following command to read the key token that is contained in the dataset 
TEMP.MEM and write the token to the active PKDS under the label PKDS.KEY.LABEL. If 
the label already exists in the PKDS, the operation will fail.

KEYXFER READ, PKDS.KEY.LABEL, TEMP.MEM

Exchanging keys: Public key tokens and external private key tokens can be received on 
any ICSF system. If the PKA key token is an internal private key token (see z/OS 
Cryptographic Services ICSF: Application Programmer’s Guide, SA22-7522-15), it is 
encrypted under the ICSF master key of the system. Transferring the key token requires 
that the receiving systems use the same ICSF master key.
26 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



� Use the following command to read the key token that is contained in the dataset 
TEMP.MEM and write the token to the active PKDS under the label PKDS.KEY.LABEL. If 
the label already exists in the PKDS, the token for that label will be overwritten.

KEYXFER READ, PKDS.KEY.LABEL, TEMP.MEM, OVERWRITE

� Use the following command to read the key token that is contained in the dataset 
TEMP.MEM and write the token to the active PKDS. Because no PLABEL was specified, 
the label from the original system will be extracted from the file and used as the label for 
the token on the new system. 

KEYXFER READ, , TEMP.MEM

� Use the following command to copy the JCECCAKS file to the target system and ensure 
that the filename is correct and noted in the IBM Security Key Lifecycle Manager 
configuration properties file. Refresh the IBM Security Key Lifecycle Manager keystore.

F ISKLM,APPL='REFRESHKS'

Using IDCAMS
Copy a CKDS or PKDS dataset using IDCAMS REPRO to a flat file. That flat file can be 
transferred to a target system and restored using IDCAMS REPRO. See Example 21.

Example 21   IDCAMS REPRO transfer and restore example

//FLATCKDS  JOB  …
//STEP1   EXEC PGM=IDCAMS,REGION=0M                     
//SYSPRINT DD  SYSOUT=*                                 
//NEWDD  DD DSN=SYS1.CSFCKDS,DISP=SHR             
//OUTDD DD DSN=USER.REPRO.FLATCKDS,            
//         UNIT=3390,VOLUME=SER=TSO123,DISP=(NEW,CATLG),
//         DCB=(RECFM=FB,LRECL=252,BLKSIZE=32760),      
//         SPACE=(CYL,(620,80))                         
//SYSIN DD *                                            
 REPRO INFILE(NEWDD) OUTFILE(OUTDD)

Example 22 shows how to restore this dataset on a target system.

Example 22   IDCAMS REPRO restore example

//FLATCKDS  JOB  …
//STEP1   EXEC PGM=IDCAMS,REGION=0M                     
//SYSPRINT DD  SYSOUT=*                                 
//OUTDD  DD DISP-=SHR,DSN=SYS1.CSFCKDS            
//INDD DD DISP=SHR,DSN=USER.REPRO.FLATCKDS                         
//SYSIN DD *                                            
 REPRO INFILE(INDD) OUTFILE(OUTDD) 

Using JCECCARACFKS
JCECCARACFKS keystores store information in the SAF external security manager (RACF, 
ACF2, or Top Secret) and ICSF. SAF-based keystores cannot be used to manage symmetric 
keys for LTO devices. 

Moving ICSF-based RSA key material between z/OS images requires the use of the 
KEYXFER tool. KEYXFER facilitates the transfer of PKA key tokens (RSA keys) between 
systems that use the Integrated Cryptographic Services Facility (ICSF). Keys are copied from 
the PKDS to a file. These keys are encrypted under the Asymmetrical Hardware Master Key 
(ASYM-MK) in the cryptographic module.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 27



Both the SAF-based digital certificate and the ICSF-based RSA keys must be moved using 
the same label names across all images. See Figure 13.

Figure 13   Sysplex Sharing: JCECCARACFKS multiple sysplexes

This tool is available from the following website:

http://www-03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html

The key transfer tool (KEYXFER) is a REXX exec that runs on IBM MVS™. The KEYXFER 
tool assumes the following conditions:

� ICSF runs on the systems that are involved in the key transfer.
� ICSF has an active PKA Key dataset (PKDS).
� All systems that are involved in the transfer use the same ASYM master key.

The tool retrieves a PKA key token from the active PKDS and writes it to a dataset. The 
dataset can then be transmitted to any number of systems. On each system, the tool can be 
used to read the key token from the transmitted dataset and store it into the active PKDS. The 
tokens are referenced by the PKDS label.

The command uses the following format:

KEYXFER OPER, PLABEL, DSN, OPTION

Where:

OPER READ from the dataset or WRITE to the dataset.

PLABEL The label of the PKDS record to be retrieved or stored.

DSN The name of the dataset that holds the token.

OPTION OVERWRITE a label in the PKDS. If OVERWRITE is specified in the option 
field, an existing PKDS label will be overwritten with the token from the 
input dataset.

Asymmetric keys are represented in the system by a digital certificate in the security manager 
and the key material in the ICSF PKDS. Use the following procedure to propagate this 
information:

1. Export the digital certificate from the SAF security manager to a sequential file, as shown 
in Example 23 on page 29.
28 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations

http://www-03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html


Example 23   RACDCERT EXPORT command

RACDCERT EXPORT(LABEL('label-name')) 
DSN('dataset_for_saved_cert')
PASSWORD(‘new_dataset_password’)
FORMAT(PKCS12DER)

2. Copy the RSA keys from the ICSF PKDS to a dataset using KEYXFER WRITE:

KEYXFER WRITE, PKDS.KEY.LABEL, TRANSFER.FILE

3. Copy the newly created datasets to the target system:

– DATASET.FOR.SAVED.CERT
– TRANSFER.FILE

4. Copy the RSA keys from the dataset into ICSF using KEYXFER READ:

 KEYXFER READ, PKDS.KEY.LABEL, TRANSFER.FILE

5. Add the certificate to the SAF keystore on the target image. For RACF, use the 
RACDCERT command. Issue the RACDCERT ADD command to add the certificate to 
RACF:

RACDCERT ID(ISKLM_SERVER_ID) ADD('dataset_for_saved_cert') 
PASSWORD(‘new_dataset_password’) PCICC

6. Connect the certificate to the keyring, as shown in Example 24. 

Example 24   RACDCERT CONNECT command

RACDCERT ID(ISKLM_SERVER_ID) CONNECT( 
ID(ISKLM_SERVER_ID)
LABEL('label_name')
RING(ISKLMRing)
USAGE(PERSONAL) 
)

7. Refresh the keystore cache for the active IBM Security Key Lifecycle Manager instance. 
Issue the REFRESHKS command at the z/OS operator:

F ISKLM,APPL='REFRESHKS'

Auditing options

The audit subsystem writes textual audit records. They are written to a set of sequential files 
as various auditable events occur during the processing of requests by Security Key Lifecycle 
Manager for z/OS. The audit subsystem writes to a file (the directory and file name are 
configurable). The file size of these files is also configurable. As records are written to the file, 
the size of the file reaches the configured size. Then, the file is closed and renamed based on 
the current timestamp. Another file is then opened, and records are written to the newly 
created file. The overall log of audit records is separated into files of configurable size. The file 
names are sequenced by the timestamp of the point at which the size of the file exceeds the 
configurable size.

PCICC keyword: When the certificate is added with the PCICC keyword, an 
association is made with the RSA keys that were added to ICSF with the same label 
using KEYXFER. Internal processes assure that the keys and the certificates are 
associated correctly.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 29



Security Key Lifecycle Manager for z/OS provides System Management Facilities (SMF) 
support for audit records. System Management Facilities is a z/OS service aid that collects 
information from various z/OS subsystems. The default configuration on z/OS routes all audit 
records to System Management Facilities type 83 subtype 6 records. 

You can format Security Key Lifecycle Manager for z/OS audit data using the RACF SMF 
Data Unload Utility. For information about how to run the RACF SMF Data Unload Utility, see 
the following website:

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=/com.ibm.zos.r1
2.icha800/toc.htm

Using SMF records

IBM Security Key Lifecycle Manager for z/OS is capable of using SMF to maintain the audit 
trail of logged events. Set the Audit.handler.class configuration property:

Audit.handler.class = com.ibm.ltklm.audit.smf.SMFSecurityEventHandler

SMF must be set to capture type 83 subtype 6 records. Alter the active IEASMFxx member of 
the SYS1.PARMLIB concatenation:

SYS(TYPE(83(6))

Event records are extracted from SMF using the SMF Data Unload Utility. The RACF SMF 
Data Unload Utility (IRRADU00) enables installations to create a sequential file from the 
security-relevant audit data. You can use the sequential file in several ways:

� View it directly
� Use it as input for installation-written programs
� Manipulate it with sort/merge utilities
� Output it to an XML-formatted file for viewing on a web browser
� Upload it to a database manager (for example, DB2) to process complex inquiries and 

create installation-tailored reports 

The sequential file is not intended to be used directly as input to RACF commands.

Viewing audit records using DB2
Example 25 shows an example JCL to pull all type 83 subtype 6 records for SYS1.MANA. 
The output of this job is formatted text in the OUTDD dataset, USER1.ISKLM.SMFOUT.

Example 25   Viewing audit records with DB2

//SMFDUMP  EXEC PGM=IFASMFDP
//SYSPRINT DD  SYSOUT=A
//ADUPRINT DD  SYSOUT=A
//OUTDD    DD  DISP=SHR,DSN=USER1.ISKLM.SMFOUT
//SMFDATA  DD  DISP=SHR,DSN=SYS1.MANA
//SMFOUT   DD  DUMMY
//SYSIN    DD  *
     INDD(SMFDATA,OPTIONS(DUMP)) 
     OUTDD(SMFOUT,TYPE(83(6)))                     
     ABEND(NORETRY)
     USER2(IRRADU00)
     USER3(IRRADU86)
/* 
30 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=/com.ibm.zos.r12.icha800/toc.htm


The dataset USER1.ISKLM.SMFOUT has the attributes that are shown in Example 26.

Example 26   Dataset attributes

Organization  . . . : PS   
Record format . . . : VB   
Record length . . . : 12288
Block size  . . . . : 27998

The output of IRRADU00 is a set of variable-length records. This dataset must be allocated 
as a variable-length dataset, with a logical record length (LRECL) of at least 12288. If a 
shorter LRECL is supplied, IRRADU00 changes the LRECL to 12288. 

IRRADU00 also changes the block size of the dataset to be at least four more than the 
LRECL, unless the block size was set to zero to allow the system to choose the best block 
size.

The records that are produced by the RACF SMF Data Unload Utility are designed to be 
processed by the DB2 Load Utility or its equivalent. The definition and control statements for 
a DB2 utilization of the output, all of which are contained in SYS1.SAMPLIB, are listed:

� Sample data definition language (DDL) statements to define the relational presentation of 
the audit information and sample DB2 definitions, which perform database and index 
creation. These statements are in member IRRADUTB.

� Sample control statements for the DB2 Load Utility that map the output from the RACF 
SMF Data Unload Utility. These statements are in member IRRADULD.

� Sample Structured Query Language (SQL) queries that demonstrate useful inquiries that 
can be made. These queries are in member IRRADUQR.

Viewing audit records using XML
Example 27 shows an example JCL to pull all type 83 subtype 6 records for SYS1.MANA. 
The output of this job is XML in the XMLFORM dataset, USER1.ISKLM.XMLFORM.

Example 27   Viewing audit records with XML

//SMFISKLM EXEC PGM=IFASMFDP                    
//SYSPRINT DD  SYSOUT=*                         
//ADUPRINT DD  SYSOUT=*                         
//SMFDATA  DD  DISP=SHR,DSN=SYS1.MANA       
//*OUTDD    DD  DISP=SHR,DSN=USER1.PRIV.SMFOUT  
//XMLFORM  DD  DISP=SHR,DSN=USER1.ISKLM.XMLFORM 
//*                                             
//SMFOUT   DD  DUMMY                            
//SYSIN    DD  *                                
  INDD(SMFDATA,OPTIONS(DUMP))                   
  OUTDD(SMFOUT,TYPE(83(6)))
  ABEND(RETRY)                                  
  USER2(IRRADU00)                               
  USER3(IRRADU86)                               
//* 

OUTDD DD statement: Note that the OUTDD DD statement is commented out when 
producing XML output.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 31



The output of IRRADU00 is a set of variable-length records. This dataset must be allocated 
as a variable-length dataset, with a logical record length (LRECL) of at least 12288. If a 
shorter LRECL is supplied, IRRADU00 changes the LRECL to 12288. 

IRRADU00 also changes the block size of the dataset to be at least four more than the 
LRECL, unless the block size was set to zero to allow the system to choose the best block 
size.

On z/OS, you can process the document using the IBM XML Toolkit for z/OS. The XML can 
be used in the following ways: 

� Viewed using the ISPF edit function
� Viewed using an XML-capable web browser
� Converted to HTML using a style sheet
� Processed by an XML parser and processor

On other systems, such as personal computers and workstations, the audit report can be 
viewed using an XML-capable web browser. Many browsers that are available today have the 
ability to correctly parse and render XML documents. Therefore, after the audit report is on 
that system, you can read it as easily as any other web document. Simply, display a listing of 
the files, and single-click or double-click the file to open it in the browser window. The platform 
documentation can help you discover which applications are able to parse and display XML 
files.

Note that to use the XML file on a personal computer, you must first alter the EBCDIC 
encoding line at the top of the file: 

<?xml version='1.0' encoding='ebcdic-cp-us' ?>

So, it looks like the following line: 

<?xml version='1.0' encoding='ISO8859-1' ?>

An EBCDIC end-of-file x'01A' appears as the last byte of the XML file. Remove this byte 
when viewing the file on a non-EBCDIC system, such as a personal computer.

Using XML style sheets
A style sheet helps format the data in the XML file when it is rendered at a browser or XML 
editor. Example 28 shows a sample style sheet and the output from an IBM Security Key 
Lifecycle Manager for z/OS audit log.

Example 28   XML sample style sheet

<?xml version='1.0' encoding='ISO8859-1' ?>
<xsl:stylesheet version="1.0"
xmlns:rac='http://www.ibm.com/xmlns/zOS/IRRSchema'
xmlns:d="http://www.ibm.com/xmlns/zOS/TKLMSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output encoding="ibm-1047"/>
<xsl:template match="/">
<html>
<body>
<h2>Event List</h2>
<table border="1">
<tr bgcolor="#AAAAAAA">
<th align="left">Date</th>
<th align="left">Time</th>
<th align="left">Result</th>
32 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



<th align="left">event Data</th>
</tr>
<xsl:for-each select="rac:securityEventLog/rac:event">
<tr>
<td><xsl:value-of select="rac:dateWritten"/></td>
<td><xsl:value-of select="rac:timeWritten"/></td>
<td><xsl:value-of select="rac:eventQual"/></td>
<td width="500" align="left" valign="top"><xsl:value-of 
select="rac:details/d:eventData"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

IBM Security Key Lifecycle Manager for z/OS event list
Table 3 shows a sample event list for IBM Security Key Lifecycle Manager for z/OS.

Table 3   IBM Security Key Lifecycle Manager for z/OS event list

Date Time Result Event data

2011-06-13 12:48:36.55 SUCCESS Runtime event:Ý… timestamp=Mon Jun 13 12:48:36 
EDT 2011… 
ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨… 
event source=com.ibm.ltklm.ISKLMServer… 
outcome=Ýresult=successful¨… event 
type=SECURITY_RUNTIME… 
resource=Ýname=ISKLMAdmin;type=application¨… 
action=runISKLMServer… 
user=Ýname=ISKLMAdmin¨… ¨…

2011-06-13 12:48:37.12 SUCCESS Resource management event:Ý… timestamp=Mon Jun 
13 12:48:37 EDT 2011… 
ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨… 
event 
source=com.ibm.ltklm.keygroups.KeyGroupManager… 
outcome=Ýresult=successful¨… event 
type=SECURITY_MGMT_RESOURCE… 
action=retrieve… user=Ýname=KMSAdmin¨… 
resource=Ýname=safkeyring://SKLMSRV/SKLMRing;t
ype=file¨… ¨…

2011-06-13 12:48:37.29 SUCCESS Resource management event:Ý… timestamp=Mon Jun 
13 12:48:37 EDT 2011… 
ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨… 
event 
source=com.ibm.ltklm.keystore.KeyStoreLoader… 
outcome=Ýresult=successful¨… event 
type=SECURITY_MGMT_RESOURCE… 
action=retrieve… user=Ýname=KMSAdmin¨… 
resource=Ýname=safkeyring://SKLMSRV/SKLMRing;t
ype=file¨… ¨…
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 33



Audit log file

IBM Security Key Lifecycle Manager for z/OS can maintain the audit trail of logged events in a 
z/OS UNIX System Services text file. Set the Audit.handler.class configuration property:

Audit.handler.class = com.ibm.ltklm.audit.file.SimpleFileSecurityEventHandler

The audit subsystem writes textual audit records. They are written to a set of sequential files 
as various auditable events occur during the processing of requests by Security Key Lifecycle 
Manager for z/OS. The audit subsystem writes to a file (directory and file name are 
configurable). The file size of these files is also configurable. As records are written to the file, 
the size of the file reaches the configurable size. Then, the file is closed and renamed based 
on the current timestamp. Another file is opened and records are written to the newly created 
file. The overall log of audit records is separated into files, whose size is configurable. Their 
names are sequenced by the timestamp of the point at which the size of the file exceeds the 
configurable size.

Example 29 shows a typical audit record that is written in this format.

Example 29   Audit log file

Resource management event:Ý                                   
  timestamp=Sat Jun 11 12:45:45 EDT 2011                      
  ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨                  
  event source=com.ibm.ltklm.keystore.KeyStoreLoader          
  outcome=Ýresult=successful¨                                 
  event type=SECURITY_MGMT_RESOURCE                           
  action=retrieve                                             
  user=Ýname=KMSAdmin¨                                        
  resource=Ýname=safkeyring://SKLMSRV/SKLMRing;type=file¨ 

2011-06-13 12:48:37.34 SUCCESS Resource management event:Ý… timestamp=Mon Jun 
13 12:48:37 EDT 2011… 
ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨… 
event 
source=com.ibm.ltklm.keystore.KeyStoreLoader… 
outcome=Ýresult=successful¨… event 
type=SECURITY_MGMT_RESOURCE… 
action=retrieve… user=Ýname=KMSAdmin¨… 
resource=Ýname=safkeyring://SKLMSRV/SKLMSSL;ty
pe=file¨… ¨…

2011-06-13 2011-06-13 SUCCESS Runtime event:Ý… timestamp=Mon Jun 13 12:48:37 
EDT 2011… 
ComponentId=ÝthreadId=ThreadÝmain,5,main¨¨… 
event source=com.ibm.ltklm.ISKLMServer… 
outcome=Ýresult=unsuccessful¨… event 
type=SECURITY_RUNTIME… message=no 
symmetric Key aliases LTO drives not supported. 
ErrorCode= 19… resource=Ýname=if LTO support is 
needed valid symmetric Keys must be added to the 
config keystore;type=file¨… action=stop… ¨…

Date Time Result Event data

z/OS conversion: The normal z/OS EBCDIC code page converts square brackets: [ = Ý 
and ] = ¨
34 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



Troubleshooting on z/OS

Most problems concerning the Security Key Lifecycle Manager for z/OS involve configuration 
or starting the server.

Successful startup

Example 30 shows a successful server startup.

Example 30   Successful startup

BPXM023I (SKLMSRV) Loaded drive key store successfully                  
BPXM023I (SKLMSRV) Loading admin keystore...                            
BPXM023I (SKLMSRV) No symmetric keys in symmetricKeySet, LTO drives     
cannot be supported.                                                    
BPXM023I (SKLMSRV) Starting the Security Key Lifecycle Manager          
1.1-20110222                                                            
BPXM023I (SKLMSRV) Processing Arguments                                 
BPXM023I (SKLMSRV) Contact IBM support at 1-800-IBM-SERV (1-800-426-7378
) or through your normal business channel.                              
BPXM023I (SKLMSRV) Processing                                           
BPXM023I (SKLMSRV) Server is started                                    
BPXM023I (SKLMSRV) Server is running. TCP port: 3801, SSL port: 443 

Error: Default keystore failed to load

This error is common when first starting IBM Security Key Lifecycle Manager on z/OS. 
Example 31 shows the trace-back in the STC log.

Example 31   Default keystore failed to load error

com.ibm.ltklm.KeyManagerException: Default keystore failed to load              
 at 
com.ibm.ltklm.keygroups.KeyGroupManager.loadDefaultKeyStore(KeyGroupManager.java:1
58)
 at com.ibm.ltklm.keygroups.KeyGroupManager.init(KeyGroupManager.java:314)      
 at com.ibm.ltklm.ISKLMServer.c(ISKLMServer.java:271)                           
 at com.ibm.ltklm.ISKLMServer.<init>(ISKLMServer.java:282)                      
 at com.ibm.ltklm.ISKLMServer.a(ISKLMServer.java:530)                           
 at com.ibm.ltklm.ISKLMServer.main(ISKLMServer.java:238)                        
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)                 
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:48)
 at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
25)
 at java.lang.reflect.Method.invoke(Method.java:600)                            
 at com.ibm.jzosekm.ISKLMConsoleWrapper.a(ISKLMConsoleWrapper.java:25)          
 at com.ibm.jzosekm.ISKLMConsoleWrapper.main(ISKLMConsoleWrapper.java:35)
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 35



Several possible causes for this error exist:

� The keystore does not exist.

This situation usually occurs when the keystore name is incorrect in the properties file. 
Ensure that the keystore file or keyring name is correct on all properties. Also, ensure that 
the user ID is correct if using a SAF keyring. The user ID is case sensitive.

� The STC user does not have authority to the keystore.

To read a SAF keyring, the user ID needs authority to the IRR.DIGTCERT.LIST and 
IRR.DIGTCERT.LISTRING profiles in the FACILITY class. 

� The keystore was tampered with or the password was incorrect.

This situation usually occurs during setup when changing keystore types. IBM Security 
Key Lifecycle Manager will obfuscate the password in the properties file. To reset the 
obfuscated password, change the property from 
config.keystore.password.obfuscated=07089E88A9A9AD9DA08B to 
config.keystore.password=<password of keystore>.

� A configuration mismatch exists between the defined services providers and the types of 
keystores:

– If any of the keystores that are described in the IBM Security Key Lifecycle Manager 
properties file are of a separate type, this error occurs. Ensure that all keystores are 
declared as the same type, and that the type is correct. 

– If using JCECCAKS, JCERACFKS, or JCECCARACFKS, ensure that the correct 
cryptographic services provider is declared in java.security.

� An incorrect value is set in the STDENV file for the IJO variable.

If a mismatch exists between the keystore type and the IJO variable, IBM Security Key 
Lifecycle Manager will fail to load the keystore. 

Error: NoClassDefFoundError

Example 32 shows the NoClassDefFoundError.

Example 32   NoClassDefFoundError

-> StaticMethod.invoke()                                         
com.ibm.jzosekm.ISKLMConsoleWrapper.main                         
Could not find or load class: com.ibm.jzosekm.ISKLMConsoleWrapper
-> JniUtil.writeStackTrace()
JVMJZBL2007E Stack trace follows:                                               
java.lang.NoClassDefFoundError: com.ibm.jzosekm.ISKLMConsoleWrapper             
Caused by: java.lang.ClassNotFoundException: com.ibm.jzosekm.ISKLMConsoleWrapper
 at java.net.URLClassLoader.findClass(URLClassLoader.java:423)                  
 at java.lang.ClassLoader.loadClass(ClassLoader.java:653)                       
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:346)               
 at java.lang.ClassLoader.loadClass(ClassLoader.java:619)                       
JVMJZBL2999T <- JniUtil.writeStackTrace() 

Errors: 

� This error can appear if any of the configured keystores or truststores are in error.

� Always check the isklm_audit.log file for further information regarding start-up 
failures.
36 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



This error indicates that the com.ibm.jzosekm.ISKLMConsoleWrapper was not found in the 
Java CLASSPATH or in java/lib/ext. This class, along with all the Java classes that are 
required by IBM Security Key Lifecycle Manager for z/OS, is contained in the IBMSKLM.jar file 
that was delivered as part of the SMP/E for z/OS installation. 

Migration from IBM Encryption Key Manager

You can migrate Encryption Key Manager versions 1.0, 2.0, and 2.1 to Security Key Lifecycle 
Manager for z/OS.

Before you begin

Before you migrate Encryption Key Manager to Security Key Lifecycle Manager for z/OS, 
perform these steps:

1. Use the refresh command to refresh Encryption Key Manager. 

2. Use the stopekm command to stop Encryption Key Manager to ensure that there is no data 
loss. Encryption Key Manager cannot be active during the migration.

3. Install Security Key Lifecycle Manager for z/OS on the same computer as Encryption Key 
Manager. 

4. Copy and store critical Encryption Key Manager files in a secure location that is not in the 
Encryption Key Manager directory structure. Use these files to restore Encryption Key 
Manager, if necessary.

5. Copy and store the keystore, including all keys and certificates that the configuration file 
references. 

6. Copy the configuration file, device table, and metadata file. 

7. Copy the keygroups file, if it exists.

Also, examine these properties in the Encryption Key Manager configuration file to determine 
the files that you copy:

� config.keygroup.xml.file
� config.drivetable.file.url
� Admin.ssl.keystore.name
� Admin.ssl.truststore.name
� TransportListener.ssl.truststore.name
� TransportListener.ssl.keystore.name
� config.keystore.file
� Audit.metadata.file.name

RACF keystores: If the keystores in use are RACF-based (JCERACFKS or 
JCERACFCCAKS), you do not have to back up any of the files that are referenced in the 
listed configuration parameters that have a keystore or truststore. You still must back up the 
config.keygroup.xml.file, config.drivetable.file.url, and 
Audit.metadata.file.name parameters.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 37



Migration procedure

Use the following procedure to begin the migration:

1. Copy the files that you backed up from the Encryption Key Manager to the directory in 
which you installed Security Key Lifecycle Manager for z/OS. That is, copy the 
configuration file, device table, keygroups file, metadata file, and keystore file or files, if 
applicable.

2. Update the Security Key Lifecycle Manager for z/OS configuration file to specify the new 
path in which you installed Security Key Lifecycle Manager for z/OS. Changing the path 
protects the Encryption Key Manager environment from being overwritten, in case you 
need to use Encryption Key Manager again.

3. Ensure that the Security Key Lifecycle Manager for z/OS configuration file, named 
ISKLMConfig.properties.zos, contains the following properties:

– Audit.metadata.file.name

Specify the fully qualified path and file name for the XML file in which metadata is 
saved, for example:

Audit.metadata.file.name = /u/isklmsrv/metafile.xml

– config.keystore.password

Specify the keystore password, for example:

config.keystore.password = ISKLMKeys.jck_password

The password value is initially stored in plain text that is obfuscated when Security Key 
Lifecycle Manager for z/OS starts.

– TransportListener.ssl.keystore.password

Specify the keystore password, for example:

TransportListener.ssl.keystore.password = SSLKeystore.jck_password

The password value is initially stored in plain text that is obfuscated when Security Key 
Lifecycle Manager for z/OS starts.

– Admin.ssl.keystore.password

Specify the keystore password, for example:

Admin.ssl.keystore.password = SSLKeystore.jck_password

The password value is initially stored in plain text that is obfuscated when Security Key 
Lifecycle Manager for z/OS starts.

4. After all configurations have been updated, restart the Security Key Lifecycle Manager for 
z/OS to incorporate the configuration changes. If the Encryption Key Manager used JZOS, 
Security Key Lifecycle Manager for z/OS can also use the JZOS launcher to restart.

5. Check the audit log file to ensure that the migration was successful and that no errors are 
logged. Example 33 shows an example.

Example 33   Sample audit log file

Runtime event:[
  timestamp=Sun Oct 24 10:33:28 CDT 2010
  ComponentId=[threadId=Thread[main,5,main]]

DS8000 specifics: If you choose to automatically add a DS8000, you can add the 
property ds8k.acceptUnknownDrives= true after you complete the migration.
38 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



  event source=com.ibm.ltklm.ISKLMServer
  outcome=[result=successful]
  event type=SECURITY_RUNTIME
  resource=[name=ISKLMAdmin;type=application]
  action=runISKLMServer
  user=[name=ISKLMAdmin]
  ]
Resource management event:[
  timestamp=Sun Oct 24 10:33:29 CDT 2010
  ComponentId=[threadId=Thread[main,5,main]]
  event source=com.ibm.ltklm.keygroups.KeyGroupManager
  outcome=[result=successful]
  event type=SECURITY_MGMT_RESOURCE
  action=retrieve
  user=[name=KMSAdmin]
  resource=[name=SKLMKeys.jck;type=file]
  ]
Resource management event:[
  timestamp=Sun Oct 24 10:33:29 CDT 2010
  ComponentId=[threadId=Thread[main,5,main]]
  event source=com.ibm.ltklm.keystore.KeyStoreLoader
  outcome=[result=successful]
  event type=SECURITY_MGMT_RESOURCE
  action=retrieve
  user=[name=KMSAdmin]
  resource=[name=ISKLMKeys.jck;type=file]
  ]
Runtime event:[
  timestamp=Sun Oct 24 10:33:30 CDT 2010
  ComponentId=[threadId=Thread[main,5,main]]
  event source=com.ibm.ltklm.v
  outcome=[result=successful]
  event type=SECURITY_RUNTIME
  resource=[name=ISKLM server;type=application]
  action=start
  user=[name=ISKLMAdmin]
  ]
Runtime event:[
  timestamp=Sun Oct 24 10:33:54 CDT 2010
  ComponentId=[threadId=Thread[Thread-7,5,main]]
  event source=com.ibm.ltklm.ISKLMServer
  outcome=[result=successful]
  event type=SECURITY_RUNTIME
  resource=[name=ISKLM server;type=application]
  action=stop
  user=[name=ISKLMAdmin]
  ]

SMF addition: The Encryption Key Manager only supported a flat file audit log. Security 
Key Lifecycle Manager for z/OS adds the ability to use SMF to log the audit records.
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 39



Common practices

Tape encryption and key management have been around for many years. The following list 
contains several of the practices that are common to most implementations. 

Key management common practices

The following list describes the common practices that you must remember when working 
with key management:

1. Key backup procedures.

A set of procedures must be in place to back up an copy of all keys in the keystore:

– JCEKS: Store a copy of the keystore file.

– JCERACFKS: Back up the RACF, ACF2, or Top Secret database.

– JCECCAKS: Back up the ICSF datasets.

– JCECCARACFKS: Back up the RACF, ACF2, or Top Secret database and the ICSF 
datasets.

2. Periodic generation and rotation of default keys and certificates:

– Key material, whether it is symmetric AES keys for LTO devices, or asymmetric RSA 
keypairs stored in x.509v3 digital certificates for 3592 devices, must be generated 
periodically rather than using a single key or certificate indefinitely.

– Keys need to be generated on a yearly basis, at least.

3. Controlled key dispersal:

– Key material must be treated as controlled and sensitive data. 

4. Minimum RSA keysize of 2048:

– Key length equates to key strength. A length of 2048 must be considered a minimum.

5. Manageable keygroup size:

– Symmetric keygroups larger than 500 can affect performance.

– Multiple keygroups mitigate the risk of compromise.

6. Separation of duties:

– Separate the roles of those individuals controlling the key manager processes from 
those individuals managing the key material.

– Users need to be grouped, and groups must be given authority to specific tasks.

7. Archival of audit logs:

– SMF uses generation data group (GDG).

– Roll-off of z/OS UNIX System Services files.

8. Naming conventions must be in place for all keys, groups, and certificates:

– Certificate label-naming standards must contain this information:

• Ownership

• Usage

• Environment information

• Active date range
40 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



9. Use as many IBM Security Key Lifecycle Managers as you can assign from the proxy, as 
permitted by the local security guidelines:

– IBM Security Key Lifecycle Manager instances on multiple LPARs within a sysplex 
mitigate the risk of a single point of failure. 

10.Copies of the keystore and configuration files must be on physically separate storage 
systems:

– z/OS UNIX System Services files must be on separate file systems from the installation 
files:

• Audit logs, debug files, configuration file, and metadata files must be separate from 
the OS files.

11.Limit access to the IBM Security Key Lifecycle Manager password.

12.Limit access to the IBM Security Key Lifecycle Manager keystore.

13.Separate the config.keystore from the ssl.keystores to avoid certificate expiration 
problems when synchronizing.

14.Keep your TCP/IP paths as physically separate as possible.

15.Manage your JCEKS passwords properly, by using split passwords and long strong 
passwords.

16.Keep the IBM Security Key Lifecycle Manager Java separate from the system Java to 
remove update issues, preferably within the IBM Security Key Lifecycle Manager ID file 
structure.

17.Create a separate ID under which the IBM Security Key Lifecycle Manager will run, 
preferably neither UID 0 nor Administrator.

18.Keep a copy of the Java environment, with the IBM Security Key Lifecycle Manager 
configured, on a CD or on a separate physical storage medium.

19.Develop a procedure that describes how to create keys and how to implement them into 
production.

20.Develop criteria describing the type of events that cause keys to be changed, for example, 
time, personnel loss, personnel responsibility change, key compromise, or cartridge loss.

21.For TS1120 technology, develop a procedure to rekey cartridges (not available for 
TS7700). 

22.For LTO4, define a limit to the number of cartridges that any particular key can encrypt. 
Estimate the number of cartridges that are consumed for a period and divide that number 
out to determine how large the keygroup must be.

Sample of ICSF API usage

Example 34 shows a snippet of REXX code to export a data key under a key-encrypting 
exporter key. This code is provided as a sample and is not intended to function as is.

Example 34   Sample REXX code for exporting a data key

/**********************************************************/  
/* ExportDataKey                                          */  
/*  Use the data key export callable service to           */  
/*  reencipher a data-encrypting                          */  
/*  key (key type of DATA only) from                      */  
/*  encryption under the master key to                    */  
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 41



/*  encryption under an exporter key-encrypting key.      */  
/*  The reenciphered key is                               */  
/*  in a form suitable for export to another system.      */  
/**********************************************************/  
ExportDataKey 
Key_label = “label.of.the.key.to.export”
Exp_key = “exporter.key.label”

label   = LEFT(key_label,  64)  
exp_key = LEFT(exp_key,  64)           
full_key = copies(' ', 64)             
retcx  = '00000000'x                   
reascx = '00000000'x                   
ret_cx  = '00000000'x                  
reas_cx = '00000000'x                  
exit_lenx = '00000000'x;               
exit_data = "NONE    " ;               
key_type = 'DATA    ':                                                
 say 'Exporting key at label ' label ' using ' exp_key        
 address linkpgm 'CSNBKEX' ,                                  
                 'retcx'    'reascx'  ,                       
                 'exit_lenx' 'exit_data',                     
                 'key_type',                                  
                 'label'  'exp_key',                          
                 'full_key';             

/* at this point “full_key” contains the exported and encrypted key */

Plsace the key to be imported into a variable called Source_Key

Import the key using the CSNBKIM service :
ImportDataKey: 
Source_Key = “the key being imported”
Exp_key = “importer.key.label”   
Target_label = “label.of.the.key.being.imported” /* where to put the key */
label   = LEFT(target_label,  64)  /* justify all labels to 64 bytes */
exp_key = LEFT(exp_key,  64)           
 
retcx  = '00000000'x                   
reascx = '00000000'x                   
ret_cx  = '00000000'x                  
reas_cx = '00000000'x                  
exit_lenx = '00000000'x;               
exit_data = "NONE    " ;               
key_type = 'DATA    ':                                                
 

say 'Importing key at label ' label ' using ' exp_key        
 address linkpgm 'CSNBKEX' ,                                  
                 'retcx'    'reascx'  ,                       
                 'exit_lenx' 'exit_data',                     
                 'key_type',                                  
                 'source_Key',
42 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations



    'exp_key',                          
                 'label' 

The team who wrote this paper

This paper was produced by a team of specialists from around the world working at the 
International Technical Support Organization, Austin Center.

Axel Buecker is a Certified Consulting Software IT Specialist at the ITSO, Austin Center. He 
writes extensively and teaches IBM classes worldwide about areas of software security 
architecture and network computing technologies. He has a degree in Computer Science 
from the University of Bremen, Germany. He has 25 years of experience in a variety of areas 
related to workstation and systems management, network computing, and e-business 
solutions. Before joining the ITSO in March 2000, Axel worked for IBM in Germany as a 
Senior IT Specialist in Software Security Architecture.

William C. Johnston is adept at bringing best practices surrounding enterprise security to 
client processes. He is experienced in working with large system installations to deploy 
encryption key management solutions and has performed enterprise system security 
assessments. A large focus of his background is educating client teams on security-related 
topics. For over a decade, he was responsible for the design and implementation of the test 
approach definitions for security-related elements of the z/OS operating system, including 
their interaction with other components, the base OS, and other platforms, such as Linux and 
Microsoft Windows. In the past, he has performed code development, functional-level and 
system-level testing, and project management duties.

Thanks to the following people for their contributions to this project:

Ken Rogers, Jason G. Katonica, Jonathan M. Barney, and John Peck
IBM

Stephen J. Smith
International Technical Support Organization, Raleigh Center

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an ITSO residency project and help write a book in your 
area of expertise, while honing your experience using leading-edge technologies. Your efforts 
will help to increase product acceptance and customer satisfaction, as you expand your 
network of technical contacts and relationships. Residencies run from two to six weeks in 
length, and you can participate either in person or as a remote resident working from your 
home base. 

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Stay connected to IBM Redbooks

� Find us on Facebook:
 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations 43

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html


http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new IBM Redbooks® publications, residencies, and workshops with the IBM 
Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
44 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not give you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. 
© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by 
GSA ADP Schedule Contract with IBM Corp. 45



®

Redpaper™

This document REDP-4646-01 was created or updated on October 7, 2011.

Send us your comments in one of the following ways:
� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks
� Send your comments in an email to:

redbooks@us.ibm.com
� Mail your comments to: 

IBM Corporation, International Technical Support Organization
Dept. HYTD  Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are 
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US 
registered or common law trademarks owned by IBM at the time this information was published. Such 
trademarks may also be registered or common law trademarks in other countries. A current list of IBM 
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

DB2®
DS8000®
IBM®
MVS™

RACF®
Redbooks®
Redpaper™
Redbooks (logo) ®

System Storage®
Tivoli®
z/OS®

The following terms are trademarks of other companies:

LTO, Ultrium, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. 
and other countries.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other 
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel 
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its 
subsidiaries in the United States and other countries. 

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. 
46 IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/legal/copytrade.shtml

	Go to the current abstract on ibm.com/redbooks
	IBM Security Key Lifecycle Manager for z/OS: Deployment and Migration Considerations
	Overview
	Device-based encryption overview
	Encryption
	Decryption
	LTO encryption
	3592 encryption

	IBM Security Key Lifecycle Manager overview
	Installation considerations on z/OS
	File placement
	Configuration consistency

	Keystore options
	Java file-based keystore: JCEKS
	SAF-based keystore: JCERACFKS
	ICSF: Cryptographic hardware keystores

	Sysplex considerations
	File sharing considerations
	Using started task JCL
	Using the CLI as z/OS commands
	Sharing keys between sysplex members
	Sharing keys across multiple sysplexes

	Auditing options
	Using SMF records
	Audit log file

	Troubleshooting on z/OS
	Successful startup
	Error: Default keystore failed to load
	Error: NoClassDefFoundError

	Migration from IBM Encryption Key Manager
	Before you begin
	Migration procedure

	Common practices
	Key management common practices

	Sample of ICSF API usage
	The team who wrote this paper
	Now you can become a published author, too!
	Stay connected to IBM Redbooks

	Notices
	Trademarks


