

ibm.com/redbooks

Federated Identity
Management and
Web Services Security
with IBM Tivoli Security Solutions

Axel Buecker
Werner Filip

Heather Hinton
Heinz Peter Hippenstiel

Mark Hollin
Ray Neucom

Shane Weeden
Johan Westman

Introduction to Web services security
standards

Complete product architecture
and component discussion

Extensive federation
business scenario

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Federated Identity Management and Web Services
Security with IBM Tivoli Security Solutions

October 2005

International Technical Support Organization

SG24-6394-01

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (October 2005)

This edition applies to Version 6 of Tivoli Federated Identity Manager (product number 5724-L73)
and to all subsequent releases and modifications until otherwise indicated in new editions. Various
other related IBM and Tivoli products are mentioned in this book.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xviii
Comments welcome. xix

Part 1. Architecture and design . 1

Chapter 1. Business context for identity federation 3
1.1 Federated identity . 4
1.2 Business environment . 5

1.2.1 Deconstruction of the enterprise . 5
1.2.2 Enterprise re-aggregation . 6
1.2.3 High-level example of a re-aggregated business 7
1.2.4 Business models for federated identity . 9
1.2.5 The relationship - Trust and assurance. 15

1.3 IT environment . 17
1.3.1 The role of identity management. 17
1.3.2 Dealing with identities . 20
1.3.3 User life cycle management . 23
1.3.4 Inter-enterprise application to application integration 25
1.3.5 Open standards. 27

1.4 Conclusion. 28

Chapter 2. Architecting an identity federation . 31
2.1 Federation example. 33
2.2 Federated identity management architecture . 36

2.2.1 Background to federation . 37
2.2.2 Architecture overview . 38
2.2.3 Roles . 41
2.2.4 Identity models . 42
2.2.5 Identity attributes. 45
2.2.6 Trust . 49
2.2.7 Federation protocol . 51

2.3 FIM standards and efforts . 51
2.3.1 SSL/TSL . 52
2.3.2 Security Assertion Markup Language (SAML) 52
© Copyright IBM Corp. 2004, 2005. All rights reserved. iii

2.3.3 Shibboleth . 53
2.3.4 Liberty . 54
2.3.5 WS-Federation . 55
2.3.6 WS-Trust . 56
2.3.7 WS-Security . 57
2.3.8 WS-Provisioning . 57
2.3.9 Selecting Federation standards . 58

2.4 Federated single sign-on. 59
2.4.1 Push and Pull SSO . 60
2.4.2 Account linking . 61
2.4.3 Where are you from (WAYF). 62
2.4.4 Session management and access rights . 63
2.4.5 Logout . 63
2.4.6 Credentials clean up . 64
2.4.7 Global good-bye . 64
2.4.8 Account de-linking. 65

2.5 Web services security management . 65
2.5.1 Web services. 66
2.5.2 Web services security . 68
2.5.3 Gateways . 69

2.6 Federated identity provisioning . 70
2.7 On demand security reference architecture . 72

2.7.1 Policy management. 73
2.7.2 Identity management. 74
2.7.3 Key management . 74
2.7.4 Credential exchange . 74
2.7.5 Identity federation . 75
2.7.6 Authorization . 75

2.8 On demand integration reference architecture . 75
2.8.1 Connectivity services . 77
2.8.2 User interaction services. 77
2.8.3 Application and information assets . 78
2.8.4 Business application services . 78
2.8.5 Partner services . 78
2.8.6 Infrastructure services. 79

2.9 Method for architecting secure solution. 79
2.9.1 Implementation flow . 80
2.9.2 Definition phase of a federated identity management solution 81

2.10 Conclusion. 83

Chapter 3. Tivoli Federated Identity Manager architecture 85
3.1 Federated Identity Management functionality . 86
3.2 Federation services . 87
iv Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3.2.1 Point of contact (PoC) . 89
3.2.2 Single sign-on protocol services (SPS). 91
3.2.3 Trust services . 92
3.2.4 Key services (KESS). 96
3.2.5 Identity services . 97
3.2.6 Authorization services . 97
3.2.7 Provisioning services . 98
3.2.8 Management Services . 98

3.3 Federated single sign-on. 100
3.3.1 Architecture overview . 103
3.3.2 Trust in F-SSO . 104
3.3.3 F-SSO protocol functionality . 105
3.3.4 Integrating SSO with Access Manager for e-business 109
3.3.5 F-SSO approaches . 110
3.3.6 InfoService . 119
3.3.7 Specified level view of F-SSO architecture 120

3.4 Web services security management . 121
3.4.1 Architecture overview . 123
3.4.2 WS-Security . 125
3.4.3 Web services Gateway or Firewall . 126
3.4.4 WS-Trust . 127
3.4.5 Authorization services (AS). 128
3.4.6 Web services security management architecture approach 128

3.5 Provisioning services. 129
3.5.1 Architecture overview . 131
3.5.2 Provisioning architecture approach. 134

3.6 Conclusion. 134

Chapter 4. Deploying Tivoli Federated Identity Manager 135
4.1 Federated SSO architecture patterns . 136

4.1.1 Architecture approach . 136
4.1.2 Base pattern . 139
4.1.3 Plug-in pattern. 142
4.1.4 Lightweight Access Manager for e-business pattern 143
4.1.5 Highly available architecture patterns . 147
4.1.6 Multiple data center patterns. 149

4.2 Federated Web services architecture patterns . 151
4.2.1 Architecture approach . 152
4.2.2 Point-to-point pattern. 154
4.2.3 XML gateway pattern . 155

4.3 Integrating applications into an F-SSO environment. 158
4.3.1 Attribute flow between providers . 158
4.3.2 User-controlled federated life cycle management. 161
 Contents v

4.3.3 Customized user-managed federation management 161
4.4 Customizing F-SSO. 163

4.4.1 Customizing page templates. 163
4.4.2 Customizing Access Manager for e-business page templates 163
4.4.3 Storing aliases. 164

4.5 Solution design considerations . 164
4.5.1 Exchanging metadata with your partners . 164
4.5.2 Availability of IBM Access Manager for e-business policy server . . 165
4.5.3 Key management . 166
4.5.4 Session timeout. 166
4.5.5 Application logout . 167

4.6 Conclusion. 168

Chapter 5. Integrating with IBM identity management offerings 171
5.1 IBM Tivoli Access Manager for e-business . 172

5.1.1 Identity provider integration. 172
5.1.2 Service provider integration . 173

5.2 IBM Tivoli Identity Manager . 174
5.2.1 Identity provider integration. 175
5.2.2 Service provider integration . 175

5.3 IBM Tivoli Directory Integrator. 176
5.3.1 Identity provider integration. 176
5.3.2 Service provider integration . 176

5.4 IBM Tivoli Directory Server . 177
5.4.1 Identity provider integration. 177
5.4.2 Service provider integration . 178

5.5 IBM WebSphere Application Server . 178
5.5.1 Integrated Solutions Console (ISC). 179

Part 2. Customer environment . 181

Chapter 6. Overview . 183
6.1 Use case 1 - SAML/JITP . 186
6.2 Use case 2 - WS-Federation . 186
6.3 Use case 3 - Liberty . 187
6.4 Use case 4 - Web services security management 190
6.5 Conclusions. 192

Chapter 7. Use case 1 - SAML/JITP . 193
7.1 Scenario details. 194

7.1.1 Contract. 194
7.1.2 User experience . 197

7.2 Functionality . 201
7.2.1 Single sign-on - SPNEGO. 201
vi Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

7.2.2 Single sign-on - SAML/JITP . 201
7.3 Partners involved. 202

7.3.1 BigCorp . 202
7.3.2 RBTravel . 202

7.4 Interaction description . 202
7.4.1 High-level Interaction overview . 202
7.4.2 Single sign-on from Windows workstation (SPNEGO) 203
7.4.3 Single sign-on from BigCorp to RBTravel (SAML/JITP) 204

7.5 Configuration data . 207
7.5.1 IdP-related configuration data . 208
7.5.2 SP-related configuration data at RBTravel 212

7.6 Assumptions/implementation notes. 215

Chapter 8. Use case 2 - WS-Federation. 219
8.1 Scenario details. 220
8.2 Contract. 220
8.3 User experience . 223

8.3.1 Single sign-on user experience. 223
8.3.2 Sign-off user experience . 225

8.4 Functionality . 227
8.4.1 Single sign-on - WS-Federation . 227

8.5 Partners involved. 227
8.5.1 BigCorp . 228
8.5.2 RBTelco . 228

8.6 Interaction description . 228
8.7 Configuration data . 233

8.7.1 Identity provider configuration at BigCorp . 234
8.7.2 Service provider configuration at RBTelco 239

8.8 Assumptions/implementation notes. 242
8.8.1 Understanding the many-to-one user identity mapping 242

Chapter 9. Use case 3 - Liberty . 245
9.1 Scenario details. 246

9.1.1 Contract. 246
9.1.2 User experience . 247

9.2 Functionality . 254
9.3 Partners involved. 254

9.3.1 RBTelco . 254
9.3.2 RBTickets . 254
9.3.3 RBBanking . 255

9.4 Interaction description . 255
9.4.1 Liberty account federation. 255
9.4.2 Single sign-on to partners (Liberty) . 261
 Contents vii

9.4.3 Single sign-off . 262
9.5 Configuration data . 265

9.5.1 Identity provider configuration at RBTelco 265
9.5.2 RBTickets service provider configuration data 273
9.5.3 RBBanking service provider configuration data 278

9.6 Assumptions/implementation notes. 284
9.6.1 InfoService integration . 284
9.6.2 Page customizations . 286

Chapter 10. Use case 4 - Web services security management 291
10.1 Scenario details. 293

10.1.1 Contract. 294
10.1.2 User experience . 296

10.2 Functionality . 301
10.2.1 Web services security management at RBTelco 302
10.2.2 Web services security management at RBStocks 302

10.3 Partners involved. 302
10.3.1 RBTelco . 303
10.3.2 RBStocks . 303

10.4 Interaction description . 303
10.4.1 Web services security management Token Generator with Access

Manager binary security token callback handler. 305
10.4.2 Web services security management Token Consumer with Access

Manager Credential login module. 307
10.4.3 Web services security management Token Generator with Web

services security management Callback handler 307
10.4.4 Web services security management Token Consumer with SAML

Assertion login module . 315
10.5 Configuration data . 319

10.5.1 Overall architecture and prerequisites . 319
10.5.2 RBTelco configuration. 319
10.5.3 Outbound Web services gateway configuration 336
10.5.4 RBStocks configuration. 348

10.6 Troubleshooting. 357
10.6.1 Using the logs for Web services security management 357
10.6.2 Using the logs for the Secure Token Service 358
10.6.3 Using the WebSphere logs . 358
10.6.4 Using TCPMON . 359

Part 3. Appendixes . 361

Appendix A. Configuring Access Manager WebSEAL and Web plug-in 363
Introduction. 364
Identity provider integration . 365
viii Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Configuring WebSEAL as an identity provider . 366
Updating WebSEAL configuration file . 366
Configuring a junction to Tivoli Federated Identity Manager. 367
Configuring extended attributes for credentials in WebSEAL 367

Configuring Web plug-ins as an identity provider. 368
Updating Web plug-in configuration file . 368
Configuring extended attributes for credentials in Web plug-ins. 369

Service provider integration . 369
External Authentication Interface . 370

Trigger URIs . 370
EAI headers . 370
External Authentication Interface example . 371
EAI header variables reference. 373

Configuring WebSEAL as a service provider . 374
Updating WebSEAL configuration file . 375
Configuring a junction to Tivoli Federated Identity Manager. 376
Access Manager policy for trigger URLs for EAI. 376
Sending extended attributes as HTTP headers with WebSEAL 377

Configuring Web plug-ins as a service provider. 377
Updating Web plug-in configuration file . 378
Access Manager policy for trigger URLs. 380
Sending extended attributes as HTTP headers with Web plug-ins. 380

Appendix B. Identity mapping rules . 381
Authoring identity mapping rules . 382
STSUniversalUser schema . 383
Mapping between STSUniversalUser and native tokens 384

Tivoli Access Manager credential . 385
SAML 1.0 token. 389
SAML 1.1 token. 392
Liberty 1.1 token . 394
Liberty 1.2 token . 395
UsernameToken token . 397

Calling Java code from mapping rules . 399
Learning how to call Java from XSL . 400
Distributing Java code. 400

Developer tricks for mapping rules. 400
Working with Access Manager credentials . 400
Testing XSL rules . 401

Scenario mapping rules . 403
Use case 1 mapping rules . 403

BigCorp mapping for use case 1. 404
RBTravel mapping for use case 1. 405
 Contents ix

Use case 2 mapping rules . 410
BigCorp mapping for use case 2. 410
RBTelco mapping for use case 2 . 412

Use case 3 mapping rules . 414
RBTelco mapping for use case 3 . 414
RBBanking mapping for use case 3 . 415
RBTickets mapping for use case 3 . 416

Use case 4 mapping rules . 418
RBTelco mapping for use case 4 . 418
RBStocks mapping for use case 4 . 420

Appendix C. Keys and certificates . 425
Keys and certificates . 426
Required keys . 426
Keystore layout. 428

Keystores for BigCorp . 429
Keystores for RBTravel . 429
Keystores for RBTelco . 430
Keystores for RBBanking . 430
Keystores for RBTickets . 431
Keystores for RBStocks . 431

Importing keys . 432

Appendix D. WS-Security deployment descriptors 437
Web services client at RBTelco . 438
RBTelco client extension configuration . 438
RBTelco client binding configuration . 439
Web services gateway at RBTelco. 440
RBTelco WSGW server configuration . 440

RBTelco WSGW server extension configuration 440
RBTelco WSGW server binding configuration . 441

RBTelco WSGW client configuration . 441
RBTelco WSGW client extension configuration . 442
RBTelco WSGW client binding configuration . 443

Web services server RBStocks . 448
RBStocks server extension configuration. 448
RBStocks server binding configuration . 450

Glossary . 455

Related publications . 469
IBM Federated Identity Manager manuals . 469
IBM Redbooks . 469
Other publications . 469
x Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Online resources . 470
How to get IBM Redbooks . 472
Help from IBM . 472

Index . 473
 Contents xi

xii Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004, 2005. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
developerWorks®
e-business on demand™
ibm.com®

IBM®
IMS™
RACF®
Rational®
Redbooks (logo) ™

Redbooks™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xiv Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Preface

This IBM Redbook discusses the federated identity management (FIM)
architecture and the integration with Web services security standards and IBM
Tivoli® Security Solutions. In a federated environment, a user can log on through
his identity provider in order to conduct transactions or easily access resources
in external domains. Partners in a federated identity management environment
depend on each other to authenticate their respective users and vouch for their
access to services. Federated identity standards, like those being produced by
the Liberty Alliance or the Web services security specifications, form an
encapsulation layer over local identity and security environments of different
domains. This encapsulation layer provides the ingredients for interoperability
between disparate security systems inside and across domains, thus enabling
federation.

The IBM Tivoli Federated Identity Manager solution extends identity
management for both the identity provider and service provider infrastructure.
Tivoli Federated Identity Manager solution builds on the current Tivoli identity
and security offerings.

Part 1, “Architecture and design” on page 1, discusses architecting a federated
identity management solution between trusted business partners. The related
chapters describe the different standards in the federated identity management
context, and architecture options for deploying Tivoli Federated Identity
Manager. Additionally, approaches are shown for integrating Tivoli Federated
Identity Manager with other middleware and customer applications. Furthermore,
the high-level components and new concepts for the design of a federated
identity management solution are introduced.

Part 2, “Customer environment” on page 181, considers a scenario that involves
several hypothetical corporations, and it shows how they might be able to take
advantage of identity federation to improve customer experiences, reduce costs,
and improve overall security. This scenario, for example, involves two large
corporations with internal employee portals. The employees of these
corporations authenticate to their corporate portals and are offered access to
services provided by other companies without having to re-authenticate.

Note: Federated identity management (FIM) is a standard term that is widely
used in the IT industry. The Tivoli Federated Identity Manager is the
corresponding IBM product to implement a federated identity management
solution.
© Copyright IBM Corp. 2004, 2005. All rights reserved. xv

Part 3, “Appendixes” on page 361, gives a detailed description of various
federation configuration subjects that are common to the applications of the
federation scenario introduced in Part 2, “Customer environment” on page 181.

This book is a valuable resource for security officers, administrators, and
architects who wish to understand and implement federated identity
management solutions.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

The team that wrote this book is shown in the picture above. They are, from top
left to bottom right: Werner, Axel, Mark, Johan, Ray, Heinz Peter, and Shane.

Axel Buecker is a Certified Consulting Software IT Specialist at the International
Technical Support Organization, Austin Center. He writes extensively and
teaches IBM classes worldwide on areas of Software Security Architecture and
xvi Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Network Computing Technologies. He holds a degree in Computer Science from
the University of Bremen, Germany. He has 19 years of experience in a variety of
areas related to Workstation and Systems Management, Network Computing,
and e-business Solutions. Before joining the ITSO in March 2000, Axel worked
for IBM in Germany as a Senior IT Specialist in Software Security Architecture.

Werner Filip is a professor of the department for Computer Science and
Engineering at the University of Applied Sciences Frankfurt am Main, Germany
and a Consultant in IT Security. His primary research interests are Systems and
Network Management and Applied Security. Prior to joining University of Applied
Sciences Frankfurt he worked for 25 years for IBM in various positions, during
his last 10 years with IBM as a Consultant in Systems and Network Management
at former IBM’s European Networking Center, Germany. He received a Diploma
in Mathematics, and a Doctorate in Computer Science from the Technical
University Darmstadt, Germany.

Heinz Peter Hippenstiel is a Security Architect and Specialist for IBM Software
Services Tivoli in Germany. He joined IBM in 2000 and has a nine-year history in
security and systems management solutions. In 1999 he co-authored the IBM
Redbook Guarding the Gates Using the IBM eNetwork Firewall V3.3 for
Windows® NT. Heinz Peter is an IBM Tivoli Certified Deployment Professional
and an IBM Associated IT Architect. He received a certificate in information
technology from the Akademie für Datenverarbeitung in Böblingen, Germany.

Mark Hollin is a Consulting Manager in the Corporate Information Technology
division of Prudential Financial in Roseland, New Jersey. He has over 20 years
of experience in information technology. The last 12 of those years have been
focused on computer and information security. He holds a BA in Computer
Science from La Salle University in Philadelphia, Pennsylvania. His areas of
expertise include Java™ programming and security systems integration.

Ray Neucom is a Consulting IT Specialist working in the Americas Product
Introduction and Exploration group of IBM S&D. He has 25 years of IT
experience in applications development, systems integration, and Web
application security. He has been involved with IBM Tivoli Federated Identity
Federation since the beginning of the Early Support Program and has
represented IBM with Tivoli Federated Identity Manager at several conformance
testing events. He holds a Bachelors of Science, a Masters of Scientific Studies
(both majored in Computer Science), and a graduate Diploma in Business
Administration.

Shane Weeden is a Senior Software Engineer with the IBM Federated Identity
Manager development team. He has worked in IT security for 13 years, and has
spent the last seven years working with Tivoli Security products. Shane has been
with the Federated Identity Manager development team since its conception, and
now divides his time between customer-focused engagements and core product
 Preface xvii

development activities. He holds a Bachelors of Information Technology from the
University of Queensland in Australia.

Johan Westman is a Client IT Architect, working in the IBM Nordic Industrial
Sector in Sweden. He has worked for 11 years for IBM and is a Certified IT
Specialist. He has many years of experience in working with large e-business
infrastructures and service provider delivery environments with both telecom and
industrial customers. In 1998 he co-authored the IBM Redbook Understanding
LDAP - Design and Implementation, SG24-4986. He holds a Masters of Science
degree in Engineering Physics from Uppsala University in Sweden, where he
specialized in scientific computing.

Heather Hinton is a Senior Security Architect in Austin, Texas. She has 12
years of experience in computer and information security. She has a Ph.D. in
electrical and computer engineering from the University of Toronto. Her areas of
expertise include Federated Identity Management, access control, composition
of policy, wireless, network, and systems security.

Thanks to the following people for their contributions to this project:

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Patrick Wardrop, Rahul Mishra, Brian Eaton, Glen Gooding, Matthew Duggan,
Sean McDonald
IBM US

Gavin Bray
IBM Australia

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Special acknowledgements: Many portions in this book have greatly
benefited from material provided by the development architecture team and
the Product Introduction Center in the US and the UK. Special thanks go to
Heather Hinton, Venkat Raghavan, Jon Harry, and Avery Salmon.
xviii Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Part 1 Architecture
and design

This part gives an overview of the capabilities of a general federated identity
management solution. These capabilities are treated as individual logical
functions that may be leveraged in a FIM solution. Additionally, the high-level
components and new concepts for the design of a federated identity
management solution using IBM software technology are introduced.

This part provides you with an understanding of the high-level logical services
architecture for IBM Tivoli Federated Identity Management, and a more detailed
look into federated single sign-on (F-SSO), Web services security management,
and provisioning solutions.

Finally, architecture options for deploying Tivoli Federated Identity Manager,
approaches for integrating Tivoli Federated Identity Manager with other
middleware and customer applications, and several important issues relating to
deploying Tivoli Federated Identity Manager in a production environment are
described.

Part 1
© Copyright IBM Corp. 2004, 2005. All rights reserved. 1

2 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 1. Business context for identity
federation

This chapter discusses the business environment and the IT environment in the
context of identity federation. The business environment, driven by an increasing
ability to adapt, will in larger extent be highly collaborative, involving multiple
parties exchanging transactions as part of new horizontal business processes.
To support the required business flexibility IT must evolve to support these new
requirements.

1

© Copyright IBM Corp. 2004, 2005. All rights reserved. 3

1.1 Federated identity
Federated identity technology is used for creating a globally interoperable online
business identity, driving relationships or affinity driven business models
between companies. The concept is nothing new, as we have real-world models
for federated identities of individuals—a passport is a global identity credential
that vouches for one's identity in a country; an ATM card is a credential that
vouches for one's bank account; a driver's license vouches for one's ability to
operate a motor vehicle and is also frequently used as a proof of identity in many
business transactions.

Figure 1-1 Federated identity management

Federated identity management is based on the business agreements, technical
agreements, and policy agreements that allow companies to interoperate based
on shared identity management. This helps companies to lower their overall
identity management costs and provide an improved user experience. It
leverages the concept of a portable identity to simplify the administration of users
and to manage security and trust in a federated business relationship. The
simplification of the administration and the life cycle management in a federation
leads to the following value proposition:

� Identity management costs can be lowered because companies are no longer
in the business of managing users or identities that are not under their control,
including the delegate administrator identities currently managed by many
first-generation federation attempts. Businesses need to manage access to
data but do not have to manage accounts and user account data.

� User experience can be improved because users can navigate easily
between Web sites while maintaining a global login identity.

� Inter-enterprise application integration within federations benefit from the end
to end security and trust capabilities.

Integration can be simplified because there is a common way to network
identities between companies or between applications. Organizations can

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

business agreements,
technical agreements, and

policy agreements

End to end user lifecycle management
4 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

implement business strategies that drive organic market and customer growth by
eliminating the friction caused by incompatible identity and security management
between companies.

1.2 Business environment
Today, businesses are continuing the on demand evolution by developing the
business models needed to create value and demand for their new products and
services. In this evolution, companies are typically working toward becoming a
company that with key business partners, suppliers, and customers that can
respond with flexibility and speed to any customer demand, market opportunity,
or external threat (IBM definition of an on demand business). Such businesses
(on demand businesses) have the following four key attributes:

Responsive Able to respond to dynamic, unpredictable changes in demand,
supply, pricing, labor, competition, capital markets, and the needs
of its customers, business partners, suppliers, and employees

Variable Able to adapt processes and cost structures to reduce risk while
maintaining high productivity and financial predictability

Focused Able to concentrate on its core competencies and differentiating,
meeting the needs of all of its constituents

Resilient Able to manage changes and external threats while consistently
meeting the needs of all its constituents

In the process of becoming an on demand business, businesses will go through
many changes. The path of deconstruction and re-aggregation of businesses
open up for new possibilities and challenges.

1.2.1 Deconstruction of the enterprise
Enterprises are de-constructing and reorganizing into extended value-nets of
partners, suppliers, customers, and competitors to increase productivity and
flexibility—shedding non-core processes to focus on strategic, core processes,
see Figure 1-2 on page 6. This deconstruction is being accelerated by the
evolution and adoption of open standards and services oriented
architectures—the deconstruction is increasingly occurring at a more global
scale, at an increased rate and at a more granular level.
 Chapter 1. Business context for identity federation 5

Figure 1-2 Enterprise deconstruction

The main drivers behind this change are an increasing pervasive nature of
technology, open standards, globalization, and the increasing fusion of business
models and IT capability.

Increased collaboration brings greater business rewards, but also poses greater
business risks, and will require fundamentally new business decision and
security models. As businesses evolve along the line of deconstruction of their
business the demand to flexibly assemble and reconfigure business systems as
business needs evolve—they re-aggregate.

1.2.2 Enterprise re-aggregation
As some components or services are moved out of the business the possibility to
re-aggregate them to support dynamic and changing business models increase.
The market is increasingly adopting to a strategy along which to do this. The
concept of this kind of re-aggregation or integration is well reflected in the
Service Oriented Architecture (SOA) strategy.

SOA is an approach to defining integration architectures based on the concept of
a service. The business and infrastructure functions that are required to make an
effective on demand environment are provided as services. These services are
the building blocks of the system. For more on SOA there are many Redbooks
on the topic, for example: Patterns: SOA with an Enterprise Service Bus in
WebSphere® Application Server V6 , SG24-6494.

En
te

rp
ris

e
de

co
ns

tru
ct

io
n

Time

Enterprise

.

Extended
value net

Internally
integrated
6 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Services can be invoked independently by either external or internal service
requesters to process simple functions, or can work together by choreographic
implementations to quickly devise new functionality to existing processes.

SOA may use Web services as a set of flexible and interoperable standards for
distributed systems. There is a strong complimentary nature between SOA and
Web services. Software components and Web services are well positioned to
provide the flexibility, well-defined business-level concepts, and the mechanism
to achieve assembly and re-configuration of the business systems required.

Figure 1-3 Re-aggregation for solution assembly

In Figure 1-3 is an example of a solution assembly of services that have been
externalized as a result of deconstruction of an business. The re-aggregation is
accomplished using standards based Web services. This is elaborated on in
1.3.4, “Inter-enterprise application to application integration” on page 25.

It is important to remember that inter-enterprise application integration is not
always the most efficient way to address the implementation of a cross function
or business process. The business process, as is common today, is fulfilled by
integrating the user experience across multiple user interfaces, represented by
Web servers presenting the application. Today, this is just navigating the Web to
a large extent, but as portals become more pervasive and their content is spread
across the Internet, the user integration is solved by federated single sign-on.
This is integrating “on the glass” or at the user interface. A combination of both
inter-enterprise integration and user interface integration is the major part of what
federated identity management is about.

1.2.3 High-level example of a re-aggregated business
In a world where more and more services will be technology enabled, including
areas that require the exchange of extremely private and sensitive information,

Service Providers
Partners

Partners
Partners

Re-aggregation - Flexible solution assembly

Software
Service

New
FunctionPartner

Process

Legacy
Enterprise

Applications

New
Function

Outsourced
Function

Enterprise

Web service
interface

Horizontal
Interoperation

Business-level
Functionality

Industry
Specific

Interfaces

Process
Integration

Flexible
Delivery
 Chapter 1. Business context for identity federation 7

the current reactive approaches to resource (service) deployment does not
satisfy the requirements for the real-time, fluidly aggregating services to optimally
address shifting market conditions.

Figure 1-4 Re-aggregation of businesses into complex value webs multiplies concerns

Figure 1-4 illustrates some of the integration points that must be addressed as
part of the re-aggregation of services to support new or existing business
processes. A company (intranet in Figure 1-4) outsources the administration of its
telecom and related services (to the service provider) and also its payroll
services (to Payroll, shown in Figure 1-4). The service provider in turn has similar
relationships with other customers, and with its own suppliers. Note that the
service provider also outsources its payroll activities to the payroll entity.

These kinds of relationships are in place today at many businesses, but it is a
difficult process to implement, customize, maintain. For example, a business
process that must be shared across organizational domains presents several
follow-on challenges such as workflow across company boundaries. The
administration provider must aggregate services provided by its suppliers into a
coherent set of unified services that it in turn supplies to its customers.

Furthermore, the supplier must ensure and guarantee that information is secure,
segmented, and private among its customers. The suppliers must communicate
with one another on behalf of the employees, maintaining privacy. The supplier
may need to know its users, which may be numerous.

Other
Enterprises

Service provider

Other
Enterprises

Intranet

Payroll

Supplier

Supplier

SupplierMain employee facing
web site

Portlet

Employees/
Public users

Service
Application

Service

Service

Service
Application

Web Service invocation

Webbased service

User interaction

Other
Enterprises
8 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Understanding and control of complex dynamics and collective behavior will
become increasingly important to avoid system instability and set the stage for
both global and local optimization. A fundamentally new approach needs to be
implemented to provide a secure foundation for the transformation to on demand
that includes federation and containment.

So, the interactions required to fulfill the new business processes requirements
will be a mix of application to application and user interactions, requiring the full
set of federated identity management capabilities to handle the challenges of
identity, trust and security.

1.2.4 Business models for federated identity
In this section, some possible examples reflecting the challenges within the
changing business and IT environment that are relevant to the federated identity
management area will be studied in more detail.

In an attempt to make the examples relevant for as many businesses,
enterprises and authorities, examples are taken from five different sectors.

Financial The financial sector is represented by banking, financial
markets, and insurance.

Communications The communications sector is represented by energy and
utilities, media and entertainment, and telecommunications.

Distribution The distribution sector is represented by consumer products,
retail, travel and transportation, and wholesale distribution
and services.

Industrial The industrial sector is represented by aerospace and
defense, automotive, chemical and petroleum, and
electronics.

Public The public sector is represented by education, government
and healthcare, and life sciences.

First lets just take a look at where the different sectors are in their deconstruction
phase.
 Chapter 1. Business context for identity federation 9

Figure 1-5 Industries are in different phases of deconstruction - Source: IBM Institute for
Business Value

According to a study by the IBM Institute for Business Value, today most
industries have moved into the strategically partnered category. In this category,
the interfaces shared between businesses are still one-to-one and not re-usable.
As time passes, deconstruction will move into “industry” networked (also referred
to as extended value net), where interfaces will be governed by standards with a
smooth transition of process, technology, and ultimately people. This move, as
mentioned earlier, is one of the major drivers for looking at federated identity
management.

Since sector industries are at different phases of their evolution of deconstruction
the urgency to address federated identity management varies. Telecom,
banking, automotive, travel and transportation, and electronics being the furthest
ahead, they will be focus points for the examples and to some extent the use
cases chosen in Part II of this book.

The chosen examples are:

1. Mergers and acquisitions
2. Cross-business unit collaboration

1

Many Industries are Undergoing Deconstruction into
Extended Value Nets

Industries Are in Different Phases of Deconstruction

Source: IBM Institute for Business Value

Strategically Partnered Industry NetworkedInternally Integrated

Financial
Banking Banking

Insurance Insurance
Financial Markets Financial Markets

Comms
Telecom Telecom

Media & Entertainment Media & Entertainment
Energy & Utilities Energy & Utilities

Consumer Products Consumer Products

Distribution
Retail Retail

Life & Pharma Life & Pharma
Travel & Transp Travel & Transp

Public

Industrial

Automotive Automotive
Aerospace & Defense Aerospace & Defense

Chemical & Petrol Chemical & Petroleum
Electronics Electronics

Forest & Paper Forest & Paper
Industrial ProductsIndustrial Products

Healthcare Healthcare
External Specialization Level - 1983
External Specialization Level - 2003

Standard process
and technology

interfaces
10 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3. Growth of customer base
4. Outsourced services
5. Service provider automation
6. Portal based integration
7. Government collaboration
8. Corporate governance

In Table 1-1 there is a table show high relevance of the different examples in the
different sectors. Table 1-1 shows how relevant these examples are for the
different sectors.

Table 1-1 Examples relevance to different sectors

For a more detailed discussion of federated identity managements use in
different scenarios, look in Chapter 6, “Overview” on page 183, where there are a
few scenarios in which some of the business examples are represented.

1. Mergers and acquisitions
In this scenario a company is implementing a growth strategy using mergers and
acquisitions. The indicator of the success of the merger or the acquisition is
predicated on how quickly the companies can knit together their IT
infrastructures to target and cross-market to the new customer base. Identity
management is one of the most complex activities in such mergers. Rather than
having to forklift all of the acquired users in the various systems, an integration
strategy based on identity federation can simplify the user experience. The
combined users of the merged customers can have access to the shared assets
of the merged companies without impacting user experience, customer care, or
the quality of support. Federating the identities between the merged companies
provides a quick and seamless way to integrate the customers of the two
companies to drive merged growth scenarios.

2. Collaboration between autonomous cross-business units
Many large companies have independent business units that want to directly
maintain ownership and relationship with their users. This may be due to
organizational structure, or to political, competitive, or regulatory reasons. A

Sector \ Example no. 1 2 3 4 5 6 7 8

Communications - Telecom X X X X X X

Distribution X X X X

Financial - Banking X X X X X

Industrial X X X X X

Public - Government X X
 Chapter 1. Business context for identity federation 11

large global manufacturing company may be organized as independent
companies with regional management consolidated in the Americas, Europe,
Africa, Middle East and Asia. However, these business units may also need to
have their users (employees) needing access to cross-business unit resources.
For example, employees in Asia need access to ordering and parts information in
other regions. Federated identity management enables business units to retain
autonomy and control of their users, yet have a flexible way to federate data to
cross-business unit resources.

3. Customer acquisition strategy via partnerships
A company whose growth strategy is based on acquiring new customers needs
to either obtain these customers outright or have partnerships with other
companies to target their customers. A financial services provider may form a
partnership with a mobile wireless provider (with millions of subscribers) to
deliver paperless e-billing to these customers. The incentive for the mobile
wireless provider in this partnership is to reduce their non-core expenses by
outsourcing billing functions to the financial provider. In return the mobile
provider would offer a 5 percent discount for customers subscribing to the new
e-billing service, thereby offering an incentive for the customers to sign up for
e-billing. Through this partnership, the financial services company now has
acquired a million new customers to which it can target its e-billing service.
Federated identity management will enable the financial service company to
access large pools of customers having a well-established identity.

4. Employee access to outsourced provider services
Employee self-service is a major initiative for many companies looking to reduce
user provisioning or user care costs. Most organizations outsource non-critical
competencies to third-party providers. The services that are being outsourced
include human resources, employee savings plan, healthcare, payroll, travel and
procurement services. Using the corporate intranet portal to connect the
employees directly with these external service providers enables the
organization only the administration of these outsourced services. Organizations
outsource these services to reduce these service administration costs. However,
the inability to directly connect the employee to these service providers means
that the organization is now required to support and maintain staging systems
(help desk) for employee enrollment to savings plans (401K or super-annuation),
healthcare or payroll. Employers spend significant amount of plan administration
costs in employee 401K administration, employee stock options, employee
healthcare and travel. These services are typically outsourced to various outside
providers. However, the company stills ends up manually administering these
plans or having to staff customer care personnel for employee management.

Federated identity management provides a compelling value proposition in this
scenario by enabling employees to access and manage their data on the various
12 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

third-party service provider Web sites by simply signing on to the employee
portal. Access through an existing portal can simplify the user experience, and
enables the user to interact with various employee provider sites without
requiring additional enrollment, registration or authentication to these business
partner sites. The employer in turn can lower their employee support and plan
administration costs by enabling employees to interact directly with the various
providers.

5. Service provider automation with B2B clients
A larger service provider managing retirement accounts for employees, pension
plans, employee stock options, or healthcare for their institutional clients may
incur tremendous cost of user life cycle management of its clients' employees.
These costs can result from having to register and provision online accounts for
client employees, manage passwords, and staff a help desk for dealing with user
access problems resulting from forgotten user names, credentials or passwords.
Assume an average password reset call costs $20, and that there exists a
service provider who manages 100 Fortune clients, each of whom on average
have 10,000 employees. Even if only a quarter of these employees forget their
password just once a year, this would represent a $5 million annual cost in
managing user accounts and passwords. The service provider is heavily
motivated to move to a federated model where the service provider leverages the
employee's corporate portal authentication to provide access to their services. In
this model, the employer (client) is responsible for managing its users and
passwords (the client does not face additional costs, because they already have
to manage these users and passwords), and the service provider offloads the
cost of user administration to its clients. This approach also benefits the
employee tremendously, as the employee does not have to register or remember
a separate sign on and password to manage their 401K or healthcare.

6. Portal-based integration of software-as-services
A new generation of Internet-based providers now delivers software-as-services
to companies or corporations. Examples of these software-as-services are
providers like WebEX, Salesforce.com, Siebel CRM On Demand,
Travelocity.com, and so on. These services enable companies and small
businesses to access Internet hosted services without having to undertake the IT
infrastructure cost of managing these services locally. Federated identity plays a
critical role in this system by enabling employees of the companies to access
various software-based services using their employee identity sign on. As more
and more non-core business services are being outsourced or offloaded with
providers, federated identity management fulfills the role of an identity integration
technology that enables the user to seamlessly access third-party services that
may be locally hosted, remote-hosted or accessed by a software-as-services
provider.
 Chapter 1. Business context for identity federation 13

7. Government collaboration
Governments have high demands on efficiency and ability to collaborate. Many
processes will span multiple governments, institutions, authorities or agencies in
many regions, who will need to share data, but due to political, organizational or
other challenges will not be able to consolidate or internally integrate. All these
entities may also need to have their users (employees, citizens) have access to
cross-governmental entities resources. For example, authorities in one European
country may need to find relevant information about a person in an other
countries data source, but each country would not like to manage all other
countries authorities users (to maintain traceability on citizens person data).
Federated identity enables authorities to retain autonomy and control of their
users, yet have a flexible way to federate data to cross-governmental entities
resources.

8. Improved corporate governance
Corporate governance and complying with various regulations may be major
initiatives at companies. Compliance with Sarbanes-Oxley (SoX), Basel II, and
HIPAA are at the forefront of the concerns of many executives.

One of the key impediments to passing an audit and achieving compliance is
lack of accountability for granting user rights and permissions to access business
systems. A primary reason for failing an audit is the inability to account for
access rights granted to business partner users.

Federated identity can ease some of the burden associated with the following
compliance pain points:

� Organizations cannot account for access rights granted in their internal
systems for third-party users; there is no proof of whether a third-party user
actually exists or even needs access.

� No accountability on why a third-party user was granted access in the first
place; failure to demonstrate and document the business reason for the
request and which company officer approved the request.

� No procedures in place to delete entitlements or purge user access rights
belonging to third parties and their users. This results in users accumulating
access rights far beyond what they were originally authorized.

� No procedures in place to de-provision user accounts when users turn over.
This issue is magnified when dealing with third parties when the company
does not control the third-party user and no process typically exists by which
third-party companies will notify of user turnover.

� No way to re-certify third-party user access. Does this third-party user still
need access beyond three months or six months? Why do they still need
access?
14 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� No way to audit request for third-party access. Most companies are not able
to audit third-party user access in a centralized fashion because there is no
one single tool that is being used to grant third-party access.

In today's model where the company takes on the management burden of
third-party user administration and provisioning, these audit issues are magnified
when these third-party users turn over and this identity is not propagated to the
company for de-provisioning. There is no way for the company to know that a
business partner employee is no longer employed. Federated identity improves
compliance by offloading user administration costs to business partners. Since
the company does not own the user account management accountability,
approvals and re-certification are now offloaded to business partners. The
company relies upon its business partners to authenticate and issue credentials
that vouch for its users. The burden of proof now belongs to the business partner
for vouching for its own access rights. Federated identity provides a strategic
alternative for companies to simplify their administration and improve
governance by offloading third-party user management to their clients.

1.2.5 The relationship - Trust and assurance
A federated business model mandates a foundation of trust. In a federated
model an organization is willing to provide access to an identity that is not vetted
by the organization's own internal security processes. Instead the organization is
trusting an identity asserted by a third party, a model that introduces risk and
uncertainty in the overall confidence of the business transaction.

An organization will not engage in a federated business model if they do not have
the visibility into their business partners' identity and access management
systems and processes. An organization needs to evaluate the risk of conducting
business with business partners and needs to assess their business partner's
processes and vetting procedures for 1) business partner identity proofing, 2)
business partner accreditation, and 3) business partner reputation evaluation.
These procedures provide the visibility and the qualitative assessment of how
third-party identity can be parlayed into business decisions about access control
and the rules of engagement around trust that the organization is willing to enter
with the business partner company.

Business partner identity proofing is the process of verifying the physical identity
of a prospective federation business partner both before entering into an online
business relationship with that business partner and when engaged in runtime
transactions with the business partner. Part of the business partner identity
proofing process involves verification of the physical identity of the business—but
who is the business?

� Is there a legitimate business with the stated name?
� Is this the party making the request?
 Chapter 1. Business context for identity federation 15

� Is the specific employee making the request authorized?

Once the physical identity has been verified, some form of online token is issued
to the business partner and then bound to the physical identity of the business.

Various forms of business partner identity verification techniques and processes
can be used, including:

� Self-assertion
� Leverage of an existing relationship
� Confirmation of electronic or postal address
� Credit agency, business bureau ratings
� As the name suggests, identity verification

Business partner accreditation addresses the question what do we know about
the company? And more specifically, what do we expect of this company?
Accreditation is based on a well-defined policy that defines the criteria that a
company must satisfy. A company that wishes to enter into a federation may
publish a policy that defines the criteria that prospective business partners must
match; likewise, a business partner wishing to enter a federation may publish a
policy that defines the criteria that IT satisfies (a policy describing its own
features). Evaluating the fit of these two policies is an action that is undertaken
by a trusted party specializing in business accreditation.

Examples of the types of characteristics that are evaluated as part of the
accreditation process include:

� Is the company credit worthy?
� Is the company considered to be a reputable business?
� Is the company approved by relevant professional/trade bodies?
� Is the company part of the federation?
� Has the company authenticated and issued credentials in a standardized

trustworthy fashion?

Reputation is an alternate means of knowing additional qualitative information
about a business. The primary difference between a reputation service and
accreditation is that reputation typically is measured on an ongoing basis using
behavioral information about the business or an individual. Another difference is
that reputation is typically measured by an independent entity and typically does
not involve the participation of subject (business or individual being measured).
The reputation service may develop an automated framework for measuring
reputation based on transactional visibility. Alternatively, a more explicit
feedback-based mechanism is used. The reputation service will usually assign a
simple score that is derived using a well-defined procedure and is easy to
understand.
16 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Organizations face critical challenges in determining the risk/return relationship
in a federated model. Business partner identity verification, accreditation and
reputation are basic tenets that help companies determine their level of trust and
assurance in their business partners' identity management solution.

1.3 IT environment
Driven by the changes in the business environment IT needs to adopt to support
the new emerging requirements. This is to a large extent done by the concept of
services oriented architecture and single sign-on. To enable this kind of dynamic
integration between entities federated identity management becomes key.

In this section IT challenges in identity management are studied. The focus areas
are how to deal with identities, user life cycle management, user provisioning,
account management, inter-enterprise application to application integration.

1.3.1 The role of identity management

Identity management has become a hot topic these days with many
organizations. From business unit executives to CIO’s to IT administrators, the
focus is on improving the integrity of identity-driven transactions, improve
efficiency, and lower IT costs. Identities pervade every aspect of e-business.
Corporate IT accounts (e-mail, NOS, LDAP, UNIX®, Linux®, Windows, RACF®,
Desktop), HR accounts, supply-chain accounts, healthcare, 401K, online travel,
and VPN accounts are all essential accounts that need to be provisioned for a
new employee or a user to do their job. Few of these identities or accounts work
together, so they add substantial administrative and customer support costs and
deliver poor end-user experience due to multiple sign-ons to systems and
applications. With increased corporate governance and regulatory hurdles, the
management of these identities and account data introduces new business
compliance issues and security exposures. Taking on identity management
means dealing with these privacy, compliance, legal and regulatory issues.

The cost and complexity of identity administration in today's environment is
primarily due to a single reason: To provide access to a user for a service or an
application means giving the user an account within the service or
application-specific repository. The fundamental practice of creating and
managing user accounts leads to various administration, single sign-on, and
compliance issues.

Note: The IBM Federated Identity Management white paper (Heather Hinton,
et al) has been used extensively in the writing of this chapter.
 Chapter 1. Business context for identity federation 17

User life cycle management of identities
Federated Identity Management (FIM) addresses this problem by providing a
standardized way of managing the end-to-end life cycle management of
identities both within and between organizations. This end-to-end user life cycle
management extends a company's identity management practices and
procedures to simplify identity and access administration for third-party user
access and simplify user access to simplify third-party resources.

Figure 1-6 End-to-end user life cycle management

This life cycle management approach builds on a foundation of trust and
incorporates standards for user identification, authentication, access control, and
the exchange of identity and attribute information between services providers
and service consumers. This approach helps companies to lower identity
management, access management, and administration costs related to
third-party user access or third-party service access.

Federated identity
At a fundamental level, the term federated identity has various meanings. The
term identity used in a federated context is composed of federated attributes that
can be sourced across multiple federated and authoritative data sources. There
are many attributes that can represent a particular identity. The concept of
identity needs to be thought of as a distributed concept where multiple attributes
of an identity are federated across multiple data repositories.

To an individual user, federated identity means the ability to associate his
various application and system identities with one another. To a business,
federated identity provides a standardized means for allowing businesses to
directly provide services for trusted third-party users or users that they do not
directly manage. It refers to the ability of one business to associate with one or
more others in a federation, such that the identities from one business domain
(or identity provider) are granted access to the services of another business (or
service provider).

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

Trust

End to end user lifecycle management
18 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Partnership-based solutions
Federation enables businesses to deliver solutions that can be more functional
and cost-effective, and better customer acquisition strategies via federated
business models. The federated business model enables service providers to be
able to federate data to large established clients, business partners, and
customers that they normally would not have access to.

Federated identity management refers to the set of business agreements,
technical agreements, and policies that enable companies to lower their overall
identity management costs, improve user experience, and mitigate security risks
for Web services-based interactions.

IBM has recognized that federated identity management is a technology that can
help companies simplify their user administration and security administration
while improving security and corporate compliance. This life cycle management
approach enables company administrators and auditors to have the visibility,
controls, and the workflow to engage in federated administration with their
business partners.

Security characteristics
In a B2C or B2E1 environment where consumers and employees communicate
with one company as a focal point for multiple business partners, it is important
to secure access to all involved parties. In B2B environments business partners
and applications must also be used in a secure and reliable way.

Managing identities in this dynamic environment with many different
organizations interlinked becomes problematic when using today’s traditional,
static models. For this reason is it necessary to organize federations in order to
propagate identities across multiple organizations dynamically in a seamless
management infrastructure.

In such a dynamic environment, trust relationships between business partners
are essential. Traditionally, IT infrastructures have dealt almost exclusively with
their own environments—not necessarily reflecting the needs of interoperation
and integration with other parties. In an truly dynamic business environment all
parties must interact seamlessly to meet the requirements of a dynamic
business. Figure 1-7 on page 20 highlights a security triangle that these three
elements form.

1 B2C: Business to Consumer, B2E: Business to Employee, B2B: Business to Business
 Chapter 1. Business context for identity federation 19

Figure 1-7 Security triangle: Trust - Interoperation - Integration

Traditional security issues, of course, still apply, but need to be expanded in
many ways. In an on demand world closer convergence of IT and interlocked
business require flexible architectures to reflect the needs of these virtual
organizations.

Perhaps the most significant change, is the move from a static security
environment to a highly dynamic environment reflecting fast changes in this
world. These new security challenges span multiple organizations and are no
longer bound to persons, but extend to applications and devices, as well.

New federated identity management specifications, that extend existing Web
services and federation-related standards, form the basis for a solution to the
new identity management issues that arise in an dynamic business
environments. These solutions will be discussed in more detail throughout the
remainder of this redbook.

1.3.2 Dealing with identities
A typical business that deals with at least three major clusters of identities are
shown in Figure 1-8 on page 21.

Trust

Trust management
Trust establishment

Presumed Trust
Assertions

Interoperate

Secure interoperability
Protocol mapping
Publishing QoP

Federation

Integration

Extensible architecture
Existing services

Implementaion Agnostic
20 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 1-8 Dealing with identities - A corporate view

Attaining these goals using IT as a productivity lever has been both problematic
and challenging. In the IT world seemingly simple things like managing identities
or exchanging identity information within a firm's heterogeneous systems is a
challenge today, not to mention trying to deliver data transparently to users from
across a network of business partners and affiliates. Fundamental issues like
end-to-end identity propagation are lacking today and present significant
challenges to integrating identities (and identity management techniques)
seamlessly into the application and middleware.

A quick survey within a typical large organization reveals many forms of identity
accounts that are provisioned by the employer to employees (including
employee-like users such as contractors), consultants, and contractors.

Corporate identities
A corporation typically has a number of systems and applications where their
users need identities. The user needs to sign on to her workstation, possibly
again to her corporate intranet, and may need to sign on again to the back-end
systems. These sign-ins may need multiple identities, which need to be
managed as well as the user needs to remember all of them.

� Network identities (Remote Access, VPN or Wi-Fi Accounts) to enable users
to access the network

� Desktop identities to sign on to the workstation (Windows credentials)

-

Employee Access to
Enterprise systems

Employee Access to
Employer outsourced Services

Access to Customer,
Supplier, Distributors,

 Dealers, Agents,
Contractors, Partners

etc.

Corporate
Employee
Identities

Employee Provider
Identities

B2B Identities
B2C Identities
 Chapter 1. Business context for identity federation 21

� Corporate e-mail and white pages accounts

� Legacy accounts for mainframe accounts

� HR accounts (PeopleSoft, SAP, Oracle)

� Supply Chain/CRM accounts (SAP, Siebel, and so on)

� Identities that are managed in middleware and database solutions (Oracle
accounts, WebSphere accounts, Portal accounts, and so on)

Employee to employer-outsourced provider identities
Many employee services (such as employee savings plans, retirement accounts,
pension, employee stock options, healthcare, payroll, and travel services) are
typically outsourced. However, employees need to register and enroll at these
third-party Web sites to get a login account before they can access these
services. Many small- and medium-sized businesses typically outsource many
aspects of their non-core services such as customer management, payroll, and
financial accounting, and so on.

� Employee benefits accounts (401K, pension, stock options, healthcare, online
travel, and so on).

� Employee access to Software-as-Services identities. These are identities to
access hosted software like WebEX, ADP, quicken.com, Salesforce.com,
Siebel CRM On Demand, and so on.

� Accounts at financial service providers (IRA, 401K).

� Online banking/bill payment accounts.

� Accounts with credit card providers.

Business to consumer identities
Companies have to deal with many forms of identities to deal with suppliers,
business partners, distributors, dealers, and so on. Customers need login
identities to access various applications in the company portal.

� Suppliers need login accounts to access procurement systems such as SAP,
and so on.

� Business Partners need accounts in various systems.

� Distributors and dealers need access to various line of business applications.

The unique element about business-to-consumer is the scale of millions of these
B2C identities and accounts that need to be maintained.
22 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

1.3.3 User life cycle management
One of the biggest challenges customers face today is cost and complexity of
user life cycle management. User life cycle management is also referred to as
the multiple identity account problem, as users in most large companies have to
deal with fifty plus accounts. The customer pain points today can be
characterized in these facts:

� Improve and increase confidence in business transactions.

Identity is the basis of security; poor identity management means weak
security.

� Lower administrative cost.

Soaring costs with account information administration and password
administration, user registration, and help desk support.

� Risk, compliance, security exposure.

– Business, legal and privacy issues with user data access (for example,
Sarbanes-Oxley, HIPAA, Graham-Leach-Bliley, CA SB1386)

– Issues with unauthorized access from users

– Audit failures due to inactive user account exposure

– Identity and password theft

� Poor market reach.

– No standard mechanism to trust identities from M&A, business partners,
and third parties

– High cost of integration applications that deal with identities

The fundamental issue pervading identity management is that every time a user
requests access to an application or a system, an IT administrator ends up
creating an account for the user in the target system or application. A company
takes on a significant cost of user administration and management when creating
accounts for users.

To a great extent, these issues all involve the subject of identity management.

User provisioning and account management costs
The cost of provisioning users with account data is one of the more expensive
and manual activities that take people, time, and a significant IT budget. While
automated user provisioning tools automate (synchronize) many aspects of user
provisioning, the fundamental issue still remains that a company takes on user
ownership costs when provisioning account data. While a company may need to
take on this user ownership cost for employees, this approach may not be
 Chapter 1. Business context for identity federation 23

correct when dealing with external identities that are currently being provisioned
in the internal systems.

Let us take a look at the various provisioning activities that a company is
undertaking when they decide to give access by creating an account.

� Create an account in each target system for the user.

� Enrollment or registration of user in accounts.

� Establishment of access rights or credentials ensuring the privacy and
integrity of account data.

� Establish initial password/PIN.

� Help desk or customer care support to handle the following:

– Manage forgotten user name
– Forgotten passwords
– Managing password resets
– Requesting new access

� Manage password synchronization.

� Manage changes to access rights as user changes roles, and to entitlements
due to organizational changes.

� Eliminating access rights.

� De-provisioning accounts when user leaves the company.

� Ensuring the privacy and integrity of account data.

Every time an account is created an IT provider is buying into a set of
management pain points. The key question for an IT provider becomes to decide
whether he has to manage this account or is there a better way to manage
access to this set of users?

There exists an opportunity for the company to reduce the cost of provisioning
suppliers, business partners, consultants, brokers and third-party users. By
federating user access to these third-party users, companies can effectively off
load user administration costs back to the provider who has direct responsibility
for managing the user.

User registration and enrollment costs
There are costs associated with registering and enrolling a new user in the
systems. User registration and enrollment costs accrue from the administrative
processes that need to be deployed across the IVR2, Web, and sales channels.
These administrative processes require evaluating of the user registration data,
collecting approvals, and integrating customer care processes to handle user

2 Interactive Voice Recognition
24 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

access issues. Many service providers such as managed health care providers
incur significant customer care costs (for their client employees) every year
during plan enrollment times. These managed healthcare or financial providers
deliver services to employees of their clients. As a result, in today's business
model, these providers end up with the responsibility of identity management,
password management, and customer care for their client employees. Users call
into the service provider support desk when they cannot remember their online
user name or ID or PIN number, or are having difficulties with registration at the
last minute.

This cost of user administration can be significant for most service providers and
presents a recurring cost overhead. If a provider has 500 fortune clients (a client
refers to a company), and each client on average has 20,000 employees whose
healthcare need to be managed, the provider is now supporting and servicing 10
million accounts. A federated model where the service provider trusts its clients
to provide the user information can considerably simplify user administration
costs because user service costs are being handled by their clients, not the
provider. In this model when an employee cannot access the healthcare
enrollment page (for whatever reason, such as forgotten user ID or password,
and so on) they call their local help desk for assistance. This approach greatly
reduces the cost of user administration, service, and ongoing customer.

Password management costs
A significant pain point for most companies is cost of password management.
Each call to the help desk results, on average, between $20 to $30 per call in
support costs (shown by various studies).

Therefore most providers have an incentive to lower password management cost
by either automating password resets or avoiding this password management
problem all together. Federated identity presents an opportunity to avoid this
problem altogether by enabling organizations to leverage their business partner
to manage these passwords and credentials.

1.3.4 Inter-enterprise application to application integration
As mentioned in 1.2.2, “Enterprise re-aggregation” on page 6 SOA is a key
strategy that the market is adopting to support the businesses drive towards
becoming on demand businesses. Here we focus on the application to
application integration challenges within SOA. SOA as mentioned earlier spans
the own private business into new inter-enterprise interactions.
 Chapter 1. Business context for identity federation 25

The SOA strategy touches on many key elements relevant for e-business on
demand:

� Interfaces are provided to wrap service endpoints to provide a
system-independent architecture to promote cross-industry communication.

� SOA can provide dynamic service discovery and binding, which means that
service integration can occur on demand.

� SOA provides a standard method of invoking Web services (business logic
and functionality) for disparate organizations to share across network
boundaries.

� Web services use open standards to allow inter-enterprise connectivity
across networks and the Internet:

– Messaging protocols (SOAP)

– Transport protocols (including HTTP, HTTPS, JMS)

– Security can be handled at both the transport level (HTTPS) and/or at a
protocol level (WS-Security)

� WSDL allows Web services to be self-describing for a loosely coupled
architecture.

� A key principle of SOA is that services should be invoked by service
requesters that are oblivious to service implementation details, including
location, platform, and if appropriate to the business scenario, even the
identity of the service provider.

� Standards bodies, including WS-I, W3C and OASIS exist using technologists
from industry leading software vendors (IBM, BEA, Oracle, Microsoft®, and
so forth) to accelerate and guide open standards creation and adoption.

The Enterprise Service Bus (ESB)
A core component of realizing an on demand infrastructure enabling support of
the emerging on demand business models is the Enterprise Service Bus (ESB).
The ESB is to SOA as what SOA is to e-business on demand. So how does the
Enterprise Service Bus addresses the vision of an on demand business?

Important: While Web services provide the technology that is used for
application-to-application interactions, they are not a requirement for an SOA
or ESB environment. Federated identity management techniques can be used
within a Web services environment, be it SOA, ESB, or based on other
technologies.
26 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The Enterprise Service Bus is emerging as a service-oriented infrastructure
component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world.

On demand applications are business services built from services that provide a
set of capabilities that are worth advertising for use by other services. Typically, a
business service relies on many other services in its implementation. Services
interact via the Enterprise Service Bus, which facilitates mediated interactions.
The reference architecture for integration in 2.8, “On demand integration
reference architecture” on page 75, is based around SOA and an ESB.

When extending the ESB to support the inter-enterprise interactions driven by
SOA, trust and security is required. If using Web services, which are assumed
here, Web services security is a desired capability to allow businesses to
exchange sensitive data in a secure and trusted manner. This includes secure
communications across a multi-hop environment enabling application end to end
security and trust.

Web services security removes the dependency on transport-level security that
has been an artifact of Hypertext Transfer Protocol (HTTP)-based
communications and extends it to an end to end application interaction security
solution.

1.3.5 Open standards
Open standards are a key component when enabling inter-enterprise
interactions especially if they are to be dynamic and loosely coupled. Just as the
Web browser based user interactions have benefitted from HTLM and Java
based technologies, federated identity management benefits from the defined
SSO protocols and Web services standards.

See more detailed description of open standards relating to federated identity
management in 2.3, “FIM standards and efforts” on page 51.

F-SSO standards
Federated single sign-on (F-SSO) standards relate to how parties involved in a
federation communicate with each other and how the assert identities. In the
SSO standards there are also standards relating to single sign-out and account
linking capabilities.

Web services
Web services have emerged as the most promising development to address
cross-enterprise, cross-platform, and cross-vendor business integration issues.
Web services is a family of emerging technologies that enable easy
 Chapter 1. Business context for identity federation 27

interoperability of programmed information technology (IT) services and
integration of applications into a company’s broader business processes. Web
services technology enables companies to describe available services and
provide access to those services over standard Web protocols and
communications boundaries.

Web services security specifications
In April of 2002, IBM and Microsoft published a Web services security roadmap.
This roadmap describes a modular set of Web services specifications that allow
customers to build secure Web services according to their individual needs.
Several of these specifications have since been published and are described in
this section. You can download the roadmap from the Web at:

http://www.ibm.com/developerworks/library/ws-secmap

The Web services security roadmap defines and describes a set of specifications
designed to provide a security standard foundation. This foundation is based on
WS-Security, WS-Trust, WS-Policy and WS-Federation specifications. These
specifications provide a high-level view of all the pieces needed for security in a
Web services environment. In addition, these security specifications are factored
with the rest of the Web services architecture. This allows customers to easily
add other critical functionalities such as reliable messaging or transactions to a
Web service.

Web services provisioning specification
WS-Provisioning is a specification authored by IBM to provide a Web service
interface to communicate provisioning requests and responses. It includes
operations for adding, modifying, deleting, and querying provisioning data. It also
specifies a notification interface for subscribing to provisioning events.
Provisioning data is described using XML and other types of schema. This
facilitates the translation of data between different provisioning systems.

The specification is publicly available on the IBM developerWorks® Web site:

http://www.ibm.com/developerworks/webservices/library/ws-provis/

1.4 Conclusion
Organizations are looking to increase productivity and efficiency in both their
intra-enterprise and inter-enterprise interactions. Keys to productivity are to
reduce cost, reduce friction and promote reuse. Most organizations are moving
to a services-based delivery model or service-oriented architecture where
business services are available through the integration of loosely coupled
application platforms.
28 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.ibm.com/developerworks/library/ws-secmap
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Federated identity management delivers clear and compelling business
productivity by reducing the friction caused by incompatible identity management
systems. Since identity is a fundamental tenet of business and since
organizations have a business need to integrate their systems and applications
together, federated identity offers a strategic opportunity for companies to
address both issues. It provides the glue that enables organizations to network
and integrate their application platforms securely using Web services. Federated
identity management enables companies to securely link, join, or extend their IT
infrastructures with those of their business partners rather than create and
manage redundant identity and security infrastructures.

IBM has recognized that federated identity management is a user life cycle
management and administration problem. This approach enables companies
simplify their user administration and security administration while improving
security and corporate compliance. This life cycle management approach
enables company administrators and auditors to have the visibility, controls, and
the workflow to engage in federated administration with their business partners.

A federated model provides the platform for companies to deliver identity-driven
transactions to deal with solution extends the user life cycle management of
organizations to include trusted business partners and members. Built on open
federated SSO and Web services standards, this integrated approach to user life
cycle management provides an optimized and cost-effective approach to
managing identities and access control rights while simplifying the user
experience.

By choosing to operate in business federations, companies:

� Reduce identity and security management costs through linkage and reuse
between companies. Companies no longer need to separately manage users
or identities that are not under their control, reducing identity life cycle
management costs.

� Achieve order of magnitude increases in efficiency through reuse of security
infrastructure and end-to-end business process integration.

� Deliver simplified and trusted user experience with single registration, single
sign-on because users can navigate easily between Web sites with a single
identity and explicitly control release of their personal data. Implement
business strategies that drive organic market and customer growth by
eliminating the friction caused by incompatible identity and security
management between companies.

IBM's federated identity management solution delivers concurrent support for
key identity management specifications such as Liberty, WS-Federation and
SAML. IBM's federated identity is built on the trust foundation of the WS-Security
family of specifications. Integration of federated identity management capabilities
 Chapter 1. Business context for identity federation 29

with IBM middleware solutions such as WebSphere enables application
platforms to be integrated using industry standards.

In this chapter we have given a view of the business context of federated identity
management. We discussed the customer pain points of managing identities. We
also described some possible business models where identity federation will
bring a real benefit to particular businesses.

The following chapters dive into more details of implementing a FIM solution
starting from the architecture and design, followed by how the Tivoli Federated
Identity Manager solution and other IBM offerings are responding to this
challenge. Part 2, “Customer environment” on page 181, of this book focuses on
a few scenarios and how they were implemented.
30 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 2. Architecting an identity
federation

A federation is a group of two or more trusted business partners with business
and legal agreements, including liability restrictions placed on the business
partners. Participation in a federation allows a user from one federation business
partner to seamlessly access resources of another business partner in a secure
and trustworthy manner, be it directly using a Web browser or accessing a local
application integrated to an other business partners application. This allows end
users to easily accomplish the tasks they need to complete cross-company
business transactions. This in turn promotes cross-company business in a
loosely coupled environment.

This chapter discusses architecting a federated identity management solution
between trusted business partners. It also gives some aspects of understanding
how the user life cycle management of identities and the provisioning of user
information need to be designed in the federation context.

Briefly, the different standards involved with federated identity management will
be described. The end of the chapter briefly explains the on demand Security
Reference Architecture and the WebSphere Integration Reference Architecture,
and how federated identity management relates to it.

This chapter finishes by taking a look at methodologies related to federated
identity management solutions.

2

© Copyright IBM Corp. 2004, 2005. All rights reserved. 31

The base for discussing the architecting of a solution will be an example used
trough out this book. Based the example the federated identity architecture is
studied, where terminology is explained and finally the specifics of federated
identity solutions are addressed.
32 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

2.1 Federation example
The potential benefits of federation and federated identity management are best
described by an example. Consider a scenario with the following entities:

� An employer, BigCorp, and an employee, Employee One
� A travel provider, RBTravel
� A service provider, RBTelco
� A bank, RBBanking
� A stock information provider, RBStocks
� A user John Public coming over the Internet

The involved businesses interact with each other creating a value net of services
available to end users, be they public users or employees of a business; see
Figure 2-1.

Figure 2-1 Federation example environment

BigCorp BigCorp is a large company with many employees. As
part of providing benefits for its employees, BigCorp
provides (subsidizes) health care, retirement savings
plans, and other employment-related services (such as
subsidized mobile phone accounts). As part of reducing
its employee costs, BigCorp has outsourced these
employee benefits to third-party benefit providers. As

Telecom service provider

Intranet

Travel service

Teleconf.
Application

View Bill
Application

Stock service
provider

Banking service
provider

Ticketing service
provider

Main employee facing
web site

Portlet

Employees/
Public users Other

EnterprisesOther
EnterprisesOther

Enterprises

Service
Application

Portal

Portlet

Web Service invocation

Web based interaction

User interaction
 Chapter 2. Architecting an identity federation 33

BigCorp is responsible for the management of its users,
from account creation (initial hiring) to account
deletion/inactivation (dismissal/retirement/other
severance), it is natural for BigCorp to continue to assume
this functionality but to leverage this in its relationships
with third-party benefit providers.

Employee One Employee One is a typical BigCorp employee. He has
access to the typical BigCorp-provided (brokered)
services. Employe One also leverages additional services
brokered by BigCorp and provided by third-party
providers, including travel services, a BigCorp sponsored
mobile phone plan, participation in a stock plan, and
online banking.

RBTravel RBTravel manages travel related services for other
businesses, allowing them to order and pay for flights,
trains, car rental, hotels and much more. RBTravel have
agreements with the businesses using there service to
allow anybody from their business who are directed to
their Web site to allow them to automatically get an
account.

RBTelco RBTelco is a telecommunications service provider that
offers telephony services and also has a portal where
RBTelco users or business partner users can choose
among offered services to which RBTelco will act as
identity provider, offering SSO to the services. RBTelco
also has services in their portal connecting to external
service partners Web services and presenting them in the
portal. RBTelco also acts as a service provider to large
enterprises, like BigCorp.

RBBanking RBBanking offers banking services to its own customers
directly and also to RBTelco customers through their
portal.

RBStocks RBStocks offers a stock quote service. The service offers
different service levels depending on the user of the
service. The stock service is a Web service. RBTelco
offers this stock service on their portal.

BigCorp is one of the identity providers in these federation relationships. It
manages a user registry containing information about all of its employees.
BigCorp is responsible for managing the life cycle of its employees, from account
creation to account deletion/inactivation.
34 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

BigCorp enters into a business federation with a travel services provider,
RBTravel. RBTravel is to manage a set of services for all of BigCorp's
employees. RBTravel is required to manage information about all of these
employees as this information is relevant to RBTravel's day-to-day management
of the employee travel specific information, like preferences, frequent flier
information and so on.

Employee One has an account at BigCorp that he uses to access the BigCorp
resources he needs to complete his job. This account is based on his
employment at BigCorp. Should Mr. One go on a leave of absence, this account
may be suspended. Should he seek employment elsewhere, this account may
be terminated.

Mr. One, by virtue of being an BigCorp employee, also has a sponsored account
with RBTravel, a travel service company that acts as a third-party service
provider to BigCorp. Mr. One's account with RBTravel is sponsored in that it is
created as a direct result of Mr. One's status as an employee of BigCorp. Mr.
One is able to access his travel information through the BigCorp employee
portal. That is, the BigCorp employee portal has a link to RBTravel’s Web portal
that redirects Mr. One from BigCorp to RBTravel in order to access his externally
available services and information.

Without federation, Mr. One has to explicitly authenticate to the RBTravel site to
access his account even though he has already authenticated to BigCorp and
has accessed the RBTravel.com services through his employee portal.

By entering into a federation relationship RBTravel can reduce its overall cost of
managing users. The bulk of this is achieved by participating in single sign-on
and no longer directly managing Mr. One's authentication credentials, which, by
many reports, is an expensive part of user life cycle management.

From Mr. One's point of view, having RBTravel and BigCorp participate in a
federation relationship with reduced sign-on allows Mr. One to authenticate once
to BigCorp and then access his travel information without having to explicitly
re-authenticate. This is achieved with federated reduced sign-on.

Federated reduced sign-on between an issuing domain (BigCorp) and a relying
domain (the federated service provider RBTravel) facilitates the secure and
trusted transfer of user identifiers and other attribute-related information (such as
authorization roles, group memberships, user entitlements, and user attributes
such as Employee ID and credit card number).

What is required is that RBTravel is able to participate in a runtime exchange of
information with BigCorp which results in some assertion from BigCorp (note that
this exchange of information requires no interaction with Mr. One). This assertion
is then trusted by RBTravel and used to uniquely identify Mr. One based on an
 Chapter 2. Architecting an identity federation 35

BigCorp asserted unique identifier. Using this information, RBTravel is able to
locally identify and provide access to Mr. One's benefits account information.

Note that both BigCorp and RBTravel need to maintain information about Mr.
One. There will be attributes about Mr. One that are best managed by BigCorp,
such as Mr. One's home address and telephone number. Likewise, there will be
information about Mr. One's travel preferences that are clearly not appropriate for
BigCorp to manage on behalf of RBTravel. Thus it is possible for RBTravel to
personalize a user's experience based on RBTravel maintained attributes.

The second major player in this example is RBTelco. RBTelco offers services to
businesses and public users. When offering services to businesses it does not
necessarily care about the individual employee at the business but will treat them
all as one user with regards to authentication. Offering the ability to book
teleconferences may be a service only available to businesses. Attributes that
are forwarded from businesses would allow RBTelco to personalize the user
experience further if necessary.

Public users to the RBTelco portal would have an personal account. Public users
who are customers of RBTelco would benefit from its partners service offerings
presented by the portal. The services would allow for reduced sign-on allow the
user only to log on to the RBTelco portal and then selecting that service by
clicking on the link in the portal and then connecting to the offered services
without having to log on again. One such service is the RBBanking, offering its
customers access to their bank services through the RBTelco portal with
reduced sign-on, in the same way as RBTravel offered its services to BigCorp
employees.

Some services at the telecommunications portal would be consumed Web
services from partners to RBTelco. Web services are not accessed by the user
being redirected to another Web site and benefitting from reduced sign-on but
instead it is accessed by a local RBTelco application. The RBTelco application
benefits from the end to end security offered by the Web services security
interaction

Information about the end user, that is necessary for the stock application to be
able to deliver the quality of service based information relevant to the users
credentials at RBTelco, are included in the request from RBTelco.

2.2 Federated identity management architecture
Federated identity management (FIM) functionality enables companies and
business partners to lower their overall identity management costs, improve user
experience, reduce the company pain points, and mitigate security risks for
36 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

transactions. When discussing identity federation, identity federation splits into a
few different solution areas shown in Figure 2-2. The solution areas are:

� Web-based Single Sign-on - Federated Single Sign-on referred to as F-SSO

� Application based Web services security - Secure Web services referred to
as Web services security management

� Identity life cycle - Federated provisioning

Figure 2-2 Federated Identity Management solution areas

In this section the common fundamentals and terminology for the three solution
areas will be covered, starting with a background on FIM, an architecture
overview and finishing of with the general architectural FIM terminology and
concepts.

In the sections following this one, the specifics of the three solution areas will be
studied in a little more detail with regards to their functional specifics, 2.4,
“Federated single sign-on” on page 59; 2.5, “Web services security
management” on page 65; and 2.6, “Federated identity provisioning” on page 70.

Chapter 3, “Tivoli Federated Identity Manager architecture” on page 85, will do
the same, but look at the IBM Tivoli Federated Identity product specific approach.

2.2.1 Background to federation
Federation solutions are successful when they allow customers, business
partners, and end users to integrate easily between the federation business
partners without having to constantly manage security and identity in the process
in a per relationship proprietary way. Unfortunately, current implementations for
managing security and identity data often force users and businesses to
manually manage access, trust, transport and identity attributes. Often this
burden has a heavy impact on both ability to execute and growing administrative
cost due to that each business has to administer a large and rapidly changing
base of identities. Such a model is an impediment to the adoption of federations,

Identity Federation

Web based Single
Sign-On

Application based Web
Services Security

Identity Lifecycle
 Chapter 2. Architecting an identity federation 37

and is a pain point for both users and businesses, as we discussed in 1.2,
“Business environment” on page 5; and 1.3, “IT environment” on page 17.

Federation technology is used to:

� Provide a simple mechanism to identify and validate users from business
partner organizations and provide them with seamless access to Web sites
within that trusted Federation.

� Support standards based end to end trust and security for applications
exposed as Web services between businesses

� Off load the expensive part of the user management—the cost of user
enrollment, account creation, password management and user care—to one
business partner (an identity provider).

� Standardize the provisioning of users and attributes to support both user and
application based interactions, extending enterprise identity management to
inter enterprise identity management

� Reduce business partners need to manage large sets of user data, including
the cost of managing authentication credentials for large numbers of users.

The goal of federation is to support a dynamic and seamless integration of
services and resources between businesses within a federation.

An organization typically is willing to pursue a federation model when they can
rationalize the benefits of such a solution against the risks of supporting a
business model based fundamentally on third-party trust. An organization will
find it extremely difficult to engage in a federated model when it does not have
the same visibility of life cycle management of third-party users as they do with
their direct users. Therefore federated identity life cycle management is an
approach to deliver the same kind of visibility around an identity-related business
process when organizations begin to loosely couple very disparate identity
management systems across trust domains.

One of the most pressing questions for an IT administrator is how to implement
the technical policies and operational best practices; how to implement and
enforce security and identity agreements, audit and privacy agreements, such
that the federated relationships look like an extension of their existing identity
management procedures.

2.2.2 Architecture overview
Federated relationships can be based on proprietary technologies that allow
business partners to communicate and collaborate. In general, a proprietary
approach is not scalable or maintainable across a large set of partners. For this
reason, standards and specification-based approaches are rapidly gaining in
38 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

popularity. Federations facilitate an integrated approach to business.
Federations are entered in to facilitate two major types of functionality:

� Seamless and secure user interaction across federation business partners
(aka, federated single sign-on)

� Seamless and secure business interaction across application platform
integration (aka, Web services security management for Service Oriented
Architectures)

Both of these functionality types leverage the same basic functionality, namely,
both require a trust infrastructure. The trust infrastructure provides the technical
representation and implementation of the business and legal agreements
between business partners, as shown in Figure 2-3. Both federated single
sign-on and Web services security solutions are built on a trust infrastructure.

Figure 2-3 Base trust infrastructure for secure services

Federated identity management often refers to user-driven, browser-based
interaction between organizations. This space is reference to as federated single
sign-on (F-SSO) even though it has largely matured beyond just single sign-on
functionality. Standards and specifications such as the SAML specification and
WS-Federation and Liberty Alliance ID-FF specifications all now include an
aspect of session life cycle management (single sign-on and single sign-off) as
well as single sign-on enablement through account linking. This comprehensive
approach and enablement of a single sign-on environment is designed to ease
the user experience and reduce the cost of management of these users. For
example, previously a user had to establish an account, including user name and
password, at each business partner; the business partner in turn had to assume
the cost of managing this user and the user’s access to their system. Federation

Federated single sign-on
Secure user interaction

Secure web services
Secure business interaction

Trust infrastructure

Tokens:
sign/encrypt

Message:
sign/

encrypt

Business
agreements

Legal
agreements

Technical implementation

Transport:
SSL/TLS,
WS-Sec

Web Application

Web Portal

Web Portal

ESB
App

App

App

Portal

Gateway
 Chapter 2. Architecting an identity federation 39

solutions ease this cost by reducing the amount of information that must be
managed for each user and the overall cost of managing this information.

As Web services evolve, currently boosted by the industries drive towards
building service oriented architectures, the need to expose them to external
businesses will increase rapidly. Web services security targets the secure
inter-operability of applications or programs. Web services provide a flexible and
easily adoptable means of integrating applications. Web services security
defines how to do this in a secure manner. This includes securing the message
through signatures and encryption. It also includes authenticating and
authorizing requests based on the Web services invoker's claimed identity. This
identity is represented with a Web services security token; this process of
authenticating a principal's identity (be it user or application) is a form of
reduced-sign-on.

Unlike the federated identity management single sign-on described above,
however, this occurs in what is often referred to as an active client environment.
This means that the applications that are invoking Web services are able to
assert their claimed identities in a Web services request without having to
negotiate a separate (dedicated) single-sign-on protocol.

IBM provides the necessary functionality to implement the trust infrastructure
used by both of these solutions; this functionality is provided by a trust service.
Layered over the trust service functionality are two (largely independent yet
complementary) solutions: Federated single sign-on and Web services security
management.

To design a solution, the following areas need to be understood, and are covered
in this section:

� The roles of identity and service provider: The definition who is the
authoritative source of the user identity information

� Identity/attribute mapping: The definition of the attributes to be shared and the
mapping of them in the business partner systems

� User account management/provisioning: The procedures for managing user
identity data, agree what information can be shared, and what information is
independently managed by users, and will the users be provisioned
automatically to the new endpoint (a priori or runtime)

� Account linking: The procedures for managing the account linking, to agree
on some common unique identifier for the user, which can be bounded with
the internal, local user identity at the service provider. This step also involves
the definition of the account de-linking/de-provisioning procedures

� Trust: The process of ensuring security for connections/transport, messages
and tokens
40 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� Selection of the federation protocol profile(s): The definition of the federation
protocol profiles to be used between the two business partners

2.2.3 Roles
Within a federation, business partners play one of two roles: Identity provider or
service provider or both. The identity provider (IdP) is the authoritative site
responsible for authenticating an end user and asserting an identity for that user
in a trusted fashion to trusted business partners. Those business partners who
offer services but do not act as identity providers are known as service providers.
See Figure 2-4. The identity provider takes on the bulk of the user's life cycle
management issues. The service provider (SP) relies on the IdP to assert
information about a user, leaving the SP to manage only those user attributes
that are relevant to the SP.

Figure 2-4 Identity provider and service provider in the federated model

Identity provider - IdP
The identity provider is responsible for account creation, provisioning, password
management, and general account management, and also acts as a collection
point or client to trusted identity providers. Having one federation business
partner act as a user's IdP relieves the remaining business partners of the
burden of managing equivalent data for the user. These non-IdP business
partners act as service providers (SPs). These service providers will leverage
their trust relationships with an IdP to accept and trust vouch-for information
provided by an IdP on behalf of a user, without the direct involvement of the user.
This enables businesses (service providers) to off load identity and access
management costs to business partners within the federation.

In the example in 2.1, “Federation example” on page 33, both BigCorp and
RBTelco act as an identity providers. RBTelco is also a service provider.

Service Provider
SP

Identity Provider
IdP

Federation

Service Provider
SP

Service Provider
SP

Partnership
 Chapter 2. Architecting an identity federation 41

To achieve the overall user life cycle management required for a full federated
identity management solution, the identity provider assumes the management of
user account creation, account provisioning, password management, and
identity assertion. The identity provider and service provider cooperate to
provide a rich user experience by leveraging distinct federated identity
management profiles that together provide a seamless federation functionality
for a user.

Service provider - SP
A service provider may still manage local information for a user, even within the
context of a federation. For example, entering into a federated identity
management relationship may allow a service provider to handle account
management (including password management) to an IdP while the SP focuses
on the management of its user-specific data (for example, SP-side
service-specific attributes and personalization related information). In general, a
service provider will off-load identity management to an identity provider to
minimize its identity management requirements while still enabling full service
provider functionality.

2.2.4 Identity models
Shared and distinct identity models refer to the nature of the identity data
management. A shared identity data management solution implies that
information can be managed by one business partner (the identity provider).
Distinct identity data management solutions imply that information is replicated
across business partners and managed separately across business partners.

Shared
A shared identity approach to federated business interactions may be
appropriate when one business partner is able to trust and rely on the assertion
of a user's identity data by an identity provider. In this model, federation allows
the user (and the federation business partners) to establish a common unique
identifier, used to refer to the user. Based on this common identifier, an identity
provider is able to manage a user's identity data, acting as the authoritative
source of this information to trusted service providers.
42 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 2-5 Shared identity model

The fundamental question with respect to identity and attribute provisioning
between business partners is what information can they share and what are the
benefits of sharing? In an optimistic scenario an IdP and SP share every piece of
information about the user as in Figure 2-5.

� Sharing authentication credentials between the identity provider and service
provider means that the service provider can rely upon the identity provider to
authenticate the user. This frees up the service provider from managing the
password and credentials for the user. If identity account data cannot be
shared then both identity provider and service provider must manage a
separate identity account for the user, forcing the user to remember multiple
accounts and passwords.

� Sharing transactional attributes requires that the identity provider and service
provider agree upon the roles and entitlements or groups that the user
belongs to up front. This is a difficult proposition to implement, as two
independent providers typically have different ways to group identities or
manage role information. Rather than sharing transactional attributes, a
provider may map their transactional attributes in a form that their business
partner understands. In this approach identity meta-data is maintained
separately at both identity provider and service provider.

� Sharing profile attributes between identity provider and service provider is
usually a function of user consent. This is more dictated by user preference
and user privacy concerns. Sharing of attributes in many cases will require
user consent (OPT in) and the ability to prove user consent. In a pragmatic

Note: Regardless of the sharing of account data, both an identity provider
and service provider will usually maintain (at least) a set of transactional
attributes associated with a user's identity.

Service Provider
SP

Identity Provider
IdP

Shared identity model

Shared and
private

attributes

Private
transactional

attributes

sharing
 Chapter 2. Architecting an identity federation 43

sense, some attributes may be shared (such as e-mail address), whereas
some attributes will not be shared. If attributes cannot be shared then the
attributes need to be replicated between the identity provider and service
provider. So if, for example, a user's home address is replicated, both
business partners must independently manage this information. If the user
moves, and one of the business partners knows about the updated address,
in a distinct identity model, the business partner cannot notify/provision this
information to other business partners.

Provisioning plays a key role in determining all three of the above scenarios
when the identity information cannot be shared between IdP and SP. This will be
discussed in more detail in 2.2.6, “Trust” on page 49and 2.6, “Federated identity
provisioning” on page 70.

Distinct
A distinct identity approach to federated business interactions may be
appropriate when the two organizations cannot share identity information. This
may happen because of anti-competitive practices, separation of data,
dis-intermediation (companies unwilling to share customer data with business
partners for competitive reasons), political reasons, or because the user has an
independent relationship with both providers.

Figure 2-6 Distinct identity model

With a distinct identity data management model, identity data may be initially
provisioned across business partners as part of the initial account setup,
although it will be managed independently (outside the scope of a provisioning
solution) after this as in Figure 2-6.

Service Provider
SP

Identity Provider
IdP

Distinct identity model

Full set of
private

attributes

Full set of
private

attributes

1 time provisioning
44 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

2.2.5 Identity attributes
In a federated model an identity provider and service provider need to agree on
what information they can share with respect to a user identity and what
information must be independently managed. This information is composed of
classes of data that concern an identity:

� Authentication credentials
� Transaction attributes
� Profile attributes
� Provider-specific attributes

Figure 2-7 Shared and distinct identity data and attributes

For each class of identity data, we can allow for a shared or distinct identity data
management solution as shown in Figure 2-7. Thus when examining the
provisioning requirements for a federated model, we evaluate the shared/distinct
nature of each of the classes of identity data.

Authentication credentials
Authentication credentials are the information used to authenticate an identity.
This information is bound to a user's identifier (such as a user name or logon
identifier). The authentication credentials themselves are represented by data
such as a password or a one-time-generated PIN number from a hardware token.
These credentials are presented by a user as part of the authentication process
and used to prove (authenticate) the user's claimed identity. This implies that to
authenticate a user, a federation business partner must have a copy of the user's
authentication credentials, or some other means of validating the user's
authentication credentials. Thus current models of authentication require a
distinct identity data model, meaning that each business partner has a copy of
the user's authentication credentials.

IdP Identity

Authentication

Transaction

Profile

Provider
specific

Authentication

Transaction

Profile

Provider
specific

Attributes:

shared/distinct

shared

shared

distinct

Provisioning Attributes:

SP Identity
 Chapter 2. Architecting an identity federation 45

One goal of a federated model is to move to a shared identity data model. With
authentication credentials, this implies that a federation business partner be able
to trust a third party (an identity provider) to evaluate the user's authentication
credentials and to assert some form of secure, trusted information that can be
used to vouch for the user's successful authentication at the identity provider.
Thus in a federated model, authentication credentials may be extended to
include security tokens from an identity provider asserting the user's identity.

Moving to a shared model for authentication credentials means that federation
business partners are able to act as service providers and no longer have to
manage the class of identity data, including authentication credentials.
Provisioning solutions are used to tie the identity account management at an
identity provider to that at a service provider.

A shared identity approach to federated business interactions may be
appropriate when one business partner is able to trust and rely on the assertion
of a user's identity by an identity provider without having to independently
validate the user's authentication credentials. In this model, federation allows the
user (and the federation business partners) to establish a common unique
identifier to use to refer to the user, where this identifier reveals no information
about the user at either business partner. Based on this common identifier, an
identity provider is able to issue single sign-on information to federation business
partners.

In a shared identity model there is no need to provision authentication
credentials. There is, however, a need to somehow establish a user's local
identity and the common identifier used by the two business partners. This is
handled through a provisioning solution. In general, a distinct identity account
data model does not involve a provisioning solution. The user in this federation
model has distinct identity accounts at both of these business partners,
maintained and administered independently at both the identity provider and
service provider. With a distinct identity data management model, identity data
may be initially provisioned across business partners as part of the initial account
setup, although it will be managed independently (outside the scope of a
provisioning solution) after this.

There may be some cases where this is not true, for example, if the user does
not already have a distinct, authenticable account at both the identity provider
and the service provider. In this case, the identity provider may trigger a
provisioning event at a business partner to create a local identity account and
identity account data for a user. Part of this action may including establishing a
common identifier used by the two business partners. As with the shared data
approach, provisioning solutions when invoked within a distinct identity model
may come in one of two flavors: Runtime (or just-in-time) and a priori
provisioning, described in 2.6, “Federated identity provisioning” on page 70.
46 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Transactional attributes
Transactional attributes include information that describes a user and his
affiliations and entitlements. This information is bound to a user's identifier. This
may include groups that the user belongs to or roles that he can assume. This
data may also include additional identifiers (such as customer ID number, 401K
account number, frequent flier status level, health care number, supplier ID, or
billing or credit card number, and so on), specific organizational roles (such as
HR manager, stock broker, benefits administrator, primary care physician,
executive, supervisor, travel exception approver, and so on).

This information is often used as part of authorization/access control decisions at
the transactional level (for example, can this HR manager update this
employee's personnel evaluation?). This information about a user is not normally
managed by the user. In general, a user's transaction attributes are not common
across all identity and service providers;- not all of these attributes are relevant to
all identity/service providers.

Sharing of transactional attributes allows one of the parties (usually the identity
provider) to act as the authoritative source of transactional attribute information
about a user. This attribute information can then be provisioned to a service
provider in an a priori manner, meaning that whenever this information is
updated at the identity provider, an a priori provisioning request will attempt to
update this information at the service provider. This attribute information can also
be provisioned in a dynamic, or just-in-time, manner, meaning that updated/new
information is included as part of a single sign-on response to the service
provider, or in response to a direct request from the service provider.

When transactional attributes are distinctly managed within a federation, each
federation business partner is responsible for the day-to-day management of
these attributes. This means that a provisioning solution is not implemented as
part of the day-to-day management of these attributes. With a distinct identity
data management model, transactional attributes may be initially provisioned
across business partners as part of the initial account setup, although it will be
managed independently (outside the scope of a provisioning solution) after this.
Note that because transactional attributes are typically not managed by the end
user, this day-to-day management must be handled by the service provider's
administrators.

Profile attributes
Profile attributes represent auxiliary information that is not primarily tied to
authentication or authorization decisions. Profile attributes may be information
specific to the user identity such as e-mail address, home address, birth date,
and telephone number. Identity profile attributes also include preference or
personalization attributes such as a user's frequent flier number, location
information, and preferences and subscription information (for example, user
 Chapter 2. Architecting an identity federation 47

subscribes to a newspaper, and so on). This information may be used as part of
secondary user identity validation (as part of a lost password recovery process).

This information may be used as part of an access control decision in scenarios
where access is controlled by (for example) a user's age or state of residence.
This information about a user is normally managed by a user. In general, a user's
profile attributes are consistent across identity and service providers.

To put this into a familiar context, consider a the BigCorp employee, Mr. One,
who participates in a frequent flier program with his airline of choice. Mr. One has
an online travel account at RBTravel that he uses to book his air travel; this
account is bound to his identity. Associated with this user name is Mr. One's
password (authentication credentials) used to authenticate, these are not known
by Mr. One because they were setup as part of his provisioning from BigCorp.
Associated with Mr. One's travel account, are Mr. One's profile attributes (for
example, his billing address, e-mail, telephone number).

Based on Mr. One's travel account, the travel service will assign (and manage)
Mr. One's frequent flier status (a transactional attribute). When attempting to
book a flight Mr. Ones attributes will be used to assist him in booking the flight
and also enable the ticket to by issued to his frequent flier card. When Mr. One
attempts to book a trip, his travel class may be based on attributes with regards
to his airline points or position at BigCorp. Once Mr. One has selected his
desired travel and is about to book it, secondary evaluating of Mr. One's identity
will be accomplished as part of the specification of Mr. One's billing address (to
which the ticket confirmation information is to be sent).

Provisioning solutions allow the identity provider to create or update user profile
attribute information such as e-mail, personal information, address, membership
or subscriber information, and service-specific attributes about a user to service
providers. These attributes are typically managed by the end-user by managing
their profile information at their identity provider.

Provider-specific attributes
Provider specific attributes include both transactional and profile attributes that
are relevant for a given user at a given service provider; these attributes have not
been shared with other service providers. Examples of provider-specific
transactional attributes may include a user's buying history maintained with an
online auction house and the bonuses (free shipping) associated with this user's
transaction history. Examples of provider-specific profile attributes may include a
user's preference to always search for new auction items within the “Toys less
than $25” category.
48 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

A user's provider-specific attributes are just that: They are distinct attributes that
are not shared across federation business partners and are not required to be
managed through a provisioning solution across business partners.

2.2.6 Trust
Trust is a key capability for all three solution areas, and therefore a key area for
FIM. Trust services are also discussed in some detail in 3.2.3, “Trust services” on
page 92.

A trust relationship is represented at a technical level by cryptographic keys used
to sign and encrypt messages. These types of cryptographic techniques provide
a trust infrastructure over which other services can be layered.

To help ensure a desirable user experience, business partners within a
federation need to communicate information about a user in a secure and trusted
fashion. This is accomplished by leveraging a trust infrastructure.

Figure 2-8 Layers of trust

Tokens:
sign/encrypt

Message:
sign/

encrypt

Transport:
SSL/TLS

Tokens:
sign/encrypt

Message:
sign/

encrypt

Transport:
WS-

Security
MQ/JMS

Web Service invocation

Web based interaction
 Chapter 2. Architecting an identity federation 49

A trust infrastructure enables the protection of a message at all levels, Figure 2-8
on page 49:

Transport Using SSL to protect user based FIM communications or
WS-Security to protect application based FIM
communications

Message Using encryption and signing to provide confidentiality
and integrity protection on messages within a FIM flow

Token Using secure tokens to communicate information about a
user as part of specific steps within a FIM flow

The trust infrastructure provides protection against invalid or fraudulent FIM flows
while allowing for a single point of management of the trust information.

Transport
The simplest form of trust infrastructure is that provided by the transport layer
SSL protocol, used to encrypt communications at the transport layer between
two business partners. Enterprises generally understand how to manage SSL
certificates and how to use them to authenticate other enterprises with
techniques such as mutually authenticated SSL. SSL-based trust infrastructures
suffer from some limitations, notably that they are (at best) point-to-point based,
not end-to-end.

Web services, however, may not always run over SSL-compatible transport
protocols; Web services may be invoked via transport layer protocols such as
JMS or MQ. Thus a Web services trust infrastructure requires more flexibility
than offered by SSL. This flexibility is provided by encryption and signing of Web
services requests themselves in addition to any transport level protection that
may be applied.

Federated identity management requests will usually run over HTTP (and thus
be able to take advantage of SSL). They are not point-to-point communications,
however, meaning that an additional layer of protection is required. This is
provided by encryption and signing of the FIM requests themselves in addition to
any transport level protection that may be applied.

Message
For both Web services and federated identity management solutions, a
non-transport based trust infrastructure is required. This is provided by the use of
signing and encryption of requests at the message layer. The trust service
provides the infrastructure to manage the keys and certificates used for this
signing and encryption.
50 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The trust service provides a means of managing one's own keys and certificates,
and of binding a business partner's certificates (validated by a third-party
Certificate Authority) to the local, business-agreement validated, business
partner identity. These keys and certificates are then used to sign/validate and
encrypt/decrypt messages between business partners, independent of any
transport layer security.

Token
In addition to message layer security, security tokens may be included in a
message to convey security-specific information (used for authentication and/or
authorization purposes, for example) about a requestor. This information is part
of the trust infrastructure in the same way that keys are used for
signing/encryption purposes: The proper use of these tokens conveys
information about the holder of these tokens.

The trust service provides a means of managing these security tokens. These
tokens are common to (at least) one other business partner and contain
pre-arranged security-relevant information. These tokens are themselves
protected through signing and encryption, often using the same keying material
as used at the message layer.

2.2.7 Federation protocol
When creating a federation an agreement needs to be made on a technical level
of what FIM standard to use within the federation. An identity provider will most
likely support several and even service providers may do the same, but one
needs to be defined for each federation partnership.

The different standards and efforts in this space are discussed in 2.3, “FIM
standards and efforts” on page 51. The different standards have different
capabilities that will govern the choice of protocol, made. There is a table in 2.3.9,
“Selecting Federation standards” on page 58, that may be used to help select
SSO protocol.

2.3 FIM standards and efforts
Reduced sign-on techniques and solutions have been in place for many years
now. Federated identity management has its roots in reduced sign-on
technologies. IBM Tivoli first introduced reduced sign-on support in Tivoli Access
Manager as early as 2001.

The first standards-based efforts in this space where by Internet (Shibboleth) and
OASIS (SAML). Since then, federation efforts have been lead by the Liberty
 Chapter 2. Architecting an identity federation 51

Alliance (Liberty ID-FF) and through the Web services work of IBM and
Microsoft and partners (WS-Federation). Each of these efforts is introduced and
briefly discussed in the following sections. The more recent Web services
standards including WS-Security, WS-Trust and WS-Provisioning are presented
as well.

2.3.1 SSL/TSL
Secure Sockets Layer (SSL, standardized as Transport Layer Security, TSL)
provides session-level security through the use of encryption. While not often
thought of as an identity management protocol, SSL can be used to authenticate
senders and receivers through digital certificates, verify data integrity, and
ensure confidentiality. As such, SSL is often the first (and only) option considered
in securing transactions over the Internet. It can be used in both browser-to-Web
server and server-to-server communications.

Despite its popularity, SSL has some shortcomings in the following areas:

Granularity Either all the data over the session is encrypted or none
is. This can impact throughput in cases where large
amounts of data are exchanged but only small portions
actually need to incur the overhead of
encryption/decryption.

End-to-end SSL protection ends if intermediate components need to
examine transactions. No provision is made for encrypting
end-to-end across intervening components.

Web services security (discussed elsewhere in this section), however,
overcomes these issues.

2.3.2 Security Assertion Markup Language (SAML)
Security Assertions Markup Language is a specification designed to provide
cross-vendor single-sign-on interoperability. SAML was developed by a
consortium of vendors (including IBM) under the auspices of OASIS, through the
OASIS SSTC (Security Services Technical Council). SAML has two major
components: It describes SAML assertions used to transfer information within a
single sign-on protocol and SAML bindings and profiles for a single sign-on
protocol.

A SAML assertion is an XML-formatted token that is used to transfer user identity
(and attribute) information from a user's identity provider to trusted service
providers as part of the completion of a single sign-on request. A SAML assertion
provides a vendor-neutral means of transferring information between federation
52 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

business partners. As such, SAML assertions have a lot of traction in the overall
federation space.

As a protocol, SAML has three versions: SAML 1.0, 1.1, and SAML 2.0. SAML
1.0 and SAML 1.1 (collectively, SAML 1.x) focus on single sign-on functionality.
SAML 2.0 represents a major functional improvement over SAML 1.x. SAML 2.0
(approved in March 2005) is based on SAML 1.x with significant input from the
Liberty Alliance ID-FF and Shibboleth specifications.

SAML 1.x defines protocols for implementing single sign-on. These protocols are
HTTP-redirect based and involve the user's browser. SAML 1.x defines two
profiles for these single sign-on protocols: HTTP-based GET and HTTP-based
POST profiles. With the HTTP-based GET profile, the SAML assertion itself is
not included in the HTTP-redirect response. Instead, a SAML artifact is sent from
the IdP to the SP. The SP then uses an XML/HTTP back-channel to exchange
this artifact for the appropriate SAML assertion.

SAML 2.0 adds single sign-out and account linking functionality in addition to
enhanced client/proxy support in aid of mobile device support. As part of this
increased functionary, SAML 2.0 provides a richer set of profile bindings,
including artifact and assertion versions of all of the requests/responses
leveraged over HTTP-based GET and HTTP-based POST profiles.

As the most recent release, SAML 2.0 takes as input both the Shibboleth work
and Liberty ID-FF 1.2. SAML 2.0 takes into account more of the identity life cycle
functionality than previous versions. Likewise, based on the Shibboleth input,
SAML 2.0 has functionality that addresses some of the privacy concerns
associated with a federated environment. SAML 2.0 is still largely in
development with customer adoption/deployment expected to take off in
mid-2006.

More information on the SAML specification is available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

There is also more information about SAML in 3.3.5, “F-SSO approaches” on
page 110.

2.3.3 Shibboleth
Shibboleth is related to SAML but is specific to the higher-education sector.
Shibboleth uses some of the SAML protocols but includes additional features
specific to the higher-education community. Shibboleth introduces the notion of
Where are You From? processing, allowing a service provider to implement both
push-based and pull-based SSO protocols. Shibboleth has been submitted as a
contributor to the SAML 2.0 specification.
 Chapter 2. Architecting an identity federation 53

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

For example, within the higher-education community, there are very strict rules
on the release of information about an institution's students, even to other
higher-education institutions.

2.3.4 Liberty
The Liberty Alliance Project was formed to deliver and support a federated
network identity solution for the Internet that enables single sign-on for
consumers and business users in an open, federated way. For more information
about Liberty Alliance, see:

http://www.projectliberty.org

The Liberty Identify Framework, ID-FF, describes federation functionality that
goes beyond single sign-on. Initially released as Liberty Alliance ID-FF 1.0 in July
2002, the latest release of the Liberty specification is Version 1.2, released
November 2003.

Liberty ID-FF describes profiles for B2C-based single sign-on and additional
functionality. Liberty ID-FF profiles include: Single sign-on (SSO), single log-out
(SLO), Account Linking (Register Name Identifier, or RNI in ID-FF 1.1),
Account De-Linking (Federation Termination Notification, or FTN in ID-FF
1.1), and identity provider introduction (IPI). The Liberty-specified common
user identifier (CUID) is referred to as a NameIdentifier. It is an opaque
reference to a user that acts as an alias, meaning that it cannot be used to infer
information about the user, such as her identity. A Liberty NameIdentifier is used
to establish (and maintain) the account linking between an IdP and an SP. The
RNI profile is used to allow a reset of a user's NameIdentifier, replacing a current
value with a new NameIdentifier value. The FTN process is used to remove all
references to a NameIdentifier, thus achieving account de-linking. Taken
together, these profiles are intended to provide richer user management
functionality within a federation than simple single-sign-on.

In ID-FF 1.2, the RNI and FTN profiles have been collapsed into a single profile,
the Manage Name Identifier (MNI) profile. This profile moves all of the account
linking life cycle into a single profile.

The Liberty approach is based on business affiliates forming circles of trust. The
Liberty circles of trust is defined as “a group of service providers that share linked
identities and have pertinent business agreements in place regarding how to do
business and interact with identities.”

This is an excerpt from:

http://www.projectliberty.org/about/faq.php#07
54 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.projectliberty.org
http://www.projectliberty.org/about/faq.php#07

There is also more information about Liberty ID-FF in 3.3.5, “F-SSO approaches”
on page 110.

2.3.5 WS-Federation
WS-Federation is a specification defined by IBM, Microsoft, VeriSign, and RSA
within the scope of the IBM-Microsoft Web services security roadmap.
WS-Federation was published on July 8, 2003. WS-Federation interoperability
between IBM and Microsoft has been demonstrated several times, including by
Bill Gates and Steve Mills in New York City in September of 2003. Subsequent to
that, a public interoperability exercise was held on March 29–30, 2004 between
IBM, Microsoft, and other third-party vendors.

WS-Federation describes how to use the existing Web services security building
blocks to provide federation functionality, including trust, single sign-on (and
single sign-off), and attribute management across a federation. WS-Federation
is really a family of three specifications: WS-Federation, WS-Federation Passive
Client, and WS-Federation Active Client.

WS-Federation itself describes how to implement a federation in a Web services
world. In particular, WS-Federation focuses on the relationships between parties,
and the high-level architecture that supports these relationships. The two
individual documents, WS-Federation Active and WS-Federation Passive,
describe how to implement individual federation solutions.

WS-Federation Active describes how to implement federation functionality in the
active client environment. Active clients are those that are Web services enabled,
that is, able to issue Web services requests and react to a Web services
response. Leveraging the Web services security stack, WS-Federation Active
describes how to implement the advantages of a federation relationship,
including single sign-on, in an active client environment.

WS-Federation Passive describes how to implement federation functionality in a
passive client environment. A passive client is one that is not Web services
enabled. The most commonly encountered example of a passive client is a
vanilla HTTP browser. WS-Fed Passive describes how to leverage the
advantages of a federation relationship such as single- sign-on in a passive client
environment. Because this solution leverages the WS-Security foundation of the
infrastructure support, the same components used to provide a passive client
solution may be leveraged for an active client solution.

The three specifications that make up WS-Federation are available for download
from IBM DeveloperWorks at:

� WS-FED:

http://www.ibm.com/developerworks/webservices/library/ws-fed/
 Chapter 2. Architecting an identity federation 55

http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

� WS-FEDACT:

http://www.ibm.com/developerworks/webservices/library/ws-fedact/

� WS-FEDPASS:

http://www.ibm.com/developerworks/webservices/library/ws-fedpass/

The logical architecture described in WS-Federation, together with the
functionality described in the Web services security stack, supports both the
active and passive client scenarios. The complete family of WS-Security
specifications provides companies with a standards-based interoperable secure
digital identity and trust platform for Web services- based architecture.
Furthermore, these specifications promote reusability of existing IT security
investments, enabling companies to work with multiple security token types and
multiple scenarios including vanilla browsers, enhanced browsers, active clients,
and application-to-application connectivity.

There is also more information about WS-Federation in 3.3.5, “F-SSO
approaches” on page 110.

2.3.6 WS-Trust
The Web Services Trust Language (WS-Trust) uses the secure messaging
mechanisms of WS-Security to define additional primitives and extensions for the
issuance, exchange and validation of security tokens. WS-Trust also enables the
issuance and dissemination of credentials within different trust domains.

In order to secure a communication between two parties, the two parties must
exchange security credentials (either directly or indirectly). However, each party
needs to determine if they can trust the asserted credentials of the other party.
This specification defines extensions to WS-Security for issuing and exchanging
security tokens and ways to establish and access the presence of trust
relationships. Using these extensions, applications can engage in secure
communication designed to work with the general Web Services framework,
including WSDL service descriptions, UDDI businessServices and
bindingTemplates, and SOAP messages.

The specification that makes up WS-Trust is available for download from IBM
DeveloperWorks at:

http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/
56 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www-106.ibm.com/developerworks/webservices/library/ws-fedact/
http://www-106.ibm.com/developerworks/webservices/library/ws-fedpass/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

2.3.7 WS-Security
While WS-Security itself is not a federation or single sign-on specification, it does
define the binding of Web services security tokens. This binding is leveraged
within the WS-Federation profile (see the next section).

The OASIS Security Services Technical Council, together with the OASIS Web
Services Security Technical Council, has defined a Web services security SAML
token profile. This describes how to bind a SAML assertion in the context of
WSS:SOAP Message Security, for securing SOAP message exchanges.

The OASIS WSS-TC issued OASIS Web services security as a specification in
April 2004. Included in this specification are SOAP message security, a user
name token profile, and an X.509 token profile. More information on the OASIS
Web services security specification is available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

There is also more information about WS-Security in 3.4.2, “WS-Security” on
page 125.

2.3.8 WS-Provisioning
WS-Provisioning describes the APIs and schemas necessary to facilitate
interoperability between provisioning systems and to allow software vendors to
provide provisioning facilities in a consistent way. The specification addresses
many of the problems faced by provisioning vendors in their use of existing
protocols, commonly based on directory concepts, and confronts the challenges
involved in provisioning Web services described using WSDL and XML Schema.

The WS-Provisioning interface is an open standard that is available to other
companies that want to develop interoperable provisioning scenarios and
systems. The specification is publicly available on the IBM developerWorks Web
site:

http://www.ibm.com/developerworks/webservices/library/ws-provis/

WS-Provisioning has been submitted to the Organization for the Advancement of
Structured Information Standards (OASIS) Provisioning Service Technical
Committee.

Tivoli Federated Identity Manager supports draft Version 0.7 of the
WS-Provisioning specification.

This is an excerpt from the IBM DeveloperWorks definition of WS-Provisioning.
 Chapter 2. Architecting an identity federation 57

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

There is also more information about WS-Provisioning in 3.5, “Provisioning
services” on page 129.

2.3.9 Selecting Federation standards
To help in selecting which F-SSO profile to use, see Table 2-1.

Table 2-1 highlights some of the characteristics of each protocol: SAML 1.0 and
1.1 (OASIS standards), Liberty ID-FF 1.0, 1.1and 1.2 (Liberty Alliance published
specifications), and WS-Federation (WS-Fed) Passive (IBM, Microsoft, RSA,
VeriSign published specification).

Table 2-1 Characteristics per SSO protocol

Supported characteristic SAML 1.0,
1.1

SAML 2.0 Liberty
ID-FF 1.0,

1.1, 1.2

WS-
Federation

PUSH SSO - Identity provider (IdP)
initiated SSO

Yesa Yes Nob Yes

PULL SSO - Service provider (SP)
initiated SSO

Yes Yes Yes Yes

Front channel security token exchange Yes Yes Yes Yes

Back channel security token exchange Yes Yes Yes Noc

Choice of security token type No No No Yes

Where are you from? (WAYF) support N/A Yes Yes Yes

Accounts at IdP and SP are required to
initiate SSO

Yesd Yes Yesd No

Accounts at IdP and SP are required to
initiate account linking process

N/A Yes Yes No

IdP-initiated account linking (federation)
within SSO process

No Yes No Yes

SP-initiated account linking (federation)
within SSO process

No Yes Yes Yes

Support for Single log out (SLO) or single
sign-off

No Yes Yes Yes

Create account on SP-side as part of
IdP-initiated SSO or account linking - Just
in time provisioning (JITP)

Yes Yes No Yes
58 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

You can find more information about SAML, Liberty ID-FF, and WS-Federation in
3.3, “Federated single sign-on” on page 100.

2.4 Federated single sign-on
Federated single sign-on is the process by which a user authenticates to a
federation business partner (an identity provider, IdP) and has the IdP assert a
relevant identity (and attributes) to any/all required (and trusted business partner)
service providers as part of the user's online federation experience. Global
sign-on itself is provided by a federated single-sign-on protocol (see 2.3.9,
“Selecting Federation standards” on page 58). These protocols provide standard,
interoperable means for multiple federation business partners to negotiate the
presentation of credentials about a user from an identity provider to a (trusted)
federation service provider.

Account de-linking where user had
pre-existing accounts before account
linking

Yes Yes Yes Yes

Account de-linking where user did not
have pre-existing accounts before
account linking

Yese,f Yes Yese,f Yesf

a. While not explicitly part of SAML, this can be implemented by a vendor. This type of implementa-
tion will almost certainly break cross-vendor interoperability.
b. This is not part of the Liberty ID-FF conformance profile. This can be implemented by a vendor,
but will almost certainly break cross-vendor interoperability.
c. The WS-Federation Passive scenario used to demonstrate interoperability employed a front-chan-
nel token exchange. Back-channel exchange can be supported using a direct trust server to trust
server security token request, replacing the information passed in the front channel with an arti-
fact-type security token.
d. The profiles for SAML and Liberty ID-FF explicitly require accounts at both the IdP and SP side as
a prerequisite for SSO and account linking. A particular vendor implementation may not require this
(see item 9 for more details).
e. This is somewhat out of the scope of SAML and Liberty ID-FF implementation, as they both require
that a user had accounts at both sides before the account linking process was initiated.
f. Assuming that the SP side account was created in response to runtime provisioning, this account
must have been created in a manner that allows it to be converted from an SSO account to a di-
rect-authentication account.

Supported characteristic SAML 1.0,
1.1

SAML 2.0 Liberty
ID-FF 1.0,

1.1, 1.2

WS-
Federation
 Chapter 2. Architecting an identity federation 59

In this section Federated single sign-on functionality is discussed, this is also
studied more in detail, out of an IBM Tivoli Federated Identity Management
product point of view, in 3.3, “Federated single sign-on” on page 100.

Figure 2-9 Secure user interaction - F-SSO

A simplified view of a user interaction is illustrated in Figure 2-9. where a user
interacts with Enterprise A who acts as the IdP and two businesses Enterprise B
and C who act as SP’s. The user interactions are all Web browser based and
F-SSO is used to reduce sign-on for the user. The reduced sign-on may be
accomplished with any of the SSO protocols, SAML, Liberty ID-FF, or
WS-Federation; see Table 2-1 on page 58 for help with selecting SSO protocol
suitable for the federation partnership to be set up.

In the attempt to explain the different functionality in Federated single sign-on,
the example in 2.1, “Federation example” on page 33 will be used in this section.

Functionality relevant to F-SSO are; pull and push SSO protocols, account
linking, WAYF, session management, logout, credential clean up, global
good-bye and account de-linking.

2.4.1 Push and Pull SSO
There are two different ways of doing SSO, push and pull. Pull SSO is available
in SAML 1.x and 2.0, Liberty ID-FF and WS-Federation. Push is available in
SAML 1.x (with custom coding in Liberty ID-FF) and WS-Federation; see 2.3,
“FIM standards and efforts” on page 51, for details.

Push SSO means that the SSO exchange is triggered by a request to the identity
provider, which then PUSHes a security token (or an artifact that can be used to
obtain the security token) to the service provider.

Web based interaction

User interaction Enterprise B

Enterprise C

Enterprise A

Web Portal

Web Portal

Web Application
60 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Pull SSO means that the SSO exchange is triggered by a request to the service
provider, which then PULL’s a security token (or an artifact that can be used to
obtain the security token) from the identity provider.

BigCorp uses pull SSO when its employees sign on to RBTravel.

2.4.2 Account linking
When a user has multiple login accounts at various sites or companies,
navigating between these Web sites can be a cumbersome activity, not to
mention the poor user experience. The user has to remember multiple site
identity account names and passwords to access services on these Web sites.
Account linking provides a simple mechanism for the user to link these distinct
identity accounts that they have with different Web sites as long as the various
companies or Web sites agree to this concept. The purpose of account linking is
to deliver a single sign-on user experience with these various providers who are
part of this agreement. Once accounts are linked, the user can authenticate to
one provider and then navigate seamlessly to various service providers with
whom they have linked accounts without having to re-authenticate or enroll.

At a technical level account linking is the process by which an identity provider
and service provider agree on some common unique identifier, and then each
bind their internal, local user identity to this common unique identifier (CUID).
This allows the identity provider and service provider to refer to the user by their
CUID during single sign-on without disclosing information about their local
internal representation of the user.

Consider RBTelco and RBBanking, where John Public has distinct
(authenticate-able) identity accounts at each company. When the two companies
agree to join a federation, they must somehow enable RB Telco’s users for SSO
to RBBanking. In general, this will happen based on functionality at RBBanking.
This happens through a two-step process, in this case initiated from the RBTelco
site. RBTelco changes the functionality at the portal, so that instead of a simple
redirection to RBBanking, the clicking of a link to RBBanking initiates single
sign-on to RBBanking. RBBanking receives this single sign-on request but is not
able to map the user to a locally known user. This will cause RBBanking to
prompt John for his RBBanking authentication credentials. Successful
authentication by John will now give RBBanking the RBTelco asserted CUID
(from the SSO request) and its own local representation of the user (from John's
direct authentication). RBBanking is now able to establish the account linking
that will allow this user to SSO from RBTelco.

Should users directly access RBBanking during the roll-over period, they will be
authenticated by RBBanking as usual. After this, RBBanking will request SSO
from RBTelco (for the already authenticated user). The corresponding SSO
 Chapter 2. Architecting an identity federation 61

response will contain the common user identifier (CUID) so that RBBanking has
the RBTelco asserted CUID (from the SSO request) and its own local
representation of the user (from John's direct authentication). RBBanking.com is
now able to establish the account linking that will allow this user to SSO from
RBTelco.

RBBanking may choose to disable the user's local password, so that direct
authentication to RBBanking is no longer possible as long as the user's account
is linked with RBTelco. The next time this user attempts to directly access
RBBanking, RBBanking will request an SSO from RBTelco.

Part of the account linking process is normally the establishment of some
long-term/persistent piece of information, such as an HTTP cookie, that identifies
RBTelco as this user's identity provider. During the roll-over period, this is also
used to distinguish between already linked and yet-to-be-linked users from
RBTelco. Once the roll-over period has completed, all users without this
persistent information must be queried to determine if RBTelco really is their
identity provider (see the following section for more information). In use case 3
this scenario is shown in some detail, see Chapter 9, “Use case 3 - Liberty” on
page 245.

2.4.3 Where are you from (WAYF)
Some service providers may have trust relationships with multiple identity
providers. This means that a user may possibly initiate SSO from one of many
IdP’s. For the service provider, the process of determining which IdP to request
SSO from is referred to as Where are you from? (WAYF). This is a process by
which a user may specify a preference for a given IdP for SSO purposes. This
information is maintained by the SP so that it can easily determine, without user
interaction, which IdP to request SSO from for future requests.

In the case of RBBanking, the WAYF information is established during the
roll-over period. During the roll-over period, RBBanking is acting as both a
service provider (for already federated users) and an identity provider (for not yet
federated users). That is, both RBBanking and RBTelco are acting as identity
providers for the single service provider, RBBanking.

If RBBanking was a SP to several IdP’s, it must rely on some form of persistent
information associated with a user (such as an HTTP cookie) to identify to which
identity provider an SSO request is to be directed. If this cookie is absent, then
RBBanking must engage in some form of user-interactive WAYF processing.
RBBanking may choose to prompt John to select such an identity provider from a
list of known/trusted identity providers.
62 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

In some cases, a service provider may not be willing to expose a list of trusted
identity providers. In this case, John would be given instructions by RBBanking to
directly access his identity provider (RBTelco) and initiate a SSO request through
an identity provider based mechanism.

While this does involve a level of interaction with the user, neither situation is as
intrusive as requiring that the user remember a password for RBBanking. Ideally,
user-interactive WAYF processing should not be required every time John
accesses RBBanking.

2.4.4 Session management and access rights
Once a user has single signed-on to a service provider, the SP is responsible for
managing the user's local session at the SP. This includes authorization
decisions on the user's requested actions and also session management itself,
such as logoff or session time-out.

This implies that the service provider is able to manage some level of attributes
or credentials for a user. These attributes are used to determine a user's local
access privileges. Access privileges may be asserted by the identity provider in
the form of asserted attributes about a user, such as group membership. This
information may be used by the service provider as an indication of the types of
actions considered allowable by the identity provider (or, actions that will be
honored by the IdP on the user's behalf). The service provider is able to honor or
disregard these attributes as required for its local behavior.

2.4.5 Logout
In some federation scenarios, the notion of global logout (single sign-off) is also
required, allowing a user to invoke a logout of all sessions asserted by a given
identity provider. Global logout can be requested by a user from either the IdP or
an SP; the process of global logout is controlled by the identity provider. The IdP
is responsible for maintaining a list of all SP's to which the user has been SSO:ed
in a given session. The IdP will then send a logout request to each of these SPs
on behalf of the user.

It may be the case, for example, that if John logs off of RBTelco's portal, that
RBTelco is no longer willing to honor any transactions that John may undertake
as a result of his RBTelco vouched SSO actions. In this case, RBTelco will
trigger a logout request to all business partners to which an SSO request has
been issued within John's current session.

Global logout does not imply that local logout goes away. It is possible that a
user will wish to log out of a session at a service provider without destroying their
session at the identity provider. Note that this requires that the user know and
 Chapter 2. Architecting an identity federation 63

understand the nature and workings of the federation. The more likely alternative
to a local logout at a service provider is to provide a shorter session
lifetime/inactivity time out than is used in a standard, directly authenticated
session. A shorter inactivity time out for an SSO user may be acceptable, as the
user is not forced to explicitly re-authenticate. Instead, the SP will simply
re-request an SSO from the user's IdP.

2.4.6 Credentials clean up
Logout, be it global or local, often implies the destruction of a session at a service
provider. This session is often maintained at the edge of a network and may be
independent of sessions with back-end applications. Back-end application
sessions may be used to maintain a state between request/responses of a
multi-step transaction. Logout, at both the identity provider, and service provider
should ensure that not only edge sessions, but back-end application sessions
(and session tracking artifacts), are destroyed.

Consider what happens when John logs out of the RBTelco portal and is single
logged-out of the RBBanking site. If John had started a transaction (to transfer
assets, for example) and then forgotten about this, this transaction needs to be
cleaned up (this is a form of garbage collection). If this does not happen,
RBBanking may be left with orphaned sessions that can tie up resources at its
back-end applications.

2.4.7 Global good-bye
Global good-bye deals with de-provisioning of a user's access rights and
entitlements within a federation scenario. Global good-bye is used when a
relationship between an identity provider and a service provider is broken, all of
the user's attributes (including transactional, profile and provider specific
attributes) that are relevant to the destroyed relationship are also destroyed.
Note that federation relationships may be terminated in several ways: A user
may chose to terminate his binding of an identity provider to a service provider or
an IdP and SP may chose to no longer do business together, breaking the
binding for all of the IdP's users.

For example, consider Employee One as an employee of BigCorp. If Mr. One
changes employers (now working for SmallCo), Mr. One's access rights and
entitlements to BigCorp’s sponsored travel rates must be cleaned up as part of
the global good-bye between BigCorp and RBTravel. Note that global good-bye
does not imply that Mr. One's account, including provider-specific attributes, at
RBTravel is removed. It simply implies that all of the BigCorp attributes, including
BigCorp-relevant transactional and profile attributes, are de-provisioned
(deleted) from Mr. One's account at RBTravel.
64 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

In general, global good-bye is accomplished together with account de-linking.

2.4.8 Account de-linking
Account de-linking is the process by which the common unique identifier is
destroyed, removing the ability of an IdP and SP to uniquely refer to a given user.
One result of account de-linking is that a user will no longer experience SSO
from the IdP to the SP. Note that account de-linking is independent of how a
user's account/registry record was created at the service provider, meaning that
account de-linking is possible whether an account was explicitly created by a
user and then linked, or created based on provisioning from the IdP to the SP.
After de-linking an account, a user or service provider may choose to link an
account with a different identity provider, or the SP may choose to resume direct
authentication of the user.

At some point, John Public may chose to close his RBTelco account. This may
happen because John moves or changes network provider, and so on. In this
case, John is no longer able to SSO to RBBanking from RBTelco because he is
no longer able to sign on to RBTelco. In this case, John's information at RBTelco
and RBBanking should be de-linked (sometimes referred to as de-federated).
The result of this process will be that the common, unique identifier for John will
be destroyed, the ability of John to single sign-on from RBTelco will be lost, and
John will be reinstated as a user who is able to directly authenticate to
RBBanking (in turn implying some form of self-registration process by
RBBanking to allow John to re/set a password for RBBanking).

In use case 3 this scenario is shown in some detail, see Chapter 9, “Use case 3 -
Liberty” on page 245.

2.5 Web services security management
Businesses need a standard way for service requestors (suppliers, customers
and partners) to securely find the right Web services of a given business.
Business service providers need to be able to securely identify and expose the
right Web service to only authorized requestors.

Web services security management functionality allows the establishment and
management of federation relationships for application to application
interactions, see Figure 2-10 on page 66, enabling the required trust and
security. In this solution an application, is able to generate a Web services
request, acting as a Web services client. This request can then be secured
(encrypted and signed) to provide message-level confidentiality and integrity.
 Chapter 2. Architecting an identity federation 65

Web services security management provides the key capability to be able to
realize a service oriented architecture, where businesses seamlessly and
dynamically interact with each other as part of new horizontally integrated
process.

Web services security management adds the ability for message-level
authentication and authorization, in the context of a federation relationship. This
is studied in detail, out of a IBM Tivoli Federated Identity Management product
point of view, in Example 3.4 on page 121.

Figure 2-10 Secure business interaction - Federated Web services security

A simplified view of a user interaction is illustrated in Figure 2-10. where a user
interacts with the portal in Enterprise A The portal renders an application which
uses Web services to integrate with any of the two businesses Enterprise B and
C who have exposed an application as a Web service. The interactions are all
application to application based and Web services security management is used
to enable security in the end to end integration.

While explaining the different functionality in Web services security
management, the example in 2.1, “Federation example” on page 33, will be used
in this section.

Functionality relevant to Web services security management are Web services,
WS-Security, and gateways.

2.5.1 Web services
Web services have emerged as the most promising development to address
cross-enterprise, platform, and vendor business integration issues. Web services
is a family of emerging technologies that enable easy interoperability of

ESB

Web Service invocation

Web based interaction

User interaction

App

App

App

Portal

Enterprise B

Enterprise C

Enterprise A

Gateway
66 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

programmed IT services and integration of applications into a businesses
increasingly horizontal business processes.

Web services technology enables businesses to describe available services and
provide access to those services over standard Web protocols and
communications boundaries. Web services has inherited and learned from the
way the World Wide Web revolutionized how people talk to systems. The new
customers and business models, extensions of opportunity, new transparency
and improved collaboration within enterprises and in some cases simplification in
infrastructure and sometimes reduced cost. The key to these successes was a
general server-to-client model in a highly distributed environment, and most
importantly based on simple open standards and industry support.

Web services promises to do the same thing for the way systems talk to systems:
integrating one business directly with another. This should be done in a dynamic
way without waiting for human intervention. It is about getting your own business
talking to itself or your suppliers, customers or partners, to provide integrated IT
systems, with the potential for dramatic reductions in infrastructure complexity
and costs. The key, here as well, is a general application-to-application
communication model based on simple open standards and industry support.

Figure 2-11 Basic Web services

Figure 2-11 shows the basic interaction model supported by Web services. Basic
Web services define interactions among service requesters, service providers,
and service directories as follows.

Service
Directory

Service
Requester

Service
Provider

UDDI W
SDL

SOAP

Client Server

1. Publish2. Find

3. Use

Directory/
Namespace
 Chapter 2. Architecting an identity federation 67

Service requesters find Web services in a UDDI service directory. They retrieve
WSDL descriptions of Web services offered by service providers, who previously
published those descriptions to the service directory. After the WSDL has been
retrieved, the service requester binds to the service provider by invoking the
service through SOAP.

When a user like John Public access RBTelco to view his stock service, RBTelco
uses a Java application to collect the stock information from RBStocks and
present it in the portal. The application at RBTelco then acts as a Web service
service requester making a SOAP request to the service prover RBStocks who
based on the passed identity and attributes returns the requested data.

The basic Web services are often described in terms of SOAP, WSDL, and
UDDI. However, it should be noted that each of these standards can be used in
isolation, and there are many successful implementations of SOAP alone, or
SOAP and WSDL, in particular.

For more information on Web services see the Redbook Using Web Services for
Business Integration, SG24-6583-00, or Web services architecture - W3C
Working Draft:

http://www.w3.org/TR/ws-arch/

2.5.2 Web services security
Web services security (WS-Security) defines a standard set of SOAP extensions
that can be used when building secure Web services to implement integrity and
confidentiality. This allows for sending security tokens to authenticate requests
and signing data to ensure data integrity and verify sender. To ensure privacy of
data, the data is encrypted. All this with the goal to accomplish end-to-end
message content security.

For more on the SOAP message security specification is called “Web Services
Security: SOAP Message Security 1.0,” and it can be found at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1
.0.pdf

This standard defines a set of SOAP extensions, seen in Figure 2-12 on page 69,
that provide the ability to:

� Send security tokens as part of a message
� Include an XML Digital Signature as part of a message
� Encrypt all or part of the message using XML Encryption
68 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Figure 2-12 WS-Security: SOAP message security, extensions to the header

These elements can be used to achieve message-based security for a SOAP
message. That is, the message in and of itself is tamper-proof and confidential.
The origin of the message is provided by the Token Element. Any change to the
message will cause the signature validation to fail so content integrity is
provided. An observer of the message cannot read it if it is encrypted, providing
message privacy.

When RBTelco securely passes the client identity and attribute information to
RBStocks, the request will use Web services security management on the
outbound side. A SAML assertion is added as a security token in the Web
services request and then signing and encrypting it.

This allows for the request to be honored by the federated Web service hosted at
RBStocks by having the token processed by RBStocks, including the verification,
user ID and attribute mapping, authorization, and token transformation that is
associated with being a security token consumer.

2.5.3 Gateways
A Web services gateway or firewall is much the same as a HTTP Reverse proxy.
A WS Gateway enables the company to separate internal network topology from
the Internet allowing for flexibility and abstraction.

A Web services Gateway addresses the de-coupling of deployment from
invocation, process abstraction, flexibility and protocol transformation, much as
any network gateway will in its functional area. See 3.4.3, “Web services
Gateway or Firewall” on page 126, for more on the functionality of the gateway.

Envelope

Body

Header

<application data>

Security Element

Security Token

Signature

Encrypted Data

Security Element
 Chapter 2. Architecting an identity federation 69

RBTelco has a Web services gateway which it uses when the application server
needs to pass client identity and attribute information to an external application at
for example RBStocks. The gateway then, on the outbound side, adds a SAML
assertion as a security token in a Web services request allowing that request to
be honored by the federated Web service hosted at RBStocks.

In 4.2.3, “XML gateway pattern” on page 155, there is more on Gateways and are
some examples of Gateways available in the market.

2.6 Federated identity provisioning
Provisioning is about remotely having the capability of managing attributes of for
example a user as part of an identity management process. The same
provisioning definition is also valid for provisioning of other services or resources
for example applications or servers. Within federated identity management the
focus is on the user/identity. This is studied in more detail, out of a IBM Tivoli
Federated Identity Management product point of view, in 3.5, “Provisioning
services” on page 129.

In the attempt to explain the different functionality in provisioning, the example in
2.1, “Federation example” on page 33, will be used in this section.

Federated identity provisioning extends these provisioning management
activities beyond an internal trust domain, see Figure 2-13 on page 72.
Federated identity provisioning makes it possible to extend local account
provisioning at an identity provider to include federated account provisioning out
to multiple service provider partners. A service provider, when notified of the
federated provisioning request, can perform the local provisioning necessary to
supply its service to the specified employee.

When used with provisioning of account data and authentication credentials,
provisioning solutions generally come in one of two flavors: Runtime (or
just-in-time) and a priori provisioning. Runtime provisioning solutions are also
referred to as enrollment solutions as a user is registered, or enrolled, for a set of
services, as part of the fulfillment of a single sign-on request. Sometimes this is
referred to as silent registration because the users do not see a separate
registration/enrollment step in their user experience.

A priori provisioning is the process by which a user account creation request can
be sent to federation business partners outside of the scope of a single sign-on
request. This allows both the identity provider and service provider to create local
accounts/registry records for a user in response to some action at the IdP. A
priori provisioning is often triggered by an account creation event at the identity
provider. A priori provisioning may also be triggered by other events, such as a
70 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

change in a user's status that in turn gives him access to more business partner
resources, or a subscription event by a user, signing up for services that the
identity provider in turn outsources to a third-party service provider. Note that like
runtime provisioning, a common user identifier is established for a user
automatically as part of a priori provisioning.

Runtime, or just-in-time provisioning allows a service provider to create a user
account/record in her local registry in response to a single-sign-on request from a
trusted identity provider. This may happen when an SP receives a SSO request
from a trusted identity provider but does not have any record of the user claimed
in the SSO request. Instead of rejecting the SSO request, the SP may choose to
create a user record based on the claimed common unique identifier (CUID).
The CUID-local identity mapping is therefore established at this time; in fact, the
SP is not required to ever establish its own, non-CUID local identity for this user.

In the case of BigCorp, provisioning a new employee within the BigCorp system
will cause account creation of the user's BigCorp required accounts. A federated
provisioning solution could also cause the sending of a provisioning trigger
request to RBTravel, but in this case just-in-time provisioning is used instead and
the user is provisioned at RBTravel on the fly if no user exists there. As this
account is created during the single sign-on from the user in BigCorp, the
common user identifier information will have been included with the provisioning
request and so no account linking step is required by this new user.

Provisioning solutions allow the identity provider to create or update a user's
transactional attributes, such as entitlements to service providers, as required.
These attributes are typically managed by the end user's identity provider. In the
case of BigCorp, employee Mr. Employee One may have a corporate credit card
used for travel purposes. If this credit card number changes, BigCorp may be
required to provision this transactional attribute to BigCorp's travel agency
RBTravel. Similarly, Mr. One’s salary may be considered a transactional
attribute, as it will be used by benefits providers to determine Mr. One's eligibility
for services. As such, it must be provisioned to BigCorp's benefits providers
if/when it changes.
 Chapter 2. Architecting an identity federation 71

Figure 2-13 Federated provisioning overview

Provisioning requests sent between identity providers and service providers
must be secure and be based on open standards. A standard that satisfies these
requirements is WS-Provisioning. See Figure 2-13. These requirements may be
satisfied by an implementation of the WS-Provisioning standard.
WS-Provisioning is a specification authored by IBM to provide a Web service
interface to communicate provisioning requests and responses. See 2.3.8,
“WS-Provisioning” on page 57, for more details on the WS-Provisioning
standard.

WS-Provisioning includes operations for adding, modifying, deleting, and
querying provisioning data. It also specifies a notification interface for subscribing
to provisioning events. Provisioning data is described using XML and other types
of schema. This facilitates the translation of data between different provisioning
systems.

2.7 On demand security reference architecture
Some initial work has been done to define a comprehensive on demand Security
Reference Architecture; see Figure 2-14 on page 73, which illustrates this work.

FIM
Provisioning

P
ro

vi
si

on

Tr
ig

ge
r

Identity Provider Service Provider

FIM
Provisioning

Provisioning

Identity
management

Identity
management

P
ro

vi
si

on

Tr
ig

ge
r

72 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 2-14 On demand Security Architecture (logical)

A complete discussion of this architecture is beyond the scope of this book,
which focuses specifically on the area of federated identity management. The
components that relate FIM are circled in the diagram in Figure 2-14. We give a
short overview of each of them in this section. A brief description of the other
components is included in the glossary of this document.

2.7.1 Policy management
Policy management in the on demand Security Infrastructure is the consistent
application of enterprise security policy to on demand infrastructure components,
services, and applications; Network Security Solutions; and on demand Security
Infrastructure components and services. Policy management is applied
independent of application logic and operating system platform, and includes
trusted identity and token life cycle management identity, access
control/authorization life cycle management, federated identity life cycle, privacy,
single sign-on, compliance determination and re-mediation, security event
auditing and processing, and failure situations.

On demand Security Infrastructure

Policy
Management
(authorization

, privacy,
federation,

etc.)

Identity
Management

Key
Management

Anti-virus
Management

Intrusion
Defense

Secure Networks and Operating System

Bindings Security ad Secure Conversation
(transport, protocol, message security)

Security Policy Expression

Service End-
point Policy

Mapping
Rules

Virtual Org
Policies

Privacy
Policy

Credential
Exchange

Identity
Federation Authorization Assurance

Audit&
Non-

repudation

S
ecure Logging

Trust M
odel

Network
Security
Solutions

(VPN,
firewalls,
Intrusion
detection
systems)

On demand Infrastructure – OS, application, network component logging and security events
logging; event management; archiving; business continuity

On demand Infrastructure – services and components

On demand Solutions
 Chapter 2. Architecting an identity federation 73

2.7.2 Identity management
In accordance with document security policy, identity management includes the
following:

� Identity proofing, identity approval, and identity rights authorization

� Identity token creation and token distribution to the user

� (Dynamically) provisioning user identity, rights, and profile to relying parties
(operating systems and applications)

� User profile management

� Enabling user self-care

� Delegating administrative responsibility for approval and authorization as
needed

� Processes for token changes IAW policy, revoking, and approving reissue of
new/changed token

� Performing identity management in accordance with security policy

In the context of identity management we have to use the following definition to
clearly distinguish between token and credentials:

Token An object(s) that an entity possesses and controls
(typically a key or password) used to authenticate the
entity’s identity. The token is provided to the entity as a
result of successfully completing the identity proofing and
registration processes.

Credentials Objects used in authentication that bind an identity or an
attribute to a subscriber’s token. Note that this document
distinguishes between credentials and tokens.

2.7.3 Key management
In accordance with document policy, key management provides life cycle
management for public-private key pairs using a trusted Public Key Infrastructure
(enterprise or outsourced) operating in accordance with a documented certificate
policy. Private keys and X.509 certificates can be used to provide authentication,
confidentiality, data integrity, and non-repudiation for transactions and other
data.

2.7.4 Credential exchange
The purpose of a credential subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity and permissions across
74 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

networks and among the platforms, the processes, and the security subsystems
within a computing solution. Credentials are created as a result of a successful
authentication. Some common types of credentials are:

� X.509 public key identity certificates that bind an identity to a public key

� X.509 attribute certificates that bind an identity or a public key with some
attribute

� Kerberos tickets that are encrypted messages binding the holder with some
attribute or privilege

� Encrypted cookies

Credential exchange is the process of passing a credential from one entity to
another entity using a protocol trusted by both entities or a protocol in which both
parties can establish mutual trust.

2.7.5 Identity federation
Identity federation is the life cycle management of cross-enterprise identities.
Such identities may be centrally managed or rely on trusted third parties. Trust
federation includes:

� Trust management
� Trust brokering
� Single sign-on
� Cross-enterprise identity mapping
� Cross-enterprise identity provisioning

2.7.6 Authorization
Authorization, also called rights and permissions, is allowing only users that are
approved to access and receive the benefit of systems, data, applications, and
networks (public and private). Authorization management is a life cycle process
for authorization data.

2.8 On demand integration reference architecture
The IBM WebSphere Integration Reference Architecture, as represented by this
high level, logical reference architecture, is a middle ware platform that provides
elements for function isolation. This modular middle ware platform provides the
development and operating environments for SOA-based solutions. This chapter
will give a brief overview of the layers involved in this reference architecture
represented by the Figure 2-15 on page 76. and how key parts relate to
federated identity management.
 Chapter 2. Architecting an identity federation 75

SOA is going to be a major driver in the Web services security management
space since one of the aspects of SOA is the ability to expose enterprise
services outside of the enterprise in a standardized way. To accomplish the
inter-enterprise integration there will be a heavy requirement on having Web
services security management in place to manage the application and-to-end
security.

So to understand a little better the components involved lets take a look at the
IBM WebSphere Integration Reference Architecture.

Figure 2-15 IBM WebSphere Integration Reference Architecture

A complete discussion of this architecture is beyond the scope of this book,
which focuses specifically on the area of federated identity management. The
components that relate to FIM are circled in the diagram in Figure 2-15. We give
a short overview of each of them in this section.

In the center of the architecture is a set of Connectivity Services. These services
provide the most fundamental of functions required for any integration
infrastructure, the ability to inter-connect multiple services spread throughout the
enterprise in a fully distributed implementation. For an in-depth understanding of
this core element see the IBM Redbook Patterns: Implementing an SOA using an
Enterprise Service Bus, SG24-6346-00.

Connectivity Services

Inform ation
Services

Application
and

Inform ation
Assets

Business
Application

Services

Partner
Services

Process
Services

Interaction
Services

Infrastructure M anagem ent Services

Business Perform ance M anagem ent Services

Developm ent Services
76 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Just below the Connectivity Services are a set of elements where business
services run. First, existing application and information functions must be
accessed through a set of Access Services in the Application and Information
Assets element. New business services run in another element and leverage its
Business Application Services. Services provided through relationships with third
party partners and suppliers are integrated into the architecture through the
Partner Services element.

Just above the Connectivity Services are a set of elements that facilitate the
integration of people, processes, and information.

Business Performance Management Services capabilities are provided across
all these elements facilitating business and IT level monitoring and management.
Development Services provide the role-based, model driven development
platform required for the efficient development of solutions.

All the layer are built on a set of Infrastructure Management capabilities that
allow it to be used to deliver any level of quality of service for any enterprise level
requirements. this is where federated identity management has many of its
capabilities.

2.8.1 Connectivity services
At the core of the Reference Architecture is a set of Connectivity Services. This
architectural element delivers all the inter-connectivity capabilities required to
leverage and use services implemented across the entire architecture. Transport
services, mediation services, and event services are all provided.

2.8.2 User interaction services
The user interaction services elements are set of services that are oriented
toward the integration of people, processes, and information. These services
control the flow of interactions and data among people and automated
application services in ways appropriate to the realization of a business process.
User Interaction Services provide the capabilities required to deliver IT functions
and data to end users, meeting the end-user's specific usage preferences.
Capabilities important to the integration of specific devices such as sensors and
actuators used on remote equipment is also supported.

The user interaction services would be the portal where Web based services
would be presented. The user interactions discussed in 2.4, “Federated single
sign-on” on page 59, would be to this service. Federated single sign-on (F-SSO)
would be leveraged if federation would be required between inter enterprise
portals.
 Chapter 2. Architecting an identity federation 77

2.8.3 Application and information assets
Existing enterprise applications and enterprise data are accessible from the
Connectivity Services through a set of Access Services. These access services
provide the bridging capabilities between legacy applications, pre-packaged
applications, enterprise data stores (including relational, hierarchical and
nontraditional, unstructured sources such as XML and Text), and so on, and the
Connectivity Services. Using a consistent approach, these access services
expose the data and functions of the existing enterprise applications, allowing
them to be fully re-used and incorporated into functional flows that represent
business processes. Existing enterprise applications and data leverage the
functions of their operating environments such as CICS®, IMS™, DB2®, and so
on. As these applications and data implementations evolve to become more
flexible participants in business processes, enhanced capabilities of their
underlying operating environments, for example support of emerging standards,
can be fully utilized.

User attributes, as discussed in 2.2.5, “Identity attributes” on page 45, in the
applications and information assets that needed to be shared outside the
enterprise, would be managed by an enterprise identity management solution
and federated provisioning solution to integrate with customers, partners and
suppliers who required the information.

2.8.4 Business application services
The business application services element contains a set of services that provide
runtime services required for new application components to be included in the
integrated system. These application components provide new business logic
required to adapt existing business processes to meet changing competitive and
customer demands of the enterprise. Design and implementation of new
business logic components for integration enables them to be fully re-usable,
allowing them to participate in new and updated business processes over time.
The business application services include functions important to the traditional
programmer for building maintainable, flexible, and re-usable business logic
components.

2.8.5 Partner services
In many enterprise scenarios, business processes involve interactions with
outside partners and suppliers. Integrating the systems of the partners and
suppliers with those of the enterprise improves efficiency of the overall value
chain. Partner Services provide the document, protocol, and partner
management services required for efficient implementation of
business-to-business processes and inter-actions. To support this, a set of
services must be available in the infrastructure services element, handling end to
78 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

end federation and security. Partner services is the consumer of FIM/Web
services security management services, which are located in the infrastructure
services.

2.8.6 Infrastructure services
Underlying all these capabilities of the WebSphere Integration Reference
Architecture is a set of infrastructure services which provide security, directory,
IT system management, and virtualization functions. The security and directory
services include functions involving authentication and authorizations required
for implementing, for example, single sign-on capabilities across a distributed
and heterogeneous system.

IT system management and virtualization services include functions that relate to
scale and performance, for example edge services and clustering services, and
the virtualization capabilities allow efficient use of computing resources based on
load patterns, and so on.

While many infrastructure services perform functions tied directly to hardware or
system implementations, others provide functions that interact directly with
integration services provided in other elements of the architecture through the
Connectivity Services. These interactions typically involve services related to
security, directory, and I/T operational systems management.

2.9 Method for architecting secure solution
Addressing an overall enterprise security architecture is a somewhat complex
undertaking because it involves many areas, identity federation being one of
them. IBM has introduced a new methodology called Method for Architecting
Secure Solutions (MASS) that will be used by IBM Global Service employees in
future security architecture engagements. It helps understand and categorize
security-related problems and discussions in today’s e-business-driven
enterprise IT infrastructures. This discussion was originally posted in a special
edition of the IBM Systems Journal on End-to-End Security, Vol. 40, No. 31.

The task of developing IT solutions that consistently and effectively apply
security principles has many challenges, including the complexity of integrating
the specified security functions within the several underlying component
architectures found in computing systems, the difficulty in developing a
comprehensive set of baseline requirements for security, and a lack of widely
accepted security design methods. With the formalization of security evaluation
criteria into an international standard known as Common Criteria1, one of the
barriers to a common approach for developing extensible IT security
architectures has been lowered; however, more work remains. The redbook
 Chapter 2. Architecting an identity federation 79

Enterprise Security Architecture using Tivoli Security Solutions, SG24-6014,
describes a systematic approach for defining, modeling, and documenting
security functions within a structured design process in order to facilitate greater
trust in the operation of resulting IT solutions.

There is also another redbook Identity Management Design Guide with IBM
Tivoli Identity Manager, SG24-6996, which relates very closely to the topic of this
book. It discusses the identity management of individual users within an
enterprise and its systems. The redbook describes the aspects of the
architecture and design of an identity management solution, and how to
implement the user life cycle management including the provisioning of the user
information with all the applications and systems in the enterprise. This redbook
extends the identity management discussion to federated identity management.

2.9.1 Implementation flow
Most projects will involve business, project management, and technical tasks.
The steps are discussed below.

Figure 2-16 Generic implementation phases for a project

The steps in Figure 2-16 are described below:

Initiation This is the project initiation step. It will normally involve
identifying the project background and requirements at a

1 This is a set of tests originally based on the US Orange book and European/Australian ITSEC
evaluations. It is currently recognized by 14 countries. There are seven levels of tests. Evaluation
Assurance Levels (EAL) 1–4 are usually used in the commercial areas, while the tests representing
the higher EALs 5– 7 are reserved for the security testing of highly secure environments.

Initiation BuildDesignDefinition

SoW or
Charter

Definition
Report

Architecture/
Design
80 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

high level. The deliverable for this step will be some sort
of Statement of Work (SoW) or Project Charter. The
high-level requirements will have come from a preceding
project (such as an IT architecture or security architecture
project) or the software purchase requirements.

Definition This is the project definition step, for example, where the
project is defined in detail, sometimes referred to as the
solution outline. This involves gathering the details: The
existing systems, users, procedures, and other
information, and the detailed requirements of the solution.
The deliverable for this step will be one or more
documents defining the project. These may include a
Project Definition Report, a Requirements document, a
Functional Specification, and an Existing System Analysis
document.

Design This is the design step. It involves designing the solution,
or a macro design. The deliverables for this phase are the
Architectural (at least Architecture overview, operational
model and non-functional requirements) and Design (at
least use cases, and component model) documents.

Build This is were the solution is built and implemented. From
the macro design in the previous step micro designs are
the base for the build. There will be a micro design for
each release. The micro designs are governed by change
cases which feed back to the macro design as well.

As mentioned, the focus of this redbook is on the design phase and production of
the Architectural and Design documents (as highlighted in Figure 2-16 on
page 80). However, much of the information required for the design will have
been gathered and documented in the Definition phase. The next section looks
at this.

2.9.2 Definition phase of a federated identity management solution
The definition phase defines the project in detail, and involves detailing the
current environment, the problem to be solved by the solution, and the detailed
requirements for the solution.

The initial project definition will be based on the documentation that triggered this
project, such as the IT Architecture, Security Architecture, INtegration
Architecture, RFP, or equivalent. These documents identify the business
background; the business need for the solution; and, normally, the business and
technical requirements for the solution.
 Chapter 2. Architecting an identity federation 81

For a federated identity management solution, the following areas need to be
defined in this phase (in no particular order). This list assumes that we are
creating a federation between two business partners. If there are several
federation business partners most of the steps needs to be worked out per
business partner:

� Selection of the federation protocol profile(s): The definition of the federation
protocol profiles to be used between the two business partners.

� The roles of identity and service provider: The definition who is the
authoritative source of the user identity information.

� Identity/attribute mapping: The definition of the attributes to be shared and the
mapping of them in the business partner systems.

� Account linking: The procedures for managing the account linking, to agree
on some common unique identifier for the user, which can be bounded with
the internal, local user identity at the service provider. This step also involves
the definition of the account de-linking/de-provisioning procedures.

� User account management/provisioning: The procedures for managing user
identity data, agree what information can be shared, and what information is
independently managed by users, and will the users be provisioned
automatically to the new endpoint (a priori or runtime).

� Security policy: What the corporate security policy defines for users,
accounts, passwords, and access control, and how they will be affected with
the federation.

� Interfaces: The interfaces to the current identity management mechanisms
and procedures and the integration requirements of the solution.

� Auditing and reporting procedures: The procedures for auditing and reporting,
who is involved in the auditing and reporting of users and their access, the
audit requirements for the solution, and the reporting requirements for the
solution.

� Technical requirements: The other technical requirements for the solution,
such as availability and recovery.

The first five bullets are federation-related items, and the sections later in this
chapter give more detailed information on these topics. The other bullets are
more general security-related items, which have been discussed in more detailed
in the other redbooks referenced in the beginning of this chapter.

Gathering this information normally involves a series of interviews and
workshops with the relevant people from the business partner organizations
involved in the federated identity management project. The combination of these
interviews and workshops will develop a picture of how the system currently
works and how it could be improved with the federation. It is important to
82 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

evaluate the wish list from the genuine requirements. The project owners should
drive the requirements for the proposed system, although others may contribute
to an understanding of the need for the requirements.

A key component of delineating the definition and design phases is that the
existing system and solution requirements are agreed between the project owner
and the project team prior to the commencement of the design phase.

2.10 Conclusion
In this chapter we have discussed the architecture and design of a federated
identity management solution between trusted business partners. In the
beginning we stated that, in general, building a particular design is just one part
of an overall implementation of a certain solution. The whole project consists of a
number of steps, starting from the definition of the business context, gathering
the requirements (both the functional and non-functional), creating the
architectural design, and finally building the solution. This chapter focused on the
architectural design aspect of an overall project.

In order to help our customers to build a FIM solution, IBM has created a
methodology for building a security solution, including the architecture and
design, and which is used by IBM Global Services employees in security
architecture engagements.

We also discussed some of the architectural considerations when building a FIM
solution. We discussed some of the FIM-specific functionality to give a better
understanding to the reader of the federation-related features like single sign-on,
account linking, single sign-off, protocol profiles, provisioning, and so on.

At the end of the chapter we described the status FIM standards and
interoperability at the time of writing this redbook, which also shows that FIM
solutions can be implemented today.
 Chapter 2. Architecting an identity federation 83

84 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 3. Tivoli Federated Identity
Manager architecture

The previous chapter described an overview of the capabilities of a general
federated identity management solution. These capabilities are treated as
individual logical functions that may be leveraged in a FIM solution. The
capabilities are logical in that they are not implemented by one-to-one
corresponding functional components. Instead, federation functionality is
provided by a set of services that are composable in order to create the
functional capabilities described earlier.

In this chapter we introduce the high-level components and new concepts for the
design of a federated identity management solution using IBM software
technology.

This chapter provides you with an understanding of the following topics:

� The high-level logical services architecture for IBM Tivoli Federated Identity
Management

� A more detailed look into federated single sign-on (F-SSO), Web services
security management, and provisioning solutions

In this chapter we refer to various IBM offerings. More detailed descriptions of
them can be found in Chapter 5, “Integrating with IBM identity management
offerings” on page 171.

3

© Copyright IBM Corp. 2004, 2005. All rights reserved. 85

3.1 Federated Identity Management functionality
The FIM functionality is built around a trust infrastructure implemented by the
Tivoli Federated Identity Manager trust service. This infrastructure is the basis for
the Tivoli Federated Identity Manager solutions provided for federated
provisioning, federated single sign-on, and Web services security management.
Each of these solutions may be deployed independently of the other. Likewise,
they can all be deployed in the same environment to provide a complete
federation solution.

As shown in Figure 3-1, Tivoli Federated Identity Manager provides overall
functionality for:

� Identity federation
� Federated provisioning
� Web single sign-on
� Web services security

Figure 3-1 Tivoli Federated Identity Manager runtime services

Federated Identity Management service components are described in 3.2,
“Federation services” on page 87. These components represent individual
services that may exist as distinct services or as logical services within TFIM.
Logically, each of these functional components is represented by a logical
service, so that:

� Federated provisioning functionality is provided by the provisioning service
� Web single sign-on is provided by the single sign-on protocol service
� Web services security is provided by the trust service

Identity Federation

Federated
Provisioning

Web Single
Sign-On

Web Services
Security

Trust
Service

Provisioning
Service

SSO Protocol
Service

Web Services
Security Manager

Access ControlIdentity Lifecycle
86 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Note that the Web services security management functionality directly leverages
the trust service. The single sign-on protocol service (SPS) in turn leverages the
trust service as an internal SPS service. The provisioning service (PS) may or
may not leverage the trust service, based on the requirement to security (via
Web services security management) the provisioning requests.

3.2 Federation services
Tivoli Federated Identity Manager services facilitates a standardized means for
allowing businesses to:

� Engage in trust relationships that facilitate direct integration of business
processes in the most efficient fashion. The concept of business federations
directly provides services for customers registered at other (business partner)
businesses or institutions by establishing business trust relationships.

� Share identity information and entitlements in a trusted fashion between
companies. Current approaches to identity management generally rely on
companies incurring user life cycle management costs by maintaining
redundant identities to manage employees, business partners, and
customers. The relationship between the business and these individuals can
change fairly frequently. Each change requires an administrative action that
can result in a high cost of user life cycle management.

� Exchange, in a secure and trusted manner, tokens referring to a Principal,
their attributes, privileges, and so on. These tokens are used to communicate
information used for the authentication and authorization of a Principal to a
business partner.

� Maintain security in a Web services oriented architecture, allowing for secure
standards-based application-to-application inter-enterprise communication.
 Chapter 3. Tivoli Federated Identity Manager architecture 87

Figure 3-2 FIM services architecture - The full picture

The following sections give an overview of each of the services components
represented in Figure 3-2, which is the FIM services architecture used in Tivoli
Federated Identity Manager. The complete set of Tivoli Federated Identity
Manager services allows for creation of federated SSO, Web services security
management, and provisioning solutions. The dark-grey boxes are non-core
Tivoli Federated Identity Manager services that are used as part of different FIM
solutions.

A different view of the services is found in Figure 3-3 on page 89, where the
layers PoC, SSO protocol service (SPS), and trust service are shown in their
external communication interfaces over standardized protocols. Both user-based
and application-based interactions are shown, since they differ in layering and
protocols.

In the application-based interaction to the left in Figure 3-3 on page 89 the PoC is
represented by a WS handler interfacing with the trust service, and may be
represented by a WS firewall/gateway. The provisioning service may be viewed
as an application exposed as a Web service.

SSO Protocol
Services

Trust
Services

Key
Services

Identity and
Attribute
Services

Authorization
Services

Protected
resources

Management
Services

Authentication
Services

Session
Management

Services

LDAP User
Registry

Application
Server WS

Handler

WS-Trust
Handler
Services

Web Service
Application

FIM Runtime

Provisioning
Services

App Server

Point of Contact

WS Client

Browser
Client

Identity
Management

Services

Web Server
Application

Browser
Client Console
88 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 3-3 User and application-based interaction components and their communication

3.2.1 Point of contact (PoC)
The point of contact is used for HTTP-based user interactions. The point of
contact service provides authentication service and the session management
service functionality. These services are typically provided by Tivoli Access
Manager for e-business through the Access Manager for e-business reverse
proxy or the Access Manager for e-business Web plug-in.

Authentication services
Authentication services provide the functionality required to evaluate and
validate user-provided credentials. Authentication services evaluate credentials
such as a user name and password, secure ID token pass phrases, X.509
certifications, and so on, directly provided by a user. Authentication services are
able to invoke some backend data stores, such as a LDAP registry or a secure
ID token server, to validate these credentials.

The protocol used to collect authentication credentials from a user requires a
simple challenge/response interaction with the user. The process of evaluating
these credentials is typically a simple action such as an LDAP-based validation

SSO
Protocol
Service

Trust
Service

HTTP

Point of
Contact

HTTP

SSO Messages

Security Tokens

W
S-

Tr
us

t
H

TT
P

Protected
Resources

Alias
Service

Key
Encryption

Signing Service

IB
M

 or 3
rdP

arty
standards-based S

S
O

 S
olution

SOAP over HTTP

Trust
Client

Trust
Service

W
S-

Tr
us

t

WS-Security

Security Tokens

SOAP
Protected

Web Services

Authorization
Service

Key
Encryption

Signing Service

F-SSO

User based interaction

Standards
based

communication

Standards
based

communication

WS-Provision
Provisioning

Service

Identity
Manager
Service

Web
Services/
XML Point
of Contact
 Chapter 3. Tivoli Federated Identity Manager architecture 89

of presented credentials. After the successful validation of authentication
credentials, the authentication service presents the session management service
with the information required to build a session for a user.

In a simple direct user authentication environment, a challenge/response
protocol to collect the user’s authentication credentials is negotiated directly
between the end user (or a user agent such as the browser) and the
authentication service.

Within a federated single sign-on environment, the challenge/response protocol
is not always negotiated with the end user but may be negotiated with a third
party acting on behalf of the user. This third party will usually assert some form of
security token or assertion about the user based in its own (local) authentication
of the end user. This security token acts as the equivalent of the user-presented
credentials. This security token must be validated, but this validation is based on
the trust relationship between the business partners.

Instead of incorporating support for each of these federation protocols (both the
interaction with the business partner and the evaluation of the presented token)
within the authentication service, an external single sign-on service is used. SSO
services (described in 3.2.2, “Single sign-on protocol services (SPS)” on
page 91) provide the run time for the federation protocols necessary to
implement the challenge/response interaction with a third party.

In response to the evaluation of user-provided or federation-provided
authentication credentials, an authentication service will generate information
that is used by a session management service to govern a user’s session. This
information is typically represented as a set of user credentials, or user
privileges. This information is used by a session management service and by
authorization services, as described in 3.2.6, “Authorization services” on
page 97.

Session management services
The purpose of a session management service is to manage a user's session life
cycle, from session creation, to session access, to session deletion (in response
to session logout services). These services typically sit at the edge of a network,
where they guide a user's access requests and access experience within an
enterprise.

Sessions are created at a Session Management Service in response to a
successful authentication or a successful security token validation. Current
implementations of Session Management Services often incorporate
authentication services, so that an authentication service exists as a logical
service.
90 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3.2.2 Single sign-on protocol services (SPS)
Within a federation environment, federated identity management protocols are
used to communicate information about a user between federation business
partners. For example, with federated single sign-on the result of this
communication is some form of security token that must be validated; this token
provides the information required to determine a user's local identity. Federation
single sign-on protocols provide a vendor-neutral means of establishing the
communications required to exchange this security token.

Figure 3-4 Externalized SSO Services

In Tivoli Federated Identity Manager, the responsibility for handling single
sign-on protocol messages is off-loaded from the point of contact server, as
shown in Figure 3-4. Single Sign-on protocol endpoints are instead hosted by a
separate service, the single sign-on protocol service. The point of contact server
still maintains control of user sessions, providing session management services.

The point of contact server has a number of interfaces to the SSO Protocol
Service but these do not need to be modified in order to support different (or
new) single sign-on standards. Only the SSO Protocol Service has to be
modified if changes to single sign-on behavior are needed.

External Authentication Interface (EAI)
Tivoli Federated Identity Manager provides an authentication mechanism
through its SPS with the capability that allows clients to sign in with credentials
generated by another party—the identity provider. By integrating Tivoli
Federated Identity Manager with point of contact, the federated single sign-on

Proprietary
Web Security

Solution
(Vendor B)

Point
of

Contact

Protected
Resource

Protected
Resource

Client

Proprietary
Web Security

Solution
(Vendor A)

Point
of

Contact

Protected
Resource

Protected
Resource

Client

Standard SSO
Format

SSO
Service

SSO
Service

H
TTP

SSO Messages

H
TT

P

 Chapter 3. Tivoli Federated Identity Manager architecture 91

can be treated as just another point of contact authentication mechanism, thus
having the SPS create an point of contact login session. When used with Tivoli
Access Manager as the point of contact service, the External Authentication
Interface (EAI) is used as the integration point with Tivoli Federated Identity
Manager. See Appendix A, “Configuring Access Manager WebSEAL and Web
plug-in” on page 363, for a detailed description.

3.2.3 Trust services
Federation relationships require a trust relationship-based federation between
business partners. A trust relationship is represented by the combination of the
security tokens used to exchange information about a user, the cryptographic
information used to protect these security tokens (and the communications used
to broker token exchange), and optionally the identity mapping rules applied to
the information contained within this token.

The trust service provides the management of this overall trust relationship,
including the binding of a trust relationship to a particular partner. As part of this
trust relationship management, the trust service provides a means of managing
one's own keys and certificates (through a Key Service), and of binding a
business partners’ certificates (validated by a third-party Certificate Authority) to
the local, business-agreement validated, business partner identity. These keys
and certificates are then used to sign/validate and encrypt/decrypt messages
between business partners, independent of any transport layer security. These
services provide the trust infrastructure over which other federation services are
layered.

Trust services require more than just the management of cryptographic
elements. This is because trust relationships are also bound to security tokens
exchanged between business partners. Security tokens are managed by a
security token Service (STS). Within Tivoli Federated Identity Manager, the STS
it is implemented as a logical service contained within the trust management
service. We call out the notion of a security token service as a separate service
to highlight the difference in management required for cryptographic elements
and security tokens. Below is the trust service studied in more detail.
92 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 3-5 Trust service components and connections

Figure 3-5 shows the logical components and connections of the Tivoli
Federated Identity Manager trust service. The trust service performs security
token related functions such as token creation, validation, and exchange, and it
does authorization for Web services. The trust service is accessed by trust
clients using either SOAP requests or direct JAVA API calls.

Trust service modules
All trust service functionality is performed by chains of modules. There are
modules that can process incoming tokens, modules that create tokens, modules
that perform identity mapping, and modules that perform authorization. A module
definition points to the implementation of a module and a module instance
contains the specific configuration.

Trust service modules can make calls out to other Tivoli Federated Identity
Manager components. For example, most token modules call the Key Service for
signature creation and validation. Liberty token modules call out to the Identity
Service for alias lookup. AM Credential modules and authorization modules call
out to authorization service.

When exchanging security tokens with partners, it is not enough to simply
understand the different token standards. It is just as important to know what
information a particular partner is expecting in tokens from your site, and what
information you should expect to receive from partners.

Key Service

<stsuuser:Attribute name=“…"
type=“…">

Identity/Attribute Service

Key Store

Key/Cert Pair

WS-Trust Interface
exposed as WSDL and Java API)

Trust Service

Trust ModulesModule Definition

Module Instance

Public CertPublic CertTrust ChainTrust Chain

Module1 Module2 Module3

Trust
Client

Trust
Client

Authorization Service

Trust Chain Mapping

Identity Mapping
(ID/Attributes <-> ID/Attributes)
 Chapter 3. Tivoli Federated Identity Manager architecture 93

For example, two different partners in the same federation might format a user
account number in two different ways, and might use a different attribute in the
security token to exchange it. Both partners use the same token standard for
example SAML 1.1, but the information within the token is different.

The Tivoli Federated Identity Manager trust service has a very flexible identity
mapping function that allows it to exchange tokens using a different identity
mapping rule with each partner. The trust service mapping module is called to
perform the mapping, and it looks up the configured identity mapping for the
partner in question.

Information from the incoming token can be manipulated and mapped into the
outgoing token in any way required. In addition, hard-coded information can be
added to the outgoing token. It is even possible to use javascript or Java to
acquire information from external sources. This flexibility is achieved by using
XSL transformations for identity mapping. XSL is a very powerful transformation
language and the trust service mapping module takes full advantage of its
capabilities.

The trust service defines an abstract format for identity information. This format is
an XML document called the STS Universal User. There are two reasons for
having this abstract format:

� First, to allow conversion from any supported token type to any other type.
The most scalable way to do this is to have each token module be able to
convert from its native token type into the abstract type, and to be able to
convert from the abstract type into its native token type. Then is possible to
convert from any token to any other token via the abstract format.

� Second, to be able to perform identity mapping. This mapping is made much
simpler if the mapping module only has to deal with one abstract identity
format, rather than multiple real identity formats. Leveraging an XML
formatted STS Universal User allows us to leverage techniques such as
XSLT and the many XML editors and XSLT tools for the management of this
functionality.

The STS Universal User is an XML document that contains identity information in
a generic way. It contains three sections—one for principal information, one for
group information, and one for attribute information. In a standard SSO trust
chain, an incoming token is converted to this format, the identity mapping is
performed, and then the outgoing token is created.
94 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 3-6 Trust service processing for federated single sign-on

Figure 3-6 shows how the trust service performs a token exchange. Trust chains
like the one shown here are used for all Federated SSO operations. These trust
chains are created automatically when you configure Federated SSO.

The input to the trust chain is the input security token. The first module in the
trust chain converts the input token to a STS Universal User (STSUUSER). This
creates an XML document with known structure. All of the attributes from the
incoming token are available in the STSUUSER document.

The STSUUSER document is now used as input to the identity mapping module.
The mapping used by the module is particular to the partner we are dealing with
and so is tailored to the particular attributes and information formats used by that
partner. The output of the mapping module is another STSUUSER document,
one that is suitable for creation of the outgoing token (or another mapping
module or other trust chain module). The output STSUUSER document can now
be converted into the output token format by the final token module.

Trust Chain

Input STS
Universal User

Output STS
Universal User

Input Token

Output Token

Token Module
(Convert to

STSUUSER)

Token Module
(Convert to

Output format)

Identity Mappng
Module

(Process STSUU)
 Chapter 3. Tivoli Federated Identity Manager architecture 95

Figure 3-7 Trust service transformation engine

Figure 3-7 shows how the Identity Mapping module is implemented using an XSL
parser.

The input STSUUSER document is generated by the input token module. This is
an XML document. The input token module handles the token validation process
and is responsible for correctly extracting information from the input token and
building the contents of the STSUU. This STSUU is fed into the XSL parser along
with the configured XSL mapping rule for the transformation.

The output of the XSL parser is another XML document. In fact, the XSL
mapping rule must be such that the output document is another STSUUSER
document. This STSUUSER document is fed into the output token module in
order to create the required output token.

As mentioned previously, the information in the input STSUUSER document, and
the information required in the STSUUSER document, is dependent on the token
modules in use. The configured mapping must take both of these things into
account. More details on these requirements are covered in Appendix B, “Identity
mapping rules” on page 381.

3.2.4 Key services (KESS)
Key services are leveraged to provide access to key stores used by a trust
service and the SSO Protocol Service. This allows the trust service and SPS to
plug in/access different key stores as required. It also provides a single point
through which key management may be accomplished. Key services are often
implemented as logical components within a trust service.

STS
Universal

User

XML

STS
Universal

User

XML

Identity Mapping
Module

XSL Parser

Configured
Mapping

XSL
Input

Token
Module

Output
Token
Module
96 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

In Appendix C, “Keys and certificates” on page 425, there is a detailed
description of key and certificate generation related to Tivoli Federated Identity
Manager and specifically the use cases in Part 2, “Customer environment” on
page 181, of this book.

3.2.5 Identity services
Identity services is a generic term for those services that provide the interface to
local data stores, including user registries and databases, for identity-related
information management. Typically an identity service is able to add, delete, and
look up information against some backing data store.

Identity services are leveraged by many different services within a federation
environment. The authentication service will leverage identity service
functionality as part of the evaluation of user-presented authentication
credentials and to build the privilege credentials used by the session
management service. These privileges are based on the attributes of a user
stored within a data store (these attributes includes information such as group
membership, roles, personal attributes such as age, and so on).

WIthin a TFIM environment, identity service functionality is leveraged as part of
the identity management functionality within the trust service. This refinement of
an identity service, namely an Identity and Attribute Service (IdAS), provides the
functionality required to manage the attributes required for a security token.

An IdAS will normally access an enterprise directory or other shared repository;
this will allow the attribute services to leverage existing attribute stores and
attribute management techniques.

Alias services
A specialized form of identity service is an alias service. Alias services are part of
single sign-on service functionality; they are used to provide the mapping
between an alias and a local user identity. Aliases are often included in the
security tokens exchanged within a single sign-on protocol. They are a
provider-neutral means of referring to a user. An alias service may leverage an
external data store, such as an enterprise directory, for the storage of SSO
aliases, or it may leverage a private, internal data store.

3.2.6 Authorization services
Authorization services are responsible for providing access decision point
functionality within a security model. The authorization service itself may not act
as an access enforcement function (AEF). AEF functionality is typically provided
 Chapter 3. Tivoli Federated Identity Manager architecture 97

by Session Management Services. Tivoli Access Manager provides AEF
functionality with TAM WebSEAL acting as an ADP.

At their simplest, authorization services implement an access decision
functionality, taking in a request for access and evaluating this request based on
a user's session privileges. The authorization service may respond with a simple
yes/no, indicating whether an access request is allowed. Based on this
response, session management services act as the authorization enforcement
point by allowing/disallowing the actual request for access.

3.2.7 Provisioning services
Provisioning services are used within a federated environment for both a priori
and run-time provisioning solutions. Provisioning services interact with both local
identity management systems (such as Tivoli Identity Manager) and local data
stores (access via identity services). Provisioning services are leveraged to
federate local identity management systems across federation business partners
and to provide federated management of identity data, including transactional
and profile attributes.

Provisioning services are leveraged as part of the identity management
functionality within an enterprise; as such, they are often integrated with a local
identity management (IM) system. This allows a local IM to treat a federation
business partner as a local provisioning endpoint, including this endpoint in any
workflow-based approval processes that are in place. A local IM can then
provision information about a user to a federation business partner, including
provisioning changes to a user’s personal profile (for example, home address),
status (for example, on leave of absence), or subscriptions (for example, signed
up for corporate-sponsored cell phone service). This allows an identity provider
to have a seamless and consistent view of managing a user across a federation
while allowing federation business partners to benefit from the management
functionality assumed by the identity provider.

3.2.8 Management Services
The management services are used for Tivoli Federated Identity Manager
runtime configuration and deployment. The interfaces to the management
services are:

� ISC - The new IBM Integrated Solutions Console providing a single portal
style administrative console for Tivoli Federated Identity Manager.

� API - Used by, for example, the InfoService; see 3.3.6, “InfoService” on
page 119.
98 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

This combination of API and (Web-based) management console provides
management flexibility and allows a customer to tailor management experience
as appropriate.

Console
Tivoli Federated Identity Manager uses a new console framework called the IBM
Integrated Solutions Console (ISC). Many IBM products are moving to use this
framework with the aim of providing a single portal style administrative console
that can be used to manage multiple IBM products from one place.

The ISC is based on cut-down versions of WebSphere Application Server 5.1
and WebSphere Portal Server. All of this is installed as part of the installation of
the ISC. Since Tivoli Federated Identity Manager components require
WebSphere Application Server 6.0, the ISC cannot share the same WebSphere
Application Server instance as Tivoli Federated Identity Manager components.
However, WebSphere 6.0 and the ISC can be installed on the same machine
without conflict.

Once the ISC is installed, console plug-ins are deployed into the ISC; see
Figure 3-8. The Tivoli Federated Identity Manager Console is one such plug-in.
The ISC is accessed over HTTP(S). This means that the Tivoli Federated Identity
Manager administration console can be accessed from any client that has
connectivity to the machine where the ISC is installed.

Figure 3-8 Tivoli Federated Identity Manager (ITFIM) Console within the ISC

ISC

ITFIM Console

Admin
Portlet

Admin
Portlet

Admin
Portlet

Other
Consoles

Users
and Groups Security Portal

Management
 Chapter 3. Tivoli Federated Identity Manager architecture 99

Deployment manager
The ISC console interface uses the deployment manager to push deployment
and configuration to remote Tivoli Federated Identity Manager nodes, as shown
in Figure 3-9. The deployment manger supports multiple domains and clustered
nodes (more on clustered nodes in 4.1.5, “Highly available architecture patterns”
on page 147). WebSphere Application Server functionality used to synchronize
the configuration files to clusters and the Tivoli Federated Identity Manager
Runtimes on the WebSphere Application Servers read the files locally.

Figure 3-9 Tivoli Federated Identity Manager Deployment and configuration of Tivoli
Federated Identity Manager and Tivoli Federated Identity Manager clusters

3.3 Federated single sign-on
Federated single sign-on is the process by which a Web-based user
authenticates to a federation business partner, identity provider (IdP), and has
the IdP assert a relevant identity (and attributes) to any/all required service
providers (SP) as part of the user's online federation experience.

Global sign-on itself is provided by a federated single-sign-on protocol that
provides standard, interoperable means for multiple federation business partners
to negotiate the presentation of credentials about a user from an identity provider
to a (trusted) federation service provider. These protocols are explained in more
detail further in this chapter.

Deployment
Manager

ITFIM
Management

Service

ITFIM Config

Managed Node

ITFIM Runtime

ITFIM Config

ITFIM Config

Domain 1

Domain 2

Managed Node

ITFIM Runtime

ITFIM Config

Managed Node

ITFIM Runtime

ITFIM Config

Cluster

Cluster

ISC

ITFIM
Console

Deploy

Configure
100 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

When considering a single sign-on solution, there are two main areas where
participants must agree on the technology choice in order to achieve
interoperability.

The first area is the format and content of the security token that will be passed
between the partners. The security token generated by the sending partner must
be understandable by the receiving partner. Also, there must be an agreement
as to what information is sent in the token and how it is interpreted. Typically the
security token format is bound to the single sign-on protocol (SAML protocols
use SAML assertions, Liberty ID-FF protocols use Liberty specializations of
SAML assertions). With Tivoli Federated Identity Manager, security token
generation and consumption is handled by the trust service as invoked internally
by the single sign-on protocol service. This is discussed in more detail in 3.2.3,
“Trust services” on page 92.

The second area is the single sign-on protocol. This defines how the parties will
communicate. A single sign-on server must know how a client will request a
security token and how the token should be packaged and returned. The server
must also know how a client will present an incoming security token in order to
initiate an authenticated session. In Tivoli Federated Identity Manager, all single
sign-on protocol messages are handled by the single sign-on protocol service.

Note that a single sign-on standard does not only deal with a profile for single
sign-on, but also profiles for single logout, federation, and alias management.
The SSO Protocol Service is also responsible for handling these messages.
These areas are discussed more later in this chapter
 Chapter 3. Tivoli Federated Identity Manager architecture 101

Figure 3-10 Single sign-on components and communication

Figure 3-10 shows the communications and exchanges that take place at each
layer of Tivoli Federated Identity Manager when performing Web-based single
sign-on. Note that no internal details are shown for the third-party side because
their architecture is not known (and not important).

At the Communication layer, HTTP messages are being handled by the point of
contact server. In the IBM solution, this is WebSEAL. All real communication is
via the point of contact server. It must support the HTTP standard in order to
interoperate with the client and with the third-party solution.

At the Protocol later, SSO messages are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated
Identity Manager, this layer is handled by the SSO Protocol Service. It
exchanges SSO messages with the third-party solution via the point of contact
Server.

At the Trust layer, security tokens are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated
Identity Manager, this layer is handled by the trust service. The trust service
exchanges security tokens with the third-party solution via the SSO Protocol
Service.

SSO
Protocol
Service

Trust
Service

Point of
Contact
Server

HTTPHTTP

SSO Messages

Security Tokens

W
S

-T
ru

st
H

TT
P

Protected
Resources

HTTP

Alias
Service

Key
Encryption

Signing Service
IBM or

3rd Party
standards-based

SSO Solution

SOAP over HTTP (back-channel)
102 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3.3.1 Architecture overview

Figure 3-11 Tivoli Federated Identity Manager components for Federated SSO

Figure 3-11 shows the Tivoli Federated Identity Manager architecture required to
support Web-based single sign-on protocols such as Liberty, WS-Federation,
and SAML 1.0.

All outside communication with the environment comes via the HTTP point of
contact server, in this case WebSEAL. WebSEAL maintains the Web session
with the client and manages authorization. WebSEAL also triggers authentication
(either local or SSO) when non-public resources are requested. WebSEAL
authorization is managed by authorization service, in this case the Tivoli Access
Manager.

WebSEAL has a junction to the SSO Protocol Service (SPS). Incoming SSO
messages will be directed to the junction that connects to the SPS. WebSEAL
will simply forward these as normal. WebSEAL can also re-direct the client to the
SPS in order to initiate single sign-on processes itself.

The SPS communicates with the trust infrastructure components in order to build
and consume SSO messages and uses the Access Manager Admin APIs in the
authorization service to terminate WebSEAL sessions during Single Logout
(SLO) operations.

The Tivoli Federated Identity Manager environment is managed using the Tivoli
Federated Identity Manager Console. When a federation that includes SSO

TFIM Runtime

ITFIM
Console

ITFIM Runtime

Trust
Service

Alias Service

LDAP User
Registry

ITFIM
Management

Service

Authorization Service

Protected
Resources

Point of Contact

Key Encryption
Signing ServiceSSO

Protocol
Service Trust Service

STS
 Chapter 3. Tivoli Federated Identity Manager architecture 103

functionality is configured, the Tivoli Federated Identity Manager Console
updates the SPS configuration as appropriate to support this.

In the following chapter the different types of F-SSO protocol functionality are
covered.

3.3.2 Trust in F-SSO

Figure 3-12 Using trust service in F-SSO

Security tokens are included in a message to pass an identity and to convey
security-specific information (used for authentication and/or authorization
purposes, for example) about a requestor; see Figure 3-12. These tokens are
common to (at least) one other business partner and contain pre-arranged
security-relevant information. These tokens are themselves protected through
signing and encryption, often using the same keying material as used at the
message layer. This information is part of the trust infrastructure in the same way
that keys are used for signing/encryption purposes: The proper use of these
tokens conveys information about the holder of these tokens. The trust service
provides a means of managing these security tokens and the trust relationships
bound to these security tokens.

Token management is based on information such as the issuer of a token, the
intended destination of the token, and the intended use of the token. This allows
the trust service to manage a business partner's token meta-data together with
the business partner's cryptographic material.

Protected
ResourceClient

Trust

Pass Identity

Trust
Service

Point
of

Contact

Point
of

Contact

Trust
Service

Authenticate Authorize

Issue Token for
use with

protected
resource

Locally valid
token/ID

Protected
Resource Token
with Client’s
authenticated ID

Exchange
presented token

for locally valid
token/ID
104 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3.3.3 F-SSO protocol functionality
Tivoli Federated Identity Manager and Access Manager for e-business together
provide support for browser-based federated single sign-on protocols (F-SSO).
F-SSO protocols differ from earlier attempts at cross-domain single-sign-on
protocols in their enhanced functionality, such as single sign-off. In this section
we briefly describe the type of functionality found in single sign-on and federated
single sign-on protocols.

Single sign-on (SSO)
Single sign-on is a well-understood process. This is the process of allowing a
user, authenticated to one domain (their home domain in Access Manager terms,
also known as their identity provider) to present an assertion or token (a vouch
for token in Access Manager terms) to a business partner (also known as a
service provider) as proof of authentication. This token is used to identify the
user and build a locally valid session (including credentials) for the user without
having to prompt the user for authentication credentials.

In general, F-SSO protocols (as all other CD-SSO protocols) come in two flavors:
Push and pull.
Push protocol In push protocol the user invokes a remote resource from

within the control of their home domain (through a link on
a portal page, for example), and is redirected to the
remote resource, carrying their vouch-for token with their
request. This means that the service provider (site of the
remote resource) does not need to prompt the user for
information about their home domain or prompt the user's
home domain for vouch-for information. Push protocols
are limited in that they must be invoked from within the
control of the user's home domain; push protocol
scenarios do not handle bookmarked URLs or
direct-typed URLs.

Pull protocol In pull protocol a user invokes a (remote) resource at a
site other than their home domain (the service provider
domain). As the service provider is not able to
authenticate the user, the service provider must
determine the user's home domain and then request SSO
information from the user's home domain.

The process of determining the user's home domain is
often referred to as WAYF, or Where Are You From. WAYF
may be established based on a long-term set of
information carried around by the user (for example, in the
form of a domain cookie identifying the user's home
 Chapter 3. Tivoli Federated Identity Manager architecture 105

domain) or by an explicit user interaction, where the user
is prompted to identify their home domain (for example,
from a pre-configured list of service provider-trusted home
domains). Pull protocols are limited in that if the service
provider is not able to determine the user’s identity
provider without user interaction, then a user-driven
WAYF sequence is required (for example, on first access
to a service provider or after a cookie-cache-flush).

Once a user's single sign-on information has been established and validated at a
service provider, the service provider will maintain a local session (including
credentials) for the user. This will allow the service provider to implement local
access control policies, for example, for the user's session.

Single logout (SLO)
Previous attempts at single sign-on have often neglected the corresponding
single sign-off functionality. Logout can be of two forms: Local and global. In
general, logout from the user's identity provider should force a global logout,
whether the user requests a global or local logout. This is a strong
recommendation/requirement that stems in large part from the liability normally
assumed by an identity provider for a user within a F-SSO relationship.

It is not always the case that logout should be an allowable service provider
action. This follows in that if a user has single signed-on to the service provider,
he may well have no notion that he has a separate session with this service
provider. Rather than confuse the user by offering a logout action at the service
provider, we expect that most scenarios will set a short session lifetime (inactivity
time-out) at a service provider and rely on single sign-on to re-establish a
session at a service provider, perhaps many times within the lifetime of the user’s
identity provider session.

If a user is presented with a global logout option at the service provider, this
should trigger a logout notification to the user's identity provider and then a
logout attempt from the service provider. The global logout received at the
identity provider should then invoke global logout functionality by the identity
provider, followed by local logout at the identity provider.

Note that logout in general has implications for things such as session duration
(differing durations at identity providers and service providers). In general, the
inacitvity time-out set for an identity provider should be longer than that set for its
service provider business partners. This will prevent a user from timing out at the
identity provider when executing a lengthy transaction with a given service
provider.
106 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Account linking
Account linking is the process of the run-time linking of a user’s accounts at
different business partners. Accounts are linked by establishing some form of
common unique identifier that is shared by different business partners, and
locally mapped at the business partner site to the user’s local identity. This
common unique identifier is usually defined to contain no information about the
user, so that it cannot be easily reproduced by outside parties (including
malicious third parties). As such, this common unique identifier is often referred
to as an alias or a pseudonym. Account linking is also known as name federation
within Liberty Alliance specifications.

Account linking is a required functionality when a user desires participation in a
federation but already has existing accounts at both federation business partners
(assuming a federation of two). In order for single sign-on to succeed, the identity
provider and service provider need to have some common way of identifying the
user. Account linkage is the process of establishing this linkage, based on an
initial user interaction at both the identity provider and service provider side. This
means that as part of the account linking process, there will be a write operation
to an identity store to allow the saving of the linking/mapping information.

It some cases, the account linking process will set a user's authentication
information at the service provider to a disabled state. This means that as a
result of the federation, the service provider will no longer directly authenticate
the user but will always refer to the linked identity provider for this information.
The service provider may choose to keep the user's pre-account linking
password so that if/when a user de-federates the accounts, she may still access
her service provider information based on direct authentication to the service
provider (or single sign-on from a new, different identity provider).

Note that account linking is sometimes referred to as provisioning, where the
linkage between existing accounts is the information being provisioned. This is
not provisioning for two important reasons: One, it requires that the user already
has pre-existing accounts at both the identity and service provider. Two, the
account linking requires that a user be actively involved in the process of
establishing the account linking at both providers.

Tivoli Federated Identity Manager does provide a Web services provisioning
solution, as described in 3.5, “Provisioning services” on page 129. This Web
services-based provisioning allows the linking of two Identity Management
systems for a complete user life cycle management solution, including the
provisioning of information (attributes, subscriptions, account status, and so on)
between federation business partners.
 Chapter 3. Tivoli Federated Identity Manager architecture 107

Password synchronization
Password synchronization may be a requirement for some relationships that
entail both federated user life cycle and Web services provisioning management
solutions. As password synchronization may require provisioning functionality, it
is also discussed in the Web services provisioning section.

With F-SSO, a service provider may be reluctant or unable to turn off direct
access to their resources, meaning that they must allow a user to authenticate to
the service provider as well as gain access as the result of federated SSO. In
order to achieve the benefits of federation (which often revolve around the cost of
password management and password reset), some companies will synchronize
passwords across participants. This at least will allow the service providers to
rely on the identity provider for password management, including Help Desk
calls. It will also simplify password management for the user, as it has the same
effect as a user-enforced global password. Note that password synchronization
is not as simple of a solution to implement, as differing password management
policies must be taken into account.

We expect that password synchronization solutions will not be common. What is
more likely is that a service provider will disable the password at the service
provider side once account linkage has been accomplished (without disabling the
user's account). This means that the user can only access the service provider
resources from their identity provider. If/when account de-linking (see the next
section) occurs, user self-care can be invoked to allow the user to re-establish a
password for local access.

Account de-linking (name de-federation)
Just as account linking is the process of establishing a linking, or mapping,
between a user's accounts across federations, account de-linking is the process
of removing any reference to or knowledge of that mapping.

Account de-linking may occur in a B2C scenario when a user changes his
identity provider (moving from Internet service provider A to Internet service
provider B, and therefore forcing a change of identity provider, for example), or
when a user changes service providers (changing his bank account from bank A
to bank B).

Account de-linking may occur in a B2B2E scenario when an employer changes
service providers (moving from benefits A to benefits B as medical benefits
providers, for example), or when a user changes employers (moving from
company A to company B but keeping his account with pension fund A for
retirement fund purposes).

Account de-linking may be triggered at the identity provider (for scenarios where
the user is changing service providers or simply wishes to remove F-SSO
108 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

functionality between the IdP and SP) or at the service provider (when the user
wishes to establish a new IdP or wishes to remove F-SSO functionality at that
SP).

Note that account de-linking is a single step and does not require/force a user to
establish a new account linking relationship.

Where are you from (WAYF)
Where are you from is the process of determining (by a service provider) where a
user's home domain (or identity provider) is located. Where are you from has two
profiles: Active and passive.

With a passive WAYF, the service provider has already established some form of
(long-term) information that it can access to determine a user's identity provider.
This simplest form of WAYF information is configured into the URLs associated
with single sign-on, so that a request for single sign-on received at
http://www.fabrikam.com/fim/idpAsso.html is always associated with IdP A.

A more likely form of storing WAYF information is in the form of a domain cookie
that identifies the user's identity provider and nothing else. There is no
security-relevant information of any form stored in this cookie. If a user attempts
to access a service provider resource and is not carrying some form of F-SSO
token, the service provider will look for a WAYF cookie to determine the user's
home domain. Based on the identity provider information stored in this cookie,
the service provider will be able to determine (based on local configuration) the
corresponding F-SSO endpoint at the identity provider.

If there is no WAYF cookie present, the service provider must invoke the active
WAYF process. Just as SSO profiles allow for push and pull variants, so does
WAYF processing. The WAYF pull variant has a service provider presenting the
user with a list of (trusted) identity providers for the user to select from. The
WAYF push variant has the service provider presenting the user with a notice to
attempt to SSO from their IdP (using a push-based SSO). The WAYF push
variant may be employed in situations where a service provider is not able to
advertise all of their trusted identity providers (for competitive reasons, for
example).

3.3.4 Integrating SSO with Access Manager for e-business
Tivoli Federated Identity Manager provides the run-time implementation of
supported SSO profiles. Access Manager for e-business provides the HTTP
point of contact functionality. As such, Tivoli Federated Identity Manager has
dependencies on Access Manager for e-business, and Access Manager for
e-business has dependencies on Tivoli Federated Identity Manager. In this
section, we briefly discuss these interdependencies.
 Chapter 3. Tivoli Federated Identity Manager architecture 109

Tivoli Federated Identity Manager relies on the point of contact for session
management for all users, whether Tivoli Federated Identity Manager is acting at
the identity provider or service provider. As part of the user’s session
management, Access Manager for e-business will be responsible for only
allowing authorized users to participate in SSO relationships (for example, not all
of an identity provider’s users may be entitled to F-SSO functionality).

When configured in an identity provider environment, Tivoli Federated Identity
Manager expects that Access Manager for e-business will correctly authenticate
users, and will assert the user’s identity to Tivoli Federated Identity Manager as
part of a SSO request. This implies that from an Access Manager for e-business
point of view, access to the Tivoli Federated Identity Manager SSO endpoints
must be treated as protected resources.

When configured in a service provider environment, Tivoli Federated Identity
Manager must be able to determine a user’s local identity and create an Access
Manager for e-business credential for this user.

3.3.5 F-SSO approaches
F-SSO may use a variety of methods to communicate and assert identity. The
different methods will not have support for all functionality described in 3.3.3,
“F-SSO protocol functionality” on page 105. The standards were introduced in
2.3, “FIM standards and efforts” on page 51, and some of the characteristics of
each protocol are highlighted in Table 2-1 on page 58. For detailed examples this
book describes use cases for each of these SSO solutions in Part 2, “Customer
environment” on page 181. In general, aside from proprietary solutions, there are
three approaches to Web-based browser single sign-on and federation:

� SAML
� Liberty ID-FF
� WS-Federation

SAML
Security Association Markup Language (SAML) is a standard produced by the
Security Services Technical Committee (SSTC) within the Oasis Standards
Organization. SAML consists of two distinct pieces of functionality: The SAML
assertion (used to transfer information about a user) and the SAML protocol (the
means of exchanging a SAML assertion). Full details on SAML are available
from:

http://www.oasis-open.org/committees/security

SAML 1.0 and 1.1 (both ratified as standards) define push-based protocols,
meaning that the SSO request is initiated from the identity provider and pushed
to the service provider. SAML provides for:
110 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.oasis-open.org/committees/security

� Browser/POST profile
� Browser/Artifact profile

The difference between these two is how the actual security information (vouch
for token) is exchanged between an identity provider and service provider.

With a Browser/POST profile, a SAML assertion (vouch or token) is included in
the response that is sent to the service provider as part of an HTML form as in
Figure 3-13. This is a front channel exchange of the SAML assertion.

Figure 3-13 SAML SSO: Browser POST

With a Browser/Artifact profile, a pointer to the SAML assertion (called an
artifact) is included in the query_string of an HTTP 302 redirect to the service
provider. The service provider in turn issues a direct SOAP/HTTP request back
to the identity provider, exchanging the artifact for the actual SAML assertion.

Both SAML profiles are invoked by a user being directed to an Inter-Site
Transfer Service at the identity provider. The Inter-Site Transfer Service will be a
URL that corresponds to a FIM endpoint.

Service
Provider

Identity
Provider

SSO Message SSO Message
Generate

SSO Message
Scripted POST

Validate
SSO Message

Re-direct to TARGET

Authentication
if unauthenticated

SSO Trigger
 Chapter 3. Tivoli Federated Identity Manager architecture 111

Figure 3-14 SAML SSO: Browser/Artifact

In Figure 3-14, the Browser/Artifact profile is shown; the step wherein a direct
SOAP/HTTP request is made from the service provider to the identity provider to
exchange the browser-artifact for the appropriate SAML assertion is done over
the mutually authenticated connection—the back channel.

Liberty ID-FF
The Liberty Alliance Identity Federation Framework (ID-FF) extends SAML
functionality beyond the push-based single sign-on of SAML. Tivoli Federated
Identity Manager SPS supports Liberty 1.1 and 1.2 ID-FF. Tivoli Federated
Identity Manager trust service supports Liberty Assertions. ID-FF defines:

� Pull-based single sign-on protocols

� Functionality for single logout (SLO)

� Account linking and de-linking:

– Liberty Register Name Identifier profile (RNI)

– Liberty Federation Termination Notification profile (FTN)

� Where are you from? (WAYF)

– Liberty identity provider introduction profile (IPI)

� Unsolicited authentication response

Service
Provider

Identity
Provider

Generate
Assertion

Store Assertion
link to Artifact

Send Artifact

Authentication
if unauthenticated

Artifact

SSO Request

ArtifactRedirect

Validate
Response

Lookup
Assertion

Validate
Assertion

Assertion Request

Assertion Response Mutually authenticated connection

Re-direct to TARGET
112 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

– This allows a push SSO to take place; SSO initiated by the identity
provider.

The ID-FF single sign-on protocols have three flavors:

� Browser/Artifact (B/A)
� Browser/POST (B/P)
� Liberty-Enabled Client/Proxy (LECP)

Details of the Liberty profiles are given in the following Liberty Alliance
specifications: [liberty-architecture-bindings-profiles-v1.1] and
[liberty-architecture-protocols-schema-v1.1], and:

http://www.projectliberty.org/

Browser/Artifact single sign-on profile
The flows of the Liberty Browser/POST single sign-on profile are shown in
Figure 3-15.

Figure 3-15 Liberty: Browser POST profile

In this profile the identity provider sends the Liberty Assertion (or SAML status
message) in the Authentication Response.

Service
Provider

Identity
Provider

Identify
Identity Provider

Redirect

Generate
Assertion

Store Assertion
link to Artifact

Send Artifact

Authn Request Authn Request

Authentication
if unauthenticated

SSO Request

Redirect

Where are you from
(if required)

Authn Response
(Artifact)

Authn Response
(Artifact)

Validate
Response

Lookup
Assertion

Validate
Assertion

Response

Assertion Request

Assertion Response
 Chapter 3. Tivoli Federated Identity Manager architecture 113

http://www.projectliberty.org/

Note the Where Are You From (WAYF) functionality embedded in this SSO
profile. This is required so that the service provider can figure out which identity
provider it should direct the client to in order to obtain a Liberty Assertion. This
might involve reading information from a previously stored cookie, or it might
require interaction with the user to prompt for the appropriate identity provider.

In order to generate a Liberty Assertion for the client, the identity provider must
have an authenticated session. If the session is not already authenticated when
the Auth Request arrives then the identity provider needs to authenticate the
user at that point. Note that some options in the Auth Request may prevent the
identity provider from authenticating the user. If this is the case then the identity
provider will send an error in the Auth Response.

The Auth Response in this profile is sent in an HTML form. Scripting is included
so that the form is automatically POSTed to the service provider.

Liberty Register Name Identifier (RNI)
The Liberty Register Name Identifier profile is used to manage a user’s
pseudonym (NameIdentifier). The Liberty NameIdentifier is used for account
linking purposes. In a Liberty environment, the establishment of such a
pseudonym is part of the process of federation; without this process, a single
sign-on protocol cannot be completed.

The Liberty NameIdentity is set during a specialized single sign-on request, a
federation request. Subsequent NameIdentifier management processing may be
initiated by an identity provider or a service provider.

In general, an identity or service provider may automatically reset the name
identifier values on a periodic basis (as defined within the relationship) in
response to an end-user-initiated request, or in response to some administrator
trigger. An example of an administrator trigger at an identity provider would be a
request to set new (identity provider-provided) name identifiers for all users
federated with a particular service provider.

Liberty Federation Termination Notification (FTN)
The Liberty Federation Termination Notification profile defines the process by
which an account linking is removed. This is also referred to as de-federation.
De-federation removes the account linking maintained by a NameIdentifier.

In general, an identity or service provider will initiate a FTN request in response
to an end-user-initiated request or in response to some administrator trigger. An
example of an administrator trigger at an identity provider would be a request to
terminate the account linking information for all users federated with a particular
service provider (perhaps in response to a high-level termination of the overall
business relationship).
114 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

LIberty Single Sign-Out (SLO)
The Liberty Single Sign-Out profile defines the process by which a (set of) valid
session(s) for a user is destroyed. Single sign-out can be initiated in response to
a user request at an identity provider or a service provider with whom he has a
currently valid session. A SLO request received at a service provider will in turn
cause an SLO action at the identify provider, where the IdP in turn logs the user
off of all currently valid SP sessions except the SP session that initiated the IdP
logout.

Note that while sign-out is almost always an end-user-initiated process, there
may be situations in which either business partner must immediately terminate
all sessions and thus issue a logout request on behalf of the end user. This may
occur, for example, within a business environment in which an employee is fired
for misconduct; all currently valid sessions for the user must be terminated as the
employee is escorted off the employer's premises. In this case, the SOAP SLO
profile may be leveraged, as it may occur out-of-band (without waiting for a user
interaction at either side).

Identity provider introduction (IPI)
The Liberty identity provider introduction profile defines the process by which an
identity provider can set, and a service provider retrieve, a common domain
cookie (CDC). This cookie is defined for a common domain, a DNS alias shared
by identity business partners and service providers within a circle of trust. It is
used to store information accessible/required by all business partners within the
circle of trust, in particular, the user’s identity provider. Once retrieved, the
information contained in the cookie is extracted and returned to the requested
domain using techniques such as URL re-writing.

Liberty-enabled client/proxy (LECP)
The Liberty-enabled client/proxy profile is designed to address devices that are
not able to accommodate the query-string length requirements of the B/A profile
or the form post requirements of the B/P profile. These devices are generally
mobile devices, such as query-string length limited mobile devices or older
mobile devices not capable of automating a form post.

A Liberty-enabled client is a client that has, or knows how to obtain, knowledge
about the identity provider that the Principal wishes to use with the service
provider. This may be implemented as a client (for example, code downloaded to
a mobile handset) or as a proxy (for example, an HTTP proxy embedded in a
WAP gateway). In addition, a Liberty-enabled client receives and sends Liberty
messages in the body of HTTP requests and responses. Therefore,
Liberty-enabled clients have no restrictions on the size of the Liberty protocol
messages.
 Chapter 3. Tivoli Federated Identity Manager architecture 115

Figure 3-16 shows the role of Tivoli Federated Identity Manager in a LECP
profile, where a WAP Gateway is acting as the LECP. Note that in this scenario,
Tivoli Federated Identity Manager need only accommodate steps 4 and 6 when
acting as an identity provider, and steps 1, 3, 7, and 11 when acting as a service
provider.

Figure 3-16 Liberty enabled client proxy (LECP) example

Details of the LECP profile are given in the following Liberty Alliance
specifications: [liberty-architecture-bindings-profiles-v1.1] and
[liberty-architecture-protocols-schema-v1.1].

Unsolicited authentication response
This is how Liberty ID-FF 1.2 does a PUSH SSO, and, yes, we should have a
section on this.

Liberty 1.2 allows for an identity provider to send an unsolicited authentication
response to a service provider. This allows a push SSO to take place—an SSO
initiated by the identity provider. The trigger for this is not specified so it is up to
who implements it to decide.

TFIM Runtime
ITFIM Runtime

Trust
Service

Alias Service

LDAP User
Registry

Authorization Service

Protected
Resources

Point of Contact

Key Encryption
Signing ServiceSSO

Protocol
Service Trust Service

STS

3rd Party SP

WAP GW

LECP

IdP

1,7

3,11

10

5

4
6

116 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

WS-Federation passive client
The WS-Federation passive client specification, published by IBM and Microsoft,
available at http://www-106.ibm.com/developerworks/library/ws-fedpass/,
states that:

The WS-Federation specification defines an integrated model for federating
identity, authentication, and authorization across different trust realms and
protocols. This specification defines how the WS-Federation model is applied
to passive requestors such as Web browsers that support the HTTP protocol.

The WS-Federation allows for both pull and push for SSO.

� Pull means that the SSO is initiated at the service provider, the service
provider determines the identity provider, then the service provider requests
SSO from the identity provider and the identity provider responds with an
SSO token. See Figure 3-17 on page 118.

� Push means that the SSO is initiated at the identity provider and then the
identity provider sends the SSO token to the service provider. See
Figure 3-18 on page 119.

Pull
In Figure 3-17 on page 118 a single sign-on is triggered at the service provider
by sending a special SSO trigger message to the service provider
WS-Federation endpoint. If the service provider has multiple identity providers
configured then it must determine which to send the client to for authentication. It
can do this either by reading a cookie set on a previous visit, checking for a
parameter in the query string of the SSO trigger, or by sending the user a list of
identity providers to choose from.

Once the service provider has determined the correct identity provider, it builds a
SSO Request message, which is send to the identity provider. The SSO
message is send in the query-string of a re-direct to the WS-Federation endpoint
of the identity provider. A cookie set in the redirect identifies the identity provider.
It is a persistent cookie that will allow the service provider to determine the
correct identity provider next time without having to prompt the user. The SSO
request shown here is being sent as a result of a redirect from the service
provider.

When the identity provider receives the SSO Request at its WS-Federation
endpoint, it will first authenticate the user (if they are currently unauthenticated).
It must have an authenticated session in order to process a single sign-on
request. The identity provider reads the SSO request from the service provider
and builds an appropriate SSO response message for that provider. This
message will include a security token that is valid for the service provider.
 Chapter 3. Tivoli Federated Identity Manager architecture 117

http://www-106.ibm.com/developerworks/library/ws-fedpass/

The SSO response (including the security token) is returned to the service
provider as a scripted post. The SSO message is sent to the client in the hidden
inputs of an HTML form. Scripting in the form causes it to automatically be
POSTed to the WS-Federation endpoint of the service provider. The service
provider validates the received security token and uses it to build an
authenticated session. It is then able to authorize the original request.

Figure 3-17 WS-Federation: Select ID Provider and SSO (Pull)

Push
Figure 3-18 on page 119 shows the protocol flow for a WS-Federation PULL
operation. The WS-Federation protocol really starts with the SSO Request
received from the client. However, it is useful to see what causes the SSO
request to be received, so this is also included.

It is unlikely that a user would manually type an SSO Request message into their
browser (although they could); it is much more likely that an identity provider will
include a link on their site that a user can select in order to access some service
provider resource (for example, For BigCorp you would see the message Click
here to book a hotel with our preferred partner RBTravel). Rather than
direct the user straight to the service provider (only for it to have to direct the user
back to perform SSO), this “special” link generates an SSO request to the
WS-Federation endpoint of the identity provider, which immediately triggers the
SSO exchange.

Service
Provider

Identity
Provider

Which Identity
Provider?

RedirectSSO Request

SSO Trigger

List of IdPs
Select Identity

Provider Selected IdP
Initiate
SSO

Cookie
SSO Request

SSO Response SSO Response
Generate

SSO Message Scripted POST

Validate
SSO MessageResponse

Authentication
if unauthenticated
118 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

This SSO request generated by the link has exactly the same format as the SSO
request that would have been received from the service provider had it
generated the SSO message (in a PULL operation). From here, processing is the
same as for a PULL operation. The identity provider generates the appropriate
security token for the service provider and sends to the service provider, via the
client, using a HTML Form.

Figure 3-18 WS-Federation: SSO (Push)

WS-Federation also supports Single Sign-out at both the SP and IdP.

3.3.6 InfoService
The InfoService is used to build a user interface reflecting the users’ defined
federations. If a portal has many services where users have the possibility to use
F-SSO then it is necessary to be able to present the choices in a relevant manor,
as not to confuse the users.

The Info Service provides an interface that can be used to determine a user’s
federations. This then allows customized and personalized Web pages, listing
the sites to which the user can SSO, and presenting the list of sites to which the
user can federate (and subsequently SSO). This can also be used to control the
presented interactions, such as when de-federation is presented as a possible
action (so that a user is not given the option of de-federating from a provider to
whom they have not federated in the first place).

Service
Provider

Identity
Provider

SSO Response SSO Response
Generate

SSO Message Scripted POST

Validate
SSO MessageResponse

SSO Request

Authentication

Page with SSO Link

User selects
SSO Link
 Chapter 3. Tivoli Federated Identity Manager architecture 119

Figure 3-19 Tivoli Federated Identity Manager InfoService access to the Management
Service

The InfoService makes Web services calls to the Management service to get this
information. See Figure 3-19.

For an example of how the InfoService is used see Chapter 3, “Tivoli Federated
Identity Manager architecture” on page 85.

3.3.7 Specified level view of F-SSO architecture
There are many ways to deploy a F-SSO solution. This pattern gives an attempt
to show how it could be accomplished.

The specified view for a IBM Tivoli FIM architecture for F-SSO is shown in
Figure 3-20 on page 121. A specified view describes the key nodes and the
connections between them.

TFIM Runtime ITFIM
Console

ITFIM Runtime

Trust
Service

Alias Service

LDAP User
Registry

ITFIM
Management

Service

Authorization Service

Resources

Point of Contact

Key Encryption
Signing ServiceSSO

Protocol
Service Trust Service

STS

InfoService SOAP over HTTP
120 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 3-20 Generic IBM Tivoli FIM specified level view of F-SSO

A more detailed look at F-SSO deployment is available in 4.1, “Federated SSO
architecture patterns” on page 136.

3.4 Web services security management
Web services security management functionality allows the establishment and
management of federation relationships for the active client scenario. In an
active client scenario, an active client, such as an application, is able to generate
a Web services request. This request can then be secured (encrypted and
signed) to provide message-level confidentiality and integrity. Web services
security management adds the ability for message-level authentication,
identification, and authorization, in the context of a federation relationship. Web
services security management also adds the benefits of the Tivoli Federated
Identity Manager trust service, including token services, identity services, and
key services.

Web services security management layers over existing WS-Security
functionality, providing a WS-Trust (standards-based) approach to the
management of security tokens used for authentication purposes within a
secured Web services request.

WebSEAL
Node

Access
Manager
Policy &

Authorization
Node

Enterprise
Systems

Node

Client
Node

Edge S
erver N

ode

Network
Intrusion
Detection

Node

DMZ Internal Network Zone Corporate Zone

.

Internet

Directory
Node

Web Portal
Node

P
rotocol Firew

all N
ode

Federated
Identity

Management
Node

D
om

ain Firew
all N

ode

E
nterprise Firew

all N
ode
 Chapter 3. Tivoli Federated Identity Manager architecture 121

Figure 3-21 Web services security: Components and communication

Figure 3-21 shows the communications and exchanges that take place at each
layer of Tivoli Federated Identity Manager when performing Web services
security management.

Note that no internal details are shown for the third-party side because their
architecture is not known (and not important). Integration is at a protocol level.

At the Communication layer, SOAP messages are being handled by the
application server, in this case WebSphere Application Server or WebSphere
Web services Gateway. All real communication is via the Web services handlers
in the application server. This component could just as easily be a third-party
vendor XML firewall or gateway that has the ability to act as a trust client to the
Tivoli Federated Identity Manager trust service.

At the Protocol layer, the WS-Security header in the SOAP request is handled by
the Tivoli Federated Identity Manager trust handler (or the third-party XML
FW/GW Trust Client). It must read the WS-Security headers sent by the
third-party solution (incoming) or include headers for the third-party solution
(outgoing).

At the Trust layer, security tokens are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated

Trust
Handler

Trust
Service

Application
Server

Web Services
Handler

WS-Security

Security Tokens

W
S

-T
ru

st

Authorization
Service

Key
Encryption

Signing Service

IBM or
3rd Party

standards-based
solution

SOAP

WS-Provisioning Provisioning
Service

Identity
Manager
Service
122 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Identity Manager, this layer is handled by the trust service. The trust service
exchanges security tokens with the third-party solution in the WS-Security
header of SOAP requests (as handled by the trust handler).

3.4.1 Architecture overview

Figure 3-22 Components for Web services security management

Figure 3-22 shows the components required for Web services security
management with Tivoli Federated Identity Manager.

The Tivoli Federated Identity Manager Web services Trust Client is called by the
application server Web services handler during processing of Web services
requests. This is triggered by entries in the application’s deployment descriptors.
The Trust Client builds a WS-Trust based request to the trust service based on
the information contained in the Web services request. The trust service will
validate existing security tokens and generate new security tokens as required.

In addition to validating incoming security tokens, the trust service may also
optionally invoke the authorization service. This authorization decision is used to
determine if the identity claimed (and mapped) from the incoming token is
allowed to invoke the requested Web services as defined by the WSDL abstract
binding.

Assuming the incoming security token is valid and the authorization is
successful, the Tivoli Federated Identity Manager Trust Client passes control

App Server

ITFIM
Console

ITFIM Runtime

Web
Service

App

LDAP User
Registry

ITFIM
Management

Service

Authorization Service

Key Encryption
Signing Service

ITFIM
Client

Web Services
Requests

Alias Service

Web
Services/XML

Point of
Contact

Trust Service
STS

Auth Service
 Chapter 3. Tivoli Federated Identity Manager architecture 123

back to the Web services handler. The Trust Client also passes back identity
information that is used to populate the subject associated with the request for
J2EE security within the application server.

Figure 3-23 Web service security management (WSSM): Solution architecture

Figure 3-23 shows a user at company A accessing a resource at company B via
a Web service request.

1. User at company A invokes a Web service using her local ID.

2. The edge of company A could be an XML/WS Firewall or Gateway or similar.
The general requirement for this node is to standardize outbound requests
such that they can be processed by the receiving company B. Its functionality
may include:

– Mapping of identity claimed in incoming locally valid ID to a token

– Mapping of local valid attributes such as groups/roles to agreed attributes

– Exchange of presented local valid token for a token format agreed in the
relationship to company B

3. Over the Internet a number of different technologies can be used to provide
message privacy and integrity (SSL, SOAP-Security, VPN tunnel, and so on)

4. Web services functionality at company B side will do authorization and
identity/attribute mapping as part of creating a local ID token to be added to
the request. The request invokes the backend application as a Web service or
as a local application (for example, J2EE or .NET)

InternetInternetW
eb Service

Firew
all or

G
atew

ay

Company A
User

Web Security
Server

•Identity Mapping
•Attribute Mapping
•Token Management
•Authorization Control

SOAP
Request

SOAP
Request

ITFIM/WSSM

•Identity Mapping
•Attribute Mapping
•Token Management
•Authorization Control

ITFIM/WSSM

Web Service
Application

local ID

Token

Token local ID

local ID

Token

W
eb S

ervice
A

pplication

local ID

local ID
124 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

To understand the Web services security management solution it is necessary to
explain WS-Security, WS-Trust, and the high-level functionality of a Web
services firewall/gateway component and the TFIM authorization service.

3.4.2 WS-Security
WS-Security is used to accomplish end-to-end message security.
Message-based security does not rely on secure transport because:

� The message itself is encrypted - message privacy
� The message itself is signed - message integrity
� The message contains user identity - proof of origin

Figure 3-24 Message-based security: End-to-end security

In Figure 3-24 end-to-end message security is illustrated. The lock on the SOAP
message is meant to imply that the SOAP message is inherently secure in and of
itself. The SOAP message can be transported in any way and its security is not
affected. The SOAP message could be sent as an e-mail attachment, carried on
a floppy-disk, and so on, and the properties of privacy, integrity, and proof of
origin are not affected.

In contrast, the security of a message that relies on transport security is exposed
when that transport security has gaps, as would occur when multiple SSL hops
are required to move the message from the origin to the ultimate receiver.

The gaps in the transport security may or may not be an issue, depending on the
trust assigned to the nodes that provide the transport compared to the trust
required for the message.

For more on the topic WS-Security and SOAP header extensions see 2.5.2,
“Web services security” on page 68.

HTTPS HTTPS

SOAP Message

Connection
Integrity/Privacy

Connection
Integrity/Privacy

?

 Chapter 3. Tivoli Federated Identity Manager architecture 125

The elements are defined in the OASIS standard “Web services Security: SOAP
Message Security 1.0” and provide the ability to achieve “message-based
security” for a SOAP message. That is, the message in and of itself is
tamper-proof and confidential.

3.4.3 Web services Gateway or Firewall
A Web services gateway or firewall is much the same as a HTTP Reverse proxy.
A WS Gateway enables the company to separate internal network topology from
the Internet, allowing for flexibility and abstraction.

Figure 3-25 Web services gateway: A reverse-proxy for Web services

Challenges that are addressed by the Web services Gateway are:

� Decouple deployment from invocation

Separate the actual implementation of a service from how another service
accesses it. These include:

– Process abstraction

The service invocation approach must be flexible enough to cope with
events such as switching frequently between external providers of a
similar service without requiring changes to the application.

– Flexibility

As a service provider, you need the flexibility of changing your deployment
infrastructure without notifying all the service requestors. Say a Web
service is deployed in a machine that later fails during operation. There

HTTP Reverse Proxy

HTTP
Server

HTTP
Client

end-user
(browser)

HTTP

HTTP Server

HTTPmapping

Web Services Gateway

Web
Service
Provider

Service
Requestor

Web Service
Requestor

SOAP

Web Service
Provider

SOAPmapping
126 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

needs to be a process to route the invocations to an alternate service in
your infrastructure.

� Protocol transformation

An enterprise may be using a specific messaging infrastructure within their
network to meet the business requirements. However, your partners and
customers may be using different protocols to invoke your Web service. You
need a mechanism to reconcile the different service invocations to match the
needs of the internal infrastructure.

For more details on the IBM Web Services Gateway see:

http://www.ibm.com/developerworks/webservices/library/ws-gateway/

The SOAP processing model assumes that messages can be relayed among
several intermediate SOAP nodes as it travels from the initial sender to the
ultimate receiver. The general idea is that, within an enterprise or value chain,
intermediaries can handle common aspects of SOAP message processing,
thereby leaving the initial sender and ultimate receiver to be concerned only with
the behavior required for a particular application.

The IBM Web Services Gateway is a SOAP processing engine that is focused on
the operation of the intermediaries in the SOAP chain. Typically, it does not act
as an ultimate receiver or as an initial sender of SOAP messages; rather, it is a
way point for SOAP messages with the capability to:

� Alter the destination of a message (routing).

� Handle custom header tag processing.

� Apply and remove message level security (WS-Security).

� Perform protocol transformation, for example, submit incoming SOAP/HTTP
messages to SOAP/JMS.

For details on Web services gateway see Chapter 4, “Deploying Tivoli Federated
Identity Manager” on page 135.

3.4.4 WS-Trust
The WS-Trust specification defines the interface used to manage the security
tokens defined by the WS-Security specification. The TFIM trust service interface
is defined by WS-Trust. It may be accessed by trust clients using either SOAP
requests or direct JAVA API calls. The trust client can be the one in Web
services security management, SPS, or a custom client, as long as it conforms to
the Tivoli Federated Identity Manager WS-Trust profile. This interface allows any
conferment Trust Client to request security tokens from the Tivoli Federated
Identity Manager trust service, where the trust service can provide the
 Chapter 3. Tivoli Federated Identity Manager architecture 127

http://www.projectliberty.org/

appropriate token translation, identity translation, and request authorization as
part of its token functionality. For more on the trust service see 3.2.3, “Trust
services” on page 92.

3.4.5 Authorization services (AS)
When used within the context of Web services security management, the trust
service can be configured with authorization services. The authorization services
may be used to determine if a user (as validated and identified by the trust
service) is authorized to access requested resources. This allows an
implementation-independent decision on the access of a Web service; that is, it
does not matter if the Web service exposes a J2EE-based resource, a CICS
resource, or some other proprietary resource.

3.4.6 Web services security management architecture approach
There are many ways to deploy a Web services security management solution.
This view gives an attempt to show how it could be accomplished using Tivoli
Federated Identity Manager based nodes, using a Web service gateway. The
selected nodes and their connections are represented to illustrate their place
meant in the logical network zones.

Figure 3-26 Specified level view of Web services security management

A more detailed look at Web services security management deployment is
available in In 4.2, “Federated Web services architecture patterns” on page 151.

Application
Server
Node

Access
Manager
Policy &

Authorization
Node

Integration
Hub

Node

Enterprise
Systems

Node

Database
Server
Node

External
Systems

Node

Network
Intrusion
Detection

Node

DMZ Internal Network Zone Corporate Zone

.

Web Services
Gateway

Node

Internet
Directory

Node

Enterprise Firew
all N

ode

Protocol Firew
all N

ode

Federated
Identity

Management
Node

D
om

ain Firew
all N

ode
128 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

3.5 Provisioning services
Provisioning services are used within a federated environment for both a priori
and run-time provisioning solutions, as described in 2.6, “Federated identity
provisioning” on page 70. Provisioning services interact with both local identity
management systems (such as Tivoli Identity Manager) and local data stores
(access via identity services). Provisioning services are leveraged to federate
local identity management systems across federation business partners and to
provide federated management of identity data, including transactional and
profile attributes; see 2.2.5, “Identity attributes” on page 45.

There are few widely accepted standards for provisioning. The most important
effort to date is probably the work done by the Provisioning Service Technical
Committee (PSTC) at OASIS. The PSTC has defined a set of use cases that
reflect the operational requirements of a provisioning system. WS-Provisioning is
compatible with those use cases.

WS-Provisioning describes the APIs and schemas necessary to facilitate
interoperability between provisioning systems and to allow software vendors to
provide provisioning facilities in a consistent way. The specification addresses
many of the problems faced by provisioning vendors in their use of existing
protocols, commonly based on directory concepts, and confronts the challenges
involved in provisioning Web services described using WSDL and XML Schema.

The specification defines a model for the primary entities and operations
common to provisioning systems including the provisioning and de-provisioning
of resources, retrieval of target data and target schema information, and provides
a mechanism to describe and control the life cycle of provisioned state.
 Chapter 3. Tivoli Federated Identity Manager architecture 129

Figure 3-27 Web services provisioning: Components and communication

Figure 3-27 shows the communications and exchanges that take place at each
layer of Tivoli Federated Identity Manager when performing Web services
provisioning.

Note that no internal details are shown for the third-party side because their
architecture is not known (and not important). Integration is at a protocol level.

At the Communication layer, SOAP messages are being handled by the
application server, in this case WebSphere Application Server or WebSphere
Web services Gateway. All real communication is via the Web services handlers
in the application server.

At the Protocol layer, the WS-Security header in the SOAP request is handled by
the Tivoli Federated Identity Manager trust handler. It must read the WS-Security
headers sent by the third-party solution (incoming) or include headers for the
third-party solution (outgoing).

At the Trust layer, security tokens are being exchanged between Tivoli
Federated Identity Manager and the third-party solution. In Tivoli Federated
Identity Manager, this layer is handled by the trust service. The trust service
exchanges security tokens with the third-party solution in the WS-Security
header of SOAP requests (as handled by the trust handler).

Trust
Handler

Trust
Service

Application
Server

Web Services
Handler

WS-Security

Security Tokens

W
S

-T
ru

st

Authorization
Service

Key
Encryption

Signing Service

IBM or
3rd Party

standards-based
solution

SOAP

WS-Provisioning Provisioning
Service

Identity
Manager
Service
130 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

SOAP Security is used to protect WS-Provisioning messages, and the
provisioning service acts as a secured Web service, accessing the IBM Tivoli
Director Integrator in the back-end.

3.5.1 Architecture overview
Figure 3-28 shows the components required in order to implement secure,
cross-enterprise provisioning using Tivoli Federated Identity Manager.

Figure 3-28 Components for federated user provisioning

It is important to note here that many of the components shown here are the
same as required to secure any Web service. The provisioning service is just
another Web service in that respect.

The only components specifically related to provisioning are the provisioning
service itself and Identity Management Service, which is the enterprise Identity
Management Service, in this case the IBM Tivoli Directory Integrator (ITDI), but it
could also be a bespoke identity provisioning capability. The Tivoli Federated
Identity Manager Alias Service and LDAP registry are also needed if provisioning
for Liberty single sign-on with account linkage.

WS-Provisioning messages are received by the application server Web services
handler, in this case the WebSphere Services handler, and are authorized using
Tivoli Federated Identity Manager and authorization service, here Tivoli Access
Manager. If authorized, the request is passed on to the Tivoli Federated Identity

App Server

ITFIM
Console

ITFIM Runtime

ITFIM
Provisioning

Service

LDAP User
Registry

ITFIM
Management

Service

Authorization Service

Identity
Management

Service

Key Encryption
Signing Service

ITFIM
Trust Client

WS-Provisioning
Messages

Alias Service

Trust Service
STS

Auth Service

Web
Services/XML

Point of Contact
 Chapter 3. Tivoli Federated Identity Manager architecture 131

Manager provisioning service. The provisioning service validates the request and
then passes it on to ITDI. An ITDI assembly line extracts the identity information
from the provisioning request and handles as appropriate. If the request is to
provision a local account for Liberty SSO then the Alias Service is called to
associate the newly created user with the received Liberty alias.

Although the diagram above shows ITDI interfacing directly to the LDAP user
registry, this is just an example. ITDI could be configured to interface with any
supported endpoint including IBM Tivoli Identity Manager.

Figure 3-29 Federated provisioning - Overview

Figure 3-29 provides an overview of the WS-Provisioning support provided in
Federated Identity Manager. The Tivoli Federated Identity Manager components
are:

� The Tivoli Federated Identity Manager WS-Provisioning Web service that
runs on WebSphere Application Server 6.0

� The Tivoli Federated Identity Manager WS-Provisioning Connector that runs
on IBM Tivoli Directory Integrator

Both of these provide a full implementation of the three interfaces defined by the
WS-Provisioning standard.

Enterprise
Provisioning

ITFIM
WS-Provisioning

WebSphere

Directory Integrator

Assembly Line

Local
Provision

Trigger

W
S-

Pr
ov

is
io

ni
ng

Identity Provider Service Provider

ITFIM
WS-Provisioning

WebSphere

Directory Integrator

Assembly Line

W
S-

Pr
ov

is
io

ni
ng

WS-Provisioning

1

2

3

4

5

7

Secure SOAP
Message with

Token

ITFIM
WS-P

Connector
6

SAML
132 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

A provisioning event is sent from the identity provider to the service provider via
this sequence:

1. Some type of provisioning trigger at the IP initiates a Tivoli Directory
Integrator assembly line. Tivoli Directory Integrator provides several
mechanisms to start an assembly line. The creation of a new entry in an
LDAP directory is detected by a monitoring agent, a DSMLv2 request from
IBM Tivoli Identity Manager, or another enterprise provisioning service, and
so on.

2. The Tivoli Directory Integrator assembly line collects data to form a
WS-Provisioning message. The assembly line can use any of the standard
Tivoli Directory Integrator facilities for this including the many standard Tivoli
Directory Integrator connectors.

3. The Tivoli Federated Identity Manager WS-Provisioning Connector sends a
WS-Provisioning message to the Tivoli Federated Identity Manager
WS-Provisioning Service.

4. The Tivoli Federated Identity Manager WS-Provisioning Service uses the
Tivoli Federated Identity Manager Trust Server to create a SAML token for a
configured identity and uses the WebSphere SOAP Security support to
forward the WS-Provisioning message to the target service provider.

5. The Tivoli Federated Identity Manager WS-Provisioning Service on the SP
receives the message and forwards it to a configured WS-Provisioning
Connector on a local Tivoli Directory Integrator. This Tivoli Federated Identity
Manager WS-Provisioning Service may be configured to use Tivoli Federated
Identity Manager Web services security management for identity validation
and request authorization with Tivoli Access Manager.

6. The Tivoli Federated Identity Manager WS-Provisioning Tivoli Directory
Integrator Connector receives the WS-Provisioning message and starts a
configured Tivoli Directory Integrator assembly line.

7. The Tivoli Directory Integrator assembly line on the SP collects whatever
local data is required and initiates local provisioning, using an enterprise
provisioning system such IBM Tivoli Identity Manager if necessary.

Note that the WS-Provisioning messages sent between Tivoli Directory
Integrator and Tivoli Federated Identity Manager do not include SOAP Security
headers because they are assumed to be in a trusted environment. The
WS-Provisioning messages from Tivoli Federated Identity Manager-to-Tivoli
Federated Identity Manager do use the SOAP Security support of WebSphere.
 Chapter 3. Tivoli Federated Identity Manager architecture 133

3.5.2 Provisioning architecture approach
There are many ways to deploy a provisioning solution. This view gives an
attempt to show how it could be accomplished leveraging Web services security
management.

Figure 3-30 Generic IBM Tivoli FIM specified level view of provisioning

3.6 Conclusion
At the beginning of this chapter we discussed the federated identity management
functionality and how that functionality consists of a set of services. Then we
described three solution area (F-SSO, Web services security management, and
provisioning) studying functional details within each solution area.

The focus of the chapter was to give a description of how the Tivoli Federated
Identity Manager solution is implemented to meet the overall FIM challenge. We
discussed how the Tivoli Federated Identity Manager solution is built around the
trust infrastructure implemented by the trust service. Single sign-on services
provide the implementation of federation protocols, and also the interface
between the point of contact (PoC) and the trust service.

Provisioning
Node

Access
Manager
Policy &

Authorization
Node

External
Provisioning

Node

Network
Intrusion
Detection

Node

DMZ Internal Network Zone Corporate Zone

.

Web Services
Gateway

Node

Internet

Directory
Node

E
nterprise Firew

all N
ode

P
rotocol Firew

all N
ode

Federated
Identity

Management
Node

D
om

ain Firew
all N

ode

Identity
Management

Node
134 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 4. Deploying Tivoli Federated
Identity Manager

This chapter describes architecture options for deploying Tivoli Federated
Identity Manager, approaches for integrating Tivoli Federated Identity Manager
with other middleware and customer applications, and several important issues
relating to deploying Tivoli Federated Identity Manager in a production
environment.

4

© Copyright IBM Corp. 2004, 2005. All rights reserved. 135

4.1 Federated SSO architecture patterns
Tivoli Federated Identity Manager is a flexible product that provides a federated
identity management solution for both browser-based single sign-on and Web
services environments. As there are many different examples of environments
that require a federation solution, there are many different ways that Tivoli
Federated Identity Manager can be deployed. We can represent the deployment
of Tivoli Federated Identity Manager with several typical deployment/architecture
patterns. In this section, we describe the most patterns from which
customer-specific deployments can be generated.

4.1.1 Architecture approach
Tivoli Federated Identity Manager’s federated single sign-on (F-SSO) solution
enables the single sign-on of a user in a cross-Enterprise, or cross-domain,
scenario. Tivoli Federated Identity Manager’s F-SSO functionality does not
replace an Enterprise’s existing authentication and session management
services, nor any of the sign-on functionality they provide to the Enterprise’s
applications. Tivoli Federated Identity Manager’s F-SSO solution handles SSO to
an edge-based point of contact component. This is based on the underlying
principal that because Tivoli Federated Identity Manager does not replace
existing session management functionality, it should not directly provide single
sign-on to individual applications within an Enterprise (Enterprise single sign-on).

An architectural model based on a (scalable, available, performant) point of
contact provides many security benefits, including the ability to control all access
to an environment, closing off “back doors” that allow unauthorized users to
access an Enterprise’s environment. Typically, an edge component, such as
Access Manager for e-business, acts as a point of contact and is used to provide
single sign-on from Tivoli Access Manager for e-business (where the user’s
authentication credentials are collected and evaluated) to individual backend
applications. This functionality remains unchanged by the addition of a Tivoli
Federated Identity Manager solution.
136 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 4-1 Linking SSO domains with Federated SSO protocols

This architectural approach to Federated SSO provides the following
advantages:

� Little or no changes are required to Enterprise applications.
� Lightweight SSO within a domain.
� Support for identity provider applications.
� Able to leverage existing Tivoli Access Manager for e-business infrastructure.

Little/no change to applications
Many toolkit-based offerings for Federated SSO require fairly intrusive
modifications to the applications to call the (proprietary) product APIs required to
implement Federated SSO. These toolkit approaches are typically marketed as
lightweight approaches; however, in terms of total project costs and maintenance
costs, they are often more expensive than middleware solutions (such as Tivoli
Federated Identity Manager), even for small-to-medium size deployments. These
so-called lightweight solutions can be even more expensive if an environment
does not have existing session management functionality; many federation
solutions assume that this type of functionality exists and can be leveraged as
part of an F-SSO solution for single sign-on and single (federated) logoff.

The Tivoli Federated Identity Manager approach leverages Access Manager for
e-business's ability to provide SSO to an application with few or no changes to
the application. For those applications that use underlying middleware
functionality to manage authentication, the middleware container can usually be
configured to accept the user identity from Access Manager for e-business
without any changes to the applications using the authentication data. For

TAMeB
SSO Domain

Federated Single Sign-On Standards

TAMeB
SSO Domain

Third-party
SSO Domain

TAMeB
SSO Domain

TAMeB
SSO Domain

Third-party
SSO Domain

Identity
Providers

Service
Providers

TAMeB – Tivoli Access Manager for eBusiness
 Chapter 4. Deploying Tivoli Federated Identity Manager 137

example, the IBM WebSphere Application Server provides a feature called a
Trust Association Interceptor (TAI) to accept a user ID from an HTTP header
variable and create a login context for that user. Most other middleware products
have similar functionality. For those applications that implement their own
custom authentication logic, a small change to the login module to accept the
user identity from a HTTP header variable, rather than prompting the user for a
user ID and password, is typically fairly straightforward to code and test.

The Tivoli Federated Identity Manager approach provides a loose coupling
between the application and the Federated SSO functionality and avoids the use
of proprietary APIs.

Lightweight SSO within a domain
The digital signing and validation of XML-based assertions, such as those used
in the Federated SSO protocols, involve encryption and decryption using
relatively long asymmetric keys. Such operations incur a fair degree of
computational overhead. This computational overhead is required (and thus
accepted) as part of the proof of a trust relationship governing federated single
sign-on. The trust relationship between a point of contact (for example, Access
Manager for e-business) and back-end protected applications does not normally
require techniques that are as costly. For example, these internal trust
relationships can be based on techniques such as mutually authenticated SSL or
known internal IP addresses.

By using a lightweight SSO technique between Access Manager for e-business
and the (possibly hundreds of) protected applications within an Enterprise, this
overhead is only incurred where it is needed—in those cases where we need to
provide SSO from one domain/organization to another. The Tivoli Federated
Identity Manager approach therefore provides a more efficient and scalable
architecture and a more responsive user experience when working with multiple
applications within a domain.

Support for identity provider applications
Even for pure identity provider deployments (no local services/protected
resources are made available to the user), there are often self-care and portal
applications associated with the identity provider’s identity management
functionality. The use of Access Manager for e-business to provide the point of
contact for the identity provider leverages the (lightweight) SSO facilities of
Access Manager for e-business to access the identity provider applications
without incurring the overhead of running and accessing a separate service
provider site for those applications.
138 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Leverage existing Access Manager infrastructure
For those customers who have already deployed a Access Manager for
e-business SSO infrastructure, upgrading it to provide Federated SSO
functionality is a relatively straightforward exercise. Moreover, in most cases the
applications will not require any modification, thereby significantly reducing the
time and costs needed to deploy the Federated SSO functionality.

4.1.2 Base pattern
The Base architecture pattern for deploying Tivoli Federated Identity Manager for
Federated SSO uses the reverse proxy component of Access Manager for
e-business (WebSEAL) to provide the point of contact for Tivoli Federated
Identity Manager, namely authentication (at the identity provider side) and
session management (for both an identity provider and service provider
deployment). In this Base pattern, all users who use the Federated SSO
functionality are individually defined in the Access Manager for e-business user
registry2.

On the identity provider side of a federation, Access Manager for e-business
(WebSEAL) manages the local user authentication process, using any of its
supported authentication mechanisms. WebSEAL manages the user’s session,
including (optionally) brokering access to the identity provider’s protected
applications based on Access Manager for e-business managed access control
policies. Note that these policies can be as simple as access is allowed based on
successful authentication, to more complex, such as access is allowed (or
disallowed) based on a user’s group membership, roles, or other attributes
(entitlements).

If a user requests single-sign-on (or has it requested on their behalf by a service
provider partner), Access Manager for e-business will pass control to the Tivoli
Federated Identity Manager server. Note that Tivoli Federated Identity Manager
itself, and the single sign-on functionality, can be access controlled by Access
Manager for e-business. This has the effect of allowing a customer (in a more
advanced deployment) to provider single sign-on functionality to a subset of its
users. Included with this request to Tivoli Federated Identity Manager will be the
user’s local (Access Manager for e-business based) identity. The Tivoli
Federated Identity Manager server will use this identity for the building of the
assertion provided as part of a single sign-on response.

2 While this discussion focuses on the use of the Access Manager for e-business reverse proxy
(WebSEAL), it is equally possible to provide point of contact functionality using the Access Manager
for e-business Web server plug-in. The plug-in approach is described in the next section.
 Chapter 4. Deploying Tivoli Federated Identity Manager 139

Figure 4-2 Base pattern for identity provider

For a service provider configuration, Access Manager for e-business (WebSEAL)
is configured to allow unauthenticated access to the Tivoli Federated Identity
Manager application, namely the login endpoint associated with the federation.
Once Tivoli Federated Identity Manager has successfully validated and
processed the incoming SSO message, it creates an Access Manager for
e-business credential and passes it back to the WebSEAL server via the Access
Manager for e-business External Authentication Interface (EAI). This allows
WebSEAL to establish and manage an authenticated session for the user. See
Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363, for a description of the External Authentication Interface of Access
Manager for e-business.

`

Service
Providers

User’s Browser TAM eB
W ebSEAL

Protocol
Firewall

Domain
Firewall

Identity
Provider

Applications
Identity
Provider

Applications

ITFIM
Runtime
Service

Identity Provider

ITFIM
Management

Service

Adm inistrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
AuthorizationServe

r

User
Registry

userid

ITFIM – IBM Tivoli Federated Identity Manager
140 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 4-3 Base pattern for service provider

Several Federated SSO protocols include SOAP-based profiles. These profiles
are used to retrieve information from a back-channel (directly between the
identity provider and the service provider, without redirection via the user’s
browser). This back-channel communication is (confidentiality) protected through
the use of SSL. The SOAP traffic is sent over SSL and Tivoli Federated Identity
Manager will validate the (SSL) X.509 server certificate presented by the server
hosting the SOAP endpoint.

The use of SSL does not provide authentication of the requestor (initiating the
SOAP request). Additional techniques are required for authentication purposes:

� Rely on message level authentication.
� Rely on channel level authentication.

As message level authentication provides no additional burden on the Tivoli
Federated Identity Manager servers, the Tivoli Federated Identity Manager
SOAP endpoint is configured to use the same set of replicated WebSEAL
servers as the login endpoint.

When additional channel-level authentication is required, mutually authenticated
SSL techniques are required. The service provider presents an X.509 client
certificate to the identity provider during the establishment of the SOAP
connection. This allows a mutually authenticated SSL session to provide both

`

Identity
Providers

User’s Browser TAMeB
WebSEAL

Protocol
Firewall

Domain
Firewall

Identity
Provider

Applications

Service
Provider

Applications

ITFIM
Runtime
Service

Service Provider

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

EAI Hdrs
 Chapter 4. Deploying Tivoli Federated Identity Manager 141

authentication of the service provider and protection of communications in
transit.

When a mutually authenticated SSL type solution is required, a dedicated set of
replicated WebSEAL servers is required at the identity provider. These
WebSEAL servers listen on a different IP address and/or different port than the
main set of WebSEAL servers yet are junctioned to the same Tivoli Federated
Identity Manager servers as the main set of WebSEAL servers. These additional
servers are configured to request and validate an X.509 client certificate as part
of the HTTPS session establishment. These extra WebSEALs are then governed
by a different trust relationship from the typical HTML/HTTP serving WebSEALs.
In particular, these SOAP-accessible WebSEALs can provide a stronger trust
relationship between the identity provider and service provider.

Figure 4-4 Base pattern for identity provider with SOAP Backchannel

4.1.3 Plug-in pattern
The Base pattern for Federated SSO can be modified to use the Access
Manager for e-business Plug-ins rather than Access Manager for e-business
WebSEAL as the point-of-contact server for an Tivoli Federated Identity
Manager deployment. From a Tivoli Federated Identity Manager implementation
perspective, there is little difference in using WebSEAL versus the plug-ins, as
the required Access Manager for e-business functionality exists in both options.

`

Service
Providers

User’s Browser

TAMeB
WebSEAL
(for SOAP)Protocol

Firewall
Domain
Firewall

Identity
Provider

Applications

Identity
Provider

Applications

ITFIM
Runtime
Service

Identity Provider

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

userid
TAMeB

WebSEAL
142 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

In this design pattern, the Access Manager for e-business Web Plug-in is
configured into the Web server acting as a proxy for the WebSphere Application
Server hosting the Tivoli Federated Identity Manager services. Access Manager
for e-business-based SSO will be provided to any application running in the
same application server as Tivoli Federated Identity Manager. With Access
Manager for e-business 5.1, SSO to applications running on application servers
in the same DNS domain can be implemented, but it requires use of a domain
cookie and a Access Manager for e-business plug-in must be installed in the
Web server associated with the other application servers.

Figure 4-5 Plug-in pattern

Domain cookies are not generally considered ideal from a security perspective.
Moreover, plug-in management can soon become problematic with even a small
number of applications. So the Base pattern is recommended in all cases where
Tivoli Federated Identity Manager will be used with more than one application.

4.1.4 Lightweight Access Manager for e-business pattern
In certain cases, Tivoli Federated Identity Manager can be deployed using a
lightweight pattern for Federated SSO. In this pattern, Access Manager for
e-business is leveraged for its session management capabilities only. Individual
users are not stored in the Access Manager for e-business user registry and
Access Manager for e-business related user management is largely done away
with. Instead, the Access Manager for e-business user registry contains either a

Web
Server`

Identity/
Service

Providers

User’s Browser TAMeB
Web Plug-in

Protocol
Firewall

Domain
Firewall

Identity
Provider

ApplicationsApplicaitons

ITFIM
Runtime
Service

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

WebSphere
Plug-in
 Chapter 4. Deploying Tivoli Federated Identity Manager 143

single guest user ID or several role-based identities, with the identity mapping
features of Tivoli Federated Identity Manager used to map to/from real user
identities as required.

Since the standard Tivoli Federated Identity Manager Alias Service uses Access
Manager for e-business UUIDs to identify which user is associated with a
particular alias, the Lightweight Access Manager for e-business pattern cannot
be used in cases where the standard Tivoli Federated Identity Manager Alias
Service is being used. For example, standard Liberty account linking based
Federated SSO cannot be used with this pattern; however, Liberty one-time use
name identifier based Federated SSO can be deployed using this pattern.

For purposes of our discussion, we will base the description of the Lightweight
Access Manager for e-business pattern on the Base pattern for Federated SSO,
where Access Manager for e-business WebSEAL provides the point of contact
services; however, the Plug-in pattern can also be adapted to use a lightweight
Access Manager for e-business deployment in a similar manner. We will discuss
the Lightweight Access Manager for e-business pattern form both the identity
provider and service provider perspectives, but there is no requirement to use
Tivoli Federated Identity Manager on both sides of the federation as part of this
pattern. This pattern can be deployed independently on the identity provider or
service provider side of a federation, or both sides if desired.

On the identity provider side, the key to the Lightweight Access Manager for
e-business pattern is the use of the External Authentication Interface (EAI)
feature of Access Manager for e-business; refer to Appendix A, “Configuring
Access Manager WebSEAL and Web plug-in” on page 363, for a description of
the interface.

Example
Figure 4-6 on page 145 illustrates a sample lightweight deployment of Tivoli
Federated Identity Manager and Access Manager for e-business. In this
lightweight deployment, a user is authenticated against an Enterprise directory
but does not exist as an Access Manager for e-business user within the Access
Manager for e-business registry. This is significant, because a user is (normally)
required to exist within the Access Manager for e-business registry to allow
Access Manager for e-business to build a local credential for the user. Recall that
this credential is in turn used as part of the overall session management
functionality provided by Access Manager for e-business and so this credential is
an integral part of Access Manager for e-business functionality.

In this lightweight deployment, authentication is implemented through a custom
login application. The Access Manager for e-business WebSEAL login page is
redirected to this custom login application (Access Manager for e-business
access control policy is defined such that this custom login application, and any
144 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

images uses, are accessible by unauthenticated users). The custom login
application displays a login page to the user and validates the user credentials
entered by the user, using whatever method is appropriate for the particular
deployment. In our example, the custom login application validates the user ID
and password entered by the user against a custom user registry. The custom
login application is also responsible for handling any errors in login credentials
entered by the user.

Once the login application has successfully authenticated the user, it sets
several EAI-specific HTTP header variables on the reply to the user (via
WebSEAL). WebSEAL intercepts the reply containing the EAI headers and uses
the values of the HTTP header fields to create an Access Manager for
e-business credential for the user. This Access Manager for e-business
credential will be created for a guest user, and will include the user-specific
information (user name, e-mail, and/or other attribute) as tag-value information.
In our example, we pass the real user ID and associated e-mail address via
HTTP headers from the custom login application.

When Tivoli Federated Identity Manager is invoked as part of the fulfillment of a
single sign-on request, the user will be identified to Tivoli Federated Identity
Manager as a guest user with these additional attributes. Tivoli Federated
Identity Manager will then use an XSL rule to map these attributes from the
(guest user based) Access Manager for e-business credential to the SAML
assertion required for single sign-on.

Figure 4-6 Example attribute flow for Lightweight pattern for identity provider

On the service provider side, the subject and attribute data contained in the
incoming SAML assertion are used as input to setting HTTP header variables
passed to the service provider applications, with Access Manager for e-business
WebSEAL used as the link for passing this data from Tivoli Federated Identity
Manager to the applications. The XSL rule used to map attributes from the
incoming SAML assertion to Access Manager for e-business credential attributes
is written such that it maps all users to a single guest user ID in Access Manager

`

U s e r ’s B ro w s e r

T A M e B
W e b S E A L

C u s to m
L o g in

A p p lic a tio n

e m p 1 |
e m p 1 @ b ig c o rp .c o m

C u s to m U s e r R e g is try

g u e s t

T A M e B U s e r R e g is t ry

g u e s t

e m p 1

e m p 1 @ b ig c o rp .c o m

T A M e B C re d e n t ia l

X S L R u le

e m p 1

e m p 1 @ b ig c o rp .c o m

IT F IM

S e rv ic e
P ro v id e r

E A I

R e d ire c t
L o g in p a g e

IT F IM
 Chapter 4. Deploying Tivoli Federated Identity Manager 145

for e-business. The Access Manager for e-business user registry only contains
this guest user ID; it does not contain entries for each user identity that may be
contained in an incoming SAML assertion.

In our example, we map the SAML subject and attribute to extended attributes in
the Access Manager for e-business credential (via the XSL rule executed by
Tivoli Federated Identity Manager). Access Manager for e-business WebSEAL is
configured to pass these extended attributes to the back-end applications via
HTTP header variables. Note that Access Manager for e-business allows
different variables to be set for each junction.

Figure 4-7 Example attribute flow for Lightweight pattern for service provider

This example could be extended to use a set of role-based identities in Access
Manager for e-business, rather than a single guest user ID for all users. Logic
would need to be added to the XSL rule, or Java code invoked from the XSL rule,
in Tivoli Federated Identity Manager to implement the required mapping model.
For example, instead of mapping all users to a single guest user ID, users can be
mapped to one of many role-based identities, such as buyer, seller, agent, or
manager, based on the attributes included in the single sign-on provided
assertion.

We have described this architecture option as a separate pattern; however, it can
co-exist with either the Base pattern or the Plug-in pattern.

XSL Rule

emp1

emp1@bigcorp.com

Identity
Provider

guest

emp1

emp1@bigcorp.com

TAMeB Credential

TAMeB
WebSEALguest

TAMeB User Registry

EAI

Service
Provider

Application

Service
Provider

Application

Custom
User Registry

emp1@bigcor
p.comemp1

Custom
User Registry

emp1 emp1@bigcorp.com

ITFIM
ITFIM
146 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

4.1.5 Highly available architecture patterns
Any of the Federated SSO architecture patterns for Tivoli Federated Identity
Manager described thus far can be extended for higher performance and
availability via clustering techniques. Tivoli Federated Identity Manager fully
supports a replicated Access Manager for e-business and Directory Server
infrastructure. When replicated WebSEAL servers are part of a deployment
architecture, Access Manager for e-business 5.1 requires an SSL-aware load
balancer in front of these servers to load balance and provide fail-over for
incoming requests. This load balancer needs to be configured to provide sticky
sessions, such that all requests from a particular browser session will be routed
to the same WebSEAL server instance. Multiple copies of the Tivoli Federated
Identity Manager Management Console can be installed into an environment,
and each console instance can manage multiple domains.

As a WebSphere Application Server based J2EE application, Tivoli Federated
Identity Manager high availability is provided by clustering the underlying
WebSphere Application Servers. When Tivoli Federated Identity Manager is
deployed into a WebSphere Application Server (Version 6) cluster, the Tivoli
Federated Identity Manager Management Service is installed into the
Deployment Manager node. The Tivoli Federated Identity Manager Management
Console is then used to deploy and remotely configure the Tivoli Federated
Identity Manager Runtime applications into the managed nodes in the cluster. A
set of Web servers is typically deployed between WebSEAL and the clustered
WebSphere Application Servers to manage load balancing and failover.
 Chapter 4. Deploying Tivoli Federated Identity Manager 147

Figure 4-8 Clustered Base pattern

Tivoli Federated Identity Manager uses the shared configuration repository
functionality of WebSphere Application Server 6 to manage its configuration data
within a cluster. All changes made to the Tivoli Federated Identity Manager
configuration using the Tivoli Federated Identity Manager Management Console
are performed on the master configuration managed by the Tivoli Federated
Identity Manager Management Service (running on the Deployment Manager
node). Once all the changes are complete, the Tivoli Federated Identity Manager
Management Console initiates a re-synchronization of the configuration
repository data across all of the Tivoli Federated Identity Manager Runtime
nodes in the cluster. Both clustered and non-clustered deployments of Tivoli
Federated Identity Manager require the Tivoli Federated Identity Manager
Runtime application to be stopped and restarted in order for the configuration
changes to come into effect. In a clustered deployment, a ripple restart can be
used to stop and restart each of the Tivoli Federated Identity Manager Runtime
servers in turn, so as to keep the overall service available during the restart
operation.

All Tivoli Federated Identity Manager Runtime nodes in a cluster use a shared
session state, which is implemented using the DynaCache feature of WebSphere
Application Server 6. This shared session state includes the assertion table for
Browser Artifact profiles and contains sufficient information such that any of the
nodes in the cluster can perform any operation. There is no need to ensure that
subsequent operations for a particular Federated SSO session are directed to

Applications

TAMeB
WebSEAL

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

IBM
Integrated
Solutions
Console

ITFIM
Runtime
Service

Web
Server
Web

Server

`

Identity/
Service

Providers

User’s Browser

Protocol
Firewall

Domain
Firewall

Applications

ITFIM
Runtime
Service

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

WebSphere
Plug-in

TAMeB
WebSEAL

Load
Balancer
148 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

the same instance of Tivoli Federated Identity Manager Runtime. For example,
one Tivoli Federated Identity Manager Runtime node may perform a Federated
SSO operation, but any of the nodes in the cluster have access to the session
state information required to successfully perform a subsequent Single Logout
operation for that session.

4.1.6 Multiple data center patterns
The clustered patterns for Federated SSO with Tivoli Federated Identity Manager
can be further extended to include multiple, geographically distributed, data
centers. Advice from senior WebSphere technical specialists indicates that it is
not advisable to cluster WebSphere Application Server across a Wide Area
Network (WAN), unless the throughput and latency of the link between the data
centers is comparable to that provided by a Local Area Network (LAN). We
therefore need to cater to the multiple data centers at the Tivoli Federated
Identity Manager configuration layer.

The basic principle is that we configure each of the data centers as an
independent identity/service provider in each federation they participate in. A
WAN-based load balancing solution is required to handle load balancing and
fail-over across the data centers. This WAN-based solution must be sticky in that
it will send subsequent requests from the same browser session to the same
data center.

The exact Tivoli Federated Identity Manager configuration details will differ
depending on which Federated SSO protocol and associated profiles that you
are using and whether you are hosting an identity provider or service provider.
The different protocol solutions will run on the same Tivoli Federated Identity
Manager infrastructure and may co-exist with other federations. It is only the
federation configuration details that differ for each type of federation and role
within the federation. All configuration and customizing of Tivoli Federated
Identity Manager will need to be done independently at each data center; there is
no shared configuration or session state across the data centers.

SAML 1.0
The configuration for SAML 1.0 depends on whether or not you are using the
Browser Artifact profile for Federated SSO.

Browser Artifact Profile
If you are deploying the identity provider side of the Browser Artifact profile of
SAML 1.0, we cannot solely rely on the stickiness of the WAN-based load
balancing solution, as the Browser Artifact profile includes SOAP-based
communication directly from the service provider to the identity provider. We
therefore need to define a separate identity provider for each data center. The
 Chapter 4. Deploying Tivoli Federated Identity Manager 149

configuration at each data center will use different provider ids and endpoint
URLs even though they are logically performing the same role in the same
federation. These provider id and URL endpoint values will use a logical host
name that is unique to the data center. Service providers in the federation,
regardless of whether they are implemented using Tivoli Federated Identity
Manager, will define a distinct identity provider for each data center.

Requests initiated from the browser to the identity provider (for example, via a
SSO link from a browser page) can use the logical host name that the
WAN-based load balancing solution has been configured to balance across the
data centers. The stickiness of the solution will ensure that subsequent requests
after a Federated SSO operation will return to the same data center, and
therefore be executed within the session state shared between the nodes at that
data center. Note that with Access Manager for e-business 5.1 a WebSEAL
server can only contain a single X.509 server certificate (which includes the
logical host name), using the shared logical host name in some cases and the
unique logical host name in other cases, will require a separate set of WebSEAL
servers (junctioned to the same set of Tivoli Federated Identity Manager servers)
at each data center for each logical host name so as to avoid browser warnings
relating to an incorrect host name in the server certificate presented by the
WebSEAL server.

With SAML 1.0, the service provider does not receive any inbound SOAP-based
communication, so we can configure all of the data centers with the same
configuration. The provider id and URL endpoints will use the logical host name
that the WAN-based load balancing solution has been configured to balance
across the data centers.

Browser POST Profile
If you are not using the Browser Artifact profile, you can either use the
configuration described above for the Browser Artifact profile, or you can choose
to use a simpler configuration.

Since the Browser POST profile of SAML 1.0 does not include any SOAP based
communication between the identity provider and service provider, we can use
the stickiness of the WAN-based load balancing solution to ensure that all
(HTTP) requests initiated from, or redirected through, a particular browser
session will be sent to the same data centers.

Under this scenario, the same configuration can be used at each data center for
an identity provider or service provider. The provider id and URL endpoints will
use the logical host name that the WAN-based load balancing solution has been
configured to balance across the data centers. It is important here that the Tivoli
Federated Identity Manager configuration at each data center contain the same
provider IDs, endpoint URLs and signing keys, as the federation partners will be
150 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

configured to treat the multiple data centers as a single instance of the Identity
provider or service provider.

WS-Federation
The WS-Federation (draft) standard does not currently contain any SOAP based
communication between the identity provider and service provider. So we can
therefore use the same approach described earlier for the SAML Browser POST
profile, where the same configuration is defined at each data center.

Liberty ID-FF 1.1/1.2
The Liberty ID-FF standards contain a set of profiles with HTTP and SOAP
based communication options for each of the operations defined in the
standards.

If we restrict the profiles used to the HTTP based options, we can follow the
same approach described earlier for SAML Browser POST profile, with the same
configuration defined at each data center. SOAP based Liberty ID-FF profiles are
not currently supported in the Multiple Data Center patterns with Tivoli Federated
Identity Manager Version 6.

4.2 Federated Web services architecture patterns
Just as there are many different use cases for a single sign-on solution, there is
more than one way to architect a Web services environment, especially one
where security is taken into consideration. In this section, we discuss some of the
typical deployment issues and architectures encountered with a Web services
based approach to federation.

Technically, Tivoli Federated Identity Manager provides token validation,
issuance (and exchange), identity mapping, and request authorization within a
secure Web services environment. Tivoli Federated Identity Manager therefore
supports scenarios such as those requiring the normalization of the security
policy applied to a Web service. In this type of scenario, an application is
deployed as a Web service with one security policy (the user must have the role
of manager or the incoming request must include a SAML assertion), even
though not all requestors will be able to satisfy this policy. Tivoli Federated
Identity Manager can be used to provide the identity and attribute mapping
required to determine the user’s local roles based on those asserted by the
requestor, so that the request includes the appropriate role of manager instead of
Partner_Manager, for example. Similarly, Tivoli Federated Identity Manager can
be used to provide token exchange functionality, so that a trust partner coming in
over a VPN with a UsernameToken in the <Security> header can have their
 Chapter 4. Deploying Tivoli Federated Identity Manager 151

request normalized to include the required SAML assertion, without requiring the
partner to expand their capabilities to generate the required assertion.

4.2.1 Architecture approach
In this section we provide a quick review of the Tivoli Federated Identity Manager
functionality leveraged within a Web services environment. We then go on to
describe how to leverage this functionality in different scenarios.

The primary role played by Tivoli Federated Identity Manager in the architecture
patterns for Federated Web services is to provide token validation, identity, and
attribute mapping and/or authorization services to the XML gateways
implementing WS-Security in the architecture. These services are invoked by the
XML gateway using the WS-Trust interface of Tivoli Federated Identity Manager.
The WS-Trust interface exposed by Tivoli Federated Identity Manager provides
local access to the Tivoli Federated Identity Manager trust service, functionality
referred to as the security token Service (STS).

In addition to providing the trust service/security token service, Tivoli Federated
Identity Manager Version 6 includes WebSphere Application Server specific
components to provide the integration of WebSphere Application Server and
Tivoli Federated Identity Manager. A WS-Trust client is provided with a
WebSphere Application Server, to allow the WebSphere Application Server
(through the WS-Security functionality) to invoke the Tivoli Federated Identity
Manager Trust Service/Security Token Service. Tivoli Federated Identity
Manager also includes a JAAS login module that allows a SAML assertion to be
used to create a JAAS login context in a WebSphere Application Server. These
WebSphere-specific components of Tivoli Federated Identity Manager that are
related to Web services are collectively referred to as the Web services security
management components of Tivoli Federated Identity Manager. In Tivoli
Federated Identity Manager Version 6, Web services security management
components are provided for WebSphere Application server Versions 5.1 and
6.0.

Token validation and exchange
Basically, the Tivoli Federated Identity Manager Security Token Service provides
token validation and issuance functionality. Token validation is the process by
which a token received at the STS is validated in terms of signatures on the
token, expected structure, and contents of the token, and decryption of the
encrypted contents (if any) of the token. Token issuance is the process by which
a (new) token is created and returned to the (requesting) Trust Client by the
security token service. Together, token validation and issuance can be used to
implement token exchange. Token exchange allows for the validation of an
incoming token type (such as a received SAML assertion) and the issuance of a
152 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

locally valid token (such as an Access Manager for e-business compatible
credential, as is accomplished by the STS in a single sign-on scenario).

The incoming token (the token to be validated) is configured at the granularity of
the partner making a request. This allows two different partners to request the
same resource using different security tokens. The STS will handle the exchange
of these received tokens for the token type required for application invocation.

Unlike the federated single sign-on environment, there is no one common,
accepted (or required) token type associated with a Web service. SAML
assertions are used in those situations where attributes about a requestor must
be included in the request. Requests from a Java application client typically
include a UsernameToken (an XML structure that includes a user name and a
password). In those cases where the requestor has already determined the
user’s identity (there is no need to authenticate the user as the resource side)
and no additional attributes (such as roles) are required, a simple IDAssertion (a
UsernameToken that does not include a password) is often used to identify a
requestor. A Kerberos ticket may be included as a BinarySecurityToken may be
leveraged in a Microsoft Windows based rich client environment.

Web services resources may be deployed with one particular requirement on the
expected incoming token type. Requestors may be able to include only a subset
of possible token types in a Web services request. The Tivoli Federated Identity
Manager TS/STS may be used to bridge this token type gap between requestors
and resources.

Identity mapping
Just as identity mapping is used as part of federated single sign-on, there are
requirements for identity mapping within a Web services environment. The
attributes (identifiers, groups, roles, privileges, entitlements) used to identity a
requestor in one environment may not match the attributes used within another
environment. Rather than requiring a consolidation and normalization of internal
attribute names across business partners, identity mapping functionality will
allow locally valid attributes from one partner to be mapped to locally valid
attributes at another partner, with no modifications to either partner’s internal
representation of these attributes.

Typically, a B2B or Web services environment is based on a transactional model,
meaning that the Web services provider will honor an incoming transaction
(provided it is correctly validated and trusted). This has the effect of removing the
need for a one-to-one identity mapping within this environment. A user need not
be identified as Joe at the Web services requestor. Because of the trust
relationship between the requestor and provider, a many-to-one mapping may be
used, so that Joe is mapped to PartnerXUser. Note that this does not mean that
Joe’s identifier is lost at the Web services provider side; it may still be included as
 Chapter 4. Deploying Tivoli Federated Identity Manager 153

an attribute of the PartnerXUser, so that transactional verification allows actions
by PartnerXUser and audit records can trace this user to Joe.

Tivoli Federated Identity Manager provides a flexible infrastructure for
implementing the various identity mapping schemes found in Federated Web
services.

Authorization
In a Web application server deployment, coarse-grained authorization of inbound
HTTP(S) requests is increasingly being performed at the boundary to
significantly reduce the number of unauthenticated requests entering an
organizations network. Access Manager for e-business WebSEAL provides both
the authorization decision and authorization enforcement functions for this
boundary protection of Web-based operations.

A similar model can be applied to Federated Web services, with coarse-grained
authorization performed at the boundary for incoming Web service requests. In
this case, an XML gateway provides the authorization enforcement point, but
Access Manager for e-business (via Tivoli Federated Identity Manager) can still
be used as the authorization decision point. Tivoli Federated Identity Manager
can optionally perform an Access Manager for e-business authorization API call
to determine of the requesting user is authorized to access the service being
requested. Since this is implemented in the Tivoli Federated Identity Manager
trust service, the Access Manager for e-business call is transparent to the XML
gateway and the requestor/provider applications. Any authorization failures result
in the Web service request being rejected at the gateway and a SOAP fault
returned to the requestor.

4.2.2 Point-to-point pattern
This pattern is included here for completeness, but it is not envisaged that this
pattern will be used in many situations with Tivoli Federated Identity Manager
Version 6.

Tivoli Federated Identity Manager version 6 does not include Web services
security management support for outbound Web service requests from the
WebSphere Application Server or WebSphere Application Client containers. So
any token creation required at the client side of a Web services request would
either need to be directly supported by the WebSphere Application container
(which does not currently support SAML assertion tokens) or the Web service
requestor would need to directly invoke the Tivoli Federated Identity Manager
trust service to create the required token. The Tivoli Federated Identity Manager
trust service provides a SOAP-based interface that implements the WS-Trust
(draft) standard.
154 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

On the Web services provider side, Web services security management provides
a WS-Trust client to allow incoming tokens to be validated and possibly
exchanged for different tokens. This token exchange may also involve an identity
mapping, where the identity in the incoming token is mapped, possibly on a
many-to-one basis, to an identity relevant to the application being invoked. An
Access Manager for e-business authorization call can also be configured to
ensure the caller is authorized to invoke the request service.

If the token returned from the Tivoli Federated Identity Manager trust service is a
SAML assertion, the Web services security management JAAS login module can
be used to create a login context for the subject of the assertion and to make the
assertion available to the application via the JAAS subject. The application can
then access the JAAS subject value, parse the SAML assertion contained in the
JAAS subject, and extract any additional attributes contained in the assertion.
For example, the Web services provider application may use role-based
identities from a WebSphere login perspective, but it may also require the real
user's identity so it can be included in the audit logs. The Web services security
management components of Tivoli Federated Identity Manager allow the
incoming identity to be mapped to a role based identity, and for this role based
identity to be used to create the login context in WebSphere Application Server.
The original user's identity can be readily accessed by the application code, via
the SAML assertion in the JAAS subject, so that it can be used in audit logging.

4.2.3 XML gateway pattern
The most common (and beneficial) use of Tivoli Federated Identity Manager
Version 6.0 in Federated Web services deployments involves the use of an XML
gateway (also sometimes referred to as an XML firewall or Web services
gateway). The XML gateway is configured to invoke the Tivoli Federated Identity
Manager trust service to validate and exchange security tokens. At a high level,
one way to summarize the respective roles of the XML gateway and Tivoli
Federated Identity Manager in this pattern is that the gateway implements
WS-Security (and related standards) and Tivoli Federated Identity Manager
implements WS-Trust.

Web services requestor
On the Web services requestor side, an XML gateway can be used as an
outgoing proxy for Web services. The use of a gateway in this role allows the
requestor applications to use security tokens and identities relevant to the local
domain and ignore the complexities and differences involved in exchanging
messages with partner organizations over an un-trusted network.

The Web services requestor side of the XML Gateway pattern for Federated
Web services can be illustrated as follows.
 Chapter 4. Deploying Tivoli Federated Identity Manager 155

Figure 4-9 XML Gateway pattern for Web service Requestor

The requestor application sends a SOAP message containing a security token in
a WS-Security header to the XML gateway. The gateway extracts the security
token and sends a WS-Trust message to the Tivoli Federated Identity Manager
trust service for token validation and exchange. The WS-Trust message includes
the security token extracted from the header of the message, the identity of the
calling application, and the identity of the target application. The Tivoli Federated
Identity Manager server validates the token based on the configuration
associated with the calling application, performs any specified identity mapping
and Access Manager for e-business authorization calls, and generates a token
applicable to the target application. The new security token is then returned to
the gateway. The gateway replaces the security token in the message header,
performs any other required message transformation and/or message level
signing/encryption operations, and forwards the new message to the target
service.

Web services provider
On the Web services provider side, the XML gateway fills the role of a reverse
proxy for Web services. Again, this pattern allows the provider applications to
use security tokens and identities relevant to the local domain and ignore the
complexities and differences involved in exchanging messages with partner
organizations over an un-trusted network

Web Service
Providers

XML
Gateway

J2EE
Application

ITFIM
Runtime
Service

Web Services Requestor

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Authorization

Server

TAMeB
Policy
Server

User
Registry

.Net
Client

Application
Client

Portlet
Application
156 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

As mentioned earlier, a signed SAML assertion is a commonly used security
token type for messages passing between organizations. The simplest form of
security token that can be used to pass the user's identity to the Web services
provider is an IDAssertion variant of a UsernameToken. It is envisaged that
Kerberos based tokens will become increasingly popular in Microsoft Windows
based environments in the future.

For those cases where attributes other than just the Subject from the incoming
SAML assertion need to be passed to the provider application, the gateway can
use a SAML assertion to pass both the subject and the additional attributes to the
Web service provider application. You may choose to rely on the channel level
security provided by SSL for this internal SAML assertion and leave it unsigned.
As discussed in the Point-to-Point pattern earlier, the Web services security
management JAAS login module can be used to create a login context for the
subject of a SAML assertion received by a WebSphere Application Server and to
make the assertion available to the provider application via the JAAS subject.

Figure 4-10 XML Gateway pattern for Web service provider

This pattern can be extended to include Access Manager for e-business
WebSEAL in front of the XML gateway, with WebSEAL in the DMZ and the
gateway moved inside the domain firewall. Motivation for doing this may include
a desire to move the XML gateway from an outer DMZ to an inner DMZ or even
into the protected segment of the network. This allows point-to-point security to
Access Manager for e-business, so that Access Manager for e-business can

Web Service
Requestors

XML
Gateway

J2EE
Application

ITFIM
Runtime
Service

Web Services Provider

ITFIM
Management

Service

Administrator

IBM
Integrated
Solutions
Console

TAMeB
Policy
Server

TAMeB
Authorization

Server

User
Registry

.Net
Application

WebSphere
Application

ITFIM WSSM

JAAS
Subject
 Chapter 4. Deploying Tivoli Federated Identity Manager 157

exclude any incoming requests that do not pass simple transport layer security
requirements. This provides an extra layer of protection for the keys used to
encrypt/decrypt and sign/validate messages while also providing an edge-level
security layer.

Supported Gateways
The supported XML gateways for this pattern include any gateway that supports
invoking a WS-Trust server, such as the Tivoli Federated Identity Manager trust
service, for token validation and exchange.

Tivoli Federated Identity Manager ships with several (Web services security
management) components that enable the IBM WebSphere Web services
Gateway Version 6 to use the Tivoli Federated Identity Manager trust service in a
manner consistent with this design pattern.

The following XML gateway/firewall vendors attended a WS-Trust interoperability
event, sponsored by IBM in Austin during early May 2005, to test interoperability
with the Tivoli Federated Identity Manager trust service and so have had their
Trust Client implementations validated against the Tivoli Federated Identity
Manager TS/STS:

� Datapower
� Layer 7 Technologies
� Reactivity
� Sarvega

4.3 Integrating applications into an F-SSO environment
Deployment of the Tivoli Federated Identity Manager functionality is not the
same as integration of Tivoli Federated Identity Manager into an environment.
Integration of Tivoli Federated Identity Manager requires an understanding of
what applications are going to be exposed to federation users, what existing
infrastructure can be reused to support this integration, and what customization
is required to support the federation relationship.

4.3.1 Attribute flow between providers
As discussed earlier in this chapter, Tivoli Federated Identity Manager provides
federated SSO to Access Manager for e-business, which in turn is responsible
for providing SSO to applications. Access Manager for e-business may provide
direct SSO to an application (or possibly the middleware on which it runs). As
part of this Enterprise SSO solution, Access Manager for e-business may pass
data via HTTP headers back to an application. When Tivoli Federated Identity
Manager is integrated with an Access Manager for e-business solution, it
158 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

becomes possible for the two products to increase the scope of attribute flow,
from point of contact to back end, to between partners to point of contact to back
end.

As part of the integration of Tivoli Federated Identity Manager (and Access
Manager for e-business) into an identity provider’s environment, we must
determine which (if any) attributes are to be provided to a service provider as part
of an F-SSO solution. The following diagram illustrates the flow of attribute data
from an identity provider implemented using Tivoli Federated Identity Manager.

Figure 4-11 Attribute flow for identity provider

The first source of attributes to be included in a single sign-on assertion is from
the Access Manager for e-business credential provided to Tivoli Federated
Identity Manager to identify the user for single sign-on purposes. Attributes
stored in an Access Manager for e-business credential are local attributes
retrieved from the Access Manager for e-business registry during credential
creation (part of the authentication process). Additional attributes are stored as
extended attributes in the Access Manager for e-business credential for the user.
Access Manager for e-business also provides an interface that allows custom C
code to be written to provide additional extended attributes to be stored in the

TAMeB
User Registry

TAMeB
Credential

Extended
Attributes

XSL Rule

Subject

Attributes

Assertion

Service
Provider

Custom
Code

Custom
Code
 Chapter 4. Deploying Tivoli Federated Identity Manager 159

Access Manager for e-business credential. This custom code is executed when
the Access Manager for e-business credential is created by WebSEAL.

Once the Access Manager for e-business credential has been created, Tivoli
Federated Identity Manager uses an XML version of the Access Manager for
e-business credential as input to the identity/attribute mapping step performed as
part of the assertion generation. This mapping is defined by an XSL rule. This
mapping may include a simple copy of the existing (credential defined) attributes,
a mapping of attributes from one value to another, or the retrieval of additional
attributes. Custom Java modules can be invoked from these XSL rules to obtain
additional attribute data that is not available in the Access Manager for
e-business credential. These XSL rules and any associated Java modules are
invoked for every assertion generated by the identity provider and are specific to
the identity provider-service provider relationship.

On the service provider side, the flow of attribute data from an incoming
assertion to a service provider application is illustrated in the following diagram.

Figure 4-12 Attribute flow for service provider

In this scenario, the single sign-on assertion received at the service provider may
contain attributes about a user. These attributes (and the information contained
in the assertion) are translated into a Tivoli Federated Identity Manager internal
format and an XSL rule is used to map this information and then format it as an
Access Manager for e-business credential. This mapping may include a simple

TAMeB
Credential

Extended
Attributes

XSL Rule

Subject

Attributes
Identity
Provider

Custom
Code

HTTP
Headers

Service
Provider

Application

Assertion
160 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

copy of the existing (assertion defined) attributes, a mapping of attributes from
one value to another, or the retrieval of additional attributes. Custom Java
modules can be invoked from these XSL rules to obtain additional attribute data
that is not available in single sign-on assertion. These XSL rules and any
associated Java modules are invoked for every assertion received at the service
provider and are specific to the identity provider-service provider relationship.

Access Manager for e-business WebSEAL can then be configured to extract
particular attributes from the Access Manager for e-business credential and send
the attribute values to the service provider applications via HTTP header
variables. Access Manager for e-business WebSEAL allows different attributes
to be sent to different applications.

4.3.2 User-controlled federated life cycle management
Application developers may choose to add Federated SSO links to their pages to
customize a user’s federation experience. These links may provide account
linking/delinking, single logout, SSO to other applications and/or other operations
supported by the associated protocol.

This can point to the specific page template customization of the next section, or
they can be collapsed into a single section.

4.3.3 Customized user-managed federation management
Tivoli Federated Identity Manager includes an Info Service API for querying the
Tivoli Federated Identity Manager Management Service for federation-related
data. The Info Service API allows an application to determine if a user's account
is currently linked to an account at a specific partner. This feature can be used to
dynamically build a page showing a list of links to partner sites for which the
current user already has an account linked to their local account, and possibly
provide a separate list of links that would allow the user to link their account to
specific partner sites with which their local account is not currently linked.

Thus a user can be provided with a listing of Partners you have federated with
(single sign-on partners) and a separate listing of Partners you haven’t federated
with. A related example is shown in Figure 4-13 on page 162.
 Chapter 4. Deploying Tivoli Federated Identity Manager 161

Figure 4-13 Linked services for user Alison

The Tivoli Federated Identity Manager Info Service API can also allow an
application program/portal to obtain the URLs for specific Federated SSO
operations for specific partners. This allows an application developer to avoid
placing hard-coded links to Tivoli Federated Identity Manager functionality on
their pages.

View, change information about yourself,
such as your email address, mailing

address, contact preferences, and so on

Welcome Alison, to your MyPhone Page

Telco Mobile

First Phone Stock Price: $10.31 at 9:42am (20 min delayed)

Personal Profile Information

Linked Services

Satellite TV

Business Solutions

Available Services

Messaging Center

First Phone Mobility

First Internet

Moving? Need repair services? Create a
service request online!

Create Service Requests

Yellow Pages

Do Not Call Registry

Other Links

. . .

. . .

. . .
162 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

4.4 Customizing F-SSO
This section describes how Tivoli Federated Identity Manager can be customized
to provide the look and feel required for a particular deployment through the
(HTML) page templates provided with Tivoli Federated Identity Manager.

4.4.1 Customizing page templates
Tivoli Federated Identity Manager ships with a set of page templates for:

� Consent to Federate page
� Where Are You From page
� Automatic POST pages
� Operation success pages
� Error pages.

These default page templates can be customized to fit the requirements of a
particular deployment. The page templates contain various macro variables that
Tivoli Federated Identity Manager will replace with the corresponding value as it
builds a page.

The Tivoli Federated Identity Manager configuration file sps.xml contains the
mapping from logical page name to physical page. In some cases you may need
to modify an entry in sps.xml to customize a page for a specific event, as many of
the error events are mapped to generic error pages.

In some cases, customizing specific Tivoli Federated Identity Manager error
pages may provide an opportunity to provide error recovery from a user
experience perspective. For example, the default error page that is displayed
when a user attempts to perform a Liberty ID-FF SSO operation and their
account has not been linked to an identity provider account contains an error
message and a stack trace. This page can be easily customized to inform the
user that their account is not yet linked to an identity provider account and to
provide an option to allow the user to initiate an account linking operation.

At the time of writing this Redbook, the error event entries in sps.xml and the
associated page templates and macro variables had not yet been documented in
the product manuals. This implies that any customization is likely to involve some
careful trial and error and is not likely to be officially supported.

4.4.2 Customizing Access Manager for e-business page templates
Access Manager for e-business also ships with a set of page templates. The
Access Manager for e-business product documentation describes how these
templates can be customized.
 Chapter 4. Deploying Tivoli Federated Identity Manager 163

Additional customization for Access Manager for e-business pages in an Tivoli
Federated Identity Manager environment might include:

� Adding Federated SSO links to the Access Manager for e-business login
page on a service provider.

� Modifying the Access Manager for e-business login page on an Identity
provider to include the purpose of the authentication being requested (for
example, to access to a local protected resource, to SSO to another site, or to
identify an account to be linked to the service provider account).

4.4.3 Storing aliases
By default, the standard Tivoli Federated Identity Manager Alias Service module
stores aliases (also know as Name Identifiers) used in the Liberty ID-FF
protocols under the root LDAP suffix cn=itfim. This location in the LDAP tree can
be modified prior to creating any aliases by modifying the alias root in the Alias
Service configuration file lids.xml.

If you intend to run more than one instance of Tivoli Federated Identity Manager
on a single machine, the alias root suffix values should be made to be unique for
each instance. For example, if you are setting up a simple test system for
Federated SSO, you may choose to store the aliases from one instance under
cn=idp,cn=itfim and the aliases for the other instance under cn=sp,cn=itfim.

The Tivoli Federated Identity Manager Alias Service is designed to be a
pluggable interface. A DB2-based Alias Service is available for those customers
who want to use Liberty ID-FF with very large numbers of users.

4.5 Solution design considerations
This section contains a series of short discussions on topics relating to designing
a solution for deploying Tivoli Federated Identity Manager in a real-world
environment. This information was mostly collated during early deployments of
Tivoli Federated Identity Manager in the Early Support Program.

4.5.1 Exchanging metadata with your partners
Once the business and legal agreements are in place, you will define the
attributes of your role in the federation using the Tivoli Federated Identity
Manager Management Console and then share that metadata with your
partner(s).

The technical information to be shared and agreed upon with your partner(s) for
Federated SSO includes:
164 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� Federated SSO protocol and version to be used

� Provider ID (or Realm, depending on the protocol you are using)

� Profiles within the protocol to be supported

� Endpoint URLs for each of the profiles to be supported

� Public certificates for validating your digital signatures

� CA certificate for the server certificate in your point of contact server

� Method for client authentication of the SOAP connections (none, X.509
certificate), plus the CA certificate and Distinguished Name (DN) of the client
certificate if needed

� Type, value range and semantics of the Subject field in the assertion

� Name, type, value range and semantics of any attributes to be included in the
assertion

� Session timeouts and request/assertion lifetimes.

Some Federated SSO protocols, for example the Liberty ID-FF protocols, include
a definition of a metadata format for exchanging some of this data. Where the
protocol defines a metadata format, you can use the Tivoli Federated Identity
Manager Management Console to export your metadata and import that of your
partners.

4.5.2 Availability of IBM Access Manager for e-business policy server
In a standard Access Manager for e-business deployment, all of the servers, with
the exception of the Policy Server, can be replicated for load balancing and
fail-over. The best practice for deploying the Access Manager for e-business
Policy Server is to create a warm standby Policy Server that can be activated in
the event that the Policy Server is unavailable for an extended period.

In an Access Manager for e-business deployment without Tivoli Federated
Identity Manager, all run-time operations will continue to operate if the Policy
Server is unavailable. However, the Tivoli Federated Identity Manager servers
use the Access Manager for e-business Administration API to terminate user
sessions in Access Manager for e-business WebSEAL servers during Single
Logout operations. The Access Manager for e-business Administration API relies
on the Access Manager for e-business Policy Server to act as an intermediary for
communication with the WebSEAL servers. So the requirement for keeping the
Access Manager for e-business Policy Server available is stronger when Tivoli
Federated Identity Manager is deployed.

At the time of writing this Redbook, a developerWorks article is being written by
Tivoli development to describe a high-availability architecture for Access
 Chapter 4. Deploying Tivoli Federated Identity Manager 165

Manager for e-business that includes replicated read-only Policy Servers
suitable for use with Tivoli Federated Identity Manager.

4.5.3 Key management
Federated SSO protocols make use of a number of digital keys to sign requests
and validate signatures on responses. Similarly, the SAML assertions used in
Federated Web services are typically signed. It is important to note that digital
signing and validation operations will fail if the key being used has expired. As
many of the keys obtained from public Certificate Authorities have a lifetime of 12
to 24 months, it is important to establish a manual procedure to proactively
replace keys before they expire. It is also important to monitor your partner's
keys and advise them if their keys are nearing expiry.

The Tivoli Federated Identity Manager Management Console provides support
for reviewing expiry dates on signing/validation keys.

4.5.4 Session timeout
A key issue to consider in designing a Federated SSO solution is session timeout
(either due to session duration or session inactivity). The Federated SSO
standards bodies have not yet addressed this issue. From a user perspective,
the ideal solution would be to present the appropriate identity provider login page
as required after session duration/inactivity timeout.

Depending on the nature of the federations defined, it may be possible to add
some JavaScript to the service provider login page to automatically initiate a
Federated SSO operation on session timeout; otherwise the user will have to
choose to initiate the Federated SSO operation from the links shown on the
service provider login page.

A related requirement that may be raised in Federated SSO environments is to
link the inactivity timers for the identity provider and service providers, such that
while a user is using a particular service provider resource, the associated
identity provider session will remain active. One situation where this requirement
is important is where a service provider site is being accessed in an iFrame
portlet on an identity provider hosted portal. In this case, a user may find it
disconcerting to be required to re-authenticate due to activity when they press a
link in the surrounding portal page after having just been working inside the
service provider portlet on the same page.

One solution to this requirement that will work regardless of which vendor's
products are used at the identity provider and service provider, is to have a
(possibly hidden) image from the identity provider site on every service provider
application page. This image may possibly be incorporated into the page design
166 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

to highlight the source of the authentication. Alternatively, a servlet filter may be
added to the service provider application(s) to add a hidden image to each page
returned to the browser.

4.5.5 Application logout
Another key issue to consider in designing a Federated SSO solution is
application logout. Protocols such as Liberty ID-FF and WS-Federation include
profiles for Single Logout (SLO). An SLO operation will terminate the user
session at the identity provider as well as terminating any service provider
sessions that used that identity provider session for authentication. The
motivation for SLO lies in the belief that if a user is transparently logged into
multiple sites from a single authentication, then a similar model should be used
for logout.

This is an amiable goal, but there are several problems with the implementation.
Many of the SLO profiles in the standard Federated SSO protocols reply on the
user to inspect the logout success/failure messages coming from different
products (with different customization) to determine the overall success/failure of
the SLO operation. Moreover, if a user is unaware of the Federated SSO being
performed between various sites, they may have trouble understanding why they
are being presented with a list of logout success/failure messages. At a
minimum, it is recommended that the SLO failure messages be modified to
advise the user to close all browser sessions to ensure the user is fully logged
out. You may also consider adding similar advice to the SLO success pages to
inform the user that it is safe practice to close all browser sessions to ensure
successful logout across all sessions.

In a Tivoli Federated Identity Manager deployment (at either the identity provider
or service provider), termination of the current user session at the local node is
effected using the Access Manager for e-business Administration API to
terminate the session in the session cache of WebSEAL (or the Access Manager
for e-business Web plug-in). Success or failure is determined by the return code
from this API. In a standard Access Manager for e-business deployment (without
Tivoli Federated Identity Manager), it is accepted best practice to add some
JavaScript to the Access Manager for e-business logout success (and failure)
pages to delete all session cookies associated with the applications protected by
Access Manager for e-business. By default, Access Manager for e-business
renames all cookies coming from junctioned applications to avoid accidental
overwriting of cookies with the same name from different back-end servers. The
following JavaScript function illustrates how the cookies from the back-end
applications can be identified and deleted. If you call this function as your page is
loading, it will delete all cookies from applications junctioned behind WebSEAL.

<script language=javascript type="text/javascript">
function deleteJunctionCookies() {
 Chapter 4. Deploying Tivoli Federated Identity Manager 167

var TAMPrefix = "AMWEBJCT!";
var cookies = "" + document.cookie;
var cookieArray = cookies.split ("; ");
for (var i = 0; i < cookieArray.length; ++ i) {

var firstCh = cookieArray[i].indexOf(TAMPrefix);
if (firstCh == 0) {

var length = cookieArray[i].indexOf("=");
var name = cookieArray[i].substr(firstCh, length);
document.cookie = name + "=; expires=Fri, 03-Dec-1993 04:10:00

CET; path=/";
}

}
}
</script>

A similar technique can be used in an Tivoli Federated Identity Manager
environment for HTTP-based SLO profiles. Javascript to delete cookies for
back-end servers can be added to SLO success (and failure) page templates
used by Tivoli Federated Identity Manager. However, the Liberty ID-FF
standards include SOAP based profiles for SLO. With these SOAP based
profiles, the partner nodes do not have an opportunity to run any JavaScript on
the browser to delete the application cookies. It is therefore recommended that in
an Tivoli Federated Identity Manager environment using SOAP-based SLO
profiles, the Access Manager for e-business login page also be updated to
include some JavaScript code to delete the back-end application cookies.

This technique for deleting cookies with SOAP-based SLO profiles does not
address all threat scenarios, so it is also recommended that applications in this
environment verify incoming requests to ensure that the value of the HTTP
Header variable in the request, which contains the user identity from Access
Manager for e-business, matches the local user login context. For standard
Access Manager for e-business SSO configurations, this HTTP Header variable
would be iv-user; however, in an Tivoli Federated Identity Manager environment
the real user identity may be passed to the application via a different HTTP
Header variable.

Of course, closing all browser sessions on logout removes all risks associated
with unexpired application session cookies.

4.6 Conclusion
This chapter described architecture options for deploying Tivoli Federated
Identity Manager, and approaches for integrating this software product with other
middleware and customer applications. Architecture pattern for Federated SSO
and for Tivoli Federated Identity Manager Federated Web services were
168 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

introduced. Then it was shown how to integrate applications into a Tivoli
Federated Identity Manager F-SSO environment, and how to customize Tivoli
Federated Identity Manager for F-SSO. Finally, a series of short discussions on
topics relating to designing a solution for deploying Tivoli Federated Identity
Manager in a real-world environment completed the chapter.
 Chapter 4. Deploying Tivoli Federated Identity Manager 169

170 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 5. Integrating with IBM identity
management offerings

Federated identity management (FIM) is an administration concept. It enables
companies to extend an organization’s identity management infrastructure to
their business partners. As such, IBM’s Tivoli FIM solution will extend identity
management for both the identity provider and service provider infrastructure.
Tivoli Federated Identity Manager extends the current Tivoli identity and security
offerings: Tivoli Identity Manager, Tivoli Access Manager Family, Tivoli Directory
Server, and Tivoli Directory Integrator. This chapter briefly describes some of
these offerings.1

5

1 This chapter content is adapted from the IBM Federated Identity Management white paper (Heather
Hinton, et al).
© Copyright IBM Corp. 2004, 2005. All rights reserved. 171

5.1 IBM Tivoli Access Manager for e-business
Tivoli Access Manager provides authentication, authorization and session
management services. Access Manager (WebSEAL) provides a centralized
session management service for Web (HTTPS) and SOAP Web services for
user-based and serviced-based transactions. Access Manager provides a Policy
Decision Point (PDP) with its authorization server and policy server. Access
Manager provides several out-of-the-box Policy Enforcement Points (PEP),
primarily the HTTP-based WebSEAL reverse proxy and Web plug-in, and
provides the ability to implement customized PEPs through its industry-standard
Java and C API.

Access Manager provides authentication services where the authentication
process is a direct interaction with the end user (such as a traditional user
name/password challenge response) or a proprietary Access Manager-based
cross-domain single-sign-on solution. In a federated scenario, Access Manager
establishes and controls a session for a user in response to a federation-based
interaction.

IBM’s federated identity management solutions extend Access Manager
authentication and session management functionality by providing standards and
public specification-based single-sign-on and federation user session life cycle
solutions.

5.1.1 Identity provider integration
In general, Access Manager will treat Tivoli Federated Identity Manager as a
generic back-end application that does not have explicit integration requirements
with FIM. When an enterprise is configured for identity provider functionality,
Access Manager will:

� Provide session management services for local users, including:

– Authentication services for local users, providing support for direct
authentication of users

– Authorization services, providing access control for local resources based
on local access policy

� Provide access control to FIM functionality.

Provide authorization/access to FIM federated single-sign-on solutions.
Access Manager authorization decisions can be used to provide fine granular
access to FIM, so that only properly authorized users are able to participate in
a federated solution.
172 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

When configured for identity provider functionality, IBM’s FIM solutions integrate
with Access Manager and have expectations on Access Manager behavior as
follows:

� Tivoli Federated Identity Manager will be configured as a normal back-end
resource to provide federated single sign-on functionality, including SSO,
single sign-off, account linking, and so on.

� Tivoli Federated Identity Manager will rely on Access Manager as an
authorization service to ensure that only authorized users are able to invoke
FIM solutions.

� Tivoli Federated Identity Manager will rely on Access Manager to identify
users for purposes of federation functionality based on Access Manager
asserted information (for example, iv_user, iv_creds).

5.1.2 Service provider integration
When an Enterprise is configured for service provider functionality, Access
Manager will:

� Provide session management services for (local and federation) users,
including:

– Authentication services for local users, providing support for direct
authentication of these users

– Session establishment for federation users, based on federated single
sign-on functionality implemented by FIM

– Authorization services, providing access control for all users to local
resources based on local access policy

� Provide access control to FIM functionality:

– Treat FIM single sign-on functionality as a publicly available resource

– Treat FIM session life cycle functionality (such as session logout) as a
protected resource accessible only to authenticated/authorized users

When configured for service provider functionality, IBM’s FIM solutions integrate
with Access Manager and have expectations on Access Manager behavior as
follows:

� FIM will be configured as a “normal” back-end resource to provide federated
single sign-on functionality, including SSO, SSOff, account linking, and so on.

� FIM will rely on Access Manager as an authorization service to ensure that
only authorized users are able to invoke FIM solutions.

� FIM will provide Access Manager with information to build a session for a user
in response to a successful SSO by the user.
 Chapter 5. Integrating with IBM identity management offerings 173

� FIM will rely on Access Manager to identify users for purposes of (non-SSO)
federation functionality based on Access Manager asserted information (for
example, iv_user, iv_creds).

You can find more information about how to configure Tivoli Access Manager in
Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363.

5.2 IBM Tivoli Identity Manager
Tivoli Identity Manager provides Enterprise-wide identity management and user
provisioning functionality. It integrates with many different types of systems,
including operating systems, databases, directories, and ERP solutions such as
PeopleSoft and SAP. This allows Human Resources administrators to manage
users through a dedicated system while having Identity Manager manage the
ongoing creation, change, and deletion of user accounts. Identity Manager
provides a workflow engine to automate the business process of user
management as well as a set of Java APIs to simplify integration with
homegrown applications. Tivoli Federated Identity Manager extends Identity
Manager’s enterprise provisioning capability with federated provisioning.
Federated provisioning extends the concept of automated user provisioning to
trusted third-party organizations such as suppliers, business partners, and
service providers. Federated provisioning can also help extend enterprise
provisioning solutions to support intranet organizations such as autonomous
regional organizations that have a need to manage user provisioning locally.
Tivoli Federated Identity Manager can leverage Identity Manager to implement
the local provisioning of a user in response to a federated provisioning request.
This allows a local Enterprise to maintain locally relevant user information,
including user life cycle functionality, for a federated user, in response to
provisioning information from federation business partners.

Tivoli Federated Identity Manager extends Identity Manager’s provisioning and
workflow functionality by providing standards and public specification-based
federated provisioning for user life cycle management. Providing this support
through Tivoli Federated Identity Manager provides a modular solution that
allows easy extensibility of federation and provisioning solutions with minimal
impact on an existing Identity Manager environment.
174 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

5.2.1 Identity provider integration
In general, Identity Manager will treat FIM as a provisioning endpoint. When an
Enterprise is configured for identity provider functionality, Identity Manager will
provide local identity management, including workflow and provisioning.

� Apply workflow functionality to the overall management of users within local
enterprise, including initiating a possible workflow/approval process (if
required) to authorize provisioning to a FIM endpoint.

� Provide provisioning solutions to push/create user information at required
local endpoints such as application-specific user repositories.

When configured for identity provider functionality, IBM’s FIM solutions integrate
with Identity Manager and have expectations on Identity Manager behavior as
follows:

� FIM will rely on Identity Manager as the authoritative source for information
that is to be provisioned to federation business partners.

� FIM will act as a local Identity Manager endpoint for provisioning purposes;
FIM will initiate federated provisioning in response to a Identity Manager
provisioning request.

� FIM will receive notifications and provisioning responses from federation
business partners and will “proxy” this information to Identity Manager.

5.2.2 Service provider integration
In general, Identity Manager will treat Tivoli Federated Identity Manager as a
provisioning source. When an Enterprise is configured for service provider
functionality, Identity Manager will provide local identity management, including
workflow and provisioning.

� Apply workflow functionality to the overall management of users within the
local enterprise, including initiating a possible workflow/approval process (if
required) to authorize local provisioning based on a FIM provisioning trigger.

� Provide provisioning solutions to push/create user information at required
local endpoints such as application-specific user repositories in response to a
FIM provisioning trigger.

When configured for service provider functionality, IBM’s Tivoli Federated
Identity Manager solutions integrate with Identity Manager and have
expectations on Identity Manager behavior as follows:

� FIM may also provision information to a local repository that is in turn
monitored by Identity Manager to trigger a local Identity Manager provisioning
event.
 Chapter 5. Integrating with IBM identity management offerings 175

� FIM will proxy any Identity Manager provisioning responses (such as status
and notification) as required.

� FIM will appropriately respond to the identity provider federated provisioning
functionality with status/notification, based on the information received from
the local Identity Manager.

In 3.2.7, “Provisioning services” on page 98, we discussed the Web services
provisioning service.

5.3 IBM Tivoli Directory Integrator
IBM Tivoli Directory Integrator provides a lightweight data synchronization
solution. This allows a simple solution for keeping multiple data stores in
synchronization, even when there is no one single authoritative data store.

Tivoli Federated Identity Manager internalizes Directory Integrator functionality
within its federated provisioning solution. As such, the integration required with
Directory Integrator is part of the installation and configuration of Tivoli Federated
Identity Manager itself.

Tivoli Federated Identity Manager extends Directory Integrator’s data
synchronization solutions to provide standards and public specification-based
federated provisioning and single sign-on. By leveraging Directory Integrator FIM
is able to provide a modular solution that allows easy extensibility of federation
and provisioning solutions with minimal impact on an existing enterprise
environment.

5.3.1 Identity provider integration
Directory Integrator functionality synchronizes local identity provider data stores

FIM/Directory Integrator functionality:

� In response to events within monitored data stores, builds a
(WS-Provisioning) federated provisioning request

� As part of building a federated provisioning request, implements markup
language translation (for example, DSMLv2 to DAML), if required

� Acts as a client to the Tivoli Federated Identity Manager federated
provisioning service

5.3.2 Service provider integration
Directory Integrator functionality synchronizes local service provider data stores.
176 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

FIM/Directory Integrator functionality:

� Receives (WS-Provisioning) federated provisioning requests

� As part of building a local provisioning request, implements markup language
translation (for example, DSMLv2 to DAML), if required

� Receives federated provisioning events, validates them, and triggers local
provisioning to a local data store that is monitored by the local Identity
Manager

� Receives federated provisioning events, validates them, and directly triggers
a provisioning event (including workflow) at a local Identity Manager

In 3.2.7, “Provisioning services” on page 98, we discussed the Web services
provisioning service, and how IBM Directory Intergrator functionality is exploited
with the Tivoli Federated Identity Manager solution.

5.4 IBM Tivoli Directory Server
Tivoli Directory Server provides a highly available, scalable LDAP directory that
can act as an enterprise’s main data repository. Tivoli Federated Identity
Manager will leverage a data store (such as Directory Server) for the
management of internal (relevant to Tivoli Federated Identity Manager only)
information. Tivoli Federated Identity Manager may also require integration with
a local data store as part of the fulfillment of federation functionality.

By leveraging Directory Server, Tivoli Federated Identity Manager is able to
provide modular, highly scalable solutions that allow extensibility of federation
and provisioning solutions with minimal impact on an existing enterprise
environment.

5.4.1 Identity provider integration
Some information on identity provider integration:

� Store common identifiers that are used when communicating with a service
provider/business partner about a given local user.

� Integrate with a local data store to retrieve information about users as part of
building a single sign-on response (to a SSO request issued by a service
provider).
 Chapter 5. Integrating with IBM identity management offerings 177

5.4.2 Service provider integration
For service provider integration:

� Store common identifiers that are used when communicating with an identity
provider/business partner about a given local user.

� Store identity information about a user that can be used to build a local
session in response to a single sign-on response from an identity provider.

5.5 IBM WebSphere Application Server
The IBM middleware platform for Java and Web services is WebSphere.
Federated identity management extends the capability and dynamism of the
WebSphere middleware platform with support for federated business
interactions.

� The addition of federated identity management capability can extend the
reach of the middleware platform. Services deployed on the WebSphere
platform can now be extended to a number of third-party clients and their
users.

� Federated identity management enables WebSphere platform users to
access various third-party services with simplified single sign-on. This
requires no changes to existing Web applications or Web sites.

� Tivoli Federated Identity Manager can add significant value to WebSphere
Portal by securely connecting portal users with various third-party and
software-as-services providers. By delivering Liberty, WS-Federation, and
SAML identity dialtones, FIM helps organizations use the Portal to manage
customer-for-life scenarios by enabling the portal to transparently bring in
third-party resources and delivering these services to portal users without any
changes in user experience.

� Tivoli Federated Identity Manager can add significant value to the
WebSphere Business Integration platform. The ability to broker multiple forms
of identity enables WebSphere business integration services to implement
mediation services connecting various users to various services.

The Tivoli Federated Identity Manager solution itself relates very closely to
WebSphere in the sense that Tivoli Federated Identity Manager is an application
based on the J2EE specification, and runs on the WebSphere Application
Server.
178 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

5.5.1 Integrated Solutions Console (ISC)
The IBM Integrated Solutions Console is a WebSphere Portal application that is
designed to provide a common GUI for administering both IBM software and
custom applications. Tivoli Federated Identity Manager uses ISC to manage and
configure FIM domains, federation partners, Web services security partners,
keystores, and the trust service.
 Chapter 5. Integrating with IBM identity management offerings 179

180 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Part 2 Customer
environment

Part 2 discusses how identity federation might be used in customer situations.

A scenario that involves several hypothetical corporations is introduced, and it
shows how they might be able to take advantage of identity federation to improve
customer experiences, reduce costs, and improve overall security.

This scenario, involves two large corporations with internal employee portals.
The employees of these corporations authenticate to their corporate portals and
are offered access to the service provided by other companies without having to
re-authenticate.

Part 2
© Copyright IBM Corp. 2004, 2005. All rights reserved. 181

182 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 6. Overview

In this chapter we introduce several hypothetical corporations and show how
they might be able to take advantage of identity federation to improve customer
experiences and reduce cost and improve overall security.

These use cases and their configurations with Tivoli Federated Identity Manager
are covered in detail in subsequent chapters.

6

© Copyright IBM Corp. 2004, 2005. All rights reserved. 183

Figure 6-1 Overall scenario logical architecture

The corporations involved in our scenario are:

� BigCorp - A large organization with a pool of employees using Windows and
Linux workstations. They make use of Microsoft’s Active Directory for a
corporate user registry and have implemented integrated sign-on from
Windows workstations to their internal employee portal using SPNEGO1.

� RBTelco - A large telecommunication company servicing both individuals
(retail customers) and corporate customers. In an effort to provide a rich user
experience, RBTelco has partnered with its corporate customers and service
providers (RBBanking, RBTickets, and RBStocks) to leverage single sign-on
and federation technologies. Through effective application of these
technologies, RBTelco is able to deliver seamless interactions for its
customers using browsers and mobile devices.

� RBTravel - A service provider company offering travel booking services for
corporate customers. RBTravel maintains user profiles for individuals, but
does not support direct authentication or retail customers.

RBTelco

BigCorp

RBTravel

IdP

SP

SAML SSO with JITP
1:1

WS-Fed SSO many:1
 (Teleconference Booking)

 UID / P
ass Login

Teleconf.
Application

Portlet

 Web Services (WSSM)
 SAML

Lib
erty

 Liberty

 (pre-provisioned)

Active
Directory

(bigcorp.user)

(emp1@bigcorp.com)

D
es

kt
op

 S
S

O

S
P

N
EG

O

View Bill
Application

IdPSP

jpublic

emp1

bpublic
 UID / Pass Login

LDAP
User Registry

RBStocks

Blacklist of Mail

SP

RBBanking

RBTickets

1:1

1:1

SP

SP

1 SPNEGO (Simple and Protected GSS-API Negotiation Mechanism) is the subject of rfc2478 and is
a way for communicating systems to choose a security mechanism to use.
184 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� RBBanking - A progressive retail banking corporation looking for new ways to
serve its customers. RBBanking has partnered with RBTelco to provide a new
service to users who are both RBTelco retail customers and RBBanking
customers. These customers are able to link to their account information
pages at RBBanking from RBTelco’s customer portal. They can check their
account information at RBBanking without having to log in to RBBanking.

� RBTickets - A ticket company selling tickets on the Internet, and is looking for
new ways to serve its customers even better. RBTickets has partnered with
RBTelco to provide a new service to users who are current RBTelco retail
customers. These customers are able to link to and buy tickets from
RBTickets through the RBTelco’s customer portal. They can do the
transaction at RBTickets without having to log in to RBTickets.

� RBStocks - A company providing a Web services interface to obtain stock
quotes. RBStocks accepts requests from RBTelco for two different classes of
customers. RBStocks provides real-time stock quotes to RBTelco’s corporate
customers, and delayed stock quotes to RBTelco’s retail customers.
RBStocks also maintains a blacklist of users (identified by e-mail address) at
its discretion for whom it will not issue stock quotes. For example, RBStocks
may periodically receive a list of mail addresses from Traders Anonymous,
which it will add to its blacklist.

Figure 6-1, “Overall scenario logical architecture” on page 184, shows the overall
configuration and lists the protocols used to establish the single sign-on or
account federation. It also describes in which role each of the corporations are,
that is, the identity provider or service provider. Each of the companies is
presented as logical components; the detailed configuration can be found in the
following chapters describing the technical aspects of the federation-related
communications between the companies.

The interaction diagrams below are logical representations of the use cases that
will be considered. In each case, the technical details are explained in the
chapters that follow by considering the messages sent from and to each of the
corporations involved.

Simple skeleton applications were generated using Rational® Application
Developer to allow us to walk through the scenario. The applications have a
minimum of context and function, and serve only to allow the users to follow the
flow. Where relevant, the application screens show attribute data about the user
that was passed between the identity provider and service provider during
federated transactions.
 Chapter 6. Overview 185

6.1 Use case 1 - SAML/JITP
Employee One, an employee at BigCorp, decides to book business travel. He
clicks a link from the BigCorp portal (uses Windows or Linux client, SPNEGO,
Kerberos, SAML 1.0). When logging into RBTravel, an account for Employee One
is automatically provisioned if necessary. The interaction is shown in Figure 6-2.

Figure 6-2 Use case 1 high-level interaction

Figure 6-2 is explained below:

1. Employee One accesses the BigCorp employee portal and is automatically
authenticated from his desktop workstation. An implicit SPNEGO exchange
occurs between John’s browser and the employee portal to authenticate John
to the portal. Having implicitly authenticated Employee One, the employee
portal home page is returned to John’s browser.

2. Employee One clicks a link to the RBTravel application.

3. RBTravel, as part of a single sign-on operation, determines whether a local
user account and travel profile exists for Employee One. If not, it creates one
in real time and authenticated Employee One based on a SAML Assertion
exchanged in the single sign-on.

4. RBTravel returns a customized portal application to Employee One’s browser.

6.2 Use case 2 - WS-Federation
Employee One, an employee at BigCorp, decides to book a telephone
conference for an upcoming business meeting. He clicks a link from the BigCorp
portal (using WS-Federation with a many:1 user mapping) and is automatically

1. Employee One accesses BigCorp portal page

2. Employee One clicks link to RBTravel

4. RBTravel responds with personalized portal page

BigCorp RBTravelEmployee One
Browser

3. RBTravel just-
in-time provisions

the user if
necessary
186 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

authenticated to RBTelco. RBTelco maintains only one user account shared for
all BigCorp users; however, during the single sign-on a session credential is
created that includes personalization and audit information about the user
(display name, e-mail address, and so on) in extended attributes. The interaction
is shown in Figure 6-3.

Figure 6-3 Use case 2 high-level interaction

6.3 Use case 3 - Liberty
John Public, a retail customer of RBTelco, also has user accounts at RBBanking
and RBTickets. Through a business and technical arrangement between
RBTelco and RBBanking, liberty alias data has already been established. There
are two main use case flows we discuss:

� Federating accounts between RBTelco and RBTickets. The high-level user
interaction for this flow is shown in Figure 6-4 on page 188.

� Single sign-in from RBTelco to both RBBanking and RBTickets, followed by
single logout. The high-level user interaction for this flow is shown in
Figure 6-5 on page 189.

1. Employee One accesses BigCorp portal page

2. Employee One clicks link to RBTelco

4. RBTelco responds with personalized portal page

BigCorp RBTelcoEmployee One
Browser

3. RBTravel
maps user to
bigcorp_guest

and include
personalization

attributes in
session

credential
 Chapter 6. Overview 187

Figure 6-4 Use case 3 high-level interaction for federating accounts

Figure 6-4 is explained below:

1. John Public, a retail customer of RBTelco, authenticates to RBTelco using the
user name and password as the user ID jpublic.

2. John Public sees that RBTelco is offering the ability to federate accounts with
RBTickets, and he has an account there. He selects the link to federate with
RBTickets.

3. Not having yet logged in to RBTickets, authentication is required. John Public
logs in to RBTickets with user name and password using his user ID johnp.

4. RBTickets prompts John to ensure that he agrees to federating the accounts.
This can be turned off by configuration.

5. John gives consent, and the accounts are federated.

6. John receives the RBTickets portal page.

1. John Public authenticates to RBTelco as jpublic

2. John Public requests to federate account with RBTickets

RBTelco RBTicketsJohn Public RBBanking

3. John Public authenticates directly to RBTickets as johnp

4. RBTickets prompts for consent to federate

5. John Public gives consent

6. RBTickets returns portal page
188 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 6-5 Use case 3 high-level interaction for single login and single logout

Figure 6-5 is explained below:

1. John Public, a retail customer of RBTelco, authenticates to RBTelco using
user name and password as the user ID jpublic.

2. John selects a link to RBBanking which automatically signs him in as his
RBBanking user ID jp.

3. John receives the RBBanking portal application.

4. Later, during the same session, John navigates back to RBTelco.

5. John selects a link to RBTickets. Having previously federated there, he is
automatically signed in to RBTickets with his user ID johnp.

6. Later John navigates back to RBTelco. Actually, this is not at all significant,
since single logout can be initiated from either of the service providers or the
identity provider. Our simple demonstration applications only happen to show
a logout link at RBTelco.

7. John clicks logout, and is logged out of RBTelco and all partners to which he
has signed in (RBBanking and RBTickets).

8. John receives the logout success page.

1. John public authenticates to RBTelco as jpublic

2. John Public clicks link to RBBanking

RBTickets

3. RBBanking returns portal page

7. John public revisits RBTelco portal

5. John Public clicks link to RBTickets

6. RBTickets returns portal page

8. John Public clicks Liberty Logout

9. John public receives logout success page

4. John public revisits RBTelco portal

John Public RBTelco RBBanking
 Chapter 6. Overview 189

6.4 Use case 4 - Web services security management
This use case has two primary types of actors, and three main resulting
scenarios. The three scenarios have exactly the same number of flows, as
depicted in Figure 6-6.

Figure 6-6 Use case 4 high-level interaction

The scenario variants of the use case are described below:

� Real-time Stock Quote

a. Employee One logs into his desktop at BigCorp, and from the BigCorp
portal clicks a link to RBTelco, where he is automatically signed on using
WS-Federation, as shown in 6.2, “Use case 2 - WS-Federation” on
page 186.

b. On the RBTelco portal page, there is an option to get a stock quote.
Employee One selects the stock quote application, and requests a quote
for IBM.

c. A secured Web services request is sent from RBTelco to RBStocks
containing a SAML 1.1 assertion representing Employee One. The
securing of the Web services request is done with a combination of Tivoli
Federated Identity Manager Web services security management and
WebSphere Web service security technology components. The SAML
assertion is built by Tivoli Federated Identity Manager from the Access
Manager session credential information at RBTelco, and includes:

• Employee One’s e-mail address (emp1@bigcorp.com)
• An attribute indicating this user originated from BigCorp

1. User authenticates to RBTelco

2. User requests stock quote for IBM

5. Display result to user

RBTelco RBStocks
Employee One

Or
John Public

3. Secured web services request with SAML 1.1

4. Stock quote or error response
190 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

d. RBStocks receives and validates the secured Web services request. Tivoli
Federated Identity Manager Runtime and Tivoli Federated Identity
Manager Web services security management technology is used to
validate the SAML assertion and perform identity mapping. As the e-mail
address in the assertion is not blacklisted, and since the user came from a
business partner of RBTelco (that is, BigCorp), RBStocks responds with a
real-time stock quote.

e. RBTelco returns an HTML display of the reply for Employee One.

� Delayed Stock Quote

a. John Public, a retail customer of RBTelco, logs into RBTelco using his
user name and password.

b. On the RBTelco portal page, there is an option to get a stock quote. John
selects the stock quote application, and requests a quote for IBM.

c. A secured Web services request is sent from RBTelco to RBStocks
containing a SAML 1.1 assertion representing John. The securing of the
Web services request is done with a combination of Tivoli Federated
Identity Manager Web services security management and WebSphere
Web service security technology components. The SAML assertion is built
by Tivoli Federated Identity Manager from the Access Manager session
credential information at RBTelco, and includes:

• John Public’s e-mail address (jplubic@rbtelco.com)
• An attribute indicating this user originated from RBTelco

d. RBStocks receives and validates the secured Web services request. Tivoli
Federated Identity Manager Runtime and Tivoli Federated Identity
Manager Web services security management technology is used to
validate the SAML assertion and perform identity mapping. As the e-mail
address in the assertion is not blacklisted, and since the user is a retail
customer of RBTelco, RBStocks responds with a delayed stock quote.

e. RBTelco returns an HTML display of the reply for John.

� Blacklisted User

a. RBStocks has a blacklist of e-mail addresses for which it will not issue
stock quotes. John Public’s e-mail address (it could equally be Employee
One) is added to the blacklist. Then John logs into RBTelco using his user
name and password.

b. On the RBTelco portal page, there is an option to get a stock quote. John
selects the stock quote application, and requests a quote for IBM.

c. A secured Web services request is sent from RBTelco to RBStocks
containing a SAML 1.1 assertion representing John. The securing of the
Web services request is done with a combination of Tivoli Federated
Identity Manager Web services security management and WebSphere
 Chapter 6. Overview 191

Web service security technology components. The SAML assertion is built
by Tivoli Federated Identity Manager from the Access Manager session
credential information at RBTelco, and includes:

• John Public’s e-mail address (jplubic@rbtelco.com)
• An attribute indicating this user originated from RBTelco

d. RBStocks receives and validates the secured Web services request. Tivoli
Federated Identity Manager Runtime and Tivoli Federated Identity
Manager Web services security management technology is used to
validate the SAML assertion and perform identity mapping. As the e-mail
address in the assertion is blacklisted, authorization of the requests fails,
and RBStocks responds with an error.

e. RBTelco returns a HTML error page to the user.

6.5 Conclusions
This concludes the overview of the business use cases considered in this book.
The chapters that follow delve into the technical details of how these scenarios
were configured and the key implementation and integration tasks performed.
Each use case is presented in full in a separate chapter, showing both the
identity provider and service provider configurations.
192 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 7. Use case 1 - SAML/JITP

In the following chapter we take a closer look at a very common real-world
scenario of federated identity management. Our first use case is a mixture of a
simple 1:1 identity mapping and just-in-time-provisioning (JITP) of the identity
provided by an identity provider (IdP) to a service provider (SP). The JITP allows
the usage of personalized information at the SP without the drawbacks that a
normal 1:1 solution have.

To spice things up we have used the Windows integrated Desktop
Single-Sign-On (SSO) so that the user experience is like a barrier-free solution.
This will raise the end users’ acceptance and satisfaction, which is of course a
good thing.

7

© Copyright IBM Corp. 2004, 2005. All rights reserved. 193

7.1 Scenario details

Figure 7-1 Use case 1 logical architecture

We focus on Employee One (emp1) of BigCorp, who logs into his desktop and
opens a Web browser with the BigCorps intranet portal. While doing so he
automatically gets signed in by the integrated Desktop Single-Sign-On using
SPNEGO. Using the portals integrated link to the RBTravel home page he not
only gets single signed-on to RBTravel, but his data will be provisioned just in
time if they are not already present in the destination system.

The components and actors that are present in this use case are highlighted by
the grey box in the upper left corner of the diagram shown in Figure 7-1, “Use
case 1 logical architecture” on page 194.

7.1.1 Contract
The very first step in setting up a relation between an IdP and SP is clarifying the
technical details of how and what data will be exchanged.

RBTelco

BigCorp

RBTravel

IdP

SP

SAML SSO with JITP
1:1

WS-Fed SSO many:1
 (Teleconference Booking)

 UID / P
ass Login

Teleconf.
Application

Portlet

 Web Services (WSSM)
 SAML

Lib
ert

y

 Liberty

 (pre-provisioned)

Active
Directory

(bigcorp.user)

(emp1@bigcorp.com)

D
es

kt
op

 S
SO

SP
N

EG
O

View Bill
Application

IdPSP

jpublic

emp1

bpublic
 UID / Pass Login

LDAP
User Registry

RBStocks

Blacklist of Mail

SP

RBBanking

RBTickets

1:1

1:1

SP

SP
194 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The exchange of intercompany data is a very sensitive issue and will be
influenced by many factors before a contract between an identity and a service
provider can be signed. We stick with the technical facts to ease the
understanding of this part and to have the drivers for the federation configuration.

BigCorp and RBTravel have agreed to federate identities using SAML Version
1.0 using the Browser/Artifact Profile over a HTTPS connection. The SOAP back
channel will be using mutually authenticated SSL with a client certificate.

The SAML 1.0 assertion will be signed. The SAML Subject name identifier will
contain the e-mail address of the user. There will be another attribute passed in
the attribute list of the assertion—the display name of the user for personalization
at RBTravel. Example 7-1shows a sample signed SAML assertion, including its
SOAP envelope, confirming the format and name spaces of the attributes.

Example 7-1 Sample SAML assertion passed from BigCorp to RBTravel

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header></soapenv:Header>
 <soapenv:Body>
 <samlp:Response xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
InResponseTo="uuid2adb9caf-0105-fac1-80d7-fae33ca96775"
IssueInstant="2005-07-18T16:51:40Z" MajorVersion="1" MinorVersion="0"
ResponseID="FIMRSP_2adb9d94-0105-ec8d-afc1-8ce3efd72411">
 <samlp:Status>
 <samlp:StatusCode Value="samlp:Success"></samlp:StatusCode>
 </samlp:Status>
 <saml:Assertion
AssertionID="Assertion-uuid2adb9cee-0105-fe74-40da-8ce3efd72411"
IssueInstant="2005-07-18T16:51:39Z" Issuer="https://www.bigcorp.com"
MajorVersion="1" MinorVersion="0">
 <saml:Conditions NotBefore="2005-07-18T16:41:39Z"
NotOnOrAfter="2005-07-18T17:01:39Z">
 <saml:AudienceRestrictionCondition>

<saml:Audience>https://www.rbtravel.com/ITFIM/sps/samlfed/saml/login</saml:Audi
ence>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement
AuthenticationInstant="2005-07-18T16:51:39Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">emp1@bigcorp.com</s
aml:NameIdentifier>
 Chapter 7. Use case 1 - SAML/JITP 195

 <saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:artifact-01</saml:Confi
rmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>
 </saml:AuthenticationStatement>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">emp1@bigcorp.com</s
aml:NameIdentifier>
 <saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:artifact-01</saml:Confi
rmationMethod>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Attribute AttributeName="cn"
AttributeNamespace="http://www.bigcorp.com/cn">
 <saml:AttributeValue>Employee One</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature Id="uuid2adb9d23-0105-e44f-c899-8ce3efd72411">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:CanonicalizationMethod
>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></ds:SignatureMethod>
 <ds:Reference
URI="#Assertion-uuid2adb9cee-0105-fe74-40da-8ce3efd72411">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></ds:Transfor
m>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <xc14n:InclusiveNamespaces
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="saml
ds"></xc14n:InclusiveNamespaces>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestMethod>

<ds:DigestValue>XJieAD/CpXPPw3q6wn0u2iOLwsA=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
196 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<ds:SignatureValue>BYV5yZ8QY3b8aKm9zaQqmrGIWFYaLwcDUEr5sp7Bgn4i2c/SEk2DErT2z0dW
/nZR2i7uhQ1OZDfu2PrB/ruv3kyMJUVyuy2wHD2Ro4SgQ4kYbxyg6GROtzJC2Cx+EfQz4aioIbV7eKO
LF+NZ0hBj2kpb/8TobqTzgOK9L803UkE=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>

<ds:X509Certificate>MIICqjCCAhOgAwIBAgIBAzANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExN
maW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIxMj
QzOVoXDTEwMDYxNjIxMjQzOVowRjElMCMGA1UEAxQcYmlnY29ycF9yYnRyYXZlbC5iaWdjb3JwLmNvb
TELMAkGA1UEBhMCVVMxEDAOBgNVBAoTB0JpZ0NvcnAwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGB
AL+up7hI0vMJB/g9ZhglKTW3x/PxTVhG5l6hJ3kNdrZeJhPg59usfWmrEJSn2UglEGSGz5kTWvYS2dn
AMANDAoWESTMANgbyzLdp0b2iLKsLekyRcRk+u6i6Hbs8gOzoLGJyv+zZaOLSUy0j186SrGb8L575PA
Ws5jlkwPlULohPAgMBAAGjgbQwgbEwDAYDVR0TAQH/BAIwADAdBgNVHQ4EFgQUWW6uNP9izCSYZO4Tt
eb6Sa9bx2owYQYDVR0jBFowWIAUQNM+O+Jvv8jfpobQbQhsXg/LkTGhPaQ7MDkxHDAaBgNVBAMTE2Zp
bS5yZWRib29rLmlibS5jb20xCzAJBgNVBAYTAlVTMQwwCgYDVQQKEwNJQk2CAQEwCwYDVR0PBAQDAgS
MARTINGgWESTMANiBDQQFFgNocGgwDQYJKoZIhvcNAQEEBQADgYEANmvniu+bM1gS3iBSK1w/3X/rZL
3GTPOoMlUCcGhzy1mF0xKe+Bm/lIaqG2qdx2uGjKke0ACjecNM93Je9PfYb7XP1p53C7azCOZIsOeiw
fTRDShWtQqQoOwduIYafJSeQNn14zakIxCReVSKUXs2eQdBCLi4KVxHN8Zg6W1xwdQ=</ds:X509Cer
tificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </saml:Assertion>
 </samlp:Response>
 </soapenv:Body>
</soapenv:Envelope>

7.1.2 User experience
Our user, Employee One, will access three systems in this use case. For
accessing all systems, he will authenticate himself only once by logging into his
desktop system. This could be done by providing a user and password, but also
by any other valid authentication mechanism like token systems, secure cards,
biometric services, and so on. The point is that after the user is validated by the
system he is able to access all systems without any further visible authentication
of the user.

So the user’s first step is to log into his desktop, which can be seen in Figure 7-2
on page 198 for Linux or Figure 7-3 on page 198 for Windows. As you see, the
user name and password have to be entered once.
 Chapter 7. Use case 1 - SAML/JITP 197

Figure 7-2 Employee One logs on to his Linux desktop

Figure 7-3 Employee One logs on to his Windows desktop

The second step is to open a browser and point to the BigCorps Intranet portal,
as in Figure 7-4 on page 199. Please notice that the user name appears in the
198 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

title and inside the body of the page. This is possible because the user has been
signed on using SPNEGO without any special intervention.

Figure 7-4 BigCorp Portal Intranet page

Most people are used to this automatic logon from using Microsoft’s Internet
Explorer (IE since Version 5.01) and the Internet Information Server (IIS since
Version 5.0). We wanted to show that it works perfectly with other browsers and
platforms. For more information visit:

http://www.mozilla.org/projects/netlib/integrated-auth.html

Now that our Employee One is already authenticated to the BigCorp Intranet
portal, he heads towards RBTravel and clicks the Personal Travelmanagement
@ RBTravel link.
 Chapter 7. Use case 1 - SAML/JITP 199

http://www.mozilla.org/projects/netlib/integrated-auth.html

Figure 7-5 Employee One at RBTravel’s site

After the user has selected the link to RBTravel, several invisible things happen,
and he will arrive at the screen shown in Figure 7-5.

Please note that the user’s full name appears inside the body of the page.
Without any further interaction, the user has been signed on to the destination.
Even more, the user’s data have been provisioned while doing this the first time.
This just-in-time-provisioning (JITP) is described in depth in 7.2.2, “Single
sign-on - SAML/JITP” on page 201.

You may note that the user has the option to remove his provisioned account
data by clicking the Remove this provisioned BigCorp user link. In our case it
is realized with a simple CGI script that provides this functionality. See the result
in Figure 7-6 on page 201.
200 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 7-6 User is deleted from the service provider

7.2 Functionality
The provided functionality for this scenario includes an SPNEGO and a
SAML/JITP based single sign-on.

7.2.1 Single sign-on - SPNEGO
One functionality that this use case provides is a Desktop SSO using the Simple
and Protected GSSAPI Negotiation Mechanism (SPNEGO). SPNEGO is a
GSS-API (RFC 2478) based protocol that defines a Kerberos logon over HTTP.
Thus the user’s desktop logon credentials will be used to authenticate him
against a Web server.

For more information about using SPNEGO with Access Manager see:

http://www.ibm.com/developerworks/tivoli/library/t-sso/

7.2.2 Single sign-on - SAML/JITP
The second functionality we face in this use case is an intercompany SSO based
on SAML Version 1.0 as defined by OASIS. For more details about SAML see:

http://www.oasis-open.org/

But SAML is only the transport mechanism. The important part of this scenario is
processing the user’s information from the provided SAML token and polling the
local user registry to see if this user already exists in our domain. If yes, they are
logged in. If not, we just-in-time provision the user into our local registry, and then
log them in. This way no extra synchronization has to be established between
BigCorp and RBTelco.
 Chapter 7. Use case 1 - SAML/JITP 201

http://www.ibm.com/developerworks/tivoli/library/t-sso/
http://www.oasis-open.org/

7.3 Partners involved
The corporations involved in this use case are BigCorp and RBTravel.

7.3.1 BigCorp
BigCorp provides an employee portal to access its internal systems. It also
provides an access point to services external to the company. These are typically
either employee benefits related or services provided by their business partners.

BigCorp has entered into agreements with their business partners to provide
these enhanced services through their corporate portal. These agreements
include the technical “creation” of the federation relationship between the two
parties.

7.3.2 RBTravel
RBTravel provides all necessary services for a successful and pleasant journey.
They are specialized to offer there services to companies as an integrated
service to there portals.

BigCorp is one of RBTravels customers that gets personalized services for each
user of BigCorp.

7.4 Interaction description
This use case description has been split in two parts: First, where the BigCorp
Employee One authenticates with his workstation and then accesses his
company portal. Secondly, he is heading from the portal over to his travel
information provider RBTravel.

7.4.1 High-level Interaction overview
Before we deep dive into every step of the interaction we will have a look at the
basic steps that the user is taking, as described in 7.1.2, “User experience” on
page 197.
202 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 7-7 High-level Interaction diagram

The steps shown are:

1. Employee One accesses the BigCorp one employee portal and is
automatically authenticated from his workstation. An implicit SPNEGO
exchange occurs between the browser and the portal to authenticate the
user.

2. Selected user information has been transported from BigCorps WebSEAL as
headers to the real portal so that this information has been taken to create a
personalized page for the user.

3. The user clicks a link in the portal that will bring him to the RBTravel Web site.
By doing so he gets provisioned just in time if necessary.

4. Similar to the second step, the user receives a personalized page back.

7.4.2 Single sign-on from Windows workstation (SPNEGO)
As described in 7.2.1, “Single sign-on - SPNEGO” on page 201, a user will have
a desktop SSO with a Web server. This functionality is just a piece in the chain of
a barrier free user experience, but it does not belong to this book’s theme about
Tivoli Federated Identity Management. Hence, we only give a very rough
overview of the involved interactions from step 1 and 2 of Figure 7-7:

1. The steps are:

a. The user logs into the desktop using a user and password. Note that in
case the desktop would allow other login forms like ID cards, fingerprint
reader, face recognition, and so on they would all be valid login methods.

b. The user opens a browser with the BigCorp portal URL.

c. WebSEAL requests authorization using SPNEGO.

Client Browser BigCorp Intranet
portal RBTravel

1. Access to portal with automatic SSO

2. Employee portal page returned

3. Access to link to RBTravel

4. Personalized RBTravel page returned, no visible sign on
 Chapter 7. Use case 1 - SAML/JITP 203

d. The browser answers the authorization request.

e. WebSEAL forwards the request to the backend server.

2. The steps are:

a. The backend server sends answer.

b. WebSEAL forwards the answer to the browser.

7.4.3 Single sign-on from BigCorp to RBTravel (SAML/JITP)
After the user has been SSOed to the desktop and intranet, he will now face the
BigCorp portal. The next step is to advance over to the RBTravel site. He will do
so by clicking a prepared URL that will take care of the site transfer.

We also depict the just-in-time-provisioning (JITP) that the user is not able to see
because the whole process will take place in the background.

Note: Even though the process flow in this use case starts at the IdP
(BigCorp) portal site this does not mean it could not be started at the SP
(RBTravel) site. In fact, the intersite transfer could be launched perfectly at the
SP site also.
204 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 7-8 SAML Browser/Artifact Profile flow with JITP

Client Browser BigCorp IdP RBTravel
WebSEAL

RBTravel TFIM
SPS JITP.jarRBTravel TFIM

STS
RBTravel

Application

3g. SOAP message with SAML response

3o. HTTP Response with TARGET
 URL info (EAI – AM Cred)

3e. HTTP GET to SSO URL
 with SAML artifact

3q. HTTP 302 redirect to TARGET

3p. Create session ID for
 RBTravel

4a. HTTP response with application content

3s. Authorization check

3t. HTTP GET to application URL

3r. HTTP GET to application URL TARGET

4b. HTTP response with application content

3d. HTTP GET to RBTravel ACS
 with TARGET and SAML artifact

3a. HTTP GET to BigCorp IdP
 for intersite transfer to TARGET

3h. SSO/SAML Token

3n. AM Credential

3j. Checking for existing TAM user username

3i. Callout to JITP

3k. Return 0..1

3l. If 0 Create username and Set to Valid

3m. Return username

3b. Create SAML artifact
 and assertion

3c. HTTP 302 redirect request

3f. SOAP message with SAML
 request to BigCorp ARS
 Chapter 7. Use case 1 - SAML/JITP 205

Remember that the user has already signed in to his desktop and intranet, as
described in the previous chapter. Now we express steps 3 and 4, shown in
Figure 7-7 on page 203, of the use case in more detail:

3. The steps are:

a. By clicking an arranged URL that initiates the intersite-transfer-service, the
user starts the SSO from the IdP to the SP:

https://www.bigcorp.com/ITFIM/sps/samlfed/saml/login?TARGET=https://www.
rbtravel.com/apps/RBTravel/index.jsp

b. As we already have a session with the IdP, the SSO Protocol Service
(SPS) at BigCorp now creates the assertion and its corresponding artifact.
The assertion will be stored in memory and the artifact will be attached to
the URL that the browser receives back, like this example:

https://www.rbtravel.com/ITFIM/sps/samlfed/saml/login?SAMLart=AAFlsv0siM
1dXMY2%2BjJhh5NZzflYmdoWiS%2BuuTsAFEoB4%2BvxIagsd%2Btk&TARGET=https://ww
w.rbtravel.com/apps/RBTravel/index.jsp

The artifact is constructed of a version number (TypeCode), the provider’s
succinct ID (SourceID), and a random number (AssertionHandle). The
base64 encoded artifact is used as a pointer to its corresponding
assertion.

c. The user’s browser receives the above created URL with a HTTP 302
redirect request.

d. Now the browser automatically uses the redirect to the destined URL.

e. The SP WebSEAL forwards the request to RBTravels SPS.

f. Invisible to the user, the SPs Assertion Consumer Service (ACS) sends a
SAML SOAP message to the IdPs Assertion Resolution Service (ARS) as
a HTTP POST.

g. The ARS at the IdP now sends the SAML assertion back to the ACS.

h. The SPS now passes over the SSO/SAML token to the Secure Token
Service (STS) inside the trust service and validates the incoming request.

i. At this point we leave the normal SAML Browser/Artifact Profile path for a
few more stops to introduce the JITP. Instead of just mapping the
information pieces from inside the SAML token, we call out for a little Java
JAR that is referenced inside the XSL mapping (see “BigCorp mapping for
use case 1” on page 404).

j. The JAR tries to find an already existing Access Manager user over API
calls.

k. Either no user or one user can be located.
206 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

l. In case no user was found, the JAR now creates and activates a user over
the API. By doing so the user will be provisioned the first time he ever
signs on to the SP without any intervention of external interfaces or
synchronization.

m. The last step of our little Java magic is to send back the Access Manager
user name to the STS and fulfill the required user mapping.

n. With the delivered Access Manager user name, the STS is now able to
build a valid Access Manager credential and issues this information back
to the SPS.

o. After the user now has been SSOed RBTravels SPS creates a HTTP
response to the real TARGET and sends back the credentials using the
External Authentication Interface (see “External Authentication Interface”
on page 370).

p. RBTravels WebSEAL intercepts the incoming response and creates a
user session.

q. The next step is again visible to the user because RBTravels WebSEAL is
sending a HTTP 302 redirect request to the browser with the TARGET
URL as location.

r. The browser picks up the redirect request and finally loads the TARGET
URL as requested with the first step.

s. RBTravels WebSEALs makes an authorization check and allows access
to the protected destination.

t. The WebSEAL now sends the request to the junctioned application.

4. Step 4 is:

a. A HTTP response is delivered back from the application server to
RBTravels WebSEAL.

b. Finally the requested content is delivered to the user’s browser.

For more information about the Java Code and how to use it inside the XSLT
mapping see “Calling Java code from mapping rules” on page 399.

7.5 Configuration data
The following chapters describe the configuration for the federation between
BigCorp and RBTelco.

The assumption is that Tivoli Federated Identity Management is already installed
and the runtime deployed and configured.
 Chapter 7. Use case 1 - SAML/JITP 207

The following references assist with the installation and configuration of Tivoli
Federated Identity Management:

� IBM Tivoli Identity Manager Installation Guide Version 6.0, GC32-1667-00,
discusses the installation of Tivoli Federated Identity Management.

� IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00, contains basic information about configuring the Tivoli
Federated Identity Management runtime, and information on configuring
federations.

� Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363, contains information about configuring Tivoli Federated Identity
Management for use with WebSEAL

7.5.1 IdP-related configuration data
First we show the federation configuration data, and after this we have the
partner configuration data.

Configuring a SAML Federation at BigCorp consists of the following tasks:

� Importing BigCorp signing keys

� Configuring Tivoli Federated Identity Management using SAML as an identity
provider

� Configuring a service provider partner for RBTravel

� Configuring an Access Manager policy for the federation URLs

Importing BigCorp keys
Appendix C, “Keys and certificates” on page 425, contains information on the key
strategy used for all use cases. In particular, note that for this federation
configuration the bigcorp-signing.jks key file was imported into Tivoli Federated
Identity Management. This contains the signing key used to sign the SAML
assertion sent to RBTravel.

Configuring BigCorp as a SAML identity provider
Detailed information on configuring an identity provider for using SAML is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,

Note: The format to address a key in a key file is “<keyfile>_<key>”. So in
Figure 7-9 on page 209, “bigcorp-signing” is the above-mentioned JKS
keystore file and the referenced key is called “bigcorp_rbtravel”, which
assembles to “bigcorp-signing_bigcorp_rbtravel”.
208 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

GC32-1668-00. This section discusses the specific configuration parameters
used for BigCorp.

Figure 7-9 IdP SAML federation configuration summary page

Figure 7-9 shows all information needed to configure the SAML federation for
BigCorp. For more information about the identity mapping including the complete
XSLT mapping see “BigCorp mapping for use case 2” on page 410.
 Chapter 7. Use case 1 - SAML/JITP 209

Configuring a service provider partner for RBTravel
Figure 7-10 shows all of the information needed to configure the SAML
federation partner RBTravel with BigCorp. The identity mapping rule is already
defined in the federation and is therefore left empty in the partner configuration.

Figure 7-10 IdP SAML federation partner configuration summary

Attention: A common mistake for any configuration is to enter the Provider ID
with a trailing slash like https://www.bigcorp.com/, which will lead to an error
when using the configuration. Remember that this is just a configuration
parameter and not a link. Future versions of the console may take care of this.
210 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Configuring Access Manager policy at BigCorp
In this case there is actually no specific requirement for an Access Manager
configuration of the SAML URL at BigCorp. This is because BigCorp’s policy is to
allow any employee to access the RBTravel-hosted traveling arrangement
application. That being the case, the default-webseal ACL, which allows access
to any authenticated user, is suitable. If only some employees were allowed to
access the application (for example, frequent travelers), then the following object
in BigCorp should be appropriately protected with an Access Manager
authorization policy:

/WebSEAL/www.bigcorp.com-default/ITFIM/sps/samlfed/saml/login

As we are using the SAML Browser/Artifact profile, we have to set up some
protective measures to deny the access to the Tivoli Federated Identity
Management SOAP endpoint at the default WebSEAL and only allow access to a
special group of users to the SOAP endpoint at the SOAP WebSEAL at port 444.
We introduced two ACLs that will take care of this.

The ACL not_allowed_acl, as shown in Example 7-2, denies access to objects
for normal unauthenticated and authenticated users and is attached to the
following two objects:

/WebSEAL/www.bigcorp.com-default/ITFIM/sps/samlfed/saml/soap
/WebSEAL/www.bigcorp.com-soap

The first object is the Tivoli Federated Identity Management SOAP endpoint at
the default WebSEAL and the second object is the complete SOAP WebSEAL.

Example 7-2 Access Manager not_allowed_acl ACL

ACL Name: not_allowed_acl
 Description: Deny access to objects for normal unauth and auth user
 Entries:
 User sec_master TcmdbsvaBRl
 Group webseal-servers Tgmdbsrxl
 Group iv-admin TcmdbsvaBRrxl
 Any-other T
 Unauthenticated T

As we denied access to the whole SOAP WebSEAL with the above measures,
we introduced the ACL soap_clients_acl, as shown in Example 7-3 on page 212,
which allows access for the group soap_clients_grp. This ACL is attached to the
SOAP endpoint of the SOAP WebSEAL:

/WebSEAL/www.bigcorp.com-soap/ITFIM/sps/samlfed/saml/soap
 Chapter 7. Use case 1 - SAML/JITP 211

Example 7-3 Access Manager soap_clients_acl ACL

ACL Name: soap_clients_acl
 Description: Allow access to objects for group soap_clients
 Entries:
 User sec_master TcmdbsvaBRl
 Group iv-admin TcmdbsvaBRrxl
 Group webseal-servers Tgmdbsrxl
 Group soap_clients_grp Tr
 Any-other T
 Unauthenticated T

The WebSEAL instance is configured to only accept client certificates as the
login method. To simplify the mapping of the certificate to the actual user, we
have used a very simple CDAS module, shown in Example 7-4 on page 215.
This CDAS module is mapping every certificate to the user soapclient, which is of
course a member of the soap_clients_grp, and so it is granted access to the
SOAP endpoint. A real-world scenario would either use WebSEAL’s built-in
mapping or a more complex CDAS module.

7.5.2 SP-related configuration data at RBTravel
Configuring SAML at RBTravel consists of the following tasks:

� Importing RBTravel partner keys

� Configuring Tivoli Federated Identity Management for SAML as a service
provider

� Configuring an identity provider partner for BigCorp

� Configuring Access Manager policy for the federation URLs

Importing RBTravel keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the rbtravel-partners.jks, and rbtravel-partners.jks key files have
been imported into Tivoli Federated Identity Management. These contain the
public certificate used to verify the signature on the SAML assertion sent from
BigCorp and the client certificate to authenticate against the BigCorp SOAP
WebSEAL.

Configuring RBTravel as a SAML service provider
Detailed information on configuring a SAML service provider is available in the
IBM Tivoli Identity Manager Administration Guide Version 6.0, GC32-1668-00.
This section discusses the specific configuration parameters used for RBTravel.
212 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 7-11 SP SAML federation configuration summary

Figure 7-11shows all of the information needed to configure the SAML federation
for RBTravel. For more information about the identity mapping, including the
complete XSLT mapping, see “RBTravel mapping for use case 1” on page 405.
 Chapter 7. Use case 1 - SAML/JITP 213

Configuring an identity provider partner for BigCorp

Figure 7-12 SP SAML federation partner configuration summary
214 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 7-12 shows all of the information needed to configure the SAML
federation partner RBTravel with BigCorp. The identity mapping rule is already
defined in the federation and therefore left empty in the partner configuration.

Configuring Access Manager policy at RBTravel
The SAML endpoint at RBTravel is being used to authenticate users to the
RBTravel WebSEAL. Consequently, it is necessary to allow unauthenticated
access to this URL. “Access Manager policy for trigger URLs for EAI” on
page 376 discusses the need for this, and in our case the federation URL to
which the unauthenticated-allowed ACL needs to be applied is:

/WebSEAL/<webseal_server>/ITFIM/sps/samlfed/saml/login

7.6 Assumptions/implementation notes
Though the JITP is very nice idea, it is yet not optimized due to the fact that it
calls out to check for the users with every logon. Plans are to introduce a better
way of doing so within Tivoli Federated Identity Management.

The following part shows the CDAS source code that has been used to map
client certificates to the soapclient user, as described in “Configuring Access
Manager policy at BigCorp” on page 211.

Example 7-4 Simple CDAS module mapping certificates to user soapclient

static char sccsid[]="@(#)94 1.10 src/ivauthn/modules/pdxauthn/pdxauthn_adk/xauthn.c,
pdweb.authn, pdweb390, 020409a 3/26/02 16:26:07";
/*
 * FILE: xauthn.c
 *
 * PD cross domain authentication (CDAS) demo. This file implements
 *
 * xauthn_initialize()
 * xauthn_shutdown()
 * xauthn_authenticate()
 * xauthn_change_password()
 *
 * functions used by the PD WebSEAL to authenticate
 * users based on the specified authentication
 * mechanism.
 *
 * To configure, modify the iv.conf file, under the
 * [authentication-mechanisms] stanza, select the desired
 * authentication mechanism that you want this library to
 * be used, and assign this library to it.
 *
 Chapter 7. Use case 1 - SAML/JITP 215

 * For example, if you wish this library to process all the
 * HTTP SSL username/password LDAP authentication, specifies
 * the following:
 *
 * passwd-ldap = libxauthn.so
 *
 * or
 *
 * passwd-ldap = libxauthn.so&<args>
 *
 * if you have any particular arguments that you want to pass
 * to this library for initialization and shutdown.
 *
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ogauthzn.h>
#if !defined(WIN32) && !defined(_WIN32)
 #include <strings.h>
#endif

#include "pdxauthn.h"
#include "xattr.h"
#include "xnvlist.h"

/*
 * FUNCTION NAME
 * xauthn_initialize
 *
 * DESCRIPTION
 * init the authentication service
 *
 * ARGUMENTS
 * [in] argc The count of arguments to the service.
 * [in] argv The array of argument strings.
 *
 * RETURN VALUE
 * XAUTHN_S_COMPLETE on success, error code on failure
 */
xauthn_status_t
xauthn_initialize(
 int argc, /* in */
 const char **argv /* in */
)
{
 return XAUTHN_S_COMPLETE;
216 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

}

/*
 * FUNCTION NAME
 * xauthn_shutdown
 *
 * DESCRIPTION
 * Shutdown the authentication service.
 * The initialization parameters are passed in
 * again.
 *
 * ARGUMENTS
 * [in] argc The count of arguments to the service.
 * [in] argv The array of argument strings.
 *
 * RETURN VALUE
 * XAUTHN_S_COMPLETE
 */
xauthn_status_t
xauthn_shutdown(
 int argc, /* in */
 const char **argv /* in */
)
{
 return XAUTHN_S_COMPLETE;
}

/*
 * FUNCTION NAME
 * xauthn_authenticate
 *
 * DESCRIPTION
 * Examine the received user authentication information, and generate a
 * client identity. The received information will vary depending on the
 * specified authentication mechanism.
 *
 * ARGUMENTS - IN
 * authInfo List of names and set of values containing the user
 * authentication data. The pdxauthn.h contains all the
 * possible names that could be in this list. The actual
 * list of names received will depend on the specified
 * authentication mechanism.
 *
 * ARGUMENTS - OUT
 * identity Pointer to the resulted client identity.
 *
 * st Set to XAUTHN_S_COMPLETE, or to an error status indicating
 Chapter 7. Use case 1 - SAML/JITP 217

 * the nature of the failure.
 */
xauthn_status_t
xauthn_authenticate(
 xnvlist_t *authnInfo,
 xauthn_identity_t *ident
)
{
 char **name = 0;

 printf("===============================\n");
 printf("Mapping to soapclient\n");
 printf("===============================\n");

 /* This is being used with Active Directory - so use uraf name */
 name = &ident->prin.data.uraf_name;
 ident->prin.prin_type = XAUTHN_PRIN_TYPE_URAF;

 /* set the username to soapclient */
 *name = (char *) strdup("soapclient");

 return XAUTHN_S_COMPLETE;
}

xauthn_status_t
xauthn_change_password(
 xnvlist_t *authnInfo
)
{
 return XAUTHN_S_COMPLETE;
}

218 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 8. Use case 2 - WS-Federation

This chapter presents use case 2, a many-to-one federation example utilizing the
WS-Federation single sign-on protocol. In this scenario BigCorp is the identity
provider and RBTelco is the service provider. RBTelco is providing a telephone
conference booking service, which is open to all employees of BigCorp.

The nature of the authentication to RBTelco is many-to-one in that all BigCorp
employees are mapped (during the single sign-on) to just one Access Manager
account at RBTelco, called bigcorp_guest. For audit purposes (to know who
actually booked the telephone conference), we carry the BigCorp e-mail address
of the actual BigCorp user as an extended attribute in the session credential for
bigcorp_guest. For personalization of the display at RBTelco, we also carry a
display name sent from BigCorp as an extended attribute in the bigcorp_guest
credential.

8

© Copyright IBM Corp. 2004, 2005. All rights reserved. 219

8.1 Scenario details

Figure 8-1 Use case 2 logical architecture

We focus on Employee One (emp1) of BigCorp, who logs into his desktop and
opens a Web browser with the BigCorp intranet portal. While doing so he
automatically gets signed in by the integrated Desktop Single-Sign-On using
SPNEGO. Using the portal integrated link to the RBTelco personal tools (which
includes the telephone conference booking application), he will be automatically
signed in to RBTelco as the user bigcorp_guest.

The components and actors that are present in this use case are highlighted by
the grey box in the upper left corner of the diagram shown in Figure 8-1, “Use
case 2 logical architecture” on page 220.

8.2 Contract
The very first step in setting up a relation between an IdP and SP is to clarify the
technical details of how and what data will be exchanged.

RBTelco

BigCorp

RBTravel

IdP

SP

SAML SSO with JITP
1:1

WS-Fed SSO many:1
 (Teleconference Booking)

 UID / P
ass Login

Teleconf.
Application

Portlet

 Web Services (WSSM)
 SAML

Lib
ert

y

 Liberty

 (pre-provisioned)

Active
Directory

(bigcorp.user)

(emp1@bigcorp.com)

D
es

kt
op

 S
SO

SP
N

EG
O

View Bill
Application

IdPSP

jpublic

emp1

bpublic
 UID / Pass Login

LDAP
User Registry

RBStocks

Blacklist of Mail

SP

RBBanking

RBTickets

1:1

1:1

SP

SP
220 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The exchange of intercompany data is a very sensitive issue and will be
influenced by many factors before a contract between an identity and a service
provider can be signed. We will just stick with the technical facts to ease the
understanding of this part and to have the drivers for the federation configuration.

BigCorp and RBTelco have agreed to federate identities using the
WS-Federation passive requestor profile. The WS-Federation single sign-on
payload will carry a digitally signed SAML 1.1 assertion. The partners will not
support single sign out in this case, as this is not strictly possible at BigCorp
since the users have desktop single sign-on and will be automatically signed
back into the BigCorp portal on their next request. Instead, RBTelco will provide
a link to log out the user out from their site only.

The digitally signed SAML assertion will contain the user’s e-mail address as the
Subject’s NameIdentifier. The attribute list of the SAML assertion will contain the
display name of the user for personalization of the display at RBTelco.
Example 8-1 shows an example SAML assertion, which shows the full format,
including attribute name spaces.

Example 8-1 Sample SAML Assertion from BigCorp to RBTelco

<saml:Assertion
AssertionID="Assertion-uuid203f1557-0105-f23c-5b82-8ce3efd72411"
IssueInstant="2005-07-16T15:24:29Z"
Issuer="https://www.bigcorp.com/ITFIM/sps/wsfed/wsf" MajorVersion="1"
MinorVersion="1" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-07-16T15:14:29Z"
NotOnOrAfter="2005-07-16T15:34:29Z">
 <saml:AudienceRestrictionCondition>
 <saml:Audience>
 https://www.rbtelco.com/ITFIM/sps/wsfed/wsf
 </saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement AuthenticationInstant="2005-07-16T15:24:29Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 emp1@bigcorp.com
 </saml:NameIdentifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 Chapter 8. Use case 2 - WS-Federation 221

 emp1@bigcorp.com
 </saml:NameIdentifier>
 </saml:Subject>
 <saml:Attribute AttributeName="cn"
AttributeNamespace="http://www.bigcorp.com/cn">
 <saml:AttributeValue>
 Employee One
 </saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature Id="uuid203f1582-0105-efbb-6039-8ce3efd72411"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference
URI="#Assertion-uuid203f1557-0105-f23c-5b82-8ce3efd72411">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <xc14n:InclusiveNamespaces PrefixList="saml ds"
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>
 sWS4qUyQXSgMRHM62ADxLHGfFD4=
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
....encoded data snipped for readability....
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
....encoded data snipped for readability....
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
</saml:Assertion>
222 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

8.3 User experience
This section covers both the single sign-on user experience and the logout
experience from RBTelco.

8.3.1 Single sign-on user experience
We pick up the single sign-on user experience at BigCorp, just after a user has
logged into his desktop and opened his browser to the BigCorp portal page.
Since BigCorp employees have SPNEGO authentication to WebSEAL, no
explicit authentication is required beyond the desktop login to the Windows
domain. More information about the SPNEGO authentication is available in
Chapter 7, “Use case 1 - SAML/JITP” on page 193.

Figure 8-2 BigCorp Portal Intranet page

Figure 8-2 shows the BigCorp Portal Page, with the link to RBTelco.
 Chapter 8. Use case 2 - WS-Federation 223

The user selects the Personal Tools @ RBTelco link. Figure 8-3 shows a page
that will briefly be seen by the user as the single sign-on data is automatically
posted to RBTelco.

Figure 8-3 Sign-on page from BigCorp

Employee One is then automatically logged into RBTelco. As with most security
demonstrations, the user experience is quite unspectacular and quick; but after
all, that is the whole point. Figure 8-4 shows the RBTelco portal page after
sign-on is complete.

Figure 8-4 RBTelco portal page after single sign-in from BigCorp
224 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The user then selects the telephone conference booking link and sees the
booking page shown in Figure 8-5. Notice that it is partner-branded with the
bigcorp partner name in the title:

Book your telephone conference for BigCorp here:

This branding is accomplished by an HTTP header that is sent to the application
and stored in the bigcorp_guest credential during single sign-on.

Figure 8-5 RBTelco personalized and branded (for BigCorp) teleconference booking page

8.3.2 Sign-off user experience
After completing booking of the telephone conference, Employee One can
choose to log out of the RBTelco Web site. In a typical WS-Federation scenario
you would provide a link for single sign-off where the user could be logged out of
both the identity provider and service provider simultaneously. If we try to do that
with BigCorp, the single sign-off will fail because the user’s browser is configured
for desktop single sign-on, and the user is automatically re authenticated on their
next request. Instead we provide only the regular Access Manager/WebSEAL
 Chapter 8. Use case 2 - WS-Federation 225

logout link on RBTelco, which logs the user out from just the service provider
Web site.

Figure 8-6 shows the user at the RBTelco portal page, with a logout link.

Figure 8-6 RBTelco Page with logout link

After clicking the logout link, Figure 8-7 on page 227 shows the result of the
logout. This page is simply a template in WebSEAL that has been customized,
since otherwise it would show the logout for the user bigcorp_guest, which is the
name of the actual Access Manager user in RBTelco for this session. We do not
want this displayed to BigCorp employees.
226 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 8-7 Logout from RBTelco

8.4 Functionality
Let us take a closer look at the single sign-on technology used in this scenario.

8.4.1 Single sign-on - WS-Federation
The single sign-on technology used between BigCorp and RBTelco is the
WS-Federation passive requestor profile. The detailed specification of this profile
can be found at:

http://www-128.ibm.com/developerworks/webservices/library/ws-fedpass/

While the specification does not put specific restrictions on the format of the
single sign-on token being used, all inter-operability efforts to date have been
with SAML 1.1 assertions, and that is the token type used in this use case.

8.5 Partners involved
The corporations involved in this use case are BigCorp and RBTelco.
 Chapter 8. Use case 2 - WS-Federation 227

http://www-128.ibm.com/developerworks/webservices/library/ws-fedpass/

8.5.1 BigCorp
BigCorp was introduced earlier in use case 1. For the purposes of this use case,
BigCorp outsources telephone conference scheduling and management to
RBTelco. BigCorp provides a single sign-on user experience for its employees
when they go to book teleconferences at RBTelco.

8.5.2 RBTelco
RBTelco is a large provider of telephone and teleconference services. For the
purposes of this use case, a single sign-on service is provided for logging into its
telephone conference booking application. RBTelco provides a branded and
personalized look and feel to the teleconference application for each business
partner. This use case only shows one business partner (BigCorp); however, the
concept scales to any number of customers.

8.6 Interaction description
The interaction for the WS-Federation single sign-on is shown in Figure 8-8. For
those familiar with the SAML single sign-on protocols, this is very similar to a
SAML browser-post. A detailed description of the interaction follows the figure.

Figure 8-8 Interaction diagram for WS-Federation login

Employee One
Browser

BigCorp
WebSEAL

RBTelco
WebSEAL RBTelco ITFIM

RBTelco
Portal and

Applications

1. Employee One (authenticated via SPNEGO) accesses BigCorp portal page

BigCorp ITFIM
BigCorp

Portal and
Applicatons

2. Employee One clicks link to service-provider initiated WSF single sign-on
https://www.rbtelco.com/ITFIM/sps/wsfed/wsfstart?wa=wsignin1.0&wreply=https://www.rbtelco.com/apps/RBTelco/index.jsp

3. RBTelco ITFIM redirects to BigCorp for Single Signon

4. Browser accesses BigCorp WSF single signon URL

5. BigCorp responds with self-posting single-signon form

6. Browser auto-posts the HTML form containing the single sign-on data

7. EAI login to WebSEAL

8. WebSEAL redirects to https://www.rbtelco.com/apps/RBTelco/index.jsp

9. Browser access RBTelco portal page and applications

10. User is authenticated, so WebSEAL gives access to the resources
228 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

A detailed description of interaction in Figure 8-8 on page 228 follows:

1. Employee One has authenticated to BigCorp via SPNEGO desktop single
sign-on and accesses his portal page.

2. Employee One clicks a link to the RBTelco teleconference booking
application. This URL is:

https://www.rbtelco.com/ITFIM/sps/wsfed/wsfstart?wa=wsignin1.0&wreply=https
://www.rbtelco.com/apps/RBTelco/index.jsp

This URL will set up some session information for Tivoli Federated Identity
Manager on the service provider, and then redirect the user back to the
identity provider partner for login.

3. The browser is sent a redirect response to BigCorp’s single sign-on URL.

The browser follows the redirect to initiate the WS-Federation single sign-on.
This URL is:

https://www.bigcorp.com/ITFIM/sps/wsfed/wsf?wa=wsignin1.0&wreply=https://ww
w.rbtelco.com/ITFIM/sps/wsfed/wsf&wctx=https://www.rbtelco.com/apps/RBTelco
/index.jsp&wct=2005-07-16T20:34:22Z&wtrealm=https://www.rbtelco.com/ITFIM/s
ps/wsfed/wsf

A detailed explanation of these command-line parameters will help with
understanding both the configuration and the mechanics of the single sign-on
process.

Parameter Value Explanation

wa wsignin1.0 Mandatory parameter to indicate this is a
sign-on action

wreply https://www.rbtelco.com
/ITFIM/sps/wsfed/wsf

Indicates URL that RBTelco would like the
sign-on request sent to. Tivoli Federated
Identity Manager at BigCorp will actually
ignore this parameter for security reasons,
and always auto-post the sign-on data to a
URL in its partner configuration.

wctx https://www.rbtelco.com
/apps/RBTelco/index.js
p

An opaque context parameter that the IdP
(BigCorp) should ignore and return
unmodified. Tivoli Federated Identity
Manager as a service provider actually uses
it to carry the destination URL to direct the
user to after sign-in.

wct 2005-07-16T20:34:22Z A UTC time parameter that may optionally
(by configuration) be checked to be recent
by the IdP.
 Chapter 8. Use case 2 - WS-Federation 229

4. BigCorp’s Tivoli Federated Identity Manager generates a self-posting HTML
form containing the single sign-on data. Javascript is used to automatically
post the form. The Tivoli Federated Identity Manager processing converts the
user’s Access Manager Credential (passed to Tivoli Federated Identity
Manager in the iv-creds header) to a SAML assertion using the Tivoli
Federated Identity Manager trust service. A mapping rule, as shown in
Example B-11 on page 410, is used to achieve the identity mapping required
to generate the SAML assertion in the single sign-on payload.

5. The browser posts the form to the RBTelco’s WS-Federation endpoint. The
contents of a sample HTML page containing the self-posting form can be
seen in Example 8-2.

Example 8-2 Example self-posting HTML form for WS-Federation single sign-on

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>WS-Federation POST response </title>
 </head>
 <body>
 <form method="post"
action="https://www.rbtelco.com/ITFIM/sps/wsfed/wsf">
 <p>
 <input type="hidden" name="wct" value="2005-07-16T21:35:34Z" />
 <input type="hidden" name="wctx"
value="https://www.rbtelco.com/apps/RBTelco/index.jsp" />
 <input type="hidden" name="wresult"
value="<wst:RequestSecurityTokenResponse
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur
ity-utility-1.0.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
wsu:Id="uuid2192d263-0105-ec68-dd61-8ce3efd72411"><wst:Renewing
Allow="true"
OK="false"></wst:Renewing><wst:KeySize>0</wst:KeySi
ze><wst:Forwardable>true</wst:Forwardable><wst:Delegatable>
;false</wst:Delegatable><wst:RequestedTokenReference><wss:KeyIde
ntifier xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

wtrealm https://www.rbtelco.com
/ITFIM/sps/wsfed/wsf

A realm identifier to indicate to the IdP from
which SP this request is coming.

Parameter Value Explanation
230 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur
ity-secext-1.0.xsd"
ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0
#SAMLAssertionID">Assertion-uuid2192d1ec-0105-f787-5716-8ce3efd72411<
;/wss:KeyIdentifier></wst:RequestedTokenReference><wst:RequestedSec
urityToken><saml:Assertion
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="Assertion-uuid2192d1ec-0105-f787-5716-8ce3efd72411"
IssueInstant="2005-07-16T21:35:34Z"
Issuer="https://www.bigcorp.com/ITFIM/sps/wsfed/wsf"
MajorVersion="1" MinorVersion="1"><saml:Conditions
NotBefore="2005-07-16T21:25:34Z"
NotOnOrAfter="2005-07-16T21:45:34Z"><saml:AudienceRestrictionCo
ndition><saml:Audience>https://www.rbtelco.com/ITFIM/sps/wsfed/wsf<
/saml:Audience></saml:AudienceRestrictionCondition></saml:Condition
s><saml:AuthenticationStatement
AuthenticationInstant="2005-07-16T21:35:34Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"><
;saml:Subject><saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">em
p1@bigcorp.com</saml:NameIdentifier></saml:Subject></saml:Authen
ticationStatement><saml:AttributeStatement><saml:Subject><sam
l:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">em
p1@bigcorp.com</saml:NameIdentifier></saml:Subject><saml:Attribu
te AttributeName="cn"
AttributeNamespace="http://www.bigcorp.com/cn"><saml:AttributeV
alue>Employee
One</saml:AttributeValue></saml:Attribute></saml:AttributeStatem
ent><ds:Signature
Id="uuid2192d219-0105-fecc-a844-8ce3efd72411"><ds:SignedInfo>
;<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:Canoni
calizationMethod><ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></ds:Sig
natureMethod><ds:Reference
URI="#Assertion-uuid2192d1ec-0105-f787-5716-8ce3efd72411"><ds:T
ransforms><ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">
</ds:Transform><ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"><xc14n:Incl
usiveNamespaces xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="saml
ds"></xc14n:InclusiveNamespaces></ds:Transform></ds:Tran
sforms><ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestM
ethod><ds:DigestValue>F1dzzUWLgfWcYlODwdCNBr5eeOo=</ds:DigestValue&
gt;</ds:Reference></ds:SignedInfo><ds:SignatureValue>Eqb+1ihx
 Chapter 8. Use case 2 - WS-Federation 231

AcYr/4amPYlz1abribdanit5RhhbPKpjQKlBxwSp8VrJQrCl+8PtDecpWKrw6InLxiC4f7av4pO10rz
ThXWypqml9Gp0deSlQJOxQt+jK48Z7txv/3s6zPQbga/VSIVcXiuKtjcmhUSlS0GMcIKOHbmrIDc2oc
idjOM=</ds:SignatureValue><ds:KeyInfo><ds:X509Data><ds:X50
9Certificate>MIICqTCCAhKgAwIBAgIBEDANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExNmaW0
ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIyNTAyOF
oXDTEwMDYxNzIyNTAyOFowRTEkMCIGA1UEAxQbYmlnY29ycF9yYnRlbGNvLmJpZ2NvcnAuY29tMQswC
QYDVQQGEwJVUzEQMA4GA1UEChMHQmlnQ29ycDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAmOsB
sKjCVCq+UoOG4YjRb3kExfMoFMXv9Y9ypLpBLqcXSy53u+JpCb1OieNzgwP42zhdrxaMSKs6ilLdMfC
rsTd+WtNZlL1rwpU/eFIu7kCscroAW+HywXrSYQjmPSkn/tUKu+LQeP1TDbAP+55Q8GzDEDCdkTYvhI
9TtYN+V+UCAwEAAaOBtDCBsTAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBQb8Te2jgjloWmvwLxpqTiiZ
IpDoDBhBgNVHSMEWjBYgBRA0z474m+/yN+mhtBtCGxeD8uRMaE9pDswOTEcMBoGA1UEAxMTZmltLnJl
ZGJvb2suaWJtLmNvbTELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA0lCTYIBATALBgNVHQ8EBAMCBLAwEgY
JYIZIAYb4QgENBAUWA2hwaDANBgkqhkiG9w0BAQQFAAOBgQAt6QtMH29HVBkS/gaE49yRvKm7EtksM9
+bPXIszbqg8n9Fj1ftPH80yH/AIONNqvyz4ambtlgIkikjXIzdYrnFknjESWi6i7uoT8us8D+U0e0qF
12wAsHkGuyy1fF32MaYzNplEbftTQloTKi6KlAAtkr22A2FilSGE7uLfiXnsQ==</ds:X509Cert
ificate></ds:X509Data></ds:KeyInfo></ds:Signature></sam
l:Assertion></wst:RequestedSecurityToken><wst:Status><wst:Cod
e>http://schemas.xmlsoap.org/ws/2005/02/security/trust/status/valid</wst:
Code></wst:Status></wst:RequestSecurityTokenResponse>" />
 <input type="hidden" name="wa" value="wsignin1.0" />
 <noscript>
 <button type="submit">POST</button> <!-- included for
requestors that do not support javascript -->
 </noscript>
 </p>
 </form>
 <script type="text/javascript">
 var signonText = 'Please wait, signing on...';
 document.write(signonText);
 setTimeout('document.forms[0].submit()', 0);
 </script>

 </body>
<html>

An explanation of the FORM fields in this self-posting form will help explain how
the single sign-in is completed.

Parameter Value Explanation

wa wsignin1.0 Mandatory parameter to indicate this is a
sign-on action.

wctx https://www.rbtelco.com
/apps/RBTelco/index.js
p

The same opaque context parameter
passed from RBTelco previously.
232 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

6. Tivoli Federated Identity Manager at RBTelco validates the sign-in request
and performs identity mapping. The mapping rule, as shown in Example B-12
on page 412, is used to convert the SAML assertion to the Access Manager
user bigcorp_guest while keeping the user’s home company, actual e-mail
address, and display name in extended attributes in the credential.

After the credential is generated, it is sent back to WebSEAL in special HTTP
headers as part of an EAI authentication. “External Authentication Interface”
on page 370 explains EAI authentication in more detail.

7. WebSEAL also receives from Tivoli Federated Identity Manager the URL to
redirect the browser to after authentication. This is the wreply parameter from
step 2. WebSEAL sends a session cookie to the browser, along with a
redirect to this URL.

8. The browser is now authenticated and accesses protected resources at
RBTelco.

9. RBTelco honors the request for the protected resources.

8.7 Configuration data
This section discusses the configuration information used for both the identity
provider (BigCorp) and the service provider (RBTelco) for this federation.

As a starting point we assume that Tivoli Federated Identity Management is
installed, and the runtime deployed and configured. Additionally, the junction
between WebSEAL and Tivoli Federated Identity Management is assumed to be
configured.

The following references will assist with the installation and configuration of Tivoli
Federated Identity Management:

� IBM Tivoli Identity Manager Installation Guide Version 6.0, GC32-1667-00,
discusses the installation of Tivoli Federated Identity Management.

wct 2005-07-16T21:35:34Z A UTC time parameter that may optionally
(by configuration) be checked to be recent
by the SP.

wresult Request security token
response (not repeated
in table for brevity)

This contains a trust service response
message, which is a wrapper around the
signed SAML assertion for the user. Note
that the whole field is encoded so that XML
tags do not confuse the browser.

Parameter Value Explanation
 Chapter 8. Use case 2 - WS-Federation 233

� IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00, contains basic information about configuring the Tivoli
Federated Identity Management runtime and information on configuring
federations.

� Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363, contains information about configuring Tivoli Federated Identity
Management for use with WebSEAL.

8.7.1 Identity provider configuration at BigCorp
Configuring WS Federation at BigCorp consists of the following tasks:

� Importing BigCorp signing keys

� Configuring Tivoli Federated Identity Management for WS-Federation as an
identity provider

� Configuring a service provider partner for RBTelco

� Configuring Access Manager policy for the federation URLs

Importing BigCorp keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the bigcorp-signing.jks key file was imported into Tivoli Federated
Identity Management. This contains the signing key used to sign the SAML
assertion sent to RBTelco.

Configuring BigCorp as a WS-Federation identity provider
Detailed information about configuring a WS-Federation as an identity provider is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00. This section discusses the specific configuration parameters
used for BigCorp.

Table 8-1 contains specific configuration data used for configuring the identity
provider WS-Federation at BigCorp.

Table 8-1 Configuration information for BigCorp as WS-Federation identity provider

Field Value used in this use case

Federation name wsf.

Identify your role Identity provider.

Identity Provider Company Name BigCorp.

Protocol for federation WS-Federation Passive Profile.
234 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 8-9 on page 236 shows the summary page of the identity provider
federation configuration at BigCorp.

Point of contact server configuration https://www.bigcorp.com/ITFIM/sps

Token Module Select the default WS-Federation token
type for SAML 1.1.

Security Token Configuration SAML Assertion validity period: 60
seconds before and 60 seconds after
current time. This allows for clock skew
differences with the partner.

Identity Mapping The mapping rule used for mapping the
Access Manager credential at BigCorp to
a SAML 1.1 assertion is available at
Example B-11 on page 410.

Field Value used in this use case
 Chapter 8. Use case 2 - WS-Federation 235

Figure 8-9 BigCorp WS-Federation identity provider summary page

Configuring a service provider partner for RBTelco
Table 8-2 on page 237 contains specific configuration data used for configuring
the RBTelco service provider partner at BigCorp.

Note: This figure only shows the validity period configuration for the number of
seconds after the current time. At the time of writing this book, the validity
period setting for before the current time had not been added to the graphical
console.
236 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Table 8-2 Configuration information for BigCorp as WS-Federation identity provider

Figure 8-10 on page 238 shows the summary page of the service provider
partner federation configuration at BigCorp.

Field Value

Service Provider Company Name RBTelco

WS-Federation Realm https://www.rbtelco.com/ITFIM/sps/ws
fed/wsf

WS-Federation Endpoint https://www.rbtelco.com/ITFIM/sps/ws
fed/wsf

Maximum Request Lifetime -1

Key for signing assertions bigcorp-signing_bigcorp_rbtelco

Mapping rule No need to provide one at the partner
level, since we chose to provide one at the
federation level
 Chapter 8. Use case 2 - WS-Federation 237

Figure 8-10 RBTelco service provider partner summary page at BigCorp

Configuring Access Manager policy at BigCorp
In this case there is actually no specific requirement for Access Manager
configuration of the WS-Federation URL at BigCorp. This is because BigCorp’s
policy is to allow any employee to access the RBTelco-hosted teleconference
booking application. That being the case, the default-webseal ACL, which allows
access to any authenticated user, is suitable. If only some employees were
allowed to access the application (for example, managers), then the following
object in BigCorp should be appropriately protected with the Access Manager
authorization policy:

/WebSEAL/<webseal_server>/ITFIM/sps/wsfed/wsf
238 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

8.7.2 Service provider configuration at RBTelco
Configuring WS Federation at RBTelco consists of the following tasks:

� Importing RBTelco partner keys

� Configuring Tivoli Federated Identity Management for WS-Federation as a
service provider

� Configuring an identity provider partner for BigCorp

� Configuring Access Manager policy for the federation URLs

Importing RBTelco keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the rbtelco-partners.jks key file was imported into Tivoli Federated
Identity Management. This contains the public certificate used to verify the
signature on the SAML assertion sent from BigCorp.

Configuring RBTelco as a WS-Federation service provider
Detailed information about configuring a WS-Federation a a service provider is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00. This section discusses the specific configuration parameters
used for RBTelco.

Table 8-3 contains specific configuration data used for configuring the service
provider WS-Federation at RBTelco.

Table 8-3 Configuration information for RBTelco as WS-Federation service provider

Figure 8-11 on page 240 shows the summary page of the service provider
federation configuration at RBTelco.

Field Value Used in this use case

Federation name wsf.

Identify your role Service provider.

Service Provider Company Name RBTelco.

Protocol for federation WS-Federation Passive Profile.

Point of contact server configuration https://www.rbtelco.com/ITFIM/sps

Identity Mapping The mapping rule used for mapping the
SAML assertion from BigCorp to an
Access Manager credential at RBTelco is
available in Example B-12 on page 412.
 Chapter 8. Use case 2 - WS-Federation 239

Figure 8-11 RBTelco WS-Federation service provider summary page

Configuring an identity provider partner for BigCorp
Table 8-4 contains specific configuration data used for configuring the BigCorp
identity provider partner at RBTelco.

Table 8-4 Configuration information for BigCorp as WS-Federation identity provider

Field Value

Identity Provider Company Name BigCorp

WS-Federation Realm https://www.bigcorp.com/ITFIM/sps/ws
fed/wsf

WS-Federation Endpoint https://www.bigcorp.com/ITFIM/sps/ws
fed/wsf

Maximum Request Lifetime -1

Key for validating signed assertions rbtelco-partners_bigcorp_rbtelco
240 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 8-12 shows the summary page of the identity provider partner federation
configuration at RBTelco.

Figure 8-12 BigCorp identity provider partner summary page at RBTelco

Configuring Access Manager policy at RBTelco
The WS-Federation endpoint at RBTelco is being used to authenticate users to
the RBTelco WebSEAL. Consequently, it is necessary to allow unauthenticated

Mapping rule No need to provide one at the partner
level, since we chose to provide one at the
federation level

Field Value
 Chapter 8. Use case 2 - WS-Federation 241

access to this URL. “Access Manager policy for trigger URLs for EAI” on
page 376 discusses the need for this, and in our case the federation URL to
which the unauthenticated-allowed ACL needs to be applied is:

/WebSEAL/<webseal_server>/ITFIM/sps/wsfed/wsf

8.8 Assumptions/implementation notes
This section contains use case 2 specific information that may be of interest to
the reader.

8.8.1 Understanding the many-to-one user identity mapping
Performing a many-to-one mapping at RBTelco is a very powerful capability that
can dramatically reduce the overhead of managing user accounts for every
BigCorp employee at RBTelco.

To understand what is actually happening let us first take a look at the Access
Manager credential the user started with at BigCorp. Figure 8-13 on page 243
shows a screen capture of the credential at BigCorp. This display comes from the
Access Manager epac cgi demonstration program, which displays the internal
contents of the Access Manager credential in a browser. Notice the two
parameters at the end, which were read from this user’s active directory entry:

� tagvalue_activedir_cn carries the user’s display name.
� tagvalue_activedir_mail carries the user’s e-mail address.
242 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 8-13 Access Manager credential at BigCorp for Employee One

Now look at the credential at RBTelco, as shown in Figure 8-14 on page 244.
Note that the Access Manager user is bigcorp_guest, and that extended
attributes that originally came from BigCorp, and were carried in the SAML 1.1
assertion during single sign-on, are in this session credential and are used to
carry:

� Where this user has come from (in tagvalue_fim_partner)
� The user’s display name (in tagvalue_cn)
� The user’s e-mail address (in tagvalue_mail)
 Chapter 8. Use case 2 - WS-Federation 243

These attributes are downstream to the BigCorp portal and applications as HTTP
headers using Access Manager WebSEAL’s standard tag/value support. You
can see them used in the RBTelco portal page and the telephone conference
booking application.

Figure 8-14 Access Manager Credential at RBTelco after WS-Federation sign-in from
BigCorp
244 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 9. Use case 3 - Liberty

This chapter presents use case 3, a typical 1:1 user mapping scenario between
accounts at RBTelco and its partners, utilizing the Liberty single sign-on protocol.
In this scenario RBTelco is the identity provider and RBTickets and RBBanking
are the service providers. RBTickets and RBBanking provide value-add services
to RBTelco’s retail customers (note that these are different from the corporate
business partner customers presented in use case 2.)

The nature of the authentication between RBTelco and its partners is 1:1, in that
the end user has individual accounts at both RBTelco and at the service provider
companies. These accounts are “linked” using a process in Liberty known as
federation, so that once federated, the user is able to sign in to the partners by
providing authentication credentials only at RBTelco.

One of the features of the Liberty protocol is that no personal information about
the user from RBTelco is actually shared with the partner companies. In many
real-world scenarios this is enforced for privacy reasons.

9

© Copyright IBM Corp. 2004, 2005. All rights reserved. 245

9.1 Scenario details

Figure 9-1 Use case 3 logical architecture

Our focus is on John Public, who will use a Web browser with the RBTelco
portal. Using the portal’s integrated links to the RBBanking and RBTickets
servers he is able to link accounts and single sign on to these destinations.

The components and actor that are present in this use case are highlighted by
the gray box from the lower left corner up over the upper right of the diagram
shown in Figure 9-1, “Use case 3 logical architecture” on page 246.

9.1.1 Contract
RBTelco has a general approach to federate its identities with RBBanking and
RBTickets using the Liberty 1.2 protocol. The idea is to serve the customers with
a convenient account linking and single sign-on experience within its portal.

RBTelco

BigCorp

RBTravel

IdP

SP

SAML SSO with JIT
P

1:1

WS-Fed SSO many:1
 (Teleconference Booking)

UID / P
ass Login

Teleconf.
Application

Portlet

 Web Services (WSSM)
 SAML

Lib
ert

y

 Liberty

Active
Directory

(bigcorp.user)

(emp1@bigcorp.com)

D
es

kt
op

 S
S

O

S
P

N
E

G
O

View Bill
Application

IdPSP

jpublic

emp1

bpublic
 UID / Pass Login

LDAP
User Registry

RBStocks

Blacklist of Mail

SP

RBBanking

RBTickets

1:1

1:1

SP

SP
246 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

RBBanking and RBTickets have agreed with RBTelco to use Liberty Version 1.2
based federated identity management. No personal information will be shared
between the companies about the user.

In particular, the following Liberty 1.2 protocols will be supported:

� Account federation, initiated at the identity provider (RBTelco) using the
SOAP/HTTP profile

� Single sign-on, using the browser-artifact profile

� Single sign-off using the HTTP redirect profile

Liberty also provides the following protocols that we have chosen not to explore
in this use case, simply to keep a more focused view on the common scenario:

� Defederation - A protocol for unlinking the accounts at the identity provider
and service provider

� Register Name Identifier - A protocol for refreshing the unique identity key
shared between the identity provider and service provider

9.1.2 User experience
The following sections illustrate the user experience for the three protocols
mentioned above.

Account Linking
The process of account linking requires the end user (John Public in our case) to
manually log in to individual accounts at each of the identity provider and service
provider partners, and choose to link these accounts. In this scenario we present
John Public, and he has the following accounts at each of the companies.

Figure 9-2 on page 248 shows the RBTelco portal page with John Public logged
in using his jpublic account. For the purposes of this demonstration, he is already
linked with his account at RBBanking, and this scenario walks through the linking
of his account with RBTickets.

Company Username

RBTelco jpublic

RBBanking jp

RBTickets johnp
 Chapter 9. Use case 3 - Liberty 247

Figure 9-2 RBTelco portal prior to linking accounts with RBTickets

John then clicks the Federate link for RBTickets, and is shown the login page at
RBTickets. This is because he had not yet authenticated to RBTickets. At
RBTickets, he logs in using his johnp account, as shown in Figure 9-3 on
page 249.
248 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-3 Login page at RBTickets during account linking

Following login at RBTickets, and per federation configuration at RBTelco, John
is required to confirm his consent to federate these accounts. This step is part of
the Liberty process, and can be configured on or off. Figure 9-4 shows the Tivoli
Federated Identity Manager default page for federation consent. This can be
customized for a more meaningful look and feel.

Figure 9-4 Consent to federate during account linking
 Chapter 9. Use case 3 - Liberty 249

After accepting the consent to federate page, John’s accounts at RBTelco and
RBTickets are automatically linked, and he is shown the RBTickets portal page,
as shown in Figure 9-5.

Figure 9-5 RBTickets portal page after account linking complete

Single sign-on
The single sign-on experience is the primary reason for using any of the
federation protocols, and provides the convenient service of requiring login to
only the identity provider site. Simply by clicking a Web link, automated login is
provided to each of the service provider sites. In this user experience scenario
we will illustrate a login to RBTelco, and then show one-click automatic logins to
each of RBBanking and RBTickets. This scenario can only be run after John has
linked accounts to both RBBanking and RBTickets.

Figure 9-6 on page 251 shows the RBTelco portal after John has logged in using
his johnp account. Note that this page looks different from the RBTelco portal
page shown in Figure 9-2 on page 248. The RBTelco portal page is rendered
with the help of Tivoli Federated Identity Manager InfoService APIs, which let you
determine which partners a particular user is federated with. More on this
capability is explained in 9.6.1, “InfoService integration” on page 284.
250 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-6 RBTelco portal after jpublic login with accounts linked

Simply by clicking the RBBanking link, jpublic is automatically logged into
RBBanking as his user ID jp. Similarly, by clicking the RBTickets link from the
RBTelco portal, jpublic is automatically signed in to RBTickets as johnp. These
screens are shown in Figure 9-7 on page 252 and Figure 9-8 on page 253.
 Chapter 9. Use case 3 - Liberty 251

Figure 9-7 RBBanking portal after single sign-on from RBTelco
252 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-8 RBTickets portal after single sign-on from RBTelco

Single sign-off
The single sign-off protocol (in our case initiated at the identity provider) gives all
authenticated parties (the identity provider and any number of service provider
partners) the opportunity to destroy session information for the user, thereby
facilitating a logout.

While we have only provided the logout button on the RBTelco portal page (due
to development time constraints), the logout can be initiated from any service
provider or the identity provider. When John accesses the Liberty Logout button
from the RBTelco portal, a series of redirects results in him being logged out from
each of the service providers, and the identity provider. The final logout result
page is show in Figure 9-9 on page 254. This can be customized for a richer look
and feel.
 Chapter 9. Use case 3 - Liberty 253

Figure 9-9 Logout success page after initiating http-redirect liberty logout from RBTelco

9.2 Functionality
All functionality described in this use case is part of the Liberty 1.2 specification.
We employed a subset of this functionality to implement the use case. The
Liberty 1.2 specification is available at:

http://www.projectliberty.org

9.3 Partners involved
The corporations involved in this use case are RBTelco and its partners
RBBanking and RBTickets.

9.3.1 RBTelco
RBTelco has already been introduced in 8.5.2, “RBTelco” on page 228, as a
service provider to BigCorp. In this scenario RBTelco acts as an identity provider
and enriches its portal with services of partners like RBTickets and RBBanking.

9.3.2 RBTickets
RBTickets specialized in event marketing and ticketing. RBTelco offers
discounted ticket deals for its retail customers, and a single sign-on experience
into the RBTickets site. Customers can use RBTickets to view deals and
purchase tickets.
254 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.projectliberty.org

9.3.3 RBBanking
RBBanking provides automated bill payment services to retail customers of
RBTelco. RBTeclo provides a single sign-on experience into RBBanking to make
it more convenient for customers to pay their bills online.

9.4 Interaction description
The sections below show the interaction diagrams for each of the federation,
single sign-on, and single sign-off flows.

9.4.1 Liberty account federation
The interaction for federation (account linking) is shown in Figure 9-10. A detailed
description of the interaction follows the figure.

Figure 9-10 Liberty account federation

RBTelco RBTicketsJohn Public RBBanking

1. John public authenticates to RBTelco as jpublic

2. John Public requests to federate account with RBTickets

3. John Public authenticates directly to RBTickets as johnp

4. RBTickets sends signed AuthnRequest with federate=true as redirect to Browser

8. RBTelco generates
and stores alias for user

10. Browser follows redirect containing SAML artifact

14. RBTickets returns session cookie and redirect to portal page

7. John gives consent.

9. RBTelco sends SAML artifact login to RBTickets

5. Browser follows redirect to RBTelco

6. RBTelco prompts for consent to federate.

11. RBTickets generates SOAP SAMLP request to get assertion

12. RBTelco returns assertion including name identifier

13. RBTickets stores
alias for user
 Chapter 9. Use case 3 - Liberty 255

Detailed description of interaction in Figure 9-10 on page 255:

1. John Public authenticates to RBTelco using his jpublic user name and
password.

2. John Public clicks a link to federate his jpublic account with RBTickets. This
URL is:

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty/login?RelayState=http
s://www.rbtickets.com&Federate=true

Note that this URL is a protected URL on the RBTickets Web site, which will
force a login at RBTickets if the user does not already have a session.

3. John Public authenticates with the johnp user name and password before
Tivoli Federated Identity Manager at RBTickets processes the federate
request.

4. RBTickets generates a redirect to the browser to federate at RBTelco. Since
the browser has a session with RBTelco, RBTelco knows who the user is at
its site (jpublic), without knowing who the user is at RBTickets. Similarly,
RBTickets knows who the user is for RBTickets (johnp), but not for RBTelco.
Only the browser user, who has sessions with each site, knows both user IDs.
This redirect is signed, and looks like:

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty/login?RequestID=FIMREQ
_e2d7c8b4-0105-ef55-798f-9ab00c5a78ff&MajorVersion=1&MinorVersion=2&IssueIn
stant=2005-08-23T10%3A17%3A36Z&ProviderID=https%3A%2F%2Fwww.rbtickets.com%2
FITFIM%2Fsps%2Fliberty12%2Fliberty&IsPassive=false&NameIDPolicy=federated&P
rotocolProfile=http%3A%2F%2Fprojectliberty.org%2Fprofiles%2Fbrws-art&RelayS
tate=uuide2d1974a-0105-fbc6-edde-9ab00c5a78ff&SigAlg=http%3A%2F%2Fwww.w3.or
g%2F2000%2F09%2Fxmldsig%23rsa-sha1&Signature=kNpWtCpFshsEgx3UOybNt%2BJ395Bo
GHq%2BjoItsypw4Kzcs%2FD4kpMI1hpYVhvKNMKuhCVqKJNyWB3q%0D%0AWmYPdAinS8lEguySx
5VthK589Wmt1JPNxTke2b3F4AmluMb34CyZuOmvOdeurkK8JSOKagOg%2B4Xt%0D%0AT9IcuEeX
R%2Bnmv9Icdpc%3D

5. The browser follows the redirect and sends the signed login request (with
NameIDPolicy set to federated). Note that the ProtocolProfile property is also
set to the browser artifact profile. This determines RBTelco’s response type in
step 8.

6. By way of configuration at RBTelco, John is prompted for consent to federate.

7. John gives his consent to federate.

8. Tivoli Federated Identity Manager at RBTelco generates and stores a name
identifier (unique ID) for jpublic.
256 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

9. RBTelco also generates a Liberty Assertion for the login, and redirects to
RBTickets with the SAML artifact, per the browser-artifact profile. This
redirect looks like:

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty/login?RelayState=uuid
e2d1974a-0105-fbc6-edde-9ab00c5a78ff&SAMLart=AAO%2Fpac7rYyl3xjECRyohKvb5qdv
O2BbrDKOs9keWMJK9RGyx9TMJWPG

10.The browser follows the redirect containing the SAML artifact.

11.RBTickets generates a SAMLP request to exchange the artifact for an
assertion. This request is shown in Example 9-1.

12.RBTelco returns the assertion, which contains the name identifier, as shown
in Example 9-2 on page 258. At this point RBTickets still knows who the user
really is (from their initial manual login), and now has their unique name
identifier.

13.RBTickets stores the name identifier as a mapping to the johnp user ID for
future single sign-ons.

14.RBTickets creates a login session for the user, and redirects them to the
protected portal page they were originally trying to access.

Example 9-1 SAMLP request from RBTickets to RBTelco to exchange artifact for
assertion

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header></soapenv:Header>
<soapenv:Body>

<samlp:Request xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
IssueInstant="2005-08-23T10:17:51Z" MajorVersion="1" MinorVersion="1"
RequestID="FIMREQ_e2d802ac-0105-e7f6-078e-9ab00c5a78ff">

<ds:Signature Id="uuide2d802b4-0105-ee2c-b579-9ab00c5a78ff">
<ds:SignedInfo>

<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:CanonicalizationMethod
>

<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></ds:SignatureMethod>

<ds:Reference
URI="#FIMREQ_e2d802ac-0105-e7f6-078e-9ab00c5a78ff">

<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></ds:Transfor
m>

<ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 Chapter 9. Use case 3 - Liberty 257

<xc14n:InclusiveNamespaces
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="samlp
ds"></xc14n:InclusiveNamespaces>

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestMethod>

<ds:DigestValue>Qgl8H1Q8d1mA2UB/wBODTLAIXgM=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>F6qIsFq116aKEACkyrqVcofSFp2VposhtDazC0htNcmE8P5WB22JY9wkwR5+
afCuHnSLECESbOcGZ+acPel/xZEgjqtQROIUgmegEGbrSCrk6IeqmkE0+1ElXR1qVtz7lxa0lalLL/w
jersHDVjQjibq0acrDTSbF4Z0eOg4qYU=</ds:SignatureValue>

<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>MIICrzCCAhigAwIBAgIBDjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExN
maW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIxNT
IzNFoXDTEwMDYxNjIxNTIzNFowSzEoMCYGA1UEAxQfcmJ0aWNrZXRzX3JidGVsY28ucmJ0aWNrZXRzL
mNvbTELMAkGA1UEBhMCVVMxEjAQBgNVBAoTCVJCVGlja2V0czCBnzANBgkqhkiG9w0BAQEFAAOBjQAw
gYkCgYEAreSQnHExNckehLvV/Mocq8TvAiJMgA8P+VPalIIcGCRcY7ENON7dzK+B8FV5XSd+tF6vpXJ
kELslkYtiKUPer4q1cF6ehfvLNJuMm4m+Qx7F9eStMJN1RvtXB7jKbe8UtzuQI0eAXcKJu9uSYW95V2
pbo6lGsgdQKjBv+bZB558CAwEAAaOBtDCBsTAMBgNVHRMBAf8EAjAAMB0GA1UdDgQWBBQVedA2vUX7I
Eo4I/iVYY0R9ttpZjBhBgNVHSMEWjBYgBRA0z474m+/yN+mhtBtCGxeD8uRMaE9pDswOTEcMBoGA1UE
AxMTZmltLnJlZGJvb2suaWJtLmNvbTELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA0lCTYIBATALBgNVHQ8
EBAMCBLAwEgYJYIZIAYb4QgENBAUWA2hwaDANBgkqhkiG9w0BAQQFAAOBgQAz1/a4QKeZFN39oVbm3u
CWMXD8ZYNde4/2iWD2PFMgZW7QJPWwouLJ+VfXEi34s39skMFe1AxjBPJOXlQqZK8SrmmHilBJYgDCH
xzqgk5S/DqHun7bJaDSgFgzqEqkg8oCNGEp0pM8ABn0GHI44utpDZ8A4w0q6odLJXvG27kgOA==</ds
:X509Certificate>

</ds:X509Data>
</ds:KeyInfo>

</ds:Signature>

<samlp:AssertionArtifact>AAO/pac7rYyl3xjECRyohKvb5qdvO2BbrDKOs9keWMJK9RGyx9TMJW
PG</samlp:AssertionArtifact>

</samlp:Request>
</soapenv:Body>

</soapenv:Envelope>

Example 9-2 SAMLP response containing Liberty assertion

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header />
<soapenv:Body>

<samlp:Response xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:lib="urn:liberty:iff:2003-08"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
258 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
InResponseTo="FIMREQ_e2d802ac-0105-e7f6-078e-9ab00c5a78ff"
IssueInstant="2005-08-23T10:18:02Z" MajorVersion="1" MinorVersion="1"
ResponseID="FIMRSP_e2d82dcd-0105-e8ec-1663-f750dd5f48d2">

<samlp:Status>
<samlp:StatusCode Value="samlp:Success" />

</samlp:Status>
<saml:Assertion

AssertionID="Assertion-uuide2d81651-0105-f1b0-5b09-f750dd5f48d2"
IssueInstant="2005-08-23T10:17:56Z"
Issuer="https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty" MajorVersion="1"
MinorVersion="2" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:lib="urn:liberty:iff:2003-08"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="lib:AssertionType">

<saml:Conditions NotBefore="2005-08-23T10:16:56Z"
NotOnOrAfter="2005-08-23T10:19:56Z">

<saml:AudienceRestrictionCondition>

<saml:Audience>https://www.rbtickets.com/ITFIM/sps/liberty12/liberty</saml:Audi
ence>

</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement

AuthenticationInstant="2005-08-23T10:17:56Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
SessionIndex="uuide2d7f943-0105-e597-6dc5-f750dd5f48d2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="lib:AuthenticationStatementType">

<saml:Subject
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="lib:SubjectType">

<saml:NameIdentifier
Format="urn:liberty:iff:nameid:federated"
NameQualifier="https://www.rbtickets.com/ITFIM/sps/liberty12/liberty">uuide2d81
61f-0105-f7a8-212a-f750dd5f48d2</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:artifact</saml:Confirma
tionMethod>

</saml:SubjectConfirmation>
</saml:Subject>

</saml:AuthenticationStatement>
<ds:Signature Id="uuide2d81654-0105-f4e9-76bb-f750dd5f48d2"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
 Chapter 9. Use case 3 - Liberty 259

<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<ds:Reference
URI="#Assertion-uuide2d81651-0105-f1b0-5b09-f750dd5f48d2">

<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
<ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<xc14n:InclusiveNamespaces

xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="saml ds xsi
lib" />

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>OXmpfIiJDRhNKzhMZMJhwQHnIuw=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>EJdbnjQxFk6yZTquCUJ8jPZ+O7bq04nUou1cbbvQejIAxodWSUvCFSYw7swX
9mPE5ik9aU2h9c34mfDCxKk47AhS9ST4jt5rJ1AWq4J+u9HTRkbztkJkMfAGDpfl7Sdy6nFG4uaobkB
1jwlxDUeRFrEPmGsvZct/jazEzivyuoM=</ds:SignatureValue>

<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>MIICqzCCAhSgAwIBAgIBCTANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExN
maW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIxMz
cxNloXDTEwMDYxNjIxMzcxNlowRzEmMCQGA1UEAxQdcmJ0ZWxjb19yYnRpY2tldHMucmJ0ZWxjby5jb
20xCzAJBgNVBAYTAlVTMRAwDgYDVQQKEwdSQlRlbGNvMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQDmXXWJHs2RxFKsCE3p+QpnyHBoPCaA/phODvfuof4FsjccfLRQLJhURrY1j8u26YwsI0bcCuZft1b
RbOunUwwVCiZPdGu1nNn/P21hy/SY7qSm/v1d6FVg5nP7ouEvjsFUT3wgoaS+wW2JJDjUGo951tf+z1
WYKXO63R1jPlOBfQIDAQABo4G0MIGxMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFETwMgToY0cx7LRS3
Tz0oojf1Gh5MGEGA1UdIwRaMFiAFEDTPjvib7/I36aG0G0IbF4Py5ExoT2kOzA5MRwwGgYDVQQDExNm
aW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNggEBMAsGA1UdDwQEAwI
EsDASBglghkgBhvhCAQ0EBRYDaHBoMA0GCSqGSIb3DQEBBAUAA4GBAGSpG3tCj1DQGs/RU7WkOGA1AP
30dsap9pYGZ/6sQ6bglSIFsIJfhifwAScGMuAL33vqCkFUxH6hguwtjRgPLIFyOOqUinXdOEmPOH3q/
7L0KXWITmLQ9h21lxKz3fI7bXW1lPirEptGdkyrPzZ4smxvslODnytK6KnHzIwG9jEF</ds:X509Cer
tificate>

</ds:X509Data>
</ds:KeyInfo>

</ds:Signature>
</saml:Assertion>

</samlp:Response>
</soapenv:Body>
260 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

</soapenv:Envelope>

9.4.2 Single sign-on to partners (Liberty)
After the name identifier has been established, the user now has the ability to
perform single sign-on between RBTelco and the partners. The interaction is the
same between RBTelco and each of the partners, so for illustration we just show
the interaction with RBTickets in Figure 9-11. A detailed description of the
interaction follows the figure.

Figure 9-11 Liberty Browser/Artifact Profile single sign-on flow

Below is a detailed description of the interaction shown in Figure 9-11:

1. John Public authenticates to RBTelco.

2. John initiates a single sign-on. This is always initiated at the service provider,
and the link looks like:

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty/login?RelayState=http
s://www.rbtickets.com

3. RBTickets sends a signed authentication request to RBTelco as a redirect to
the browser. This redirect looks like:

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty/login?RequestID=FIMREQ
_e333f8d7-0105-ed13-058f-9ab00c5a78ff&MajorVersion=1&MinorVersion=2&IssueIn
stant=2005-08-23T11%3A58%3A18Z&ProviderID=https%3A%2F%2Fwww.rbtickets.com%2

RBTelco RBTicketsJohn Public RBBanking

1. John public authenticates to RBTelco as jpublic

2. John Public initiates login at RBTickets

3. RBTickets sends signed AuthnRequest as redirect to Browser

6. Browser follows redirect containing SAML artifact

9. RBTickets returns session cookie and redirect to portal page

5. RBTelco sends SAML artifact login to RBTickets

4. Browser follows redirect to RBTelco

7. RBTickets generates SOAP SAMLP request to get assertion

8. RBTelco returns assertion including name identifier
 Chapter 9. Use case 3 - Liberty 261

FITFIM%2Fsps%2Fliberty12%2Fliberty&IsPassive=false&ProtocolProfile=http%3A%
2F%2Fprojectliberty.org%2Fprofiles%2Fbrws-art&RelayState=uuide333f889-0105-
fff0-3343-9ab00c5a78ff&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig
%23rsa-sha1&Signature=BVNHmPpoAW9mDMkZ%2B5wtn%2FlFB9oEa3bbHdMnWifzOGVygUu%2
Bg9lGhGN0hKJJ1EUvbmbdhqjyctgA%0D%0Aqc4YhwHWzAwHpFFCPsl5nHgT%2F1yUABTIzQyQqi
yZXGE3OLp4c0C9y9pK1Jjf9gBdGQltbFpCWJls%0D%0AeRx8qrepwoDlc7XfMA0%3D

4. The browser follows redirect to RBTelco.

5. RBTelco generates an assertion for the user, and redirects with a SAML
artifact to RBTickets. This redirect looks like:

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty/login?RelayState=uuid
e333f889-0105-fff0-3343-9ab00c5a78ff&SAMLart=AAO%2Fpac7rYyl3xjECRyohKvb5qdv
O5oyZEmSoxhumqGoiiM38sSyXiBT

6. The browser follows redirect to RBTickets.

7. RBTickets generates a SOAP SAMLP request to RBTelco to exchange the
artifact for an assertion. This follows precisely the same format as that shown
in Example 9-1 on page 257.

8. RBTelco responds with the assertion, as per Example 9-2 on page 258.

9. RBTickets generates a session for the user and sends back to the browser a
session cookie along with a redirect to the originally requested resource
defined by the RelayState in step 2 (in our case the RBTickets portal page).

9.4.3 Single sign-off
This interaction diagram picks up after John Public has authenticated to
RBTelco, and performed single sign-on to both RBBanking and RBTickets. The
single logout used in this scenario follows the HTTP redirect profile and is shown
in Figure 9-12 on page 263. A detailed description of the interaction follows the
figure. There are also two other types of logout profiles supported by liberty,
called HTTP Get and SOAP/HTTP. Any of these could have been used for our
scenario, and our choice was arbitrary.
262 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-12 Liberty HTTP redirect single logout flow

A detailed description of the interaction shown in Figure 9-12 follow:

1. John Public selects the Liberty logout link at RBTelco. This looks like:

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty/slo

2. RBTelco redirects with a logout URL for RBBanking. The redirect is to this
URL:

https://www.rbbanking.com/ITFIM/sps/liberty12/liberty/slo?RequestID=FIMREQ_
e32cbb14-0105-f86e-81d1-f750dd5f48d2&MajorVersion=1&MinorVersion=2&IssueIns
tant=2005-08-23T11%3A50%3A23Z&ProviderID=https%3A%2F%2Fwww.rbtelco.com%2FIT
FIM%2Fsps%2Flibertyfed%2Fliberty&NameQualifier=https%3A%2F%2Fwww.rbbanking.
com%2FITFIM%2Fsps%2Fliberty12%2Fliberty&NameFormat=urn%3Aliberty%3Aiff%3Ana
meid%3Afederated&NameIdentifier=uuide1a7278a-0105-f66b-b71f-f750dd5f48d2&Se
ssionIndex=uuide32bd21c-0105-fd1a-21a0-f750dd5f48d2&RelayState=uuide32bd21c
-0105-fd1a-21a0-f750dd5f48d2&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fx
mldsig%23rsa-sha1&Signature=sgtXUexWlT%2BYhotH3KrZEdG8UggCcVpa4vgvliO9siMFl
Ms1RBbOQpB4w7Mjh50ImH0kOSP97CBr%0D%0AmBw8U2vNdEK2y2xKZKd%2FZL6OdRyw7qxfEq61
Br6ksqEGpHycSgXGFQT7xCB6A4UIEuM5W%2BIPuqo5%0D%0A7gBuEeiuOM%2F7CrbQZz8%3D

3. The browser follows redirect to RBBanking.

4. RBBanking deletes the user’s session, and redirects back to the RBTelco
logout return URL. This redirect looks like:

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty/sloreturn?ResponseID=F
IMRSP_e32c6f21-0105-e064-3809-93e6c6e30d05&InResponseTo=FIMREQ_e32cbb14-010

RBTelco RBTicketsJohn Public RBBanking

1. John public selects liberty logout at RBTelco

2. RBTelco redirects with logout to RBBanking

3. Browser follows redirect to logout URL at RBBanking

4. RBBanking deletes user session (logout) and redirects to logout return URL at RBTelco

7. Browser follows redirect to logout URL at RBTickets

9. Browser follows redirect to RBTelco

6. RBTelco redirects with logout to RBTickets

8. RBTickets deletes user session (logout) and redirects to logout return URL at RBTelco

5. Browser follows redirect to RBTelco

10. RBTelco deletes user session (logout) and displays logout page
 Chapter 9. Use case 3 - Liberty 263

5-f86e-81d1-f750dd5f48d2&MajorVersion=1&MinorVersion=2&IssueInstant=2005-08
-23T11%3A50%3A04Z&Recipient=https%3A%2F%2Fwww.rbtelco.com%2FITFIM%2Fsps%2Fl
ibertyfed%2Fliberty&ProviderID=https%3A%2F%2Fwww.rbbanking.com%2FITFIM%2Fsp
s%2Fliberty12%2Fliberty&Value=samlp%3ASuccess&RelayState=uuide32bd21c-0105-
fd1a-21a0-f750dd5f48d2&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig
%23rsa-sha1&Signature=AJpISya7Qv19rS6mwAFN69wErMcqdTyHVFXOFRDDVpynU5HWsdota
zDmxLKMs3YnjlR9vRfX3DGD%0D%0AIjVCvzheDM22j8Tyg%2Fp3rR76EM9mXhCcW38qqaO1pv5A
TqGFvMogLKIVQVn2l%2FZThQ2yyUKDU%2BUi%0D%0AgMiSm9xVtowsf74iR2U%3D

5. The browser follows the logout return URL to RBTelco.

6. RBTelco redirects with a logout URL for RBTickets. The redirect is to this
URL:

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty/slo?RequestID=FIMREQ_
e32cbb29-0105-f162-fc44-f750dd5f48d2&MajorVersion=1&MinorVersion=2&IssueIns
tant=2005-08-23T11%3A50%3A23Z&ProviderID=https%3A%2F%2Fwww.rbtelco.com%2FIT
FIM%2Fsps%2Flibertyfed%2Fliberty&NameQualifier=https%3A%2F%2Fwww.rbtickets.
com%2FITFIM%2Fsps%2Fliberty12%2Fliberty&NameFormat=urn%3Aliberty%3Aiff%3Ana
meid%3Afederated&NameIdentifier=uuide2d8161f-0105-f7a8-212a-f750dd5f48d2&Se
ssionIndex=uuide32bd21c-0105-fd1a-21a0-f750dd5f48d2&RelayState=uuide32bd21c
-0105-fd1a-21a0-f750dd5f48d2&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fx
mldsig%23rsa-sha1&Signature=P20Jn6bYGXXi39fadpYebnJNuyxsk5T%2FLKOBF7NAUdKZ8
x1KvtZYvRTDkb%2BdIIII6XGsw5OFwBf0%0D%0AyN3ZdJeHkNLz%2BeNgYK6U%2BzW0u2PB%2Fm
SgLbGn87Or17r78NZ%2Bws1fTTCjyj0kfy0dN7%2FfZsDBZQBp%0D%0A97Jps4aY1H%2F1sUVw9
4o%3D

7. The browser follows redirect to RBTickets.

8. RBTickets deletes the user’s session, and redirects back to the RBTelco
logout return URL. This redirect looks like:

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty/sloreturn?ResponseID=F
IMRSP_e32c9617-0105-ec75-4a38-9ab00c5a78ff&InResponseTo=FIMREQ_e32cbb29-010
5-f162-fc44-f750dd5f48d2&MajorVersion=1&MinorVersion=2&IssueInstant=2005-08
-23T11%3A50%3A14Z&Recipient=https%3A%2F%2Fwww.rbtelco.com%2FITFIM%2Fsps%2Fl
ibertyfed%2Fliberty&ProviderID=https%3A%2F%2Fwww.rbtickets.com%2FITFIM%2Fsp
s%2Fliberty12%2Fliberty&Value=samlp%3ASuccess&RelayState=uuide32bd21c-0105-
fd1a-21a0-f750dd5f48d2&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig
%23rsa-sha1&Signature=JbywY2G9I4xARNi8NayWzC%2FDGfZ91gu6t%2BKTdCGluSroAc1zk
6h39UKEZqa5OF3EWnkyXPN4WATt%0D%0Agp6zNNxf06AEfwN0bQklce7AuVIBRB%2BCTA3KAx0t
YYOLgC0ySATQVcv1reSWBOQIZ2Ub%2F%2B2WM2Rs%0D%0AXjEiOVwMwwBdvJ0BY08%3D

9. The browser follows redirect to RBTelco.

10.RBTelco deletes user session information and sends the browser the logout
success page.
264 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

9.5 Configuration data
The following references will assist with the installation and configuration of Tivoli
Federated Identity Manager:

� IBM Tivoli Identity Manager Installation Guide Version 6.0, GC32-1667-00,
discusses the installation of Tivoli Federated Identity Manager.

� IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00, contains basic information about configuring the Tivoli
Federated Identity Manager runtime and information on configuring
federations.

� Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363, contains information about configuring Tivoli Federated Identity
Manager for use with WebSEAL.

9.5.1 Identity provider configuration at RBTelco
Configuring Liberty federation at RBTelco consists of the following tasks:

� Importing RBTelco signing keys

� Configuring Tivoli Federated Identity Manager for Liberty as an identity
provider

� Configuring the service provider partner for RBTickets and RBBanking

� Configuring Access Manager policy for the federation URLs

Importing RBTelco keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the rbtelco-signing.jks key file was imported into Tivoli Federated
Identity Manager. This contains the signing key used to sign the Liberty
Messages sent to the partners. Also, the rbtelco-partners.jks keffiyeh was
imported and contains the partners public keys to verify their signed Liberty
messages.

Configuring RBTelco as a Liberty identity provider
Detailed information about configuring an identity provider to use Liberty is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00. This section discusses the specific configuration parameters
used for RBTelco.
 Chapter 9. Use case 3 - Liberty 265

Figure 9-13 RBTelco Liberty Federation configuration part 1
266 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-14 RBTelco Liberty Federation configuration part 2

Figure 9-13 on page 266 and Figure 9-14 show all the information needed to
configure the Liberty federation for RBTelco. For more information about the
identity mapping including the complete XSLT mapping see “RBTickets mapping
for use case 3” on page 416.
 Chapter 9. Use case 3 - Liberty 267

Configuring service provider partners for RBTelco

Figure 9-15 RBTelco Liberty Federation partner 1 (RBTickets) configuration part 1
268 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-16 RBTelco Liberty Federation partner 1 (RBTickets) configuration part 2

Figure 9-15 on page 268 and Figure 9-16 show all the information needed to
configure the Liberty federation partner RBTickets with RBTelco. The identity
mapping rule is already defined in the federation and is therefore left empty in the
partner configuration.
 Chapter 9. Use case 3 - Liberty 269

Figure 9-17 RBTelco Liberty Federation partner 2 (RBBanking) configuration part 1
270 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-18 RBTelco Liberty Federation partner 2 (RBBanking) configuration part 2

Figure 9-17 on page 270 and Figure 9-18 show all the information needed to
configure the Liberty federation partner RBBanking with RBTelco. The identity
mapping rule is already defined in the federation and is therefore left empty in the
partner configuration.

Configuring Access Manager policy at RBTelco
There are several Liberty endpoints exposed at RBTelco. These appear in the
object space as:

/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/auth
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/ftn
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/ftninitial
 Chapter 9. Use case 3 - Liberty 271

/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/ftnreturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/login
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/rni
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/rniinitial
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/rnireturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/slo
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/sloreturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/libertyfed/liberty/soap

The policy for Liberty at RBTelco follows these logical rules:

� RBTelco requires all customers to use SSL. An Access Manager protected
object policy will be used to enforce this.

� The Liberty URLs should be accessible to any retail customer, but not to
business partner users that have single signed on to RBTelco from BigCorp.
An Access Manager access control list will enforce this.

� The Liberty soap URL receives signed requests without certificate
authentication, so unauthenticated access should be allowed to this endpoint.

� The auth URL is used for reauthentication in the case of a special Liberty
sign-on flag called ForceAuthn. For that purpose, an Access Manager
Protected Object Policy (POP) which forces reauthentication will be attached
to the auth URL.

Example 9-3 shows the pdadmin commands used to create and apply the
aforementioned policy.

Example 9-3 Use case 3 Access Manager policy for RBTelco

pop create rbtelco_ssl
pop modify rbtelco_ssl set qop privacy
pop attach /WebSEAL/<webseal_server>/ITFIM rbtelco_ssl

acl create rbtelco_retail
acl modify rbtelco_retail set group iv-admin TcmdbsvaBRrxl
acl modify rbtelco_retail set group webseal-servers Tgmdbsrxl
acl modify rbtelco_retail set user sec_master TcmdbsvaBRrxl
acl modify rbtelco_retail set any-other Trx
acl modify rbtelco_retail set user bigcorp_guest T
acl modify rbtelco_retail set unauthenticated T
acl attach /WebSEAL/<webseal_server>/ITFIM/sps/libertyfed rbtelco_retail

acl create rbtelco_unauth
acl modify rbtelco_unauth set group iv-admin TcmdbsvaBRrxl
acl modify rbtelco_unauth set group webseal-servers Tgmdbsrxl
acl modify rbtelco_unauth set user sec_master TcmdbsvaBRrxl
acl modify rbtelco_unauth set any-other Trx
acl modify rbtelco_unauth set unauthenticated Trx
272 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

acl attach /WebSEAL/<webseal_server>/ITFIM/sps/libertyfed/liberty/soap
rbtelco_unauth

pop create rbtelco_reauth
pop modify rbtelco_reauth set attribute reauth true
pop attach /WebSEAL/<webseal_server>/ITFIM/sps/libertyfed/liberty/auth
rbtelco_reauth

9.5.2 RBTickets service provider configuration data
Configuring the Liberty federation at RBTickets consists of the following tasks:

� Importing RBTickets signing keys

� Configuring Tivoli Federated Identity Manager for Liberty as a service
provider

� Configuring the identity provider partner

� Configuring Access Manager policy for the federation URLs

Importing RBTickets keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the rbtickets-signing.jks keffiyeh was imported into Tivoli Federated
Identity Manager. This contains the signing key used to sign the Liberty
Messages. Also, the rbtickets-partners.jks keffiyeh was imported and contains
the partner’s public key to verify the signed Liberty Messages.

Configuring RBTickets as a Liberty service provider
Detailed information about configuring a service provider to use Liberty is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00. This section discusses the specific configuration parameters
used for RBTickets.
 Chapter 9. Use case 3 - Liberty 273

Figure 9-19 RBTickets Liberty Federation configuration part 1
274 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-20 RBTickets Liberty Federation configuration part 2

Figure 9-19 on page 274 and Figure 9-20 show all the information needed to
configure the Liberty federation for RBTickets. For more information about the
identity mapping including the complete XSLT mapping see “RBTickets mapping
for use case 3” on page 416.
 Chapter 9. Use case 3 - Liberty 275

Configuring an identity provider partner for RBTickets

Figure 9-21 RBTickets Liberty Federation partner configuration part 1
276 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-22 RBTickets Liberty Federation partner configuration part 2

Figure 9-21 on page 276 and Figure 9-22 show all the information needed to
configure the Liberty federation partner RBTelco with RBTickets. The identity
mapping rule is already defined in the federation and is therefore left empty in the
partner configuration.

Configuring Access Manager policy at RBTickets
There are several Liberty endpoints exposed at each of the Liberty partners.
These appear in the object space as:

/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/ftn
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/ftninitial
 Chapter 9. Use case 3 - Liberty 277

/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/ftnreturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/login
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/rni
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/rniinitial
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/rnireturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/slo
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/sloreturn
/WebSEAL/<webseal-server-object>/ITFIM/sps/liberty12/liberty/soap

The policy for Liberty at each of the Liberty partners follows these logical rules:

� All customers are required to use SSL. An Access Manager protected object
policy will be used to enforce this.

� The Liberty login URL must be configured to allow unauthenticated access so
that users can log in. The Liberty soap URL receives signed requests without
certificate authentication, so unauthenticated access should be allowed to
this endpoint also. An Access Manager ACL will be used for this.

� All other Liberty URLs can be accessed by any authenticated user. We will let
default-webseal inherited ACL policy take care of this.

Example 9-4 shows the pdadmin commands used to create and apply the
aforementioned policy.

Example 9-4 Use case 3 Access Manager policy for Liberty partners

pop create rbpartner_ssl
pop modify rbpartner_ssl set qop privacy
pop attach /WebSEAL/<webseal_server>/ITFIM rbpartner_ssl

acl create rbpartner_unauth
acl modify rbpartner_unauth set group iv-admin TcmdbsvaBRrxl
acl modify rbpartner_unauth set group webseal-servers Tgmdbsrxl
acl modify rbpartner_unauth set user sec_master TcmdbsvaBRrxl
acl modify rbpartner_unauth set any-other Trx
acl modify rbpartner_unauth set unauthenticated Trx
acl attach /WebSEAL/<webseal_server>/ITFIM/sps/liberty12/liberty/login
rbpartner_unauth
acl attach /WebSEAL/<webseal_server>/ITFIM/sps/liberty12/liberty/soap
rbpartner_unauth

9.5.3 RBBanking service provider configuration data
Configuring the Liberty federation at RBBanking consists of the following tasks:

� Importing RBBanking signing keys

� Configuring Tivoli Federated Identity Manager for Liberty as a service
provider
278 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� Configuring the identity provider partner

� Configuring Access Manager policy for the federation URLs

Importing RBBanking keys
Appendix C, “Keys and certificates” on page 425, contains information about the
key strategy used for all use cases. In particular, note that for this federation
configuration the rbbanking-signing.jks keffiyeh was imported into Tivoli
Federated Identity Manager. This contains the signing key used to sign the
Liberty Messages. Also, the rbbanking-partners.jks keffiyeh was imported and
contains the partner’s public key to verify the signed Liberty messages.

Configuring RBBanking as a Liberty service provider
Detailed information about configuring a service provider to use Liberty is
available in the IBM Tivoli Identity Manager Administration Guide Version 6.0,
GC32-1668-00. This section discusses the specific configuration parameters
used for RBBanking.
 Chapter 9. Use case 3 - Liberty 279

Figure 9-23 RBBanking Liberty Federation configuration part 1
280 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-24 RBBanking Liberty Federation configuration part 2

Figure 9-23 on page 280 and Figure 9-24 show all the information needed to
configure the Liberty federation for RBBanking. For more information about the
identity mapping including the complete XSLT mapping see “RBBanking
mapping for use case 3” on page 415.
 Chapter 9. Use case 3 - Liberty 281

Configuring an identity provider partner for RBBanking

Figure 9-25 RBBanking Liberty Federation partner configuration part 1
282 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-26 RBBanking Liberty Federation partner configuration part 2

Figure 9-25 on page 282 and Figure 9-26 show all the information needed to
configure the Liberty federation partner RBTelco with RBBanking. The identity
mapping rule is already defined in the federation and is therefore left empty in the
partner configuration.

Configuring Access Manager policy at RBBanking
The policy for RBBanking is identical to the policy for RBTickets. Please see
“Configuring Access Manager policy at RBTickets” on page 277 for details.
 Chapter 9. Use case 3 - Liberty 283

9.6 Assumptions/implementation notes
This section contains use case 3 specific information that may be of interest to
the reader.

9.6.1 InfoService integration
During lab development for this use case we made use of a Tivoli Federated
Identity Manager API called the InfoService. At the time of writing, it is Tivoli’s
stated intention to release this API to customers in the very near future. This API
is noteworthy because it provides a way to determine federation membership
information for a particular user.

The InfoService APIs allow you to query both the federation membership
information and the URL endpoints of Liberty federations and partners. This
allows you to dynamically build the links for:

� Federation of accounts
� Register name identifier
� Federation termination
� Single sign-on
� Single sign-off

Utilizing this API, we are able to generate customized, meaningful portal pages
for individual users based on which partners they are federated with, and which
partners they are not federated with. For example, when user jpublic was
federated with the RBBanking partner, but not with RBTickets, his portal page at
RBTelco looks like that shown in Figure 9-27 on page 285. Then after federating
with RBTickets, it looks like that shown in Figure 9-28 on page 286. This was
made possible by utilizing the InfoService APIs from the portal JSP, and querying
for information about jpublic and the federation named liberty.

Similarly, on the service provider (for example, RBTickets), you can utilize the
InfoService APIs during operations like reauthentication to determine the list of
partner identity providers that a user has federations with. This allows you to
customize the login page at the service provider, or in the case of a single
Identity provider partner immediately redirect to the identity provider for login.
284 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 9-27 Portal page for jpublic federated with only RBBanking
 Chapter 9. Use case 3 - Liberty 285

Figure 9-28 Portal page for jpublic federated with both RBBanking and RBTickets

9.6.2 Page customizations
One of the more detailed tasks when deploying a Liberty use case is to get the
application look and feel working correctly both for federated partners and for
integration with the Access Manager point of contact server (WebSEAL in our
case). This section discusses the WebSEAL pages that were customized for the
look and feel we generated at both the identity provider and the service
286 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

providers. We chose a couple of common look and feel scenarios, though many
more are possible.

RBTelco
The primary customization done at RBTelco was the portal page. This utilized
the Tivoli Federated Identity Manager InfoService, as discussed previously, to
generate a custom look and feel for the user based on which partners he was
federated with.

The login page at RBTelco was not modified beyond adding some graphics to
brand it as RBTelco. Although it is possible for users to single sign-on to RBTelco
from BigCorp (see use case 2), we did not consider this an option we wanted to
expose from the RBTelco login page. The only way we wished to expose this to
BigCorp employees is via the BigCorp portal page, as a push-style login.

The only other customization at RBTelco was the logout page. We added
javascript to delete all WebSphere-generated session cookies from the browser,
and we detected BigCorp users so that we did not display the bigcorp_guest user
ID during the logout. Example 9-5 shows the contents of the logout.html page
from RBTelco.

Example 9-5 logout.html at RBTelco

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<!-- Copyright (C) 2000 Tivoli Systems, Inc. -->
<!-- Copyright (C) 1999 IBM Corporation -->
<!-- Copyright (C) 1998 Dascom, Inc. -->
<!-- All Rights Reserved. -->
<HTML>
<BODY>
<H1>Logout Successful</H1>
<SCRIPT TYPE="text/javascript">
 // delete WebSphere session cookies
document.cookie = 'AMWEBJCT!%2Fapps!JSESSIONID=0; expires=Fri, 13-Apr-1970
00:00:00 GMT';
 document.cookie = 'AMWEBJCT!%2Fapps!LtpaToken=0; expires=Fri, 13-Apr-1970
00:00:00 GMT';
 document.cookie = 'AMWEBJCT!%2Fapps!LtpaToken2=0; expires=Fri, 13-Apr-1970
00:00:00 GMT';
 document.cookie = 'AMWEBJCT!%2FITFIM!JSESSIONID=0; expires=Fri, 13-Apr-1970
00:00:00 GMT';
</SCRIPT>
<SCRIPT TYPE="text/javascript">
 var username = "%USERNAME%";
 if (username == "bigcorp_guest") {
 document.write("RBTelco thanks you for your business.
");
 Chapter 9. Use case 3 - Liberty 287

 document.write("Return to
BigCorp");
 }
 else {
 document.write(username + " has logged out.
");
 }
</SCRIPT>
</BODY>
</HTML>

Partners (RBTickets, RBBanking)
The main customization at the partners is that the WebSEAL login page was
modified to be generated by a jsp. Example 9-6 shows the WebSEAL login.html.

Example 9-6 WebSEAL login.html at partners

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<!-- Copyright (C) 2000 Tivoli Systems, Inc. -->
<!-- Copyright (C) 1999 IBM Corporation -->
<!-- Copyright (C) 1998 Dascom, Inc. -->
<!-- All Rights Reserved. -->
<HTML>
<FORM METHOD=POST ACTION="/apps/RBTickets/unprotected/generateLogin.jsp">
<INPUT TYPE="HIDDEN" NAME="USERNAME" VALUE="%USERNAME%">
<INPUT TYPE="HIDDEN" NAME="ERROR" VALUE="%ERROR%">
<INPUT TYPE="HIDDEN" NAME="URL" VALUE="%HTTPS_BASE%%URL%">
</FORM>
<SCRIPT TYPE="text/javascript">
 setTimeout('document.forms[0].submit()', 0);
</SCRIPT>
</BODY>
</HTML>

There are a couple of things you could do in the generateLogin.jsp:

� Provide links or redirect directly to the single sign-on URL. What you do
depends upon the particular circumstances of your deployment and your
desired user experience. For example, if you only have one service provider
federation configured, and do not wish to support local login (this requires
pre-populating the Liberty name identifiers for all users), then it is quite
practical to redirect immediately to the single sign-on URL, which will in turn
complete the WAYF process (if more than one identity provider partner), and
then generate a sign-on request to the identity provider partner. In our lab we
just prompt for user name/password login, and do not expose the fact that we
have identity provider partners from the partner login page. This was by
choice of application design. We expect customers to only perform federated
single sign-on from the provided links in the RBTelco portal page.
288 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� Detect if this is a reauthentication (due, for example, to WebSEAL session
expiry). You can tell if it is a reauthentication if the %USERNAME% macro is
populated with a non-empty value. In this case you can use the InfoService
APIs to determine whether this user has any federated identity provider
partners, and automatically provide him with a list of partners with which he
may reauthenticate, or automatically redirect if there is only one. This is the
scenario we tested in the lab (prompting with a list). We tuned the RBTickets
WebSEAL to have a short session expiry, and when reauthentication was
required we detected the user name and queried the InfoService to determine
the identity provider partners for which this user was federated. The sign-in
URL is also returned from the InfoService. The resulting generated login page
during reauthentication is shown in Figure 9-29.

Figure 9-29 RBTickets login page for johnp during reauthentication
 Chapter 9. Use case 3 - Liberty 289

290 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Chapter 10. Use case 4 - Web services
security management

In this use case we show several ways that the Web services security
management components of Tivoli Federated Identity Manager can extend the
WS-Security functionality available within WebSphere. We demonstrate how
Web services security management can be used internally within an enterprise
to pass client identity and attribute information between an application running on
WebSphere Application Server and a WebSphere Web Services Gateway. We
then show how Web services security management can be used on the
outbound side of a WebSphere Web Services Gateway to add an SAML
assertion as a security token in a Web services request, allowing that request to
be honored by a federated Web service hosted at another company. Finally, we
show how such a security token would be processed by the company that hosts
the federated Web Service including the verification, user ID, and attribute
mapping, authorization, and token transformation that is associated with being a
security token consumer. Throughout we highlight any significant differences
between Web services security management and the federated single sign-on
capabilities of Tivoli Federated Identity Manager.

To get the most out of this use case, the reader should be familiar with the Tivoli
Federated Identity Manager Web services security management Guide as well
as the prerequisite publications that it assumes including the Web services
specifications for WS-Security (“Web Services Security (WS-Security)

10
© Copyright IBM Corp. 2004, 2005. All rights reserved. 291

specification” on page 470) and WS-Trust (“Web Services Trust Language
(WS-Trust) specification” on page 470).
292 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

10.1 Scenario details

Figure 10-1 Use case 4 logical architecture

The components and actors that are present in this use case are highlighted by
the grey box in the lower left corner of the diagram shown in Figure 10-1, “Use
case 4 logical architecture” on page 293. Here we focus on how RBTelco
generates a secure Web service request to RBStocks on behalf of the clients that
have authenticated to their system. The diagram shows that the initial user
authentication can be handled directly by RBTelco in the case where their retail
customers are authenticating with user ID and password, or it can result from a
federated single sign-on with one of their business partner customers such as
BigCorp via WS-Federation.

RBTelco

BigCorp

RBTravel

IdP

SP

SAML SSO with JITP
1:1

WS-Fed SSO many:1
 (Teleconference Booking)

UID / P
ass Login

Teleconf.
Application

Portlet

 Web Services (WSSM)
 SAML

Lib
ert

y

 Liberty

 (pre-provisioned)

Active
Directory

(bigcorp.user)

(emp1@bigcorp.com)

D
es

kt
op

 S
SO

SP
N

EG
O

View Bill
Application

IdPSP

jpublic

emp1

bpublic
 UID / Pass Login

LDAP
User Registry

RBStocks

Blacklist of Mail

SP

RBBanking

RBTickets

1:1

1:1

SP

SP
 Chapter 10. Use case 4 - Web services security management 293

10.1.1 Contract
RBStocks has agreed to expose to RBTelco a Web service that provides stock
quotes on the condition that:

� RBTelco will employ WS-Security to ensure the integrity and confidentiality of
the Web services request and that the request will contain a signed SAML 1.1
assertion as the security token.

� The SAML assertion itself will contain two extended attributes.

– A user_home attribute will identify where the client originally
authenticated.

– An email_address attribute will contain the e-mail address of the client.

� RBStocks will provide realtime stock quotes to RBTelco’s corporate
customers and delayed stock quotes to RBTelco’s retail customers (those
identified with a user_home attribute of RBTelco). RBStocks at its discretion
can blacklist any client, based on the e-mail address.

Example 10-1 shows an example of an SAML 1.1 assertion as would be used by
a retail customer of RBTelco.

Example 10-1 SAML 1.1 assertion for Web services request from RBTelco to RBStocks

<saml:Assertion xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="Assertion-uuid2d3419c9-0105-ec42-9011-85f6225bfc32"
IssueInstant="2005-07-19T03:47:33Z" Issuer="https://www.rbtelco.com/rbstocks"
MajorVersion="1" MinorVersion="1">

<saml:Conditions NotBefore="2005-07-19T03:46:33Z"
NotOnOrAfter="2005-07-19T03:57:33Z">

<saml:AudienceRestrictionCondition>

<saml:Audience>urn:itfim-wssm:wsgwsoaphttp1:soaphttpengine:WSGW_BUS:StockQuoteS
ervice:wsgw_server1_SOAPHTTPChannel1_InboundPort</saml:Audience>

</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement AuthenticationInstant="2005-07-19T03:47:33Z"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:Subject>

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">jpublic@rbtelco
.com</saml:NameIdentifier>

</saml:Subject>
</saml:AuthenticationStatement>
<saml:AttributeStatement>

<saml:Subject>
294 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">jpublic@rbtelco
.com</saml:NameIdentifier>

</saml:Subject>
<saml:Attribute AttributeName="user_home"

AttributeNamespace="http://rbtelco.com/user_home">
<saml:AttributeValue>RBTelco</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>
<ds:Signature Id="uuid2d341c82-0105-fb29-b4e7-85f6225bfc32"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>

<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<ds:Reference
URI="#Assertion-uuid2d3419c9-0105-ec42-9011-85f6225bfc32">

<ds:Transforms>
<ds:Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
<ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<xc14n:InclusiveNamespaces

xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="saml ds" />
</ds:Transform>

</ds:Transforms>
<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<ds:DigestValue>5MIL7k2wS04ZqCFUzDzTgC+d/7o=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>cILho2HYwtm893vypPUWbHHgq+KpocIxo+q7J30z8KOqvvKRvAjP+w819bDA
F77Ux4IpvDCCE9t6AVO0421xmh9yCjWBSR4pNx883KSBvR8MKa3zNeSALONMigURKnYBuaX4NHnNuev
ycgRQinm7/8Cx+DR1viwG3dh375VISVE=</ds:SignatureValue>

<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>MIICqjCCAhOgAwIBAgIBCjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExN
maW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIxMz
gyNVoXDTEwMDYxNjIxMzgyNVowRjElMCMGA1UEAxQccmJ0ZWxjb19yYnN0b2Nrcy5yYnRlbGNvLmNvb
TELMAkGA1UEBhMCVVMxEDAOBgNVBAoTB1JCVGVsY28wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGB
AL+2oOmOriISrXrrslf1sCa/9j4a9VAnBup/pix37esCWLv7i4qJUKof6JJ+QgtJQDGZ8QObcmRm9KR
t5pR2GSANiIaBExLnThmW0Zfl8L9epKYDn/kD7Aw5P1UhJaPdG7aSi+SF+5PriQT420tloD9JD9duWB
qP5dc2pdoxG3hZAgMBAAGjgbQwgbEwDAYDVR0TAQH/BAIwADAdBgNVHQ4EFgQUDBihhccfoFuBoSAzj
8c+SLXohj4wYQYDVR0jBFowWIAUQNM+O+Jvv8jfpobQbQhsXg/LkTGhPaQ7MDkxHDAaBgNVBAMTE2Zp
bS5yZWRib29rLmlibS5jb20xCzAJBgNVBAYTAlVTMQwwCgYDVQQKEwNJQk2CAQEwCwYDVR0PBAQDAgS
wMBIGCWCGSAGG+EIBDQQFFgNocGgwDQYJKoZIhvcNAQEEBQADgYEAyBRKRlf709wcLsPbfN7962BJw1
 Chapter 10. Use case 4 - Web services security management 295

U29txsO46oFUzPUyBRaZKOfwwMN2yZZz06nUpBmViXOmzofsv+KvmXAN1f0BQa8zX3F41tPspg8tlVo
GEq79uUWj7s+/B5GDjgh92NU6WIOGjiOcaI31nwIckM38RcBqHPgnHbAiQ0uoxfoss=</ds:X509Cer
tificate>

</ds:X509Data>
</ds:KeyInfo>

</ds:Signature>
</saml:Assertion>

10.1.2 User experience
Unlike the previously described use cases that were focused on Federated
Single Sign-on, there is little new of interest here in the way of user interaction. In
this use case we show how Tivoli Federated Identity Manager adds value to
WS-Security, and this occurs in the context of a server-to-server interaction. The
only true client interaction is with an RBTelco-hosted JSP that will make the Web
services request to RBStocks on the client’s behalf. Nonetheless, below we
show the client experience based on the three possible responses from the
Stock Quote Web service:

� Stock Quote Web service response to RBTelco corporate customer with
realtime access

BigCorp employees are automatically authenticated to the BigCorp portal due
to the SPNEGO authentication achieved via WebSEAL and Windows desktop
single sign-on. Figure 10-2 on page 297 shows the portal page at BigCorp
that Employee One is presented with.
296 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-2 Employee One’s view of the BigCorp portal page

Figure 10-3 on page 298 shows the portal page seen after clicking the link for
Personal Tools @ RBTelco and being authenticated at RBTelco via
WS-Federation, as described in Chapter 8, “Use case 2 - WS-Federation” on
page 219.
 Chapter 10. Use case 4 - Web services security management 297

Figure 10-3 Employee emp1’s view of the RBTelco portal page

Figure 10-4 on page 299 shows the page seen by Employee One with
realtime access after clicking the Get a Stock Quote and providing the symbol
of the company for which he wants the quote.
298 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-4 Employee emp1’s view of the Stock Quote service

� Stock Quote Web service response to RBTelco retail customer with delayed
access

Figure 10-5 on page 300 shows the portal page that retail customer jpublic
will see after he successfully authenticates with a user name and password to
RBTelco.
 Chapter 10. Use case 4 - Web services security management 299

Figure 10-5 Retail customer jpublic’s view to the RBTelco portal page

Figure 10-6 on page 301 shows the screen that retail customer jpublic with
delayed access will see when he clicks the Get a Stock Quote link and then
provides the symbol for which he wants the quote.
300 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-6 Retail customer jpublic’s view of the Stock Quote service

� Stock Quote Web service response to a blacklisted client

Regardless of whether the client has realtime or delayed access, if they have
been blacklisted they will end up seeing the same screen as above, but after
selecting a symbol will get a message indicating that a runtime exception was
thrown by the security handler instead of seeing a numeric result. An
administrator looking at the security token service logs on RBStocks would
see that the blacklist had been checked and this client was contained in the
list.

10.2 Functionality
RBTelco and RBStocks each make use of Web Service Security Management to
extend the functionality of WS-Security support provided by WebSphere. In this
scenario WS-Security is employed to achieve message integrity and
confidentiality of the Web service request that RBTelco sends to RBStocks.
However, all of the security token processing shown in this scenario is handled
by Web services security management. While WebSphere will natively support
 Chapter 10. Use case 4 - Web services security management 301

several security token types such as the Username token and the X509
Credential token, the richer token types such as the SAML security token and the
Tivoli Access Manager binary security token that are used in this scenario are
only available with the Web services security management component of Tivoli
Federated Identity Manager. In addition to the richer set of security tokens, Web
services security management provides the ability to interface with Tivoli Access
Manager to perform authorization checking for a Web service prior to the service
being invoked, and it provides the ability to perform identity mapping of asserted
IDs. In this scenario all of these Web services security management functions
are employed.

10.2.1 Web services security management at RBTelco
RBTelco makes use of Web services security management in two ways. Web
services security management is used internally by RBTelco to pass an
authenticated user’s identity and extended attributes in an Access Manager
binary security token from a WebSphere application server hosting their Web
service clients to its Web Services Gateway. RBTelco makes further use of Web
services security management when it transforms the Access Manager binary
security token into an SAML assertion and adds it to the Web services request
on the outbound side of the Web Services Gateway. The SAML assertion is used
for authentication and authorization at RBStocks prior to invoking the Web
service.

10.2.2 Web services security management at RBStocks
RBStocks, unlike RBTelco, has opted not to use a WebSphere Web Services
Gateway. RBStocks simply interfaces with Web services security management
from their WebSphere application server hosting the Stock Quote Web service.
They employ Web Service Security Management to validate the SAML
assertions coming from their customers, to map the identity passed in the
assertion into a local user, to check whether the given user is authorized to the
service, and finally to transform the received assertion into a format acceptable
to their WebSphere JAAS login configuration so that a security context for the
user can be created in WebSphere.

10.3 Partners involved
The corporations involved in this use case are RBTelco and RBStocks.
302 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

10.3.1 RBTelco
RBTelco, among its other customer offerings described in the previous use
cases, provides access to the Stock Quote Web service hosted by RBStocks.

10.3.2 RBStocks
RBStocks hosts the Stock Quote Web service, which can supply either
15-minute delayed quotes or real-time quotes. RBStocks maintains a custom
blacklist, which is checked during client authentication to prohibit access to
anyone that has been barred from use of the service.

10.4 Interaction description
Figure 10-7 on page 304 depicts the interaction between a WebSEAL server, the
WebSphere Application Server hosting the Web service client, and the
WebSphere Web Service Gateway, all located at RBTelco with the WebSphere
Application Server at RBstocks, which hosts the Stock Quote Web service.
 Chapter 10. Use case 4 - Web services security management 303

Figure 10-7 Security token processing as the Web Service request traverses the servers

There are four points of particular interest in the above diagram, each of which
will be discussed in turn in 10.4.1, “Web services security management Token
Generator with Access Manager binary security token callback handler” on
page 305, through 10.4.4, “Web services security management Token Consumer
with SAML Assertion login module” on page 315. Briefly, these are:

� The use of a Web services security management Token Generator on the
application server at RBTelco to create an Access Manager binary security

ITFIM Trust
Service

WS-Security
Server Descriptor

WSSM Token

Consumer

W
eb

SE
A

L

Tr
us

t A
ss

oc
ia

tio
n

In
te

rc
ep

to
r

St
oc

k
Q

uo
te

 C
lie

nt
 J

SP

W
eb

 S
er

vi
ce

s
R

un
tim

e

Web
Services
Request
with TAM

BST

W
eb

 S
er

vi
ce

s
R

un
tim

e

W
eb

S
ph

er
e

W
eb

 S
er

vi
ce

s
G

at
ew

ay

W
eb

 S
er

vi
ce

s
R

un
tim

e

Web
Services
Request

with SAML
assertion

WS-Security
Client Descriptor

WSSM Token

Generator

WS-Security
Server Descriptor

WSSM Token
Consumer

WS-Security
Client Descriptor

WSSM Token

Generator

ITFIM Trust
Service

SOAP
Request/
Response

W
eb

 S
er

vi
ce

s
R

un
tim

e

S
to

ck
 Q

uo
te

 W
eb

 S
er

vi
ce

RBTelco RBStocks

SOAP
Request/
Response
304 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

token based on the authenticated user’s Access Manager credentials. The
Access Manager binary security token is then inserted into the Web service
request as it passes to the gateway.

� The use of a Web services security management Token Consumer on the
inbound side of the gateway at RBTelco, which processes the request using a
JAAS login configuration that understands the Access Manager binary
security token and can create a security context for the identified user on the
gateway.

� The use of a Web services security management Token Generator that
interfaces with the Tivoli Federated Identity Manager trust service on the
outbound side of the gateway at RBTelco to create a signed SAML assertion.
The SAML assertion is inserted as the security token in the Web service
request before the gateway forwards it to RBStocks.

� The use of a Web services security management Token Consumer that
interfaces with the Tivoli Federated Identity Manager trust service when the
Web service request is received at RBStocks. Its primary functions are to:

– Validate the signature on the signed assertion.

– Perform blacklist checking based on the e-mail address.

– Perform identity mapping (for realtime or delayed quotes) based on the
user_home attribute.

– Transform the signed SAML assertion, which was received into an
unsigned SAML assertion for which there is a JAAS login configuration to
create a security context for the user.

10.4.1 Web services security management Token Generator with
Access Manager binary security token callback handler

Web services security management is employed at the WebSphere application
server at RBTelco to generate an Access Manager binary security token that
contains the identity of the client as derived from the client’s Access Manager
credential. The Access Manager credential itself was created when the client
authenticated to WebSEAL and the Trust Association Interceptor on the
application server caused a JAAS login to occur before the client accessed the
protected JSP. The Access Manager binary security token created by Web
services security management is inserted as the security token in the Web
service request as it is passed to the gateway. The specific steps required to
configure the creation of this token type are covered in 10.5, “Configuration data”
on page 319. For now we simply illustrate in Example 10-2 on page 306 the end
result of the token generation in order to clarify the interaction occurring between
the RBTelco WebSphere application server hosting the Stock Quote Web
service client and the RBTelco WebSphere Web Services Gateway.
 Chapter 10. Use case 4 - Web services security management 305

Example 10-2 Stock Quote client Web service request with an Access Manager binary security token in
header

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:BinarySecurityToken EncodingType="http://ibm.com/2004/01/itfim/base64encode"
ValueType="http://ibm.com/2004/01/itfim/ivcred"
wsu:Id="uuidf704b527-0104-e6f7-1043-e02ceabe9775"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
BAKs3DCCArcMADCCArEwggKtAgIFEDAzMC8wHgIE1Z6ytgIDAONeAgIR2QICAJ8CARgEBgAMKRJhDAwNYmlnY29ycF9ndWV
zdDAAAgEBMIICbTCCAmkwLAwSQ...RkJPVnpGdWJUUlRlQ3N5ZVZSeFRHTnpkM0pWYkVsb1RpMWhaalZPWnpOcmFHWmhkRX
BvZVhwSFp3PT0EAA==</wss:BinarySecurityToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <p680:getQuote xmlns:p680="http://StockQuote">
 <symbol>IBM</symbol>
 </p680:getQuote>
 </soapenv:Body>
</soapenv:Envelope>

In Example 10-1 on page 294 it can be seen from the document that
WS-Security has not been employed to either sign or encrypt the Web service
request between the WebSphere Application Server and the gateway. This is
simply a decision that was made by RBTelco to rely on transport level security
when communicating between their internal servers. WS-Security certainly could
have been used as well to achieve transport-independent integrity and
confidentiality. We will see how WS-Security is used for signing and encryption
when we look at the outbound request from the RBTelco’s WebSphere Web
Services Gateway to RBStocks.

Note: There are a number of security tokens that may take the BASE64
encoded binary security token format. They are distinguished by value type.
We can tell that this is an Access Manager binary security token because in
the above example we see:

ValueType="http://ibm.com/2004/01/itfim/ivcred"
306 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

10.4.2 Web services security management Token Consumer with
Access Manager Credential login module

When the request reaches the gateway at RBTelco, Web services security
management is employed once again. The Token consumer is configured to
require an Access Manager binary security token and perform a JAAS login for
the client using the token. Once again, details of the configuration required to
achieve this are covered in 10.5, “Configuration data” on page 319.

10.4.3 Web services security management Token Generator with
Web services security management Callback handler

At the outbound side of the gateway Web services security management is
configured to interface with the Tivoli Federated Identity Manager trust service.
Web services security management provides the Access Manager credential of
the logged in user and requests that a signed SAML assertion be returned. An
example of this request is shown in Example 10-3.

Example 10-3 SOAP request to the trust service to generate a signed SAML assertion from an Access
Manager credential

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:Issuer xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsa:Address>http://www.rbtelco.com/internal</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>

<wsa:Address>urn:itfim-wssm:wsgwsoaphttp1:soaphttpengine:WSGW_BUS:StockQuoteService:wsgw_server
1_SOAPHTTPChannel1_InboundPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base>
 <wss:BinarySecurityToken EncodingType="http://ibm.com/2004/01/iftim/base64encode"
ValueType="http://ibm.com/2004/01/itfim/ivcred"
wsu:Id="uuidf704b527-0104-e6f7-1043-e02ceabe9775"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
BAKs3DCCArcMADCCArEwgg...Bd0FBQUE4QTl0Q0dKQ2FtVnpTRkJPVnpGdWJUUlRlQ3N5ZVZSeFRHTnpkM0pWYkVsb1RpM
WhaalZPWnpOcmFHWmhkRXBvZVhwSFp3PT0EAA==</wss:BinarySecurityToken>
 Chapter 10. Use case 4 - Web services security management 307

 </wst:Base>

<wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 </wst:RequestSecurityToken>
 </soapenv:Body>
</soapenv:Envelope>

Example 10-4 shows how the trust service would respond to the request in
Example 10-3 on page 307 by providing a signed SAML assertion that can be
inserted as the security token of the Web service request to the Stock Quote
Web service.

Example 10-4 Trust service response providing a signed SAML Assertion for the given client

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsa:Action
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">http://schemas.xmlsoap.org/ws/2005
/02/trust/RSTR/Validate</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <wst:RequestSecurityTokenResponse wsu:Id="uuidf704f98f-0104-e4d2-0bd9-a0e298abb70b"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wst:RequestedSecurityToken>
 <saml:Assertion AssertionID="Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b"
IssueInstant="2005-07-08T15:16:35Z" Issuer="https://www.rbtelco.com/rbstocks" MajorVersion="1"
MinorVersion="1" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-07-08T15:15:35Z"
NotOnOrAfter="2005-07-08T15:26:35Z">
 <saml:AudienceRestrictionCondition>

<saml:Audience>urn:itfim-wssm:wsgwsoaphttp1:soaphttpengine:WSGW_BUS:StockQuoteService:wsgw_serv
er1_SOAPHTTPChannel1_InboundPort</saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement AuthenticationInstant="2005-07-08T15:16:35Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
308 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 <saml:Attribute AttributeName="user_home"
AttributeNamespace="http://rbtelco.com/user_home">
 <saml:AttributeValue>BigCorp</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature Id="uuidf704f958-0104-feba-c2ac-a0e298abb70b"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <xc14n:InclusiveNamespaces PrefixList="saml ds"
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>gN6wzAgjvqlTdIZGdKsf0IKC/po=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>u0Q3qU6DMiXRnv/9eecVIeIz1rfiwgHmO3kR4DWDT/nWuHXjLgmb/hnq2driSHpy8AfObLw9kHrx
y0wqPpOYh/UBHFhf47ZeKY5Wnkc0vCdwAh3RxrXBu/ssy9xveqbxCgcqplzDWmufxkNxSvBFvQifQBy1wJQvmhAh0GD8neg
=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>

<ds:X509Certificate>MIICqjCCAhOgAwIBAgIBCjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExNmaW0ucmVkYm9vay5
pYm0uY29tMQswCQ...Zz06nUpBmViXOmzofsv+KvmXAN1f0BQa8zX3F41tPspg8tlVoGEq79uUWj7s+/B5GDjgh92NU6WIO
GjiOcaI31nwIckM38RcBqHPgnHbAiQ0uoxfoss=</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </saml:Assertion>
 </wst:RequestedSecurityToken>
 <wst:RequestedAttachedReference
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:SecurityTokenReference>
 Chapter 10. Use case 4 - Web services security management 309

 <wss:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">A
ssertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b</wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:Status>
 <wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 10-5 shows the complete Web service request including the signed
SAML 1.1 assertion as it would be presented to the Stock Quote Web service if
WS-Security was not being employed for signing and encryption of the SAML
token and message body. The next example shows the same request with
WS-Security signing and encryption in effect.

Example 10-5 Web service request to the Stock Quote Web service with signed SAML assertion

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://StockQuote">
 <env:Header>
 <wsse:Security env:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <saml:Assertion AssertionID="Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b"
IssueInstant="2005-07-08T15:16:35Z" Issuer="https://www.rbtelco.com/rbstocks" MajorVersion="1"
MinorVersion="1" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-07-08T15:15:35Z"
NotOnOrAfter="2005-07-08T15:26:35Z">
 <saml:AudienceRestrictionCondition>

<saml:Audience>urn:itfim-wssm:wsgwsoaphttp1:soaphttpengine:WSGW_BUS:StockQuoteService:wsgw_serv
er1_SOAPHTTPChannel1_InboundPort</saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement AuthenticationInstant="2005-07-08T15:16:35Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
 <saml:AttributeStatement>
310 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 <saml:Attribute AttributeName="user_home"
AttributeNamespace="http://rbtelco.com/user_home">
 <saml:AttributeValue>BigCorp</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature Id="uuidf704f958-0104-feba-c2ac-a0e298abb70b"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <xc14n:InclusiveNamespaces PrefixList="saml ds"
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>gN6wzAgjvqlTdIZGdKsf0IKC/po=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>u0Q3qU6DMiXRnv/9eecVIeIz1rfiwgHmO3kR4DWDT/nWuHXjLgmb/hnq2driSHpy8AfObLw9kHrx
y0wqPpOYh/UBHFhf47ZeKY5Wnkc0vCdwAh3RxrXBu/ssy9xveqbxCgcqplzDWmufxkNxSvBFvQifQBy1wJQvmhAh0GD8neg
=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>

<ds:X509Certificate>MIICqjCCAhOgAwIBAgIBCjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExNmaW0ucmVkYm9vay5
pYm0uY29tMQ...Zz06nUpBmViXOmzofsv+KvmXAN1f0BQa8zX3F41tPspg8tlVoGEq79uUWj7s+/B5GDjgh92NU6WIOGjiO
caI31nwIckM38RcBqHPgnHbAiQ0uoxfoss=</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </saml:Assertion>
 </wsse:Security>
 </env:Header>
 <soapenv:Body xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 Chapter 10. Use case 4 - Web services security management 311

 <p680:getQuote xmlns:p680="http://StockQuote">
 <symbol>IBM</symbol>
 </p680:getQuote>
 </soapenv:Body>
</env:Envelope>

Example 10-6 shows how the same request appears to RBStocks when XML
signing and encryption is enabled. It is worth re-iterating that it is the XML
signature over the body and security token in the message that binds the two
together. Since the signing of the SAML assertion alone does not in any way bind
it to the message body containing the Web service request, it is essential to
make use of both WS-Security and Web Servers Security Management.

Example 10-6 Signed and Encrypted Web service request containing a signed SAML 1.1 assertion as the
security token

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://StockQuote">
 <env:Header>
 <wsse:Security env:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
wsu:Id="x509bst_4298581995360551010"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
MIICqjCCAhOgAwIBAgIBCjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExNmaW0ucmVkYm9vay5pYm0uY29tMQswCQYDVQQ
GEwJVUzEMMAoGA1UEChMDSUJNMB4XDTA1MDYwMTIxMzgyNVoXDTEwMDYxNjIxMzgyNVowRjElMCMGA1UEAxQccmJ0ZWxjb1
9yYnN0b2Nrcy5yYnRlbGNvLmNvbTELMAkGA1UEBhMCVVMxEDAOBgNVBAoTB1JCVGVsY28wgZ8wDQYJKoZIhvcNAQEBBQADg
Y0AMIGJAoGBAL+2oOmOriISrXrrslf1sCa/9j4a9VAnBup/pix37esCWLv7i4qJUKof6JJ+QgtJQDGZ8QObcmRm9KRt5pR2
GSANiIaBExLnThmW0Zfl8L9epKYDn/kD7Aw5P1UhJaPdG7aSi+SF+5PriQT420tloD9JD9duWBqP5dc2pdoxG3hZAgMBAAG
jgbQwgbEwDAYDVR0TAQH/BAIwADAdBgNVHQ4EFgQUDBihhccfoFuBoSAzj8c+SLXohj4wYQYDVR0jBFowWIAUQNM+O+Jvv8
jfpobQbQhsXg/LkTGhPaQ7MDkxHDAaBgNVBAMTE2ZpbS5yZWRib29rLmlibS5jb20xCzAJBgNVBAYTAlVTMQwwCgYDVQQKE
wNJQk2CAQEwCwYDVR0PBAQDAgSwMBIGCWCGSAGG+EIBDQQFFgNocGgwDQYJKoZIhvcNAQEEBQADgYEAyBRKRlf709wcLsPb
fN7962BJw1U29txsO46oFUzPUyBRaZKOfwwMN2yZZz06nUpBmViXOmzofsv+KvmXAN1f0BQa8zX3F41tPspg8tlVoGEq79u
UWj7s+/B5GDjgh92NU6WIOGjiOcaI31nwIckM38RcBqHPgnHbAiQ0uoxfoss=</wsse:BinarySecurityToken>
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v
3SubjectKeyIdentifier">klZEsp7JrEYUEQXysYK/ZcP+rRg=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <CipherData>
312 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<CipherValue>XoQ0E7+cwnSXVJ1epFDb0IZLCzh9Hg4GHr92sLn9wLziHOzcw7aNew2iBc1jza1P1ulbZVBl/Tmlw4LwnJ
ZK0o1CwGIBfwTAGJ5VmQUUri+1O5RSwmhrxZTJ+vGTJ3l9p3rizDz/BPkPz1WuwdBME1ZOkkGvFBUrMnxi49IyvD8=</Cip
herValue>
 </CipherData>
 <ReferenceList>
 <DataReference URI="#wssecurity_encryption_id_1866730207718926501"/>
 <DataReference URI="#wssecurity_encryption_id_766821276426737109"/>
 </ReferenceList>
 </EncryptedKey>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="env wsse ds ns1 "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#wssecurity_signature_id_3469149583751836238">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="env ns1 xsi soapenc xsd p680 wsu
soapenv " xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>/EJdxNyoawuufENjOPfTna8nyEE=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2002/06/xmldsig-filter2">
 <dsf2:XPath Filter="intersect"
xmlns:dsf2="http://www.w3.org/2002/06/xmldsig-filter2">/*[namespace-uri()='http://schemas.
xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/soap/enve
lope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/wss/2004/01
/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='urn:oasis:names:tc:SAML:1.0:assertio
n' and local-name()='Assertion']</dsf2:XPath>
 </ds:Transform>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="saml wsse env ds xsi ns1 soapenc
xc14n xsd p680 wsu soapenv " xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>0stczd3sVfs7DVufmsHUawGe8lk=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 Chapter 10. Use case 4 - Web services security management 313

<ds:SignatureValue>BYbK7XuUjIfES+6x7lZT2JE/nZF0jQKczRbe9CI/nk1xmy+mIjXhYumvODCg7lO4P2ikFQ/ged1N
VCjclV5FsBdxiS37KZ2xzwFCevAbrBEdXw4H9ygqw+hxnN43WB2ikn/IJqetkGbYLkM8/des/WpG5kGz5KC0RIkPCU8jGHU
=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509bst_4298581995360551010"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 <EncryptedData Id="wssecurity_encryption_id_1866730207718926501"
Type="http://www.w3.org/2001/04/xmlenc#Element" xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>

<CipherValue>HWj3Di4hIFlmgJ4ONsKuahZehY9hGR7VMLf5ZEUUMxzffoVCxGzJdBmfDOQR7b1aubPAldvTo2aqMHiz+r
nKE0hyQJ/ajG+A3bpBIM0mSdLXQgpVKkqgoFlRX1SFtlNDbYuE339N/SFXotJs2m6Dr9kPPPUPyThN3dj0hWi3o7PuihwV9
jHyISzbpR8BVau7bBBtjYI9vMalQRlwCslDngiUs137whXDuIxE288HbUzMvk27jooM4THCW7WtOe5i021zLIUyp/VEiCff
wrSzdr5R184IFUxl7v/qWIXGxyJa62pW+E9k4bL7iMZ6I5NXAsR8xVFajvRW21hJDtY157ZZ7njGZtb+E/CjwQyXwFjI6X7
2EPeAQgjFw3ikBrB8ORtqkBX7cUaiLkWYovhxzAgvUf/GfkLfY1C2ekTw/DTLVpevmq4YBWlR8Z4BonHhI41V3jvUK0Llz6
BOADbEB6mJValp8VoufswxM9EeYSb6PZ1WztZePwcyoT9oa7OlRbiZAuYJ6Lk13OpbmzCVeGIkzVYp27yBnRIdwcSiFGzRV
todDt9Xiec4GaJhn/QDiexWLTcFKQBS9gfAn6oQcTNv1YQOql1wrSmGpTH1zq4NoRAAPDxOTldj4xICvg+vPEU27DftzFN8
B3Fe+IGqzIjfUbs9bfLmZz1elRXArctiDk9K6mhyTBWXtgY5plDc6tX6VPdi6vZia6Eb8jxn18/+NNhIcPBCNU1uHO298+b
oY1AATEhXHb34N24djEPiA/s9YmRmUXLrGBp1bMV3pr38HR5PwN16XVyNrGXb1tCLzKAJsqh8AhNnbPetyfsMnF03V1v2ca
9leoLNZKOed3lix0owcNTW9sPyyA4Y3HuJYZQubm2eWfxEKg5I/w2Mkoi8zpDt4OzSmho426aQwRlsBbLlCK0hTfhETCrv0
ZSUsn59XNL/JB9sBR+pCAEh6jvg1GXjDiWeKQlgKMVGZ0/3Og1NmXiXBb+n/p7WsYaTiWrR/rxs1QD9ukO6mt7EQnvzYSrp
ivl2/B8Nlt/hcG9w8pgyh8StkNeqgpAsjax9iaDHct5L3u7fZNQIJoAgH1DOtu3Dm0wQA6ScMYIj2XjyUNHRlx2O09Rm6AO
8nNwodtaD8/XtF+8DOdkJb6UEQ78PSAfz0EAYFUcVZiwMC6huFsxwCFn7LwUuyWSXwinfp88e8LS/nlV8lboc+KpgdzF+vy
txD6kOvz2cCeZE6nZ090dV4C4mRhtNpBjoi4O/yI6T2Ep7uDZzcy/Yjm5+ouZOGhE4KXGjYoUoxqKfz5aO8MD0hvKkJmdX7
FZQcR9KSL4wMcy9rKVX1OemQzc6YOunftozD/PnGJMr6YDz4GYkejHzFPk5cr4Zta7BHweHzTC4/RyRdZbHctn+mWcH8ayK
vRH5yS9ao7se++hKSR2a3LvQWw+SnBnjk+uV/erftw1GTdZ77E7zpbl7pHERb6apWsjMIhnUFMIKaeidKfWJEeloiQXjA1E
1gBpYyfJHhGTEkICJ2UbdHivA5hudXIUVSpEvZ+Z33eW2QnGvDCtd47Q0pN41uFcufrUufFRaL6P0zETofYbDGB6QyH3Zi6
6KZ4G2m7eQ4BSWJmray3la6+tQnKmMdHWKQ6nnWrUD/1pNlygsdjoA0lqbBzdIHwyHV+QS5Oh+XPJQzojaFjHhe8NAudenx
wgVLVLfCHwQZWpEUIz2XNfRSEvytXm/9jqU1cMg5xxAEQFO/nrUm6oOq9LmjKEfAAMEbGT90tYmW8SHLlUnZmEzEbR35Mw/
SCU8YlIENs/qMkvTbdJltE9Ab/pJS4w5i3rzcLbSef2Lthmu58dkfFoE+HrFKqmN1nw5B8wECf++wGw/OBI6gIV0W2GCUJ/
nKZGwS28K5E01d2i7CFTMJxcSnJMEoNMARrRg2kPCglCVyj2H822IXXvF4MuezPYRAP503lhx0HPIfDQki8oFOdoxVtiO5U
b7JhEps2hCmXWm9UVx/vncL84mxPg1NSL14GaA/cdXwPTKKFxnaNnMpGdzntIYmlC36KfZkR7v3sajfCns/fkooi9tygR5E
74RNwMCfZRUk7b5UP2vkn0ZrKg9rlhH8JSrQFDX30q5ORy1mtLPY1l64ojNjnUzpRLtreywKegmdHHjeDvgdChBRaOSsafZ
r3hSaIq1iXdWMbXP0GdDlWozNqs4yPs/SyG86l3wgmOCUG5N4doEs8wyoLniotiO96vcJDaY+y1iqLe3VvWvnPilAiDRJt8
K7MuV++c28A3vtrKlDDMtM4NXV8PTEP1VawRew8sWWVJow384EQEcbtCyc4wWL8/HVSvE1AOIcChyIZu6VHRTpPJeqVxu7X
sI7j4ClXF3NZGGuHgSujoaELjrLL4EpRH8r/pzg7g7a/0UrpaVwYlcUufdozKhxQNOWOaVFNpRMaN4l5B1UXHyAkMAU7xbo
3QeKoHwlgH5HBU/0d0kxZwpRGNdUNJXRKI+a+cIZDeYdJpJxiBjgfV3bz3+Fi8KkR8BCOxNT3sLYCzIqaGu1ws9XmN99pGc
kN5O365R1b3GXddG1TQzpqxCQ8WVRglezk8RciPAvz13CW9O44YqLygRifnJADHLXwh1lBDJz7XQSL31dZCNI7nAT8K3TRc
uYKdXJEzZR+3v/ep+3K/HMKG9juwEYn/AK/vLjfYiH3Yiga+M2ArP1jSzwn70/A3nOcVpLx4AsL4qJRys/WgAGzQFHk23D6
B1ucP6BUi3VRf5CCczvtBnK7AehTzRX+BY/163BlR9fSXF1RKLURKnCkGqQTXYZ0NZ4EzmrrkmT3VYYzDH1QmI71oXuIZ4o
x1DmLcQo/AK62bkslGZM16lvrrQigNpZMWmxE2OwcW/k1DLHTisqmbOzdYvi/usL3RA1wsF7/ToFhDqLEPeEVQWkxQSplf9
6KKQyfheQ331yO3o5cF+eQ9bIYQOgN8Ph32YRNX7es9J5RNjivn2HTUo+bTma4SH8L7ewrHTwGHqZB50YBZIovoYeNX6K/3
314 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

HoeZF+8Kt520kRXnOIenhRKma4w6GskVaPFuLg7VFCd2wYzQX+mrKYKoJCtIm/ILNFD5Zb3xXzitHkcIPFYx3uVatMz2njb
qAF9j8niCtfc9URFQh09gJu/3Nd3dWWiSDd727m2h43FtKaXTHrpEJ6jGUZVlGLzw9NjW3bQH+muUvER+JjgfiwoDJreRIy
IJdagDPcs6wsxGjW0bhnaCC3ZT/+qQ06+5GJo2LM7smJWsbSsVsZLEFTw3Erl6pf51w2MErFs0MM+QCk1uIhDycj6le3i4X
TY1P4fRdm6Yh4qIVFLMrDyAklvhiyUUZ2yX+F1nDxDoUbyI7iO52+ZUW83ekXbAxvxAsP/fOt7UWX5sHOcW5VoNnVoxe9Gy
mGTTlHPRNe+S4811xp+d38JK2h8n0i8f9b2AA4Y5JFdv2vzHTMxCJ0scVNHJCvEWa3XvfAjM2rnR86q3Sqc1VgFOyl9eQ5A
KkY+wMFpfFNIaFg2hoxuIWGClSlokSrpZD+A+HZ4hxnWmj8cSfmVcuNLRIn8UgJudedkDhBE1dcfBqrQCmKHWngaJqqS3mM
Q3akfHcpfeQBtIuKutr7oU2jSUJO49tdQp1AtHg+sB2hJ0zad4WvvB/6LUvaCMIVJY0GgoOc+ucI0UBo/oAql+fbn8SrKQJ
d/+7/Zm8wi8D6Xld6l9Y1tr8Wcl/hTvOJL9B/ETUQ/TiMMtFNlxPH7K11pda/QBXptpPswmlTsyUuqbVwxtzyhLuk+d3kid
ArqyqRWsWhexbkXu3PtpQ+Fyq5dp7sLKQAAkqZEwD5BpS+kFN5c6VT1WFh4MRRwboryKpCtpDQSSuSNnHN4OnUzBCKt1OSa
uOGLyUclaJKDHGsp9po2I+z4nMkmURi0mUWGKFbgVWeZzuFuBNx2UbuBGGjxkdpx3JJRBVViR2FPVwT9UZJZwoowhB8vfpk
O/oI+XnwM31Ot4nGOQ6W6UjzrAConOJzdVgODIi2iFjs+xVi98UDSTdy4Aychg1aeE9edIfCzxVuXxYSa6YchE5DhQCaFVI
KXWWxcec3Q6/xMNyxyqKxlyAgsSwyLgdy59AzOxbCrirFHOodBh8o3C3mNNfxUiu0m8Bz2FMcXuCgggoITJhvDa38d4eMPm
zbFP4mi63YXEMQuXeki8FYE1Qt1mmb1JDYHH02FXF51KFB3rqGkjB9xqmbJLX4BPpD5UTOZsNUO8WAUHl0a5JnNBS5YbhYH
4HYYs7fWytcnLYSV4IZS+iT5Gvqu3FxR0+lSXjSMXkP8ZdY4xidcXg1QF+/Hzlqk9llgQ44gzIjW+DzWYagYCUx1s8ORhxp
OyV3XdGFsMHHX4Ur0gh059ZcZyJM/hVkc0qOpUrsEOF3Fz1IfeDVBTS11QsTZbmvwFh/dClzjo2qpO3aEDi9yEx+FHjyPl9
BmxMQ1Nzv88XD0+kMzb2aEsfiC3MCTIcw8mTxRzJTmLulDd7LM19im4Ml2i3UqqDxHqhly6zCqA6Q5PKrNhpYmCAs/WQL7t
np1euZjypQGhvgJXxc/vNJ3buJwlyvL/I1K5CWplBfmYUMB/ChtzHVSgiTuh1CYrs/8MDYpdfQGpkUtHo8A==</CipherVa
lue>
 </CipherData>
 </EncryptedData>
 </wsse:Security>
 </env:Header>
 <soapenv:Body wsu:Id="wssecurity_signature_id_3469149583751836238"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <EncryptedData Id="wssecurity_encryption_id_766821276426737109"
Type="http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>

<CipherValue>SkW+sGLzRg4dQrwpW5LGfvac/U/PEN8RDsziJLumgBM88Wt2svCkbls+lP2k07KQCVJAUo0DqOzgJaK6TR
zdX7nPYCKcuyrKEtJDKrV16SJQMuZUPdjw3urhRlynC+XP</CipherValue>
 </CipherData>
 </EncryptedData>
 </soapenv:Body>
</env:Envelope>

10.4.4 Web services security management Token Consumer with
SAML Assertion login module

Now we turn our attention to RBStocks and look at how it employs Web services
security management to validate the SAML assertion that came across with the
Web service request and exchange it for an unsigned assertion that can be used
to do a JAAS login to WebSphere. Example 10-7 on page 316 shows a trust
 Chapter 10. Use case 4 - Web services security management 315

service request to exchange the signed SAML assertion for an unsigned
assertion. Note that the trust service also performs blacklist checking,
authorization, and identity mapping of the request (to a user called delayed or
realtime).

Example 10-7 SOAP message to trust service providing a signed SAML assertion and requesting an
unsigned assertion

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:Issuer xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsa:Address>https://www.rbtelco.com/rbstocks</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>urn:itfim-wssm:WebProject:services:StockQuoteService</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base>
 <saml:Assertion AssertionID="Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b"
IssueInstant="2005-07-08T15:16:35Z" Issuer="https://www.rbtelco.com/rbstocks" MajorVersion="1"
MinorVersion="1" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-07-08T15:15:35Z"
NotOnOrAfter="2005-07-08T15:26:35Z">
 <saml:AudienceRestrictionCondition>

<saml:Audience>urn:itfim-wssm:wsgwsoaphttp1:soaphttpengine:WSGW_BUS:StockQuoteService:wsgw_serv
er1_SOAPHTTPChannel1_InboundPort</saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement AuthenticationInstant="2005-07-08T15:16:35Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
 <saml:AttributeStatement>
 <saml:Subject>
316 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">emp1@bigcorp.com</saml:NameIden
tifier>
 </saml:Subject>
 <saml:Attribute AttributeName="user_home"
AttributeNamespace="http://rbtelco.com/user_home">
 <saml:AttributeValue>bigcorp</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <ds:Signature Id="uuidf704f958-0104-feba-c2ac-a0e298abb70b"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Assertion-uuidf704f951-0104-f735-d1bb-a0e298abb70b">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <xc14n:InclusiveNamespaces PrefixList="saml ds"
xmlns:xc14n="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>gN6wzAgjvqlTdIZGdKsf0IKC/po=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>u0Q3qU6DMiXRnv/9eecVIeIz1rfiwgHmO3kR4DWDT/nWuHXjLgmb/hnq2driSHpy8AfObLw9kHrx
y0wqPpOYh/UBHFhf47ZeKY5Wnkc0vCdwAh3RxrXBu/ssy9xveqbxCgcqplzDWmufxkNxSvBFvQifQBy1wJQvmhAh0GD8neg
=</ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>

<ds:X509Certificate>MIICqjCCAhOgAwIBAgIBCjANBgkqhkiG9w0BAQQFADA5MRwwGgYDVQQDExNmaW0ucmVkYm9vay5
pYm0uY29tMQswCQ...1tPspg8tlVoGEq79uUWj7s+/B5GDjgh92NU6WIOGjiOcaI31nwIckM38RcBqHPgnHbAiQ0uoxfoss
=</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 </saml:Assertion>
 </wst:Base>

<wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 </wst:RequestSecurityToken>
 </soapenv:Body>
 Chapter 10. Use case 4 - Web services security management 317

</soapenv:Envelope>

Example 10-8 shows the response from the trust service at RBStocks, which
returns an unsigned SAML assertion mapped to either delayed or realtime. This
assertion is used to perform a JAAS login at RBStocks.

Example 10-8 SOAP response from the RBTelco providing an unsigned SAML assertion from which a
JAAS login can be performed

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsa:Action
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">http://schemas.xmlsoap.org/ws/2005
/02/trust/RSTR/Validate</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <wst:RequestSecurityTokenResponse wsu:Id="uuidf704fe85-0104-e413-f81c-bc0b9265e970"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wst:Status>
 <wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid</wst:Code>
 </wst:Status>
 <wst:RequestedSecurityToken>
 <saml:Assertion AssertionID="Assertion-uuidf704fe86-0104-e0d9-428d-bc0b9265e970"
IssueInstant="2005-07-08T15:16:36Z" Issuer="https://www.rbstocks.com/internal" MajorVersion="1"
MinorVersion="1" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-07-08T15:15:36Z"
NotOnOrAfter="2005-07-08T15:21:36Z">
 <saml:AudienceRestrictionCondition>

<saml:Audience>urn:itfim-wssm:WebProject:services:StockQuoteService</saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement AuthenticationInstant="2005-07-08T15:16:36Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <saml:Subject>
 <saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">realtime</saml:NameIdentifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
 </saml:Assertion>
 </wst:RequestedSecurityToken>
 <wst:RequestedAttachedReference
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:SecurityTokenReference>
318 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <wss:KeyIdentifier ValueType="saml:Assertion"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">A
ssertion-uuidf704fe86-0104-e0d9-428d-bc0b9265e970</wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 </wst:RequestSecurityTokenResponse>
 </soapenv:Body>
</soapenv:Envelope>

10.5 Configuration data

10.5.1 Overall architecture and prerequisites
The Interaction description shown in Figure 10-1, “Use case 4 logical
architecture” on page 293 made use of a single WebSEAL instance and three
WebSphere Application Server instances. The successful configuration of the
scenario depends upon Tivoli Federated Identity Manager Web services security
management and all of its prerequisite software having first been installed and
configured on the WebSphere Application Servers according to the instructions
in the Tivoli Federated Identity Manager Web services security management
Guide.

10.5.2 RBTelco configuration
This section presents the configuration of all Web services components at
RBTelco, including the Web services client application, the Web services
gateway, and the Tivoli Federated Identity Manager trust service.

Use of the WebSphere Stock Quote sample
In order to make the scenario as straightforward as possible for the reader, we
base it on the WebSphere Web service Stock Quote sample, which is available
from the Samples Gallery within Version 6 of the Rational Software Development
Platform. The essential modifications to this sample were:

� No registration was done to a UDDI registry, as it is not relevant to this use
case.

� Web services client and server extensions and binding configurations were
created to fulfill the token and WS-Security signing and encryption
requirements of the scenario. On the client hosted at RBTelco this consisted
of inserting the Access Manager Binary Security token. On the server hosted
at RBStocks this consisted of requiring a SAML assertion token, and requiring
the token and message body to be signed and encrypted with standard
 Chapter 10. Use case 4 - Web services security management 319

WebSphere WS-Security. A key point to recognize here is that while Tivoli
Federated Identity Manager is the generator of the SAML assertion at
RBTelco and the consumer of the SAML assertion at RBStocks, it is
WebSphere WS-Security signing that is responsible for the binding of the
SAML assertion to the Web service request.

� JKS key stores were created and Web service binding configurations were
updated so that the custom key stores would be used instead of the default
keys that ship with WebSphere. The same signing key was used by the trust
service to sign the SAML assertion and by WS-Security to achieve overall
message integrity, For details on the key stores that were used in this use
case see Appendix C, “Keys and certificates” on page 425.

� The endpoint of the Stock Quote client JSP was set to the WebSphere Web
Services Gateway at RBTelco instead of pointing directly to RBStocks.

Web service client configuration
The first thing that had to be done was to modify the Web Services Client
Security Extensions and Client Bindings to configure a Request Generator
security token. The role of this Request Generator is to create an Access
Manager binary security token for the client making the Web service request to
the Stock Quote Web service. Full XML configuration information for the client
extension and binding is available in Appendix D, “WS-Security deployment
descriptors” on page 437.

Figure 10-8 on page 321 shows the addition of a security token named
AccessManagerToken to the Web Service Client Security Extensions.
320 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-8 Adding Access ManagerToken to the Web Services Client Extensions

Figure 10-9 on page 322 shows the Security Token Dialog box for Access
ManagerToken, which displays its URI and Local name.
 Chapter 10. Use case 4 - Web services security management 321

Figure 10-9 Security Token Dialog for Access ManagerToken

The next thing that had to be configured was the Web Service Client Bindings for
the token. Figure 10-10 on page 323 shows the addition of a Token Generator
named TAMTokenGenerator to the Security Request Generator Binding
Configuration.
322 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-10 TAMTokenGenerator added to the Security Request Generator Binding Configuration

The Token Generator Dialog box for TAMTokenGenerator is shown in
Figure 10-11 on page 324. It describes a WSSMTokenGenerator with a callback
handler of com.tivoli.am.fim.wssm.callbackhandlers.TAMTAICallbackHandler. It
also specifies a single property of trust.service.call, which in this case is set to
false, as no call out to the trust service is required at the client for this scenario.

The callback handler is responsible for locating the Access Manager credentials
of the authenticated user and generating an Access Manager binary security
token. The TAMTAICallbackHandler does this by inspecting the current JAAS
security subject associated with the user for an Access Manager credential
contained within a PDPrincipal. The PDPrincipal is inserted into the JAAS
subject during the WebSphere TAI++ login via WebSEAL.
 Chapter 10. Use case 4 - Web services security management 323

Figure 10-11 Token Generator Dialog for TAMTokenGenerator

Additional changes required to the Web service client
In order to utilize the TAMTAICallbackHandler provided by Web services security
management, it was necessary to provide the client application with Java
security permissions, as shown in Figure 10-12.

Figure 10-12 was.policy update granting use of getCallerSubject

WebSphere global security settings on the gateway
Before Web Service Security Extensions and Bindings can be configured for the
application at the WebSphere Web Services Gateway, global security settings on
the gateway had to be updated. It is this update that allows the WS-Security
324 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Bindings to reference the Access Manager binary security token login module,
which will log the user into the WebSphere Web Services Gateway.

Figure 10-13 shows the addition of itfim.wssm.tamcredential to the System login
configuration. In the figure you will also see an entry for itfim.wssm.samla, which
should generally be added to the system login configuration during Web services
security management deployment, but that is not used at the gateway in our
scenario. It will, however, be used at the RBStocks WebSphere Application
Server when an SAML assertion is used to authenticate to WebSphere.

Figure 10-13 System login configuration showing that itfim.wssm.tamcredential is available

The itfim.wssm.tamcredential entry is expanded in Figure 10-14 on page 326.
 Chapter 10. Use case 4 - Web services security management 325

Figure 10-14 itfim.wssm.tamcredential

Figure 10-15 shows the JAAS login module configuration for
itfim.wssm.tamcredential.

Figure 10-15 JAAS login modules for itfim.wssm.tamcredential

Figure 10-16 on page 327 shows the general properties for the configured JAAS
login module.
326 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-16 General properties for the itfim.wssm.tamcredential login module

Inbound Web services gateway configuration
Figure 10-17 shows the list of WS-Security configurations on the gateway. These
are the WebSphere Web Services Gateway equivalent to the WS-Security
Extensions that would be configured on a WebSphere Application Server. The
entry of interest here is StockQuoteServiceInboundFinal, which is configured as
Service Type Inbound. The full XML configuration file information for this
extension is available in “RBTelco WSGW server extension configuration” on
page 440.

Figure 10-17 WS-Security configurations for use case 4

Figure 10-18 on page 328 is the expansion of the
StockQuoteServiceInboundFinal entry.
 Chapter 10. Use case 4 - Web services security management 327

Figure 10-18 WS-Security configuration for the inbound service StockQuoteServiceInboundFinal

Configured for the request consumer was a required security token and caller.
The configuration of the required security token for TAMCredential is shown in
Figure 10-19 on page 329.
328 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-19 Required security token for TAMCredential

The expansion of the TAMCredential entry from Figure 10-19 is shown in
Figure 10-20 on page 330.
 Chapter 10. Use case 4 - Web services security management 329

Figure 10-20 TAMCredential specified as required security token (the complete Local name, which could
not be shown, is http://ibm.com/2004/01/itfim/ivcred)

A Caller had to be configured. The expansion of the Caller entry on the
WS-Security configuration screen for TAMCredential is shown in Figure 10-21 on
page 331.
330 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-21 Caller configuration for TAMCredential

Further expanding the TAMCredential entry above would show that Properties
and a Trust Method could be configured for a Caller. We do not illustrate that
here, as these settings are not applicable to the TAMCredential.

Now that we have seen the WS-Security configuration for the inbound
processing of the request, we need to turn to the associated WS-Security
bindings. StockQuote Service Request Consumer Final is the name of the
WS-Security binding for the Request Consumer on the inbound side of the
gateway. The entry is shown in Figure 10-22 on page 332. The full XML
configuration of the binding is available in “RBTelco WSGW server binding
configuration” on page 441.
 Chapter 10. Use case 4 - Web services security management 331

Figure 10-22 WS-Security binding for StockQuoteService Request Consumer Final

Figure 10-23 on page 333 shows that a single WSSMTokenConsumer named
TAMCredential has been configured.
332 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-23 TAMCredential Token Consumer

Figure 10-24 on page 334 shows the General and Additional properties page for
TAMCredential.
 Chapter 10. Use case 4 - Web services security management 333

Figure 10-24 Properties for the TAMCrednetial Token Consumer

In Figure 10-25 on page 335 the JAAS configuration for TAMCredential is
displayed.
334 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-25 JAAS Configuration for TAMCredential Token Consumer

It is here that the relationship between the WS-Security configurations and
Bindings and the Global settings that were previously configured becomes clear.
system.itfim.wssm.tamcredential had to first be configured in the system login
configuration before it could be referenced is the WS-Security Binding.

Figure 10-26 shows the required properties for the JAAS configuration.

Figure 10-26 JAAS Configuration properties for TAMCredential

As shown above, this must point to a valid AZN API configuration file.

Figure 10-27 on page 336 shows the additional properties that were configured.
 Chapter 10. Use case 4 - Web services security management 335

Figure 10-27 Additional properties for the TAMCredential Request Consumer

The only additional property set is trust.service.call, and this is set to false, as
there is no call to the trust service required on the inbound side of the gateway.
We are going to log in directly with the token presented in the incoming message.

This completes the description of the configuration on the inbound side of the
WebSphere Web Services Gateway. With this configuration a client can be
logged into the gateway with the Access Manager binary security token that is
sent across in the security token section of the Web service request from the
WebSphere Application Server hosting the Stock Quote Web service client.

10.5.3 Outbound Web services gateway configuration
In the section we begin to describe the trust service configuration required to
generate an SAML assertion, but first, as in the two previous sections, we need
to describe how the WS-Security configurations (Extensions) and Bindings were
set.

Figure 10-28 on page 337 shows the relevant WS-Security configuration that has
been named RBStocks Outbound SigEnc to reflect that this is the outbound
request from the gateway to RBStocks and that WS-Security has been used to
sign and encrypt the request.

A full XML version of this configuration information can be located in “RBTelco
WSGW client extension configuration” on page 442.
336 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-28 WS-Security configuration for RBStocks Outbound SigEnc

While the request generator above is configured for both integrity and
confidentiality of the Web service request, we only show the configuration of the
security token in this document. For information on how integrity and
confidentiality are configured for a Web-Service request, please see
“WebSphere Application Server Version 6.0 Information Center” on page 472.

Figure 10-29 on page 338 shows the SAMLA Security token associated with
RBStocks Outbound SigEnc. This says that the outbound request from the
gateway will contain a SAML Assertion security token.
 Chapter 10. Use case 4 - Web services security management 337

Figure 10-29 SAMLA as security token type for RBStocks Outbound SigEnc

The complete URI, which is not visible above, is
urn:oasis:names:tc:SAML:1.0:assertion.

Figure 10-30 on page 339 shows the related WS-Security bindings. The
particular binding of interest is RBStocks Request Generator SigEnc.
338 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-30 Binding configuration for outbound side of the gateway

Figure 10-31 on page 340 shows the two token generators that were associated
with RBStocks Request Generator SigEnc.
 Chapter 10. Use case 4 - Web services security management 339

Figure 10-31 Token generators for RBStocks Request Generator SigEnc

The token generator that we need to take a closer look at is SAMLA, which
generates the SAML assertion security token that will be inserted as the security
token in the Web service request before it leaves the gateway. The General and
Additional properties page for SAMLA is shown in Figure 10-32 on page 341.
340 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-32 General and Additional properties for SAMLA

The token generator class name, which is not visible above, is
com.tivoli.am.fim.wssm.tokengenerators.WSSMTokenGenerator and the URI is
urn:oasis:names:tc:SAML:1.0:assertion.

Figure 10-33 on page 342 shows the properties that were configured for the
SAMLA token.
 Chapter 10. Use case 4 - Web services security management 341

Figure 10-33 Properties for the SAMLA token

The properties shown in Figure 10-33 specify how Web services security
management will interface with the trust service.

� trust.service.call is set to true so that the trust service will be called.

� trust.service.url specifies the location of the trust service.

� default.issuer.uri tells the trust service who the partner is that is making the
trust service call. It becomes the Issuer URL in the trust service call and it
must match the value that is configured for the Partner Provider ID configured
in the Tivoli Federated Identity Manager console. This will be further clarified
later.

Figure 10-34 on page 343 shows the callback handler that was configured for the
SAMLA token.
342 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-34 Callback handler for the SAMLA token
 Chapter 10. Use case 4 - Web services security management 343

The truncated classname for the callback handler is
com.tivoli.am.fim.wssm.callbackhandlers.WSSMCallbackHandler.

There are no other properties or keys that are configured on this page. Using the
WSSMCallbackHandler allows us to retrieve the TAM credential from the JAAS
login context that was inserted on the inbound side of the gateway with the
TAMTAILoginModule. This will then be exchanged for the SAML assertion at the
trust service according to the token generators configuration.

Trust service configuration at RBTelco
At this point we have covered the WS-Security configurations and bindings
required to use a SAML assertion as the security token on the outbound side of
the gateway and now we move on to describe the trust service configuration that
supports this. It is here that some familiarity with the Tivoli Federated Identity
Manager Web Services Security Management Guide would be particularly
beneficial. Below are the two wsdl2tfim commands that generated the Access
Manager object space and trust service application module chain that were used
in this scenario. The syntax and options for these commands can be found in the
Web Services Security Management Guide.

./wsdl2tfim.sh -action config-tam -w StockQuoteWSGW <gateway WSDL file>
was run on the server hosting the trust service to create a Tivoli Access Manager
object space of StockQuoteWSGW. The generated object space is shown in
Example 10-9.

Example 10-9 Access Manager object space created by wsdl2tfim config-tam

/itfim-wssm
 /wssm-default
 /StockQuoteWSGW
 /StockQuoteService
 /StockQuoteService
 /getQuote

RBTelco could use this object space to restrict which of its clients can access the
service at the gateway. RBTelco opted not to do this. It is entirely up to RBStocks
to determine who is authorized to call the service. When we look at the Access
Manager object space generated by the wsdl2tfim config-tam command at
RBStocks, we see that there is an Access Manager ACL policy associated with
it.

./wsdl2tfim.sh -action config-fim -t SAML11Module <gateway WSDL file> was
then run on the same server to create the application trust chain.

The display of the trust service module chains shown in Figure 10-35 on
page 345 shows that the command completed successfully.
344 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-35 Trust service application module chain at RBTelco

The next thing that had to be done was to create a partner module instance. The
module instance was named StockQuote client, and its type was set as
IVCredModule, as the trust service will be receiving an Access Manager
credential. It is displayed in the Tivoli Federated Identity Manager Console under
Service Management → Trust Service → Module Instances, as shown in
Figure 10-36 on page 346.
 Chapter 10. Use case 4 - Web services security management 345

Figure 10-36 Module instances at RBTelco

Looking at the module instance properties for Stock Quote client in Figure 10-37,
note that it was configured with a valid Tivoli Access Manager configuration file.

Figure 10-37 Module properties for Stock Quote client
346 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

A partner then had to be configured. This can be seen in the Integrated Solutions
Console by expanding the partner entry name of RBTelco under Web services
security management/partners, as shown in Figure 10-38.

Figure 10-38 Partner properties for company name RBTelco

Note that the provider ID matches the value configured for the default.issuer.uri
shown in Figure 10-33 on page 342. An identity mapping rule was configured
when creating the partner. The mapping rule is not shown here, but can be found
in “RBTelco mapping for use case 4” on page 418.

The final step in configuring the trust service to support the exchange of an
Access Manager credential for an SAML assertion on the outbound side of the
gateway was to go to the properties for the module chain shown in Figure 10-35
on page 345, locate the module chain item for exchange, and then enable signing
of assertions specifying the appropriate signing key. This is shown in
Figure 10-39 on page 348.
 Chapter 10. Use case 4 - Web services security management 347

Figure 10-39 Module chain properties for module chain item of type exchange

Notice the key used for signing is rbtelco-signing_rbtelco_rbstocks. An
explanation of the keys and strategy for naming them can be found in
Appendix C, “Keys and certificates” on page 425.

With the trust service configuration complete, the outbound side of the gateway
can now generate a signed SAML assertion and set it as the security token in the
Web service request to RBStocks.

10.5.4 RBStocks configuration
This section presents the configuration of all Web services components at
RBStocks, including the Web services server application and the Tivoli
Federated Identity Manager trust service.

RBStocks application configuration
First, as in the previous section, the WS-Security extensions and bindings are
described. The RBStocks application utilized WS-Security signing and
encryption over the SAML assertion token and message body to ensure
confidentiality of the message, and bind the security token to the message body.
This section, however, concentrates on those parts of the configuration related to
the SAML assertion token, and the callout to the trust service to validate it and
exchange it for a mapped (unsigned) SAML assertion. Full XML reproduction of
348 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

the actual extension and binding configurations as used at RBStocks is available
in “Web services server RBStocks” on page 448.

Figure 10-40 shows the required security token and caller part in the Request
Consumer section of the Web Service Security Extensions.

Figure 10-40 Web Services Security Extensions at RBStocks

The SAMLA security token and Caller part are each expanded below in
Figure 10-41 on page 350 and Figure 10-42 on page 351.
 Chapter 10. Use case 4 - Web services security management 349

Figure 10-41 Security Token Dialog for SAMLA at RBStocks
350 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-42 Web services extension Caller Part at RBStocks

The property names and values from the figure above are
com.ibm.wsspi.wssecurity.caller.tokenConsumerNS with a value of
urn:oasis:names:tc:SAML:1.0:assertion and
com.ibm.wsspi.wssecurity.caller.tokenConsumerLN with a value of Assertion.
 Chapter 10. Use case 4 - Web services security management 351

In Figure 10-43 the Web Services binding configurations at RBStocks are
displayed.

Figure 10-43 Web Services Binding Configurations at RBStocks

There are three Request Consumer Token consumers listed above. Two are for
the XML signing and encryption. The security token consumer is SAMLA, which
is expanded in Figure 10-44 on page 353.
352 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-44 SAMLA security token at RBStocks

In the properties above, trust.service.call is set to true, as a trust service call is
required to transform the signed SAML assertion that was received into an
 Chapter 10. Use case 4 - Web services security management 353

unsigned assertion. trust.service.url is also set to specify the location of the trust
service that will be called.

Now that the extensions and bindings have been configured, we need to look at
the trust service configuration that supports this. Below are the two wsdl2tfim
commands that generated the Access Manager object space and trust service
application module chain. The syntax and options for these commands can be
found in the Web Services Security Management Guide.

./wsdl2tfim.sh -action config-tam -w StockQuoteWSDL <Stock Quote WSDL file>
was run on the server hosting the trust service at RBStocks to create a Tivoli
Access Manager object space of StockQuoteWSDL. The generated object space
is shown in Example 10-10.

Example 10-10 StockQuoteWSDL object space at RBStocks

/itfim-wssm
 /wssm-default
 /StockQuoteWSDL
 /StockQuoteServiceService
 /StockQuoteService
 /getQuote

There are three users defined in Access Manager for this use case. The users
realtime and delayed have been granted access to the service. The user
blacklist does not have access to the service. When the mapping rules are
discussed, we will see that all users accessing the Web service are mapped to
one of these three users.

The Access Manager policy used to protect this Web service is shown in
Example 10-11.

Example 10-11 Access Manager policy for Web service at RBStocks

group create stockusers cn=stockusers,o=rbstocks,c=us
group modify stockusers add realtime
group modify stockusers add delayed

acl create stockusers
acl modify stockusers set user sec_master TcmdbsvaBRl
acl modify stockusers set group stockusers T[WebService]i
acl attach /itfim-wssm/wssm-default/StockQuoteWSDL stockusers

To create the application trust chain on RBStocks, we ran:

./wsdl2tfim.sh -action config-fim -t SAML11Module <Stock Quote WSDL file>
354 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The display of the trust service module chain shown in Figure 10-45 shows that
the command completed successfully.

Figure 10-45 Trust service module chain at RBStocks

The next thing that had to be done was to create a partner module instance. The
module instance was named RBTelco SAML assertion, and its type was set as
SAML11STSModule, as the trust service will be receiving a SAML 1.1 assertion.
Its properties can be displayed in the Tivoli Federated Identity Manager Console
under Service Management → Trust Service → Module Instances, as shown in
Figure 10-46 on page 356.
 Chapter 10. Use case 4 - Web services security management 355

Figure 10-46 Partner properties at RBStocks

Note that in Figure 10-46 signature validation is enabled and the appropriate
public key was selected to perform the validation. For more information on the
keys used for our scenarios, please see Appendix C, “Keys and certificates” on
page 425.

A mapping rule was also used when creating the partner. Refer to “RBStocks
mapping for use case 4” on page 420 to see the XSL mapping at RBStocks. This
uses Java code to check a text blacklist as part of the mapping. This is a
many-to-few mapping where every user of this service is mapped into one of the
three users previously mentioned: realtime, delayed, or blacklisted.

The final step in configuring the trust service to support the exchange of a signed
SAML assertion for an unsigned SAML assertion from which a JAAS login can
be performed was to go to the properties for the module chain shown in
Figure 10-45 on page 355, locate the module chain item for other, and enable
authorization checks. This causes the trust service to interface with Access
Manager to determine a user’s access to invoke the Web service and is shown in
Figure 10-47 on page 357.
356 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure 10-47 Module chain item properties for module chain item type of other

10.6 Troubleshooting
This section describes the locations of log files and the logging options that are
especially useful when attempting to debug a problem with Web services
security management. We also describe the use of TCPMON as a tool for
monitoring Web services requests for this scenario, included where in the
configuration to specify endpoints for directing traffic via TCPMON.

10.6.1 Using the logs for Web services security management
When installing the Tivoli Federated Identity Manager Web services security
management software, and configuring a WebSphere Application Server for use
with Web services security management, you specify the following JVM
argument for the application server (the path may be different depending upon
your installation directory):

-Dcom.tivoli.am.fim.svc.config.location=/opt/IBM/FIM/etc/logcfg_wssm.xml

The logcfg_wssm.xml file contains logging and tracing settings that can be very
useful for debugging Web services security management related issues. When
initially deploying and testing an application, we recommend that you edit this file
and change the property traceLevel to the value DEBUG_MAX.

The trace file will appear in:

/opt/IBM/FIM/logs/tivoli-common/FBT/wssm/logs/trace.log
 Chapter 10. Use case 4 - Web services security management 357

Again, the path may vary for your installation.

10.6.2 Using the logs for the Secure Token Service
After you have deployed your Tivoli Federated Identity Manager Runtime
containing the trust service that will be utilized by the Web services security
management components, you can modify the trace level using the Tivoli
Federated Identity Manager Console. Navigate to Service Settings → Logging
Settings, and you will see the logging page. Change the Trace Level to
Maximum to enable the most detailed trace. Figure 10-48 shows this screen.

Figure 10-48 Trace settings for Tivoli Federated Identity Manager Runtime

10.6.3 Using the WebSphere logs
The most common log file to inspect in WebSphere is the server’s stdout log file
called SystemOut.log. It can be found at:

/opt/IBM/WebSphere/AppServer/profiles/<profilename>/logs/server1

Again, this path may vary depending upon your particular installation. This file
will generally provide high-level information about application startup and critical
errors. For an extremely detailed trace, set the trace setting in the server (using
the WebSphere administration console) to:

=info: com.ibm.ws.sib.webservices.=all: com.ibm.wsspi.webservices.*=all:
com.ibm.ws.webservices.*=all: com.ibm.wsspi.wssecurity.*=all:
com.ibm.ws.wssecurity.*=all: com.ibm.xml.soapsec.*=all:
com.ibm.ISecurityUtilityImpl.*=all:
com.ibm.ISecurityLocalObjectTokenBaseImpl.*=all:
358 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

com.ibm.ISecurityLocalObjectBaseL13Impl.*=all: ORBRas=all: SASRas=all:
com.ibm.ws.security.*=all: com.ibm.wsspi.security.*=all

To set this trace string, use the WebSphere administration console and navigate
to Troubleshooting → Logs and Trace → server1 → Change log level
details.

Figure 10-49 shows a partial shot of this screen.

Figure 10-49 Setting detailed WebSphere trace

The resultant trace.log file can be found in the same directory as SystemOut.log.

10.6.4 Using TCPMON
TCPMON is a simple java GUI utility that allows you to look at on-the-wire Web
services messages by configuring it as a listener and forwarding messages to
their intended destination. There is a lot of information available about TCPMON
on the Web. The intent here is not to teach you about TCPMON, but rather to
show you where you can use it in our scenario.

There are four locations in the Web services scenario where use of TCPMON
would be relevant to see where messages are flowing. Figure 10-1 on page 360
presents these flows, and where to configure the endpoint to point to TCPMON.
 Chapter 10. Use case 4 - Web services security management 359

Table 10-1 Using TCPMON in the Web services scenario

Web services message flow Configuring an endpoint for TCPMON

The Web services request originating from
the JSP Web services client enroute to the
gateway.

Use the JSP client interface to get the
original endpoint (so that you know the
port to forward TCPMON to), and to set
the endpoint to point to TCPMON. This is
a standard part of the Stock Quote client
program.

Call to trust service from outbound side of
Web services gateway to exchange
Access Manager credential for signed
SAML assertion.

Modify the trust.service.url parameter in
the Token Generator configuration of the
Web services gateway outbound binding
configuration.

Call from gateway to RBStocks. This is a
signed and encrypted message, so there
is not a lot to see.

Modify the service URL in the WSDL file
being read by the gateway, and re-import
the WSDL into the gateway.

Call from the RBStocks application server
to the trust service to exchange the signed
SAML assertion for a mapped, unsigned
SAML assertion.

Modify the trust.service.url parameter in
the Token Consumer configuration of the
Stock Quote application.
360 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Part 3 Appendixes

The following appendixes give a detailed description of various federation
configuration subjects that are common to the applications of the federation
scenario, introduced in Part 2, “Customer environment” on page 181.

In Appendix A, “Configuring Access Manager WebSEAL and Web plug-in” on
page 363, we describe how to configure Tivoli Access Manager WebSEAL and
the Web Plug-ins for Access Manger for integration with Tivoli Federated Identity
Manager.

Appendix B, “Identity mapping rules” on page 381, shows an approach to
authoring the XSL identity mapping rules for Tivoli Federated Identity Manager,
and also contains all of the identity mapping rules used in the scenarios in this
book.

Appendix C, “Keys and certificates” on page 425, describes the keys and
certificates that were generated for the use cases described in this book.

Appendix D, “WS-Security deployment descriptors” on page 437, contains the
WS-Security deployment descriptors used at the various WS-Security integration
points for Chapter 10, “Use case 4 - Web services security management” on
page 291.

Part 3
© Copyright IBM Corp. 2004, 2005. All rights reserved. 361

362 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Appendix A. Configuring Access
Manager WebSEAL and Web
plug-in

In this appendix we describe how to configure Tivoli Access Manager WebSEAL
and the Web plug-ins for Access Manger for integration with Tivoli Federated
Identity Manager.

A

© Copyright IBM Corp. 2004, 2005. All rights reserved. 363

Introduction
This appendix describes in detail the steps necessary to configure Tivoli Access
Manager WebSEAL or the Web plug-ins to interact with Tivoli Federated Identity
Manager. We will assume that a stock Access Manager installation is already in
place, and so will not deal with the specifics of installing and configuring Access
Manager.

The Tivoli Federated Identity Manager software uses exactly the same
on-the-wire integration interfaces with both WebSEAL and the Web plug-ins, the
difference being that no junction is involved with Web plug-ins.

Figure A-1 shows a logical deployment architecture with WebSEAL. Tivoli
Federated Identity Manager runs as a junctioned application, typically in a
separate WebSphere environment (cluster or single server) from other business
applications.

Figure A-1 Using WebSEAL as a point of contact

Figure A-2 on page 365 shows a logical deployment architecture with a Web
plug-in. Tivoli Federated Identity Manager runs in the same WebSphere cluster
as the business applications, and the WebSphere and Access Manager Web
plug-in are installed against the same point of contact Web server. The important
thing to note here is that Tivoli Federated Identity Manager shares the same
named virtual host (and hence URL name space) as the applications.

TAM Servers

HTTP / WebSphere
with FIM

Other Business
Applications

DMZ

Browser WebSEAL
Servers
364 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure A-2 Web plug-in as a point of contact

For Tivoli Federated Identity Manager’s federated user life cycle management,
Tivoli Federated Identity Manager plays one or both of two possible roles in
federations. These roles are that of an identity provider or service provider. Tivoli
Federated Identity Manager’s integration requirements are quite different in each
of these roles, and the discussion below is split into each role.

Identity provider integration
The following sections describe the necessary steps to configure WebSEAL or
Web plug-ins for an identity provider.

As an identity provider, the user is required to authenticate with the point of
contact server (WebSEAL or Web plug-in), and Tivoli Federated Identity
Manager expects to receive information about that authenticated user when
performing federated transactions such as single sign-on.

The integration interfaces for Tivoli Federated Identity Manager in the role of an
identity provider are a set of HTTP headers that Tivoli Federated Identity
Manager expects to find in all requests. Whether these headers come from the

TAM Servers

WebSphere (Cluster)
with FIM and other
applications

DMZ

BrowserBrowser

HTTP Server
(e.g. Apache, IIS)

TAM Web Plugin

WAS Plugin
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 365

WebSEAL reverse proxy or the Web plug-ins is irrelevant. The required headers
are:

� iv-creds contains the Access Manager credential for the user. Acting as an
identity provider, this is how Tivoli Federated Identity Manager determines the
current identity of the user.

� iv-user contains the Access Manager user name.

� iv_server_name contains the name of the Access Manager server managing
this user’s session (used for logout).

� user_session_id contains the identifier of this users Access Manager session
(used for logout).

The rest of this section discusses the configuration of these requirements for
WebSEAL and the plug-ins.

Configuring WebSEAL as an identity provider
Configuring WebSEAL as an identity provider with Tivoli Federated Identity
Manager consists of the following tasks:

� Updating the WebSEAL configuration file

� Creating a junction from WebSEAL to Tivoli Federated Identity Manager

� Optionally including extended attributes from LDAP in the credential
(tag/value)

Updating WebSEAL configuration file
Example A-1 indicates the modifications that need to be made to the WebSEAL
configuration file for identity provider configuration. For each stanza, locate the
corresponding setting and make the changes shown.

Example: A-1 WebSEAL configuration files settings for identity provider

[ba]
for session termination we recommend to not use basic-authentication
ba-auth = none

[server]
unsecured http access should be disabled, particularly if you are using
browser-post style profiles otherwise your assertions may be visible to
network sniffers
http = no

[forms]
366 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

enable forms auth for https since the users have to be able to login somehow
this is not compulsory, you could use certificates or other authentication
techniques
forms-auth=https

[session]
ITFIM requires user session id’s to be available on junction
user-session-ids = yes

we recommend tracking user session id’s with cookies. WebSphere cookies
are needed for other ITFIM capabilities anyway, so why not use them for
WebSEAL too.
ssl-id-sessions = no

Configuring a junction to Tivoli Federated Identity Manager
The junction connecting WebSEAL to Tivoli Federated Identity Manager can be
configured via the Access Manager Web Portal Manager. In addition to creating
the junction, we need to modify the junction object to send the user session ID as
an HTTP header to Tivoli Federated Identity Manager. Figure A-2 shows the
command-line pdadmin commands necessary to complete these steps. Note the
“-c all” argument; this is equivalent to “-c iv_user,iv_user_l,iv_groups,iv_creds”.
Use of SSL is optional, though recommended.

Example: A-2 Configuring WebSEAL junction for identity provider

pdadmin -a sec_master -p <sec_master password>

pdadmin sec_master> server task <webseal-server-name> create -t ssl -c all -q
/sps/cgi-bin/query_contents -p <TFIM SPS port> -h <TFIM SPS hostname> /ITFIM
pdadmin sec_master> object modify /WebSEAL/<webseal-server>/ITFIM set attribute
HTTP-Tag-Value user_session_id=user_session_id

Configuring extended attributes for credentials in WebSEAL
In many cases (typically non-Liberty) you may wish to share attribute information
about the user beyond just their user name in the federated single sign-on token.
In order to make these attributes available to the Tivoli Federated Identity
Manager mapping rules at the identity provider, it makes sense to include them
in the original Access Manager credential by reading them from LDAP during
user authentication. This can be done with standard extended attribute support in
WebSEAL, also known as tag/value support.

The IBM Tivoli Access Manager for e-business WebSEAL Administration Guide
Version 5.1, SC32-1359, describes how to configure extended attributes in the
credential, and downstream them to your business applications as HTTP
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 367

headers if necessary. For Tivoli Federated Identity Manager as an identity
provider, they need only be inserted in the credential at authentication time, since
this will make them available to mapping rules in the Tivoli Federated Identity
Manager configuration.

Configuring Web plug-ins as an identity provider
Configuring Web plug-ins as an identity provider with Tivoli Federated Identity
Manager consists of the following tasks:

� Updating the Web plug-in configuration file

� Optionally including extended attributes from LDAP in the credential
(tag/value)

Updating Web plug-in configuration file
Example A-3 indicates the modifications that need to be made to the Web plug-in
configuration file. For each stanza, locate the corresponding setting and make
the changes shown.

Example: A-3 Web plug-in configuration settings for identity provider

[common-modules]
by default webpi is configured for basic authentication. We should configure
for forms authentication.
pre-authzn = forms
authentication = forms
post-authzn = forms

disable basic authentication
#authentication = BA (either remove or comment out this line)
post-authzn = BA (either remove or comment out this line)

by default, webpi does not send the required http headers to ITFIM
post-authzn = iv-headers

#enable tag-value support. this is needed for at least the user_session_id
even if you are not reading other LDAP attributes
post-authzn = tag-value

[iv-headers]
webpi must be configured to use the iv_server_name header for sending it’s
aznapi server name to ITFIM
server-name-header = iv_server_name
368 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

[pdweb-plugins]
WebSEAL automatically prefixes credential extended attributes in the
credential with “tagvalue_”, and the Web-plug-in’s don’t. To make these
consistent, we recommend using the same prefix tag for Web plug-ins. Also
you would have to do this anyway if you want to downstream both the
user_session_id attribute, and other attributes, since the TAM credential
will be built with a tagvalue_user_session_id.
#
tag-value-prefix = tagvalue_

Configuring extended attributes for credentials in Web plug-ins
In many cases (typically non-Liberty) you may wish to share attribute information
about the user beyond just their user name in the federated single sign-on token.
In order to make these attributes available to the Tivoli Federated Identity
Manager mapping rules at the identity provider, it makes sense to include them
in the original Access Manager credential by reading them from LDAP during
user authentication. This can be done with standard extended attribute support in
the Web plug-ins, also known as tag/value support.

The IBM Tivoli Access Manager for e-business Plug-in for Web Servers
Integration Guide Version 5.1, SC32-1365, describes how to configure tag value
support, and downstream credential attributes to your business applications as
HTTP headers if necessary. For Tivoli Federated Identity Manager as an identity
provider, they need only be inserted in the credential at authentication time, since
this will make them available to mapping rules in the Tivoli Federated Identity
Manager configuration.

Service provider integration
As a service provider, Tivoli Federated Identity Manager must first be able to
process unauthenticated transactions and determine authentication information
about the user based on configured trust relationships, then return that
authentication information to the point of contact server (WebSEAL or Web
plug-in) so that an authenticated session can be established for the user.

The primary integration interface for Tivoli Federated Identity Manager in the role
of a service provider is the External Authentication Interface (EAI). This capability
is shared by both WebSEAL and the Web plug-ins.

As a service provider, Tivoli Federated Identity Manager also requires the set of
HTTP headers described previously for identity provider integration. These are
needed for other federated user life cycle management operations such as single
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 369

logout. In that regard, the required configuration for a service provider is a super
set of that for identity providers.

External Authentication Interface
Tivoli Federated Identity Manager provides an authentication mechanism
through its single sign-on protocol service. We are making use of this capability
at the service provider side of our identity federations, to allow clients to sign in
with credentials generated by another party—the identity provider. By integrating
Tivoli Federated Identity Manager with Access Manager, we can treat federated
single sign-on as just another Access Manager authentication mechanism. To
accomplish this, we are utilizing the Access Manager External Authentication
Interface; similar to a Cross-Domain Authentication Service (CDAS), this is an
interface for integrating external (viewed from a Access Manager perspective)
authentication services with Access Manager. Unlike CDAS, however, for which
the integration point is a C-based shared library, EAI uses HTTP for
communication with the authentication service. This allows the service to be
implemented using any HTTP-capable programming language. In the case of
WebSEAL, this can be deployed on a junctioned server (which is exactly what
we do with Tivoli Federated Identity Manager). In the case of the Web plug-ins,
this can be any URL served by the Web server the plug-in is installed into.

The External Authentication Interface introduces two new concepts to the Access
Manager authentication terminology: Trigger URIs and EAI headers. We will
discuss these in turn.

Trigger URIs
The External Authentication Interface is designed to co-exist peacefully with the
WebSEAL and Web plug-in internal authentication mechanisms. Because of this,
WebSEAL and the plug-ins never enforce or request EAI authentication. Instead,
authentication will be triggered when an HTTP response comes from one of the
configured Trigger URIs—patterns configured in the [eai-trigger-urls] stanza of
the configuration file. The corresponding response is then examined for the
presence of EAI headers; if present, a credential is built based upon these, and
an Access Manager WebSEAL or Web plug-in session is established.

EAI headers
When authenticating a client through EAI, WebSEAL and the plug-ins play no
part in the actual authentication process; this is all delegated to the EAI service.
When the EAI service has completed the authentication, it communicates the
details of the authenticated principal back via response headers. These come in
370 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

two flavors: One type of authentication header contains an Access Manager user
ID, and separate discrete attributes used to built a credential; while the other set
contains a Privilege Attribute Certificate (PAC), which is converted directly into
a credential associated with the user’s session. The two approaches are
mutually exclusive; if the PAC is present, the discrete attributes will be ignored.
Additionally, there is a header common for both cases; this specifies a URL to
redirect the client to after authentication. The names of the headers are
configured in the [eai] stanza of the WebSEAL or plug-in configuration file; the
configuration settings are explained in Table A-2 on page 373.

External Authentication Interface example
This section shows an example of EAI authentication. Table A-1 contains the
relevant parameters for an example scenario using WebSEAL.

Table A-1 Example setup using WebSEAL

Key points to keep in mind here:

� The supplied credentials in the example are a user name and a
corresponding password in an HTML form, but this is just used as an
example. WebSEAL silently passes on the request, so it could contain
anything that is appropriate for the receiving application.

� When a request matches one of the configured trigger URIs, WebSEAL will
check the response for EAI headers; if these are absent, the response is
proxied to the client as for any other request.

� The use of trigger URIs instead of EAI-enabled junctions gives us more
fine-grained control over where to employ this mechanism. This is desirable,
not because the response header check is a resource-intensive operation,
but because we can limit the URI space from which we will trust
authentication information; this allows hosting other (non-EAI) applications on
the same application server—essential with the Web plug-ins.

Configuration variable Configuration value

WebSEAL hostname www.example.com

Requested protected page URL https://www.example.com/secure/index.jsp

Junction for EAI Authentication Service /loginapp

EAI trigger URI /loginapp/dologin/*

Custom login page /loginapp/login.jsp

Login form POST target /loginapp/dologin/auth
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 371

Figure A-3 shows the interaction between WebSEAL and the EAI Authentication
Service. The same flows are applicable for use with the Web plug-ins. A detailed
description of the steps follows Figure A-3.

Figure A-3 Interactions between WebSEAL and EAI Authentication Service

Figure A-3 is explained below.

1. An unauthenticated client requests the protected resource.

Client WebSEAL
EAI

Authentication
Service

1. Requests a protected URI

4. Return login page

2. WebSEAL login page; redirects to
 custom login page

3. Request custom login page

8. Return EAI
 authentication headers

10. Set session cookie, redirect to
 originally requested URI

6. POST login form

5. Fills in credentials

7. Verify credentials

9. Build TAM credential
Create WebSEAL session
372 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

https://www.example.com/secure/index.jsp

2. WebSEAL responds with the login page; this contains an HTTP / 302 redirect
to a custom login page, with the originally requested URL as a parameter:

https://www.example.com/login/login.jsp?url=https://www.example.com/secure/
index.jsp

3. The client requests a custom login page.

4. Response with login page; this contains the originally requested URL as a
hidden form field.

5. The client fills a user name and password into the login form.

6. The login form is posted to the EAI Authentication Service; the target URL
https://www.example.com/login/dologin/auth matches the configured EAI
trigger URI /login/dologin/*, so WebSEAL will check the response for the
presence of EAI headers.

7. The EAI Authentication Service validates the user name and password.

8. The EAI Authentication Service sends response. The response contains the
EAI headers for the user ID and redirect URL (the originally requested URL).

9. WebSEAL builds a credential based on contents in the EAI headers, and
creates a WebSEAL session for the client.

10.WebSEAL sends a response containing the session cookie and an HTTP /
302 redirect to the originally requested URL:

https://www.example.com/secure/index.jsp

EAI header variables reference
Table A-2 describes the configuration file settings used to name EAI headers in
WebSEAL, and lists the values used by Tivoli Federated Identity Manager (that
is, Tivoli Federated Identity Manager returns headers with these names, so
WebSEAL must be configured as shown to recognize them). The values used in
this table will be referenced later in this section when we discuss WebSEAL and
Web plug-in configuration for EAI. The Web plug-ins use configuration settings
that have the same name as WebSEAL, but without the eai- prefix. For brevity
they are not included in the table.

Table A-2 EAI header names

Config setting Value used for Tivoli
Federated Identity
Manager

Description of corresponding header

eai-pac-header am-fim-eai-pac Contains a PAC; this takes precedence over user ID.
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 373

Configuring WebSEAL as a service provider
The following sections outline the configuration requirements for WebSEAL
acting as a service provider. This includes EAI configuration, and the
requirements for HTTP headers from WebSEAL as for an identity provider.

Configuring WebSEAL as a service provider with Tivoli Federated Identity
Manager consists of the following tasks:

� Updating the WebSEAL configuration file

� Creating a junction from WebSEAL to Tivoli Federated Identity Manager

� Applying an Access Manager policy to trigger URLs for EAI

� Optionally sending credential extended attributes as HTTP headers to
business applications (tag/value)

eai-pac-svc-header am-fim-eai-pac-svc Names the service WebSEAL should use to convert the
PAC. Optional. The default service is used if not
specified.

eai-user-id-header am-fim-eai-user-id Specifies the Access Manager user ID of the
authenticated user.

eai-auth-level-heade
r

am-fim-eai-auth-level The authentication level assigned to the client. Optional.
Defaults to 1. Corresponds to the Access Manager
credential attribute AZN_C_AUTHN_LEVEL.

eai-qop-header am-fim-eai-qop The quality of protection. Optional. Corresponds to the
Access Manager credential attribute
AZN_C_AUTHN_QUALITY and the CDAS input
attribute XAUTHN_QOP.

eai-xattrs-header am-fim-eai-xattrs A comma-separated list of headers whose contents are
added to the Access Manager credential as extended
attributes. Optional.

eai-redir-url-header am-fim-eai-redir-url URL to redirect the client to after successful
authentication.

Config setting Value used for Tivoli
Federated Identity
Manager

Description of corresponding header
374 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Updating WebSEAL configuration file
Example A-4 indicates the modifications that need to be made to the WebSEAL
configuration file. For each stanza, locate the corresponding setting and make
the changes shown.

Example: A-4 WebSEAL configuration file settings service provider

[ba]
EAI is incompatible with basic authentication, so this must be disabled:
ba-auth = none

[server]
unsecured http access should be disabled, particularly if you are using
browser-post style profiles otherwise your assertions may be visible to
network sniffers
http = no

[forms]
enable forms auth for https, particularly for liberty where you are going
to be doing account linking. The users need to be able to login here locally!
forms-auth=https

[session]
we recommend tracking user session id’s with cookies. WebSphere cookies
are needed for other ITFIM capabilities anyway, so why not use them for
WebSEAL too.
ssl-id-sessions = no

Tivoli Federated Identity Manager SPS needs access to user session ID’s:
user-session-ids = yes

[authentication-mechanisms]
Load the shared library implementing EAI (note - this is for linux platform)
Similar path and library names exist for other platforms:
ext-auth-interface = /opt/pdwebrte/lib/libeaiauthn.so

[acnt-mgt]
needed for any errors encountered during EAI authentication
eai-auth-error = eaiautherror.html

[eai]
allow eai authentication via https only (we are not using http)
eai-auth=https
settings for eai headers - these are the values used by ITFIM SPS
eai-pac-header = am-fim-eai-pac
eai-pac-svc-header = am-fim-eai-pac-svc
eai-user-id-header = am-fim-eai-user-id
eai-auth-level-header = am-fim-eai-auth-level
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 375

eai-qop-header = am-fim-eai-qop
eai-xattrs-header = am-fim-eai-xattrs
eai-redir-url-header = am-fim-eai-redir-url

[eai-trigger-urls]
NOTE - these entries will vary, and there should be one entry for each
federation you have acting as a service provider. The entry should point
to the login URL for the federation, since this is the URL that will have
EAI headers returned from it to WebSEAL.
trigger = /ITFIM/sps/samlfed/saml/login
trigger = /ITFIM/sps/myfed2/login/url

Configuring a junction to Tivoli Federated Identity Manager
The junction connecting WebSEAL to Tivoli Federated Identity Manager can be
configured via the Access Manager Web Portal Manager. In addition to creating
the junction, we need to modify the junction object to send the user session ID as
an HTTP header to Tivoli Federated Identity Manager. Example A-5 shows the
command-line pdadmin commands necessary to complete these steps. Note the
“-c all” argument; this is equivalent to “-c iv_user,iv_user_l,iv_groups,iv_creds”.
Use of SSL is optional, though recommended.

Example: A-5 Configuring WebSEAL junction for service provider

pdadmin -a sec_master -p <sec_master password>

pdadmin sec_master> server task <webseal-server-name> create -t ssl -c all -q
/sps/cgi-bin/query_contents -p <TFIM SPS port> -h <TFIM SPS hostname> /ITFIM

pdadmin sec_master> object modify /WebSEAL/<webseal-server>/ITFIM set attribute
HTTP-Tag-Value user_session_id=user_session_id

The junction connecting WebSEAL to Tivoli Federated Identity Manager can be
configured either via the Access Manager Web Portal Manager or, as shown
here, with the pdadmin command-line tool. Note the “-c all” argument; this is
equivalent to “-c iv_user,iv_user_l,iv_groups,iv_creds”. Use of SSL is optional,
though recommended.

pdadmin -a sec_master -p <sec_master password>
pdadmin sec_master> server task <webseal-server-name> create -t ssl -c all -p
<TFIM SPS port> -h <TFIM SPS hostname> /ITFIM

Access Manager policy for trigger URLs for EAI
The trigger URLs configured for EAI authentication are to permit a user to
authenticate to WebSEAL. As such, an unauthenticated user must be able to
376 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

access these URLs. Example A-6 shows example pdadmin commands for
creating an ACL that allows unauthenticated access and attaching it to the URLs
shown in the example configuration from Example A-6.

Example: A-6 Attaching unauthenticated ACL to WebSEAL EAI trigger URLs

pdadmin -a sec_master -p <sec_master password>
pdadmin sec_master> acl create unauth_ACL
pdadmin sec_master> acl modify unauth_ACL set group iv-admin TcmdbsvaBRrxl
pdadmin sec_master> acl modify unauth_ACL set group webseal-servers Tgmdbsrxl
pdadmin sec_master> acl modify unauth_ACL set user sec_master TcmdbsvaBRrxl
pdadmin sec_master> acl modify unauth_ACL set any-other Trx
pdadmin sec_master> acl modify unauth_ACL set unauthenticated Trx
pdadmin sec_master> acl attach
/WebSEAL/<webseal_server>/ITFIM/sps/samlfed/saml/login unauth_ACL
pdadmin sec_master> acl attach
/WebSEAL/<webseal_server>/ITFIM/sps/myfed2/login/url unauth_ACL

Sending extended attributes as HTTP headers with WebSEAL
After performing a federated single sign-on and establishing a session with
WebSEAL, it is quite likely that the Access Manager credential built for the user
will contain extended attributes that you want to downstream to backend
applications. These must be prefixed with tagvalue_ if they are to be sent as
HTTP headers with WebSEAL. This can be done with standard extended
attribute support in WebSEAL, also known as tag/value support. This allows you
to send the extended attributes in the credential as HTTP headers to junctioned
applications.

The IBM Tivoli Access Manager for e-business WebSEAL Administration Guide
Version 5.1, SC32-1359, describes how to configure WebSEAL and junctions for
handling extended attributes as HTTP headers.

Configuring Web plug-ins as a service provider
When using Tivoli Federated Identity Manager with the Access Manager Web
plug-ins, both the Access Manager Web plug-in and the WebSphere Web plug-in
are configured on the same point of contact Web server. Care must be taken to
ensure that you are using versions of each plug-in that are supported for the Web
server you are configuring them against.

Note: These instructions are only valid for Access Manager 6.0 Web plug-ins
and later.
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 377

Configuring the Access Manager Web plug-ins as a service provider with Tivoli
Federated Identity Manager consists of the following tasks:

� Updating the plug-in configuration file

� Applying the Access Manager policy to trigger URLs for EAI

� Optionally sending credential extended attributes as HTTP headers to
business applications (tag/value)

Updating Web plug-in configuration file
Example A-7 indicates the modifications that need to be made to the Web plug-in
configuration file. For each stanza, locate the corresponding setting and make
the changes shown.

Example: A-7 Web plug-in configuration settings for service provider

[common-modules]
by default webpi is configured for basic authentication. We should configure
for forms authentication.
pre-authzn = forms
authentication = forms
post-authzn = forms

#include EAI authentication
pre-authzn = ext-auth-int
response = ext-auth-int
authentication = ext-auth-int
post-authzn = ext-auth-int

disable basic authentication
#authentication = BA (either remove or comment out this line)
#post-authzn = BA (either remove or comment out this line)

by default, webpi does not send the required http headers to ITFIM
post-authzn = iv-headers

#enable tag-value support. this is needed for at least the user_session_id
post-authzn = tag-value

[iv-headers]
webpi must be configured to use the iv_server_name header for sending it’s
aznapi server name to ITFIM
server-name-header = iv_server_name

#
Settings for EAI.
#

378 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

[modules]
ext-auth-int = pdwpi-ext-auth-int-module

[authentication-mechanisms]
this is shown for linux, similar paths exist for other platforms
ext-auth-interface = /opt/pdwebrte/lib/libeaiauthn.so

[ext-auth-int]
actually for this configuration the auth-url doesn’t matter because
we will prompt for forms login first. If EAI was the only authentication
mechanism enabled then this is the page you would be redirected to when
accessing a protected resource
auth-url = /some/login/url
trigger-url = /sps/samlfed/saml/login
trigger-url = /sps/myfed2/login/url

redirect-url-hdr-name = am-fim-eai-redir-url
pac-hdr-name = am-fi-eai-pac
pac-svc-id-hdr-name = am-fim-eai-pac-svc
user-id-hdr-name = am-fim-eai-user-id
user-auth-level-hdr-name = am-fim-eai-auth-level
user-qop-hdr-name = am-fim-eai-qop
user-ext-attr-list-hdr-name = am-fim-eai-xattrs

#
Finally, webpi’s default configuration for the size of the buffers used to
transfer data between the web server and the authorization server is too
small for EAI to function properly. It is usually necessary to increase this
parameter from 10000 to 50000 bytes.
[proxy-if]
worker-size = 50000

[pdweb-plugins]
WebSEAL automatically prefixes credential extended attributes in the
credential with “tagvalue_”, and the Web-plug-in’s don’t. To make these
consistent, we recommend using the same prefix tag for Web plug-ins. Also
you would have to do this anyway if you want to downstream both the
user_session_id attribute, and other attributes, since the TAM credential
will be built with a tagvalue_user_session_id.
#
tag-value-prefix = tagvalue_
 Appendix A. Configuring Access Manager WebSEAL and Web plug-in 379

Access Manager policy for trigger URLs
The trigger URLs configured for EAI authentication are to permit a user to
authenticate to Web plug-ins. As such, an unauthenticated user must be able to
access these URLs. Example A-8 shows example pdadmin commands for
creating an ACL, which allows unauthenticated access and attaching it to the
URLs shown in the example configuration from Example A-8.

Example: A-8 Attaching unauthenticated ACL to WebSEAL EAI trigger URLs

pdadmin -a sec_master -p <sec_master password>
pdadmin sec_master> acl create unauth_webpi
pdadmin sec_master> acl modify unauth_webpi set group iv-admin TcmdbsvaBRrxl
pdadmin sec_master> acl modify unauth_webpi set group webseal-servers Tgmdbsrxl
pdadmin sec_master> acl modify unauth_webpi set user sec_master
TcmdbsvaBRrxl[PDWebPI]r
pdadmin sec_master> acl modify unauth_webpi set unauthenticated Trxr
pdadmin sec_master> acl modify unauth_webpi set any-other Trx[PDWebPI]r
pdadmin sec_master> acl attach
/PDWebPI/<virtual_hostname>/sps/samlfed/saml/login unauth_webpi
pdadmin sec_master> acl attach /PDWebPI/<virtual_hostname>/sps/myfed2/login/url
unauth_webpi

Sending extended attributes as HTTP headers with Web plug-ins
After performing a federated single sign-on and establishing a session with Web
plug-ins, it is quite likely that the Access Manager credential built for the user will
contain extended attributes that you want to downstream to backend
applications. This can be done with standard tag/value support in the Web
plug-ins. This allows you to send the extended attributes in the credential as
HTTP headers to junctioned applications.

The IBM Tivoli Access Manager for e-business Plug-in for Web Servers
Integration Guide Version 5.1, SC32-1365, describes how to configure tag value
support.
380 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Appendix B. Identity mapping rules

This appendix describes an approach to authoring the XSL identity mapping
rules for Tivoli Federated Identity Manager, and also contains all of the identity
mapping rules used in the scenarios in this book.

Some of the identity mapping rules used in these scenarios call out to Java code,
and the sample Java code is also presented in this appendix.

B

© Copyright IBM Corp. 2004, 2005. All rights reserved. 381

Authoring identity mapping rules
One of the most powerful and differentiating features of Tivoli Federated Identity
Manager is the ability to implement rich identity mapping capabilities between
different token formats using the XML Stylesheet Language (XSL). XSL is a
transformation language that allows you to use templates to transform XML
documents from one format to another. For a good introduction to XSL, try the
tutorial at:

http://www.w3schools.com/xsl/default.asp

The IBM Tivoli Federated Identity Manager Administration Guide Version 6.0,
GC32-1668-00, contains useful base information on mapping rules, and points to
the example mapping rules shipped with Tivoli Federated Identity Manager. This
appendix expands upon this documentation with some techniques for authoring
your own rules. We also describe what is required for calling your own Java code
from the mapping rules. This is a common requirement in real-world use cases,
and was used in two of the scenarios described in this book.

XSL mapping rules are required whenever tokens are processed at the Tivoli
Federated Identity Manager trust service, and provide you with the opportunity to
modify or completely change the user name, groups (if applicable to the token
type), and extended attributes associated with the resulting token.

Consider, for example, a SAML single sign-on scenario:

� At the identity provider the source token type will be a Tivoli Access Manager
credential (originally provided to the Tivoli Federated Identity Manager single
sign-on protocol service by WebSEAL in the iv-creds HTTP header), and the
destination token type is the SAML assertion that is used in the SAML
protocol to sign-on to the service provider.

� At the service provider the source token type will be the SAML assertion and
the destination token will be an Access Manager credential used to perform
an EAI login to WebSEAL.

The Tivoli Federated Identity Manager trust service includes token modules for
different token types. These modules validate and transform the source token
type into an internal XML representation of a credential called an
STSUniversalUser. They also have the ability to take an STSUniversalUser and
transform it into a token of their own type. Understanding the format of an
STSUniversalUser, and how different Tivoli Federated Identity
Manager-supported token types are mapped to and from the STSUniversalUser,
is the key to authoring mapping rules.

The rest of this section describes:

� The STSUniversalUser schema
382 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.w3schools.com/xsl/default.asp

� How token types are mapped between their native format and the
STSUniversalUser format

� Calling Java code from XSL mapping rules

� Developer tricks for authoring and testing mapping rules

STSUniversalUser schema
Example B-1 shows the XML Schema for the STSUniversalUser. This
information, when combined with the description in the IBM Tivoli Federated
Identity Manager Administration Guide Version 6.0, GC32-1668-00, will help
provide a complete understanding of what an STSUniversalUser looks like.

At a minimum, be aware that the STSUniversalUser is divided into three groups
of attributes: Principal, Groups, and AttributeList, and each of these contains
name/value pairs of information about the user.

Example: B-1 STSUniversalUser XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:ibm:names:ITFIM:1.0:stsuuser"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser"
elementFormDefault="qualified">

<xsd:element name="STSUniversalUser">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Principal"

type="stsuuser:PrincipalType" minOccurs="1" maxOccurs="1" />
<xsd:element name="GroupList"

type="stsuuser:GroupListType" minOccurs="0" maxOccurs="1" />
<xsd:element name="AttributeList"

type="stsuuser:AttributeListType" minOccurs="0" maxOccurs="1"
/>

</xsd:sequence>
<xsd:attribute name="version" type="xsd:string"

use="required" />
</xsd:complexType>

</xsd:element>

<xsd:complexType name="PrincipalType">
<xsd:sequence>

<xsd:element name="Attribute" type="stsuuser:AttributeType"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>
 Appendix B. Identity mapping rules 383

<xsd:complexType name="AttributeType">
<xsd:sequence>

<xsd:element name="Value" type="xsd:string" minOccurs="0"
maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="type" type="xsd:string" use="optional" />

</xsd:complexType>

<xsd:complexType name="AttributeListType">
<xsd:sequence>

<xsd:element name="Attribute" type="stsuuser:AttributeType"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GroupListType">
<xsd:sequence>

<xsd:element name="Group" type="stsuuser:GroupType"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GroupType">
<xsd:sequence>

<xsd:element name="Attribute" type="stsuuser:AttributeType"
minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="type" type="xsd:string" use="optional" />

</xsd:complexType>

</xsd:schema>

Mapping between STSUniversalUser and native tokens
Before writing XSL mapping rules you must understand how the token type you
are transforming from will look as an STSUniversalUser. You must also
understand the requirements on the resulting STSUniversalUser so that the
token module in the Tivoli Federated Identity Manager trust service will
successfully issue the resulting token.

For each of the following token types, many of which are used in the scenarios in
this book, we will show an example STSUniversalUser (useful if this is your
starting token type), and describe the requirements and options on the
384 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

STSUniversalUser for issuing a token (useful if this is your destination token
type):

� Tivoli Access Manager credential
� SAML 1.0 token
� SAML 1.1 token
� Liberty 1.1 token
� Liberty 1.2 token
� UsernameToken

In addition to the above token types, Tivoli Federated Identity Manager offers an
API to implement your own token type. It is also likely that Tivoli Federated
Identity Manager will support additional token types in future releases. In any
case, the pattern remains the same—what is required is an understanding of the
STSUniversalUser format of the starting token, and the requirements on the
STSUniversalUser for issuing a token of the destination token type.

Tivoli Access Manager credential
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating an Access Manager credential

� Requirements for the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue an Access Manager credential

STSUniversalUser for Access Manager credential
Example B-2 shows an example STSUniversalUser as generated by the Tivoli
Federated Identity Manager trust service when validating an Access Manager
credential. This scenario typically occurs at an identity provider during a
federated single sign-on operation, and also occurs in Chapter 10, “Use case 4 -
Web services security management” on page 291, when our Access Manager
credential is exchanged at the client-side Web services gateway for a SAML
assertion.

Example: B-2 Sample STSUniversalUser for Access Manager credential

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="uuid"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>9d5f1ea8-df36-11d9-872b-000c29a951ea</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="domain"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Default</stsuuser:Value>

</stsuuser:Attribute>
 Appendix B. Identity mapping rules 385

<stsuuser:Attribute name="name"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>emp1</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="registryid"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>CN=Employee

One,CN=Users,DC=bigcorp,DC=com</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
<GroupList xmlns="urn:ibm:names:ITFIM:1.0:stsuuser">

<stsuuser:Group name="employees"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Attribute name="uuid"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>6f0f791c-ea49-11d9-a4eb-000c29d2099e</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="registryid"

type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>CN=employees,CN=Users,DC=bigcorp,DC=com</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Group>
</GroupList>
<stsuuser:AttributeList>

<stsuuser:Attribute name="AZN_CRED_AUTH_METHOD"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>kerberosv5</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_BROWSER_INFO"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1)</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_PRINCIPAL_NAME"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>emp1</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="tagvalue_activedir_cn"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Employee One</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AUTHENTICATION_LEVEL"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>0</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_PRINCIPAL_UUID"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
386 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<stsuuser:Value>9d5f1ea8-df36-11d9-872b-000c29a951ea</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_GROUPS"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>employees</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_PRINCIPAL_DOMAIN"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Default</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_AUTHZN_ID"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>emp1</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_QOP_INFO"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>None</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_IP_ADDRESS"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>0x03050309</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_GROUP_REGISTRY_IDS"

type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>CN=employees,CN=Users,DC=bigcorp,DC=com</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_VERSION"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>0x00000510</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_GROUP_UUIDS"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>6f0f791c-ea49-11d9-a4eb-000c29d2099e</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_MECH_ID"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>IV_URAF_V3.0</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AZN_CRED_REGISTRY_ID"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>CN=Employee

One,CN=Users,DC=bigcorp,DC=com</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="tagvalue_activedir_mail"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>emp1@bigcorp.com</stsuuser:Value>

</stsuuser:Attribute>
 Appendix B. Identity mapping rules 387

<stsuuser:Attribute name="AZN_CRED_AUTHNMECH_INFO"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>GSS Authentication</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>

Issuing an Access Manager credential
This section details the requirements for an STSUniversalUser for issuing an
Access Manager credential. If the STSUniversalUser resulting from your XSL
mapping rule does not meet these requirements, the Tivoli Federated Identity
Manager trust service will fail to issue an Access Manager credential.

The STSUniversalUser must have a Principal attribute called name with type
urn:ibm:names:ITFIM:5.1:accessmanager. All other Principal attributes will be
ignored.

The STSUniversalUser should contain an extended attribute for the
AUTHENTICATION_LEVEL parameter, with type
urn:ibm:names:ITFIM:5.1:accessmanager. Its value must be a number
representing a valid Access Manager authentication level. This parameter is
necessary for reauthentication to work at the service provider.

The STSUniversalUser should contain an extended attribute for
AZN_CRED_AUTH_METHOD with type
urn:ibm:names:ITFIM:5.1:accessmanager. This is not absolutely required, and is
not used in our use case examples, but should be included for consistency since
it is carried as an attribute in Access Manager failover cookies, and it is desirable
for credentials built during failover to carry the same attributes as was on the
originating server.

The STSUniversalUser may contain the following standard Access Manager
attributes, though at the time of writing their use will generally not affect the
operation of Access Manager unless you have Access Manager authorization
rules or POPs acting on their values:

� AZN_CRED_AUTHNMECH_INFO
� AZN_CRED_BROWSER_INFO
� AZN_CRED_IP_ADDRESS
� AZN_CRED_QOP_INFO
� AZN_CRED_USER_INFO (this is included in audit log, if present)

The STSUniversalUser may also contain other extra Group and AttributeList
attributes.
388 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The token module can be configured to permit groups to be added to the base
Access Manager credential. If enabled, and group names are being included,
you must use the type attribute urn:ibm:names:ITFIM:5.1:accessmanager.

All other AttributeList attributes are typically just appended to the built Access
Manager credential; however, the module can be configured to filter these based
on type. By default, the type filter is *, which will include all attribute types.

SAML 1.0 token
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating a SAML 1.0 token

� Requirements on the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue a SAML 1.0 token

STSUniversalUser for SAML 1.0 tokens
Example B-3 shows an example STSUniversalUser as generated by the Tivoli
Federated Identity Manager trust service after validating a SAML 1.0 assertion.
This scenario typically occurs at a service provider during a federated single
sign-on operation, and also occurs in our sample use case 4 at RBStocks when
the signed SAML assertion sent from RBTelco is exchanged for a “local” SAML
assertion.

Example: B-3 Sample STSUniversalUser for SAML 1.0 assertion

<?xml version="1.0" encoding="UTF-8"?>
<stsuuser:STSUniversalUser

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="name"
type="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">
<stsuuser:Value>emp1@bigcorp.com</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="IssueInstant"
type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:12:35Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>
 Appendix B. Identity mapping rules 389

<stsuuser:Attribute name="NotBefore"
type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:02:35Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="MinorVersion"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>0</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="MajorVersion"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="Issuer"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>https://www.bigcorp.com</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="cn"

type="http://www.bigcorp.com/cn">
<stsuuser:Value>Employee One</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationInstant"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:12:35Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="NotOnOrAfter"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:22:35Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AssertionID"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

Assertion-uuide869f5f7-0104-e43d-cff3-8753ba4ddf37
</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:AttributeList>

</stsuuser:STSUniversalUser>

Issuing a SAML 1.0 assertion
This section details the requirements on an STSUniversalUser for issuing a
SAML 1.0 assertion. If the STSUniversalUser resulting from your XSL mapping
rule does not meet these requirements, the Tivoli Federated Identity Manager
trust service will fail to issue the assertion.

The Principal must contain a name attribute, and its type must be one of the
following supported SAML 1.0 subject types:

� #emailAddress
390 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

� #X509SubjectName
� #WindowsDomainQualifiedName
� urn:oasis:names:tc:SAML:1.0:assertion#emailAddress
� urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName
� urn:oasis:names:tc:SAML:1.0:assertion#WindowsDomainQualifiedName

The actual value of the name can be any string value.

An AuthenticationMethod must be provided as an extended attribute in the
AttributeList with a name of AuthenticationMethod and a type of
urn:oasis:names:tc:SAML:1.0:assertion. The value of the AuthenticationMethod
should be one of the following supported methods, for example,
urn:oasis:names:tc:SAML:1.0:am:password.

For a full list of the recommended authentication method URIs, see section 7.1 of
the Assertions and Protocol for the OASIS Security Assertion Markup Language.
This document is available for download from:

http://www.oasis-open.org/specs/index.php#samlv1.0

The issuer of the SAML assertion typically comes from the provider ID you
configured when you created the federation or partner in the first place. You can,
however, override the issuer by including an attribute in the Principal section
called issuer with a type of urn:oasis:names:tc:SAML:1.0:assertion.

A SAML NameQualifier used in the Subject can optionally be provided as an
extended attribute in the AttributeList with a name of NameQualifier and type of
urn:oasis:names:tc:SAML:1.0:assertion.

Other structured elements of the SAML assertion are either optional and not
supported or only ever filled in by the Tivoli Federated Identity Manager runtime,
possibly influenced by your federation configuration. A good example of this is
the SubjectConfirmationMethod, which is always set by Tivoli Federated Identity
Manager depending on whether a browser artifact or browser post profile is
being used. Similarly, NotBefore and NotOnOrAfter conditions are influenced by
federation configuration of the validity period of the assertion.

All other AttributeList attributes are added to a SAML AttributeStatement within
the assertion. The module can be configured to filter these based on type. By
default the type filter is *, which will include all attribute types.
 Appendix B. Identity mapping rules 391

http://www.oasis-open.org/specs/index.php#samlv1.0

SAML 1.1 token
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating a SAML 1.1 token

� Requirements on the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue a SAML 1.1 token

STSUniversalUser for SAML 1.1 tokens
Example B-4 shows an example STSUniversalUser as generated by the Tivoli
Federated Identity Manager trust service after validating a SAML 1.1 assertion.
This scenario typically occurs at a service provider during a federated single
sign-on operation for the WS-Federation passive requester profile. The mapping
rule at RBTelco in use case 2 processes this type of token.

Example: B-4 Sample STSUniversalUser for SAML 1.1 assertion

<stsuuser:STSUniversalUser
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="name"
type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>emp1@bigcorp.com</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="IssueInstant"
type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:32:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="NotBefore"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:22:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="MinorVersion"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="MajorVersion"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>1</stsuuser:Value>
392 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

</stsuuser:Attribute>
<stsuuser:Attribute name="Issuer"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

https://www.bigcorp.com/ITFIM/sps/wsfed/wsf
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="cn"

type="http://www.bigcorp.com/cn">
<stsuuser:Value>Employee One</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationInstant"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:32:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="NotOnOrAfter"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T19:42:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AssertionID"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

Assertion-uuide87c677a-0104-e2b5-7623-8753ba4ddf37
</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:AttributeList>

</stsuuser:STSUniversalUser>

Issuing a SAML 1.1 assertion
This section details the requirements for an STSUniversalUser for issuing a
SAML 1.1 assertion. If the STSUniversalUser resulting from your XSL mapping
rule does not meet these requirements, the Tivoli Federated Identity Manager
trust service will fail to issue the assertion.

The Principal must contain a name attribute, and its type must be one of the
following supported SAML 1.1 subject types:

� urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
� urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
� urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

The actual value of the name can be any string value.

An AuthenticationMethod must be provided as an extended attribute in the
AttributeList with a name of AuthenticationMethod and a type of
urn:oasis:names:tc:SAML:1.0:assertion. The value of the AuthenticationMethod
should be one of the supported methods such as
 Appendix B. Identity mapping rules 393

urn:oasis:names:tc:SAML:1.0:am:password. For a full list of the recommended
authentication method URIs, consult the SAML 1.1 specifications.

The issuer of the SAML assertion typically comes from the provider ID you
configured when you created the federation or partner in the first place. You can,
however, override the issuer by including an attribute in the Principal section
called issuer with a type of urn:oasis:names:tc:SAML:1.0:assertion.

A SAML NameQualifier used in the Subject can optionally be provided as an
extended attribute in the AttributeList with a name of NameQualifier and type of
urn:oasis:names:tc:SAML:1.0:assertion.

Other structured elements of the SAML assertion are either optional and not
supported or only ever filled in by the Tivoli Federated Identity Manager Runtime,
possibly influenced by your federation configuration. A good example of this is
the SubjectConfirmationMethod, which is always set by Tivoli Federated Identity
Manager depending on whether a browser artifact or browser post profile is
being used. Similarly, NotBefore and NotOnOrAfter conditions are influenced by
federation configuration of the validity period of the assertion.

All other AttributeList attributes are added to a SAML AttributeStatement within
the assertion. The module can be configured to filter these based on type. By
default the type filter is *, which will include all attribute types.

Liberty 1.1 token
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating a Liberty 1.1 token

� Requirements for the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue a Liberty 1.1 token

STSUniversalUser for Liberty 1.1 tokens
This scenario typically occurs at a service provider during a Liberty 1.1 federated
single sign-on operation. The Liberty 1.1 STSUniversalUser looks exactly the
same as a Liberty 1.2 universal user, so a separate example is not provided.

B-5 shows an example STSUniversalUser as generated by the Tivoli Federated
Identity Manager trust service after validating a Liberty 1.2 assertion.

Issuing a Liberty 1.1 assertion
This section details the requirements on an STSUniversalUser for issuing a
Liberty 1.1 assertion. If the STSUniversalUser resulting from your XSL mapping
394 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

rule does not meet these requirements, the Tivoli Federated Identity Manager
trust service will fail to issue the assertion.

The Principal must contain a name attribute, and its type must be one of the
following supported SAML 1.1 subject types:

� urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
� urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
� urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

The actual value of the name can be any string value.

An AuthenticationMethod must be provided as an extended attribute in the
AttributeList with a name of AuthenticationMethod and a type of
urn:oasis:names:tc:SAML:1.0:assertion. The value of the AuthenticationMethod
should be a supported SAML 1.0 authentication method such as
urn:oasis:names:tc:SAML:1.0:am:password. Please see the SAML and Liberty
specifications for details of the recommended authentication URIs.

Other structured elements of the assertion are either optional and not supported
or only ever filled in by the Tivoli Federated Identity Manager Runtime, possibly
influenced by your federation configuration. A good example of this is the
SubjectConfirmationMethod, which is always set by Tivoli Federated Identity
Manager depending on whether a browser artifact or browser post profile is
being used. Similarly, NotBefore and NotOnOrAfter conditions are influenced by
federation configuration.

All other AttributeList attributes are added to a SAML AttributeStatement within
the assertion. The module can be configured to filter these based on type. By
default the type filter is *, which will include all attribute types. Care should be
taken when doing this with Liberty assertions since field experience has shown
the some other vendors products do not interoperate with Liberty assertions that
contain an AttributeStatement.

Liberty 1.2 token
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating a Liberty 1.2 token

� Requirements for the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue a Liberty 1.2 token

STSUniversalUser for Liberty 1.2 tokens
B-5 shows an example STSUniversalUser as generated by the Tivoli Federated
Identity Manager trust service after validating a Liberty 1.2 assertion. This
 Appendix B. Identity mapping rules 395

scenario typically occurs at a service provider during a Liberty 1.2 federated
single sign-on operation.

Example: B-5 Sample STSUniversalUser for Liberty 1.2 assertion

<stsuuser:STSUniversalUser
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="name"
type="urn:liberty:iff:nameid:federated">
<stsuuser:Value>rbtickets1</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="IssueInstant"
type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T20:07:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="NotBefore"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T20:06:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AudienceRestrictionCondition.Audience"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

https://www.rbtickets.com/ITFIM/sps/liberty12/liberty
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="issuer"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

https://www.rbtelco.com/ITFIM/sps/libertyfed/liberty
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="AuthenticationInstant"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T20:07:44Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="NotOnOrAfter"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>2005-07-05T20:09:44Z</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:AttributeList>
396 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

</stsuuser:STSUniversalUser>

Issuing a Liberty 1.2 assertion
This section details the requirements on an STSUniversalUser for issuing a
Liberty 1.2 assertion. If the STSUniversalUser resulting from your XSL mapping
rule does not meet these requirements, the Tivoli Federated Identity Manager
trust service will fail to issue the assertion.

The Principal must contain a name attribute, and its type must be one of the
following supported SAML 1.1 subject types:

� urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
� urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
� urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

The actual value of the name can be any string value.

An AuthenticationMethod must be provided as an extended attribute in the
AttributeList with a name of AuthenticationMethod and a type of
urn:oasis:names:tc:SAML:1.0:assertion. The value of the AuthenticationMethod
should be a supported SAML 1.0 authentication method such as
urn:oasis:names:tc:SAML:1.0:am:password. Please see the SAML and Liberty
specifications for details of the recommended authentication URIs.

Other structured elements of the assertion are either optional and not supported
or only ever filled in by the Tivoli Federated Identity Manager runtime, possibly
influenced by your federation configuration. A good example of this is the
SubjectConfirmationMethod, which is always set by Tivoli Federated Identity
Manager depending on whether a browser artifact or browser post profile is
being used. Similarly, NotBefore and NotOnOrAfter conditions are influenced by
federation configuration.

All other AttributeList attributes are added to a SAML AttributeStatement within
the assertion. The module can be configured to filter these based on type. By
default the type filter is *, which will include all attribute types. Care should be
taken when doing this with Liberty assertions since field experience has shown
that some other vendors’ products do not interoperate with Liberty assertions
that contain an AttributeStatement.

UsernameToken token
This section details:

� The STSUniversalUser format generated by the Tivoli Federated Identity
Manager trust service after validating a UsernameToken
 Appendix B. Identity mapping rules 397

� Requirements for the STSUniversalUser so that the Tivoli Federated Identity
Manager trust service will issue a UsernameToken

The UsernameToken format supported by Tivoli Federated Identity Manager is
the wss:UsernameToken profile described in the document at:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0.pdf

STSUniversalUser for UsernameToken
Example B-6 shows an example STSUniversalUser as generated by the Tivoli
Federated Identity Manager trust service after validating a UsernameToken. This
scenario typically occurs as part of a Web Service Security Management
operation, such as the EchoApplcation shipped as an example with Tivoli
Federated Identity Manager.

Example: B-6 Sample STSUniversalUser for UsernameToken

<stsuuser:STSUniversalUser
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="Username"

type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext
-1.0.xsd">

<stsuuser:Value>wasadmin</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="name"

type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext
-1.0.xsd">

<stsuuser:Value>wasadmin</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="Password"

type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-pr
ofile-1.0#PasswordText">

<stsuuser:Value>********</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
</stsuuser:STSUniversalUser>

Issuing a UsernameToken
This section details the requirements on an STSUniversalUser for issuing a
UsernameToken. If the STSUniversalUser resulting from your XSL mapping rule
does not meet these requirements, the Tivoli Federated Identity Manager trust
service will fail to issue the token.
398 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

The Principal must contain an attribute carrying the user name, and it must be
called either Username or name with a type of
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.
0.xsd.

The value of this attribute is just the user’s name.

The Principal can optionally contain a Password attribute. If a type is supplied for
the Password, that type will be included in the constructed token; otherwise, the
default value of
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profi
le-1.0#PasswordText will be used, and the password will be treated as a
cleartext password. Cleartext passwords can be handled one of two ways,
depending on how the token module is configured. Either the cleartext password
is included without modification, or the token module can be configured to
compute a password digest for you and include that in the resulting token.

You can also pre-set the type attribute of your password to
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profi
le-1.0#PasswordDigest for a password digest you have computed yourself.
Password digests presented in this fashion are included without modification in
the resulting token.

The AttributeList of the STSUniversalUser can optionally contain an attribute
called Created with a type of
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.
xsd, which should contain a preformatted time value, which is the time the user
name token is created. If this attribute is found, and the token module is
configured to include a created timestamp, it is added as-is to the resulting token.
If this attribute is not found and the module is configured to add a timestamp, the
token module will add one based on the current time.

By way of configuration, the UsernameToken module can also add Nonce and
Timestamp elements to the token. No attributes are required in the
STSUniversalUser for these elements.

Calling Java code from mapping rules
The Tivoli Federated Identity Manager XSLT processor is based in Java, and it is
a simple matter to write your own Java code and call it from your XSL mapping
rule. Two of the scenarios in this book have examples of this. The first is in use
case 1 at RBTravel where Java code is used to poll for the existence of, and
create if necessary, the user who is trying to single sign-on via SAML 1.0. The
 Appendix B. Identity mapping rules 399

second example is use case 4 at RBStocks where Java code is used to check
the inbound user’s e-mail address against a text file blacklist.

Learning how to call Java from XSL
The simplest way to become familiar with calling Java from XSL is to take one of
the examples from this book and modify it to suit your own purposes. One of the
more useful online references for learning about calling other languages from
XSL is:

http://xml.apache.org/xalan-j/extensions.html#format-date-stylesheet

Distributing Java code
Once you have written and compiled your Java code and configured your XSL
rule to call it, you need to make the compiled classes or jar file available to the
classpath of the JVM executing the XSL. This can be done several ways. The
quick and dirty way, particularly useful during development, is to drop your jar file
into the WebSphere/AppServer/classes directory. A more distributable approach
(from a cluster point of view) is to distribute your jar to all nodes in the same
location and then use a WebSphere shared library to include it in the classpath.

Developer tricks for mapping rules
This section outlines a few techniques for developers that may be useful in the
development of mapping rules.

Working with Access Manager credentials
When developing mapping rules that map to or from Access Manager
credentials, one of the most valuable resources for understanding what is in the
original or final Access Manager credential is the WebSEAL epac demo program
that ships with the WebSEAL pdwebrte. There is a readme included that
demonstrates how to set it up. When successfully authenticated to WebSEAL,
accessing this epac CGI program with a browser will show you a screen similar
to that in Figure B-1 on page 401.

The epac CGI essentially unpacks the Access Manager credential and shows all
of the attributes it contains. These map directly to elements you will find in the
STSUniversalUser. This is particularly useful when working with tag-value
extended attributes, or other non-obvious attributes in the credential.
400 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://xml.apache.org/xalan-j/extensions.html#format-date-stylesheet

Figure B-1 Sample epac from BigCorp

Testing XSL rules
There are a couple of very useful techniques for testing your XSL mapping rules
prior to deploying them to Tivoli Federated Identity Manager.

First either write or acquire from an Tivoli Federated Identity Manager
DEBUG_MAX trace log an example XML file of an STSUniversalUser that your
XSL will operate on. The examples shown for each token type in “Mapping
 Appendix B. Identity mapping rules 401

between STSUniversalUser and native tokens” on page 384 should be a good
starting point.

There is a command-line XSLT program available to run your XSL over the XML
file. Starting with the XML of a sample Access Manager credential STSUU from
B-2, and the mapping rule from use case 1 located in B-8, the command line
execution is depicted at Example B-7. While the output is not all that pretty since
the XML is not formatted, you can easily save it to a text file and view it in a better
XML viewer. If you include your Java code in the classpath when executing the
command-line tool, you can even test call Java from XSL on the command line.
For more information on running XSLT from the command line, see:

http://xml.apache.org/xalan-j/commandline.html

Example: B-7 Testing XSLT from a command line

C:\temp>\Progra~1\websphere\appserver\java\bin\java
org.apache.xalan.xslt.Process -in emp1.xml -xsl bigcorp_mapping_1.xsl

<?xml version="1.0" encoding="utf-8"?>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>
<stsuuser:Attribute type="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress"
name="name">
<stsuuser:Value>emp1@bigcorp.com</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
<GroupList xmlns="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Group name="employees" type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Attribute name="uuid" type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>6f0f791c-ea49-11d9-a4eb-000c29d2099e</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="registryid"
type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>CN=employees,CN=Users,DC=bigcorp,DC=com</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Group>
</GroupList>
<stsuuser:AttributeList>
<stsuuser:Attribute type="urn:oasis:names:tc:SAML:1.0:assertion"
name="Authentic
ationMethod">
<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute type="http://www.bigcorp.com/cn" name="cn">
<stsuuser:Value>Employee One</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:AttributeList>
402 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://xml.apache.org/xalan-j/commandline.html

</stsuuser:STSUniversalUser>

Even more sophisticated is the Eclipse programming platform plug-ins for
developing and executing XSLT rules. These plug-ins also appear in WebSphere
Studio Application Developer, presently called Rational Software Developer and
Rational Software Architect. This will allow you to step through your XSL
command-by-command, and is an excellent way to debug XSL logic. Figure B-2
shows a screen from WebSphere Studio Application Developer while stepping
though an XSL command for the same example shown on the command line.

Figure B-2 Debugging XSLT with WebSphere Studio Application Developer (Eclipse Platform)

Scenario mapping rules
This section contains all the mapping rules and Java code used for the scenarios
in this book.

Use case 1 mapping rules
This section contains the mapping rules used at BigCorp and RBTravel for
Chapter 7, “Use case 1 - SAML/JITP” on page 193.
 Appendix B. Identity mapping rules 403

BigCorp mapping for use case 1
Example B-8 shows the mapping rule at BigCorp used to transform an Access
Manager Credential into a SAML 1.0 Assertion.

Example: B-8 BigCorp mapping for use case 1

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
This template replaces the entire Principal element with one that

contains
just the email address (from the ivcred tagvalue_activedir_mail) and the

data type
appropriate for SAML.

-->
<xsl:template match="//stsuuser:Principal">

<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_activedir_m
ail'][@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
</xsl:template>

<!--
This template builds a new AttributeList. This involves:
a) Adding an AuthenticationMethod attribute to meet SAML requirements.

We assume
404 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

this is always the "password" mechanism, regardless of what the TAM
credential

actually says.
b) Map the tagvalue_cn to commonName

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>

<!-- Now the cn attribute -->
<stsuuser:Attribute name="cn"

type="http://www.bigcorp.com/cn">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_activedir_c
n'][@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

</xsl:stylesheet>

RBTravel mapping for use case 1
Example B-9 shows the mapping rule at RBTravel used to transform a SAML 1.0
assertion into an Access Manager credential. Note that this rule also calls out to
Java code to just-in-time provisioning the user if necessary. B-10 shows the Java
code that implemented this provisioning.

Example: B-9 RBTravel mapping for use case 1

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser"
xmlns:xalan="http://xml.apache.org/xalan"
xmlns:fromjava="JITProvisioning">

<xalan:component prefix="fromjava" functions="doJITP">
 Appendix B. Identity mapping rules 405

<xalan:script lang="javaclass"
src="xalan://com.tivoli.am.fim.redbook.JITProvisioning" />

</xalan:component>

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
This template replaces the AttributeList with one containing only the

subset
of attributes we are interested in (whilst modifying their data type)

and
adds a tagvalue_mail attribute which is the current principal name value
(from the SAML assertion). When copying attributes that we are

interested
in we also map their names as follows:
cn->tagvalue_cn
We also include an AUTHENTICATION_LEVEL attribute, with value 1.

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The tagvalue_cn attribute -->
<stsuuser:Attribute name="tagvalue_cn"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='cn'][@type='http://w
ww.bigcorp.com/cn']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

<!-- The tagvalue_mail attribute -->
<stsuuser:Attribute name="tagvalue_mail"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of
406 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

select="//stsuuser:Principal/stsuuser:Attribute[@name='name'][@type='urn:oasis:
names:tc:SAML:1.0:assertion#emailAddress']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

<!-- The AUTHENTICATION_LEVEL attribute -->
<stsuuser:Attribute name="AUTHENTICATION_LEVEL"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

<!--
This will just-in-time provision the user if necessary, and update the

principal name to the correct type.
We still use the email address for the username.

-->
<xsl:template

match="//stsuuser:Principal/stsuuser:Attribute[@name='name']">

<xsl:variable name="username">
<xsl:value-of

select="//stsuuser:Principal/stsuuser:Attribute[@name='name'][@type='urn:oasis:
names:tc:SAML:1.0:assertion#emailAddress']/stsuuser:Value" />

</xsl:variable>

<xsl:variable name="tamConfigURL">

file:///opt/IBM/WebSphere/AppServer/profiles/rbtravel/config/itfim/rbtravel/nod
es/fimNode03Cell/rbtravel/server1/amconfig.conf

</xsl:variable>

<stsuuser:Attribute name="name"
type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of
select="fromjava:doJITP($username,$tamConfigURL)" />

</stsuuser:Value>
</stsuuser:Attribute>

</xsl:template>
</xsl:stylesheet>
 Appendix B. Identity mapping rules 407

Example: B-10 Java code for just-in-time provisioning

package com.tivoli.am.fim.redbook;

import com.tivoli.pd.jutil.PDContext;
import com.tivoli.pd.jadmin.PDUser;
import com.tivoli.pd.jutil.PDRgyUserName;
import com.tivoli.pd.jutil.PDMessages;
import com.tivoli.pd.jutil.PDException;

import com.tivoli.mts.PDPrincipal;

import java.net.URL;
import java.net.MalformedURLException;

/**
 * @author Shane Weeden
 *
 */
public class JITProvisioning {

static PDContext m_context = null;

static final String NEWUSER_PREFIX = "cn=";

static final String NEWUSER_SUFFIX = ",o=rbtravel,c=us";

static final String NEWUSER_DUMMY_PWD = "passw0rd_never_used";

String _tamConfigURL = null;

public String doJITP(String username, String tamConfigURL) {
_tamConfigURL = tamConfigURL;

// protect the PDJRTE context
synchronized (this.getClass()) {

try {
System.out.println("Checking for existing TAM user: "

+ username);

if (userExists(username)) {
System.out.println("Tam user found: " + username);

} else {
createUser(username);

}
} catch (Exception e) {

System.out
.println("Unexpected exception in JITProvisioning.doJITP("

+ username + "): " + e.getMessage());
408 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

}
}
return username;

}

private boolean userExists(String username) throws NullPointerException,
IllegalArgumentException, SecurityException, MalformedURLException {

boolean result = false;

// use azn api rather than pdadmin api here for performance /
// scalability reasons
try {

PDPrincipal principal = new PDPrincipal(username, getConfigURL());

// no exception here, so use must exist
result = true;

} catch (IllegalStateException ise) {
// this is the "normal case" when the user does not exist
System.out.println("Tam user not found: " + username + " Details: "

+ ise.getMessage());
result = false;

}
return result;

}

private void createUser(String username) throws PDException,
MalformedURLException {

// use pdadmin api to create the user
initContext();
try {

PDMessages msgs = new PDMessages();
PDUser.createUser(m_context, username, new PDRgyUserName(

NEWUSER_PREFIX + username + NEWUSER_SUFFIX, username,
username), null, (new String(NEWUSER_DUMMY_PWD))
.toCharArray(), null, false, true, msgs);

System.out.println("User created: " + username + " with messages: "
+ msgs.toString());

msgs.clear();

// don't forget to set the account-valid to yes
PDUser.setAccountValid(m_context, username, true, msgs);
System.out.println("User account set to valid: " + username

+ " with messages: " + msgs.toString());
msgs.clear();

} catch (PDException pde) {
System.out.println("PDException caught while adding user: "

+ pde.toString());
 Appendix B. Identity mapping rules 409

}
}

private void initContext() throws PDException, MalformedURLException {
if (m_context != null) {

return;
}
m_context = new PDContext(getConfigURL());

}

private URL getConfigURL() throws MalformedURLException {
return new URL(_tamConfigURL);

}

}

Use case 2 mapping rules
This section contains the mapping rules used at BigCorp and RBTelco for use
case 2.

BigCorp mapping for use case 2
Example B-11 shows the mapping rule at BigCorp used to transform an Access
Manager credential into a SAML 1.1 assertion used for WS-Federation login.

Example: B-11 BigCorp mapping for use case 2

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
410 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

This template replaces the entire Principal element with one that
contains

just the email address (from the ivcred tagvalue_activedir_mail) and the
data type

appropriate for SAML.
-->
<xsl:template match="//stsuuser:Principal">

<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_activedir_m
ail'][@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
</xsl:template>

<!--
This template builds a new AttributeList. This involves:
a) Adding an AuthenticationMethod attribute to meet SAML requirements.

We assume
this is always the "password" mechanism, regardless of what the TAM

credential
actually says.
b) Map the tagvalue_cn to cn

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>

<!-- Now the cn attribute -->
<stsuuser:Attribute name="cn"

type="http://www.bigcorp.com/cn">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_activedir_c
n'][@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
 Appendix B. Identity mapping rules 411

</stsuuser:Attribute>
</stsuuser:AttributeList>

</xsl:template>

</xsl:stylesheet>

RBTelco mapping for use case 2
Example B-12 shows the mapping rule at RBTelco used to transform a SAML 1.1
assertion into an Access Manager credential.

Example: B-12 RBTelco mapping for use case 2

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
This template replaces the AttributeList with one containing only the

subset
of attributes we are interested in (whilst modifying their data type)

and
adds a tagvalue_mail attribute which is the current principal name value
(from the SAML assertion). When copying attributes that we are

interested
in we also map their names as follows:
cn->tagvalue_cn

We also add a static attribute which records the fact that this user is
from bigcorp.

This is used later in the stock quote application to determine that the
user should

get a realtime stock quote.

We also include an AUTHENTICATION_LEVEL attribute, with value 1.
412 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The tagvalue_name attribute -->
<stsuuser:Attribute name="tagvalue_cn"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='cn'][@type='http://w
ww.bigcorp.com/cn']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

<!-- The tagvalue_mail attribute -->
<stsuuser:Attribute name="tagvalue_mail"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of

select="//stsuuser:Principal/stsuuser:Attribute[@name='name'][@type='urn:oasis:
names:tc:SAML:1.1:nameid-format:emailAddress']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

<!-- The tagvalue_fim_partner attribute -->
<stsuuser:Attribute name="tagvalue_fim_partner"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>BigCorp</stsuuser:Value>

</stsuuser:Attribute>

<!-- The AUTHENTICATION_LEVEL attribute -->
<stsuuser:Attribute name="AUTHENTICATION_LEVEL"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

<!--
This will replace the principal name (which was the email address in
the SAML assertion) with the user "me_mary".

-->
<xsl:template

match="//stsuuser:Principal/stsuuser:Attribute[@name='name']">
<stsuuser:Attribute name="name"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
 Appendix B. Identity mapping rules 413

<stsuuser:Value>bigcorp_guest</stsuuser:Value>
</stsuuser:Attribute>

</xsl:template>
</xsl:stylesheet>

Use case 3 mapping rules
This section contains the mapping rules used at RBTelco, RBBanking, and
RBTickets for use case 3.

RBTelco mapping for use case 3
Example B-13 shows the mapping rule at RBTelco used to transform an Access
Manager credential into a Liberty 1.2 used for sign-on to either RBBanking or
RBTickets.

Example: B-13 RBTelco mapping for use case 3

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">
<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!-- Initially we start with a copy of the document. -->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
This template updates the name type in the Principal element
with a type appropriate for Liberty 1.2 Assertion.

-->
<xsl:template match="//stsuuser:Principal">

<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>

<xsl:value-of select="stsuuser:Value" />
</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>

</xsl:template>
414 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<!--
This template builds a new AttributeList.
This involves adding an AuthenticationMethod attribute to meet SAML

requirements.
We assume this is always the "password" mechanism, regardless of what

the TAM credential actually says.

Note that in this rule, we don't send any extended attributes to the
partner. This is typical of

real-world liberty partnerships. Some commercial products cannot handle
extended attributes in

the SAML assertion.
-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>

urn:oasis:names:tc:SAML:1.0:am:password
</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:AttributeList>

</xsl:template>
</xsl:stylesheet>

RBBanking mapping for use case 3
Example B-14 shows the mapping rule at RBBanking used to transform a Liberty
1.2 assertion into an Access Manager credential.

Example: B-14 RBBanking mapping for use case 3

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0" xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />
<!-- Initially we start with a copy of the document. -->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!-- This will update the principal name type for TAM. -->
 Appendix B. Identity mapping rules 415

<xsl:template
match="//stsuuser:Principal/stsuuser:Attribute[@name='name']">
<stsuuser:Attribute name="name"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of select="stsuuser:Value" />
</stsuuser:Value>

</stsuuser:Attribute>
</xsl:template>

<!--
This template replaces the AttributeList with one containing an

identifier to let us know
this was a liberty login. This is not really needed, but shows adding

extended attributes
to the TAM credential.

We also include an AUTHENTICATION_LEVEL attribute, with value 1.
-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The tagvalue_fim_login attribute -->
<stsuuser:Attribute name="tagvalue_fim_login"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Liberty12</stsuuser:Value>

</stsuuser:Attribute>

<!-- The AUTHENTICATION_LEVEL attribute -->
<stsuuser:Attribute name="AUTHENTICATION_LEVEL"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

</xsl:stylesheet>

RBTickets mapping for use case 3
Example B-15 shows the mapping rule at RBTickets used to transform a Liberty
1.2 assertion into an Access Manager credential.

Example: B-15 RBTickets mapping for use case 3

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0" xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
416 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />
<!-- Initially we start with a copy of the document. -->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!-- This will update the principal name type for TAM. -->
<xsl:template

match="//stsuuser:Principal/stsuuser:Attribute[@name='name']">
<stsuuser:Attribute name="name"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of select="stsuuser:Value" />
</stsuuser:Value>

</stsuuser:Attribute>
</xsl:template>

<!--
This template replaces the AttributeList with one containing an

identifier to let us know
this was a liberty login. This is not really needed, but shows adding

extended attributes
to the TAM credential.

We also include an AUTHENTICATION_LEVEL attribute, with value 1.
-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The tagvalue_fim_login attribute -->
<stsuuser:Attribute name="tagvalue_fim_login"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>Liberty12</stsuuser:Value>

</stsuuser:Attribute>

<!-- The AUTHENTICATION_LEVEL attribute -->
<stsuuser:Attribute name="AUTHENTICATION_LEVEL"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>1</stsuuser:Value>

</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>
 Appendix B. Identity mapping rules 417

</xsl:stylesheet>

Use case 4 mapping rules
This section contains the mapping rules used at RBTelco and RBStocks for use
case 4, described in Chapter 10, “Use case 4 - Web services security
management” on page 291.

RBTelco mapping for use case 4
Example B-16 shows the mapping rule at RBTelco used to transform an Access
Manager credential into a SAML 1.0 assertion used for the WS-Security token
representing the caller of the stock quote Web service.

Example: B-16 RBTelco mapping for use case 4

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
This template replaces the entire Principal element with one that

contains
the email address of the user.

-->
<xsl:template match="//stsuuser:Principal">

<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>

<xsl:value-of
418 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_mail'][@typ
e='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
</xsl:template>

<!--
This template builds a new AttributeList. This involves:
a) Adding an AuthenticationMethod attribute to meet SAML requirements.

We assume
this is always the "password" mechanism, regardless of what the TAM

credential
actually says.
b) Create a user_home attribute which indicates where this user's home

registry is.
The way we determine the user's home registry is from the TAM attribute

tagvalue_fim_partner.
If this attribute exists in the TAM credential, it's value represents

the company the user has
performed a federated SSO from. If it doesn't exist, we assume the user

logged in locally to
rbtelco, and set the value to that.

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">

<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>
</stsuuser:Attribute>

<!-- Now the user_home attribute -->
<stsuuser:Attribute name="user_home"

type="http://rbtelco.com/user_home">
<xsl:choose>

<xsl:when

test="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_fim_partner']
[@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value">

<stsuuser:Value>
<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='tagvalue_fim_partner
'][@type='urn:ibm:names:ITFIM:5.1:accessmanager']/stsuuser:Value" />

</stsuuser:Value>
 Appendix B. Identity mapping rules 419

</xsl:when>
<xsl:otherwise>

<stsuuser:Value>RBTelco</stsuuser:Value>
</xsl:otherwise>

</xsl:choose>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

</xsl:stylesheet>

RBStocks mapping for use case 4
Example B-17 shows the mapping rule at RBStocks used to transform a SAML
1.0 assertion into another SAML 1.0 assertion. Note that this rule performs a
many-to-few user identity mapping, and also calls out to Java code to check the
e-mail address of the user against a simple flat-file blacklist. B-18 shows the Java
code that implemented this blacklist checking.

Example: B-17 RBStocks mapping for use case 4

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser"
xmlns:xalan="http://xml.apache.org/xalan"
xmlns:blacklist="http://www.rbstocks.com/blacklist" version="1.0">

<xalan:component prefix="blacklist" functions="isBlacklisted">
<xalan:script lang="javaclass"

src="xalan://com.tivoli.am.fim.redbook.Blacklist" />
</xalan:component>

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />

<!--
Initially we start with a copy of the document.

-->
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<!--
420 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

This template replaces the entire Principal element with one that
contains

either "realtime", "delayed" or "blacklisted" according to the following
psuedo-code:

if (isBlacklisted(email, filename))
{
username = "blacklisted";
}
else if (user_home == "RBTelco")
{
username = "delayed";
}
else
{
username = "realtime";
}

-->
<xsl:template match="//stsuuser:Principal">

<xsl:variable name="email">
<xsl:value-of

select="//stsuuser:Principal/stsuuser:Attribute[@name='name'][@type='urn:oasis:
names:tc:SAML:1.1:nameid-format:emailAddress']/stsuuser:Value" />

</xsl:variable>

<xsl:variable name="user_home">
<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name='user_home'][@type='h
ttp://www.rbtelco.com/user_home']/stsuuser:Value" />

</xsl:variable>

<xsl:variable name="blacklistfile">
/opt/IBM/FIM/apps/wssm/stockquote/blacklist.txt

</xsl:variable>

<xsl:variable name="isBlacklisted">
<xsl:value-of

select="blacklist:isBlacklisted($email,$blacklistfile)" />
</xsl:variable>

<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>

<xsl:choose>
<xsl:when test="$isBlacklisted = 'true'">

blacklisted
 Appendix B. Identity mapping rules 421

</xsl:when>
<xsl:when test="$user_home = 'RBTelco'">

delayed
</xsl:when>
<xsl:otherwise>realtime</xsl:otherwise>

</xsl:choose>
</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>

</xsl:template>

<!--
This template builds a new AttributeList containing just an

AuthenticationMethod
attribute to meet SAML requirements.

-->
<xsl:template match="//stsuuser:AttributeList">

<stsuuser:AttributeList>

<!-- The authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">

<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

</xsl:stylesheet>

Example: B-18 Java code for blacklist checking at RBStocks

package com.tivoli.am.fim.redbook;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.HashSet;

/**
 * @author Shane Weeden
 */
public class Blacklist {

public String isBlacklisted(String email, String fileName) {
Boolean result = null;
HashSet blacklist = new HashSet();

System.out.println("Checking blacklist file: " + fileName
+ " for email: " + email);
422 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

if (email == null || fileName == null) {
return Boolean.TRUE.toString();

} else {
try {

FileInputStream fis = new FileInputStream(fileName);
InputStreamReader isr = new InputStreamReader(fis);
BufferedReader br = new BufferedReader(isr);

String line = br.readLine();
while (line != null) {

blacklist.add(line);
line = br.readLine();

}
br.close();
isr.close();
fis.close();

result = Boolean.valueOf(blacklist.contains(email));
} catch (Exception e) {

System.out.println("Exception caught checking blacklist: "
+ e.getMessage());

// err on the safe side and blacklist this user
result = Boolean.TRUE;

}
}

System.out.println("Email: " + email + " Blacklist: " + fileName
+ " Result: " + result.toString());

return result.toString();
}

}

 Appendix B. Identity mapping rules 423

424 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Appendix C. Keys and certificates

This appendix describes the keys and certificates that were generated for the
use cases described in this book. Screen images of importing keys into Tivoli
Federated Identity Manager are included for one of the companies in the use
cases.

C

© Copyright IBM Corp. 2004, 2005. All rights reserved. 425

Keys and certificates
When designing the use cases for this book, one of the primary considerations
was the various public/private key paris that would be used to establish trust
between the partners, and the keyfiles needed by each company. This section
describes the key strategy for the book scenarios.

Required keys
Having established a certificate authority for the lab, keys were generated
according to the various signing and encryption requirements for the use cases.
These keys and their uses are summarized in Table C-1.

Table C-1 Keys for book use cases

Company name Key alias Key name Uses

ALL redbook_ca cn=fim.redbook.ib
m.com,o=ibm,c=us

Overall signing CA
for all other
certificates.

BigCorp bigcorp_www cn=www.bigcorp.c
om,o=bigcorp,c=us

Web Server server
certificate -
installed on both
www and soap
instances of
WebSEAL.

bigcorp_rbtravel cn=bigcorp_rbtrav
el.bigcorp.com,o=b
igcorp,c=us

Used by BigCorp
for signing SAML
1.0 assertions and
sample responses
to RBTravel.

bigcorp_rbtelco cn=bigcorp_rbtrav
el.bigcorp.com,o=b
igcorp,c=us

Used by BigCorp
for signing SAML
1.1 assertion for
ws-federation to
RBTelco.
426 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

RBTravel rbtravel_www cn=www.rbtravel.c
om,o=rbtravel,c=u
s

Web Server server
certificate for
www.rbtravel.com.

rbtravel_bigcorp cn=rbtravel_bigcor
p.rbtravel.com,o=r
btravel,c=us

Used by RBTravel
as a client
certificate to
connect to
SAML/SOAP
WebSEAL on
BigCorp.

RBTelco rbtelco_www cn=www.rbtelco.co
m,o=rbtelco,c=us

Web Server server
certificate for
www.rbtravel.com.

rbtelco_liberty cn=rbtelco_liberty.r
btelco.com,o=rbtel
co,c=us

Used by RBTelco
for signing liberty
assertions and
messages to
RBBanking and
RBTickets. Note
that for a single
liberty federation
only one signing
key can be
specified, not a
separate key for
each partner.

rbtelco_rbstocks cn=rbtelco_rbstock
s.rbtelco.com,o=rbt
elco,c=us

Used by RBTelco
for signing
ws-security
messages (and the
saml assertion
contained within it)
to RBStocks. Note
that for doing XML
Encryption we will
use RBStocks'
public key.

Company name Key alias Key name Uses
 Appendix C. Keys and certificates 427

Keystore layout
The next job was to gather these keys into keystores that would be useful for the
various companies in the scenario. Developing a pattern for storing the keys
provides a consistent, predictable way to determine which keys should go in
which keystores.

For the scenarios in this book, each company will potentially have five keystore
files that can contain the above keys. Not all companies need every type of
keystore.

The first is the pdsrv.kdb used by the WebSEAL server. This contains the Web
server certificate and private key, and for those Web servers receiving
authentication from SSL clients with client certificates, it will also contain the
certificate authority certificate for the signer of those client certificates.

RBBanking rbbanking_www cn=www.rbbanking
.com,o=rbbanking,
c=us

Web Server server
certificate for
www.rbbanking.
com.

rbbanking_rbtelco cn=rbbanking_rbtel
co.rbbanking.com,
o=rbbanking,c=us

Used by
RBBanking for
signing liberty
messages to
RBTelco.

RBTickets rbtickets_www cn=www.rbtickets.
com,o=rbtickets,c=
us

Web Server server
certificate for
www.rbtickets.
com.

rbtickets_rbtelco cn=rbtickets_rbtelc
o.rbtickets.com,o=r
btickets,c=us

Used by RBTickets
for signing liberty
messages to
RBTelco.

RBStocks rbstocks_rbtelco cn=rbstocks_rbtelc
o.rbstocks.com,o=r
bstocks,c=us

Used by RBStocks
for signing
ws-security
response
messages to
RBTelco.

Company name Key alias Key name Uses
428 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

The other four keystores follow this pattern, and are all used by the Federated
Identity Manager software:

� companyname-signing.jks contains private keys used for signing objects sent
to partners. This includes signing assertions, SAML, or Liberty
requests/responses, and Web services requests and responses.

� companyname-partners.jks contains public certificates of partner signing
keys for signed objects received from partners. These are used to verify
signatures on things like Liberty/SAML assertions and Liberty/SAML requests
and responses and Web services requests and responses. The are also used
to do XML Encryption for WS-security messages. That is, with XML
Encryption, you encrypt a message for your partner using their public key.

� companyname-ca.jks contains the CA certificates of Web servers of partners.
This is primarily used by the SOAP client portions of the FIM configuration to
validate that they are talking to the correct server when sending SOAP
requests.

� companyname-clients.jks contains the SSL client certificates used by those
SOAP client portions of the FIM configuration that need to communicate via
mutually authenticated SSL to a partner.

Keystores for BigCorp
Table C-2 shows the keystore files needed for BigCorp.

Table C-2 Keystores for BigCorp

Keystores for RBTravel
Table C-3 on page 430 shows the keystore files needed for RBTravel.

Keystore name Keys and certificates
(alias)

Public certificate or
private key

pdsrv.kdb (Used for both
WebSEAL’s which run on
BigCorp)

bigcorp_www Private

redbook_ca Public

bigcorp-signing.jks bigcorp_rbtravel Private

bigcorp_rbtelco Private

bigcorp-partners.jks NOT NEEDED

bigcorp-ca.jks NOT NEEDED

bigcorp-clients.jks NOT NEEDED
 Appendix C. Keys and certificates 429

Table C-3 Keystores for RBTravel

Keystores for RBTelco
Table C-4 shows the keystore files needed for RBTelco.

Table C-4 Keystores for RBTelco

Keystores for RBBanking
Table C-5 on page 431 shows the keystore files needed for RBBanking.

Keystore name Keys and certificates
(alias)

Public certificate or
private key

pdsrv.kdb rbtravel_www Private

redbook_ca Public

rbtravel-signing.jks NOT NEEDED

rbtravel-partners.jks NOT NEEDED

rbtravel-ca.jks redbook_ca Public

rbtravel-clients.jks rbtravel_bigcorp Private

Keystore name Keys and certificates
(alias)

Public certificate or
private key

pdsrv.kdb rbtelco_www Private

redbook_ca Public

rbtelco-signing.jks rbtelco_liberty Private

rbtelco_rbstocks Private

rbteclo-partners.jks bigcorp_rbtelco Public

rbbanking_rbtelco Public

rbtickets_rbtelco Public

rbstocks_rbtelco Public

rbtelco-ca.jks redbook_ca

rbtelco-clients.jks NOT NEEDED
430 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Table C-5 Keystores for RBBanking

Keystores for RBTickets
Table C-6 shows the keystore files needed for RBTickets.

Table C-6 Keystores for RBTickets

Keystores for RBStocks
Table C-7 shows the keystore files needed for RBStocks.

Table C-7 Keystores for RBStocks

Keystore name Keys and certificates
(alias)

Public certificate or
private key

pdsrv.kdb rbbanking_www Private

redbook_ca Public

rbbanking-signing.jks rbbanking_rbtelco Private

rbbanking-partners.jks rbtelco_liberty Public

rbbanking-ca.jks redbook_ca Public

rbbanking-clients.jks NOT NEEDED

Keystore name Keys and certificates
(alias)

Public certificate or
private Key

pdsrv.kdb rbtickets_www Private

redbook_ca Public

rbtickets-signing.jks rbtickets_rbtelco Private

rbtickets-partners.jks rbteclo_liberty Public

rbtickets-ca.jks redbook_ca Public

rbtickets-clients.jks NOT NEEDED

Keystore name Keys and certificates
(alias)

Public certificate or
private key

pdsrv.kdb NOT NEEDED

rbstocks-signing.jks rbstocks_rbtelco Private

rbstocks-partners.jks rbtelco_rbstocks Public
 Appendix C. Keys and certificates 431

Importing keys
This section demonstrates the use of the Tivoli Federated Identity Manager
Console for importing keys into Tivoli Federated Identity Manager. Since the
pattern is very repetitive, we only show the importing of the BigCorp signing
keys.

Before importing the keys into the Tivoli Federated Identity Manager runtime,
create the bigcorp-signing.jks file mentioned above containing the
bigcorp_rbtravel ad bigcorp_rbtelco private keys.

Log in to the Tivoli Federated Identity Manager Console, and navigate to Tivoli
Federated Identity Manager → Service Management → Key Service. Figure C-1
on page 433 shows the screen you will see, with the default keystores.

rbstocks-ca.jks NOT NEEDED

rbstocka-clients.jks NOT NEEDED

Keystore name Keys and certificates
(alias)

Public certificate or
private key
432 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure C-1 Key Service Interface

Browse to the path of your bigcorp-signing.jks file, and enter your keystore
password and the name of the file you want (without an extension) to save these
keys into. Figure C-2 on page 434 shows what your screen should look like. Note
that if you were importing a keystore that only contained public certificates (such
as companyname_partners in our pattern), then you would select CA
Certificates as the type. The difference with a CA Certificates keystore is that
when selecting these certificates later during federation configurations, no
keystore password is required.
 Appendix C. Keys and certificates 433

Figure C-2 Importing a keystore

Click Finish when complete, and the keys should be imported. Figure C-3 on
page 435 shows the Key Service management screen again with your newly
created key store, reminding you that a WebSphere restart is required to
propagate changes to all nodes in the cluster.
434 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Figure C-3 Keystore import completed
 Appendix C. Keys and certificates 435

436 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Appendix D. WS-Security deployment
descriptors

This appendix contains the WS-Security deployment descriptors used at the
various WS-Security integration points in Chapter 10, “Use case 4 - Web
services security management” on page 291.

IBM does not support the format of these deployment descriptors, or guarantee
that they or their method of configuration via Rational Application Developer,
WebSphere Application Server Toolkit, and the WebSphere Administration
Console will remain the same from release to release; however, by perusing
these deployment descriptors you can decipher precisely how the WS-Security
configuration was achieved for the use case in this book’s development lab. This
is very valuable information if you are trying to recreate this or a similar scenario
in your own environment.

D

© Copyright IBM Corp. 2004, 2005. All rights reserved. 437

Web services client at RBTelco
The Web services client at RBTelco is invoked from a JAAS-protected JSP.
WebSphere is configured with TAI++ for authentication via WebSEAL. More
information on this configuration is in Chapter 10, “Use case 4 - Web services
security management” on page 291.

This section shows the WS-Security extension and binding configuration for the
jsp client. The requirement here is to use WS-Security with Tivoli Federated
Identity Manager Web services security management components to retrieve the
Access Manager credential from the current JAAS subject, and insert it as a
security token in the request to the client-side Web services gateway.

RBTelco client extension configuration
Example D-1 shows the WS-Security client extension configuration for the stock
quote Web service client invoked from RBTelco.

Example: D-1 RBTelco WS-Security client extension

<com.ibm.etools.webservice.wscext:WsClientExtension xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscext="http://www.ibm.com/websphere/appserver/
schemas/5.0.2/wscext.xmi"

xmi:id="WsClientExtension_1119298337875">
<serviceRefs xmi:id="ServiceRef_1119451733515"

serviceRefLink="service/StockQuoteServiceService">
<portQnameBindings xmi:id="PortQnameBinding_1119451733515"

portQnameNamespaceLink="http://StockQuote"
portQnameLocalNameLink="StockQuoteService">
<clientServiceConfig

xmi:id="ClientServiceConfig_1119451733515">
<securityRequestGeneratorServiceConfig

xmi:id="SecurityRequestGeneratorServiceConfig_1119451733515">
<securityToken xmi:id="SecurityToken_1119460896890"

name="TAMToken"

uri="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd"

localName="BinarySecurityToken" />
</securityRequestGeneratorServiceConfig>
<securityResponseConsumerServiceConfig

xmi:id="SecurityResponseConsumerServiceConfig_1119457591437" />
</clientServiceConfig>

</portQnameBindings>
438 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

</serviceRefs>
</com.ibm.etools.webservice.wscext:WsClientExtension>

RBTelco client binding configuration
Example D-2 shows the WS-Security client binding configuration for the stock
quote Web service client invoked from RBTelco.

Example: D-2 RBTelco WS-Security client binding

<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.etools.webservice.wscbnd="http://www.ibm.com/websphere/appserver/
schemas/5.0.2/wscbnd.xmi" xmi:id="ClientBinding_1119298337828">
 <serviceRefs xmi:id="ServiceRef_1119451733484"
serviceRefLink="service/StockQuoteServiceService">
 <portQnameBindings xmi:id="PortQnameBinding_1119451733484"
portQnameNamespaceLink="http://StockQuote"
portQnameLocalNameLink="StockQuoteService">
 <securityRequestGeneratorBindingConfig
xmi:id="SecurityRequestGeneratorBindingConfig_1119451733484">
 <tokenGenerator xmi:id="TokenGenerator_1120748320734"
name="TAMTokenGenerator"
classname="com.tivoli.am.fim.wssm.tokengenerators.WSSMTokenGenerator">
 <valueType xmi:id="ValueType_1120748320734"
localName="BinarySecurityToken"
uri="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd" name=""/>
 <callbackHandler xmi:id="CallbackHandler_1120748320734"
classname="com.tivoli.am.fim.wssm.callbackhandlers.TAMTAICallbackHandler">
 <properties xmi:id="Property_1120748320734"
name="pdjrte.config.file" value="/opt/IBM/FIM/apps/wssm/wssm_pdjrte.config"/>
 <basicAuth xmi:id="BasicAuth_1120748320734"/>
 </callbackHandler>
 <properties xmi:id="Property_1120748320735" name="trust.service.call"
value="false"/>
 <properties xmi:id="Property_1120748320736" name="default.issuer.uri"
value="http://www.rbtelco.com/tamtai"/>
 <partReference xmi:id="PartReference_1120748320734" part="TAMToken"/>
 </tokenGenerator>
 </securityRequestGeneratorBindingConfig>
 </portQnameBindings>
 </serviceRefs>
</com.ibm.etools.webservice.wscbnd:ClientBinding>
 Appendix D. WS-Security deployment descriptors 439

Web services gateway at RBTelco
The Web services gateway (WSGW) at RBTelco receives the WS-Security
message containing an Access Manager credential from the jsp-client. On the
receiving (server) side, it performs a JAAS login using the Access Manager
credential received in the security header. On the sending (client) side, it
exchanges the Access Manager credential for a signed SAML assertion, then
signs and encrypts the token and message body in the outbound message. More
information on this configuration is contained in Chapter 10, “Use case 4 - Web
services security management” on page 291.

This section shows the WS-Security configuration from the Web services
gateway use to meet the server and client requirements described above. The
Web services gateway uses a different format of deployment descriptor from
standalone Web services client and server applications. The gateway has just
one file that contains all of the client and server extension and binding
configurations. Rather than just show the one large file here, we split it up and
show those pieces within it that correspond to the logical server and client
components of the gateway.

RBTelco WSGW server configuration
This section shows the WS-Security extension and binding components used for
processing an inbound message at the RBTelco Web services gateway. The
message originates from the jsp client and should contain an Access Manager
credential as a security token in the header.

RBTelco WSGW server extension configuration
Example D-3 shows the WS-Security server extension configuration for the
inbound side of the Web services gateway at RBTelco. Notice that both the
required security token and caller part indicate an Access Manager credential.

Example: D-3 RBTelco Web services gateway inbound server extension

<sibwssecurity:SIBWSSecurityInboundConfig
xmi:id="SIBWSSecurityInboundConfig_1120601734621"
name="StockQuoteServiceInboundFinal">
<serverServiceConfig xmi:id="ServerServiceConfig_1120601734621">

<securityRequestConsumerServiceConfig
xmi:id="SecurityRequestConsumerServiceConfig_1120601734621">
<caller xmi:id="Caller_1120601896710" name="TAMCredential"

localName="http://ibm.com/2004/01/itfim/ivcred" />
<requiredSecurityToken

xmi:id="RequiredSecurityToken_1120601850771" name="TAMCredential"
440 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

localName="http://ibm.com/2004/01/itfim/ivcred" usage="Required"
/>

</securityRequestConsumerServiceConfig>
<securityResponseGeneratorServiceConfig

xmi:id="SecurityResponseGeneratorServiceConfig_1120601734621" />
</serverServiceConfig>

</sibwssecurity:SIBWSSecurityInboundConfig>

RBTelco WSGW server binding configuration
Example D-4 shows the WS-Security server binding configuration for the
inbound side of the Web services gateway at RBTelco.

Example: D-4 RBTelco Web services gateway inbound server binding

<securityRequestConsumerBindingConfig
xmi:id="SecurityRequestConsumerBindingConfig_1120761749718">
 <tokenConsumer xmi:id="TokenConsumer_1120761845347"
classname="com.tivoli.am.fim.wssm.tokenconsumers.WSSMTokenConsumer"
name="TAMCredential">
 <valueType xmi:id="ValueType_1120761845347"
localName="http://ibm.com/2004/01/itfim/ivcred" uri="" name=""/>
 <jAASConfig xmi:id="JAASConfig_1120762111306"
configName="system.itfim.wssm.tamcredential">
 <properties xmi:id="Property_1120793343454" name="pdjrte.config.file"
value="/opt/IBM/FIM/wsgw/wssm/wssm_pdjrte.config"/>
 </jAASConfig>
 <properties xmi:id="Property_1120761889274" name="trust.service.call"
value="false"/>
 <partReference xmi:id="PartReference_1120761845347"
part="TAMCredential" name=""/>
 </tokenConsumer>
 </securityRequestConsumerBindingConfig>
</sibwssecurity:SIBWSSecurityRequestConsumerBindingConfig>

RBTelco WSGW client configuration
This section shows the WS-Security extension and binding components used for
processing an outbound message at the RBTelco Web services gateway. The
message is being prepared for sending to RBStocks, and must exchange the
Access Manager credential for a signed SAML assertion, then use WS-Security
signing and encryption to sign and encrypt the combination of the SAML
assertion and message body. This “binds” the token to the message body. On
the response from RBStocks, we require the message body to be signed and
encrypted.
 Appendix D. WS-Security deployment descriptors 441

RBTelco WSGW client extension configuration
Example D-5 shows the WS-Security client extension configuration for the
outbound side of the Web services gateway at RBTelco. Both the request and
response requirements are shown, though the request is the piece of primary
interest to us.

Example: D-5 RBTelco Web services gateway outbound client extension

<clientServiceConfig xmi:id="ClientServiceConfig_1119712855294">
 <securityRequestGeneratorServiceConfig
xmi:id="SecurityRequestGeneratorServiceConfig_1119712855294">
 <integrity xmi:id="Integrity_1119713061835" name="BODY" order="1">
 <messageParts xmi:id="MessageParts_1119713079023"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
name="body" keyword="body"/>
 </integrity>
 <integrity xmi:id="Integrity_1120069694880" name="TOKEN" order="2">
 <messageParts xmi:id="MessageParts_1120069771940"
Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116" name="SAMLA"
keyword=""/>
 </integrity>
 <confidentiality xmi:id="Confidentiality_1119714405086"
name="BODY_AND_TOKEN" order="3">
 <messageParts xmi:id="MessageParts_1119714456729"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
name="bodycontent" keyword="bodycontent"/>
 <messageParts xmi:id="MessageParts_1121304044138"
Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116" name="token"
keyword="/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/soap/env
elope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/wss/2004/0
1/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='urn:oasis:names:tc:SAML:1.0:asserti
on' and local-name()='Assertion']"/>
 </confidentiality>
 <securityToken xmi:id="SecurityToken_1119712891121" name="SAMLA"
uri="urn:oasis:names:tc:SAML:1.0:assertion" localName="Assertion"/>
 </securityRequestGeneratorServiceConfig>
 <securityResponseConsumerServiceConfig
xmi:id="SecurityResponseConsumerServiceConfig_1119712855295">
 <requiredIntegrity xmi:id="RequiredIntegrity_1119716404637"
name="required_integrity" usage="Required">
 <messageParts xmi:id="MessageParts_1119716418295"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
name="body" keyword="body"/>
 </requiredIntegrity>
442 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <requiredConfidentiality xmi:id="RequiredConfidentiality_1119716473735"
name="required_confidentiality" usage="Required">
 <messageParts xmi:id="MessageParts_1119716487035"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
name="bodycontent" keyword="bodycontent"/>
 </requiredConfidentiality>
 </securityResponseConsumerServiceConfig>
</clientServiceConfig>

RBTelco WSGW client binding configuration
Example D-6 shows the WS-Security client binding configuration for the
outbound side of the Web services gateway at RBTelco. Of particular interest in
this section is the SigningInfo transform used on the SAML assertion. Use of the
default transform causes a wsu:Id attribute to be inserted into the XML element
being signed (in our case the SAML assertion). This actually invalidates the
SAML assertion, since it now contains an attribute that is not part of the SAML
schema. Since we needed a SigningInfo reference URI that did not utilize the
wsu:Id, the transform depicted in this binding was used.

Example D-7 on page 446 shows the response binding; this shows the keys, and
so on used when the response body is signed and encrypted.

Example: D-6 RBTelco Web services gateway client binding to RBStocks

<securityRequestGeneratorBindingConfig
xmi:id="SecurityRequestGeneratorBindingConfig_1119713176727"
wsseNameSpace="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
ty-secext-1.0.xsd">
 <signingInfo xmi:id="SigningInfo_1119714258006"
name="wssm_client_signinfo">
 <signatureMethod xmi:id="SignatureMethod_1119714258006"
algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <canonicalizationMethod xmi:id="CanonicalizationMethod_1119714258006"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <partReference xmi:id="PartReference_1119714293006" part="BODY"
name="BODY">
 <transform xmi:id="Transform_1119714311844"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="body_transform"/>
 <digestMethod xmi:id="DigestMethod_1119714293006"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </partReference>
 <partReference xmi:id="PartReference_1120070252273" part="TOKEN"
name="TOKEN">
 <transform xmi:id="Transform_1120070346871"
algorithm="http://www.w3.org/2002/06/xmldsig-filter2" name="token_transform">
 Appendix D. WS-Security deployment descriptors 443

 <properties xmi:id="Property_1120070500028"
name="com.ibm.wsspi.wssecurity.dsig.XPath2Expression_1"
value="/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/soap/env
elope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/wss/2004/0
1/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='urn:oasis:names:tc:SAML:1.0:asserti
on' and local-name()='Assertion']"/>
 <properties xmi:id="Property_1120070557490"
name="com.ibm.wsspi.wssecurity.dsig.XPath2Filter_1" value="intersect"/>
 <properties xmi:id="Property_1120070593456"
name="com.ibm.wsspi.wssecurity.dsig.XPath2Order_1" value="1"/>
 </transform>
 <transform xmi:id="Transform_1121201089711"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="token_transform_2"/>
 <digestMethod xmi:id="DigestMethod_1120070252280"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </partReference>
 <signingKeyInfo xmi:id="SigningKeyInfo_1119714258006"
keyinfoRef="wssm_client_sig_keyinfo" name=""/>
 </signingInfo>
 <encryptionInfo xmi:id="EncryptionInfo_1119714944732"
name="wssm_server_encinfo">
 <encryptionMethod xmi:id="DataEncryptionMethod_1119714944732"
algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <keyEncryptionMethod xmi:id="KeyEncryptionMethod_1119714944732"
algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <encryptionKeyInfo xmi:id="EncryptionKeyInfo_1119714944732"
keyinfoRef="wssm_server_enc_keyinfo" name=""/>
 <partReference xmi:id="PartReference_1119714944732"
part="BODY_AND_TOKEN" name=""/>
 </encryptionInfo>
 <keyInfo xmi:id="KeyInfo_1119714213577" type="STRREF"
name="wssm_client_sig_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.STRReferenceContentGenerat
or">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1119714213577"
locatorRef="wssm_client_sig_keylocator"
keynameRef="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 <tokenReference xmi:id="TokenReference_1119714213577"
tokenRef="SigningToken" name=""/>
 </keyInfo>
 <keyInfo xmi:id="KeyInfo_1119714893056" type="KEYID"
name="wssm_server_enc_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.KeyIdContentGenerator">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1119714893061"
locatorRef="wssm_server_enc_keylocator"
keynameRef="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
444 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 </keyInfo>
 <keyLocator xmi:id="KeyLocator_1119714078748"
name="wssm_client_sig_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
 <keyStore xmi:id="KeyStore_1119714078748" storepass="{xor}Lz4sLChvLTs="
path="rbtelco-signing.jks" type="JKS"/>
 <keys xmi:id="Key_1119714111348" alias="rbtelco_rbstocks"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 </keyLocator>
 <keyLocator xmi:id="KeyLocator_1119714729644"
name="wssm_server_enc_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
 <keyStore xmi:id="KeyStore_1119714729644" storepass="{xor}Lz4sLChvLTs="
path="rbtelco-partners.jks" type="JKS"/>
 <keys xmi:id="Key_1119714800811" alias="rbstocks_rbtelco"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
 </keyLocator>
 <tokenGenerator xmi:id="TokenGenerator_1119713274158" name="SAMLA"
classname="com.tivoli.am.fim.wssm.tokengenerators.WSSMTokenGenerator">
 <valueType xmi:id="ValueType_1119713274158" localName="Assertion"
uri="urn:oasis:names:tc:SAML:1.0:assertion" name=""/>
 <callbackHandler xmi:id="CallbackHandler_1119713285192"
classname="com.tivoli.am.fim.wssm.callbackhandlers.WSSMCallbackHandler"/>
 <properties xmi:id="Property_1120796292808" name="trust.service.call"
value="true"/>
 <properties xmi:id="Property_1120796345906" name="trust.service.url"
value="http://www.rbtelco.com:19082/TrustServer/SecurityTokenService"/>
 <properties xmi:id="Property_1120796361000" name="default.issuer.uri"
value="http://www.rbtelco.com/internal"/>
 <partReference xmi:id="PartReference_1119713274158" part="SAMLA"
name=""/>
 </tokenGenerator>
 <tokenGenerator xmi:id="TokenGenerator_1119713857718" name="SigningToken"
classname="com.ibm.wsspi.wssecurity.token.X509TokenGenerator">
 <valueType xmi:id="ValueType_1119715640357"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name=""/>
 <callbackHandler xmi:id="CallbackHandler_1119713895995"
classname="com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler">
 <key xmi:id="Key_1119713958371" alias="rbtelco_rbstocks"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 <keyStore xmi:id="KeyStore_1119713895995"
storepass="{xor}Lz4sLChvLTs=" path="rbtelco-signing.jks" type="JKS"/>
 </callbackHandler>
 </tokenGenerator>
 Appendix D. WS-Security deployment descriptors 445

</securityRequestGeneratorBindingConfig>

Example: D-7 RBTelco Web services gateway client binding from RBStocks

<sibwssecurity:SIBWSSecurityResponseConsumerBindingConfig
xmi:id="SIBWSSecurityResponseConsumerBindingConfig_1119715281832"
name="RBStocks Response Consumer SigEnc">
 <securityResponseConsumerBindingConfig
xmi:id="SecurityResponseConsumerBindingConfig_1119715281832">
 <signingInfo xmi:id="SigningInfo_1119716031838"
name="wssm_server_signinfo">
 <signatureMethod xmi:id="SignatureMethod_1119716031838"
algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <canonicalizationMethod xmi:id="CanonicalizationMethod_1119716031838"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <partReference xmi:id="PartReference_1119716088225"
part="required_integrity" name="required_integrity">
 <transform xmi:id="Transform_1119716102736"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="body_transform"/>
 <digestMethod xmi:id="DigestMethod_1119716088225"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </partReference>
 <signingKeyInfo xmi:id="SigningKeyInfo_1119716056223"
keyinfoRef="wssm_server_sig_keyinfo" name="wssm_server_sig_keyinfo_name"/>
 </signingInfo>
 <encryptionInfo xmi:id="EncryptionInfo_1119716155815"
name="wssm_client_encinfo">
 <encryptionMethod xmi:id="DataEncryptionMethod_1119716155815"
algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <keyEncryptionMethod xmi:id="KeyEncryptionMethod_1119716155815"
algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <encryptionKeyInfo xmi:id="EncryptionKeyInfo_1119716927439"
keyinfoRef="wssm_client_enc_keyinfo" name="wssm_client_enc_keyinfo_name"/>
 <partReference xmi:id="PartReference_1119716155815"
part="required_confidentiality" name=""/>
 </encryptionInfo>
 <keyInfo xmi:id="KeyInfo_1119715979473" type="STRREF"
name="wssm_server_sig_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.STRReferenceContentConsume
r">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1119715979473"
locatorRef="wssm_server_sig_keylocator" keynameRef=""/>
 <tokenReference xmi:id="TokenReference_1119715979473"
tokenRef="wssm_server_sig_consumer" name=""/>
 </keyInfo>
 <keyInfo xmi:id="KeyInfo_1119716000377" type="KEYID"
name="wssm_client_enc_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.KeyIdContentConsumer">
446 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <keyLocatorMapping xmi:id="KeyLocatorMapping_1119716000377"
locatorRef="wssm_client_enc_keylocator" keynameRef=""/>
 <tokenReference xmi:id="TokenReference_1119716000377"
tokenRef="wssm_client_enc_consumer" name=""/>
 </keyInfo>
 <keyLocator xmi:id="KeyLocator_1119715823397"
name="wssm_server_sig_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator"/>
 <keyLocator xmi:id="KeyLocator_1119715881978"
name="wssm_client_enc_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
 <keyStore xmi:id="KeyStore_1119715881985" storepass="{xor}Lz4sLChvLTs="
path="rbtelco-signing.jks" type="JKS"/>
 <keys xmi:id="Key_1119715931562" alias="rbtelco_rbstocks"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 </keyLocator>
 <tokenConsumer xmi:id="TokenConsumer_1119715529546"
classname="com.ibm.wsspi.wssecurity.token.X509TokenConsumer"
name="wssm_server_sig_consumer">
 <valueType xmi:id="ValueType_1119715529546"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name=""/>
 <jAASConfig xmi:id="JAASConfig_1119715546365"
configName="system.wssecurity.X509BST"/>
 <certPathSettings xmi:id="CertPathSettings_1119715694465">
 <trustAnchorRef xmi:id="TrustAnchorRef_1119715694465"
ref="wssm_client_trust_anchor"/>
 </certPathSettings>
 </tokenConsumer>
 <tokenConsumer xmi:id="TokenConsumer_1119715758571"
classname="com.ibm.wsspi.wssecurity.token.X509TokenConsumer"
name="wssm_client_enc_consumer">
 <valueType xmi:id="ValueType_1119715758571"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name=""/>
 <jAASConfig xmi:id="JAASConfig_1119715769484"
configName="system.wssecurity.X509BST"/>
 <certPathSettings xmi:id="CertPathSettings_1119715758571">
 <trustAnyCertificate xmi:id="TrustAnyCertificate_1119715758571"/>
 </certPathSettings>
 </tokenConsumer>
 <trustAnchor xmi:id="TrustAnchor_1119715372375"
name="wssm_client_trust_anchor">
 <keyStore xmi:id="KeyStore_1119715372375" storepass="{xor}Lz4sLChvLTs="
path="rbtelco-ca.jks" type="JKS"/>
 </trustAnchor>
 </securityResponseConsumerBindingConfig>
 Appendix D. WS-Security deployment descriptors 447

 </sibwssecurity:SIBWSSecurityResponseConsumerBindingConfig>

Web services server RBStocks
The Web services configuration at RBStocks receives the WS-Security message
from the Web services gateway at RBTelco. It has signing and encryption over
the security token (signed SAML assertion) and message body. The signed
SAML assertion represents the client invoking the Web service. At RBStocks, the
message is decrypted, and the signature over the token and body checked.
Additionally, the signed SAML assertion is exchanged at the trust service for a
SAML assertion representing the type of user (real-time, delayed, or blacklisted)
for this invocation. More information on this configuration is contained in
Chapter 10, “Use case 4 - Web services security management” on page 291.

RBStocks server extension configuration
Example D-8 shows the WS-Security server extension configuration for the stock
quote Web services server at RBStocks.

Example: D-8 RBStocks WS-Security server extension

<com.ibm.etools.webservice.wsext:WsExtension xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.etools.webservice.wsext="http://www.ibm.com/websphere/appserver/s
chemas/5.0.2/wsext.xmi" xmi:id="WsExtension_1084457488394"
routerModuleName="WebProject.war">
 <wsDescExt xmi:id="WsDescExt_1119486860156"
wsDescNameLink="StockQuoteServiceService">
 <pcBinding xmi:id="PcBinding_1119711182734" pcNameLink="StockQuoteService"
scope="Session">
 <serverServiceConfig xmi:id="ServerServiceConfig_1119711182734">
 <securityRequestConsumerServiceConfig
xmi:id="SecurityRequestConsumerServiceConfig_1119711182734">
 <caller xmi:id="Caller_1120143005093" name="SAMLA" part=""
uri="urn:oasis:names:tc:SAML:1.0:assertion" localName="Assertion">
 <properties xmi:id="Property_1120143005109"
name="com.ibm.wsspi.wssecurity.caller.tokenConsumerNS"
value="urn:oasis:names:tc:SAML:1.0:assertion"/>
 <properties xmi:id="Property_1120143005110"
name="com.ibm.wsspi.wssecurity.caller.tokenConsumerLN" value="Assertion"/>
 </caller>
 <requiredSecurityToken xmi:id="RequiredSecurityToken_1120143005109"
name="SAMLA" uri="urn:oasis:names:tc:SAML:1.0:assertion" localName="Assertion"
usage="Required"/>
448 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <requiredConfidentiality
xmi:id="RequiredConfidentiality_1121303755781" name="required_confidentiality"
usage="Required">
 <messageParts xmi:id="MessageParts_1121303755781"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
keyword="bodycontent"/>
 <messageParts xmi:id="MessageParts_1121303755782"
Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
keyword="/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/soap/env
elope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/wss/2004/0
1/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='urn:oasis:names:tc:SAML:1.0:asserti
on' and local-name()='Assertion']"/>
 </requiredConfidentiality>
 <requiredIntegrity xmi:id="RequiredIntegrity_1120143005109"
name="required_integrity_body" usage="Required">
 <messageParts xmi:id="MessageParts_1120143005110"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
keyword="body"/>
 </requiredIntegrity>
 <requiredIntegrity xmi:id="RequiredIntegrity_1121280441031"
name="required_integrity_token" usage="Required">
 <messageParts xmi:id="MessageParts_1121280441031"
Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
keyword="/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/soap/env
elope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/wss/2004/0
1/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='urn:oasis:names:tc:SAML:1.0:asserti
on' and local-name()='Assertion']"/>
 </requiredIntegrity>
 </securityRequestConsumerServiceConfig>
 <securityResponseGeneratorServiceConfig
xmi:id="SecurityResponseGeneratorServiceConfig_1120143785750">
 <confidentiality xmi:id="Confidentiality_1120143785750" name="BODY"
order="2">
 <messageParts xmi:id="MessageParts_1120143785750"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
keyword="bodycontent"/>
 </confidentiality>
<integrity xmi:id="Integrity_1120143785750" name="BODY" order="1">
 <messageParts xmi:id="MessageParts_1120143785751"
Dialect="http://www.ibm.com/websphere/webservices/wssecurity/dialect-was"
keyword="body"/>
 </integrity>
 </securityResponseGeneratorServiceConfig>
 Appendix D. WS-Security deployment descriptors 449

 </serverServiceConfig>
 </pcBinding>
 </wsDescExt>
</com.ibm.etools.webservice.wsext:WsExtension>

RBStocks server binding configuration
Example D-9 shows the WS-Security server binding configuration for the stock
quote Web services server at RBStocks. Note the special transform required in
the SigningInformation. This has to match the transforms used in Example D-6
on page 443 to construct the signing information in the first place.

Example: D-9 RBStocks WS-Security server binding

<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.etools.webservice.wsbnd="http://www.ibm.com/websphere/appserver/s
chemas/5.0.2/wsbnd.xmi" xmi:id="WSBinding_1084457488514">
 <wsdescBindings xmi:id="WSDescBinding_1119486859984"
wsDescNameLink="StockQuoteServiceService">
 <pcBindings xmi:id="PCBinding_1119711182765" pcNameLink="StockQuoteService"
wsdlServiceQnameNamespaceLink="" wsdlServiceQnameLocalnameLink=""
scope="Session">
 <securityRequestConsumerBindingConfig
xmi:id="SecurityRequestConsumerBindingConfig_1119711182765">
 <signingInfo xmi:id="SigningInfo_1119721150171"
name="wssm_client_signinfo">
 <signatureMethod xmi:id="SignatureMethod_1120143507875"
algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <canonicalizationMethod xmi:id="CanonicalizationMethod_1120143507875"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <partReference xmi:id="PartReference_1119721150171"
part="required_integrity_body" name="">
 <transform xmi:id="Transform_1120143507875"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="body_transform"/>
 <digestMethod xmi:id="DigestMethod_1120147961484"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </partReference>
 <partReference xmi:id="PartReference_1120143507875"
part="required_integrity_token" name="required_integrity_token">
 <transform xmi:id="Transform_1121280441062"
algorithm="http://www.w3.org/2002/06/xmldsig-filter2"
name="token_transform_1"/>
 <transform xmi:id="Transform_1121280441063"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="token_transform_2"/>
 <digestMethod xmi:id="DigestMethod_1120147961485"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
450 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 </partReference>
 <signingKeyInfo xmi:id="SigningKeyInfo_1120143507875"
keyinfoRef="wssm_client_sig_keyinfo" name="wssm_client_sig_keyinfo_name"/>
 </signingInfo>
 <encryptionInfo xmi:id="EncryptionInfo_1120143785781"
name="wssm_server_encinfo">
 <encryptionMethod xmi:id="DataEncryptionMethod_1120143785781"
algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <keyEncryptionMethod xmi:id="KeyEncryptionMethod_1120143785781"
algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <encryptionKeyInfo xmi:id="EncryptionKeyInfo_1120143785781"
keyinfoRef="wssm_server_enc_keyinfo" name="wssm_server_enc_keyinfo_name"/>
 <partReference xmi:id="PartReference_1120143785781"
part="required_confidentiality"/>
 </encryptionInfo>
<keyInfo xmi:id="KeyInfo_1120143507875" type="STRREF"
name="wssm_client_sig_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.STRReferenceContentConsume
r">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1120143507875"
locatorRef="wssm_client_sig_keylocator" keynameRef=""/>
 <tokenReference xmi:id="TokenReference_1120143507875"
tokenRef="wssm_client_sig_consumer"/>
 </keyInfo>
 <keyInfo xmi:id="KeyInfo_1120143507876" type="KEYID"
name="wssm_server_enc_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.KeyIdContentConsumer">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1120143507876"
locatorRef="wssm_server_enc_keylocator" keynameRef=""/>
 <tokenReference xmi:id="TokenReference_1120143507876"
tokenRef="wssm_server_enc_consumer"/>
 </keyInfo>
 <keyLocator xmi:id="KeyLocator_1119721150171"
name="wssm_client_sig_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator"/>
 <keyLocator xmi:id="KeyLocator_1120143507875"
name="wssm_server_enc_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
 <keyStore xmi:id="KeyStore_1120143507875"
storepass="{xor}Lz4sLChvLTs=" path="rbstocks-signing.jks" type="JKS"/>
 <keys xmi:id="Key_1120143507875" alias="rbstocks_rbtelco"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
 </keyLocator>
 <tokenConsumer xmi:id="TokenConsumer_1120143167906"
classname="com.tivoli.am.fim.wssm.tokenconsumers.WSSMTokenConsumer"
name="SAMLA">
 <valueType xmi:id="ValueType_1120143167906" localName="Assertion"
uri="urn:oasis:names:tc:SAML:1.0:assertion" name=""/>
 Appendix D. WS-Security deployment descriptors 451

 <jAASConfig xmi:id="JAASConfig_1120143167906"
configName="system.itfim.wssm.samla"/>
 <properties xmi:id="Property_1120143167906" name="trust.service.call"
value="true"/>
 <properties xmi:id="Property_1120143167907" name="trust.service.url"
value="http://www.rbstocks.com:9082/TrustServer/SecurityTokenService"/>
 <partReference xmi:id="PartReference_1120143167906" part="SAMLA"/>
 </tokenConsumer>
 <tokenConsumer xmi:id="TokenConsumer_1120143167907"
classname="com.ibm.wsspi.wssecurity.token.X509TokenConsumer"
name="wssm_client_sig_consumer">
 <valueType xmi:id="ValueType_1120143167907"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name="wssm_client_sig_consumer_vtype"/>
 <jAASConfig xmi:id="JAASConfig_1120143167907"
configName="system.wssecurity.X509BST"/>
 <partReference xmi:id="PartReference_1120143167907"/>
 <certPathSettings xmi:id="CertPathSettings_1120143167906">
 <trustAnchorRef xmi:id="TrustAnchorRef_1120143167906"
ref="wssm_server_trust_anchor"/>
 </certPathSettings>
 </tokenConsumer>
<tokenConsumer xmi:id="TokenConsumer_1120143167908"
classname="com.ibm.wsspi.wssecurity.token.X509TokenConsumer"
name="wssm_server_enc_consumer">
 <valueType xmi:id="ValueType_1120143167908"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name="wssm_server_enc_consumer_vtype"/>
 <jAASConfig xmi:id="JAASConfig_1120143167908"
configName="system.wssecurity.X509BST"/>
 <partReference xmi:id="PartReference_1120143167908"/>
 <certPathSettings xmi:id="CertPathSettings_1120143167907">
 <trustAnchorRef xmi:id="TrustAnchorRef_1120143167907"
ref="wssm_server_trust_anchor"/>
 </certPathSettings>
 </tokenConsumer>
 <trustAnchor xmi:id="TrustAnchor_1120143167906"
name="wssm_server_trust_anchor">
 <keyStore xmi:id="KeyStore_1120143167906"
storepass="{xor}Lz4sLChvLTs=" path="rbstocks-ca.jks" type="JKS"/>
 </trustAnchor>
 </securityRequestConsumerBindingConfig>
 <securityResponseGeneratorBindingConfig
xmi:id="SecurityResponseGeneratorBindingConfig_1120143785781">
 <signingInfo xmi:id="SigningInfo_1120144058984"
name="wssm_server_signinfo">
 <signatureMethod xmi:id="SignatureMethod_1120144058984"
algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
452 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

 <canonicalizationMethod xmi:id="CanonicalizationMethod_1120144058984"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <partReference xmi:id="PartReference_1120144058984" part="BODY"
name="">
 <transform xmi:id="Transform_1120144058984"
algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" name="body_transform"/>
 <digestMethod xmi:id="DigestMethod_1120144058984"
algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </partReference>
 <signingKeyInfo xmi:id="SigningKeyInfo_1120144058984"
keyinfoRef="wssm_server_sig_keyinfo" name="wssm_server_sig_keyinfo_name"/>
 </signingInfo>
 <encryptionInfo xmi:id="EncryptionInfo_1120144058984"
name="wssm_client_encinfo">
 <encryptionMethod xmi:id="DataEncryptionMethod_1120144058984"
algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <keyEncryptionMethod xmi:id="KeyEncryptionMethod_1120144058984"
algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <encryptionKeyInfo xmi:id="EncryptionKeyInfo_1120144058984"
keyinfoRef="wssm_client_enc_keyinfo" name="wssm_client_enc_keyinfo_name"/>
 <partReference xmi:id="PartReference_1120144058985" part="BODY"/>
 </encryptionInfo>
 <keyLocator xmi:id="KeyLocator_1120143785781"
name="wssm_server_sig_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
 <keyStore xmi:id="KeyStore_1120143785781"
storepass="{xor}Lz4sLChvLTs=" path="rbstocks-signing.jks" type="JKS"/>
 <keys xmi:id="Key_1120143785781" alias="rbstocks_rbtelco"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
 </keyLocator>
 <keyLocator xmi:id="KeyLocator_1120144058984"
name="wssm_client_enc_keylocator"
classname="com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator">
<keyStore xmi:id="KeyStore_1120144058984" storepass="{xor}Lz4sLChvLTs="
path="rbstocks-partners.jks" type="JKS"/>
 <keys xmi:id="Key_1120144058984" alias="rbtelco_rbstocks"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 </keyLocator>
 <keyInfo xmi:id="KeyInfo_1120144058984" type="STRREF"
name="wssm_server_sig_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.STRReferenceContentGenerat
or">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1120144058984"
locatorRef="wssm_server_sig_keylocator"
keynameRef="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
 <tokenReference xmi:id="TokenReference_1120144058984"
tokenRef="SigningToken"/>
 Appendix D. WS-Security deployment descriptors 453

 </keyInfo>
 <keyInfo xmi:id="KeyInfo_1120144058985" type="KEYID"
name="wssm_client_enc_keyinfo"
classname="com.ibm.ws.webservices.wssecurity.keyinfo.KeyIdContentGenerator">
 <keyLocatorMapping xmi:id="KeyLocatorMapping_1120144058985"
locatorRef="wssm_client_enc_keylocator"
keynameRef="cn=rbtelco_rbstocks.rbtelco.com,o=rbtelco,c=us"/>
 </keyInfo>
 <tokenGenerator xmi:id="TokenGenerator_1120143785781"
name="SigningToken"
classname="com.ibm.wsspi.wssecurity.token.X509TokenGenerator">
 <valueType xmi:id="ValueType_1120143785781"
localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509" uri="" name="SigningToken_vtype"/>
 <callbackHandler xmi:id="CallbackHandler_1120143785781"
classname="com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler">
 <key xmi:id="Key_1120143785782" alias="rbstocks_rbtelco"
keypass="{xor}Lz4sLChvLTs="
name="cn=rbstocks_rbtelco.rbstocks.com,o=rbstocks,c=us"/>
 <keyStore xmi:id="KeyStore_1120143785782"
storepass="{xor}Lz4sLChvLTs=" path="rbstocks-signing.jks" type="JKS"/>
 <basicAuth xmi:id="BasicAuth_1120143785781"/>
 </callbackHandler>
 <partReference xmi:id="PartReference_1120143785782"/>
 </tokenGenerator>
 </securityResponseGeneratorBindingConfig>
 </pcBindings>
 </wsdescBindings>
</com.ibm.etools.webservice.wsbnd:WSBinding>
454 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Glossary

Access Control Lists (ACL) A cornerstone of
security is the ability to determine who can access
computer networks and systems. Control can be
exercised through the use of access control
protocols, computer applications that authenticate
the user logging into a network. Access Control Lists
define which users can access specific data and
programs. Access codes are passwords, series of
characters or numbers that enable a user to access
the network.

Active Requestors An application (possibly a
Web browser) that is capable of issuing Web
services messages such as those described in
WS-Security and WS-Trust.

AEF Access Enforcement Point.

Agent A function that represents a requester to a
server. An agent can be present in both a source
and a target system.

Application Programming Interface
API) Software applications, such as spreadsheets
or word processing, use a special language and
message format—the API—to communicate with
the computer operating system, database
management system, or other system programs.

Assertion In computer programming, an assertion
is a programming language construct that
immediately aborts program execution if a certain
condition or expression is false (an assertion
failure). It is used by programmers during
development to check for potential errors or bugs.
To assist with this, the implementation of assertions
in many languages provides information such as the
file name and line number in the source code that
triggered the assertion failure.

Association The process by which principals
become associated or affiliated with a trust realm or
federations.
© Copyright IBM Corp. 2004, 2005. All rights reserved
Assurance Assurance is the determination that
host platforms, end-user platforms, applications,
network component configurations, and operations
are in accordance with security policy. Entities are
monitored to ensure policies have been
implemented and used. Detected noncompliance
with policies is recorded and reported. Remediation
of policy noncompliance is based on remediation
policy.

Asymmetric Keys In computer security, the two
keys in a key pair. The keys are called asymmetric
because one key holds more of the encryption
pattern than the other does.

Attribute Service A Web service that maintains
information (attributes) about principals within a trust
realm or federation. The term principal, in this
context, can be applied to any system entity, not just
a person.

Audit The recording of security events in a log. To
ensure future claims that security events recorded
are accurate and have not been altered (that is, are
non-reputable), audit records are collected and
secured. Audit records may be used for:

� Internal problem analysis

� Use as evidence in relation to a potential breach
of contract, breach of regulatory requirement, or
in the event of civil or criminal proceedings, for
example, under computer misuse or data
protection legislation

� Negotiating for compensation from software and
service suppliers

Audit logs are created by system components,
including operating systems, applications, and
network devices.
. 455

Authentication Authentication denotes a security
procedure where an individual is identified. The
process ensures that the individual is whom he or
she claims to be, but does not affect the individual's
access rights. User names, passwords, and
biometric scanning are all authentication
techniques.

Authorization This phase of security admits only
legitimate user access to systems, data,
applications or networks. After the user is
authenticated, he is authorized, that is, granted
access to a network resource. An identification
number or password that is used to gain access to a
local or remote computer system.

Anti-Virus Management Anti-virus (AV) clients
run on host platforms. Anti-virus management
includes the following:

� AV client distribution and updates to authorized
platforms. Platforms may be initially loaded with
AV clients or fetch AV clients from the AV
manager.

� Notification that updates are available.

� Making AV clients and updates available for
automatic download when the host platform
connects to the manager.

� Receiving host AV log files and host AV
configuration data.

� Providing summary AV event information and
alerts.

� Providing reports.

B2B Business to Business.

B2C Business to Consumer.

B2E Business to Employee.

Binding Security and Secure
Conversation Security binding is the protocol that
ties security attributes together, such as an identity
and the authorizations for the identity. Examples of
security bindings are:

� Secure Sockets Layer and Transport Layer
Security protocols provide for the secure
authentication of servers and clients.

� X.509 certificates bind an identity to a public
key.

� A Web cookie binds an identity to a service.

Security conversion securely maps information from
one form to another form. For example, a password
and ID may be converted to a common format for an
authenticated identity. Confidentiality may convert
plain text information into cipher text using an
encryption key or keys.

CDC Common Domain Cookies.

Certificate The most common kind of credential in
the network computing environment. Certificates
include standard information such as the owner's
public key, globally accessible name, and expiration
dates; certificates may also contain some
application-unique data such as title, degree(s)
earned, and professional licenses. Certificates are
also called digital certificates.

Certificate Authority (CA) In the pre-Internet
world, every secure transaction involved a trusted
third party—such as a notary, attorney or
broker—who could guarantee that both parties were
who they purported to be. A Certificate Authority fills
that same role in the digital world. A CA vendor, such
as VeriSign or Entrust, issues certificates that
contain the identities and affiliations of individuals,
along with their public keys. These certificates are
bound together with the digital signature and stored
in a special directory. The sender's browser looks up
the recipient's certificate in the directory, and the
message can be encrypted using the key embedded
in the certificate. The sender can then sign the
message using his own private key, and the
recipient can verify the signature by using the
sender's public key that is vouched for by the CA.
456 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

CGI (Common Gateway Interface) A
specification for transferring information between a
World Wide Web server and a CGI program. A CGI
program is any program designed to accept and
return data that conforms to the CGI specification.
The program could be written in any programming
language, including C, Perl, Java, or Visual Basic.
CGI programs are the most common way for Web
servers to interact dynamically with users. Many
HTML pages that contain forms, for example, use a
CGI program to process the form's data once it is
submitted.

Circle of Trust The group of service providers that
share linked identities and have business and
operating agreements in place is known as a circle
of trust.

Claim A declaration made by an entity (for
example, name, identity, key, group, privilege,
capability, attribute, and so on).

Claim Confirmation The process of verifying that
a claim applies to an entity.

Common Object Request Broker Architecture
(CORBA) An architecture and specification for
creating, distributing, and managing distributed
program objects in a network. It allows programs at
different locations and developed by different
vendors to communicate in a network through an
"interface broker." CORBA was developed by a
consortium of vendors through the Object
Management Group, which currently includes over
500 member companies. Both the International
Organization for Standardization (ISO) and X/Open
have sanctioned CORBA as the standard
architecture for distributed objects (which are also
known as components). CORBA 3 is the latest level.

Container A Java run-time environment for
enterprise beans. A container, which runs on an
Enterprise JavaBeans server, manages the life
cycles of enterprise bean objects, coordinates
distributed transactions, and implements object
security.

Credential Exchange The purpose of a credential
subsystem in an IT solution is to generate, distribute,
and manage the data objects that convey identity
and permissions across networks and among the
platforms, the processes, and the security
subsystems within a computing solution. Credentials
are created as a result of a successful
authentication. Some common types of credentials
are:

� X.509 public key identity certificates that bind an
identity to a public key.

� X.509 attribute certificates that bind an identity
or a public key with some attribute.

Kerberos tickets that are encrypted messages
binding the holder with some attribute or privilege,
and encrypted cookies.

Credentials Data associated with a user or
resource that indicates identity and authority level.
Credentials need to be issued by a trustworthy
authority, as that authority is vouching for the identity
and authorization level. A passport is a credential; it
represents the bearer's identity and rights and is
issued by a formally recognized government
agency. In network computing environments, the
most common type of credential is a certificate that
has been created and "signed" by a trusted
Certificate Authority.

CUID Common Unique Identifier.

Demilitarized Zone (DMZ) An area of your
network that separates it from other areas of the
network, including the Internet.
 Glossary 457

Digital Certificate Digital certificates allow a user
to send an encrypted message. A digital certificate is
an attachment to an electronic message that verifies
the user is who one claims to be, and is used to
ensure secure e-business transactions. The
Certificate Authority (CA), which issues a user's
digital certificate, makes known the user's public
key, which another user employs to decode the
digital certificate attached to a message. This
process also verifies that the certificate was issued
by the CA and allows users to obtain identification
information of the certificate-holding sender. The
recipient of the message can then send an
encrypted reply.

Directory A directory service is the "yellow pages"
of computer network resources, stored on a server
and often containing security-related data, such as
phone numbers, e-mail addresses, public keys,
computer names, and addresses. The data is
presented hierarchically, much like a family tree,
with one section providing key information about the
files beneath it. To access a file, a user may need to
produce the names of all the directories above it by
specifying a path. To read information from or write
information into a directory, the user must use
operating system commands.

Directory Services Provide means of locating
resources and users in a network or networks. They
are analogous to telephone directories—even
though you look up a resource or user name, you still
need to know something about its location to narrow
the search. A directory can also include the public
key of the user or resource in addition to location and
other information.

Domain or Realm A domain or realm represents a
single unit of security administration or trust.

EAI WebSEAL External Authentication Interface.

Enterprise JavaBeans (EJB) An architecture for
setting up program components, written in the Java
programming language, that run in the server parts
of a computer network that uses the client/server
model. Enterprise Java Beans is built on the
JavaBeans technology for distributing program
components to clients in a network. Enterprise Java
Beans offer enterprises the advantage of being able
to control change at the server rather than having to
update each individual computer with a client
whenever a new program component is changed or
added. EJB components have the advantage of
being reusable in multiple applications. To deploy an
EJB Bean or component, it must be part of a specific
application, which is called a container.

Enterprise Service Bus (ESB) is an emerging
standard for integrating enterprise applications in an
implementation-independent fashion, at a
coarse-grained service level (leveraging the
principles of service-oriented architecture) via an
event-driven and XML-based messaging engine
(the bus).

Federation A group of two or more organizations
that have agreed to allow a user from one federation
partner to seamlessly access resources from
another partner in a secure and trustworthy manner.

FIM Federated Identity Management/Manager.

Firewall A firewall is a hardware/software system
that manages the flow of information between the
Internet and an organization's private network.
Firewalls can prevent unauthorized Internet users
from accessing private networks connected to the
Internet, especially intranets, and can block some
virus attacks—as long as those viruses are coming
from the Internet.

FTN Liberty Federation Termination Identification.

FULM Federated User life cycle Management.
458 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Generic Security Services Application Program
Interface (GSS-API) is defined in RFC 2853.
GSS-API offers application programmers uniform
access to security services atop a variety of
underlying security mechanisms, including
Kerberos.

HTTP point of contact (PoC) A generic
component normally located in a DMZ. It is typically
an HTTP reverse proxy, or similar component,
capable of authenticating a user and managing a
session for that user.

Intrusion Defense Intrusion Defense provides
defense against attackers attempting to gain access
to a network, device or host. Intrusion detection and
response capabilities monitor network segments
and hosts within a centralized operational and
management framework. Responses to detected
intrusion attempts include inputs to event
management systems, paging, and trouble ticket
systems. Intrusion defense is installed on hosts,
desktops, laptops, and on-network devices.
Intrusion Defense management includes the life
cycle management of intrusion detection
mechanisms on hosts, desktops, and laptops and on
network devices:

� ID application distribution and updates to
authorized platforms. Host platforms may be
initially loaded with ID clients or fetch ID clients
from the ID manager.

� Notification that ID updates are available.

� Making ID clients and updates available for
automatic download when the host platform
connects to the manager.

� Receiving host ID security event logs and
performance log files and host ID configuration
data.

� Providing summary ID event information and
alerts.

� Providing reports.

Identity Mapping A method of creating
relationships between identity properties. Some
identity providers may make use of identity mapping.

Identity provider (IdP) An entity that acts as a
peer entity authentication service to end requestors
and data origin authentication service to service
providers (this is typically an extension of a security
token service).

IE Internet Explorer.

Identity Management In accordance with
document security policy, identity management
includes the

� Identity proofing, identity approval, and identity
rights authorization.

� Identity token creation and token distribution to
the user.

� (Dynamically) provisioning user identity, rights,
and profile to relying parties (operating systems,
and applications).

� User profile management.

� Enabling user self-care.

� Delegate administrative responsibility for
approval and authorization as needed.

� Processes for token changes IAW policy,
revoking, and approving reissue of
new/changed token.

� Performing identity management in accordance
with security policy.

IMS Identity Management System.

Internet Inter-ORB Protocol (IIOP) A protocol
developed by the Object Management Group
(OMG) to implement CORBA solutions over the
World Wide Web. IIOP enables browsers and
servers to exchange integers, arrays, and more
complex objects, unlike HTTP, which only supports
transmission of text.

IPI Identity provider Introduction.

ISC Integrated Systems Console.
 Glossary 459

Java 2 Platform Enterprise Edition (J2EE) A
Java platform designed for the mainframe-scale
computing typical of large enterprises. Sun
Microsystems, together with industry partners such
as IBM, designed J2EE to simplify application
development in a thin client-tiered environment.

Java Database Connectivity (JDBC) An
application program interface (API) specification for
connecting programs written in Java to the data in
popular database. The application program interface
lets you encode access request statements in
structured query language (SQL) that are then
passed to the program that manages the database.
It returns the results through a similar interface.
JDBC is very similar to the SQL Access Group's
Open Database Connectivity (ODBC); and, with a
small "bridge" program, you can use the JDBC
interface to access databases through the ODBC
interface.

Java Naming and Directory Interface
(JNDI) Enables Java platform-based applications
to access multiple naming and directory services.
Part of the Java Enterprise application programming
interface (API) set, JNDI makes it possible for
developers to create portable applications that are
enabled for a number of different naming and
directory services, including file systems, directory
services, such as Lightweight Directory Access
Protocol (LDAP), Novell Directory Services, and
Network Information System (NIS); and distributed
object systems, such as the Common Object
Request Broker Architecture (CORBA), Java
Remote Method Invocation (RMI), and Enterprise
JavaBeans (EJB).

Java Security Specific security protocols are
launched to protect programs using Java, a
computer programming language mostly used for
the World Wide Web. Java programs, which can be
downloaded from a Web server and run on
Java-compatible browsers, are run in a small,
constrained area called a Sandbox. The Sandbox
contains a security system that checks and verifies
all codes coming into it. Java Security employs data
encryption, where keys are needed to encrypt and
read data.

Java Server Page (JSP) A technology for
controlling the content or appearance of Web pages
through the use of servlets, small programs that are
specified in the Web page and run on the Web
server to modify the Web page before it is sent to the
user who requested it.

JAX-RPC A specification that describes
application programming interfaces (APIs) and
conventions for building Web services and Web
service clients that used remote procedure calls
(RPC) and XML. JAX-RPC is also known as JSR
101.

JKS Java Key Store.

Kerberos A network authentication protocol
developed at the Massachusetts Institute of
Technology (MIT). It is designed to provide strong
authentication for client/server applications across
insecure network connections by using secret-key
cryptography.

Key Escrow The storing of a key (or parts of a key)
with a trusted party or trusted parties in case of loss
or destruction of the key.

Key management In accordance with document
policy, key management provides life cycle
management for public-private key pairs using a
trusted Public key Infrastructure (enterprise or
outsourced) operating in accordance with a
documented Certificate Policy. Private keys and
X.509 certificates can be used to provide
authentication, confidentiality, data integrity, and
non-repudiation for transactions and other data.
460 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Key Recovery A process used to recover
encrypted information that does not involve the
storing of the key or any part of the key with a third
party. Sometimes, important data needs to be
recovered without normal access. The encryption
key may have been lost accidentally, or an
organization may need to audit its resources, or the
data may be needed by law enforcement and other
outside authorities. Key-recovery systems, like
those proposed by National Institute for Standards
and Technology (NIST), rely on close cooperation
between certification authorities and user
communities that share a public-key infrastructure
(PKI). These groups would need to share
components of encryption keys that are stored at
separate locations. Many organizations find key
recovery a preferable process to key escrow. The
US government recently relaxed controls on the
export of strong encryption based upon the
development of key recovery technology by the
computer industry.

LECP Liberty-enabled Client/Proxy.

Liberty Alliance is a consortium formed to deliver
and support a federated network identity solution for
the Internet that enables single sign-on for
consumers and business users in an open,
federated way.

Lightweight Directory Access Protocol
(LDAP) A software protocol for enabling anyone to
locate organizations, individuals, and other
resources (such as files and devices) in a network,
whether on the public Internet or on a corporate
intranet. LDAP is a "lightweight" (smaller amount of
code) version of Directory Access Protocol (DAP),
which is part of X.500, a standard for directory
services in a network.

Lightweight Third Party Authentication
(LTPA) Implements an authentication protocol that
uses a trusted third-party Lightweight Directory
Access Protocol (LDAP) server. LTPA causes a
search to be performed against the LDAP directory.
LTPA supports both the basic and certificate
challenge type.

Mapping Rules Rules used to convert a security
item from form understood by an origin process to a
form understood by a destination process. For
example, an application can authenticate a user via
any mechanism it chooses (ID/password, certificate,
and so on), and then based on the mapping rules
convert the authenticated identity to an identity
format defined for a directory.

MASS Method for Architecting Secure Solutions.

Mobile Station International ISDN Number
(MSISDN) The standard international telephone
number used to identify a given subscriber. The
number is based on the ITU-T (International
Telecommunications Union-Telecommunication
Standardization Sector) E.164 standard.

Network Security Solutions Network security
solutions for on demand provide secure connectivity
and access control to and for the enterprise network.
Remote connections to the enterprise network can
use a variety of technologies such as dialup and
Virtual Private Network (SSL and IPSEC). Network
firewalls permit only connections that are specified,
in directions that are specified, and using protocols
that are specified. Network security solutions feature
centralized managed, log, and security event audit
trail generation and collection, and report
generation.

Non-repudiation Non-repudiation occurs when a
document or participant in an activity is valid. In
digital cryptography, this applies to a person who
uses a private key to protect access. This
guarantees that any messages signed using that
person's digital signature could only have come from
them. In e-commerce, when the key holder uses a
digital signature in a financial transaction, it
guarantees that the person making the transaction is
who they claim to be.

OASIS (Organization for the Advancement of
Structured Information Standards) is a global
consortium that drives the development of
e-business and Web service standards.
 Glossary 461

On Demand Operating Environment (ODOE)
The new computing architecture designed to help
companies realize the benefits of on demand
business. The on demand operating environment
has four essential characteristics: It is integrated,
open, virtualized, and autonomic.

Open Platform for Security Check Point
(OPSEC) The initiative to provide a common
architecture for integrating security solutions.

Passive Requestor An HTTP browser capable of
broadly supported HTTP (for example, HTTP/1.1).

PEP Policy Enforcement Point.

PKI A public key infrastructure enables users of a
basically unsecure public network, such as the
Internet, to securely and privately exchange data
and money through the use of a public and a private
cryptographic key pair that is obtained and shared
through a trusted authority.

Point of contact (PoC) A generic component,
normally located in the DMZ. It is typically an HTTP
reverse proxy, or similar component, capable of
authenticating a user and managing a session for
that user. Typically the PoC will have a connection
to a local user registry, used to validate user
authentication credentials presented by the user and
also to retrieve user attributes/privilege information
used with session management for an authenticated
user.

Policy Management Policy management in the
On Demand Security Infrastructure is the consistent
application of enterprise security policy to on
demand infrastructure components, services, and
applications; network security solutions; and on
demand security infrastructure components and
services. Policy management is applied
independent of application logic and operating
system platform and includes trusted identity and
token life cycle management identity, access
control/authorization life cycle management,
federated identity life cycle, privacy, single sign on,
compliance determination and remediation, security
event auditing and processing, and failure
situations.

Portal A term, generally synonymous with
gateway, for a World Wide Web site that is a major
starting site for users when they get connected to the
Web or that users tend to visit as an anchor site,
linking to many other sites. Typical services offered
by portal sites include a directory of Web sites, the
ability to search for information, news, weather
information, e-mail, stock quotes, phone and map
information, and sometimes a community forum.
Excite is among the first portals to offer users the
ability to personalize that Web site according to
individual interests.

Privacy Policies Security policies for managing
access to and use of sensitive personal information,
referred to as privacy-sensitive information.
Individuals who provide personal information, such
as social security numbers, have the right to
determine when, how, and to what extent their
personal information is used by organizations that
collect the information.

Profile A document that describes how this model
is applied to a specific class of requestor (for
example, passive or active)
462 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Proxy An intermediary program that acts as both a
server and a client for the purpose of making
requests on behalf of other clients. Requests are
serviced internally or by passing them, with possible
translation, on to other servers. A proxy must
interpret and, if necessary, rewrite a request
message before forwarding it. Proxies are often
used as client-side portals through network firewalls
and as helper applications for handling requests via
protocols not implemented by the user agent.

Pseudonym Service A Web service that
maintains alternate identity information about
principals within a trust realm or federation. The term
principal, in this context, can be applied to any
system entity, not just a person.

Public Key In asymmetric cryptography, the key
that is made available for others to use to encrypt
information. The owner of the associated private key
is the only person who can decrypt the information.

Public Key Infrastructure (PKI) PKI is a system
for verifying the authenticity of each party involved in
an Internet transaction, protecting against fraud or
sabotage, and for non-repudiation purposes so that
consumers and retailers may protect themselves
against denial of transactions. Trusted third-party
organizations called certificate authorities issue
digital certificates—attachments to electronic
messages—that specify key components of the
user's identity. During an Internet transaction
signed, encrypted messages from one party to
another are automatically routed to the Certificate
Authority, where the certificates are verified before
the transaction can proceed. PKI can be embedded
in software applications, or offered as a service or a
product. e-business leaders agree that PKIs are
critical for transaction security and integrity, and the
software industry is moving to adopt open standards
for their use. Simplifying the directory systems that
contain PKI data remains a challenge.

RA A Registration Authority is an authority in a
network that verifies user requests for a digital
certificate and tells the Certificate Authority (CA) to
issue it. RAs are part of a public key infrastructure
(PKI), a networked system that enables companies
and users to exchange information and money
safely and securely. The digital certificate contains a
public key that is used to encrypt and decrypt
messages and digital signatures.

Realm or Domain A realm or domain represents
a single unit of security administration or trust.

Remote Method Invocation (RMI) This is the
standard specification of the Java RPC.

Role-Based Access Control (RBAC) A method
of granting access rights to users based on their
assignment to a defined role in the organization.

Router An interconnection device that links two
discrete networks and forwards packets between
them. A router uses a networking protocol such as IP
to address and direct data packets flowing into and
out of the network on which it sits.

Secure Logging Secure logging is the means of
recording security events and the protection
provided to such logs to ensure their
non-repudiation. Secure logging also includes a
means for processing logs and generating reporting.

Secure Networks and Operating
Systems Secure networks are networks that have
implemented logical and physical access controls
and may have implemented confidentiality, data
integrity, and non-repudiation security services to
restrict data access and network management to
authorized personnel or entities. Secure operating
systems are operating systems that have
implemented logical and physical access controls
and may have implemented confidentiality, data
integrity, and non-repudiation security services to
restrict data access and network management to
authorized personnel or entities. Secure networks
and operating systems generate security event audit
records and are securely managed.
 Glossary 463

Secure Sockets Layer (SSL) A commonly used
protocol for managing the security of a message
transmission on the Internet. SSL has recently been
succeeded by Transport Layer Security (TLS),
which is based on SSL.

Security Assertion Markup Language (SAML)
A specification designed to provide cross-vendor
single sign-on interoperability.

Security Policy Expression Security policy
expression is the means by which security policy is
applied to or implemented for specific IT system
components and applications. For example, firewall
filtering rules in a file, hardware settings, and
network configurations.

Security token Represents a collection of claims.

Security token service (STS) A Web service that
issues security tokens. That is, it makes assertions
based on evidence that it trusts, whoever trusts it. To
communicate trust, a service requires proof, such as
a security token or set of security tokens, and issues
as security token with its own trust statement (note
that for some security token formats this can just be
a reassurance or co-signature). This forms the basis
of trust brokering.

Service Oriented Architecture (SOA) expresses
a software architectural concept that defines the use
of services to support the requirements of software
users. In a SOA environment, nodes on a network
make resources available to other participants in the
network as independent services that the
participants access in a standardized way.

Service/endpoint policy Corporate security
policy applied to or developed for services and
information technology endpoints including
response to legal, regulatory, and legislative
requirements. Service policy states the specific
security requirements for a service that generally is
provided by a configuration of hosts, networks
components, and applications. Endpoint policy
states the specific security configuration to be
implemented an individual host, network
component, or application, and the protocols used to
implement the service policy.

Signature A value computed with a cryptographic
algorithm and bound to data in such a way that
intended recipients of the data can use the signature
to verify that the data has not been altered since it
was signed by the signer.

Signed security token A security token that is
asserted and cryptographically signed by a specific
authority (for example, an X.509 certificate or a
Kerberos ticket).

Sign-in The process by which security tokens are
obtained for realm/domain or federation.

Sign-out The process by which security tokens are
destroyed for realm/domain or federation.

Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) A mechanism that allows
the secure negotiation of the mechanism to be used
by two different GSS-API implementations. In
essence, SPNEGO defines a universal but separate
mechanism, solely for the purpose of negotiating the
use of other security mechanisms. SPNEGO itself
does not define or provide authentication or data
protection, although it can allow negotiators to
determine if the negotiation has been subverted,
once a mechanism is established.
464 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Simple Authentication and Security Layer
(SASL) SASL (defined by RFC 2222) is a generic
protocol framework that provides the means to use
authentication mechanisms other than simple
authentication and SSL over connection-based
protocols. Protocols such as LDAP, POP, IMAP, and
SMPT specify a SASL profile, which describes how
to encapsulate SASL negotiation and SASL
messages for the protocol. Within the SASL
framework, different authentication schemes are
referred to as mechanisms.

Simple Object Access Protocol (SOAP) A way
for a program running in one kind of operating
system to communicate with a program in the same
or another kind of an operating system by using the
HTTP Protocol and XML as the mechanisms for
information exchange.

Single Sign-on (SSO) An optimization of the
authentication sequence to remove the burden of
repeating actions placed on the requestor. To
facilitate SSO, an element called an Identity provider
can act as a proxy on a requestor’s behalf to provide
evidence of authentication events to third parties
requesting information about the requestor. These
identity providers (IPs) are trusted third parties and
need to be trusted by both the requestor (to maintain
the requestor’s identity information, as the loss of
this information can result in the compromise of the
requestor’s identity) and the Web services that may
grant access to valuable resources and information
based upon the integrity of the identity information
provided by the IP.

SLO Liberty Single Sign-Out.

Smart card A smart card is a small device the size
of a credit card with built-in electronic memory of
personal data, such as identification and financial
information.

SP Service provider.

SPS SSO Protocol Services.

Stateful Packet Inspection (SPI) A firewall
technology that examines the content of packets to
determine whether they will be given access to a
network.

Switch A hardware device that serves as a central
connection point for all network cables. In a
relatively small networking environment, a switch of
four to 12 ports may be part of a router or gateway.

TAM IBM Tivoli Access Manager.

TDS IBM Tivoli Directory Server.

TFIM Tivoli Federated Identity Manager.

TIM IBM Tivoli Identity Manager.

Transport Layer Security (TLS) A protocol that
ensures privacy between communicating
applications and their users on the Internet. When a
server and client communicate, TLS ensures that no
third party may eavesdrop or tamper with any
messages. TLS is the successor to the Secure
Sockets Layer Protocol (SSL).

Trust According to the ITU-T X.509, Section
3.3.54, trust is defined as follows: “Generally an
entity can be said to trust a second entity when the
first entity makes the assumption that the second
entity will behave exactly as the first entity expects”.

Trust Domain An administered security space in
which the source and target of a request can
determine and agree whether particular sets of
credentials from a source satisfy the relevant
security policies of the target. The target may defer
the trust decision to a third party, thus including the
trusted third party in the Trust Domain.

Trust Modeling A trust model is a
description/definition of how trust is established or
conveyed between two entities or among multiple
entities that operate under a common set of security
policies.
 Glossary 465

Trusted Third Party A mechanism in which a
trusted party creates a key and then keeps a copy of
it in case of loss or destruction of the key, or
legitimate request from law enforcement.

Uniform Resource Identifier (URI) The way you
identify any point of content, whether it be a page of
text, a video or sound clip, a still or animated image,
or a program. The most common form of URI is the
Web page address, which is a particular form or
subset of URI called a Uniform Resource Locator
(URL)

Uniform Resource Locator (URL) The unique
address for a file that is accessible on the Internet. A
common way to get to a Web site is to enter the URL
of its home page file in your Web browser's address
line.

Universal Description, Discovery and
Integration (UDDI) Describes how a Registry can
be used to publish and discover information about
businesses and the Web Services they support.

Validation Service A Web service that uses the
WS-Trust mechanisms to validate provided tokens
and assess their level of trust (for example, claims
trusted).

Virtual Organization Polices A statement of
security policies for an IT system supporting the
business needs of a specific subset of an enterprise
or an IT system supporting cross-enterprise
business needs operating under a common
objective.

WAYF Where are you from.

Web services A way of providing computational
capabilities using standard Internet protocols and
architectural elements. For example, a database
Web service would use Web browser interactions to
retrieve and update data located remotely.

Web Services Description Language (WSDL)
An XML-based language used to describe the
services a business offers and to provide a way for
individuals and other businesses to access those
services electronically. WSDL is the cornerstone of
the Universal Description, Discovery, and
Integration (UDDI) initiative spearheaded by
Microsoft, IBM, and Ariba.

Web Services Policy (WS-Policy) Provides a
general purpose model and syntax to describe and
communicate the policies of a Web service.

Web Services Security (WS-Security) A
mechanism for incorporating security information
into SOAP messages. While SOAP provides a
flexible technique for structuring messages, it does
not directly address how to secure these messages.
WS-Security builds from the SOAP specification,
structuring the use of essential security capabilities.
Specifically, WS-Security uses binary tokens for
authentication, digital signatures for integrity, and
content-level encryption for confidentiality. By
structuring SOAP security, WS-Security makes it
easy to include security elements into SOAP
through tools and enterprise applications.

Web Services Trust (WS-Trust) Describes a
framework for trust models that enables Web
services to securely interoperate.

Wireless Application Protocol (WAP) A
specification for a set of communication protocols to
standardize the way that wireless devices, such as
cellular telephones and radio transceivers, can be
used for Internet access, including e-mail, the World
Wide Web, news groups, and Internet Relay Chat
(IRC). While Internet access has been possible in
the past, different manufacturers have used different
technologies. In the future, devices and service
systems that use WAP will be able to interoperate.
466 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Wireless Markup Language (WML) Formerly
called Handheld Devices Markup Languages
(HDML), this is a language that allows the text
portions of Web pages to be presented on cellular
telephones and personal digital assistants (PDAs)
via wireless access. WML is part of the Wireless
Application Protocol (WAP) that is being proposed
by several vendors to standards bodies.

WSP Web services provisioning.

X.509 A widely used specification for digital
certificates that has been a recommendation of the
ITU since 1988.

XACML (Extensible Access Control Markup
Language) A standard in encoded data exchange,
makes possible a simple, flexible way to express
and enforce access control policies in a variety of
environments, using a single language.

XKMS (XML Key Management Specification)
Leverages the Web Services framework to make it

easier for developers to secure inter-application
communication using public key infrastructure (PKI).
XML Key Management Specification is a protocol
developed by W3C that describes the distribution
and registration of public keys. Services can access
an XKMS-compliant server in order to receive
updated key information for encryption and
authentication.

XML (Extensible Markup Language) A flexible
way to create common information formats and
share both the format and the data on the World
Wide Web, intranets, and elsewhere. For example,
computer makers might agree on a standard or
common way to describe the information about a
computer product (processor speed, memory size,
and so forth) and then describe the product
information format with XML. Such a standard way
of describing data would enable a user to send an
intelligent agent (a program) to each computer
maker's Web site, gather data, and then make a
valid comparison. XML can be used by any
individual or group of individuals or companies that
want to share information in a consistent way.

XML Encryption A process for encrypting and
decrypting parts of XML documents. Most of today’s
encryption schemes use transport-level techniques
that encrypt an entire request and response stream
between a sender and receiver, offering zero
visibility into contents of the interchange to
intermediaries. Content-level encryption converts
document fragments into illegible cipher text, while
other elements remain legible as plain text.

XMLDSIG (XML Digital Signature) A W3C
recommendation that defines an XML syntax for
digital signatures. Functionally, it has much in
common with PKCS#7 but is more extensible and
geared towards signing XML documents. It is used
by various Web technologies such as SOAP, SAML,
and others.

XrML (Extensible rights Markup Language) A
machine-interpretable language, developed at
Xerox PARC. It uses XML for its syntax and was
previously known as DPRL. XrML is intended to be
a general purpose rights language to create usage
licenses or specify the rights for a digital item. XrML
is a core component in enabling distribution of digital
content and access to digital services such as in an
e-commerce context.

XSL (Extensible Stylesheet Language) A
language for creating a style sheet that describes
how data sent over the Web using the eXtensible
Markup Language (XML) is to be presented to the
user.

XSLT (Extensible Stylesheet Language
Transformations) A language used to transform
XML documents into other documents. In Second
Site, XSLT is used to transform XML documents into
HTML tags. The XSLT standard is administered by
the World Wide Web Consortium (W3C).
 Glossary 467

468 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this Redbook.

IBM Federated Identity Manager manuals
� IBM Tivoli Federated Identity Manager Release Notes Version 6.0, GC32-1669-00

� IBM Tivoli Federated Identity Manager Administration Guide Version 6.0,
GC32-1668-00

� IBM Tivoli Identity Manager Federated Installation Guide Version 6.0,
GC32-1667-00

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 472. Note that some of the documents referenced here may be available
in softcopy only.

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� Identity Management Design Guide with IBM Tivoli Identity Manager,
SG24-6996

� Federated Identity Management and Secure Web Services, REDP-3678

� On Demand Operating Environment: An Overview and Implementation
Guide, REDP-3858

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

Other publications
These publications are also relevant as further information sources:

� IBM Federated Identity Management white paper (Heather Hinton, et al)

� IBM Systems Journal on End-to-End Security, Vol. 40, No. 31
© Copyright IBM Corp. 2004, 2005. All rights reserved. 469

� IBM Tivoli Access Manager Base Administration Guide Version 5.1,
SC32-1360

� IBM Tivoli Access Manager for e-business WebSEAL Administration Guide
Version 5.1, SC32-1359

� IBM Tivoli Access Manager for e-business Plug-in for Web Servers
Integration Guide Version 5.1, SC32-1365

� IBM Tivoli Access Manager for e-business Administration C API Developer
Reference Version 5.1, SC32-1357

� IBM Tivoli Access Manager Administration Java Classes Developer
Reference Version 5.1, SC32-1356

� IBM Tivoli Access Manager for e-business BEA WebLogic Server Integration
Guide Version 5.1, SC32-1366

� IBM Tivoli Access Manager for e-business IBM WebSphere Application
Server Integration Guide Version 5.1, SC32-1368

� IBM Tivoli Access Manager for e-business Problem Determination Guide
Version 5.1, SC32-1352

� IBM Tivoli Access Manager for e-business Performance Tuning Guide
Version 5.1, SC32-1351

� IBM Tivoli Access Manager for e-business IBM Tivoli Identity Manager
Provisioning Fast Start Guide Version 5.1, SC32-1364

� IBM Tivoli Directory Server Installation and Configuration Guide Version 5.2,
SC32-1338

� IBM Tivoli Directory Server Administration Guide Version 5.2, SC32-1339

� IBM Tivoli Directory Integrator 5.2: Reference Guide, SC32-1377

� IBM Tivoli Directory Integrator 5.2: Administrator Guide, SC32-1379

� Tivoli Identity Manager Policy and Organization Administration Guide Version
4.5, SC32-1149

� IBM Tivoli Identity Manager Tivoli Access Manager Agent for Windows
Installation Guide Version 4.5, SC32-1165

Online resources
These Web sites and URLs are also relevant as further information sources:

� Web Services Security (WS-Security) specification

http://www-128.ibm.com/developerworks/webservices/library/ws-secure/

� Web Services Trust Language (WS-Trust) specification
470 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www-106.ibm.com/developerworks/webservices/library/ws-provis/

ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf/

� Web Services Provisioning (WS-Provisioning) specification

http://www-128.ibm.com/developerworks/webservices/library/ws-provis/

� Web Services Federation Language (WS-Federation) specification

http://www-128.ibm.com/developerworks/webservices/library/ws-fed/

� WS-Federation: Active Requestor Profile (WS-FEDACT) specification

http://www-128.ibm.com/developerworks/webservices/library/ws-fedact/

� WS-Federation: Passive Requestor Profile (WS-FEDPASS) specification

http://www-128.ibm.com/developerworks/webservices/library/ws-fedpass/

� Security in a Web Services World: A Proposed Architecture and Roadmap

http://www-128.ibm.com/developerworks/webservices/library/ws-secmap/

� Security Assertion Markup Language (SAML), an OASIS standard

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

� Liberty Alliance & WS-Federation: A Comparative Overview

http://www.projectliberty.org/resources/whitepapers/wsfed-liberty-overview-
10-13-03.pdf

� Multipurpose Internet Mail Extensions (MIME), RFC 2045

http://www.faqs.org/rfcs/rfc2045.html

� Simple Authentication and Security Layer (SASL), RFC 2222

http://www.faqs.org/rfcs/rfc2222.html

� The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO),
RFC 2478

http://www.faqs.org/rfcs/rfc2478.html

� Generic Security Service API Version 2: Java Bindings, RFC 2853

http://www.faqs.org/rfcs/rfc2853.html

� EXtensible Stylesheet Language (XSL) Tutorial

http://www.w3schools.com/xsl/default.asp

� Security Assertion Markup Language (SAML) v1.1
http://www.oasis-open.org/specs/index.php#samlv1.0

� Web Services Security 2, Username Token Profile 1.0 3, OASIS Standard
2004

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-prof
ile-1.0.pdf
 Related publications 471

http://www-106.ibm.com/developerworks/webservices/library/ws-provis/
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/
http://www.oasis-open.org/specs/index.php#samlv1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.w3schools.com/xsl/default.as
http://www-106.ibm.com/developerworks/webservices/library/ws-fedact/
http://www-106.ibm.com/developerworks/webservices/library/ws-fedpass/
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.projectliberty.org/resources/whitepapers/wsfed-liberty-overview-10-13-03.pdf
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2222.html
http://www.faqs.org/rfcs/rfc2478.html
http://www.faqs.org/rfcs/rfc2853.html
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

� XML Stylesheet

http://xml.apache.org/xalan-j/extensions.html#format-date-stylesheet

� Command line utility

http://xml.apache.org/xalan-j/commandline.html

� WebSphere Application Server Version 6.0 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
472 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://xml.apache.org/xalan-j/commandline.html
http://xml.apache.org/xalan-j/extensions.html#format-date-stylesheet
http://xml.apache.org/xalan-j/commandline.html

Index

A
Access

Control Lists 455
Enforcement Point 455
enforcement point 97
Manager 173, 277, 283
Rights 63

account
creation 38
de-linking 65, 108
inking 107
linking 60
provisioning 42

accreditation process 16
ACL 455
ACS 206
active client 40
Address confirmation 16
AEF 97, 455
Agent 455
Anti-Virus Management 456
API 455
Application logout 167
Application Programming Interface 455
ARS 206
Assertion Consumer Service 206
Assertion Resolution Service 206
Association 455
Assurance 455
Asymmetric Keys 455
Attribute retrieval 109
Attribute Service 455
Audit 458
Authentication 456
Authentication credentials 45
Authentication services 89–90
Authorization 75, 456
Avtive Requestors 455
AZN API configuration 335

B
B2B 13, 153, 456
B2C 19, 22, 108, 456
© Copyright IBM Corp. 2004, 2005. All rights reserved
B2E 19, 456
Base pattern 139
BASE64 306
benefits provider 33
BigCorp 194, 202, 219, 234, 293
BigCorpOne 33, 184
blacklist 191, 301
Browser Artifact 148
Browser Artifact Profile 149
Browser POST Profile 150
Business to Business 456
Business to Consumer 456
Business to Employee 456

C
CA 456
CDC 456
CD-SSO 105
Certificate 456
Certificate authority 456
CGI 200
Claim 457
Claim Confirmation 457
Common Domain Cookies 456
Common Object Request Broker Architecture 457
Container 457
CORBA 457, 460
Corporate Governance 14
Corporate identities 21
Corporate IT accounts 17
corporate view 21
Credential Exchange 74, 462
Credentials 64, 457
Credentials clean up 64
CUID 457
customer-for-life 178

D
DAML 176
Defederation 247
Demilitarized Zone 457
Desktop Single-Sign-On 194
dialtones 178
. 473

Digital Certificate 458
Directory 458
Directory Services 458
DMZ 457
Domain or Realm 458
DSMLv2 176

E
EAI

Authentication 370
Authentication Service 372
Enabled junctions 371
Example 371
Example setup 371
Headers 370–371
PAC 371
service 370

e-business 17
EJB 458, 460
End-to-end user lifecycle management 18
end-user 48
Enrollment costs 24
Enterprise JavaBeans 458
Enterprise Service Bus 26, 458
Enterprise Single Sign-On 136
ESB 26, 458
Extensible Markup Language 467
Extensible Stylesheet Language 467
External Authentication Interface 140

F
Federated Identity 4, 18
Federated Identity Business Models 9
Federated Identity Management

 see FIM
Federated Single Sign-On 27, 136, 291
Federated SSO 137
Federation 458

standards and interoperability 58
user care 38

Federation Termination Notification 54
FIM 4, 33, 51, 81, 458

definition phase 81
Firewall 458
F-SSO 27, 105
FTN 54, 458

G
Generic Security Services Application Program In-
terface 459
Global goodbye 64
GSS-API 201, 459

H
HTTP Point of Contact 459

I
IBM

IBM Tivoli Access Manager 465
IBM Tivoli Access Manager for e-business 172
IBM Tivoli Directory Integrator 176
IBM Tivoli Directory Server 465
IBM Tivoli Federated Identity Manager

see TFIM
IBM Tivoli Identity Manage 174
IBM Tivoli Identity Manager 465
IBM WebSphere Application Server 138
offerings 85

Identity 459
assertion 42
Authentication Credentials 45
Business to consumer identities 22
common unique identifier 61, 71
Corporate E-mail 22
Corporate identities 21
CRM accounts 22
CUID 61, 71
Desktop identities 21
end-to-end identity 21
HR accounts 22
IPI 54
Legacy accounts 22
management 17, 459
Management costs 4
multiple identity account 23
Network identities 21
Oracle accounts 22
Password management costs 25
PIN number 25
Portal accounts 22
Profile Attributes 45
provider functionality 110
Provider Integration 172, 175–177
Provider Introduction 54, 459
Provider Specific Attributes 45
474 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Supply Chain 22
Transaction Attributes 45
verification 16
WebSphere accounts 22

Identity Federation 3, 75
Architecting 31

Identity management system 98
Identity mapping 459
Identity Provider

see Idp
IdP 459
IE 459
Implementation flow 80
IMS 98
Integrated Solutions Console

see ISC
Internet 51
Internet Explorer 199, 459
Internet Information Server 199
Intranet 198
Intrusion Defense 459
IPI 459
ISC 179, 459

J
J2EE 147, 460
JAAS 307
Java 2 Platform Enterprise Edition 460
Java Database Connectivity 460
Java JAR 206
Java Naming and Directory Interface 460
Java Security 460
Java Server Page 460
JDBC 460
JITP 193
JKS key stores 320
JNDI 460
JSP 296, 460
just-in-time-provisioning 193

K
Kerberos 201, 460
Key

Escrow 460
Management 74, 460
Recovery 461
Services 96

Key management 166

L
LDAP 89, 460–461
LECP 461
Liberty 29, 54, 151, 187, 245, 461

ID-FF 59
Liberty enabled Client/Proxy 461
Liberty Federation Termination Identification
458
Liberty ID-FF 52
Liberty single sign-on 245
Liberty single sign-out 465

Lightweight
pattern 143, 145
SSO 138
Third Party Authentication 461

Lightweight Third Party Authentication 461
Log-out 63
LTPA 461

M
Mapping Rules 461
MASS 79, 461
Method for Architecturing Secure Solution 79
middleware 21
Mobile Station International ISDN Number 461
MSISDN 461

N
Name de-federation 108
Network Security Solutions 461
Non-repudiation 461

O
OASIS 51, 57–58
ODBC 460
On 462
On demand 462

Identity Management 74
integration 19
interoperation 19
ODOE 462
Operating environment 462
Policy Management 73
security infrastructure 73

Open Platform for Security Check Point 462
OPSEC 462
Outsourced provider services 12
 Index 475

P
Pain point

Compliance exposure 23
Improve confidence 23
Increase confidence 23
Lower administrative cost 23
Poor Market Reach 23
Risk exposure 23
Security exposure 23

Partnership 12
Partnership-based solutions 19
Passive Requestor 462
password management 38, 42
Password synchronization 108
PEP 462
PKI 462–463
Plug-in pattern 142
PoC 459
Point of Contact 138, 462
Point-to-point pattern 154
Policy Enforcement Point 172, 462
Policy Management 462
Portal 198
Portal-based integration 13
Privacy Policies 462
Profile 462
Profile Attributes 47
Project

Build 81
Definition 81
Design 81
Initiation 80

Provisioning 23
Access rights 24
authoritative source 47
Create account 24
Credentials 24
De-provisioning 24
Enrollment of user 24
Initial password/PIN 24
management costs 25
Password synchronization 24
Provisioning authentication credentials 47
Registration of user 24
user ownership costs 23
User provisioning 23

Pseudonym Service 463
Public Key 463
Public Key Infrastructure 463

Pull protocol 105
Push protocol 105

R
RA 463
RBBanking 185, 245, 288
RBBenefits 33, 184–185
RBStocks 293, 302
RBTelco 219, 245, 287, 293, 302
RBTickets 185, 245, 288
RBTravel 194, 202
Realm or Domain 463
Redbooks Web site 472

Contact us xix
Register Name Identifier 54
Registration Authority 463
RFC 2478 201
RNI 54
Role-Based Access Control 463
Roles

Identity Provider 41
Service Provider 41

Router 463

S
SAML 29, 51–52, 58–59, 291, 464

assertion 190, 221, 294
assertions 52
bindings and profiles 52
JITP 186, 193
security token 302
token 201

SASL 465
Scenario 184
Secure Conversation 456
Secure Logging 463
Secure Networks and Operating Systems 463
Secure Sockets Layer

see SSL
Security

Policy Expression 464
STS 464
Token 464
Token Service 464
triangle 20

Security Assertion Markup Language
see SAML

Security Token Service 152
476 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Self-assertion 16
Service

End Point Policy 464
oriented architecture 28
Provider 465
provider automation 13
Provider Integration 173, 175–176, 178

Service Oriented Architecture 6, 464
Services

Authorization Services 97
-based delivery model 28
Identity Services 97
Key Services 96
Session Management Services 97
single sign-on services 97
Trust Services 92

Session Management 63
Session timeout 166
Seurity Token Service 464
Sharing authentication credentials 43
Sharing profile attributes 43
Sharing transactional attributes 43
Shibboleth 51, 53
Signature 464
Signed Security Token 464
sign-in 464
sign-out 464
Simple and Protected GSS-API Negotiation Mecha-
nism 464
Simple Authentication and Security Layer 465
Simple Object Access Protocol

see SOAP
single log-out 54
single sign-off 55, 106
single sign-on 227
Single-Sign-On 193
SLO 54, 465
Smart card 465
SMS 89
SOA 6, 464
SOAP 141, 195, 465

message exchanges 57
message security 57

SOAP/HTTP 247, 262
SP 465
SPI 465
SPNEGO 194, 296, 464
SPS 465
SSL 50, 52, 141, 195, 464

end-to-end 52
granularity 52

SSO 54–55, 105, 193, 465
protocol functionality 105
protocol service 465

Stateful Packet Inspection 465
Switch 465

T
T IM 465
TAM 465
TAMTokenGenerator 323
TCPMON 357, 359
TDS 465
TFIM 465

Federated User Lifecycle Management 37, 86
Web Services Provisioning Management 37, 86
Web Services Security Management 37, 86

TIM 174
Tivoli

Tivoli Access Manager Family 171
Tivoli Directory Integrator 171
Tivoli Directory Server 171
Tivoli Identity Manager 171

Tivoli Access Manager binary security token 302
Tivoli Access Manager for eBusiness 136
TLS 465
Transactional attributes 47
Transport Layer Security 52, 465
Trust 465

Circle of Trust 457
Cryptographic elements 92
foundation of trust 15
Partner accreditation 15
Partner identity proofing 15
Partner reputation evaluation 15
Security token 92
Trust and Assurance 15
Trust Domain 465
trust infrastructure 39
Trust Modeling 465
trust relationships 19
Trust Service 51
Trust Services 92
Trusted Third Party 466

TSL 52
 Index 477

U
UDDI 319
Uniform Resource Identifier 466
Uniform Resource Locator 466
URI 466
URL 466
user account creation 42
user enrollment 38
User lifecycle management of identities 18
User provisioning 23
User registration 24
Username token 302

V
Validation Service 466
Virtual Organization Polices 466

W
WAP 466
WAYF 109, 466
Web 466
Web Services 466

Description Language 466
Provisioning 467
Security Management 190, 291
Security roadmap 28
Security Specifications 28
Trust 466
WSDL 466
WS-Federation 28
WS-Policy 28
WS-Security 28, 291, 466
WS-Trust 28, 292, 466

Web services provider 156
Web services requestor 155
WebSEAL 89, 172, 203, 223, 296
WebSphere 291
WebSphere Application Server 178, 185
Where are you from 109
Wireless Application Protocol 466

WAP 466
Wireless Markup Language 467

WML 467
WS Federation

WS-FED 55
WS-FEDACT 56
WS-FEDPASS 56

WS-Federation 29, 52, 55, 59, 151, 186, 219, 227,

293
Active 55
Passive 55

WSP 467
WS-Security 57
WSSM 190

Token Consumer 305
Token Generator 304

X
X.500 461
X.509 142, 467
X509 Credential token 302
XML 467
XML signature 312
XSL 146, 160, 467
478 Federated Identity Management and Web Services Security with IBM Tivoli Security Solutions

Federated Identity M
anagem

ent and W
eb Services Security

Federated Identity M
anagem

ent
and W

eb Services Security
w

ith IBM
 Tivoli Security Solutions

Federated Identity
M

anagem
ent and W

eb
Services Security w

ith IBM

Federated Identity M
anagem

ent and W
eb Services Security w

ith IBM

Federated Identity
M

anagem
ent and W

eb
Services Security w

ith

Federated Identity
M

anagem
ent and W

eb
Services Security w

ith

®

SG24-6394-01 ISBN 0738492892

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Federated Identity
Management and
Web Services Security
with IBM Tivoli Security Solutions
Introduction to Web
services security
standards

Complete product
architecture and
component
discussion

Extensive federation
business scenario

Today, companies have no way to trust identities belonging to
their partners, suppliers, contracts and their outsourcers. This
lack of trust means companies end-up creating online
identities (and passwords) for all users. This approach is very
costly, inefficient, and creates user frustration with multiple
accounts and registrations for each Web Site. Federation is
the set of business and technology agreements as well as
policies that enable companies to optimally pursue business
automation goals that best align with their business model, IT
policies, security and privacy goals and requirements.

This book takes a close look at the trust infrastructure over
which business federations are implemented. We cover
important aspects of utilizing the Tivoli integrated identity
management architecture in order to build and deploy the
Tivoli Federated Identity Management and Web Services
Security components, which consist of Tivoli Federated
Identity Manager, IBM WebSphere Application Server, and the
IBM Integrated Solutions Console.

This book is a valuable resource for security officers,
administrators and architects who wish to understand and
implement Web Services security and federated identity
management.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Architecture and design
	Chapter 1. Business context for identity federation
	1.1 Federated identity
	1.2 Business environment
	1.2.1 Deconstruction of the enterprise
	1.2.2 Enterprise re-aggregation
	1.2.3 High-level example of a re-aggregated business
	1.2.4 Business models for federated identity
	1.2.5 The relationship - Trust and assurance

	1.3 IT environment
	1.3.1 The role of identity management
	1.3.2 Dealing with identities
	1.3.3 User life cycle management
	1.3.4 Inter-enterprise application to application integration
	1.3.5 Open standards

	1.4 Conclusion

	Chapter 2. Architecting an identity federation
	2.1 Federation example
	2.2 Federated identity management architecture
	2.2.1 Background to federation
	2.2.2 Architecture overview
	2.2.3 Roles
	2.2.4 Identity models
	2.2.5 Identity attributes
	2.2.6 Trust
	2.2.7 Federation protocol

	2.3 FIM standards and efforts
	2.3.1 SSL/TSL
	2.3.2 Security Assertion Markup Language (SAML)
	2.3.3 Shibboleth
	2.3.4 Liberty
	2.3.5 WS-Federation
	2.3.6 WS-Trust
	2.3.7 WS-Security
	2.3.8 WS-Provisioning
	2.3.9 Selecting Federation standards

	2.4 Federated single sign-on
	2.4.1 Push and Pull SSO
	2.4.2 Account linking
	2.4.3 Where are you from (WAYF)
	2.4.4 Session management and access rights
	2.4.5 Logout
	2.4.6 Credentials clean up
	2.4.7 Global good-bye
	2.4.8 Account de-linking

	2.5 Web services security management
	2.5.1 Web services
	2.5.2 Web services security
	2.5.3 Gateways

	2.6 Federated identity provisioning
	2.7 On demand security reference architecture
	2.7.1 Policy management
	2.7.2 Identity management
	2.7.3 Key management
	2.7.4 Credential exchange
	2.7.5 Identity federation
	2.7.6 Authorization

	2.8 On demand integration reference architecture
	2.8.1 Connectivity services
	2.8.2 User interaction services
	2.8.3 Application and information assets
	2.8.4 Business application services
	2.8.5 Partner services
	2.8.6 Infrastructure services

	2.9 Method for architecting secure solution
	2.9.1 Implementation flow
	2.9.2 Definition phase of a federated identity management solution

	2.10 Conclusion

	Chapter 3. Tivoli Federated Identity Manager architecture
	3.1 Federated Identity Management functionality
	3.2 Federation services
	3.2.1 Point of contact (PoC)
	3.2.2 Single sign-on protocol services (SPS)
	3.2.3 Trust services
	3.2.4 Key services (KESS)
	3.2.5 Identity services
	3.2.6 Authorization services
	3.2.7 Provisioning services
	3.2.8 Management Services

	3.3 Federated single sign-on
	3.3.1 Architecture overview
	3.3.2 Trust in F-SSO
	3.3.3 F-SSO protocol functionality
	3.3.4 Integrating SSO with Access Manager for e-business
	3.3.5 F-SSO approaches
	3.3.6 InfoService
	3.3.7 Specified level view of F-SSO architecture

	3.4 Web services security management
	3.4.1 Architecture overview
	3.4.2 WS-Security
	3.4.3 Web services Gateway or Firewall
	3.4.4 WS-Trust
	3.4.5 Authorization services (AS)
	3.4.6 Web services security management architecture approach

	3.5 Provisioning services
	3.5.1 Architecture overview
	3.5.2 Provisioning architecture approach

	3.6 Conclusion

	Chapter 4. Deploying Tivoli Federated Identity Manager
	4.1 Federated SSO architecture patterns
	4.1.1 Architecture approach
	4.1.2 Base pattern
	4.1.3 Plug-in pattern
	4.1.4 Lightweight Access Manager for e-business pattern
	4.1.5 Highly available architecture patterns
	4.1.6 Multiple data center patterns

	4.2 Federated Web services architecture patterns
	4.2.1 Architecture approach
	4.2.2 Point-to-point pattern
	4.2.3 XML gateway pattern

	4.3 Integrating applications into an F-SSO environment
	4.3.1 Attribute flow between providers
	4.3.2 User-controlled federated life cycle management
	4.3.3 Customized user-managed federation management

	4.4 Customizing F-SSO
	4.4.1 Customizing page templates
	4.4.2 Customizing Access Manager for e-business page templates
	4.4.3 Storing aliases

	4.5 Solution design considerations
	4.5.1 Exchanging metadata with your partners
	4.5.2 Availability of IBM Access Manager for e-business policy server
	4.5.3 Key management
	4.5.4 Session timeout
	4.5.5 Application logout

	4.6 Conclusion

	Chapter 5. Integrating with IBM identity management offerings
	5.1 IBM Tivoli Access Manager for e-business
	5.1.1 Identity provider integration
	5.1.2 Service provider integration

	5.2 IBM Tivoli Identity Manager
	5.2.1 Identity provider integration
	5.2.2 Service provider integration

	5.3 IBM Tivoli Directory Integrator
	5.3.1 Identity provider integration
	5.3.2 Service provider integration

	5.4 IBM Tivoli Directory Server
	5.4.1 Identity provider integration
	5.4.2 Service provider integration

	5.5 IBM WebSphere Application Server
	5.5.1 Integrated Solutions Console (ISC)

	Part 2 Customer environment
	Chapter 6. Overview
	6.1 Use case 1 - SAML/JITP
	6.2 Use case 2 - WS-Federation
	6.3 Use case 3 - Liberty
	6.4 Use case 4 - Web services security management
	6.5 Conclusions

	Chapter 7. Use case 1 - SAML/JITP
	7.1 Scenario details
	7.1.1 Contract
	7.1.2 User experience

	7.2 Functionality
	7.2.1 Single sign-on - SPNEGO
	7.2.2 Single sign-on - SAML/JITP

	7.3 Partners involved
	7.3.1 BigCorp
	7.3.2 RBTravel

	7.4 Interaction description
	7.4.1 High-level Interaction overview
	7.4.2 Single sign-on from Windows workstation (SPNEGO)
	7.4.3 Single sign-on from BigCorp to RBTravel (SAML/JITP)

	7.5 Configuration data
	7.5.1 IdP-related configuration data
	7.5.2 SP-related configuration data at RBTravel

	7.6 Assumptions/implementation notes

	Chapter 8. Use case 2 - WS-Federation
	8.1 Scenario details
	8.2 Contract
	8.3 User experience
	8.3.1 Single sign-on user experience
	8.3.2 Sign-off user experience

	8.4 Functionality
	8.4.1 Single sign-on - WS-Federation

	8.5 Partners involved
	8.5.1 BigCorp
	8.5.2 RBTelco

	8.6 Interaction description
	8.7 Configuration data
	8.7.1 Identity provider configuration at BigCorp
	8.7.2 Service provider configuration at RBTelco

	8.8 Assumptions/implementation notes
	8.8.1 Understanding the many-to-one user identity mapping

	Chapter 9. Use case 3 - Liberty
	9.1 Scenario details
	9.1.1 Contract
	9.1.2 User experience

	9.2 Functionality
	9.3 Partners involved
	9.3.1 RBTelco
	9.3.2 RBTickets
	9.3.3 RBBanking

	9.4 Interaction description
	9.4.1 Liberty account federation
	9.4.2 Single sign-on to partners (Liberty)
	9.4.3 Single sign-off

	9.5 Configuration data
	9.5.1 Identity provider configuration at RBTelco
	9.5.2 RBTickets service provider configuration data
	9.5.3 RBBanking service provider configuration data

	9.6 Assumptions/implementation notes
	9.6.1 InfoService integration
	9.6.2 Page customizations

	Chapter 10. Use case 4 - Web services security management
	10.1 Scenario details
	10.1.1 Contract
	10.1.2 User experience

	10.2 Functionality
	10.2.1 Web services security management at RBTelco
	10.2.2 Web services security management at RBStocks

	10.3 Partners involved
	10.3.1 RBTelco
	10.3.2 RBStocks

	10.4 Interaction description
	10.4.1 Web services security management Token Generator with Access Manager binary security token callback handler
	10.4.2 Web services security management Token Consumer with Access Manager Credential login module
	10.4.3 Web services security management Token Generator with Web services security management Callback handler
	10.4.4 Web services security management Token Consumer with SAML Assertion login module

	10.5 Configuration data
	10.5.1 Overall architecture and prerequisites
	10.5.2 RBTelco configuration
	10.5.3 Outbound Web services gateway configuration
	10.5.4 RBStocks configuration

	10.6 Troubleshooting
	10.6.1 Using the logs for Web services security management
	10.6.2 Using the logs for the Secure Token Service
	10.6.3 Using the WebSphere logs
	10.6.4 Using TCPMON

	Part 3 Appendixes
	Appendix A. Configuring Access Manager WebSEAL and Web plug-in
	Introduction
	Identity provider integration
	Configuring WebSEAL as an identity provider
	Updating WebSEAL configuration file
	Configuring a junction to Tivoli Federated Identity Manager
	Configuring extended attributes for credentials in WebSEAL

	Configuring Web plug-ins as an identity provider
	Updating Web plug-in configuration file
	Configuring extended attributes for credentials in Web plug-ins

	Service provider integration
	External Authentication Interface
	Trigger URIs
	EAI headers
	External Authentication Interface example
	EAI header variables reference

	Configuring WebSEAL as a service provider
	Updating WebSEAL configuration file
	Configuring a junction to Tivoli Federated Identity Manager
	Access Manager policy for trigger URLs for EAI
	Sending extended attributes as HTTP headers with WebSEAL

	Configuring Web plug-ins as a service provider
	Updating Web plug-in configuration file
	Access Manager policy for trigger URLs
	Sending extended attributes as HTTP headers with Web plug-ins

	Appendix B. Identity mapping rules
	Authoring identity mapping rules
	STSUniversalUser schema
	Mapping between STSUniversalUser and native tokens
	Tivoli Access Manager credential
	SAML 1.0 token
	SAML 1.1 token
	Liberty 1.1 token
	Liberty 1.2 token
	UsernameToken token

	Calling Java code from mapping rules
	Learning how to call Java from XSL
	Distributing Java code

	Developer tricks for mapping rules
	Working with Access Manager credentials
	Testing XSL rules

	Scenario mapping rules
	Use case 1 mapping rules
	BigCorp mapping for use case 1
	RBTravel mapping for use case 1

	Use case 2 mapping rules
	BigCorp mapping for use case 2
	RBTelco mapping for use case 2

	Use case 3 mapping rules
	RBTelco mapping for use case 3
	RBBanking mapping for use case 3
	RBTickets mapping for use case 3

	Use case 4 mapping rules
	RBTelco mapping for use case 4
	RBStocks mapping for use case 4

	Appendix C. Keys and certificates
	Keys and certificates
	Required keys
	Keystore layout
	Keystores for BigCorp
	Keystores for RBTravel
	Keystores for RBTelco
	Keystores for RBBanking
	Keystores for RBTickets
	Keystores for RBStocks

	Importing keys

	Appendix D. WS-Security deployment descriptors
	Web services client at RBTelco
	RBTelco client extension configuration
	RBTelco client binding configuration
	Web services gateway at RBTelco
	RBTelco WSGW server configuration
	RBTelco WSGW server extension configuration
	RBTelco WSGW server binding configuration

	RBTelco WSGW client configuration
	RBTelco WSGW client extension configuration
	RBTelco WSGW client binding configuration

	Web services server RBStocks
	RBStocks server extension configuration
	RBStocks server binding configuration

	Glossary
	Related publications
	IBM Federated Identity Manager manuals
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

