

ibm.com/redbooks

Identity Management
Advanced Design
for IBM Tivoli Identity Manager

Axel Buecker
Andrew Annas

Alessandro Faustini
Takayoshi Sanui

Complete self-care scenario using
workflow, lifecycle rules, and certification

High availability scenario for
WebSphere, DB2, and LDAP

Addressing compliance
with audit and reporting

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Identity Management Advanced Design for IBM
Tivoli Identity Manager

August 2006

International Technical Support Organization

SG24-7242-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2006)

This edition applies to IBM Tivoli Identity Manager Version 4.6.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . xi
Comments welcome. xi

Part 1. Advanced Identity Topics . 1

Chapter 1. Advanced design overview . 3
1.1 Understanding the system architecture. 4

1.1.1 Logical component architecture . 4
1.1.2 Web User Interface Layer . 5
1.1.3 Applications Layer. 7
1.1.4 Services Layer . 9
1.1.5 LDAP Directory . 11
1.1.6 Database. 11
1.1.7 Resource connectivity . 12

1.2 Application Programming Interface (API) . 13
1.2.1 Application API . 15
1.2.2 Authentication API. 17
1.2.3 Data Services . 19
1.2.4 Logging . 39
1.2.5 Mail . 40
1.2.6 Policy. 41
1.2.7 Password rules . 43
1.2.8 Remote Services. 46
1.2.9 Workflow . 47
1.2.10 FESI extensions . 55

1.3 Workflow . 55
1.3.1 Script nodes . 56
1.3.2 Workflow extensions . 56

1.4 Custom service provider . 57
1.5 Custom reporting. 58
1.6 Conclusion. 58

Chapter 2. Architect a high availability solution . 61
2.1 Application server . 63
© Copyright IBM Corp. 2006. All rights reserved. iii

2.2 Directory server . 67
2.2.1 Manual failover to secondary LDAP . 69
2.2.2 Automated failover to secondary LDAP . 71

2.3 Relational database. 73
2.3.1 Operating system cluster with DB2 active/standby 74
2.3.2 DB2 mutual takeover multiple partition . 74
2.3.3 DB2 High Availability Disaster Recovery (HADR). 75

2.4 Identity Manager adapters. 76
2.4.1 Manual failover to secondary adapter . 78
2.4.2 Automated failover to secondary adapter . 79
2.4.3 Event notification on an HA adapter configuration 81

2.5 Physical HA component architecture . 83
2.5.1 Component configuration and placement . 83
2.5.2 Network zones . 84

2.6 Security and integrity for high availability . 87
2.7 Conclusion. 90

Part 2. Customer Scenario . 93

Chapter 3. Tivoli Austin Airlines, Inc. . 95
3.1 Company profile . 95

3.1.1 Geographic distribution of TAA . 96
3.1.2 Organization of TAA . 99
3.1.3 HR and personnel procedures . 101

3.2 Current IT architecture . 102
3.2.1 Overview of the TAA network . 102
3.2.2 TAA’s e-business initiative . 104
3.2.3 Security infrastructure for the e-business initiative 105
3.2.4 Secured e-business initiative architecture. 106
3.2.5 Identity management and emerging issues 109

3.3 Corporate business vision and objectives . 110
3.4 Project layout and implementation phases . 111

Chapter 4. Project design . 113
4.1 Business requirements . 113
4.2 Functional requirements . 114
4.3 Design approach . 117
4.4 Implementation approach . 118

4.4.1 Non-functional requirements . 118
4.4.2 Requirement priorities . 119
4.4.3 Implementation tasks and efforts . 119
4.4.4 Project phases . 119

Chapter 5. Technical implementation phase I. 121
iv Identity Management Advanced Design for IBM Tivoli Identity Manager

5.1 TAA’s high availability scenario. 121
5.1.1 Requirements . 121
5.1.2 TAA’s high availability planning. 123

5.2 Application server high availability . 125
5.2.1 Requirements . 125
5.2.2 Design considerations. 125
5.2.3 Application server high availability implementation. 126

5.3 Relational database high availability . 132
5.3.1 Requirements . 132
5.3.2 Design considerations. 132
5.3.3 Relational database high availability implementation 133

5.4 Directory Server high availability . 152
5.4.1 Requirements . 153
5.4.2 Design considerations. 153
5.4.3 TAA’s Directory Server high availability implementation. 153

5.5 Conclusion. 206

Chapter 6. Technical implementation phase II . 209
6.1 Self-care . 211

6.1.1 Requirements . 211
6.1.2 Design considerations. 212
6.1.3 TAA’s implementation . 212

6.2 Delegated administration. 230
6.2.1 Requirements . 230
6.2.2 Design considerations. 230
6.2.3 TAA’s implementation . 233

6.3 Advanced custom report design . 248
6.3.1 Requirements . 249
6.3.2 Design considerations. 249
6.3.3 TAA’s implementation . 251

6.4 Automated operation report delivery . 269
6.4.1 Requirements . 269
6.4.2 Design considerations. 270
6.4.3 TAA’s implementation . 271

6.5 Recertification process . 290
6.5.1 Requirements . 290
6.5.2 Design considerations. 290
6.5.3 TAA’s implementation . 291

6.6 Conclusion. 309

Part 3. Appendixes . 311

Appendix A. Corporate policy and standards . 313
Standards, practices, and procedures . 315
 Contents v

Practical example . 315
External standards and certifications . 316

Industry specific requirements . 317
Product or solution certifications . 317
Nationally and internationally recognized standards. 318
Legal requirements . 318
Summary. 319

Appendix B. Source code . 321
BulkFeedAdminDomain.java . 322
AdminDomainModelExtension.java . 327
AbstractExtension.java. 330
AbstractExtension.java. 333
applicationServlet.java . 340
applications.jsp. 356
application_sub.jsp. 360
todolistServlet.java . 363
todolist.jsp . 371
mainServlet.java. 376
main.jsp . 381

Appendix C. Tivoli Directory Server proxy server 385

Appendix D. Additional material . 389
Locating the Web material . 389
Using the Web material . 390

System requirements for downloading the Web material 390
How to use the Web material . 390

Glossary . 395

Related publications . 403
IBM Redbooks . 403
Other publications . 403
Online resources . 404
How to get IBM Redbooks . 404
Help from IBM . 404

Index . 405
vi Identity Management Advanced Design for IBM Tivoli Identity Manager

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
xSeries®
z/OS®
AIX®
DB2 Universal Database™

DB2®
HACMP™
IBM®
Lotus Notes®
Lotus®
Notes®

Redbooks™
RACF®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript,
JavaServer, JavaServer Pages, JDBC, JSP, JVM, J2EE, Solaris, Sun, Sun Microsystems, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Active Directory, JScript, Windows NT, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Mozilla, Firefox, Thunderbird, Mozilla logo, the Firefox logo and the Thunderbird logo are trademarks or
registered trademarks of Mozilla in the United States, other countries or both

Other company, product, or service names may be trademarks or service marks of others.
viii Identity Management Advanced Design for IBM Tivoli Identity Manager

Preface

Identity and user lifecycle management projects are being deployed more and
more frequently - and demand is growing. By demonstrating how IBM® Tivoli®
Identity Manager can be made resilient and adapted to special functional
requirements, this IBM Redbook creates or enhances confidence in the IBM
Tivoli Identity Manager-based solution for senior management, architects, and
security administrators.

Advanced design topics can start with infrastructure availability for all involved
components, Web application and database server clustering as well as LDAP
multi-master setups. Advanced care topics can continue with compliance
challenges addressing enhanced auditing and reporting, and designing and
creating your own self-care and self-registration application environment that
embraces external users and business partners, offering fine-tuned workflow
options and lifecycle management capabilities.

The powerful features and extensions of IBM Tivoli Identity Manager is opening
doors into a world of advanced design and customization for every identity
management challenge you might encounter.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Axel Buecker is a Certified Consulting Software IT Specialist at the International
Technical Support Organization, Austin Center. He writes extensively and
teaches IBM classes worldwide about areas of Software Security Architecture
and Network Computing Technologies. He holds a degree in computer science
from the University of Bremen, Germany. He has 20 years of experience in a
variety of areas related to Workstation and Systems Management, Network
Computing, and e-business Solutions. Before joining the ITSO in March 2000,
Axel worked for IBM in Germany as a Senior IT Specialist in Software Security
Architecture.

Andrew Annas is a Senior IT Specialist with IBM Tivoli Software in the United
States. He often teaches classes about deploying and customizing IBM Tivoli
Identity Manager. He has five years of experience in identity management and
twelve years experience in the deployment of enterprise software applications.
He holds a degree in Computer Science from the University of California, Irvine.
© Copyright IBM Corp. 2006. All rights reserved. ix

Alessandro Faustini is an IT Specialist in IBM Software Group, Italy. He joined
IBM in 2000 and has a three-year history in security and systems management
solutions. His product experience includes the Tivoli Identity Manager, Tivoli
Access Manager, and Tivoli Federated Identity Manager. He holds a degree in
Electronic Engineering from University “La Sapienza” in Rome.

Takayoshi Sanui is an IT Specialist in IBM Japan Systems Engineering. He has
four years of experience in identity management and IT security. He has also
been teaching classes about Tivoli security products in Japan. He holds a degree
in Computer Science from the Tokyo Institute of Technology.

From left to right: Axel, Andrew, Takayoshi, and Alessandro

Thanks to the following people for their contributions to this project:

Leslie Parham
International Technical Support Organization, San Jose Center

Alex Amies, Dave Bachmann, Chris Bauserman, Brian Davis, Mark
McConaughy, Connie Nelin, Casey Peel, Jeffrey Robke, Thomas Sharp, Jim
Sides, James Sun, and Weibo Yuan
IBM US
x Identity Management Advanced Design for IBM Tivoli Identity Manager

Gene Kligerman, Dale McInnis, and Vivien Page
IBM Canada

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Identity Management Advanced Design for IBM Tivoli Identity Manager

Part 1 Advanced
Identity Topics

In this part, we introduce advanced identity management topics, specifically, the
Application Programing Interfaces (APIs) of IBM Tivoli Identity Manager 4.6, and
what you can achieve by using these APIs as well as high availability scenarios.
Identity Manager can handle a multitude of integration aspects and many IT
infrastructures, Web portals, and application environments, which we describe in
detail throughout this part of the book. After we discuss the advanced topics,
Part 2, “Customer Scenario” on page 93 provides a more solution-oriented,
scenario-based approach to the topics discussed in this part.

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 1. Advanced design overview

This chapter introduces the high-level components and new concepts for the
design of advanced identity management solutions.

This chapter provides you with an understanding of the following IBM Tivoli
Identity Manager topics:

� The high-level logical component architecture
� The various internal modules and subprocesses
� The high-level physical architecture

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Understanding the system architecture
In order to understand IBM Tivoli Identity Manager system architecture and how
to utilize its capabilities, it is important to understand how the architecture is laid
out logically. In the following section, we explain the logical components of the
Identity Manager architecture.

1.1.1 Logical component architecture
IBM Tivoli Identity Manager can be thought of logically as having two primary
areas of functionality: presentation and provisioning. The presentation
functionality is represented logically by the Web User Interface, and provisioning
can be thought of as the provisioning platform. The provisioning platform can be
further logically divided into two more layers of functionality, the applications
layer and that of the core services layer. The applications layer acts as an
external interface to core services from both the Web User Interface and external
applications such as an identity store or other types of applications. In Figure 1-1
on page 5, we depict these three functional areas graphically, showing the
Identity Manager API and the two functional areas we have just described.
4 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-1 IBM Tivoli Identity Manager logical architecture

The following sections cover each individual layer in more detail.

1.1.2 Web User Interface Layer
The Web User Interface is a set of combined subprocesses that provide all the
applications of the Applications layer content to a user’s browser as well as the
initiation of applets (both run on the client and the server), such as the Workflow
Design and the Form Creation.

Figure 1-2 on page 6 is a graphical representation of the Web User Interface
followed by a description of each of the modules shown.

A p p lic a tio n

S e rv ic e

L D A P D a ta b a s e

A p p lic a tio n

A d a p te r

R D B M S

A d a p te r

O p e ra tin g
S y s te m

A d a p te r

 E n d U s e r
B ro w s e r

T ra n s a c tio n a l/
S c h e d u lin g /H is to r ic a l

D a ta

Id e n titie s ,
A c c o u n ts , R o le s ,

O rg C h a rt, P o lic ie s ,
W o rk flo w

Id e n tity S to re

W e b U s e r
In te r fa c e

J a v a / X M L A P I

E x te rn a l
A p p lic a tio n
 Chapter 1. Advanced design overview 5

Figure 1-2 Web User Interface module subprocesses

Menu System
The Menu System module provides a consistent menu and shortcut mechanisms
that are used for navigation throughout the user interface.

Form Rendering
The Form Rendering module provides the run-time interpreter to display the
customized forms designed in the Form Design module.

Search
The Search module provides a framework for general and more specific search
interfaces to be used throughout the user interface.

Form Design
The Form Design module provides a near WYSIWYG (What You See Is What
You Get) user interface design environment for customizing the forms that
display information about the entities managed through the user interface. This
module makes use of applets for its more flexible demands.

Organization Tree
The Organization Tree module provides the graphical tree representation of the
organizational structure in which entities managed through the user interface are
logically stored.

Desktop
The Desktop module provides a framework for providing a consistent layout in
the pages displayed in the user interface. It is within this framework that products
of the other Web User Interface modules are displayed, such as the Menu
System and Organization Tree.

Interface
Web User Interface

Menu System Form
Rendering Search

Organization
Tree Desktop Workflow

Design

Form Design

Application
Interface
6 Identity Management Advanced Design for IBM Tivoli Identity Manager

Workflow Design
The Workflow Design module provides a graphical workflow design environment.
A workflow process consists of a set of activities that are executed in an ordered
fashion according to conditional transitions. The designer provides a graphical
way of defining such a workflow process. This module makes use of applets for
its more flexible demands.

Application Interface
The Application Interface module consists of all application-specific user
interface components. For example, the interfaces required to create a
provisioning policy or an account are organized into this module. This module
makes use of other modules in the Web User Interface subsystem, such as the
Form Rendering and Search modules.

1.1.3 Applications Layer
The applications layer is the remoteable external interface used to access all
publicly available provisioning functions.

The Applications subsystem contains all modules that provide provisioning
specific capabilities, such as identity management, account management, and
policy management. Each application makes use of the core services in the
Services layer to achieve its goals. It is the Applications module that provides the
external interface to the provisioning platform. Figure 1-3 is a graphical
representation of the Applications Interface followed by a description of each of
the modules shown.

Figure 1-3 Applications module subprocesses

System Configuration
The System Configuration module provides the capabilities required to manage
the IBM Tivoli Identity Manager system, such as defining behavioral properties.

A p p lica tio n s

S ys tem
C on figu ra tion

R epo rting

P o licy
M anagem en t

A ccoun t
M anagem en t

Iden tity
M anagem en t

E n tity

W ork flow
M anagem en t

M anagem ent
 Chapter 1. Advanced design overview 7

Policy Management
The Policy Management module provides the capabilities to manage the policies
in the system, including provisioning, password, service selection, and identity
policies.

Identity Management
The Identity Management module provides the capabilities required to manage
identities, such as their addition, removal, suspension, reinstatement, transferal,
and modification, including the changing of roles. The definition of roles,
including dynamic roles, is also included in this module.

Workflow Management
The Workflow Management module provides the capabilities required to manage
workflow processes, such as their addition, modification, and removal. The ability
to view the status and details of active and historical processes is also provided
in this module.

Reporting
The Reporting module provides the canned report capabilities of the system.
This module provides the query and formatting of the reports driven from the
user interface.

Account Management
The Account Management module provides the capabilities required to manage
accounts, such as their addition, removal, suspension, reinstatement, and
modification.

Entity Management
The Entity Management module provides the capabilities required to manage the
types of entities managed by the system, such as types of identities and
accounts. This includes the ability to define the schema for the entity type, the
operations the entity type can support, and the lifecycle of the entity type.

Note: Sitting between the Web user interface and the Applications layer in
Figure 1-1 on page 5 is the public Java™ API. This API provides a set of Java
classes that abstracts the more commonly used functions of the provisioning
platform, such as identity management, password management, and account
management. The classes that make up this API are the same classes the
Identity Manager product uses for its out-of-the-box user interface.

For more information, refer to documentation provided with the Applications
API in the <ITIM_HOME>/extensions/doc/applications directory.
8 Identity Management Advanced Design for IBM Tivoli Identity Manager

1.1.4 Services Layer
The Core Services subsystem contains all modules that provide general services
that can be used within the context of provisioning, such as authentication,
authorization, workflow, and policy enforcement. These services often make use
of other services to achieve their goals. Figure 1-4 is a graphical representation
of the Services Interface followed by a description of each of the modules shown.

Figure 1-4 Core Services module subprocesses

Authentication
The Authentication module provides a set of authentication implementations that
can be used by clients of the service. Examples of these implementations are
simple password authentication and X.509 certificate authentication. The module
is designed as a framework that can be extended by customers to provide their
own implementations.

Role
The Role module evaluates dynamic memberships to roles. This module is
called upon when an identity or dynamic role definition changes to identify which
identities should be members of dynamic roles.

Policy
The Policy module enforces the policies that associate users with services. The
module ensures that provisioning requests conform to the policies that are
defined. The module resolves the appropriate policies that apply to a user and
determines the services for which that user is authorized. The module validates

Core Services

Managed Services

HR DatastoreWorkflow Database

Authentication

Scheduling

Policy

Messaging Data Services Remote
Services

Workflow AuthorizationRole

Logging

Identity/Operational
Database

Orchestration

Mail
 Chapter 1. Advanced design overview 9

and generates passwords. The module generates identities for users and
accounts.

Orchestration
The Orchestration module provides a coordination service for extensible
operations that are performed on entities and manages the lifecycles of those
entities. For instance, the orchestration module provides an abstraction layer to
the Account Management application for executing the steps needed to provision
an account of a given type. Regardless of the steps involved, which could be
customized or changed, the Account Management module would always use the
same interface to the Orchestration module.

Workflow
The Workflow module executes and tracks transactions within the system. This
would include the provisioning and de-provisioning of a service, a user's status
change, the custom process associated with a provisioning request in the
system, or any other transaction that affects a user's, or group of users', access
to services. Each of these transactions is persistent for fault-tolerant execution
and historical auditing purposes. Clients can query the Workflow module for the
status of the transactions being executed.

Authorization
The Authorization module provides an interface to enforce authorization rules as
clients attempt operations in the system. These rules apply to accessing data
within the system, as well as to operations that can be applied to the system
data.

Scheduling
The Scheduling module provides a timer that notifies clients of timed events for
which they are subscribed. The Scheduling module uses the Messaging module
to notify those clients.

Messaging
The Messaging module provides guaranteed asynchronous messaging to and
between internal modules in the architecture. The module relies heavily on the
Java Message Service (JMS) specification to provide support for multiple
messaging middleware vendor implementations.

Note: The clients discussed in this section are internal to Identity Manager.
For example, workflow is a client to scheduling; it uses scheduling to allow
workflows to start at a later date instead of immediately.
10 Identity Management Advanced Design for IBM Tivoli Identity Manager

Data Services
The Data Services module provides a logical view of the data in persistent
storage (LDAPv3 directory) in a manner that is independent of the type of data
source that holds the data. The model abstracts the details of the stored data into
more usable constructs, such as Users, Groups, and Services. The model also
provides an extendable interface to allow for customized attributes that
correspond to these constructs. Metadata information about the persistent data
can also be retrieved using this module.

Remote Services
The Remote Services module provides the interaction with the external systems
for provisioning and de-provisioning services. The synchronization of service
information and user information is also performed within this module. The
module is designed as a framework that can be extended by customers to
provide their own implementations of provisioning and de-provisioning of
services. This allows the platform to easily support different protocols and APIs
that may be supported by the resources to be provisioned.

Logging
The Logging module provides a common logging interface to all other modules.

Mail
The Mail module provides an interface for notifying users via a messaging
system, such as e-mail. The module is configurable to accommodate different
messaging systems.

1.1.5 LDAP Directory
The IBM Tivoli Identity Manager system uses an LDAPv3 directory server as its
primary repository for storing the current state of the enterprise it is managing.
This state information includes the identities, accounts, roles, organization chart,
policies, and workflow designs.

More details about the LDAP Directory and its schema are available in the IBM
Tivoli Identity Manager Database and Schema Reference Version 4.6,
SC32-1769.

1.1.6 Database
A relational database is used to store all transactional, reporting, and schedule
information. Typically, this information is temporary for the currently executing
transactions, but there is also historical information that is stored indefinitely to
provide an audit trail of all transactions that the system has executed.
 Chapter 1. Advanced design overview 11

More details about the database and its schema are available in IBM Tivoli
Identity Manager Database and Schema Reference Version 4.6, SC32-1769.

1.1.7 Resource connectivity
The back-end resources that are being provisioned by IBM Tivoli Identity
Manager are generally very diverse in their capabilities and interfaces. The IBM
Tivoli Identity Manager system itself provides an extensible framework for
adapting to these differences in order to communicate directly with the resource.
For a more distributed computing alternative, a built-in capability to communicate
with a remote adapter is provided. The adapters typically use an XML-based
protocol, either Directory Access Markup Language (DAML) or Directory Service
Markup Language (DSML Version 2), as a communications mechanism.

Directory Access Markup Language connectivity
DAML is a proprietary XML message format used when communicating with one
of IBM Tivoli Identity Manager’s standalone adapters. These adapters are
programs installed on either the managed resource or on a host that can manage
the resource through a remote administration API.

DAML is a simple XML schema definition that enables the encoding of identity
information in the form of an XML document so that it can be easily shared via IP
protocols such as HTTPS, as shown in Figure 1-5.

Figure 1-5 DAML connectivity to a service

Transactions from the IBM Tivoli Identity Manager Server are sent securely via
HTTPS to the service adapter and then processed by the adapter.

For example, if a service has just been connected to the IBM Tivoli Identity
Manager Server, the accounts that already exist on the server can be reconciled

IP
Network

DATA

Identity Manager
Server

Web Interface

Applications

Core Services

DAML over HTTP/S

DAML
Adapter

Service
12 Identity Management Advanced Design for IBM Tivoli Identity Manager

or pulled back in order to import the users’ details into the IBM Tivoli Identity
Manager LDAP directory. If a password change or a provisioning of a new user
occurs, the information is transferred to and then processed by the adapter. The
adapter deposits the new information within the application or operating system
that is managed.

Directory Service Markup Language connectivity
DSMLv2 is an industry standard XML message format for the representation of
directory data and operations. There are no standard IBM Tivoli Identity Manager
adapters that use DSMLv2. Instead, DSMLv2 is used in conjunction with IBM
Tivoli Directory Integrator to create custom adapters.

Directory Integrator provides an easy and flexible way to link IBM Tivoli Identity
Manager to a wide variety of managed resources. Directory Integrator offers
connectors that can be used to manage data in files, directories, databases,
message queues, and many other data sources. It allows you to define, using
simple scripts, how DSMLv2 operations issued by IBM Tivoli Identity Manager
should be translated into operations on the managed resource, as shown in
Figure 1-6.

Figure 1-6 DSMLv2 service communication using IBM Tivoli Directory Integrator

1.2 Application Programming Interface (API)
The API provided for the system is organized into two categories based on their
programming language, Java and JavaScript™. The JavaScript API is used
directly by users of the graphical user interface when defining rules in the
system, such as with identity policies, provisioning policies, and workflow
designs.

IP Network

Service Identity Manager
Server

Applications

Core Services

Web Interface
DATA

DSML v2 over HTTP/S

Directory
Integrator

DSMLv2
Handler

Data
Connector

Scripts
 Chapter 1. Advanced design overview 13

The Java API can be further subdivided into two more categories, an API for
interfacing with the system and an API for extending the system's behavior. In
other words, the interface API allows external programs to direct the provisioning
system to perform some actions or to simply query the provisioning system for
some information. The extension API allows custom Java code to be called from
the provisioning system during its regular flow within the same context (and
JVM™).

Since the interface API can be called by any program that is out of the control of
the provisioning system, a strict security layer is built into it. A JAAS
implementation is provided and required to be used by clients to authenticate
against the Identity Manager user store. Once authenticated, the JAAS principal
must be authorized to execute each API against the requested objects in the
system's data model. This is identical to the security provided by the graphical
user interface of the system. The interface API consists of the following
packages already described:

� Applications
� JAAS
� Identity
� Provisioning
� Workflow
� Search

The extension API can only be called by the provisioning system, or at least
within the same application server. The API is not remoteable. This API is also
used within the provisioning system itself. The functions provided by this API
must be extremely fast and have very little overhead. Due to its restricted use
and overhead requirements, this API does not have a strict security model. The
extension API consists of the following packages already described:

� Authentication (all)
� Data Services
� Model
� Domain
� Logging
� Mail
� Workflow
� Password Rules (all)
� Remote Services
� Provider
� Workflow
� Applications
� Model
� Provisioning
� Query
14 Identity Management Advanced Design for IBM Tivoli Identity Manager

We discuss each one of these API categories in more detail in the following
section.

1.2.1 Application API
The Application package represents the Application subsystem of the System
Architecture. This package contains classes that aggregate the capabilities
provided in the Services subsystem into more abstract provisioning specific
applications, such as those required to manage passwords or accounts. This
package provides the external interface to the provisioning platform for
presentation-oriented clients to use. The applications provided within this
package enforce security for the platform by authenticating all clients and
authorizing all operations.

There are two major areas of distinction in the Application package. One area
contains packages that are not only used by the Identity Manager user interface
tier, but also provided as a public interface, Application Programming Interface
(API). The second area contains packages, which are used solely by the Identity
Manager user interface, and the second area is not provided as a public
interface.

For organization purposes, the public API portion of the Application package has
been broken down into five sub-packages, Identity, Provisioning, Search,
Workflow, and JAAS. The Identity package represents the Identity Management
module in the Applications subsystem of the System Architecture. It contains the
classes that provide the capabilities to manage identities, or people, including
their placement in an organizational chart and their categorization through roles.

The Provisioning package represents the Account Management module in the
Applications subsystem of the System Architecture. At the base level, the
Provisioning package contains the classes that provide the capability for
provisioning the identities to external resources via accounts. This also includes
the management of passwords on those resources. Both packages have a
dependency on the Identity package.

The Workflow package represents the Workflow Management module in the
Applications subsystem of the System Architecture. It contains the classes that
provide the auditing and management capabilities of workflow processes from
the user's perspective. This package provides an authorization layer over the
capabilities of the Workflow package in the Services subsystem. This package
also has a dependency on the Identity package to provide an identity's workflow
assignments.

The Search package contains the classes that provide general search
capabilities over any of the objects managed in the system (identities, accounts,
 Chapter 1. Advanced design overview 15

and so on). This package does not, however, have a dependency on the other
packages listed because it interacts directly with the Data Services architectural
module for these managed objects.

The JAAS package contains JAAS extensions to provide an authentication
mechanism for users of the Application package within the JAAS framework. All
other Application packages have a dependency on this package for identifying
the authenticated user. The JAAS package utilizes the Authentication service to
implement the user authentication. Below in Figure 1-7 is a graphical
representation of these packages and how they interact.

Figure 1-7 Application Public Interface Package Diagram

The root Application package provides general use classes that can be used by
all sub-packages when implementing specific provisioning features. Below in
Figure 1-8 on page 17 is a diagram of the Application class.

identity

workflow
provisioning

search

jaas
16 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-8 Application class diagram

The PlatformContext represents a connection to the provisioning platform. This
PlatformContext is an interface that can be implemented differently depending
on the deployment of the provisioning platform. The different implementations
are constructed using a corresponding implementation of the
PlatformContextFactory.

To help keep the client simple, the InitialPlatformContext class provides an
implementation of the PlatformContext interface that constructs the proper
PlatformContext implementation to communicate with the provisioning platform
using the correct PlatformContextFactory. The client merely has to reference the
correct factory class name during the InitialPlatformContext's construction.

1.2.2 Authentication API
The Authentication package represents the Authentication module within the
Services module of the System Architecture. This package contains the classes
needed to authenticate users of the system using an extensible framework to
allow custom authentication mechanisms to be put in place. A default
implementation for password credentials checked against the platform's data
store is provided.

The Authentication package holds the classes that provide authentication
services for clients. The design of this package is based on a framework to allow
custom authentication implementations to be registered with the system. Below
in Figure 1-9 on page 18 is a graphical representation of these classes and how
they interact.

PlatformContext

getEnvironment()
getEnvProperty()
close()

<<Interface>>

InitialPlatformContext

InitialPlatformContext()

PlatformContextFactory

create()

<<Interface>>

creates
 Chapter 1. Advanced design overview 17

Figure 1-9 Authentication class diagram

The Authenticator interface provides the primary method signature for clients to
request authentication of an identity using a set of credentials. The
AuthenticationAuthority class implements that interface with a flexible
implementation of delegating the implementation of the authentication to an
AuthenticationProvider implementation. This bridge pattern allows for the
Authenticator client interface to be specialized independently of the
implementation mechanisms. An AuthenticationProviderFactory is used by the
AuthenticationAuthority to construct the provider.

System
The System package is a sub-package of Authentication that provides the Identity
Manager specific implementation of the Authenticator interface that provides the
ultimate flexibility in both selecting implementations of authentication
mechanisms as well as the number of authentication types that are supported
(for example, user certificates, user passwords, distributed agent authentication,
and so on). See Figure 1-10.

Figure 1-10 System authentication class diagram

Authent icator

authenticate()

<<Interface>>
AuthenticationProvider

authenticate()

<<Interface>>

AuthenticationProviderFactory

getProvider()

<<Interface>>

creates

AuthenticationAuthority

delegates authenticat ion

SystemAuthenticationAuthority

getInstance()

Authenticator

authenticate()

(from authentication)

<<Interface>>
18 Identity Management Advanced Design for IBM Tivoli Identity Manager

The SystemAuthenticationAuthority is a singleton class that implements the
Authenticator interface to provide the global authentication service to the
provisioning platform. It is flexible in that it reads from a configuration file the
types of authentication needs required by its clients and the implementations of
those authentication needs. This allows for additional applications to be
developed that can have new authentication needs met very simply without
affecting the implementation of this module, as well as for deployment choices on
how to implement the authentication (for example, using a Windows® NT domain
controller as the authentication store).

1.2.3 Data Services
The Data Services package holds the object-oriented logical representation of the
system's subject data held within persistent storage. The goal of the package is
to provide an intuitive, flexible, and efficient interface to the data repository
without revealing the details of the storage mechanism or format to the
package's client. This package is further divided into the two packages, Model
and Schema.

The Model package itself is quite large. For purposes of organization, the Model
package has been divided into several sub-packages, Domain, Form, Policy,
Workflow, and System. The Policy package holds the data objects relevant to
policies. The Workflow package holds the data objects relevant to workflow
designs. Since policies reference services, roles, and workflow designs, the
Policy package has a dependency on the Domain package. The Domain
package holds the data objects relevant to an organization, such as locations,
people, services, and roles. The System package holds the data objects relevant
to Identity Manager users specifically, such as Identity Manager accounts and
groups for authorization. Since an Identity Manager account must be traced back
to its owner, the System package has a dependency on the Domain also.

The Model and Schema packages represent the modules defined in the System
Architecture for the Data Services subsystem. The Model package provides a
thin abstraction layer above the data store for all persistent objects managed by
the system. The Model package has a dependency on the Schema package for
obtaining schema information needed to efficiently access system data from
persistent storage. See Figure 1-11 on page 20.
 Chapter 1. Advanced design overview 19

Figure 1-11 Data Services Package Diagram

Schema
The Schema package contains a set of objects that represent the schema of the
data store. This interface provides clients the ability to query different aspects of
classes and attributes in the data store, which is particularly useful in this system,
which allows customers to use their own class and attribute definitions within the
data model.

The SchemaAttribute class represents attribute information. This class can be
retrieved independently. In addition to the standard LDAP schema information
about an attribute, additional information, such as whether the attribute is
enumerated and what those enumerations are, is provided by the
AttributeConstraint class, which can be obtained from the SchemaAttribute.

Model
The Model package holds the system's subject data specific to the managed
domain. This includes domain information such as the organization, people,
services, accounts, and policies. Since there are a large number of objects in the
Domain Model package, the Model package has been further subdivided into
several other packages. At the base Model package level, some objects have
been defined that can be used across all objects within the Model sub-packages.

model

schema
20 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-12 ProtectedObject class diagram

The ProtectedObject, depicted in Figure 1-12, is the base interface for all data
objects that are protected through the use of access control information (ACI).
This access control information is stored using the AccessRight class and its
aggregates. The AccessRight objects are used by the Authorization package to
determine whether users of the system are authorized to read or modify the
associated data objects. The AuthorizationOwner class identifies the users of
the system who are allowed to make changes to the AccessRight objects,
therefore, changing the authorization model for the associated data objects.

AttributeRight

isForAllAttributes()
setForAllAttributes()
getAttributes()
getOperations()
setOperations()

Permission

getAction()
setAction()
getAttributeRights()
getClassRights()

0..n

+attribute right

0..n

AccessRight

getName()
setName()
getTarget()
setTarget()
getPermissions()
getPrincipals()
getScope()
setScope()
getRoles()

0..n+permission 0..n

AuthorizationOwner

getOwnerDistinguishedName()
getOwnerCategory()

ProtectedObject

getAuthorizationOwners()
setAuthorizationOwners()
getAccessRights()
setAccessRights()

<<Interface>>

0..n

+access right

0..n

0..n+authorization owner 0..n
 Chapter 1. Advanced design overview 21

Figure 1-13 DirectoryObject class diagram

The DirectoryObjectEntity, shown in Figure 1-13, is the base class for all data
objects that can be represented with a flexible attribute name/value pair retrieval
and update approach. The interface provided easily allows the data storage
representation of these objects to be extended without affecting the software
interfaces. This class can be instantiated on its own if clients wish to retrieve data
objects in a general fashion, or more commonly, this class is inherited from more
specialized semantically meaningful classes found in the Model sub-packages.

The entity can have an optional EntityLifecycleProfile. The
EntityLifecycleProfile holds all lifecycle characteristics that are defined at the
entity level versus the ObjectProfile level. This class is used specifically for
22 Identity Management Advanced Design for IBM Tivoli Identity Manager

workflow-based policy enforcement. Only ServiceEntities (see below) have
EntityLifecycleProfiles in Identity Manager 4.6. The DirectoryObject is the base
interface for all Value Objects that are provided by entities that implement the
DirectoryObjectEntity interface. The DirectoryObject is a subclass of
DirectoryEntry, which holds the interface for a raw directory entry. The
DirectoryObject extends DirectoryEntry for the purposes of representing a
semantic directory entry in the platform's data model. This requires the ability to
map semantic attributes of the platform to customer-supplied raw directory
attributes. The isLifecycleDefined() method is new in Identity Manager 4.6, so
the client can quickly determine if the entity has any lifecycle characteristics.
Each DirectoryObjectEntity has an ObjectProfile associated with it which
defines how the data object fits within the system's semantics needed for
provisioning business logic.

To provide support for a flexible data model where relationships can be added
and queried at run time by clients, the concept of relationships is introduced. The
Relationship interface defines the base requirements for all discoverable
relationships in the data model. For example, simply querying a
DirectoryObjectEntity for a relationship called "parent" can discover the
relationship implementation ContainedEntityParent. An instance of the
DirectoryObjectEntity class returns a ContainedEntityParent instance, but the
client can perform an evaluation of this relationship using the interface provided
by the Relationship object. Specializations of DirectoryObjectEntity might return
a different implementation for the "parent" relationship, but to clients, the
implementation difference is transparent.

There is one supporting search class, DirectoryObjectSearch, to the
DirectoryObjectEntity. The DirectoryObjectSearch class provides the interface
for retrieving DirectoryObjectEntities by either distinguished name or a filter in
the RFC 22561 format.

1 Fore details about RFC 2256, check http://rfc.net/rfc2256.html
 Chapter 1. Advanced design overview 23

http://rfc.net/rfc2256.html

Figure 1-14 ObjectProfile class diagram

ObjectProfileEntity

getDistinguishedName()
getProfile()
update()
remove()

ObjectProfileFactory

create()

ObjectProfileSearch

lookup()
getProfilesInCategory()
getAllServiceProfiles()

ObjectProfile

getDistinguishedName()
getTenantDN()
getName()
setName()
getMappedAttribute()
getAttributeMap()
setAttributeMap()
getCategory()
setCategory()
getCustomClass()
setCustomClass()
getNameAtt ribute()
setNameAtt ribute()
getSearchAtt ribute()
setSearchAtt ribute()
isPasswordAtt ributeExist ()

ProfileLocator

getProfileByName()
getProfileByCategory()
getProfileByClass()
create()
getAllProfiles()
getDefaultProfileNames()
registerProfile()

ObjectProfileCategory

getName()
setName()
<<static>> getCategories()

ObjectProfileOperat
ion

getName()
getType()
getDefinitionDN()
isStatic()
isSystem()
setName()
setType()
setDefinitionDN()
setStatic()
setSystem()

ManagableProfile

addOperation()
getOperation()
setOperation()
removeOperation()
getOperationNames()
setOperations()
getRules()
setRules()

<<Interface>>

0..n

+operation

0..n

Schedulable
(from schedu ling)

<<Interface>>

LifecycleRule

getFilter()
getName()
getOperation()
getSchedule()
setFilter()
setName()
setOperation()
setSchedule()
0..n +rule0..n

+schedule
24 Identity Management Advanced Design for IBM Tivoli Identity Manager

The ObjectProfileEntity class, depicted in Figure 1-14 on page 24, provides
metadata information about how data store object classes represent semantic
data model entities within the provisioning context of the system. For example,
the system allows a customer to use their own LDAP class, Employee, to
represent people within the system. A profile is set up that associates that class
with the Person entity and maps the appropriate attributes of the Employee class
to the semantic personal attributes, such as name, mail, and shared secret. The
ObjectProfile class represents the Value Object for this ObjectProfileEntity. The
ObjectProfile implements the ManageableProfile interface, which defines the
common properties of profiles that have operations. The ObjectProfileOperation
represents a lifecycle operation, which is a named business task implemented
using a workflow process design. The LifecycleRule class represents a lifecycle
rule, which is made up of a filter and an operation. The ObjectProfile and the
ObjectProfileCategory both implement this interface because they both can
have operations defined for them. An ObjectProfile is also defined by belonging
to an ObjectProfileCategory.

The two supporting classes for ObjectProfileEntities are the
ObjectProfileSearch and ObjectProfileFactory classes. The
ObjectProfileSearch provides an interface to retrieve an ObjectProfileEntity by
distinguished name or by category, since that name is unique within the scope of
a single tenant within the system. The ObjectProfileFactory provides the
interface to create a new ObjectProfileEntity in the data store.

Due to the frequency at which clients need to query ObjectProfile information, a
caching strategy is used. The ProfileLocator provides fast access to
ObjectProfiles based on predefined queries. The cache of ObjectProfiles that
the ProfileLocator uses is refreshed on a customer-defined time interval.
Changes made to the profiles are not loaded into the cache until that time
interval.

Figure 1-15 Schema class diagram

Although the Schema package, as described earlier, provides an interface for
obtaining schema information about the data store, clients of the data model
often require this schema information, but with the semantics of the system's
data model intact. For example, customers can map existing classes in the data
store to an entity in the system's data model. The object profile holds the

ModelSchema

getClassNames()
getClassSchem a()
getAttributeSchema()
getClassSuperiors()

SchemaAttribute
(f rom schema)

SchemaClass
(f rom schema) 0..n

0..n
 Chapter 1. Advanced design overview 25

mapping information of the customer's class schema to the semantic schema
information the system requires for its business logic. The ModelSchema class,
shown in Figure 1-15 on page 25, is introduced here to execute these mapping
rules before providing the schema information to the client so that the information
is consistent with the system's business logic. The ModelSchema class also
filters out attributes from classes that are used only internally by the system.

Domain
The Domain package is a sub-package of the Model package that holds the
system's subject data specific to the customer environment, such as people,
roles, services, and the organizational structure this data is placed in.

The organizational structure of the items within the data model is represented by
a handful of classes as shown in Figure 1-16.

Figure 1-16 OrganizationalContainer class diagram

First, the OrganizationalContainerEntity class provides a base interface for all
containers in the organizational structure. This class provides the interface for
traversing the tree through parent relationships, as well as an interface for
querying for dependent entities. The specializations of this class are the
AdminDomainEntity, BusinesssUnitEntity (represents locations and
organizational units), BusinessPartnerOrgEntity, and OrganizationEntity.

OrganizationalContainer

DirectoryObjectEntity
(from model)DirectoryObject

(from model)

OrganizationalContainerSearch

lookup()
searchByFilter()

ContainedEntityParent

Relationship
(from model)

<<Interface>>

OrganizationalContainerEntity

hasDependencies()
getParentContainer()
getLogicalNameContext()

0..1 +parent/parent container0..10..n
26 Identity Management Advanced Design for IBM Tivoli Identity Manager

The DirectorySystemEntity class, shown in Figure 1-17, represents the root of all
domain entities in the system or the root tenant of all domain entities if the
system is deployed as multi-tenant.

Figure 1-17 DirectorySystem class diagram

This entity holds the system-wide, or tenant-wide, properties. The
DirectorySystem class is the value object class for DirectorySystemEntity. The
isPasswordResetRequired() and setPasswordResetRequired() methods replace
the isLostPwdByMail() and setLostPwdByMail() methods in Identity Manager
4.6 for the challenge/response login flow. The Challenge class is new in Identity
Manager 4.6 so that a locale can be associated with the system-defined

DirectorySystemEntity

getChallenges()
setChallenges()
getPOConfiguration()
setPOConfiguration()
getWorkflowConfiguration()
setWorkflowConfiguration()

DirectoryObject
(from model)

DirectorySystemSearch

lookup()
searchById()
lookupDefault()
getAll()

DirectorySystem

isPwdEditAllowed()
setPwdEditAllowed()
getLogonCount()
setLogonCount()
getBucketCount()
isActive()
setPasswordRetrievalExpirationPeriod()
getPasswordRetrievalExpirationPeriod()
getChallengeMode()
setChallengeMode()
getChallengeDefinitionMode()
setChallengeDefinitionMode()
getNumberOfRequiredChallenges()
setNumberOfRequiredChallenges()
getNumberOfRandomChallenges()
setNumberOfRandomChallenges()
isResponseHashedEnabled()
setResponseHashedEnabled()
isChallengeEnabled()
setChallengeEnabled()
getChallengResponseEmail()
setChallengeResponseEmail()
getPasswordExpirationPeriod()
setPasswordExpirationlPeriod()
getResponseLastChanged()
getSuspendMessage()
setSuspendMessage()
isPasswordSynchAllowed()
setPasswordSynchAllowed()
updateResponseLastChanged()
isPasswordResetRequired()
setPasswordResetRequired()

OrganizationalContainerEntity

Challenge

getQuestion()
setQuestion()
getLocale()
setLocale()

POConfiguration

getPODeliveryInterval()
setPODeliveryInterval()
isPOEnabled()
setPOEnabled()
getPONotificationTemplate()
setPONotificationTemplate()NotificationTemplate

getSubject()
setSubject()
getTextBody()
setTextBody()
getHTMLBody()
setHTMLBody()

+template

WorkflowConfiguration

getReminderInterval()
setReminderInterval()
getReminderNotificationTemplate()
setReminderNotificationTemplate()
getActivityNotificationTemplate()
setActivityNotificationTemplate()

+template

DirectoryEntry
(from model) 0..n
 Chapter 1. Advanced design overview 27

challenges. The NotificationTemplate class is new in Identity Manager 4.6 to
describe the template used for messages delivered to users for the Notification
Post Office, To do Item Reminders, and Manual Activity Notification
customization. The POConfiguration class is a value object holding post office
configuration information. The WorkflowConfiguration class is a value object
holding global workflow configuration information. The DirectorySystemSearch
class provides a search capability. The only two search options provided are by
distinguished name or by a unique relative name, the id.

The BusinessUnitEntity, depicted in Figure 1-18, represents both a Location and
an OrganizationalUnit in the organization hierarchy. The entity abstracts
organizational containers with no other distinction other than they all support
being assigned a supervisor.

Figure 1-18 BusinessUnit class diagram

OrganizationalContainerEntity

Supervisor

Relationship
(from model)

<<Interface>>

PersonEntity

BusinessUnitEntity

getSupervisor()
setSupervisor()
getOrganization()

OrganizationEntity

BusinessUnit

OrganizationalContainer

0..1

+supervisor

0..1

+organization
1

BusinessUnitFactory

create()

BusinessUnitSearch

lookup()
searchByFilter()

0..n

1

Location

OrganizationalUnit
28 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-19 AdminDomain class diagram

The AdminDomainEntity, shown in Figure 1-19, represents an administrative
domain container. It distinguishes itself by its ability to associate a set of
administrators with the organizational container.

OrganizationalContainerEntity
AdminDomainAdministrator

OrganizationEntity

PersonEntity

AdminDomainEntity

getAdministrators()
setAdministrators()
addAdministrator()
removeAdministrator()
getOrganization()

Relationship
(from model)

<<Interface>>

AdminDomain

addAdministrator()
removeAdministrator()
setAdministrators()

OrganizationalContainer +organization1

0..1+administrator 0..1

AdminDomainSearch

lookup()
searchByFilter()

AdminDomainFactory

create()

0..n

1

 Chapter 1. Advanced design overview 29

Figure 1-20 PartnerOrganization class diagram

The BusinessPartnerOrgEntity in Figure 1-20 represents a business partner
organization that was designed for holding, but not limited to,
BusinessPartnerEntities. The only real distinction between this container and
other container types is the ability to associate a sponsor with the organizational
container.

OrganizationalContainerEntity

OrganizationEntity

Relationship
(from model)

<<Interface>>

BusinessPartnerOrg

OrganizationalContainer

BusinessPartnerOrgEntity

getSponsor()
setSponsor()
getOrganization()

1 +organization1
PersonEntity

0..1 +sponsor0..1

BusinessPartnerSponsor

BusinessPartnerOrgFactory

create()

BusinessPartnerOrgSearch

lookup()
searchByFilter()

0..n
30 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-21 Organization class diagram

The OrganizationEntity, as shown in Figure 1-21, is a bit different in design to its
organizational container predecessors, because it cannot be nested or have any
parents itself. Other than that, it is quite similar to other organizational containers.

Organization

getStatus()
suspend()
restore()

OrganizationFactory

create()

OrganizationSearch

lookup()
searchByFilter()

OrganizationalContainer OrganizationalContainerEntity

OrganizationParent

Relationship
(from model)

<<Interface>>
DirectorySystem

OrganizationEntity

0..n

+parent
 Chapter 1. Advanced design overview 31

Figure 1-22 Person class diagram

The PersonEntity in Figure 1-22 represents any identity managed by the system
in the data model. In general, these identities are truly human in nature, but can
sometimes represent more, such as a system or job function (administrator). The
PersonEntity provides an interface for all identity relationships needed within the
system. The most noteworthy are an identity's relationship to its accounts and its
affiliation with roles. The Person class is the value object holding attribute
information for a person. The getCreationDate(), setCreationDate(),
getLastStatusChangeDate(), and setLastStatusChangeDate() methods are used
to support Lifecycle Event Information in the schema. The getSynchPassword()
and setSynchPassword() methods are used to synchronize passwords. Two

Person

getAliases()
getMail()
setMail()
getRoles()
addRole()
removeRole()
setRoles()
getCustomAttribute()
getImmediateSupervisor()
setImmediateSupervisor()
getSharedSecret()
setSharedSecret()
getStatus()
setStatus()
suspend()
restore()
getLocale()
setLocale()
getCreationDate()
setCreationDate()
getLastStatusChangeDate()
setLastStatusChangeDate()
getSynchPassword()
setSynchPassword()

PersonFactory

create()

DirectoryObject
(f rom model)

DirectoryObjectEntity
(f rom model)

PersonSearch

lookup()
searchByAlias()
searchByFilter()
searchByRole()

PersonSupervisor Relationship
(f rom model)

<<Interface>>

RoleEntity

OrganizationEntity

BusinessPartnerEntity

getSponsor()
setSponsor()

PersonEntity

getRoles()
setRoles()
addRole()
removeRole()
getSupervisor()
setImmediateSupervisor()
move()
getOrganization()
isMemberOfRole()
getImmediateSupervisor()

0..1

+supervisor

0..1

0..n

0..n +role

0..n+member

0..n

1
+organization

1
0..n

0..1

+sponsor

0..1

0..1

+immediate supervisor

0..1
32 Identity Management Advanced Design for IBM Tivoli Identity Manager

supporting classes are provided, PersonFactory for creation of people in the data
store, and PersonSearch for different searching capabilities.

The BusinessPartnerEntity class is a specialization of the PersonEntity to
represent business partners in the data model. The only real difference for a
business partner is the need to identify a sponsor for the individual.

Figure 1-23 Service class diagram

The HostedServiceEntity class, shown in Figure 1-23, is a specialization of the
ServiceEntity to represent a service hosted by another organization. This hosted
service lies in the customer organization and is a virtual copy, or proxy, to the

DirectoryObject
(from model)

HostedServiceEntity

getHostedServiceProfile()
getConcreteService()

HostedServiceFactory

create()
ObjectProfile

(from model)

DirectoryObjectEntity
(from model)

ServiceFactory

create()

ServiceSearch

lookup()
searchByProfile()
searchByFilter()

ServiceOwner

Relationship
(from model)

<<Interface>>

HostedService

getHostDN()
getHostProfileName()

Service

isCheckingPolicy()
setPolicyChecking()
getNonComplianceAction()
setNonComplianceAction()
getPrerequisiteDNs()
getOwnerDN()
setOwnerDN()
getServiceProfileName()
isEnrole()

AccountTable

ServiceProfile

getAccountClass()
setAccountClass()
getAccountProfileName()
setAccountProfileName()

PersonEntity

OrganizationEntity

ServiceEntity

getPrerequisites()
setPrerequisites()
getOwner()
setOwner()
hasHostedService()
removeHostedServices()
getOrganization()
getAccountTable()

1 +profile1

0..1
+owner

0..1

1
+organization

1

0..n

0..1

+prerequisite

0..1
 Chapter 1. Advanced design overview 33

concrete service within the owner organization. For the most part, this entity
looks the same as concrete services but provides an interface to obtain profile
information about itself and the proxied service. The profile information for all
HostedServiceEntities is always the same, a hosted profile. The HostedService
class represents the value object and HostedServiceFactory is the factory.

Figure 1-24 ServiceModel class diagram

The ServiceModel class in Figure 1-24, which can also be obtained from the
ServiceEntity, provides the interface for the supporting provisioning model of a
service, such as groups and other contextual information. This interface allows
the client to add and remove objects from the directory that are linked to the
specified service.

ServiceModel

addSupportingData()
removeAllSupportingData()
getByFilter()
34 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-25 Account class diagram

The AccountEntity class, depicted in Figure 1-25, represents an account, or
identity, that is provisioned on a service. The AccountEntity provides the
interface for account relationships, such as ownership and business logic-like
suspensions. An account compliance issues list has been added that consists of
many possible ComplianceIssue objects to support workflow-based policy
enforcement.

The Account class is the value object holding attribute information for an
account. The getCreationDate(), setCreationDate(),
getLastStatusChangeDate(), and setLastStatusChangeDate() methods support

Account

addHistoricalPassword()
getHistoricalPasswords()
isSuspended()
setHistoricalPasswords()
getLastAccessedDate()
setLastAccessedDate()
setPassword()
getPassword()
getUserId()
setUserId()
getStatus()
setStatus()
suspend()
restore()
getCompliance()
setCompliance()
getCreationDate()
setCreationDate()
getDatePasswordLastChanged()
setDatePasswordLastChanged()
getLastStatusChangeDate()
setLastStatusChangeDate()

DirectoryObject
(from model)

AccountFactory

create()
AccountSearch

lookup()
searchByFilter()
searchByOwner()
searchByService()
searchByUserID()

DirectoryObjectEntity
(from model)

AccountOwner Relationship
(from model)

<<Interface>>

AccountParent Relationship
(from model)

<<Interface>>

AccountService

ServiceEntity

PersonEntity

AccountEntity

adopt()
getOwner()
getService()
orphan()
isOrphan()
getComplianceIssues()
setComplianceIssues()

0..n+account 0..n

+host

0..n

0..n
0..1

+account 0..n
+owner

0..1

+parent

ComplianceIssue

getCreationDate()
getOperation()
setCreationDate()
setOperation()
 Chapter 1. Advanced design overview 35

lifecycle event information in the schema. Two supporting classes are provided,
AccountFactory for creation of accounts in the data store, and AccountSearch for
different searching capabilities.

Figure 1-26 AccountTable class diagram

For traversing the various aspects of the service-to-account relationship, the
AccountTable class, shown in Figure 1-26, is provided. The AccountTable class
provides a variety of queries to obtain accounts for a service.

Figure 1-27 Role class diagram

The RoleEntity class in Figure 1-27 represents a role that categorizes identities
for the purposes of provisioning. The RoleEntity provides the interface for
identifying all role members. The Role class is the value object holding attribute
information for a role. Two supporting classes are provided, RoleFactory for

AccountTable

getAll()
getOwned()
getOrphaned()
removeAll()
removeOrphaned()
getByOwner()
getByFilter()
getByUserID()
getNonCompliant()
getOrphansByFilter()
getOrphansByUserID()

Role

getDescription()
setDescription()

DirectoryObject
(from model)

DirectoryObjectEntity
(from model)

RoleSearch

lookup()
searchByFilter()

OrganizationEntity
RoleEntity

getMembers()
getOrganization()

+organization

PersonEntity

0..n

0..n

+role 0..n

+member 0..nRoleFactory

create()

0..n
36 Identity Management Advanced Design for IBM Tivoli Identity Manager

creation of roles in the data store and RoleSearch for different searching
capabilities.

Figure 1-28 DynamicRole class diagram

The DynamicRoleEntity class, shown in Figure 1-28, is a specialization of the
RoleEntity that represents a dynamic role in the system. The definition of a
dynamic role is a rule that, when evaluated, identifies a group of people, or
identities, that should be treated as members. The DynamicRole class is the
value object holding attribute information for a dynamic role. Two supporting
classes are provided, DynamicRoleFactory for creation of dynamic roles in the
data store and DynamicRoleSearch for different searching capabilities.

Figure 1-29 IdentityExclusionList class diagram

The IdentityExclusionList class in Figure 1-29 represents a list of identities that
should be excluded when attempting to automatically adopt service accounts.
The interface is very simple. The client can ask whether a given identity is
excluded or not.

System
The System package is a sub-package of the Model package that holds classes
that represent the users and groups in the Identity Manager system.

Role

DynamicRole

getDefinition()
setDefinition()
getScope()
setScope()

RoleEntity

DynamicRoleEntity

DynamicRoleSearch

lookup()
searchByFilter()

0..n

DynamicRoleFactory

create()

IdentityExclusionList

isIdentityExcluded()
 Chapter 1. Advanced design overview 37

Figure 1-30 SystemRole class diagram

The SystemRoleEntity class in Figure 1-30 represents a named group of Identity
Manager users that can be used within access control information to identify the
governing users. The SystemRoleEntity provides the interface for identifying
members. The SystemRole class is the value object holding attribute information
for a group. Two supporting classes are provided, SystemRoleFactory for
creation of groups in the data store and SystemRoleSearch for different searching
capabilities.

SystemRole

getDescription()
setDescription()
getCategory()
setCategory()

DirectoryObject
(from model)

DirectoryObjectEntity
(from model)

SystemRoleFactory

create()

SystemRoleSearch

lookup()
search()
searchByFilter()
searchByCategory()

SystemUserEntity

SystemRoleEntity

getMembers()
getOrganization()

0..n

0..n

+member 0..n

+role 0..n

0..n

OrganizationEntity
(from domain)

1

+organization

1

38 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-31 SystemUser class diagram

The SystemUserEntity class, shown in Figure 1-31, represents an Identity
Manager user. The SystemUserEntity provides the interface for group and
delegation management. The Delegate class represents a delegate for the user
with time duration. The ability to define multiple challenges and responses for the
user is also available. The ChallengeAndResponse class holds this information.
The SystemUser class is the value object holding attribute information for an
Identity Manager user. Two supporting classes are provided, SystemUserFactory
for creation of users in the data store and SystemUserSearch for different
searching capabilities.

1.2.4 Logging
The Logging package represents the Logging module defined within the Services
subsystem of the System Architecture. This package contains classes that
provide clients with a logging service. This service provides a consistent
interface for logging information throughout the platform while also providing
extensibility through a configurable implementation of filtering and formatting of
the information.

Delegate

getDelegateDN()
getStartDate()
setStartDate()
getEndDate()
setEndDate()

SystemUserEntity

getRoles()
addRole()
removeRole()
getDelegates()
addDelegate()
removeDelegate()
updateDelegate()
isSystemAdmin()

0..n0..n

Account
(from domain)

AccountEntity
(from domain)

SystemUserSearch

lookup()
searchByOwner()
searchByFilter()
searchByRole()
searchByUID()

SystemUserFactory

create()

0..n

ChallengeAndResponse

getChallenge()
setChallenge()
getResponse()
setResponse()

WorkflowQuery

getTenantDN()
setTenantDN()
getServiceSearchString()
setServiceSearchString()
getSubmitByUserSearchString()
setSubmitByUserSearchString()
getSubmitForUserSearchString()
setSubmitForUserSearchString()
getSubmitType()
setSubmitType()
getTimeStart()
setTimeStart()
getTimeEnd()
setTimeEnd()
getTimeIntervalType()
setTimeIntervalType()
getTimeStamp()
setTimeStamp()
getRequestId()
setRequestId()

SystemUser

getHomePage()
setHomePage()
getDefaultWorkflowQuery()
setDefaultWorkflowQuery()
getDatePasswordLastChanged()
setNumberOfLogonAttempts()
getChallengesAndResponses()
setChallengesAndResponses()
getRoles()
addRole()
removeRole()
getResponseLastChanged()
isChangePasswordRequired()
setChangePasswordRequired()
isDelegated()

0..n0..n

0..10..1
 Chapter 1. Advanced design overview 39

The Logging package holds the classes that provide clients with a Logging
service.

Figure 1-32 Logging class diagram

1.2.5 Mail
The Mail package represents the Notification module defined within the Services
subsystem of the System Architecture. This package contains classes that
provide clients with a service for mailing messages as a form of notification. The
package provides value-added services, such as a message factory framework
on top of its underlying delivery technology provided by the standard Java Mail
API. In Identity Manager 4.6, a post office capability is provided to consolidate
messages sent to individuals using a store and forward approach.

The Mail package holds the classes that provide clients with a mail delivery, or
notification, service. The implementation of this package relies heavily on the
Java Mail API for its implementation, but provides additional value through the
use of more platform specific objects.

SystemLog

getInstance()
getPriorityLevel()
getTraceExceptions()
logDebug()
logError()
logFatal()
logInformation()
logWarning()
setPriorityLevel()
setTraceExceptions()
40 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-33 Mail class diagram

The NotificationMessage in Figure 1-33 represents the message itself that needs
to be delivered. The message is defined by a set of recipients, a subject, a text
body, an optional HTML body, and an optional topic name. The getTenant(),
setTenant(), getTopic(), setTopic(), getLocale(), and setLocale() methods
support the Notification Post Office. The NotificationFactory is an interface that
can be implemented to create the appropriate content of a NotificationMessage
based on the situation, or context, causing the need for a notification.

The MailManager is a simple class that merely delivers the NotificationMessage
to its recipients using the delivery mechanism configured through the Java Mail
API.

The NotificationManager provides a more comprehensive facade requiring only
a category of notification and the current context. This object employs the correct
NotificationFactory and MailManager to generate and deliver the appropriate
NotificationMessage respectively. The choice of which NotificationFactory
implementation to use is configured through a property file.

1.2.6 Policy
The Policy package has one sub-package named Analysis that provides an
external API to the Policy package for analyzing policies. The classes in this
 Chapter 1. Advanced design overview 41

package leverage the policy engine classes in the base Policy package to
perform their analysis.

Analysis
The Analysis package is a sub-package of the Policy package that holds classes
that provide a public interface for analyzing the current policies in the system.
This analysis enables clients to determine the rights, or entitlements, that
individuals have been assigned. Clients also are able to identify which policies
apply to given roles.

Figure 1-34 PolicyAnalysis class diagram

The ProvisioningPolicyAnalysis class, depicted in Figure 1-34, is the primary
interface for analyzing provisioning policies in the system. From this class, the
client can obtain the entitlements for a given individual, which are represented by
the PPAEntitlement class. Clients can also obtain just the provisioning
parameters for an individual on a given service, which are represented by the
PPAProvisioningParameter. Clients can also obtain the list of provisioning
policies that apply to a given role and that are represented by the
PPAProvisioningPolicy class. However, due to the context driven approach to
joining policies and generating dynamic parameters through scripts, these
PPAProvisioningPolicies and their associated PPAEntitlements and

ProvisioningPolicyAnalysis

getEntitlement()
getEntitlements()
getProvisioningParameters()
getProvisioningPolicies()

PPAProvisioningParameter

getName()
getValues()
getEnforcements()

PPAProvisioningPolicy

getName()
getPriority()
getScope()
getEntitlements()

PPAEntitlement

getProvisioningParameters()
getTargetName()
getTargetType()
getWorkflowProcessName()

0..n +provisioning parameter0..n

0..n +entitlement0..n
42 Identity Management Advanced Design for IBM Tivoli Identity Manager

PPAProvisioningParameters are not fully evaluated by the policy engine.
Instead, they are returned in definition form.

1.2.7 Password rules
The Password rules package provides an external API for customers to extend
the capability of the password rules engine used by Identity Manager.

Figure 1-35 PasswordRules class diagram

The Rule interface in Figure 1-35 specifies the required signature that must be
fulfilled by any password rule that can be interpreted by the rule engine. The
ValidationInfo interface provides the Rule implementation access to contextual
information about the validation process the current Rule is involved in. The
PasswordGenerator interface specifies the required signature that must be
implemented in order to generate passwords.

PasswordGenerator

addChars()
allLowerCase()
allUpperCase()
decreaseBy()
generate()
getSize()
increaseBy()
removeChars()
setCharListAt()

<<Interface>>

Rule

constrain()
getParameter()
setParameter()
join()
validate()
validateSafe()

<<Interface>>

ValidationInfo

getContext()
getHistory()
getUserID()
getUserName()

<<Interface>>

uses as context

constrains
 Chapter 1. Advanced design overview 43

Provisioning
The Provisioning sub-package holds provisioning specific extensions to the
Password Rules framework. Currently, there is only one interface,
ProvisioningValidationInfo, which extends ValidationInfo with provisioning
specific properties that are available to Rules. It is displayed in Figure 1-36.

Figure 1-36 Provisioning Password Rules class diagram

Standard
The Standard sub-package, shown in Figure 1-37 on page 45, holds a set of
standard rule implementations and a standard password generator
implementation.

ProvisioningValidationInfo
<<Interface>>

ValidationInfo
(from passwordrules)

<<Interface>>
44 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-37 Standard PasswordRules class diagram

The RuleSet is a class that implements the Rule interface and represents a
collection of standard Rule objects as defined through the PasswordRulesInfo
class. The PasswordRulesInfo class holds the out-of-the-box password rule
information as well as an interface to register custom rule classes. Customers
can provide one or more of their own implementations of the Rule interface and
register it with Identity Manager through a properties file setting.

The StandardGenerator is the PasswordGenerator interface that is packaged
with Identity Manager. Customers can provide their own implementation of the
PasswordGenerator and register it with Identity Manager through a properties file
setting.

StandardGenerator

PasswordRulesInfo

getMinLength()
setMinLength()
getMaxLength()
setMaxLength()
getMaxSequentialCharacters()
setMaxSequentialCharacters()
getMinDistinctCharacters()
setMinDistinctCharacters()
getMinAlphabeticCharacters()
setMinAlphabeticCharacters()
getMinDigitCharacters()
setMinDigitCharacters()
getInvalidCharacters()
setInvalidCharacters()
getRequiredCharacters()
setRequiredCharacters()
getRestrictedToCharacters()
setRestrictedToCharacters()
getStartsWithCharacters()
setStartsWithCharacters()
setRepeatedHistoryLength()
setRepeatedHistoryLength()
getReversedHistoryLength()
setReversedHistoryLength()
doesAllowUserID()
setAllowUserID()
doesAllowCaseInsensitiveUserID()
setAllowCaseInsensitiveUserID()
checkDictionary()
setCheckDictionary()
addCustomRule()
getCustomRules()

RuleSet

getRulesInfo()
setRulesInfo()

+rules info

11

Rule
(from passwordrules)

<<Interface>>

PasswordGenerator
(from passwordrules)

<<Interface>>
 Chapter 1. Advanced design overview 45

1.2.8 Remote Services
The Remote Services package represents the Remote Services module defined
within the Services subsystem of the System Architecture. This package
contains the classes that provide an extensible framework for abstracting the
communications between the platform and the resources it manages. This
abstraction supports the complete set of provisioning actions required of
resources, such as the addition, removal, modification, and retrieval of
provisioning specific objects (for example, users and groups) on the resource.
The Provider package, a sub-package of remote services, provides an extensible
framework for implementing all interactions with the managed services using
different protocols and APIs.

Provider
The Provider package contains the classes that provide the extensible
framework for implementing all interactions with the managed services possibly
using different protocols and APIs, shown in Figure 1-38.

Figure 1-38 ServicesProvider class diagram

The ServiceProvider interface is the key interface for implementing the
communications between the platform and a managed service. To support a new
protocol or API to provision a managed service, the client implements this
interface. The ServiceProviderFactory is another interface that the client
implements to initialize their implementation of the corresponding
ServiceProvider.

Each type of service managed by the platform has a ServiceProviderFactory
implementation registered for it. This registration enables the platform to call the
ServiceProviderLocator to obtain the correct implementation when business
logic requires communication with a managed service.

ServiceProvider

add()
changePassword()
delete()
getServiceProviderInfo()
modify()
restore()
search()
suspend()
test()

<<Interface>>
ServiceProviderFactory

getServiceProvider()

<<Interface>>

ServiceProviderLocator

getInstance()
getServiceProvider()

Notifier

notifyOfAsynchronousResponse()

<<Interface>>

InitialPlatformContext

getDirectoryContext()
getNotifier()

creates

locates

creates
46 Identity Management Advanced Design for IBM Tivoli Identity Manager

The InitialPlatformContext is provided to implementers of a ServiceProvider for
interacting with the provisioning platform in a safe controlled API that allows the
Provider implementation to be safe from dependencies that might cause
incompatibilities during platform upgrades. This object provides a key interface to
obtaining a Notifier from the platform. The Notifier provides an interface for
returning the results of an asynchronous request made to the managed service.

1.2.9 Workflow
The Workflow package represents the Workflow module defined within the
Services subsystem of the System Architecture. This package, depicted in
Figure 1-39, contains several other sub-packages that provide both the ability to
define and execute workflow processes within the platform.

Figure 1-39 Workflow package diagram

The Model sub-package contains the classes needed to manage workflow
processes within the platform. The workflow engine itself is designed to be able
to call out to any block of code from an activity and to string those activities
together in a variety of different sequences defined as processes. Although the
engine might call out to several different packages in the platform through this
mechanism, the workflow engine package itself really only has inherent
dependencies on the Data Services and Mail packages.

The Query sub-package contains the classes needed for a more flexible query
mechanism to the workflow engine. This package has a dependency on the
Model package.

There are several more provisioning specific classes that are defined to more
easily integrate provisioning concepts into the more general design of the
workflow engine in the Model and Query packages provided in a sub-package

application

model

query

provisioning
 Chapter 1. Advanced design overview 47

named Provisioning. This package has dependencies on the Model and Query
packages.

The Application sub-package contains the interfaces for defining custom
extensions that can be displayed in the workflow designer environment and
called by the workflow engine.

Model
The Model package holds the classes that provide workflow management
capabilities. These capabilities include the creation of workflow processes,
managing the state of those processes, and auditing current and historical
processes. The participation in a workflow process by an external resource is
also provided in this package. The complete WorkflowModel class diagram is
depicted in Figure 1-40 on page 49.
48 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-40 WorkflowModel class diagram

ProcessManager

createProcess()
getProcess()
getActiveProcesses()

ExecutionObject

getDescription()
getID()
getName()
getResult()
getResultDetail()
getState()
getTimeCompleted()
getTimeStarted()
getLastModif ied()
getPriority()
setDescription()
setID()
setName()
setResult()
setResultDetail()
setState()
setTimeCompleted()
setTimeStarted()
setLastModif ied()
setPriority()

Activity

getActivitySubType()
getActivityType()
getProcessID()

Participant

getDistinguishedName()
getType()
getID()

ResourceEntity

getAssignments()
getAssignmentGroups()

<<Interface>>

HumanResourceEntity

getNumAssignments()

Activ ityParticipant

Assignment

getID()
getActivityDesignId()
getDescription()
getDueDate()
getLockOwner()
getRequestee()
getParticipant()
getProcessDesignId()
getTimeCreated()
isLocked()

1+participant 1

ProcessParticipant

Workf lowProcess

getComment()
getNotif icationInstructions()
getParentProcessID()
getProcessType()
getRequesteeName()
getRequesteeDN()
getRequester()
getRequesterName()
getSubject()
getTenantDN()
getTimeScheduled()
getParentProcessId()
setComment()
setNotif icationInstructions()
setProcessType()
setRequesteeName()
setRequester()
setRequesterName()
setSubject()
setTenantDN()
setTimeScheduled()
setParentProcessId()

1+requester 1

Workf lowProcessEntity

start()
getActivity()
getActivities()
getValueObject()
getParent()

0..1 +parent0..1

Activ ityEntity

complete()
getAssignments()
getContainer()
getValueObject()
getResult()
setResult()
<<static>> getActiv ity()

value object

0..n
+container

+activity
0..n

value object

InitialProcessContext

setScheduledTime()
getScheduledTime()
getTenantDN()
setTenantDN()
setType()
getType()
setDescription()
getDescription()
setComment()
getComment()
getNotif icationInstructions()
setNotif icationInstructions()
getProcessContext()
setProcessContext()

EventAu
dit

RelevantDataItem

getID()
getName()
getValue()

ExecutionEntity

getID()
abort()
suspend()
resume()
lock()
getHistory()
getProcessContext()
setProcessContext()
getProcessContextDef inition()
auditEvent()

0..n1

+history

0..n1

0..n

+process context

0..n

AssignmentEntity

complete()
getActivity()
getValueObject()
<<static>> getAssignment()
lock()
unlock()
delegate()
getPotentialOwners()

AssignmentGroup

getID()
getActivityDesignId()
getCount()
getDescription()
getDueDate()
getLockOwner()
getProcessDesignId()
getRequestee()
isLocked()
 Chapter 1. Advanced design overview 49

The ProcessManager class provides the central point of entry into the workflow
system. This class provides interfaces for the creation of workflow processes and
the querying of current and historical workflow processes. The creation of a
workflow process requires configuration information for that process to be
provided by the client. This is done through the use of the InitialProcessContext
class. The WorkflowProcessEntity represents an individual workflow process.
For active processes, this class provides interfaces for controlling state. It also
provides interfaces for querying process characteristics (provided by the
WorkflowProcess value object class) and querying process relationships, such
as parent processes (if any) and child activities. Through the interface of the
ExecutionEntity base class, the client can also obtain the history of the process
implemented with event records.

The ActivityEntity, also a subclass of ExecutionEntity, represents an activity
within a workflow process. This class provides information about the activity
(through the Activity value object class), as well as the ability to complete the
activity with a specified status.

An external actor (for example, a system or a human being) that might participate
in a workflow activity is called a workflow resource. The ResourceEntity interface
represents such a resource. The HumanResourceEntity class, however, can only
represent a human resource. When the platform resolves the defined participant
of a workflow activity to a resource, an assignment of that activity to the resource
is made. The AssignmentEntity class represents this assignment. There can be
multiple assignments for one activity. The lock() and unlock() methods are used
in locking To do Items while the delegate() and getPotentialOwners() methods
are used in the delegation of To do Items. The ActivityEntity has an interface for
retrieving all of its associated Assignments. The list of assignments that a
resource has makes up its “To do list”. This list can be obtained from the
ResourceEntity and is typically made up of Assignment objects which are the
value objects of AssignmentEntities. The isLocked() and getLockOwner()
methods are used in the locking of To do Items. The getActivityDesignId(),
getProcessDesignId(), getDescription(), and getDueDate() methods are used to
complete multiple To Do Items. The AssignmentGroup class is a value object
that is returned when obtaining assignments for a resource in a grouped fashion,
for example, by activity design id. It provides most characteristics of the
Assignment value object but with an additional count parameter of how many
assignments are in this grouping. When the resource wishes to complete its
assignment, it must obtain the ActivityEntity from the assignment it is associated
with and use the interface provided by that class.
50 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-41 Workflow EventAudit class diagram

The EventAudit class, shown in Figure 1-41, represents an auditable event
recorded by the workflow engine. The history provided about a process or activity
is represented as a list of EventAudit objects. This history can be obtained
through the ExecutionEntity interface. The EventAudit class has some general
auditing information, but more specific information about a particular type of
event can be defined by a subclass representing that type of event. Figure 1-41
illustrates the specific events modeled within this package.

Query
Although the ProcessManager provides interfaces for querying current and
historical processes in the workflow engine, the interfaces that it provides are
limited. The Query package provides classes, shown in Figure 1-42 on page 52,
that support an extensible design for defining a more flexible query interface.

EventAudit

getID()
getTimeStamp()
getEventType()
getActivityID()
getProcessID()

AssignmentEventAudit

getOldResource()
getNewResource()

CompleteManualActivityEventAudit

getSource()

CreateProcessEventAudit

getRequester()
DataEventAudit

getName()
getNewValue()
getSource()PasswordPickupEventAudit

getSource()

StateEventAudit

getOldState()
getNewState()

TimeoutEventAudit

getParticipant()

ParticipantResolutionFailureEventAudit

getParticipant()

Participant1

+participant

1

1 +participant1
 Chapter 1. Advanced design overview 51

Figure 1-42 Workflow query class diagram

The WorkflowQueryStatement interface can be implemented to provide a
specific query into the workflow engine that can provide more power to the client
than what is currently provided in ProcessManager. The
WorkflowQueryStatement just provides the definition of the query though. The
WorkflowProcessQuery class performs the execution of the query. The
RequesterQueryStatement is a default implementation provided in this package
that provides several options on querying workflow processes created by a given
requester.

Provisioning
The Provisioning package holds the classes that provide more provisioning
specific interfaces to the capabilities provided by the Model and Query packages.

Figure 1-43 Provisioning WorkflowQuery class diagram

The ProvisioningQueryStatement class in Figure 1-43 provides a provisioning
specific implementation to the WorkflowProcessQuery interface from the Model
package. The query parameters are defined using the WorkflowQuery class
defined in the System sub-package of Data Services.

WorkflowQueryStatement

getStatement()

<<Interface>>
WorkflowProcessQuery

execute()

RequesterQueryStatement

setStartTime()
setEndTime()
setProcessType()
setActiveOnly()

WorkflowQueryStatement
(from query)

<<Interface>>

WorkflowQuery
(from system)

ProvisioningQueryStatement

setQuery() +query
52 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 1-44 InitialProcessContent class diagram

There are several subclasses of the InitialProcessContext class, depicted in
Figure 1-44, in the Model package, that have been provided to provide a more
intuitive, operation specific mechanism for creating such an initial context. For
example, the ChangePasswordContext class provides a constructor that takes in
the password as a compile-time checked parameter, instead of using the
run-time checking provided through the setProcessContext() method of the
InitialProcessContext class.

Application
The Application package holds the classes that provide workflow integration and
extension capabilities with Java applications, shown in Figure 1-45 on page 54. A
Java application is one or more Java-based classes that make up a task that can
be called from a workflow activity to extend the capabilities of the current
workflow processes defined in the platform.

InitialProcessContext
(from model)

AccountStateChangeContext

ChangeAccountContext

ChangeMultiAccountStateContext

ChangeMultiUserStateContext

ChangeOrgStateContext

ChangePassswordContext

ChangeUserBUContext

ChangeUserContext

ChangeUserStateContextChangeDynamicRoleContext

ChangeHostSelectionPolicyContext

ChangePolicyContext

ProvisionServiceContext

Reconci liat ionContex t
 Chapter 1. Advanced design overview 53

Figure 1-45 Workflow ApplicationIntegration class diagram

There are two basic scenarios for extending the capabilities of a workflow
process by calling a Java application. The first scenario is one where an existing
Java API (Java class) is available that needs to be integrated to perform a task.
The second is one where custom code is written to perform a task where a
tighter coupling is required with the workflow process, requiring workflow
contextual information to be available to the application.

The purpose of the ApplicationFactory class is to help the first scenario by
providing an interface to the integrator that the workflow engine can make use of
to instantiate an instance of the predefined Java class that needs to be
integrated. The engine already supports a flexible mapping scheme (through the
process definition) for adapting to the signature of the Java class to call to
execute the task, but the instantiation and configuration of the class is left to this
mechanism. To keep things simple, however, the engine supports default
constructors and static method calls without the use of a factory.

The WorkflowApplication is an interface that a custom workflow application
developer can make use of when writing a Java class that needs to be called by
the workflow engine. This biggest benefit to implementing this class is the
availability of the context of the current activity and process calling the class
made available in the WorkflowExecutionContext interface. This interface
provides the custom application access to the current activity, process, and
process manager.

ApplicationFactory

create()

<<Interface>>
WorkflowApplication

setContext()

<<Interface>>

WorkflowExecutionContext

getManager()
getProcess()
getProcessVO()
getActivity()
getActivityVO()

<<Interface>>

uses as context
54 Identity Management Advanced Design for IBM Tivoli Identity Manager

1.2.10 FESI extensions
Free ECMA Script Interpreter (FESI) is a full implementation of the first version
European Computer Manufacturers Association (ECMA) script language defined
in ECMA standard 262 called EcmaScript. EcmaScript is roughly equivalent to
the JavaScript Version 1.1 or to the core part of JScript®, but without the
navigator.

The JavaScript extensible framework and API in IBM Tivoli Identity Manager is
based on the use of the FESI JavaScript interpreter. The purpose of extending
the framework is not to alter the capabilities of the interpreter, but to add
additional objects and functions to the interpreter's glossary so more capabilities
are available within the scripts interpreted by the FESI interpreter.

The API provided by the FESI JavaScript interpreter allows additional objects
and functions to be created and registered with the interpreter so they can be
executed at run time. The API used to extend the interpreter is based on a
Netscape standard which makes it portable to other vendors' implementations
that support it if necessary.

The JavaScript Extensions API consists of a set of classes that provide
integration points with the JavaScript interpreter for creating and retrieving
information available in the run-time context of the interpreter, as well as for
registering new types of objects and functions the interpreter can interpret in
users' scripts. In addition to the general mechanisms available for this purpose
provided by the FESI interpreter, a more provisioning platform specific set of
classes are provided for better integration with the extensions that are deployed
with the platform already. The general FESI interfaces and classes used to
extend the FESI interpreter can be found in the FESI.jslib package. The platform
specific classes can be found in the com.ibm.itim.script and
com.ibm.itim.fesiextensions packages.

1.3 Workflow
Two basic forms of workflow or business processes exist within Identity
Manager. Before describing the different types of processes in more detail
however, it is best to understand the concept of lifecycle management found
within Identity Manager. Lifecycle management is the concept of managing the
operations performed upon an identity object for the span of its entire life, starting
with the creation of the identity object and ending with its deletion, should that
occur, inclusive of all operations in between. Therefore, while there are two
different process or workflow types, all operations that are performed on the
given identity object are performed by the lifecycle management process.
 Chapter 1. Advanced design overview 55

The two types of workflow within Identity Manager are defined as entitlement and
operation workflows or business processes.

An entitlement workflow implements the business processes that create the
identity objects associated with an entitlement in a provisioning policy. An
entitlement workflow gathers all of the information required to create the identity
objects. The information that is included in identity objects depends on the
definitions of the provisioning policy, which reflect the audit and compliance
requirements of the organization.

The operational workflow is the business process that defines all the operations
that are performed to create, modify, delete, suspend, and transfer identity
objects.

To put this into better perspective, the entitlement workflow associated to an
entitlement within a provisioning policy gathers and documents all the required
information to create an identity object. For example, if the object meets the
requirements defined in the given policy, then the gathered information is given
to the operational workflow process to create the object. For more information
about standard workflow processes and capabilities, refer to Chapter 4, “Detailed
component design” on page 89 of the IBM Redbook Identity Management
Design Guide with IBM Tivoli Identity Manager, SG24-6996.

Both types of processes utilize the same extension capabilities of script nodes
and extensions, which we discuss next.

1.3.1 Script nodes
Script nodes provide the capability of adding needed extensibility into a workflow
process simply by dropping a node into the process and writing the needed
JavaScript into the node. FESI extensions can also be used here for further
extensibility. This type of extensibility is best when changes need to be made to
the extension from the workflow designer. For more information about script
nodes, refer to Chapter 4, “Detailed component design” on page 89 of the IBM
Redbook Identity Management Design Guide with IBM Tivoli Identity Manager,
SG24-6996.

This is a more flexible solution than that of the workflow extension that follows.

1.3.2 Workflow extensions
Workflow extensions are similar to a script node in that they are a node which
can be dropped into workflow to extend capability, however, it is an immutable
node from the workflow designer once the workflow extension has been created
originally. Therefore, this type of extensibility is perfect for situations that require
56 Identity Management Advanced Design for IBM Tivoli Identity Manager

an extension to a process but should not be changed from within the workflow
designer. For more information about workflow extension nodes, refer to
Chapter 4, “Detailed component design” on page 89 of the IBM Redbook Identity
Management Design Guide with IBM Tivoli Identity Manager, SG24-6996.

1.4 Custom service provider
Custom service providers are remote services used to communicate with a
managed service directly or to a custom adapter. An example of a managed
service, which can be communicated with directly, is one that has a remoteable
interface, such as a directory or a database.

The remote services provider interfaces and classes have been provided to
enable the development of custom connectors that can be used from the Identity
Manager provisioning platform, or any other Java-based provisioning platform
that supports the same interface. The provisioning platform by itself is expected
to perform all of the operations needed to determine the operations and their
parameters that are to be executed against resources. The connector is
responsible for executing those operations on the resource in whatever resource
specific manner is required. The interface between the platform and the
connector used to implement this procedure is defined with this API.

There are eight operations that make up the interface between the provisioning
platform and the connector: add, modify, delete, suspend, restore, change
password, search, and test. Each operation, with the exception of suspend,
restore, and change password, is defined in a manner to support the provisioning
of any object supported on the resource, but typically, provisioning systems only
focus on provisioning users. Because of the initial focus on user provisioning, the
suspend, restore, and change password operations are key user-focused
operations that provide convenience.

When performing these eight provisioning operations, some resources require
either asynchronous or synchronous communications. The remote services API
supports both modes of operation, but the custom connector implementation is
responsible for performing the communication with the resource itself. See
Figure 1-46 on page 58.
 Chapter 1. Advanced design overview 57

Figure 1-46 Provisioning platform connector

You can find more information about custom service providers in the
data/extensions directory of the Identity Manager installation directory,
specifically <ITIM HOME>/extensions/doc/serviceprovider/serviceprovider.html.

1.5 Custom reporting
Reporting capabilities can be extended in several fashions with Identity Manager.
The most common fashion is to create custom reports with ad hoc reporting
provided by Identity Manager custom reports. However, if complex multiple joins,
beyond what is offered by Identity Manager, are required, then Crystal Reports
can provide another solution. Crystal Reports can be plugged into Identity
Manager and can be used to generate reports with multiple complex joins.
Further, Identity Manager can be configured to use an incremental data
sychronizer on a remote machine with a different operating system, for example.
However, Identity Manager still supports the current or existing report extensions
previously available by providing the necessary reporting information within the
report.xml file in the <ITIM HOME>/data/report.xml file. Lastly, reports can be
cloned within the database, if there is a requirement for this. For more
information about extending the reporting capabilities within Identity Manager,
refer to the Identity Manager documentation in the installation directory <ITIM
HOME>/extensions/examples/reports.

1.6 Conclusion
This concludes the comprehensive discussion of the IBM Tivoli Identity Manager
system architecture, the application programming interface, workflow, custom

Provisioning
Platform

Provisioning
Connector

add

modify

delete

suspend

restore

change password

search

complete (asynch)

ResourceResource API
58 Identity Management Advanced Design for IBM Tivoli Identity Manager

service provider, and reporting. In the next chapter, we take a closer look at a
very important infrastructural topic: high availability.
 Chapter 1. Advanced design overview 59

60 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 2. Architect a high availability
solution

In this chapter, we discuss the aspects of a solution design for Identity Manager
high availability (HA). We elaborate on the considerations to take into account
when designing the operational aspects of implementing and maintaining an HA
Identity Manager deployment.

High availability is a general term and can mean different things to different
people. We define high availability as follows: High availability combines
software with industry-standard hardware to minimize outages by quickly
restoring essential services when a system, component, or application fails.

In the context of this discussion, we address the high availability aspects of the
Identity Manager software components. The concepts of a fault-tolerant
hardware configuration and high-availability operating system-based
infrastructure should be considered and evaluated for each deployment, and the
costs weighed against the risks. These aspects, however, are more generic
systems design concepts common to most projects and specific to an
organization’s operational environment. They are not necessarily specific to
Identity Manager, and, hence, are not within the scope of this discussion. In most
cases, a combination of the various approaches is used. No two environments
typically use a standard uniform approach due to the unique constraints,
dependencies, and priorities of each approach. The environment should be

2

© Copyright IBM Corp. 2006. All rights reserved. 61

evaluated and planned for by the project team in consultation with stakeholders
and system owners.

The software components relevant to an Identity Manager deployment when
considering a high-availability solution are as follows:

� Application server
� Relational database
� Directory server
� Identity Manager adapters

The primary business goal of the design approach adopted in the current
implementation is to reduce down time to a minimum, using software
components available with Tivoli Identify Manager, and to manage the failover
mechanism, avoiding operating system or external high availability components
when it is possible.
62 Identity Management Advanced Design for IBM Tivoli Identity Manager

2.1 Application server
The application server runs the Identity Manager application that performs all the
business-related operations and provides the Web interface to users. There is
only one scenario to consider when designing the application server component
for high availability: run the application server in its native clustered mode of
operation.

The application server used by Identity Manager is IBM WebSphere® Application
Server, which provides the ability to run as a WebSphere Application Server
cluster.

The WebSphere Application Server is the primary component of the WebSphere
environment. The WebSphere Application Server runs a Java virtual machine,
providing the run-time environment for the enterprise application code. The
application server provides containers that specialize in enabling the execution of
specific Java application components.

A cluster configuration contains WebSphere Application Server nodes, which are
logical groups of one or more application servers on a computer. Nodes reside
within an administrative domain called a cell, which the deployment manager
manages. A node agent manages all managed processes on the node by
communicating with the deployment manager to coordinate and synchronize the
configuration. The deployment manager is the administrative process that
provides a centralized management view and control for all elements in the cell,
including the management of clusters.

Note: If you are planning to implement a high availability solution for Identity
Manager at some point in time, even when your first implementation phase will
only be based on a single Identity Manager Server, we suggest you consider
the configuration of a WebSphere Application Server cluster solution with the
deployment manager component and only one cluster member. These two
components can be installed on the same machine. When you need to
implement the high availability solution, it is a simple task to add another
WebSphere Application Server cluster member on a new machine and install
the Identity Manager Server component.

Note: Tivoli Identity Manager does not support:

� Vertical cluster configuration that has more than one cluster member within
a WebSphere Application Server node

� Functional cluster configuration that separates workflow processing and
user interface processing on separate machines
 Chapter 2. Architect a high availability solution 63

Multiple machine environments extend basic single machine WebSphere
Application Server configurations by distributing the Application Server over
multiple machines, increasing the overall processing power from one machine to
contributions from all machines in the configuration.

The flow of data in a WebSphere Application Server environment starts with a
Web server receiving requests and routing them to the Application Server for
processing. A WebSphere Application Server node stores administrative
configuration data in XML files. A database can hold application data for
applications that require a place to store data, such as user session information.
There are also one or more administrative clients, such as the administrative
console, for manipulating configuration data.

In a configuration such as the one depicted in Figure 2-1, each computer shape
represents one WebSphere Application Server node in one cell. WebSphere
Application Server also permits you to install both the WebSphere Application
Server base product and the deployment manager on the same computer.

Figure 2-1 Horizontal scaling for WebSphere Application Server environment

In this example, the Web server on machine D distributes requests to clustered
Application Servers on machines B and C. Cluster members on machines B and
C are created in the same cluster.

Application server
cluster member

Node agent

Deployment
manager

Application server machine B

Application server
cluster member

Node agent

Application server machine C

Deployment manager
machine A

HTTP server

Web server
machine D

Plug-In

Client HTTP
request

Cell
64 Identity Management Advanced Design for IBM Tivoli Identity Manager

We are not going to discuss the WebSphere Application Server general high
availability methodologies in this redbook. There are many guides and Web sites
that contain this information. The following redbooks might be of interest:

imitations about high availability of the Identity Manager messaging service
solution.

The Java Message Service (JMS) server enables the Tivoli Identity Manager
application to exchange information with other applications by sending and
receiving data as messages. The messaging module provides assured
asynchronous messaging to and between internal modules in the Identity
Manager architecture.

An example of the JMS queue topology used on a WebSphere Application
Server cluster environment is shown in Figure 2-2.

Figure 2-2 Workflow JMS queue topology (cluster)

Note: The TAA design approach leverages the functionality available in the
security reverse proxy component, Tivoli Access Manager WebSEAL, to
perform the authentication and authorization for users into Identity Manager.
WebSEAL also automatically performs the load balancing and failover aspects
in the event of an application server instance failure. This is especially useful if
you are running separate instances of the Identity Manager application on
separate application server instances.

App Server

Identity Manager Application

JMS Server
Queue: itim_wf_shared
Queue: itim_wf

Network deployment manager

Cluster member node 1

use
itim_wf_shared

use
itim_wf

App Server

Identity Manager Application

JMS Server
Queue: itim_wf_shared
Queue: itim_wf

Cluster member node 2

use
itim_wf

use
itim_wf_shared
 Chapter 2. Architect a high availability solution 65

In the example shown in Figure 2-2 on page 65, the workflow JMS queues are
defined on all cluster members. The shared queue is only used on one cluster
member. All application servers will send and receive messages from the shared
queue.

� The shared workflow queue (itim_wf_shared) is only active on one JMS
server. All cluster members send and receive messages to and from the
same shared queue.

� The local workflow queue (itim_wf) is active on all cluster members. Only the
Application server running on the same node will communicate with the local
workflow queue.

� If the shared queue is not available, the message is sent to the local queue
instead. This limits the impact on the overall workflow environment of the
shared workflow queue JMS Server, if it is down.

WebSphere Application Server, Version 5, includes an implementation of the
JMS 1.0.2 application program interface (API) as part of its support for J2EE™
1.3.

The Embedded WebSphere JMS service is accessible only from WebSphere
Application Server containers, and it is not interoperable with WebSphere MQ.
The concept behind the Embedded WebSphere JMS server is to provide easy
access to JMS for J2EE programmers. Although the underlying technology is
provided by WebSphere MQ, the Embedded WebSphere JMS server is not
meant to replace any external WebSphere MQ environment.

An approach to handle the WebSphere Embedded JMS server single point of
failure (SPOF) is to use hardware-software clustering software (such as
HACMP™). The network and hardware system can be used in conjunction with
WebSphere Embedded JMS server in WebSphere Application Server Network
Deployment V5.1 to build a highly available message-oriented middleware
(MOM) system within a WebSphere V5 domain (cell).

Figure 2-3 on page 67 shows that such a system can tolerate any failure from the
JMS server process, disk, operating system, host, and network. Therefore, this
system negates the WebSphere Embedded JMS server single point of failure.
The system provides a transparent and single image view to application clients
that need to put or retrieve messages.
66 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 2-3 JMS server with clustering software

For details about the JMS WebSphere embedded messaging providers, refer to
Chapter 11 of the IBM Redbook IBM WebSphere V5.1 Performance, Scalability,
and High Availability: WebSphere Handbook Series, SG24-6198-01.

2.2 Directory server
Identity Manager requires an LDAP directory server to store essential data such
as users, accounts, policies, and so on. As a result, it is an extremely critical
component. Most LDAP servers have some level of functionality to allow for a
high availability deployment through the use of data replication, as shown in
Figure 2-4 on page 68.

Embedded
JMS server
(Primary)

Clustering Software

Mirroring

Heart Beating
Private Network

Data

Node
Agent

App ServerApp Server

Data
Node
Agent

App ServerApp Server

Data

MSGS
Node
Agent

Embedded
JMS server

(Hot Standby)

Clustering Software

DMGRc
 Chapter 2. Architect a high availability solution 67

Figure 2-4 LDAP server replication

IBM Tivoli Directory Server allows for multiple LDAP servers to be configured
with replication between them to ensure data integrity is maintained. Each Tivoli
Directory Server server can be configured as a read/write-enabled server or as a
read-only replica. The replication process keeps the data in multiple directory
servers synchronized.

Replication provides three important benefits:

� Redundancy of information: Replicas back up the content of their supplier
servers.

� Faster searches: Search requests can be spread among several servers,
instead of a single server. This improves the response time for the request
completion.

� Security and content filtering: Replicas can contain subsets of the data in a
supplier server.

Through replication, a change made to one directory is propagated to one or
more additional directories. In effect, a change to one directory shows up on
multiple directories. The IBM Tivoli Directory Server supports an expanded
master-replica replication model. Replication topologies are expanded to include:

� Replication of subtrees of the Directory Information Tree to specific servers

� A multi-tier topology, referred to as cascading replication
� Assignment of server role (supplier or consumer) by subtree

� Multiple master servers, referred to as peer-to-peer replication
� Gateway servers that replicate across networks

The term master is used for a server that accepts client updates for a replicated
subtree. The term replica is used for a server that only accepts updates from
other servers designated as a supplier for the replicated subtree.

The master/peer server contains the master directory information from where
updates are propagated to the replicas. All changes are made and occur on the
master server, and the master is responsible for propagating these changes to
the replicas.

LDAP Server LDAP Serverreplication
68 Identity Management Advanced Design for IBM Tivoli Identity Manager

There can be several servers acting as masters for directory information, with
each master responsible for updating other master servers and replica servers.
This is referred to as peer replication. Peer replication can improve performance
and reliability.

Inside the scope of our design approach, the peer replication topology is used in
order to improve reliability by providing a backup master server ready to take
over immediately if the primary master fails.

Identity Manager allows for configuration against a single logical LDAP. Note the
use of the word logical. This means that it needs to refer to a Uniform Resource
Identifier (URI) that allows access to an LDAP. Given this, consider the following
scenarios where we describe two replication topologies usable for a high
availability Tivoli Identity Manager solution, Manual failover to secondary LDAP
and Automated failover to secondary LDAP.

2.2.1 Manual failover to secondary LDAP
Identity Manager is usually configured to reference the physical location of the
master LDAP server. The issue is that if the primary LDAP server becomes
unavailable, there needs to be manual intervention to configure Identity Manager
to use another LDAP server. Such a configuration looks similar to Figure 2-5.

Figure 2-5 LDAP manual failover to replica

In the event of the primary LDAP becoming unavailable, Identity Manager needs
to be configured manually to reference the secondary LDAP. This involves

Note: Each of the scenarios presented below details two LDAP servers for
illustrative purposes. The scenarios can easily be extrapolated to a topology
that uses multiple (more than two) LDAP servers.

LDAP
Primary

LDAP
Secondaryreplication

Identity
Manager

LDAP primary
connection

LDAP secondary
connection
 Chapter 2. Architect a high availability solution 69

modifying the relevant Identity Manager configuration file and restarting the
Identity Manager application.

There are options to consider here in terms of the type of secondary LDAP to
use. That is, should the secondary LDAP be read-only or read/write? Having a
read-only secondary causes Identity Manager not to be able to perform
operations where data needs to be written to the LDAP. This includes (but is not
limited to) provisioning-related operations on users and accounts, and
modifications to policies. Having a read/write secondary LDAP provides the
benefits of having a fully functional Identity Manager application in the event that
the primary LDAP fails. The only issue is that having a read/write secondary can
potentially pose a data integrity and security risk if it is not properly secured. The
same can be said of the primary LDAP. This is a completely acceptable and
potentially more desirable option (from a functional perspective), provided the
correct security measures are taken, and this is in fact a more likely deployment
approach. One thing to note is that if the approach selected is to have a
read/write secondary, both the primary and secondary LDAPs need to have
replication to each other enabled. This is required to assist with recovery from a
failure.

The main disadvantage of this approach as a whole is the manual intervention
involved. The system is unavailable for a period of time due to the manual tasks
involved and the requirement to restart the application.

Recovery
The secondary LDAP server is configured as read/write. The first step is to bring
the failed primary LDAP back to a state where it is usable. Recall that in this type
of configuration, both LDAP servers should be configured to accept and publish
replication updates to each other. Thus, restarting the failed primary LDAP
allows all the updates made to the secondary LDAP to be updated on the now
functional primary. There is now the option to modify the Identity Manager
configuration to once again reference the primary LDAP and restart the
application or to simply leave Identity Manager referencing the secondary LDAP.
From a logical perspective, in the case where the Identity Manager LDAP
configuration is not modified, the secondary LDAP has now been promoted to
primary and the primary demoted to secondary. That is, they have swapped
roles. This can be the approach taken to reduce the Identity Manager application
down time.

For our customer scenario in Part 2 this topology configuration is not acceptable
for Tivoli Austin Airlines in order to achieve the primary business goal of
continuous operation on this high availability environment.
70 Identity Management Advanced Design for IBM Tivoli Identity Manager

2.2.2 Automated failover to secondary LDAP
The use of a smart IP load balancer negates the need for Identity Manager to be
reconfigured in the event of an LDAP server failure. There are many load
balancers on the market and the selection of a specific type is not discussed. The
high-level requirements for a load balancer to use within the discussed
environment are:

� Must be able to route application network traffic seamlessly and not modify
data being routed

� Must be able to detect failure of a process accepting requests from the
network

� Must be able to handle priority of potential destinations and route requests
accordingly

In this case, Identity Manager is configured to use the URI of the load balancer
for its LDAP requests. The load balancer then forwards the request to the
primary LDAP server. In the event that the primary LDAP becomes unavailable,
the request is forwarded to the secondary LDAP, which needs to be promoted to
be the new primary LDAP. The logic is handled at the load balancer (some load
balancer products might require manual configuration) and Identity Manager
does not need to be reconfigured in the event of an LDAP server being
unavailable. An illustration of this can be seen in Figure 2-6.

Figure 2-6 LDAP failover through a load balancer

LDAP
Primary

LDAP
Secondary

replication

LDAP primary
connection

LDAP secondary
connection

Identity
Manager

LDAP
connection

Load
Balancer
 Chapter 2. Architect a high availability solution 71

The obvious disadvantage with this approach is the fact that the secondary
LDAP is not being utilized until the primary LDAP fails. It is essentially functioning
as a hot standby.

Instead of using a separate load balancer product, we can leverage an IBM Tivoli
Directory Server Version 6.1 component called the Tivoli Directory Server proxy
server. It acts as an intermediary for a client wanting to connect to an LDAP
server. In other words, it proxies requests to a Tivoli Directory Server in the
environment depending on the configuration specified and the request it receives
from the client. This proxy server component can take the place of the load
balancer as shown in Figure 2-7.

In case of a failover situation, the proxy server automatically promotes the
secondary LDAP server to be the new primary LDAP server.

Figure 2-7 Automatic failover using Directory Server proxy server

The proxy server can actually help you achieve many other things that are not of
any consequence for our high availability scenario. For a more general, non
Identity Manager related introduction to the proxy server, consult Appendix C,
“Tivoli Directory Server proxy server” on page 385 and the IBM Tivoli Directory
Server Administration Guide Version 6.1, SC32-1564.

Dealing with a recovery situation after the primary LDAP server has failed can be
approached the same way for either the load balancer or the Directory Server
proxy server configuration.

Tivoli
Directory

Server
Primary

Tivoli
Directory

Server
Secondary

replication

LDAP primary
connection

LDAP secondary
connection

Identity
Manager

LDAP
connection

Tivoli
Directory

Server proxy
server
72 Identity Management Advanced Design for IBM Tivoli Identity Manager

Recovery
In both cases, load balancer or Directory Server proxy server, the secondary
LDAP server has taken over the role of the primary LDAP server when a failover
situation occurred. When we bring the old server (or a replacement) back online,
it automatically becomes the secondary LDAP server until another failover
situation occurs if we use the Directory Server proxy server. Some load balancer
products might require manual configuration to implement this.

As soon as the old server is available again, the LDAP replication process starts
to synchronize it with the primary LDAP server.

Caveats to the automated failover scenarios
As already mentioned above an obvious disadvantage is the fact that the
secondary LDAP is not being utilized until the primary LDAP fails. It is essentially
functioning as a hot standby.

The restriction in using the Tivoli Directory Server proxy server 6.1 is that it
currently does not support LDAP paging, which is necessary for very large scale
directories. So this approach should not be used under these circumstances and
you need to fall back to the generic load balancer solution.

If you want to use the Tivoli Directory Server proxy server you may want to limit
the maximum recommended size for your LDAP directory to 75,000 persons,
each with an account on a single service.

However, it is Tivoli’s stated intention to provide paging functionality in a future
version of the Tivoli Directory Server proxy server.

2.3 Relational database
Some potential relational database high availability scenarios for Identity
Manager are similar to the scenarios detailed in 2.2, “Directory server” on
page 67. The concepts are similar and can be extrapolated from the LDAP
discussion. That is, the functionality required to achieve the end result is usually
available in most high-end relational databases. For a complete list of relational
databases supported by Identity Manager, consult the latest release notes
document.

In addition to this, there are also more sophisticated high availability solutions
available for common relational database products (such as IBM DB2®) than for
LDAP products. Relational database high availability strategies can generally be
more tightly coupled with high availability operating system configuration options,
systems management (automation, virtualization), and storage solutions (for
example, Storage Area Networks) to offset some of the issues mentioned. That
 Chapter 2. Architect a high availability solution 73

is, there are prescribed methods to deploy a high availability relational database
within specific product documentation.

Taking IBM DB2 UDB Version 8.2 as an example and using a combined
approach leveraging operating system high availability features, the solution
design team might choose to deploy DB2 in the following way.

2.3.1 Operating system cluster with DB2 active/standby
In the event of the active DB2 instance failing, the operating system clustering
software starts the same instance on another node in the operating system
cluster. This requires that all nodes in the operating system cluster have access
to the same shared disk. While relatively simple in terms of DB2 clustering, this
introduces delays during failover while the new processes are started and any
in-flight transactions are rolled back. The database is accessed through the
cluster address, so that no change in the Identity Manager database
configuration is required during failover. See Figure 2-8 on page 74.

Figure 2-8 Operating system cluster with DB2 active/standby

2.3.2 DB2 mutual takeover multiple partition
All nodes in the database cluster operate in parallel. The database is partitioned
so that if any server in the cluster fails, its partitions are failed over to the
remaining nodes in the cluster. As with other strategies, there are various
considerations in using this approach. The configuration still requires time for the
failed-over partitions to be recovered, although as each partition has less than
the whole volume of data, it is generally faster than an active/standby
configuration. Database analysis needs to be performed to determine an

Operating system cluster

Active
database

server

Standby
database

server

Identity
Manager
74 Identity Management Advanced Design for IBM Tivoli Identity Manager

appropriate database schema, which is required for constructing a partitioned
version of the Identity Manager database. This approach also requires that all
servers have access to the file systems containing the database and transaction
logs. The database is accessed through the cluster address, so that no change in
the Identity Manager database configuration is required during failover. See
Figure 2-9 on page 75.

Figure 2-9 DB2 mutual takeover multiple partition

2.3.3 DB2 High Availability Disaster Recovery (HADR)
This involves using the DB2 automatic log shipping functionality to a secondary
standby server, which applies the logs as it receives them. If the primary active
server fails, then the DB2 client is automatically rerouted to the secondary
failover server. Because no crash recovery is required, the failover to the
secondary can be achieved in a minimal amount of time. Note that only one
server can be active, read, and written to by a client. The secondary standby
servers cannot participate in reads. There also needs to be careful planning if
multiple failover standby databases are to receive updates. The DB2 client takes
care of the failover; hence, there is no need for manual intervention in the Identity
Manager database configuration during failover. See Figure 2-10 on page 76.

Database cluster

Database
Partition

Database
Partition

Identity
Manager
 Chapter 2. Architect a high availability solution 75

Figure 2-10 DB2 High Availability Disaster Recovery

2.4 Identity Manager adapters
Identity Manager manages accounts on managed resources through the use of
adapters. This section speaks about adapters in general. Note that there are
different adapters for each distinct type of managed resource, but you can
generally apply the concepts discussed across the different types of adapters.
For example, the concepts apply to the Windows Active Directory® adapter as
well as the Tivoli Access Manager adapter, and so on.

Account operations issued by Identity Manager are executed by the relevant
adapter for the type of managed resource the accounts reside on. This includes

Restriction: Before the DB2 client is rerouted to the standby server, the role
of the standby server needs to be promoted to primary server. The current
DB2 HADR implementation does not provide automatic promotion of the role;
hence, you might need additional cluster manager software to be responsible
for fault detection and for driving the failover activities. Although no licenses of
cluster manager software are bundled with Identity Manager, you can find
white papers describing how to automate the failover of HADR with various
cluster manager software on the DB2 product domain.

Note: We intend the outlined DB2 options as examples. These are not the
exhaustive high availability strategies available with DB2. For specific details
and other options, refer to the DB2 8.2 product documentation.

Primary
database

Standby
database

Identity
Manager

log shipping
76 Identity Management Advanced Design for IBM Tivoli Identity Manager

provisioning, password management, and reconciliation operations. You might
say that account operations are not mission critical and hence do not need to
have high availability requirements factored in for a solution design. In many
cases, this might be true. As with many things however, there are exceptions to
the rule. Each deployment has specific requirements and it might be decided that
certain operations must be highly available. For example, there can be cases
where password resets, account suspensions, and account de-provisioning are
deemed critical operations and must be highly available.

There are two aspects to consider when dealing with high availability for Identity
Manager interactions with its adapters and subsequently the adapter interactions
with the managed resource hosting the accounts being managed as illustrated in
Figure 2-11. The first is the adapter interactions with the managed resource, for
example, the Identity Manager Windows Active Directory adapter and its
interactions with Windows Active Directory. The high availability aspects
between these two components are not within the scope of this discussion
because each managed resource has different approaches to high availability
and they can vary in completely different ways. For example, a Windows Active
Directory environment has a different high availability design and implementation
approach compared to a relational database environment, both of which are
different from a Tivoli Access Manager environment, and so on. The managed
resource is viewed as a logical entity in the context of this discussion and
assumed to have been designed for high availability by the solution design team
responsible for the managed resource in question. The focus of this discussion is
on the Identity Manager specific components required for ensuring account
operations are highly available.

Figure 2-11 Identity Manager interactions with managed resources

Identity Manager, as per the approach taken with the LDAP and database,
references its adapters via a URI (Uniform Resource Identifier). As previously
mentioned, this is a logical location.

Note: The design consideration shown in the following section can be applied
to all Tivoli Identity Manager adapters that can be implemented using an
agent-less approach. This also includes the Tivoli Identity Manager adapters
based on Tivoli Directory Integrator technology.

Identity
Manager Adapter Managed

Resource
 Chapter 2. Architect a high availability solution 77

Given this, consider the following scenarios:

� Manual failover to secondary adapter
� Automated failover to secondary adapter
� Event notification on an HA adapter configuration

2.4.1 Manual failover to secondary adapter
This scenario involves having a secondary adapter available for use in the event
that the primary adapter is unavailable as shown in Figure 2-12 on page 79. The
URI reference to an adapter is not stored within a configuration file in Identity
Manager, it is stored as an attribute of the service definition. Because of this, a
change in this attribute does not require a restart of the Identity Manager
application. All that needs to be done is for the value to be modified and saved
within the service definition for it to take effect. The assumption we make here is
that the secondary adapter is configured exactly the same way that the primary
adapter is configured. If not, additional attributes need to be modified within the
service definition. This depends on the difference in configuration settings
between the two adapter instances. Refer to 2.4.3, “Event notification on an HA
adapter configuration” on page 81 for adapter configuration when the event
notification feature on the adapter is enabled.

Note: The scenarios we present next are failover scenarios. We do not advise
that you consider using a load balancing strategy for the adapters. This can
cause issues with operations such as reconciliations, which rely on using a
dedicated adapter instance.

The following scenarios consider the use of two adapters in each case. This is
a solution that can handle the single point of failure on the Identity Manager
adapter layer. In a high availability solution design, adding a third adapter in
failover mode does not carry real benefits to the solution.
78 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 2-12 Manual failover to secondary adapter

If the primary adapter becomes unavailable, manual user intervention is required
to make the change in the relevant service definition to reference the secondary
adapter. This secondary adapter can be an active standby or it can be brought
up to an active running state when it is required. An active standby secondary
adapter will result in a shorter amount of down time but will require the system
resources to be available for use by the secondary adapter. If the secondary
adapter is brought to an active running state, it might take a little longer to
achieve availability, but it does not consume system resources (other than disk
space) while it is not required. The resources consumed while in an active state
but not being utilized by the Identity Manager Server are relatively insignificant,
however. The approach taken depends on operational requirements of the
organization, for example, the amount of system resources available or service
level agreements that must be met.

Recovery
It might be acceptable to use the secondary adapter as the active adapter until
such a time where it is unavailable and perform the steps mentioned to have
Identity Manager use the primary adapter again. If it is essential that Identity
Manager always use the primary adapter if possible, then a suitable approach is
to wait for the next available change window to do so (following the change
control procedures of the environment in question), preferably when the Identity
Manager Server is not performing any tasks related to the adapter in question.
For example, we do not advise that you do this while a reconciliation is running.

2.4.2 Automated failover to secondary adapter
This scenario relies on the secondary adapter being available for use at all times.
There is also a requirement to leverage the use of a suitable IP load balancer as

Identity
Manager

Primary
Adapter

Managed
Resource

Secondary
Adapter
 Chapter 2. Architect a high availability solution 79

detailed in 2.2.2, “Automated failover to secondary LDAP” on page 71. The
Identity Manager Server is configured to reference the URI of the load balancer
which then routes requests to the relevant available adapter as shown in
Figure 2-13.

Figure 2-13 Automated failover to secondary adapter

An important point to note with this approach is the use of the word failover. The
load balancer is configured to prioritize requests to the primary adapter. That is, it
attempts to use the primary adapter at all times until such a time when it is
unavailable. In the event of unavailability, the load balancer uses the secondary
adapter. Note that the secondary adapter must be configured exactly the same
way the primary adapter is configured, for example, the primary and the
secondary adapter have to use the same keys and certificates, the same
authorized user ID and password, and the same ports. If the event notification is
enabled on the adapter, see 2.4.3, “Event notification on an HA adapter
configuration” on page 81 for design and implementation considerations.

Recovery
There are two distinct recovery scenarios that we need to examine.

� If the load balancer allows modification of priorities while it is running it should
be modified to give priority to the secondary adapter while the primary
adapter is being brought back to a functional state. If the desire is to use the
primary adapter where possible, the load balancer needs to be reconfigured
to prioritize requests to be routed to the primary adapter. This should be done
within the change control procedures of the environment and during a
suitable change window, preferably when the Identity Manager Server is not
performing tasks related to the adapter. For example, we do not advise that
you do this while a reconciliation is running.

Identity
Manager

Primary
Adapter

Managed
Resource

Secondary
Adapter

Load
Balancer
80 Identity Management Advanced Design for IBM Tivoli Identity Manager

� If the load balancer does not allow modification of priorities while it is running,
the network connection between the load balancer and the primary adapter
should be disabled (either directly at the network configuration level or via a
device such as a firewall) while the primary adapter is brought back to an
active functional state. The network connectivity can be restored within the
change control procedures of the environment and during a suitable change
window, preferably when the Identity Manager Server is not performing tasks
related to the adapter.

2.4.3 Event notification on an HA adapter configuration
Event notification is a feature of Identity Manager adapters that updates the Tivoli
Identity Manager Server at set intervals. Event notification detects changes that
are made on the managed resource and updates the Tivoli Identity Manager
Server with the changes. You can enable event notification if you want to have
updated information from the managed resource sent back to the Tivoli Identity
Manager Server between full reconciliations.

For the high availability adapter design, you have to consider that you can only
enable the event notification feature on the primary adapter.

Event notification on the primary adapter
When event notification is enabled, a database of the reconciliation data is kept
on the machine where the adapter is installed. The database is updated with the
changes that are requested by the Tivoli Identity Manager Server and will remain
synchronized with the server. You can specify an interval for the event
notification resource. When the interval has elapsed, any differences between
the managed resource and the database are forwarded to the Tivoli Identity
Manager Server and updated in the local snapshot database.

Figure 2-14 on page 82 describes the components involved in the
synchronization process of the changes that occurred on the managed
resources:

1. The local database on the adapter machine server is updated with the
changes that are requested by Tivoli Identity Manager Server. The local
snapshot will be synchronized with the server (step 1).

2. The adapter, at each event notification interval, compares the local
information with the managed resource (steps 2 and 3).

3. The differences between the managed resource and the local database are
fowarded to the Identity Manager Server (step 4).

4. The differences are updated on the local database (step 5).
 Chapter 2. Architect a high availability solution 81

Figure 2-14 Adapter event configuration process

A suitable approach is to not enable the event notification feature on the
secondary adapter when an automatic failover mechanism through a load
balancer has been implemented for the adapter’s high availability. Since in this
configuration both the primary and secondary adapters are active, both will
update the Identity Manager Server with unpredictable effects on the Identity
Manager Server side. Figure 2-15 shows this design approach when event
notification is enabled. For the recovery, see the procedures described in 2.4.2,
“Automated failover to secondary adapter” on page 79.

Figure 2-15 Event notification configured only on the primary adapter

Benefits
By implementing this solution (event notification not enabled on the secondary
adapter), no extra cost (operating system cluster or automatic scripting to

Tivoli Identity
Manager
Server

Managed
resource

Adapter

event notification
database

synch

1

2

3

4

5

Tivoli Identity
Manager Server

Load
Balancer
(failover)

Primary
Adapter

Managed
Resource

Event
notification DB

Secondary
Adapter

Any differences between the managed
resource and the event notification

database are fowarded to Tivoli Identity
Manager Server.

The local event notification database is
updated with changes that currently exist

on the managed resource.

Secondary adapter is
normally active.

No event notification is
configured on the

secondary adapter.
82 Identity Management Advanced Design for IBM Tivoli Identity Manager

change adapter configuration during the failover) is required, and there is no
synchronization problem between the Identity Manager Server and the managed
resource.

Limitations
When the primary adapter is unavailable, the secondary adapter does not update
the Identity Manager Server based on the event notification feature. A suitable
approach is to wait for the next available change window to re-prioritize the load
balancer request to the primary adapter as soon as it is available again. This
should be done within the change control procedures of the environment and
during a suitable change window.

2.5 Physical HA component architecture
The Identity Manager system is always deployed as part of an enterprise
environment. A goal of the physical component architecture is to be flexible
enough to support different configuration options. This section discusses the
different network zones that you find within an enterprise environment and the
placement options for the design of different Identity Manager components to
support continuos operations.

For general considerations about the physical component architecture of an
Identity Manager solution, refer to Chapter 3. “Identity Manager components
structure” in the Identity Management Design Guide with IBM Tivoli Identity
Manager, SG24-6996-01.

2.5.1 Component configuration and placement
In the design of the Identity Manager architecture for a production setting, we do
not recommend that you deploy all the Identity Manager components within a
single network.

In the next sections, we discuss how various Tivoli Identity Manager
components, designed to accomplish high availability requirements, relate to the
network. We provide recommendations for how they should be distributed in a
typical architecture.
 Chapter 2. Architect a high availability solution 83

2.5.2 Network zones
We have to consider four types of network zones in our discussion of Tivoli
Identity Manager component placement:

� Private Network (the extranet)
� Controlled (an extranet-facing DMZ and the intranet)
� Restricted (a production network)
� Secure (a management network)

An extranet is a private network that uses the Internet protocol and the public
telecommunication system to securely share part of a business's information or
operations with partners, customers, or other businesses. An extranet can be
viewed as part of a company's intranet that is extended to users outside the
company. Think of an extranet as a private portion of the Internet.

In this section, we branch the extranet from the intranet to emphasize that some
Identity Manager services, such as self-care management and delegated
administration, can be shared with business partners. This is also useful to
describe the security and hardening considerations in 2.6, “Security and integrity
for high availability” on page 87.

Since we do not place any components in an Extranet zone except a user’s Web
browser, we take a closer look at the remaining zones.

For a general overview of network zones, refer to Chapter 2, “Common security
architecture and network models” in the IBM Redbook Enterprise Security
Architecture Using IBM Tivoli Security Solutions, SG24-6014-02.

Extranet DMZ (controlled zone)
The extranet DMZ is generally a controlled zone that contains components with
which clients can directly communicate. It provides a “buffer” between the private
network zone (extranet) and internal networks. Because this DMZ is typically
bounded by two firewalls, there is an opportunity to control traffic at multiple
levels:

� Incoming traffic from the extranet to hosts in the DMZ
� Outgoing traffic from hosts in the DMZ to the extranet
� Incoming traffic from internal networks to hosts in the DMZ
� Outgoing traffic from hosts in the DMZ to internal networks

Because a typical Tivoli Identity Manager deployment integrates with a Tivoli
Access Manager environment, we need to consider the placement of WebSEAL
in the DMZ. WebSEAL can be used to protect access to the HTTP server used
by the Tivoli Identity Manager GUI server and to a customized self-care service
used by business partners and other external users. The DMZ is an appropriate
location for the WebSEAL component of Tivoli Access Manager, and in
84 Identity Management Advanced Design for IBM Tivoli Identity Manager

conjunction with the available network traffic controls provided by the bounding
firewalls, it provides the ability to deploy a highly secure Web presence without
directly exposing components that may be subject to attack by network clients.

Production or management networks (restricted/secure zones)
One or more network zones can be designated as restricted or secure, that is,
they support functions to which access must be strictly controlled, and of course,
direct access from an uncontrolled network and also an extranet network should
not be permitted. As with an Internet DMZ or extranet DMZ, a restricted network
is typically bounded by one or more firewalls, and incoming and outgoing traffic
can be filtered appropriately. Access to a secure zone is only available to a small
group of authorized staff. Access into one area does not necessarily give you
access to another secured area.

These zones typically contain Tivoli Identity Manager and infrastructure server
components.

Intranet (controlled zone)
Typically, a controlled zone, such as a corporate intranet behind one or more
firewalls, is not heavily restricted in use, but an appropriate span of control exists
to assure that network traffic does not compromise the operation of critical
business functions.

Other networks
Keep in mind that the network examples we use do not necessarily include all
possible situations. There are organizations that extensively segment functions
into various networks. However, in general, the principles discussed here can
easily translate into appropriate architectures for such environments.

Placement of various Tivoli Identity Manager components within network zones
is a reflection of the security requirements in play, and alternatively, a choice
based upon an existing and planned network infrastructure and levels of trust
among the computing components within the organization. While requirement
issues might often be complex, especially with regard to the specific behavior of
certain applications, determination of a Tivoli Identity Manager architecture that
appropriately places key components is generally not difficult. With a bit of
knowledge about the organization’s network environment and its security
policies, reasonable component placements are usually easily identifiable.

Note: You can obtain more information about IBM Tivoli Access Manager
design architecture consideration by reading the IBM Redbook Enterprise
Security Architecture Using IBM Tivoli Security Solutions, SG24-6014-02 and
Enterprise Business Portals II with IBM Tivoli Access Manager, SG24-6885.
 Chapter 2. Architect a high availability solution 85

Figure 2-16 summarizes the general Identity Manager component type
relationships to the network zones we have discussed.

Figure 2-16 Network zones for Identity Manager placement

Because all the components of Tivoli Identity Manager have either information
that access should be restricted to, or support such resources, we recommend
that they all are placed in a restricted zone. An exception to this might be to place
a Web server in the extranet DMZ to manage external requests from business
partners if no general access control solution, such as Access Manager
WebSEAL, is in place.

Figure 2-17 on page 87 shows an example architecture for integrating Identity
Manager high availability design components. Note that firewalls are introduced
to separate the networks and permit access only through specified ports. In this
example, access from the extranet is only allowed on the listening ports to the
WebSEAL server in the DMZ, and the WebSEAL server is configured to access
the back-end Web servers through alternative ports, hence forcing all users
requesting access to the back-end Web servers to be authenticated by
WebSEAL.

We discuss the security hardening requirements for the integrated Identity
Manager high availability design architecture in 2.6, “Security and integrity for
high availability” on page 87.

No Identity Manager
components should be
deployed in the extranet.

Possible location
for GUI servers
that service
external business
partners and
customers.

The specific level of
trust in an internal
network dictates what
Identity Manager
components may be
deployed within them.

Organizations may set
up specialized restricted
zones for production
systems that may include
Identity Manager and
supporting components,
such as DB2, LDAP, and
Web servers.

Some organizations
set up special
networks to separate
various management
components from
production systems.
Some Identity Manager
components might be
installed in such a
network.

Extranet

Private
network Zone

Extranet DMZ Intranet

Controlled
Zone

Controlled
Zone

Production
Network

Restricted
Zone

Management
Network

Secured Zone

LESS SECURE MORE SECURE
86 Identity Management Advanced Design for IBM Tivoli Identity Manager

In Figure 2-17, the self-care application represents the logical components for all
Identity Manager services published towards the extranet. The WebSphere
Application Server cluster that hosts the self-care services has been separated
from the Identity Manager Server cluster essentially for performance reasons.

Figure 2-17 Integrated architecture for Identity Manager high availability design components

2.6 Security and integrity for high availability
The Identity Manager software components allow flexibility to enable or disable
various security features within each component and between the components.
Many of these are generally disabled by default to allow for ease of development
and initial deployment. As part of the design and planning, these configuration
differences should be documented and decisions made with regards to which
features need to be enabled and in which environments.

This section discusses several design considerations to note within a high
availability architecture for Identity Manager as shown in Figure 2-17.

Browser

Extranet Extranet DMZ

Fi
re

w
al

l

Identity
Manager

Sever
(WAS node1)

Identity
Manager

Sever
(WAS node2)

TDS
Master

TDS
Master

TDS Proxy or
Load Balancer

TDS
Proxy
Server

Load
Balancer

Self-Care
application

(WAS node1)

Self-Care
application

(WAS node2)

Deployment
Manager

ITIM Cluster

Self_Care Cluster

TDS
Proxy
Server

Web
Server

TDS
Proxy
Server

Web
Server

DB2
Server

DB2
Server

HADR

LDAP Multi Master

Fi
re

w
al

l

TDS
Proxy
Server

Access
Manager

WebSEAL

Management Network
WAS: WebSphere Application Server
TDS: Tivoli Directory Server
 Chapter 2. Architect a high availability solution 87

For more general security considerations, refer to Chapter 5, “Operational
Solution design”, in Identity Manager Design Guide with IBM Tivoli Identity
Manager, SG24-6996-01.

The main security considerations to note within an Identity Manager high
availability environment are:

� Identity Manager and LDAP communication via SSL.

Typically configured for SSL in production. Setting the SSL option on the Tivoli
Directory Server proxy server (ibm-slapdSecurity attribute on Tivoli Directory
Server) enables the proxy server (SSL server) to receive either secure
(default port 636) or insecure (default port 389) communications from Identity
Manager (SSL client). Setting the SSL only option on the Tivoli Directory
Server proxy server enables the proxy server (SSL server) to receive only
secure (default port 636) communications from Identity Manager (SSL client).

If you only need encryption on the LDAP communication, it is enough to
select Server authentication for the Tivoli Directory Server proxy server
(ibm-slapdSslAuth attribute on Tivoli Directory Server). For server
authentication, the Directory Server proxy server supplies Identity Manager
with the proxy server’s X.509 certificate during the initial SSL handshake. If
Identity Manager validates the proxy server’s certificate, then a secure,
encrypted communication channel is established between the proxy server
and the Identity Manager Server. For server authentication to work, the
Directory Server proxy server must have a private key and associated server
certificate in the server’s key database file.

If you need encryption on the LDAP communication and two-way
authentication between the LDAP client (Identity Manager) and the LDAP
server (Directory Server proxy server), you have to select the Server and
client authentication type for the Directory Server proxy server. With client
authentication, the LDAP client (Identity Manager) must have a digital
certificate available (based on the X.509 standard). This digital certificate is
used to authenticate the LDAP client to the LDAP server (Directory Server
proxy server).

� Tivoli Directory Server proxy server and Tivoli Directory Server back-end
communication via SSL.

In this case, you want to use the same considerations described in the
previous “Identity Manager and LDAP communication via SSL” bullet. In this
case, however, the LDAP server is represented by the back-end Tivoli
Directory Server and the LDAP client is the proxy server.

� Tivoli Directory Server peer-to-peer topology communication via SSL.

In this case, you want to use the same considerations described in the
“Identity Manager and LDAP communication via SSL” bullet. Here, each
back-end LDAP peer serves both LDAP server and LDAP client role.
88 Identity Management Advanced Design for IBM Tivoli Identity Manager

� Pick a random password encryption key.

A default value for an encryption key is given during installation. To ease your
change management tasks the same password encryption key should be
used on the deployment manager and on each node where an Identity
Manager instance is installed.

� Identity Manager and adapter communication via SSL.

This option is typically enabled in production. You have the option to
configure the SSL communication to be one-way or mutually authenticated.
Certain environments only require one-way SSL while others with strict
security policies might mandate that the SSL communications are mutually
authenticated. The same SSL configuration (same SSL option and same
certificate) has to be used on the adapters in a high availability configuration.

� Identity Manager Web application access only via HTTPS.

This option enforces that users can access the Identity Manager application
only over a secure SSL channel. This requirement varies between
deployments depending on the security policies of the organization.

� Application Server security enabled.

Enable WebSphere global security on the Identity Manager Server
WebSphere Cluster environment. WebSphere global security ensures that
authenticated users have the necessary permissions to access Identity
Manager EJB™ components. Configuring this security component involves
configuring an authentication mechanism, a user registry, and optionally,
Java 2 security.

Use the same security consideration to enable security on the application
server cluster where the self-care Identity Manager services are installed. An
SSL connection has to be enabled between the WebSphere cluster where the
self-care application is installed and the Identity Manager WebSphere
Application Server cluster to encrypt the communication between the Identity
Manager Server cluster and the self-care server cluster.

Refer to the online IBM Tivoli Identity Manager Information Center Version
4.6, SC23-5267, and the IBM Tivoli Identity Manager Server Installation and
Configuration Guide for WebSphere Environments Version 4.6, SC32-1750,
for detailed specifics about performing these actions.

� DB2-encrypted communications.

Enforce data encryption between the DB2 server and the DB2 client.
Configure the DB2 database server to use DATA_ENCRYPT as the
authentication type. A value of DATA_ENCRYPT means the server accepts
encrypted SERVER authentication schemes and the encryption of user data.

Refer to the online IBM DB2 UDB Version 8.2 Information Center for detailed
specifics about performing these actions.
 Chapter 2. Architect a high availability solution 89

� DB2 HADR environment secure communications.

Enforce data encryption communication using a private network for the
TCP/IP communication between the primary and standby databases. DB2
HADR uses TCP/IP for communication between the primary and standby
databases.

As shown in the list above, many of the connections between Identity Manager
components can be secured using SSL. Figure 2-18 shows these connections.

Figure 2-18 Identity Manager component connections with SSL support

The most critical of these connections from a security perspective are the
connections from the Web browser to the Web server and on to the Identity
Manager server, and the connections from the Identity Manager Server to its
adapters. These connections transmit account passwords, so the privacy of the
data on these connections is very important. The remaining connections do not
transmit clear text account passwords, but they do transmit credentials that are
used for authenticating the Identity Manager components and might transmit
sensitive user data.

2.7 Conclusion
This concludes our comprehensive discussion about high availability and failover
situations for Tivoli Identity Manager. We have addressed the application server
clustering techniques along with availability issues for the LDAP directory and
the relational database server infrastructures. In addition to these infrastructure

Browser

TDS
Master

TDS
Master

TDS
Proxy
Server

Web
Server

TDS
Proxy
Server

Web
Server

LDAP Multi Master

TDS
Proxy
Server

Access
Manager

WebSEAL

TDS
Proxy

Identity
Manager

Sever
(WAS node1)

Identity
Manager

Sever
(WAS node2)

TIM Cluster

Self-Care
application

(WAS node1)

Self-Care
application

(WAS node2)

Self-Care Cluster

TDS
Proxy
Server

Identity
Manager
adapter

TDS
Proxy
Server

Tivoli
Directory
Integrator
as adapter

Tivoli
Directory

Integrator as
identity feed

SSL

SSL SSL

SSL

SSL

S
S

L

S
S

L

SSL

SSL

SSL

SSL

SSL

WAS: WebSphere Application Server
TDS: Tivoli Directory Server
TIM: Tivoli Identity Manager
90 Identity Management Advanced Design for IBM Tivoli Identity Manager

components, we have also discussed the Identity Manager adapters. Finally, we
covered best practices considerations about high availability on physical
component design, security and integrity, and component communications.

The Tivoli Austin Airlines customer scenario will implement a high availability
solution based on their individual business requirements.
 Chapter 2. Architect a high availability solution 91

92 Identity Management Advanced Design for IBM Tivoli Identity Manager

Part 2 Customer
Scenario

In this part, we describe a customer scenario based on the fictive Tivoli Austin
Airlines corporation that has been introduced in the first Identity Manager-related
IBM Redbook Identity Management Design Guide with IBM Tivoli Identity
Manager, SG24-6996.

This time, the company is challenged to address advanced requirements,
including high availability for a 24x7 implementation and deployment of a
self-care application to its partners and customers as well as its employees.

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 93

94 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 3. Tivoli Austin Airlines, Inc.

This chapter provides an introduction to the overall structure of Tivoli Austin
Airlines (TAA) corporation, including its business profile, current IT architecture,
and infrastructure, as well as their business vision and objectives.

3.1 Company profile
Tivoli Austin Airlines (TAA) is one of the major airlines within the continental
United States. It has been in business for 14 years now and has increased its
flight operations to over 750 daily flights nationwide, with the motto “To fly
anything, anywhere.” This is an increase of some 150 flights a day over
approximately the past two years and sales continue to increase.

The following sections describe:

� The geographic distribution of TAA
� The company organization
� HR and personnel procedures

3

Note: All names and references for company and other business institutions
used in this chapter are fictional. Any match with a real company or institution
is coincidental.
© Copyright IBM Corp. 2006. All rights reserved. 95

3.1.1 Geographic distribution of TAA
TAA is based in Austin, Texas, with the corporate head office and central IT data
center located near the Austin International Airport. TAA further operates the
following three regional centers:

RW Regional center West (San Francisco)

RA Regional center Austin (Austin, within the central IT data
center)

RE Regional center East (New York)

These regional data centers service the IT needs of the region, such as LAN
support, help desk support, and user administration. The corporate IT staff, such
as systems programmers and developers, are located at the central IT data
center.

TAA operates full aircraft service and maintenance centers in the Austin, New
York, and San Francisco airports with satellite maintenance operation centers
located in the rest of the major airports. These service and operation centers are
responsible for the repair and servicing of the TAA fleet. All major repairs and
servicing are done at the full service centers in Austin, New York, and San
Francisco, while all the other sites are responsible for emergency and light
maintenance. In the case where an aircraft must undergo extensive emergency
mechanical repairs, the necessary repairs are made where the aircraft is in order
to get the aircraft to one of the regional centers for the remainder of the repairs
and flight certification.

TAA also runs multiple Customer Service Centers (CSCs) in the major airports,
servicing front-office functions, such as ticketing, member lounges, baggage
management, and staff HR systems. The CSCs have no local staff, so they
contact the regional centers for technical support.

Note: The following sections describe the company information relevant to an
Identity Manager implementation and are not intended to be a complete
description of the company.
96 Identity Management Advanced Design for IBM Tivoli Identity Manager

The TAA sites are:

Austin, TX This is the IT center housing the core IT infrastructure and
staff. It is also the Regional Center for the Austin region
and contains the technical support staff for the Central
region. It is the home of the largest aircraft service and
maintenance center TAA operates with most of its parts
vendors co-located to this site. It is the distribution hub for
parts heading to its two other full service regional sites.
Furthermore, TAA also operates a Customer Service
Center at this location.

San Francisco, CA This site is the Regional Center for the West region. It
contains the technical support staff for the West region.
This site is for the West region aircraft service and
maintenance center, and there is also a Customer
Service Center.

New York, NY This site is the Regional Center for the East region. It
contains the technical support staff for the East region.
This is the site for the East region aircraft service and
maintenance center, and there is also a Customer
Service Center.

Seattle, WA This site contains a Customer Service Center, is part of
the West region, and is supported by the regional center
in San Francisco.

Los Angeles, CA This site contains a Customer Service Center, is part of
the West region, and is supported by the regional center
in San Francisco.

Denver, CO This site contains a Customer Service Center, is part of
the Austin region, and is supported by the regional center
in Austin.

St. Louis, MO This site contains a Customer Service Center, is part of
the Austin region, and is supported by the regional center
in Austin.

Detroit, MI This site contains a Customer Service Center, is part of
the East region, and is supported by the regional center in
New York.

Raleigh, NC This site contains a Customer Service Center, is part of
the East region, and is supported by the regional center in
New York.

The geographic distribution of TAA is shown in Figure 3-1 on page 98. The figure
shows the three regions, West, Central, and East.
 Chapter 3. Tivoli Austin Airlines, Inc. 97

Figure 3-1 TAA geographic distribution

TAA’s extension
“To fly anything, anywhere” is the motto for TAA. Since this represents the
business purpose of the company, TAA has just opened a new customer service
center outside of the United States of America. This CSC is located in Mexico
City inside the Mexico City International Airport to provide all kinds of services to
customers from Mexico including online ticket sales and account management
for the “TAA frequent passenger benefits.” This effort complies with the business
objective of TAA becoming one of the premiere airlines in the world. Figure 3-2
on page 99 depicts the location of the new CSC.

Austin, TX
IT Center

San Francisco
(Regional

Center West)

New York
(Regional Center

East)

Los Angeles
CSC

Denver
CSC

Raleigh
CSC

Detroit
CSC

St. Louis
CSC

Seattle
CSC
98 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 3-2 TAA expansion into Mexico City

The CSC in Mexico City provides the same services as the US locations, such as
servicing front-office functions, ticketing, member lounges, baggage
management, aircraft maintenance and repair, and staff HR systems. This CSC
has no local support staff; they contact the Regional Center, Austin, for technical
support and parts distribution.

Since the official language in Mexico is Spanish, TAA has implemented language
support on most IT systems to provide Spanish local support to messaging
services, including e-mail, alerts, and self-service Web pages.

3.1.2 Organization of TAA
The company is split into four key areas, the three regions and a core services
division. This is shown in Figure 3-3 on page 100.

Mexico City
CSC
 Chapter 3. Tivoli Austin Airlines, Inc. 99

Figure 3-3 High-level organization chart

Each of the regions is responsible for the operation of the local services in that
region, including customer service, baggage handling, ground services, aircraft
maintenance, airport liaison, and staffing. The three regions have the same
structure. The organization chart for the central region is shown in Figure 3-4.

Figure 3-4 Central region organization chart

The core services division acts on a company wide scale. It is split into three
departments, Sales, Support, and Flights. Each of these departments has a
number of teams, as shown in Figure 3-5 on page 101.

Executive

Region
West

Region
Austin

Region
East

Core
Services

Region
Austin

Ground
Services

Customer

Baggage

IT
Center

HelpDesk

Tech
Support

HR

Catering

Cleaning

Airport
Liaison

CSC01
(Denver)

CSC02
(St. Louis)

CSC03
(Mexico City)

Aircraft
Maintenance
100 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 3-5 Core services organization chart

Each team within a department has a unique business code identifying the team
and its location.

3.1.3 HR and personnel procedures
Personnel are managed by HR utilizing the centralized HRMS in the Austin HR
site and IBM Tivoli Identity Manager. The following procedures apply to
personnel management:

� When a new employee joins the company, the new employee is added to the
HR system with the corresponding location and employee codes matching
the new employee’s job. An HR feed then updates Identity Manager with the
new user. The new user is added to the appropriate role in Identity Manager
according to the new employee’s location and employee codes. This role is
associated with those applications which that user requires to perform that
user’s duties at TAA. Identity Manager then automatically requests the
required accesses to those applications, network, and the operating system
which that role has been associated with. E-mails are sent (using Lotus®
Notes®) to the required approvers and all other accounts are created
immediately. Upon approval, those accounts which require approvals are also
created. After all required accounts are created, an e-mail is sent to the new
employee’s manager indicating when the person is starting work along with
the new employee’s e-mail account information in order for that user to log in
and collect the new employee’s account information. When an employee
needs additional access to resources, the employee asks the employee’s
manager to ask the appropriate support team, via e-mail, for the access. As
with new accounts, the support teams grant the additional access. This
currently takes up to two days to complete due to an administrative backlog.

Core
Services

Sales

AcctsCentral IT
DataCenter

Systems HelpDesk IT Dev

Support

TAAMiles

Flights

Crews Maint.HRMarketing
 Chapter 3. Tivoli Austin Airlines, Inc. 101

� When an employee forgets the assigned password or has an account locked
due to invalid passwords, the employee logs into Identity Manager via the
forgotten password functionality and resets the password. This resets all of
the employee’s passwords to the new password. Further, when required to
change a password, the employee uses the standard password change
functionality from the Windows desktop environment. This password change
is caught by Identity Manager and is then synchronized across all of the
appropriate applications.

� When an employee leave the company, the employee is marked with the
appropriate inactivity code within the HR system and the next HR feed to
Identity Manager modifies the employee status within Identity Manager. This
modification of the person status causes the accounts to be suspended,
however, the employee is not deleted from Identity Manager according to
security procedures since the employee identity is never to be used again in
the future and the identity should still be able to be referenced. Furthermore,
any information that the user may have worked with is required to be
available for at least three months, at which time the user’s accounts are
deprovisioned and any access to the user’s work must be restored from
backup.

3.2 Current IT architecture
In this section, we describe the current IT environment at TAA. We cover:

� An overview of the TAA network
� The recently implemented e-business application
� The security infrastructure deployed for the e-business application
� The secured e-business initiative architecture
� User administration issues

3.2.1 Overview of the TAA network
TAA’s central IT data center has implemented a back-end datastore, which is
based on DB2 running on z/OS®. They use an MQ Series infrastructure for
asynchronous transactions between the central IT data center, the CSCs, and
the regional data centers.

The high-level network diagrams of TAA’s network are shown in Figure 3-6 on
page 103.
102 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 3-6 The TAA network

For the CSC in Mexico City, a high-level network diagram is shown in Figure 3-7
on page 104.

Austin, TX
IT Center

T1 (1.54Mbps)

San Francisco
(Regional

Center West)

Internet

T3 (45Mbps)

New York
(Regional Center

East)

T3 (45Mbps)

Los Angeles
CSC

Denver
CSC

Raleigh
CSC

Detroit
CSC

St Louis
CSC

Seattle
CSC

T1 (1.54Mbps)T1 (1.54Mbps)T1 (1.54Mbps)

T1 (1.54Mbps)

T1 (1.54Mbps)

T3 (45Mbps)
 Chapter 3. Tivoli Austin Airlines, Inc. 103

Figure 3-7 Mexico City CSC connectivity diagram

The location of firewalls is shown in Figure 3-6 on page 103. All external access
to the TAA network is channeled through the firewalls and routers in Austin.
There are also firewalls between the regional centers and the IT data center, as
well as between the regional centers and the CSCs.

All T1 and T3 links are leased services. TAA relies on the service provider to
ensure the necessary uptime, as agreed in the service level agreement. The
diagrams in Figure 3-8 on page 107 and Figure 3-9 on page 108 are therefore
logical and do not show redundant and standby links or triangulation of the
network. TAA relies on the service provider for this.

TAA uses Lotus Notes for their e-mail system. This application is not available in
the CSC and at the Gate terminals.

3.2.2 TAA’s e-business initiative
Most of the business applications have been migrated to a distributed
WebSphere Application Server implementation based on Linux systems, which
are located in every regional center. All these systems communicate with the
back-end database through the high-speed network.

The only application that has not been implemented using the WebSphere model
is the Gate Terminal Application. This application runs on a Windows Active

Mexico
City CSC

to Central

T1 (1.54Mbps)
104 Identity Management Advanced Design for IBM Tivoli Identity Manager

Directory-based network on Windows terminals in each CSC (that is, the CSC
employees cannot use a browser to access this application). The Gate Terminal
Application uses MQ Series calls to check the appropriate passenger data.

3.2.3 Security infrastructure for the e-business initiative
In the past, TAA’s application system experienced many unauthorized access
attempts to critical business data. Recently, TAA has deployed a security
solution that implements a centralized access control mechanism enforcing
authentication and authorization of users before they actually access the
applications and critical data via their Web browser. This solution is implemented
based on IBM Tivoli Access Manager for e-business with WebSEAL for the
access control component.

A typical user access with WebSEAL controls looks like this:

1. A user in a CSC logs on to the Windows domain specifying a Windows user
ID and password.

2. The user starts a Web browser and accesses a login page for a specific
application. The user logs in with the application user ID and password. A
credential is used for access control by WebSEAL in the regional center the
CSC belongs to.

3. WebSEAL accepts or denies the login. WebSEAL works as a reverse proxy
between the user’s Web browser and the application hosting Web server,
controlling whether a user can access the requested resource or not.

4. WebSEAL’s access control decisions are based on the information held
within the Access Manager Policy Server and the relevant LDAP repository.
The Policy Server stores the access control information used by WebSEAL
and distributes access control information database replicas to all defined
WebSEAL servers while the LDAP server has the user credential information
created and used by Access Manager. The Policy Server is located in the
Austin site, but WebSEAL and LDAP replica servers are made available in

Note: In this redbook, we omit any detailed description about the IBM Tivoli
Access Manager and WebSEAL solution, because our focus is on the identity
management system. For further details, you might want to consult the
following IBM Redbooks:

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� Enterprise Business Portals with IBM Tivoli Access Manager, SG24-6556

� Enterprise Business Portals II with IBM Tivoli Access Manager,
SG24-6885
 Chapter 3. Tivoli Austin Airlines, Inc. 105

each regional center. The LDAP server in Austin is the master server, which
can be modified; the LDAP replica servers are read-only.

Only the Web applications can be secured by WebSEAL using Web user
accounts, but there are other types of accounts necessary to run standard
operations, such as Windows, Linux, and z/OS. These accounts can only rely on
the native operating system security. That is why TAA puts the employees under
an obligation to follow additional security policies to strengthen the levels of
security, such as a periodic password change and other password policies for all
types of accounts.

3.2.4 Secured e-business initiative architecture
Figure 3-8 on page 107 contains only the Austin site, which consists of the
central IT data center, Regional Center Austin, and CSC, in order to make it
simple. While there are strong grounds for altering the network topology and
firewall configuration so that the Austin Regional Site is separate from the Austin
Corporate site, the risk assessment carried out once again showed that there
were higher priorities (those addressed by Access Control and Identity
Management) than this internal network topology change. The full existing TAA
topology is shown in Figure 3-9 on page 108.
106 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 3-8 Current IT architecture in Austin

F
I
R
E
W
A
L
L

Customer

WebSEAL

F
I
R
E
W
A
L
L

F
I
R
E
W
A
L
L

Access
Manager

Policy
Server

LDAP
Server

WebSEAL

z/OS (DB2,
MQSeries)

Linux

Internet Internet DMZ Production DMZ Intranet

Web
Application

Server
Web

Application
Server

IBM

CSC sitesCentral IT Center

Region Center Austin

Central IT Center

application data flow
access control flow
 Chapter 3. Tivoli Austin Airlines, Inc. 107

Figure 3-9 Current entire TAA architecture

Ultimately, TAA will aim at segregating the data (DB2 on zOS) and systems
management zones (LDAP, Security management, and so on) from the Austin
Corporate Network. The Austin Regional Network could then further be
separated by a firewall and be treated exactly as though it were a remote
regional center, even though it is not remote from Austin. Evolving toward this
security best practice also creates further operating gains on the system
management side of the organization and, therefore, in the user experience.

F
I
R
E
W
A
L
L

Customer

WebSEAL
F
I
R
E
W
A
L
L

Access
Manager

Policy
Server

LDAP
Master

z/OS
(DB2,MQSeries)

Linux

Internet Internet DMZ

Web
Application

Server

Central IT CenterCentral IT Center

application data flow
access control flow

F I R E W A L L

LDAP
Replica

WebSEAL

F I R E W A L L

Intranet

Regional Center , West, Central, East

IBM

CSC site

Production DMZ

Web
Application

Server

Linux

Windows Active
Directory Domain

LDAP
Replica

F
I
R
E
W
A
L
L

108 Identity Management Advanced Design for IBM Tivoli Identity Manager

3.2.5 Identity management and emerging issues
TAA is trying to closer integrate business partners and customers into their
current infrastructure in order to increase efficiency; however, this has raised
infrastructure, identity, and access management issues. Before we discuss these
issues in detail, we give you an overview of the current user management.

Current user management
TAA has been using IBM Tivoli Identity Manager in production for a little over a
year now with its internal employees.

Users request new all accounts through either their manager or second-line
manager, who then requests the necessary access from the Identity Manager
administrators. The CSC staff have their accounts in a Windows domain and the
Tivoli Access Manager LDAP directory (for WebSEAL-controlled Web application
access). The regional center administrators have their accounts on Linux
systems, adding to Windows domains in their region and the Tivoli Access
Manager LDAP directory. Currently, the provisioning time for the Windows
accounts can take up to a day due to the low bandwidth between certain sites
and the time for Windows Active Directory (AD) to replicate provisioning
changes.

Programmers and developers in the central IT data center have their accounts
on all platforms in the enterprise, including z/OS. Accounts on z/OS are created
using the RACF® interface shipped with z/OS.

Customers’ accounts are created in the Tivoli Access Manager LDAP registry
located in Austin. They are managed by administrators in the regional center
Austin.

Business partners do not have accounts and, therefore, must go through their
management counterparts in TAA to access certain information that is critical for
them to supply the necessary parts and services required of them. This builds
extra time and cost into the process that would otherwise not be there.

Emerging issues
As we have mentioned, all employee accounts are created and maintained with
Identity Manager. All customer accounts are created and maintained by
administrators, and business partners do not have accounts; however,

Note: You can read everything about the first Identity Manager installment at
TAA in the IBM Redbook Identity Management Design Guide with IBM Tivoli
Identity Manager, SG24-6996.
 Chapter 3. Tivoli Austin Airlines, Inc. 109

customers and business partners require certain resources that are in the TAA IT
infrastructure.

Too many requests cause regional administrators and managers not to reply
immediately to customer and business partner requests, therefore, lengthening
services and part requests as well as reducing customer satisfaction.

Currently, each new access request for resources not managed by Identity
Manager has to be initiated by a manager. And even if the resource is being
handled by Identity Manager, the approval has to to be processed outside of
Identity Manager whatsoever; it can take days to complete causing
non-productive time for the employee.

A similar situation prevails in the administration of customer and business
partner information: requests for creating their accounts, password reset
requests, and so on. Some customers and business partners have already
contacted IT management, because it takes too much time and effort to manage
their account information.

While the introduction of Identity Manager has greatly reduced this time and
backlog, this is an area that still needs streamlining especially considering TAA is
looking to expand its IT offerings.

TAA has now decided to implement an additional security management solution
focusing on user and identity management. The main objective in this case study
scenario is to use the Tivoli Identity Manager self-care solution with high
availability.

While TAA has implemented procedures and processes to mitigate the needs of
the Sarbanes-Oxley Act of 2002, TAA has seen record increases in profit margin
in the last year and is under more intense scrutiny from its shareholders as well
as governmental agencies. Because of this, TAA is now looking to form a
standing audit and compliance team that can field all requests from
shareholders, board members, and auditors. With this action, TAA realizes that it
must change how it currently reports and tracks information in order to make the
team’s mission successful.

3.3 Corporate business vision and objectives
TAA has implemented their e-business application system to employees and
expanded their services on the Web to their customers. This system relies on a
Web-based application infrastructure provided by the IBM WebSphere
Application Server and a centralized access control solution using IBM Tivoli
Access Manager for e-business.
110 Identity Management Advanced Design for IBM Tivoli Identity Manager

In order to increase TAA’s productivity and decrease costs, the user
management processes for all the involved platforms have to be streamlined,
and access to these processes have to be made more widely available as well as
self-controlled.

The TAA vision is as follows:

� TAA has deployed a corporate wide user and identity management system,
which has successfully operated according to its original requirements since
going live in production. However, TAA is looking to leverage new IT offerings
to its employees, customers, and business partners in order to increase
efficiency of its operations but at the same time decrease overall
expenditures.

� Given TAA’s vision of expanding its IT offering to its customers, business
partners, and employees, TAA sees that it must make its IT infrastructure as
robust as possible so as to make these capabilities attractive and accessible
for all to use in order for it to be successful.

� TAA has recently come under more scrutiny from its board members and
financial watchdog agencies as it has become more profitable. To satiate
these new inquiries and audits, TAA is looking to form an internal audit and
compliance team that can prepare the necessary documents.

3.4 Project layout and implementation phases
Based on the corporate business vision, TAA has decided to implement the new
solution in two phases:

� The first phase, Phase I, focuses on the tasks necessary to make the IT
infrastructure robust enough to support the planned extra provisioning,
access, and service usage that TAA is looking to offer. Specifically, these
tasks include making the current Tivoli Identity Manager system highly
available via clustering and redundancy. The different subsystems of Tivoli
Identity Manager will be made highly available (HA) by use of proven best
practices and vendor recommended approaches. Refer to Chapter 5,
“Technical implementation phase I” on page 121 for details.

� Phase II focuses on the extensions to the current identity management
system with regards to the new offerings which TAA is looking to make
available to its employees and business partners. Specifically, this phase
encompasses the creation and installation of a new self-care Web application
and the creation of an extranet that makes this application available to its
business partners. Furthermore, this phase encompasses the configuration of
a delegated administration capability necessary for TAA’s business partners
 Chapter 3. Tivoli Austin Airlines, Inc. 111

to administer their own users. Refer to Chapter 6, “Technical implementation
phase II” on page 209 for details.
112 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 4. Project design

In this chapter, we describe the business requirements, functional requirements,
security design objectives, and design aspects for an identity management
self-care application based on Tivoli Identity Manager.

Most implementations are done in multiple phases to mitigate risk but also to
gain return on investment as rapidly as possible. TAA has decided to use a
multi-phased approach as well, first to create a needed foundation, and then to
build on this foundation in the second phase. The content of each phase is
decided by analyzing the priorities of the business requirements and mapping
these through their functional requirements to Identity Manager capabilities. The
earlier phases are dedicated to satisfying those requirements associated with
high-priority business requirements and required capabilities for the second
phase.

Implementation details for each of the phases are in 3.4, “Project layout and
implementation phases” on page 111.

4.1 Business requirements
Based on the business visions introduced in 3.3, “Corporate business vision and
objectives” on page 110, we need to take a closer look at the individual business
requirements.

4

© Copyright IBM Corp. 2006. All rights reserved. 113

These can be lined out as follows:

� Introduce an extranet to business partners and customers

Tivoli Austin Airlines (TAA) would like to implement a solution suggested by a
recently completed study, which found that TAA could expedite services to its
airplanes and reduce costs if it created an extranet where both TAA and its
business partners could share information.

� Reduce help desk overhead and costs

TAA is keen to gain cost savings by reducing the IT help desk costs which
have been increasing over time; however, TAA is also extremely aware of the
need for this function, especially when you consider TAA’s plans to
implement an extranet. Therefore, the reduction in cost cannot result in the
reduction of capability.

� Reduce license and maintenance fees for deployed applications

An analysis commissioned by TAA has shown evidence of a high total cost of
ownership for software. The analysis noted that if TAA provided metrics for
the usage of its software licenses, TAA could potentially reduce its overall
license cost by reducing the number of seats it was currently paying for.

� Improve audit and compliance reporting

TAA recently failed certain areas of a security audit that showed exposures in
internal security compliance rules. A number of areas were seen to be
lacking:

– There is no periodic certification of users’ access rights.
– The reporting available is insufficient to verify security compliance.

TAA is extremely motivated to rectify these issues.

� Reduce provisioning time

TAA has been made aware from its IT organization that there are certain
situations that require its managers to be able to delegate certain
responsibilities to their subordinates in an expeditious manner in order for the
subordinates to conduct business on the managers’ behalf. TAA would like to
make this happen since it was shown that having this type of capability gave
their management more flexibility and, therefore, was a good return on
investment.

4.2 Functional requirements
We extract functional requirements by mapping business requirements to their
underlying reasons. We expand the reasons in increasing detail until we find
problems that can be solved using capabilities of Identity Manager. Our
114 Identity Management Advanced Design for IBM Tivoli Identity Manager

functional requirements will tie these low-level reasons for a business
requirement to the Identity Manager capability that fulfills that business
requirement.

Let us examine the business requirements and find the functional requirements
for each.

� Business requirement 1: Introduce an extranet to TAA business partners and
customers.

Tivoli Austin Airlines is aware that in order to increase efficiency and
productivity, it must integrate its internal processes with its business partners
more closely. Furthermore, TAA has come to realize that while customer
satisfaction increased since the installation and rollout of the current identity
management solution, there are still issues that need to be addressed. This
can be written as the functional requirements described in Table 4-1.

Table 4-1 Functional requirements for extranet

� Business requirement 2: Introduce a recertification process to gain metrics
about license usage.

TAA conducted an internal audit that found that its software licensing and
maintenance had increased substantially over the last several fiscal years.
This fact is an opportunity that could potentially provide savings for the
company. However, in order to capitalize on this potential savings, the
software license usage needs to be measured to identify whether any
licenses could be trimmed, and therefore, savings realized. To do this, TAA
wants to implement a recertification process for all software currently in use to
identify those licenses that could be cut along with the associated
maintenance.

See Table 4-2 on page 116.

Requirement Description

A Identity Manager installation to be highly available.

B Provide self-care application to empower employees, customers, and
business partners to administer their own account needs.

C Provide self-registration capabilities for customers and business
partners.
 Chapter 4. Project design 115

Table 4-2 Functional requirements for software license and maintenance cost reduction

� Business requirement 3: Enhance audit and reporting capabilities.

TAA wants to enhance its audit and compliance solution with the formation of
a specialized team to aggregate audit and compliance information in such a
way that efficiently provides more detailed and focused reporting. To facilitate
this, TAA wants to implement an audit and compliance reporting process that
provides a streamlined solution.

Table 4-3 Functional requirements for enhanced audit and reporting capabilities

� Business requirement 4: Reduce application administration cost.

TAA has been made aware from the internal audit that was conducted that a
cost savings could be realized from its application administration. TAA would
like to implement a solution to make its application administration more
efficient and productive and, therefore, reduce its overhead.

Table 4-4 Functional requirements for application administration cost reduction

Requirement Description

D All TAA employees and business partners that utilize TAA
applications must have an e-mail account or access to the self-care
application.

E Create an Identity Manager recertification process for all TAA
applications.

F Make recertification process available company-wide and
extranet-wide.

Requirement Description

G Automate audit and compliance report generation.

H Automate audit and compliance report delivery.

I Automatically update audit and compliance team with recertification
information.

Requirement Description

J Decrease the time required to debug application issues.

K Mitigate error-prone administrative functions.

L Reduce repetitive administrative duties.

M Delegate administration of business partner users to business partner
administrators.
116 Identity Management Advanced Design for IBM Tivoli Identity Manager

4.3 Design approach
In the design approach section, we consider how identity management design
objectives can be realized using Identity Manager. Our goal is to produce a plan
containing a phased set of implementation steps where the end result satisfies
the functional requirements and, therefore, also satisfies the original business
requirements.

While business and functional requirements are the main parts of the identity
management objectives, we also have to consider other non-functional
requirements and constraints. These might include objectives that are necessary
to meet general business requirements or practical constraints on constructing
security subsystems. Identity Manager implementations often involve
non-functional requirements relating to:

� High availability
� Backup and recovery
� Performance and capacity
� Change management
� Training
� Existing infrastructure
� Budget and staffing

Because we are focused on advanced designs of identity management with
Identity Manager software in this book, we do not look at all of these
non-functional requirements in detail.

The steps involved in producing an implementation plan are:

1. Prioritize the requirements.

2. Map the requirements to Identity Manager features.

3. Define the tasks involved in using those features to satisfy the requirements,
and estimate the effort required for each task.

4. Divide the tasks into phases.

Prioritizing the requirements is important because the priorities are one of the
primary factors used to decide which implementation tasks will be done in which
phase of the project. It is rare that an identity management solution can be
created as a single deliverable satisfying every requirement. It is far more likely
that it will be delivered in phases, and the highest priority requirements should be
addressed in the earliest phases.
 Chapter 4. Project design 117

Assigning priorities to the requirements is often difficult because “They are all
important.” You can more easily compare the priorities of requirements by asking
questions that gauge the positive and negative impacts of the requirements:

� How much money will be saved when the requirement is met?

� Are there penalties if the requirement is not met?

� Is there a date by which the requirement must be met?

� Are there other requirements with dependencies on this one?

� If this requirement is not met, is the company any worse off than they are
now?

After mapping the requirements to Identity Manager features and creating a list
of implementation tasks, the requirement priorities and the effort of each task can
be used to decide how to break up the project into phases. The goal of breaking
the project into phases is to quickly deliver solutions to some high-priority
requirements. This allows the company to begin seeing a return on their
investment, while lower priority and more difficult tasks are still being executed.

4.4 Implementation approach
This section applies the design approach described in 4.3, “Design approach” on
page 117 to TAA’s specific requirements.

4.4.1 Non-functional requirements
The non-functional design objectives are those that do not relate specifically to
the functional requirements but are items that should be addressed in the design.
For TAA’s project, these include:

� Reuse of the existing identity management infrastructure
� Standards to be used
� Maintainability and configuration management
� High availability and disaster recovery

Reuse of the existing infrastructure
The design must allow for the reuse of the existing identity management design,
except where it conflicts with the new requirements. The identity management
solution must therefore be deployed into the existing architecture in a way that
allows the accommodation of network and application changes with the least
possible interruption to current identity manager services.
118 Identity Management Advanced Design for IBM Tivoli Identity Manager

Standards to be used
Where possible, the design must comply with standards in order to make
subsequent implementation easier, more secure, and audit compliant. You can
find further details about policies and standards in Appendix A, “Corporate policy
and standards” on page 313.

Maintainability and configuration management
The design must allow for the maintainability of the system. This may involve
deployment of some form of configuration management methodology or system
management tool set.

High availability and disaster recovery
The design requires high availability for the delivery of the project; therefore, the
design needs focus on this as a priority.

4.4.2 Requirement priorities
TAA has analyzed their business requirements and has made cost savings and
productivity their highest priorities; however, in order to realize these priorities,
their dependencies must be implemented first.

4.4.3 Implementation tasks and efforts
The details of the implementation tasks are not described here. They are
described in detail in the technical implementation chapters of this book.

4.4.4 Project phases
Based on the priorities of their business requirements and the levels of effort of
the different implementation tasks, TAA has decided to split the project into two
phases, as follows.

Phase 1: High availability (HA)
The goal of this phase is to complete all of the work necessary to create a highly
available Identity Manager installation. At the completion of this phase, all of the
Identity Manager components will be operational, and Identity Manager will have
an availability of 24x7x364, with 24 hours of service time broken up throughout a
given year. This phase is a prerequisite to the work done in the following phases.
Tasks in this phase include:

� Installation of required middleware components for redundancy
� Configuration of components for HA functionality
� Security hardening of the components
 Chapter 4. Project design 119

Phase 2: Extranet
The goal of this phase is to implement an extranet to deploy a self-care
application to both TAA’s business partners and customers as well as its
employees. Phase 2 involves implementation tasks that address high-priority
requirements. However, one of the factors governing how quickly a feature can
be implemented and placed into production use is the number of people who
must be trained to use the new feature.

The features included in this phase are:

� Enhanced audit and reporting capabilities

� Enhanced troubleshooting capabilities

� Recertification capabilities

� Self-care application for employees, business partners, and customers

The self-care application will enable users, internal employees as well as
business partners, and certain customers to access and manipulate specific
information concerning their accounts.

– Users will be able to request the creation, modification, and deletion of
accounts that they require to do their job.

– Account creation and modification may require approval by a member of
an application administration team for the account’s service.

� Delegated administration for business partners and customers

The goal of this task is to delegate Identity Manager management activities
where possible to system administrators designated by business partners
and customers for their employees, but also to the employees themselves.
This will require the preparation of documentation and training for the
delegated administrators. The implementation of these features will also
require more extensive requirement gathering than the previous phases.

– Identity Manager maintains centralized control and an audit trail
regardless of whether the account management is done by TAA system
administrators or by delegated administrators.

– User management includes members of business partner and customer
user administration teams as well as those of the TAA administration
teams in order to administer users of each of the customer and business
partner organizations.
120 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 5. Technical implementation
phase I

This chapter describes the tasks, considerations, and implementation details of
the first phase of the IBM Tivoli Identity Manager deployment at Tivoli Austin
Airlines (TAA).

5.1 TAA’s high availability scenario
This section discusses the requirements, the design considerations, and the
implementation of the Identity Manager high availability scenario implemented by
TAA.

5.1.1 Requirements
TAA requires a 24x7x365 uptime for its identity management services accessed
by internal employees, business partners, and external users.

The continuous availability of the services has become a main business
requirement that the company must consider on the design and technical
implementation of the Tivoli Identity Manager solution.

5

© Copyright IBM Corp. 2006. All rights reserved. 121

Continuous availability can be separated into two categories:

� High availability

This means that a specific resource is available for use at all times, implying
that if it becomes unavailable on a particular machine, another one starts to
provide access to this resource. The business impact of these outages
specifically refers to the desired improvements in terms of high availability.

� Continuous operation

This signifies the ability to avoid planned and unplanned outages. This
includes the ability to upgrade and maintain processors, operating systems,
business software, and the applications, where the business does not stop,
even in a failure event. This is accomplished by adding duplicate resources to
the environment.

Analyzing the business need to extend service hours produces a specification for
the necessary degree of continuous operation. This is defined in the service level
agreements (SLAs).

An unplanned outage of computer systems results in several business processes
coming to a standstill. From a business perspective, the financial impact of a
unplanned outage of the identity management system can occur in several ways:

� Lost productivity time of the users

Users who need the systems for their work might be idle for as long as the
systems are down. For instance, user accounts will not be created in a timely
manner for a newly hired employee.

� Loss of transactions

If the outage occurs during a password synchronization process, the unique
password for all the target systems managed by Tivoli Identity Manager could
be out-of-sync.

� Loss of compliance with security policies

If the outage occurs when an employee is changing a business role or is
leaving the company, accounts could be still available on the target systems
that should have been deleted or they could provide wrong levels of access.

� Extra cost and time for support service recovery

The work that was interrupted through an outage needs to be repeated at a
later time. Repetition of workload requires extra system resources and extra
time and cost for the support services.

In large computer networks, the sum of these cost items can amount to a
substantial figure. After a business impact analysis, TAA, Inc. decided to
122 Identity Management Advanced Design for IBM Tivoli Identity Manager

implement a high availability software solution for their identity management
environment.

5.1.2 TAA’s high availability planning
This section describes the high availability topology for TAA’s identity
management system. In addition, this section provides information regarding the
software we used to implement the identity management environment.

TAA’s Identity Manager high availability environment consists of the following
five nodes (see Figure 5-1):

� Two Identity Manager nodes

� Directory Server Proxy Server and Deployment Manager node

� Two Identity Manager LDAP Directory Server and Identity Manager datastore
nodes

Figure 5-1 TAA high availability identity management environment

Note: For detailed and official product information about the software
requirements, we recommend that you refer to the product planning and
installation guides.

(directoryserver2.taa.com)

Identity Manager
Directory Server

Identity Manager
Database

(directoryserver1.taa.com)

Identity Manager
Directory Server

Identity Manager
Database

(proxyserver.taa.com)

Deployment
Manager

Directory Server
Proxy Server

(itimserver1.taa.com)

Identity Manager
Server

(itimserver2.taa.com)

Identity Manager
Server
 Chapter 5. Technical implementation phase I 123

Software used within the TAA high availability environment
The TAA identity management system was implemented using the following
software listed by node.

Tivoli Identity Manager Server nodes
TAA implemented the following:

� IBM WebSphere Application Server, Version 5.1.1.4
� IBM Tivoli Identity Manager, Version 4.6 + FP08
� IBM DB2 UDB client, Version 8.1.9

These software components were installed on the machines:
itimserver1.taa.com and itimserver2.taa.com.

Proxy Server and Deployment Manager node
TAA implemented the following:

� IBM WebSphere Application Server Network Deployment, Version 5.1.1.4
� IBM Tivoli Directory Server, Version 6.1, Proxy Server component only
� IBM DB2 UDB client, Version 8.1.9

These software components were installed on the machine proxyserver.taa.com.

Since TAA’s implementation does not encompass a very large scale LDAP
population there are no restrictions in using the proxy server.

Directory Server and database nodes
TAA implemented the following:

� IBM DB2 UDB, Enterprise Server Edition, Version 8.1.9
� IBM Tivoli Directory Server, Version 6.1

These software components were installed on the machines:
directoryserver1.taa.com and directoryserver2.taa.com.

Note: Even though you install the proxy server as a package, which is part of
the IBM Directory Server 6.1 media, it requires an independent license and
maintenance entitlement. Check with your IBM Sales Representative for more
details about how best to leverage the proxy server component.
124 Identity Management Advanced Design for IBM Tivoli Identity Manager

5.2 Application server high availability
This section discusses the requirements, the design considerations, and the
implementation of the Identity Manager application server high availability
scenario that was implemented by TAA.

5.2.1 Requirements
The continuos availability of the Identity Manager services is the primary
business requirement that TAA needed to respond to service levels agreed to
with the business partners.

5.2.2 Design considerations
The unique issue to consider when designing a high availability solution for the
application server is the WebSphere cluster topology supported by the Identity
Manager application: the horizontal cluster configuration is the only one
supported by Identity Manager and the only one that can provide continuous
operation.

In a configuration such as shown in Figure 5-2, each computer shape represents
one WebSphere Application Server node on one computer. The configuration
specifies the deployment manager on one computer but it could be installed on
the same machine as the first WebSphere Application Server node. The
remaining application servers are configured on additional computers.
 Chapter 5. Technical implementation phase I 125

Figure 5-2 Cluster configuration on multiple computers

5.2.3 Application server high availability implementation
The following section shows all steps necessary to configure the Tivoli Identity
Manager Server on a horizontal WebSphere Application Server cluster.

We are not going to describe the general steps required to implement a
WebSphere cluster topology. There are many guides and Web sites that contain
such information. The following Redbooks may be of interest:

WebSphere Application Server cluster solution with the deployment manager
component and only one cluster member. These two components can be
installed on the same machine. You only have to ensure that the computer has
the required memory, speed, and available space to meet the additional load.
Starting from this base configuration it will be an easy task to add a new cluster
member to implement an Identity Manager cluster at application server level in
the future if needed.

Note: Tivoli Identity Manager does not support:

� Vertical cluster configuration that has more than one cluster member within
a WebSphere Application Server node.

� Functional cluster configuration that separates workflow processing and
user interface processing on separate machines.
126 Identity Management Advanced Design for IBM Tivoli Identity Manager

If you already have an installed Tivoli Identity Manager environment on a single
server configuration, you have to reinstall the software in order to migrate to a
Tivoli Identity Manager cluster configuration. There is no supported way to
migrate a single application server install onto a cluster; but all the important
information about the LDAP directory server and the Tivoli Identity Manager
database will be maintained.

In the following description we consider a WebSphere cluster with two cluster
members installed on two separate machines. This configuration is sufficient to
avoid a single point of failure on the application server.

To configure an Identity Manager cluster server starting from an Identity
Manager single server configuration, execute the following steps:

1. Back up the files in the ITIM_HOME/data directory. After the Identity Manager
installation on the cluster server replace the custom properties files on the
new Identity Manager installation with the one you have backed up.

2. Configure a WebSphere Application Server cluster with a unique cell and two
cluster members. The WebSphere cluster topology used on the current
implementation is shown on Figure 5-3 on page 128. For detailed information
about WebSphere cluster installation and configuration, refer to Chapter 4,
“Installing and configuring WebSphere Application Server” in the IBM Tivoli
Identity Manager: Server Installation and Configuration Guide for WebSphere
Environments, SC32-1750-00.

In the current implementation, the cluster topology is:

� Deployment manager

– WebSphere Application Server Network Deployment, Version 5.1.1.4

hostname proxyserver.taa.com
Cluster name ITIM_Cluster
Cluster nodes itimserver, itimserver2

� Cluster members

– WebSphere Application Server, Version 5.1.1.4

• Cluster member A

hostname itimserver1.taa.com
node itimserver
cluster member name serverp

• Cluster member B

hostname itimserver2.taa.com
node itimserver2
cluster member name serverp
 Chapter 5. Technical implementation phase I 127

Figure 5-3 WebSphere Application Server cluster topology

The Figure 5-4 on page 129 shows a cluster view from the WebSphere Network
Deployment administrative tool.

Application server
cluster member

serverp Node
itimserver

Deployment
manager

itimserver1.taa.com

Application server
cluster member

server2 Node
itimserver2

Cell: ITIM_Cluster

itimserver2.taa.com

proxyserver.taa.com
128 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-4 WebSphere Application Server Network deployment Administrative Console

3. Before we proceed with the next steps, we have to verify that the deployment
manager and all the cluster members are started using the WebSphere
Administrative Console. The cluster status displays as in Figure 5-4.

See Figure 5-5 on page 130.
 Chapter 5. Technical implementation phase I 129

Figure 5-5 WebSphere Application Server cluster status

Install the Identity Manager in a cluster configuration. For detailed information
about Tivoli Identity Manager cluster installation and configuration, refer to
Chapter 6, “Installing Tivoli Identity Manager in a cluster configuration”, in the
IBM Tivoli Identity Manager: Server Installation and Configuration Guide for
WebSphere Environments, SC32-1750. To continue:

a. Install Tivoli Identity Manager on the deployment manager using the
installation wizard.

b. Skip the steps to configure the Identity Manager directory server and
database store.
130 Identity Management Advanced Design for IBM Tivoli Identity Manager

c. On the deployment manager machine, run the runConfig command with
the install option to update identity Manager properties.

ITIM_HOME/bin/runConfig install

d. On the system configuration tool, select the Directory tab and modify the
following information for the directory server:

Principal DN and password

The principal DN and password that the Tivoli
Identity Manager uses to log on to the directory
server, for example, cn=root

Host name Directory server host name of the already
configured directory server. In our current
implementation, directoryserver1.taa.com

Port Port number for the directory server. In the current
implementation, 389.

e. Click Test to verify the connection to the directory server.

f. Select the Database tab and modify the following information for the
Identity Manager datastore:

Database Type In the current implementation, the database type is
DB2.

Database Name or Alias

In this implementation, the database is already
installed remotely and the value represents the
local alias name of the remote database.

g. Click Test to verify the connection to the database.

h. Click OK.

4. Restart the WebSphere deployment manager.

The Tivoli Identity Manager application is now installed on the WebSphere
deployment manager and configured to use the previously installed directory
server and database.

Note: When the Identity Manager installation is complete on the
deployment manager, use the runConfig command with the install
option to configure Identity Manager to use the already configured
LDAP directory and datastore.
 Chapter 5. Technical implementation phase I 131

5. Ensure that the deployment manager and all WebSphere Application Server
node agents are running. Complete the following steps using a command line
interface:

a. To determine the status of the deployment manager, run the following
command on the computer on which the deployment manager is installed:

WAS_HOME/bin/serverStatus.sh -all

b. To determine the status of the node agents and the JMS server, run the
following command on the computer on which the WebSphere Application
Server base product is installed:

WAS_HOME/bin/serverStatus.sh -all

6. Install Tivoli Identity Manager on each cluster member using the installation
wizard.

7. Restart each WebSphere cluster member.

The Tivoli Identity Manager application is now installed on a cluster configuration
as shown in Figure 5-3 on page 128.

5.3 Relational database high availability
This section discusses the requirements, design considerations, and
implementation of the Identity Manager database high availability scenario
implemented by TAA.

5.3.1 Requirements
The requirements for TAA’s database server are basically similar to the common
requirements described in 5.1.1, “Requirements” on page 121. In addition, TAA
also wants to reduce costs for hardware and software licenses.

5.3.2 Design considerations
TAA is using DB2 as Identity Manager’s relational database. The available high
availability designs with DB2 are described in 2.3, “Relational database” on
page 73. TAA has decided to use the HADR feature for their high availability
scenario, because it allows the most rapid failover, software upgrades without
interruption of service, and extensibility for cross-site replication with no
additional software licenses and shared disks.

However, HADR does not automatically monitor the primary database server in
case any outages might occur, so TAA has decided to use a custom shell script
to issue appropriate takeover commands in the event of a primary database
132 Identity Management Advanced Design for IBM Tivoli Identity Manager

server failure. There are several ways to monitor the status of the primary
database:

� Monitor server machine failure.
� Monitor network failure.
� Monitor the db2sysc process on the primary server.
� Monitor the log shipping connection of HADR.

In TAA’s case, we use a script that monitors the status of the log shipping
connection and issues the takeover command at its disconnection.

5.3.3 Relational database high availability implementation
This section describes the necessary steps to set up the standby database for
HADR with the existing primary database used by TAA’s Identity Manager. In this
section, we use the DB2 Control Center for the configuration of HADR.

Create standby database environment
First of all, we have to prepare the new DB2 environment. Install DB2 with the
same fix level as the primary database on a separate server machine and create
users, groups, and a new database instance in the same way as on the primary
server.

Catalog the standby database instance
In order to set up the HADR configuration, the instance of the standby database
must be cataloged on the primary database as a remote node. Start the DB2
Control Center on the primary database server as shown in Figure 5-6 on
page 134.
 Chapter 5. Technical implementation phase I 133

Figure 5-6 DB2 Control Center

To start the DB2 Control Center on the primary database server:

1. Click All Systems, and select Selected → Add from the menu bar.

See Figure 5-7 on page 135.
134 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-7 Add new system details

2. As shown in Figure 5-7, enter the standby database server information. In
TAA’s environment, these are:

System Type DB2
System name DIRECTORYSERVER_HA
Host name directoryserver2
Node name DIR_HA
Operating system Linux
Comment Standby DB2 HADR system

3. Click OK. The new system is added to the list of systems as depicted in
Figure 5-8 on page 136.
 Chapter 5. Technical implementation phase I 135

Figure 5-8 New system added in the DB2 Control Center

4. Expand the DIRECTORYSERVER_HA system and click Instances, select
Selected → Add to catalog the standby database instance.

See Figure 5-9 on page 137.
136 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-9 Add new database instance details

5. As shown in Figure 5-9, enter the information about the standby database
instance. In TAA’s case, we entered:

Instance name db2_inst1
Instance node name db2_ha
Operating System Linux
Protocol TCP/IP

Enter Protocol information:

Host name directoryserver2.taa.com
Service name db2c_inst1
Port number 50000
Enable TCP/IP SOCKS security Off

Comment Standby DB2 HADR Instance
 Chapter 5. Technical implementation phase I 137

6. Click OK.

Figure 5-10 New database instance added to the Control Center

7. Ensure that the new instance is added as a remote node, shown in
Figure 5-10.

Configure the HADR databases
To set up the HADR pair, we use the HADR wizard of Control Center.
138 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-11 Using the HADR Control Center wizard

To set up the HADR pair:

1. Select ITIMDB, which is used as the primary database by Identity Manager,
and select Selected → High Availability Disaster Recovery → Set up from
the menu shown in Figure 5-11. After the Introduction panel of the HADR
wizard appears, click Next to continue.
 Chapter 5. Technical implementation phase I 139

Figure 5-12 HADR configuration wizard

2. Because the HADR database must not use circular logging, we need to
change the logging type for the ITIMDB from circular to archive. Click
Configure to start the Configure Database Logging Wizard, as depicted in
Figure 5-12, and follow its guides. In this configuration step, a full database
backup is performed by the wizard and we use the backup image to initialize
the standby database.

After the configuration of the logging type, continue with the HADR wizard in
Figure 5-13 on page 141.
140 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-13 HADR configuration wizard: continued

3. Enter the standby database information, shown in Figure 5-13, as follows:

Specify the database instance to set up the standby database:

System name DIRECTORYSERVER_HA

Instance name DB2_HA

Select Use a backup image of the primary database to initialize a
standby database as initialization options.

Click Next.
 Chapter 5. Technical implementation phase I 141

Figure 5-14 HADR configuration wizard: continued

4. Specify the backup image to initialize the standby database.

Choose Select a backup image from the list provided as shown in
Figure 5-14.

Select the backup image of the primary database created at the change of the
logging type.

Click Next.
142 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-15 HADR configuration wizard: continued

5. Enter the standby database information.

Click Add Databases to specify the standby database alias name.

Alias ITIMDBHA

Comment Standby ITIMDB

6. As shown in Figure 5-15, ensure that Copy the backup image from the
primary system to the standby system is selected and enter the directory
path on the standby database server where the backup image is copied to.
The directory must be created and given write permissions in advance.

Backup image location /home/db2inst1/backup

Click Next.
 Chapter 5. Technical implementation phase I 143

Figure 5-16 HADR configuration wizard: continued

7. Ensure Manually enter the standby locations is selected as shown in
Figure 5-16 and click Next.
144 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-17 HADR configuration wizard: continued

8. Specify the information for the log shipping connection as depicted in
Figure 5-17.

Enter the primary database TCP/IP configuration.

Host name directoryserver1

HADR servicename DB2_HADR_1

HADR port number 55001

Enter the standby database TCP/IP configuration.

Host name directoryserver2

HADR servicename DB2_HADR_2

HADR port number 55002

Click Next.
 Chapter 5. Technical implementation phase I 145

Figure 5-18 HADR configuration wizard: continued

9. To enable automatic rerouting of the connection from Identity Manager at
database failure, configure the alternate host name and port number for each
database.

As shown in Figure 5-18, ensure that Specify alternate server for
databases is checked.

Enter the alternate server information of the primary database:

Alternate host name directoryserver2

Alternate port number 50000

Enter the alternate server information of the standby database:

Alternate host name directoryserver1

Alternate port number 50000

Click Next.
146 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-19 HADR configuration wizard: continued

10.In TAA’s case, we use Near synchronous mode for peer state log writing.

Ensure that Near Synchronous is selected as shown in Figure 5-19 and click
Next.
 Chapter 5. Technical implementation phase I 147

Figure 5-20 HADR configuration wizard: continued

11.Review the configuration of the HADR pair shown in Figure 5-20 and ensure
that Start HADR on the databases is selected.

Click Finish.
148 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-21 Finished HADR configuration in the Control Center

12.We now have completed the setup of the HADR pair. To verify the HADR
configuration, open an HADR Action window.

Select ITIMDB and select Selected → High Availability Disaster
Recovery → Manage from the menu bar.
 Chapter 5. Technical implementation phase I 149

Figure 5-22 HADR action window

13.Ensure that the state of the HADR pair is Peer and the connection status is
Connected as shown in Figure 5-22.

14.Click Takeover HADR and ensure that Switch roles is selected on the next
panel, then click OK.

15.Ensure that the takeover completed successfully.

Implement automatic failover
To automate the failover of the database, TAA has decided to place a shell script
on the database servers. The script monitors the connection status of the HADR
pair on the standby server and issues a takeover command if the status turns
into a disconnected status.

The script code used in TAA’s environment is shown in Example 5-1 on
page 151.
150 Identity Management Advanced Design for IBM Tivoli Identity Manager

Example 5-1 Sample script to automate database failover

#! /usr/bin/ksh

##
auto_takeover.ksh
This script must be called by database instance user.
This script monitor the HADR status at 30-seconds interval
and issue takeover if HADR pair is disconnected.
Exit with:
0 - HADR takeover is completed successfully.
255 - The database is not a standby database.
254 - Failed to get the status of the HADR pair.
253 - Failed to takeover.
##
#set -x

##
Set parameters and error codes
##
DBNAME=ITIMDB
MONITOR_INTERVAL=30
EXIT_ROLE_ERROR=255
EXIT_STATUS_ERROR=254
EXIT_TAKEOVER_ERROR=253

##
hadr_monitor
Monitor the HADR status
Exit with:
0 - HADR pair is working normally.
1 - HADR pair is disconnected.
EXIT_ROLE_ERROR - The database is not a standby database.
EXIT_STATUS_ERROR - Failed to get the status of the HADR pair.
##
function hadr_monitor
{
hadr_role=$(db2 get snapshot for all on ${DBNAME} | awk ' $1 == "Role" && $2
==
 "=" {print $3}')
hadr_role_cfg=$(db2 get db cfg for ${DBNAME} | grep 'HADR database role' | awk
'{print $5}')
if [["${hadr_role_cfg}" != "STANDBY" || "${hadr_role}" != "Standby"]];then
 return $EXIT_ROLE_ERROR
fi

hadr_connection_status=$(db2 get snapshot for all on ${DBNAME} |awk '$1 ==
"Con
nection" && $2 == "status" && $3 == "=" {print $4}')
 Chapter 5. Technical implementation phase I 151

if [["${hadr_connection_status}" = ""]];then
 return $EXIT_STATUS_ERROR
elif [["${hadr_connection_status}" = "Disconnected,"]];then
 return 1
fi
return 0
}

##
main
Call hadr_monitor every $MONITO_INTERVAL and issue takeover
if HADR pair is disconnected.
##
while true
do
 hadr_monitor
 HADR_STATUS=$?

 if [[$HADR_STATUS = $EXIT_ROLE_ERROR]];then
 echo $DBNAME is not a standby database. Exiting.
 exit $EXIT_ROLE_ERROR
 elif [[$HADR_STATUS = $EXIT_STATUS_ERROR]];then
 echo Failed to get the connection status of HADR. Exiting.
 exit $HADR_STATUS=ERROR
 elif [[$HADR_STATUS = 1]];then
 echo HADR connection status is "Disconnected". Calling takeover
command.
 db2 takeover hadr on db $DBNAME by force
 if [[$? = 0]];then
 echo HADR takeover completed successfully. Exiting.
 exit 0
 else
 echo HADR takeover failed. Exiting.
 exit $EXIT_TAKEOVER_ERROR
 fi
 elif [[$HADR_STATUS = 0]];then
 echo $DBNAME is working as a standby database normally.
 fi
 sleep $MONITOR_INTERVAL
done

5.4 Directory Server high availability
This section discusses TAA’s requirements, design considerations, and
implementation of the Tivoli Directory Server high availability environment.
152 Identity Management Advanced Design for IBM Tivoli Identity Manager

5.4.1 Requirements
TAA wants to increase efficiency and productivity on its identity management
services. In order to achieve this, TAA must closely integrate its internal
processes with its business partners. The introduction of an extranet to its
business partners and customers requires that the user registry used by Identity
Manager must be highly available and implemented with automatic failover
mechanisms.

5.4.2 Design considerations
The design and implementation of a distributed directory can be approached by
selecting different types of directory topologies and different types of
components to manage the failover and load balancing. The implementation
described in 5.4.3, “TAA’s Directory Server high availability implementation” on
page 153 is based on the following design considerations:

� Identity Manager mainly executes write mode requests on the directory server
services.

� A manual failover within a directory server cluster produces an unacceptable
down time for the service level defined by TAA. TAA requires an automatic
failover between two back-end directory servers.

� In order to keep the costs related to high availability as low as possible, TAA
wants to use the software components already available with Identity
Manager software licenses.

� In a directory server failure situation, an administrator or user currently using
the Identity Manager Web administrative console must reauthenticate.

Based on these design considerations, the high availability directory server
environment will look like this:

� Peer-to-peer topology for back-end Tivoli Directory Server

Multi-master environment for all the servers available on the distributed
directory environment

� Proxy server used to manage failover requests to the peer-to-peer topology

Proxy server component available with Tivoli Directory Server Version 6.1
package

5.4.3 TAA’s Directory Server high availability implementation
The following section shows all steps necessary to configure the Tivoli Directory
Server in a peer-to-peer topology using the Tivoli Directory Server proxy server
as a load balancer.
 Chapter 5. Technical implementation phase I 153

These steps explain the implementation of a Tivoli Directory Server peer-to-peer
topology starting from an already implemented Tivoli Directory Server instance
being used as the Tivoli Identity Manager user registry.

Here is a brief list of steps required to implement a Tivoli Directory Server high
availability solution:

1. Create a second Tivoli Directory Server instance.

2. Synchronize the encryption key and the schema between the two Tivoli
Directory Server instances.

3. Enable master-slave replication between the two Directory Server instances.

4. Promote the secondary Directory Server instance to master.

5. Create a third Directory Server instance for the Tivoli Directory Server proxy
server.

6. Synchronize the encryption key and the schema between the Tivoli Directory
Server proxy server and the back-end Directory Server.

Create Tivoli Directory Server secondary instance
To configure the secondary instance, issue the following steps:

1. If the idsxinst application is not running execute the command idsxinst &
from the command prompt. The ampersand (&) specifies that the process will
run in the background. When returning to the command prompt, press the
Enter key to get the command prompt back.

The window in Figure 5-23 on page 155 shows the result of the idsxinst
command.

Note: In this example, TAA first creates a master-slave replication and then
promotes the slave to a master. This step is no longer needed now with the
new IBM Directory Server 6.1, and the replica can start as master, which is
different that it was in previous versions. See the IBM Tivoli Directory Server
Installation and Configuration Guide Version 6.1, SC32-1560, for more details.
154 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-23 Tivoli Directory Server administration tool

2. Click Create.

3. Select Create a new directory server instance, and click Next.

Enter the following values in the instance details fields shown in Figure 5-24
on page 156:

User name idsldap1

Install location Leave blank

Encryption seed string sunshine (use the same seed string used for
Directory Server primary configuration)

Instance description For example, TDS Server #2
 Chapter 5. Technical implementation phase I 155

Figure 5-24 Tivoli Directory Server second instance creation

4. Click Next.

5. On the DB2 instance details window, ensure that idsldap1 is selected as the
DB2 instance name, and click Next.

6. On the TCP/IP settings for Multihomed1 hosts window, ensure that the Listen
on all IP addresses check box is selected, and click Next.

7. On the TCP/IP port settings, shown in Figure 5-25 on page 157, enter the
following port details:

Server port number 389

Server secure port number 636

Admin daemon port number 3538

Admin daemon secure port number 3539

1 Multihomed means that a server supports a configuration on multiple IP addresses.
156 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-25 Tivoli Directory Server second instance listening port configuration

8. Click Next.

9. On the Optional Steps window, ensure that the Configure Admin DN and
Password and Configure database check boxes are selected, and click
Next.

10.On the Configure administrator DN and password window, enter the following
values:

Administrator DN cn=root

Administrator password <admin_password>

Confirm password <admin_password>

11.Click Next.

12.On the Configure database window, enter the following values:

Database user name idsldap1

Password <idsldap1 OS password>

Database name idsldap1

13.Click Next.

14.Keep the defaults on the Database options window, and click Next.
 Chapter 5. Technical implementation phase I 157

15.Review the settings, and click Finish to create the directory and database
instances.

Figure 5-26 Tivoli Directory Server secondary instance creation summary

16.On the Results window shown in Figure 5-26, click OK, then click Close, and
finally, click Close again to exit the idsxinst application.

Create the suffix on Tivoli Directory Server
The Tivoli Directory Server process must be stopped to create the suffix. The
Tivoli Directory Server instance must not be started until after the next section.

To add the Tivoli Directory Server suffix, we use the Tivoli Directory Server
configuration console:

1. From a command line window, run the command idsxcfg &.

2. Select Manage Suffix on the left menu.

3. Add the suffix DN dc=com and press Add as depicted in Figure 5-27.

Note: Do not start the Tivoli Directory Server instance you have created now.
This instance will be started after the suffix configuration and the cryptography
keyring file synchronization. Follow the sections “Create the suffix on Tivoli
Directory Server” on page 158 and “Copy modified schema to the secondary
Directory Server” on page 159 before starting the Tivoli Directory Server
instance.
158 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-27 Tivoli Directory Server graphical configuration tool

4. Click OK to close the Tivoli Directory Server configuration console.

Copy modified schema to the secondary Directory Server
The Tivoli Identity Manager installation adds new objectclasses and attributes to
the Directory Server user registry. In order to replicate the modified LDAP
schema on the new Tivoli Directory Server instance, it is necessary to copy the
modified schema on the new server instance.

Copy the V3.modifiedschema file from the primary Tivoli Directory Server
/<idsslapd_instance_primary>/etc/V3.modifiedschema to the secondary Tivoli
Directory Server /<idsslapd_instance_secondary>/etc/V3.modifiedschema.
 Chapter 5. Technical implementation phase I 159

Synchronize the cryptography keyring file

Follow these instructions to synchronize the cryptographic keyring file:

1. Run the bulkload command idsbulkload to create the initial cryptographic
keyring file:

idsbulkload -I idsldap1

Disregard the -i message.

GLPBLK025E The -i option is required.

2. Copy the cryptographic keyring file:

/<idsslapd_instance_primary>/idsslapd-idsldap/etc/ibmslapddir.ksf

from the primary instance to the secondary instance.

/<idsslapd_instance_seconday>/idsslapd-idsldap/etc/ibmslapddir.ksf

3. Start the secondary instance, to load the new cryptographic keyring file.

idsslapd -I idsldap1

4. Run the bulkload command idsbulkload to finalize the synchronization of the
cryptographic keyring file.

idsbulkload -I idsldap1

Load Identity Manager data on the secondary server instance
To import data created by Tivoli Identity Manager on the secondary Tivoli
Directory Server instance, these have to be exported to a file in LDIF format and
imported on the secondary Tivoli Directory Server instance.

Follow these instructions to export data from the primary Directory Server
instance and to import onto the secondary Directory Server instance:

1. On the Tivoli Directory Server primary instance, export data to a file in LDIF
data format:

idsdb2ldif -I <instance_name> -o <output_ldif_file>

2. Copy the output_ldif_file on the secondary Tivoli Directory Server instance.

Note: Tivoli Directory Server V6.1 uses a default password encryption method
- AES256. Because of this it is necessary for the Tivoli Directory Server
primary and secondary instance to share an encryption keyring. The other
option would be to go into the Tivoli Directory Server Web Administration Tool
and change the security settings to another encryption algorithm, such as
SHA or Crypt.
160 Identity Management Advanced Design for IBM Tivoli Identity Manager

3. Import LDIF exported data on the secondary Tivoli Directory Server instance.

idsldif2db -I <instance_name> -i <output_ldif_file>

There are several methods of loading LDIF formatted data into the directory.
To import data from an LDIF file, you can use either the idsldif2db or the
idsbulkload utility. The quickest way is to use the idsbulkload utility. The
idsldif2db and idsbulkload utilities must be used while the directory server is
offline. The idsbulkload utility bypasses the LDAP front end and loads the
data directly into the back-end DB2 database. The idsbulkload utility usually
is significantly faster than idsldif2db and ldapadd when loading approximately
100,000 to a million entries.

In our implementation, we used the idsldif2db utility to check data consistency
during the import.

Enable Master-Slave replication
This phase of the configuration involves the task of setting up replication. There
are two main types of replication:

� Master-Slave (also known as Supplier / Consumer)
� Multiple-Master (also known as peer-to-peer)

Master-Slave replication
Master-Slave replication involves a read-write-enabled master server sending
updates to a read-only slave server. Many environments use this setup to help
with application performance, because slave servers are not busy sending
updates to other servers and can provide better performance to applications that
require only search functionality.

Multiple-Master replication
Multiple-Master replication involves two or more read/write-enabled master
servers in the environment. This is useful for an environment that requires
24x7x365 uptime. In this case, both servers can be "hot" in case there is a need
for failover.

This section demonstrates how to set up both types of replication. Master-Slave
replication is set up first, and then the slave replica is promoted to be a Master
server. To do this, we use the primary and secondary Tivoli Directory Server
instances.
 Chapter 5. Technical implementation phase I 161

The following processes must be started to complete this section:

1. The primary Tivoli Directory Server must be started.

2. The secondary Tivoli Directory Server must be started.

3. WebSphere Application Server must be started prior to accessing the Tivoli
Directory Server Web Administration Tool.

Setup replication on the primary Tivoli Directory Server
To configure the replication on the primary Tivoli Directory Server instance, issue
the following steps:

1. Access the Tivoli Directory Server Web Administration tool (Figure 5-28):

http://directoryserver1.taa.com/IDSWebApp/IDSjsp/Login.jsp

Figure 5-28 Tivoli Directory Server Web Administration Tool

2. After logging into the primary Tivoli Directory Server, select Replication
Management.

3. Select Manage topology.

4. Click Add.

a. Enter dc=com in the Subtree DN box.

b. Check to ensure that ldap://directoryserver1.taa.com:389 is in the master
server referral URL field.
162 Identity Management Advanced Design for IBM Tivoli Identity Manager

http://directoryserver1.taa.com/IDSWebApp/IDSjsp/Login.jsp

c. Click OK to save the changes.

Figure 5-29 shows the results of this configuration.

Figure 5-29 Manage suffix for Tivoli Directory Server replication

5. Select Manage credentials.

6. Select DC=COM from the subtree list.

7. Click Show Credentials. There should be no credentials listed for the
DC=COM tree.

Figure 5-30 on page 164 shows what these steps should look like.
 Chapter 5. Technical implementation phase I 163

Figure 5-30 Manage credentials for Tivoli Directory Server replication

8. Click Add to add the credentials for the replicated subtree.

9. Add the following credential information:

Credential Name cn=replicamanager

Authentication method Simple bind

10.Click Next.

11.Enter the Simple bind information as shown in Figure 5-31 on page 165:

Bind DN cn=replicamanager

Bind password passw0rd

Confirm password passw0rd

Description leave blank
164 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-31 Create credential for replication

12.Click Finish to save the changes.

13.Click Close to complete this step.

Now that the credentials are configured for the DC=COM subtree, it is time to
configure the replication topology. The following steps define the server that will
be the replica of the master server, Tivoli Directory Server secondary instance:

1. Under Replication management, select Manage topology.

2. With the DC=COM subtree selected, click Show topology.

3. From the Topology for the selected subtree panel shown in Figure 5-32 on
page 166, click Add replica.
 Chapter 5. Technical implementation phase I 165

Figure 5-32 Manage topology view

4. On the Add replica window, shown in Figure 5-33 on page 167, enter the
following information:

Hostname directoryserver2.taa.com

Port 389

Enable SSL Leave unchecked.

Replica Name Leave blank.
166 Identity Management Advanced Design for IBM Tivoli Identity Manager

Replica ID Click Get replica ID.

Description Leave blank.

Credential Object Click Select, which opens a new window. In the Select
Credential window, select the radio button next to the
DC=COM entry. Click Show Credentials to show the
previously configured credential information. With the
replicamanager credential displayed, click OK.

Figure 5-33 Create agreement for Directory Server replica

5. Click the Additional menu tab to continue to the next step.
 Chapter 5. Technical implementation phase I 167

The Add Replica - Additional window allows the administrator to add further
details about the replica, including the new feature allowing multithreaded
replication to help with replication performance.

On this window, the only change is to add the credentials to the consumer
machine:

a. Select the check box next to Add credential information on consumer.

b. Consumer admin DN: cn=root

c. Consumer admin password: <cn=root password on the secondary>

Figure 5-34 on page 169 shows the filled in values.

Note: During this process, the setup logs in to the replica server and
makes changes to the configuration file. The system needs the admin DN
and password of the replica server to complete this task.
168 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-34 Configure credentials to add on the consumer machine

6. Click OK to continue.

The following output is depicted in Figure 5-35 on page 170.
 Chapter 5. Technical implementation phase I 169

Figure 5-35 Add credentials on the consumer machine

7. Click Yes to restart the secondary server.

When the secondary server is restarted, the message in Figure 5-36 on
page 171 displays.
170 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-36 Credential successfully added on the consumer machine

8. Click OK to continue and to see the information window displayed in
Figure 5-37 on page 172.
 Chapter 5. Technical implementation phase I 171

Figure 5-37 Directory Server replica added on replication topology configuration

9. On the Manage Topology window, depicted in Figure 5-38 on page 173,
select the DC=COM subtree radio button, and click Quiesce / Unquiesce.

10.A window asking for confirmation to “quiesce the subtree DC=COM” is
presented. Click OK.

The Manage Topology window shows that the DC=COM subtree is in a
quiesced status.
172 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-38 Manage topology view: master - replica topology
 Chapter 5. Technical implementation phase I 173

11.Synchronize the data from the master server to the Replica:

a. To export the data from the primary Tivoli Directory Server, issue the
following command at the command prompt:

idsdb2ldif -I idsldap1 -s dc=com -o /tmp/data.ldif

Where:

-o specifies the output file (in our sample, /tmp/data.ldif)

-I specifies the instance from which to export the data

-s specifies the suffix from which to export the data

Note: The process of moving the data from the master server to the replica
server is a manual process.

It is not an automated process because moving the data from the master
server to the replica server using the normal replication process can be
extremely time-consuming, since it is sending the data over the network and
then processing the data.

It is a best practice to export the data from the master server, transfer it to the
replica server (using ftp or another transfer protocol), and then load the data.

The db2ldif (idsdb2ldif) utility is used to export the data from the master
server.

The ldif2db (idsldif2db) or bulkload utilities can be used to import the data into
the replica server.

To continue building the Replica, the master server must be quiesced, so it
does not accept any updates while the synchronization operation is in
progress.

Note: The secondary Tivoli Directory Server instance must be stopped for
the following procedure.
174 Identity Management Advanced Design for IBM Tivoli Identity Manager

b. Load the data on the secondary Tivoli Directory Server by issuing the
following command at the command prompt:

idsldif2db -i /tmp/data.ldif -I idsldap2 -r no

Where:

-i specifies the input file (in the sample, /tmp/data.ldif)

-I specifies the instance from which to import the data

-r specifies not to replicate the data as it loads

When the load is complete, the master server and the replica server will be in
synch.

When the replica creation process completes, Tivoli Directory Server starts
the replication queue in a suspended state. The queue can be restarted at
this point so it can be tested.

12.To unsuspend the newly created replication queue, select Manage queues.
The state should be suspended, as shown in Figure 5-39.

Figure 5-39 Manage queues panel after adding Directory Server replica

Note: The secondary Tivoli Directory Server instance must be restarted.
 Chapter 5. Technical implementation phase I 175

13.Click Suspend/resume to start the replication queue. The queue should
display the Last result as OK and have a State showing Active if everything is
correct. Click Refresh to make sure the queue shows zero, which is depicted
in Figure 5-40.

Figure 5-40 Manager queues view active state for queue on Directory Server replica

14.Click Refresh to ensure that the queue empties.

15.To further investigate, click Queue details. When on the Queue details
window, select Pending changes to see if replication is flowing smoothly. If
there are problems with the replication queue, it most likely has to do with
problems in the username and password of the user credentials. Further
information can be found in the ibmslapd.log file.

Test replication from Directory Server master to replica
Once all looks good with the replication queue, it is time to test. This test uses an
object add, for instance an Organizational Unit add, from the Identity Manager
console (Identity Manager is using the primary Directory Server instance). Then
we return to the Manage Queue window in the Directory Server console to
ensure the data was sent. If the data was sent, we examine the secondary
176 Identity Management Advanced Design for IBM Tivoli Identity Manager

Directory Server instance to ensure the change was replicated to the directory
server tree:

1. Log in to Tivoli Identity Manager as an administrator (for example, itim
manager)

http://itimserver1.taa.com/enrole/logon

2. Click My Organization.

3. Click Manage Organizational Units.

4. Click expand node Tivoli Austin Airlines.

You see the organizational unit branches already created under Tivoli Austin
Airlines.

5. Click Tivoli Austin Airlines branch to select this organizational unit.

6. Click Add.

7. Insert the Organizational Unit Name, for example, Test Organizational
Unit, as shown in Figure 5-41.

Figure 5-41 Create an Organizational Unit

8. Click Submit.
 Chapter 5. Technical implementation phase I 177

The new organizational unit appears on the organizational unit list.

9. Log in to the Tivoli Directory Server Web Administration Tool on the primary
Directory Server as an administrator (for example, cn=root).

http://directoryserver1.taa.com/IDSWebApp/IDSjsp/Login.jsp

10.Select Replication management and then select Manage queues.

11.Hopefully, the state of the queue is Ready with the last result OK. Click
Queue details.

12.Select Last attempted details. The last attempted details show the DN
information of the entry that was just added, depicted in Figure 5-42 on
page 179.

Note: Tivoli Directory Server only replicates the attribute that has been
changed rather than the entire directory entry. In this example, the new
entry created on the primary directory server tree is replicated.
178 Identity Management Advanced Design for IBM Tivoli Identity Manager

http://directoryserver1.taa.com/IDSWebApp/IDSjsp/Login.jsp

Figure 5-42 Replication queue status, last attempted details

13.Ensure that the change has been replicated to the replica by logging in to the
Tivoli Directory Server Web Administration Tool on the replica Directory
Server as an administrator (for example, cn=root).

14.Select Directory management and then select Find entries.

15.In the Search filter page, select organizationalUnit as objectclass, ou as
Attribute.

16.Insert Test Organizational Unit in the search filter text box as shown in
Figure 5-43 on page 180.
 Chapter 5. Technical implementation phase I 179

Figure 5-43 Search entry added on the Directory Server replica

17.Click OK.

18.The entry replicated on the secondary Directory Server is displayed in
Figure 5-44 on page 181. Our replication process to the newly configured
replica was successful.
180 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-44 Find entry result

Promote replica server to a master server
This next phase involves promoting the replica on directoryserver2.taa.com to a
master server. This allows both servers to be available for writes, providing a
24x7 availability.

The following steps are executed on the primary Tivoli Directory Server instance:

1. In the Tivoli Directory Server Web Administration tool, select Replication
management, then select Manage topology.

2. With the DC=COM subtree radio button selected, click Show topology.

3. In the Topology for selected subtree section, expand the
directoryserver1.taa.com:389 topology by clicking on the box to the left of
the item.

4. Select directoryserver2.taa.com:389.

5. Click Move. The following window displays. See Figure 5-45 on page 182.
 Chapter 5. Technical implementation phase I 181

Figure 5-45 Move replica to master

6. Select Replication topology to move directoryserver2.taa.com to be a
master server in the topology.

7. Click Move.

8. On the Create additional supplier agreements window, click Continue.

9. The message “The manage topology function will now collect
information” displays. Click OK.

Configure credentials to be used for peer-to-peer replication
This step defines the credentials that are used during the replication process.

The following steps are executed on the primary Tivoli Directory Server instance:

1. With the DC=COM radio button selected, click Show credentials.

2. You can use the same credentials that were defined earlier. Using the box
under the Select credentials section, select replicamanager from the list.
182 Identity Management Advanced Design for IBM Tivoli Identity Manager

3. Add the login information for the consumer server, so the credentials can be
added to the configuration file. Click Add credential information on
consumer check box, and add the following credential information:

Consumer admin DN cn=root

Consumer admin password <consumer password on the secondary>

Figure 5-46 shows the details.

Figure 5-46 Configure credentials for peer-to-peer replication

4. Click OK.

A message is displayed saying that directoryserver1.taa.com must be
restarted. This is done in the following step.
 Chapter 5. Technical implementation phase I 183

5. The Replication topology window displays. Figure 5-47 shows the new
replication topology, with directoryserver2.taa.com now at the same level in
the topology as directoryserver2.taa.com.

Figure 5-47 Replication peer-to-peer topology
184 Identity Management Advanced Design for IBM Tivoli Identity Manager

6. Restart the primary Tivoli Directory Server instance.

When the replication is first started, Tivoli Directory Server starts the
replication queue in a suspended state. The queue can be restarted at this
point, so it can be tested.

7. Log out of the primary Tivoli Directory Server Web Administration Tool and
log in to the secondary.

8. Select Replication Management.

9. Select Manage queues. The state should be suspended.

10.Select Suspend/resume to start the replication queue. The queue should
show the Last result as OK or have an active state if everything is correct.
Click Refresh to make sure the queue shows zero.

To further investigate, click queue details and pending changes to see if
replication is flowing smoothly. If there are problems with the replication queue, it
most likely has to do with problems in the username and password of the user
credentials. Further information about the issue can be found in the ibmslapd.log.

Test peer-to-peer topology
Once all looks good with the replication queue, it is time to test the peer-to-peer
replication sending an LDAP write operation on both the back-end directory
servers. This test follows the same steps shown in “Test replication from
Directory Server master to replica” on page 176 to add an object Organizational
Unit on the directoryserver1.taa.com. This time the entry is deleted using the
Web Administration console from directoryserver2.taa.com.

Configure Tivoli Directory Server proxy server component
Now we have two Directory Server instances configured on a peer-to-peer
topology, as shown in Figure 5-48. Both the instances can be accessed in
read/write mode from an LDAP client.

Figure 5-48 Peer-to-peer topology

To implement a Directory Server high availability environment, we need to add a
component that can manage and balance the read/write requests to the
peer-to-peer topology in failover mode. The Tivoli Directory Server proxy server
 Chapter 5. Technical implementation phase I 185

component will be used to manage the failover request on the Directory Server
topology, as shown in Figure 5-49.

Figure 5-49 Proxy server as a load balancer configured in failover mode

The proxy server does not have an RDBM back-end and cannot take part in
replication. The directory proxy server sits at the front end of a distributed
directory and provides efficient routing of the Identity Manager Server requests.
In order to obtain high availability, another server machine (in this scenario with
hostname proxyserver.taa.com) has been added to the TAA IT environment.

Note: In a proxied directory, failover support between proxies is provided by
creating an additional proxy server that is identical to the first proxy server.
These are not the same as peer masters, the proxy servers have no
knowledge of each other and must be managed through a third-party load
balancer.

A load balancer, such as the IBM WebSphere Edge Server, is configured to
send requests to only one proxy server. If that proxy server is down or
unavailable because of a network or system failure, the load balancer sends
the updates to the next available proxy server until the first server is back
online and available.

Refer to your load balancer product documentation for information about how
to install and configure the load balancing server.
186 Identity Management Advanced Design for IBM Tivoli Identity Manager

This section demonstrates how to set up and configure a proxy server in a
peer-to-peer topology. For general information about the Tivoli Directory Server
proxy server component and different topology configurations, refer to the IBM
Tivoli Directory Server Administration Guide Version 6.1, SC32-1564.

With IBM Tivoli Directory Server Version 6.1, you can install two types of servers:
the full server and the proxy server. To install a proxy server, you do not need to
have DB2 installed on the computer.

For the proxyserver.taa.com server machine, we use an xSeries® Linux and to
install the Tivoli Directory Server proxy server, we use the Linux utilities.

To install the proxy server, follow these steps:

1. Log in as root.

2. Install the 32-bit client by typing the following at a command prompt:

rpm -ihv idsldap-cltbase60-6.0.0-0.i386.rpm
rpm -ihv idsldap-clt32bit60-6.0.0-0.i386.rpm

3. Install the proxy server component by typing the following at a command
prompt:

rpm -ihv idsldap-cltjava60-6.0.0-0.i386.rpm
rpm -ihv idsldap-srvproxy32bit60-6.0.0-0.i386.rpm

4. Verify that the packages have been installed correctly by typing the following
at a command prompt:

rpm -qa | grep idsldap

If the product has been successfully installed, the following is displayed:

idsldap-cltbase60-6.0.0-0
idsldap-clt32bit60-6.0.0-0
idsldap-cltjava60-6.0.0-0
idsldap-srvproxy32bit60-6.0.0-0

5. Install the English messages:

rpm -ihv idsldap-msg60-en-6.0.0-0.i386.rpm

You can install messages in other languages by using the package names for
those languages.

Note: In our architectural and planning steps we are referring to IBM Tivoli
Directory Server 6.1. However, at the time of writing this Redbooks publication
we only had access to IBM Tivoli Directory Server 6.0. This is why the
individual installation and configuration steps and screenshots may refer to
v6.0. If you will be deploying v6.1 of the product please make sure you use the
appropriate files and commands.
 Chapter 5. Technical implementation phase I 187

6. If you want to include security functions, install GSKit 7.0.3.3 by typing the
following at a command prompt:

rpm -ihv gsk7bas-7.0-3.3.i386.rpm

To configure the proxy server instance, we use the Instance Administration Tool:

1. Start the Instance Administration Tool by typing idsxinst at the command
line. The IBM Tivoli Directory Server Instance Administration Tool window is
displayed.

2. Click Create.

3. On the Create a new directory server instance window, click Create a new
directory server instance.

Click Next.

4. On the Instance details window, shown in Figure 5-50 on page 189, complete
the following fields:

User name Type the system user ID of the user who owns
the Directory Server instance. The name you
enter is also used as the name for the Directory
Server instance.

Install location Leave blank, the user home directory is used as
a default.

Encryption seed string Type a string of characters that is used as an
encryption seed. Use the same encryption seed
string used on the back-end directory server.

Instance description Type a description of the proxy server instance,
for example, Tivoli Directory Server proxy
server.

Note: The name of the new Directory Server instance must be unique; if
there is already a Directory Server instance on the computer with the same
name, you will receive an error message.
188 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-50 Create a new proxy server instance

5. Click Next.

6. On the TCP/IP settings for multihomed hosts window, select the Listen on all
configured IP addresses check box and click Next as depicted in
Figure 5-51.

Figure 5-51 Proxy server instance to listen on all configured IP addresses
 Chapter 5. Technical implementation phase I 189

7. On the TCP/IP port settings window, leave the port numbers prefilled by the
Tivoli Directory Server Instance Administration tool as shown in Figure 5-52
and click Next.

Figure 5-52 Proxy server TCP/IP port settings

8. Select the Configure administrator DN and password check box and click
Next:

a. Accept the default DN (cn=root).

b. Type the password for the administrator DN in the Administrator
Password field.

Passwords are case sensitive. Double-byte character set (DBCS)
characters in the password field are not valid. Record the password in a
secure location for future reference.

c. Retype the password in the Confirm password field.

d. Click Next.

Note: If you have two or more Directory Server instances listening on the
same IP address (or set of IP addresses), be sure that those Directory Server
instances do not use any of the same port numbers.
190 Identity Management Advanced Design for IBM Tivoli Identity Manager

9. In the Verify settings window, the complete information displays again. To
return to an earlier dialog and change information, click Back. To begin
creating the proxy server instance, click Finish.

Before we set up the proxy server and the back-end servers, we need to create
an entry on the global administration group. This entry is used as the
administrative user that binds the LDAP request from the Identity Manager
Server to the proxy server.

The global administration group is a way for the directory administrator to
delegate administrative rights in a distributed environment to the database
back-end. Global administrative group members are users who have been
assigned the same set of privileges as the administrative group with regard to
access entries in the database back-end and have complete access to the
Directory Server back-end. All global administrative group members have the
same set of privileges.

Global administrative group members cannot access schema data. They also do
not have access to the audit log. Local administrators, therefore, can use the
audit log to monitor global administrative group member activity for security
purposes.

To set up the proxy server and back-end server, we use the Tivoli Directory
Server Web administration console.

Create a user entry for the global administrators group
To create a user entry for the global administrators group, follow these steps and
refer to Figure 5-53 on page 192:

1. Log on to the directoryserver1.taa.com Web administration console.

2. From the navigation area, expand the Directory management link.

3. Click Add an entry.

4. From the Structural object class drop-down menu, select person.

5. Click Next.

Note: The global administration group should be used by applications or
administrators to communicate with the proxy server using administrative
credentials. For example, the member that will be set up on this
implementation sample (cn=manager,cn=ibmpolicies) will be used in place of
the local administrator (cn=root) when directory entries are to be modified
through the proxy server. Binding to the proxy server as cn=root gives an
administrator full access to the proxy server’s configuration but only
anonymous access to the directory entries.
 Chapter 5. Technical implementation phase I 191

6. Click Next to skip the Select auxiliary object classes panel.

7. Type cn=manager in the Relative DN field.

8. Type cn=ibmpolicies in the Parent DN field.

9. Type manager in the cn field.

10.Type manager in the sn filed.

Figure 5-53 User entry for the global administration group

11.Click the Optional attributes link.

12.Enter a password in the userPassword field.

13.Click Finish.

14.Repeat steps 1 through 13 to create the same user entry on the second
back-end Directory Server (direcotryserver2.taa.com).
192 Identity Management Advanced Design for IBM Tivoli Identity Manager

Add the user entry to the global administrators group
The following steps add the cn=manager to the global administration group as
depicted in Figure 5-54:

1. Log on to directoryserver1.taa.com Web administration console.

2. From the navigation area, expand the Directory management link.

3. Click Manage entries.

4. Select the radio button for cn=ibmpolicies and click Expand.

5. Select the radio button for globalGroupName=GlobalAdminGroup and
from the Select action drop-down menu, select Manage members and click
Go.

6. Type cn=manager,cn=ibmpolicies in the member field and click Add.

Figure 5-54 Add the cn=manager user entry into the global administration group
 Chapter 5. Technical implementation phase I 193

7. A message displays, “You have not loaded entries from the server”.
Only your changes will be displayed in the table. Answer the question “Do you
want to continue?” by clicking OK.

8. cn=manager is displayed in the table. Click OK.

The user cn=manager is now a member of the global administration group.

9. Repeat the steps 1 through 8 to add the cn=manager user entry on the global
administration group on the second back-end directory server
(direcotryserver2.taa.com).

Setting up the proxy server
In the following section, we configure the proxy server instance and use both the
Web administration console and the LDAP command line to define the server
group necessary to manage the Directory Server peer-to-peer topology.

To set up the proxy server:

1. Log on to the server that you are going to use as the proxy server,
proxyserver.taa.com, as root user.

2. Start the server in configuration-only mode using the command:

idsslapd -I <instance_name> -a

In this example, the instance name is idsldap1.

3. Log on to the proxyserver.taa.com Web administration console as cn=root.

4. From the navigation area, expand the Proxy administration link as shown in
Figure 5-55 on page 195.

5. Click Manage proxy properties.

6. Click the Configure as proxy server check box.

7. In the Suffix DN field, enter cn=ibmpolicies and click Add.

8. In the Suffix DN field, enter cn=pwdpolicy and click Add.

9. In the Suffix DN field, enter dc=com and click Add.

Note: In this release, the Web Administration Tool does not support the
management of these server groups. The directory administrator must define
these server groups using the idsldapadd and idsldapmodify commands to
add and modify the required entries.
194 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-55 Manage proxy properties

10.Click OK to save your changes and return to the Introduction panel.

11.From the navigation area, click Manage back-end directory servers as
shown in Figure 5-56 on page 197.

12.Click Add.

Note: You must log off the Web Administration, and log in again. Doing so
updates the navigation area. If you do not log off and then log on again, the
navigation area is not updated to correctly to display the proxy server.
 Chapter 5. Technical implementation phase I 195

13.Enter the host name for directoryserver1.taa.com in the Hostname field.

14.Enter the port number for directoryserver1.taa.com (for this example, all
servers use 389).

15.Enter the number of connections that the proxy server can have with the
back-end server in the Connection pool size field.

The minimum value for this Tivoli Directory Server release is 5 and the
maximum value is 100.

16.Specify Simple in the Authentication method field.

Note: For this release, do not set the value in the Connection pool size
field to be less than 5.
196 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-56 Add back-end Directory Server to proxy server

17.Click Next.

18.Specify the administration DN or the DN of a member of the local
administrator in the Bind DN field. For this example, cn=root.
 Chapter 5. Technical implementation phase I 197

19.Specify and confirm the administration password, in the Bind password
fields.

20.Click Finish.

21.Repeat steps 11 through 20 for directoryserver2.taa.com.

Figure 5-57 Manage back-end directory server summary view

22.When you finish, click Close to save your changes and return to the
Introduction panel.

23.Ensure that all the back-end servers are started and can be displayed as
shown in Figure 5-57.
198 Identity Management Advanced Design for IBM Tivoli Identity Manager

Synchronizing global policies
The following steps configure cn=ibmpolicies as a single partition. This is
necessary to enable you to synchronize the global policies on all of the servers.

To configure cn=ibmpolicies as a single partition:

1. Log on to the proxyserver.taa.com Web administration console as cn=root.

2. From the navigation area, click Manage partition bases as depicted in
Figure 5-58 on page 200.

3. On the Partition bases table, click Add.

4. Enter cn=ibmpolicies in the Partition DN field.

5. Enter 1 in the Number of partitions field.

6. Click OK.

7. Select the radio button for cn=ibmpolicies and click View servers.

8. Verify that cn=ibmpolicies is displayed in the Partition base DN field.

9. In the Back-end directory servers for partition base table, click Add.

10.From the Back-end directory server menu, select directoryserver1.taa.com.

11.Enter 1 in the Partition index field.

12.Repeat steps 9 through 11 for directoryserver2.taa.com.

Note: If the proxy server cannot connect with one or more of the back-end
servers at startup, the proxy starts in configuration mode only. This is true
unless you set up server groups. We explain how to configure a server
group in section “Server groups” on page 200.

Note: Schema modifications are not replicated by the proxy server or to the
proxy server. You need to enter any schema updates on each proxy server
manually.

Note: A value greater than 1 for cn=ibmpolicies and cn=pwdpolicy is not
supported.
 Chapter 5. Technical implementation phase I 199

Figure 5-58 Manage partition bases for proxy server

13.Click OK.

14.Repeat steps 2 through 12 for cn=pwdpolicy and dc=com.

Server groups
If the proxy server is unable to contact a back-end server, or if the authentication
fails, then the proxy server startup fails. Then, the proxy server starts in
configuration only mode by default, unless server groupings have been defined
in the configuration file.
200 Identity Management Advanced Design for IBM Tivoli Identity Manager

Server groups enable the user to state that several back-end servers are mirrors
of each other, and that proxy server processing can continue even if one or more
back-end servers in the group are down, assuming that at least one back-end
server is online. Connections are restarted periodically if the connections are
closed for some reason, such as the remote server is stopped or restarted.

The proxy server configuration file supports a special set of entries that enables
a directory administrator to define server groups in the configuration file. Each
group contains a list of back-end servers. As long as at least one back-end
server in each group can be contacted, the proxy server starts successfully and
services client requests, although performance might be degraded. Each
back-end server in the entry is defined to have an OR relationship, and all the
entries have an AND relationship.

The directory administrator must ensure that each of the back-end servers is
placed in a server group and that the back-end servers in each server group
contain the same partition of the directory database.

Example 5-2 shows typical user-defined server groups.

Example 5-2 Server group definition for two back-end Directory Servers

dn: cn=serverGroup, cn=ProxyDB, cn=Proxy Backends, cn=IBM Directory,
cn=Schemas, cn=Configuration
cn: serverGroup
ibm-slapdProxyBackendServerDN: cn=Server1,cn=ProxyDB,cn=Proxy Backends, cn=IBM
Directory, cn=Schemas,cn=Configuration
ibm-slapdProxyBackendServerDN: cn=Server2,cn=ProxyDB,cn=Proxy Backends, cn=IBM
Directory, cn=Schemas,cn=Configuration
objectclass: top
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdProxyBackendServerGroup

In addition to the server grouping, the administrator must add the serverID of
each back-end server in the server group entry. If the server is down, no root
DSE information can be gained, and the serverID is needed for determining the
supplier/consumer relationships throughout the topology.

Note: With Tivoli Directory Server Version 6.1, the Web Administration Tool
does not support the management of these server groups. The directory
administrator must define these server groups using the idsldapadd command
and the idsldapmodify command to add and modify the required entries.
 Chapter 5. Technical implementation phase I 201

Example 5-3 shows the definition of the two back-end Directory Servers on the
proxy server configuration file ibmslapd.conf for TAA.

Example 5-3 TAA back-end Directory Server definition

dn: cn=Server1, cn=ProxyDB, cn=Proxy Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
cn: Server1
ibm-slapdProxyBindMethod: Simple
ibm-slapdproxyconnectionpoolsize: 5
ibm-slapdProxyDN: cn=root
ibm-slapdProxyPW: {AES256}Xie9CxheU8HGipCOE448gA==
ibm-slapdProxyTargetURL: ldap://directoryserver1.taa.com:389
ibm-slapdServerId: adc88840-2ee0-102a-8c1e-9d0bd4943fe3
objectClass: top
objectClass: ibm-slapdProxyBackendServer
objectClass: ibm-slapdConfigEntry

dn: cn=Server2, cn=ProxyDB, cn=Proxy Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
cn: Server2
ibm-slapdProxyBindMethod: Simple
ibm-slapdProxyConnectionPoolSize: 5
ibm-slapdProxyDN: cn=root
ibm-slapdProxyPW: {AES256}Xie9CxheU8HGipCOE448gA==
ibm-slapdProxyTargetURL: ldap://directoryserver2.taa.com:389
ibm-slapdServerId: 955ab540-31e1-102a-8f6e-d2ea857d8100
objectClass: top
objectClass: ibm-slapdProxyBackendServer
objectClass: ibm-slapdConfigEntry

Note: In each entry pointed to by ibm-slapdProxyBackendServerDn, the
attribute ibm-slapdServerId must be added, with its value identical to the value
on the corresponding back-end server.

Note: The ibm-slapdServerId value shown in Example 5-3 cannot be added in
entries by using the Web Administration console.
202 Identity Management Advanced Design for IBM Tivoli Identity Manager

When you are finished with the proxy server configuration, you have to stop and
restart the proxy server:

1. Stop the proxy server using the command:

idsslapd -I <instance_name> -k

In this example, the instance name is idsldap1.

2. Start the proxy server using the command:

idsslapd -I <instance_name>

If the two back-end Directory Servers are up and running, an output similar to
Example 5-4 displays. An information message displays the communication
established with the back-end server and the server group startup.

Example 5-4 Proxy server starting output

[root@proxydemo.taa.com /]# idsslapd -I idsldap1
GLPSRV041I Server starting.
...
GLPCOM003I Non-SSL port initialized to 389.
GLPPXY003I Successfully established communication with backend server
directoryserver1.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver1.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver1.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver1.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver1.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver2.taa.com on port 389.
The server group cn=serverGroup, cn=ProxyDB, cn=Proxy Backends, cn=IBM
Directory, cn=Schemas, cn=Configuration is available. Proxy Server startup
continuing.
GLPPXY003I Successfully established communication with backend server
directoryserver2.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver2.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver2.taa.com on port 389.
GLPPXY003I Successfully established communication with backend server
directoryserver2.taa.com on port 389.
...
GLPSRV009I IBM Tivoli Directory (SSL), 6.0 Server started.
 Chapter 5. Technical implementation phase I 203

Configure Tivoli Identity Manager Server to use proxy server
Once all looks good with the proxy configuration, it is time to change the
administrator ID used by our Identity Manager Server to bind to the user registry
through the proxy server. For example, the ID we have configured,
cn=manager,cn=ibmpolicies, will be used in place of the local administrator,
cn=root, in the Identity Manager configuration. Binding to the proxy server as
cn=root gives an administrator full access to the proxy server’s configuration, but
only anonymous access to the back-end directory entries.

In the cluster configuration we used in the TAA implementation, we have to
update the Identity Manager Server configuration on each WebSphere
Application Server cluster member where the Identity Manager Server is
installed.

Log on to each cluster member machine as root user and follow these steps:

1. Run the Identity Manager system configuration tool with the install option by
executing the following command in a command line window:

ITIM_HOME/bin/runConfig install

2. As shown in Figure 5-59 on page 205, click the Directory tab.

3. Update the Principal DN field with the global administrator user ID that the
Tivoli Identity Manager Server will use to log on to the proxy server, in this
example, cn=manager,cn=ibmpolicies.

4. Update the Directory Server Host Name field with the proxy server host
name, in our example, proxyserver.taa.com.

Note: Before updating the directory connection information about each cluster
member, verify that the proxy server and the back-end Directory Servers are
running.
204 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 5-59 Proxy server directory connection configuration

5. Click Test to check the connection with the proxy server.

6. Click OK.

7. Repeat steps 2 through 6 for each cluster member.

8. Restart the Tivoli Identity Manager Server application using the WebSphere
Deployment Manager administration console.

Running the system configuration tool writes log data to the
ITIM_HOME/install_logs/runConfig.stdout log file.

Test Identity Manager with proxy server connection
Once all looks good with the Identity Manager proxy server connection, it is time
to test. To properly test the proxy server configuration in conjunction with Identity
Manager, we use the following two scenarios:

� Scenario A

With all the back-end servers up and running, we add an object using the
Tivoli Identity Manager console and verify that this object is created on all the
back-end Directory Servers.

� Scenario B

We stop the first peer back-end Directory Server, in this example,
directoryserver1.taa.com. We then delete the object created in Scenario A
using the Tivoli Identity Manager console. After restarting the back-end
Directory Server, we verify that this object has been deleted on all back-end
Directory Servers.
 Chapter 5. Technical implementation phase I 205

Scenario A
To test:

9. Follow steps 1 through 8 that we detailed in “Test replication from Directory
Server master to replica” on page 176 to create a Tivoli Identity Manager
object.

10.Log on to the directoryserver2.taa.com Web administration console as
cn=root user.

11.Follow steps 14 through 18 that we detailed in “Test replication from Directory
Server master to replica” on page 176, to verify that the entry object has been
created on the directoryserver2.taa.com.

Scenario B
To test:

1. Log on to the directoryserver1.taa.com as root user.

2. Stop the server using the command:

idsslapd -I <instance_name> -k

In this example, the instance name is idsldap1.

3. Log in to Tivoli Identity Manager as an administrator (for example, itim
manager) and delete the object created in Scenario A.

4. Follow steps 14 through 18 that we detailed in “Test replication from Directory
Server master to replica” on page 176 to verify that the entry object has been
deleted on the directoryserver2.taa.com.

5. Restart the server instance, idsldap1, using the command:

idsslapd -I <instance_name> -k

6. Follow steps 14 through 18 that we detailed in “Test replication from Directory
Server master to replica” on page 176 to verify that the entry object has been
deleted on the directoryserver1.taa.com.

5.5 Conclusion
This chapter has focused on providing a complete solution for TAA’s business
and functional requirements concerning high availability and scalability.

The necessary project steps we addressed were the configuration of the
WebSphere Application Server clustering for the Tivoli Identity Manager
application, the setup of the HADR clustering for the IBM DB2 back-end
database, and the automatic failover and load balancing solution for the IBM
Tivoli Directory Server.
206 Identity Management Advanced Design for IBM Tivoli Identity Manager

This solution guarantees a maximum of uptime with a minimum of additional
hardware and software investments. Now, TAA can fulfill their service level
agreements towards their business partners and customers regarding their
identity management solution.
 Chapter 5. Technical implementation phase I 207

208 Identity Management Advanced Design for IBM Tivoli Identity Manager

Chapter 6. Technical implementation
phase II

In this chapter, we cover how the functional requirements in Chapter 4, “Project
design” on page 113 relate to the actual deployment and how Tivoli Austin
Airlines (TAA) physically meets the deployment requirements.

6

© Copyright IBM Corp. 2006. All rights reserved. 209

Table 6-1 shows the relationships between the functional requirements and the
deployment requirements in phase II.

Table 6-1 Mapping functional requirements to deployment requirements

Let us look at the detailed implementation of each of these requirements now.

Functional requirement TAA’s deployment requirement

B. Provide self-care application to
empower employees, customers, and
business partners to administer their own
account needs.

1. Web application deployed within the
company’s intranet and extranet.

C. Provide self-registration capabilities for
customers and business partners.

1. Web application deployed within the
company’s intranet and extranet.

E. Create an Identity Manager
recertification process for all TAA
applications.

4. Implement a recertification process to
capture necessary metrics for reducing
software licensing and maintenance.

F. Make recertification process available
company wide and extranet wide.

4. Recertification process.

H. Mitigate error-prone administrative
functions.

3. Advanced custom report design.

I. Reduce repetitive admistrative duties. 3. Advanced custom report design.

M. Delegate administration of business
partner users to business partner
administrators.

2. Delegated administration design.
210 Identity Management Advanced Design for IBM Tivoli Identity Manager

6.1 Self-care
TAA will provide a self-care application for its users and business partners to
manage their accounts, user identities, and passwords. The following sections
discuss the design considerations and implementation of the self-care
application within TAA’s intranet and extranet topologies.

6.1.1 Requirements
In the first portion of phase II, TAA will deploy functionality to relieve the security
administration team of many of the user identity-related tasks by shifting the
burden to the users themselves. In order to implement this functionality, TAA
plans the following steps:

� A self-care application is developed to provide employees, business partners,
and customers the following capabilities:

– Users are able to request the creation, modification, and deletion of the
accounts to which they are authorized by policy and role.

– Users are able to access and complete the recertification process.

– New users are able to access and register for a TAA account.

– An approval process is available for account creation or modification
requiring approval by a member of an application administration or
management team.

� The self-care application is deployed in a phased approach to better control
and mitigate any issues, which might arise by implementing the following
phases:

– Phase 1: Host the self-care application and test in production using
administration and test team member accounts.

– Phase 2: Open the self-care application to internal employees by region.
TAA will do this through notification of employees by region of the new
URL and capabilities during a simple training process. The training
process consists of an informational e-mail describing the simple interface,
capabilities, and a Web site they can go to for more information.

– Phase 3: Open the self-care application to extranet members by notifying
them of the URL and the informational e-mail we just described.

– Phase 4: Incorporate the remaining business partners that were not
covered in phase 3 and customers.
 Chapter 6. Technical implementation phase II 211

6.1.2 Design considerations
Prior to implementing the requirements, there are design aspects TAA must
consider to ensure the correct implementation:

� The application needs to be lightweight and accessible anywhere, thus, a
thick client is precluded as a possible solution and a Web-based application is
required.

� The application needs to be highly available; hence, the application leverages
the high availability of the Identity Manager installation as much as possible.

� The capability of the application needs to reflect the access rights of the user
who accesses it. Therefore, a capability has to exist in order to restrict access
to certain portions of the application, depending upon the type of user
accessing it.

� Since the business partner administrators need elevated privileges, TAA has
decided to create a Tivoli Access Manager-secured junction for these users
to be able to access the standard Identity Manager interface for this
functionality.

While these represent major considerations, they are not an exhaustive list.

6.1.3 TAA’s implementation
The implementation of the self-care application consists of two distinct high-level
tasks: The first is the development and test of the self-care application and the
second is the deployment of the application. The development task has several
subtasks as well, which are the creation of the overall application, and the
creation of individual capabilities to offer to the user. In the following sections, we
discuss each of these tasks.

Development
TAA will leverage software reuse to enable a faster and more efficient
development cycle by starting the development of its self-care application with
the self-care application that ships with Identity Manager in the <ITIM
HOME>/extensions/examples/self_care directory. Since TAA uses a
Windows-based Eclipse1 development environment for all of its development
activities, TAA will modify the existing application using the same development
environment.

The existing self-care application includes most of the functionality TAA needs,
specifically, password editing, forgotten password, challenge/response,

1 Eclipse is an open source community whose projects are focused on providing an extensible
development platform and application frameworks for building software. More information can be
obtained at: http://www.eclipse.org/
212 Identity Management Advanced Design for IBM Tivoli Identity Manager

http://www.eclipse.org/

self-registration, and, to some degree, application subscription; thus, there is not
a lot of development work needed to include what is missing. The functionality
TAA needs to add is the ability to complete To Do list items for account
recertification and application subscription support to request application
accounts. However, because of the elevated privileges required for the
delegated administration requirement, TAA has decided that the users needing
this functionality should log into Identity Manager directly and utilize the
full-featured Identity Manager interface for these duties. Therefore, there will not
be any development requirements associated with the self-care application for
the delegated administration requirement. Lastly, there is the modification of how
the self-care user interface looks to match the TAA requirements.

The self-care application provided with the Identity Manager installation is a Java
2 Platform Extended Edition (J2EE)2 Web application that uses servlets,
JavaServer™ Pages™3 (JSP), and property files to present and retrieve
information from the user and interface with Identity Manager. The servlets
control the dynamic information provided to the JSP as well as control the JSPs
themselves. The following list is a high-level description of the different modules
contained in the self-care application listed by functional area. Each functional
area describes the servlet that controls the processing and the subsequent JSP,
which it calls to display and capture information to and from the user:

� Account subscription

– AccountDataBean.java

Account data processing, for example, return getting and setting account
DN and status.

– ApplicationServlet.java

Contains the doGet and doPost methods and controls input and output to
applications.jsp.

– applications.jsp

Contains logic to display applications available for request and to gather
user input of selected applications the user requests.

– application_sub.jsp

Contains the logic used to display the result returned from an application
request submission.

2 Java 2 Platform Enterprise Edition (J2EE) is an environment for developing and deploying
enterprise applications. The J2EE platform consists of a set of services, application programming
interfaces (APIs), and protocols that provide the functionality for developing multitiered, Web-based
applications. For more information, see http://java.sun.com/javaee/index.jsp
3 JavaServer Pages (JSP™) technology provides a simplified, fast way to create dynamic web
content. For more information, see http://java.sun.com/products/jsp/
 Chapter 6. Technical implementation phase II 213

http://java.sun.com/products/jsp/
http://java.sun.com/javaee/index.jsp

� Challenge/response

– ChangeChallengeResponseServlet.java

Logic to create, display, and validate challenge/response answers.
Contains the doGet and doPost methods and controls the different JSPs
used to display and request information from the user.

– cr_warning_msg_box.jsp

Used to display errors or warnings within an error box on the current JSP
from the processing of challenge response answers.

– cranswers.jsp

Used to display and capture user answers to given challenges.

– cranswersinfo.jsp

Used to display an information box on the current JSP generated from the
processing of challenge response answers.

– crforgotpwd.jsp

Displays the forgotten password information within the current JSP, which
prompts for initial user information.

– forgotpwd.jsp

Generates the initial display page of the challenges for the user to respond
to with correct responses in order to log in via a forgotten password.

– forgotpwdinfo.jsp

Displays a results page from answering the challenges.

– newchangepwd.jsp

Displays and captures information to and from the user for a forgotten
password forced password change.

� Change password

– ChangePasswordServlet.java

Logic to create, display, and validate user password changes. Contains
the doGet, and doPost methods, and controls the different JSPs used to
display and request information from the user.

– changepwd.jsp

Used to display information to the user and capture the required input to
submit a change password request.

– changepwdinfo.jsp

Displays results information from the submission of a change password
request.
214 Identity Management Advanced Design for IBM Tivoli Identity Manager

– selfchangepwd.jsp

Displays and captures information required to change a user’s password
proactively.

– selfchangepwdinfo.jsp

Displays the result of a user request for a proactive password change.

– pwdrulesinfo.jsp

Displays password rules applicable to a given account password change
or creation.

� Logon

– logonServlet.java

Contains the doGet and doPost methods and controls input and output to
logon and logout JSPs. Used to process the logging in and logging out of
the user.

– logon.jsp

Used to display and capture the information to the user necessary for
them to log in.

– logout.jsp

Displays informational details to the user about being logged off and a link
to log back in.

� Self-registration

– registerServlet.java

Logic to create, display, and validate the request to create a new person
object. Contains the doGet and doPost methods and controls the different
JSPs used to display and request information from and to the user.

– selfregister.jsp

Displays information prompting the user for required information, which it
then captures and returns to the servlet for processing.

– selfregsub.jsp

Displays post processing information from the submission of a
self-registration request.

– welcome.jsp

Used to greet a user who wants to self-register.

� Self-care

– selfCareServlet.java
 Chapter 6. Technical implementation phase II 215

Logic to create, display, and validate the request to change a person
objects information, such as common name, surname, address, and so
on. Contains the doGet and doPost methods and controls the different
JSPs used to display and request information from the user.

– selfcare.jsp

Displays the current user information and captures the changes.

– selfcaresub.jsp

Displays the post processing messages from a user information change
request submission.

� To Do List

– todolistServlet.java

Logic to create, display, and validate the completion request for a user’s
workflow assignments. Contains the doGet and doPost methods and
controls the different JSPs used to display and request information from
and to the user.

– todolist.jsp

Displays the current assignments and captures the user’s decisions and
reasons.

� View accounts

– ViewMyAccountsServlet.java

Main control processing gathering a user’s current account subscriptions.
Contains the doGet and doPost methods for controlling the display of a
given user’s accounts.

– AccountDataBean.java

Contains centralized methods for displaying a user’s current account
information.

– myaccounts.jsp

Displays a user’s account information to the user.

� Utility and main process

– expiUtil.java

Contains abstracted logic for processing various common functions within
the different modules. Includes methods such as Platform Context
creation and property loading.

– mainServlet.java

Central process control. Initiates calls to subsequent modules and controls
the main menu. Contains a doGet method, which is used to process a
216 Identity Management Advanced Design for IBM Tivoli Identity Manager

user’s selection and subsequent control transfer to the corresponding
servlet module.

– main.jsp

Used to display the main menu and subsequent error and informational
message boxes.

– index.html

Used for forward control to logonServlet.java.

– expi_header, expi_footer

Used to display a consistent top and bottom banner on all the display
modules.

– expiProlog.jsp

This module contains prologue code for all JSPs that require the user to
be authenticated prior to allowing them access to a page. If the user is
NOT authenticated, the Subject will not exist in the header.

– expired_pwd_warning_msg_box.jsp

Used to display a warning box on the current JSP informing the user that
their password has expired.

– ssoerror.jsp

Displays an error box within the current JSP notifying the user of a single
sign-on error or warning.

To Do list
The To Do list is a required functionality for TAA in order to complete the
recertification process discussed below in 6.5, “Recertification process” on
page 290. Since the business requirement driving this functionality is to complete
the recertification process, TAA has not included all of the features available from
the standard Identity Manager user interface for assignment tasks such as
grouping and locking within this phase. Furthermore, the user does not have the
capability to complete only certain To Do List items and ignore others; they will
have to complete all of their assignments or cancel out and come back to the
assignments when they can complete them all. TAA feels that the users who are
using the self-care application do not need this functionality in this phase of the
deployment, but TAA will consider it for future phases depending on feedback.
 Chapter 6. Technical implementation phase II 217

In order for TAA to develop this functionality, the following modules were created
or modified (see Appendix D, “Additional material” on page 389 about how to
obtain the actual source code and details):

� todolistServlet.java

The todolistServlet.java servlet contains the processing and control logic for
the completion of workflow participant assignments. The todolistServlet is first
called from main.jsp when the user selects the View and Complete My To Do
List Assignments link. See Figure 6-1 on page 220 for details.

The first time through the todolistServlet, the init method is called and
initializes all the JavaServer Pages from the properties file that could be
called. Once the init method completes, the doGet method is called and the
session is validated by checking whether a new session object is created. This
verification is done each time the doGet method is called and checks whether
the session has timed out, and if so, forwards the user session back to the
login page to input their login information again. With the session validated,
the servlet requests the subject of the HttpSession object, session, with a call
to the session.getAttribute method and uses it to instantiate a Human
Resource Managed Object, HumanResourceMO. The Human Resource
Managed Object represents a human workflow resource (workflow
participant) and the object is used to obtain the Workflow Assignment
Managed Objects of the user.

A collection of Workflow Assignment Managed Objects,
WorkflowAssignmentMO, is returned from calling the method
HumanResourceMO.getAssignments. This collection is saved to the session
object for later usage so that the processing does not have to be repeated.
Now that the collection of WorkflowAssignmentMOs has been retrieved for
the user, the different activities that the user must complete are saved to
another collection by iterating through the WorkflowAssignmentMO collection
and calling the WorkflowAssignmentMO.getActivity method. This collection is
also saved to the session object via the session.setAttribute method. By
setting the collection to the session, it can be retrieved from the todolist
JavaServer Page by use of the session.getAttribute method, and the objects
within the collection can be processed. Upon completion of these tasks, the
session is redirected to the todolist.jsp for the user to input information.

When the todolist.jsp completes, the doPost method on the todolistServlet is
called to process the information input by the user. Here once again before
any processing occurs, the session is validated to see if it has timed out and
the user redirected back to the login page if necessary. The first processing
task is to retrieve the WorkflowAssignmentMO collection saved to the session
object from within the doGet method. This collection is then iterated through
to return the Workflow Assignment Managed Objects in order to complete
them with the information gleaned from the user’s input into the todolist.jsp.
With the WorkflowAssignmentMOs retrieved from the collection, an
218 Identity Management Advanced Design for IBM Tivoli Identity Manager

ActivityResult object is instantiated with the user information from the
todolist.jsp. Once these two objects are available, then the Workflow
Assignment Managed Object is completed and the user session is redirected
back to the main servlet JSP, main.jsp.

� todolist.jsp

The todolist JSP, todolist.jsp, is called with the data generated from the
todolistServlet in order for the user to input the necessary information for
completion of their assignments. The data is passed between the servlet and
the JSP by setting variables within the session object using a tag-object tuple.
The data is set to the session object by calling the session.set(TagName,
Object) method, and the data is retrieved by using the same tag used to save
the data to the session via session.getAttribute(TagName) method.

The first retrieves the collection saved to the session from within the servlet
and then iterates through the collection and displays the assignments along
with a decision menu and reason text dialog combination. If the collection is
empty, then the user is told that they have no pending assignments.
Depending upon whether or not the user has any assignments to complete
determines the button set that is displayed. If there are tasks to be completed,
then the user is presented with both a submit (OK) button and a cancel
(Cancel) button, and if not, then simply an OK button. Once the user inputs
their decision information, they select OK and the form is submitted, or if the
user wants to come back at a later time to complete the assignments, they
select Cancel. If the user selects to submit the form, todoForm, by selecting
OK, then the control is passed back to the servlet todolistServlet.java for
processing and completion. If the user decides to cancel and to select the
Cancel button, then control is sent to the main servlet and the session is
redirected back to main.jsp.
 Chapter 6. Technical implementation phase II 219

Figure 6-1 Home task view

Account subscription
TAA has decided that for this phase of the self-care application deployment, they
simply allow request-based self-requesting of applications, which a user is
entitled to by policy. TAA is very aware of the business needs to move the onus
of every day tasks from the security team to the user to remove budgetary
overhead and lessen the task load on the security team.

TAA has modified the self-care package that ships with the Identity Manager
application to include the following capabilities:

� Add a check if Tivoli Access Manager is in use. TAA wants to have the
capability to develop and test the self-care application features without having
Access Manager installed if necessary, but to keep the Access Manager
capabilities for deployment.

� Find all the services that the current user is entitled to have by policy. Account
requests are based upon the services a user is authorized to access via
provisioning policy, hence, the user is presented with a list of services which
role memberships and policies allow them to request.
220 Identity Management Advanced Design for IBM Tivoli Identity Manager

� Display those services to which the user is entitled and enable the user to
request an account for these services.

In order for TAA to develop this functionality, the following modules were created
or modified (see Appendix D, “Additional material” on page 389 about how to
obtain the actual source code and details):

� applicationServlet.java

The applicationServlet.java servlet holds all the controlling logic for the
application subscription and modification capabilities. It is originally called
from main.jsp when the user selects the Subscribe to and maintain
applications link. See Figure 6-1 on page 220 for details.

The first time through the applicationServlet, the init method is called and
initializes all the JavaServer Pages used within the servlet from the properties
file. Once the init method completes, the doGet method is called, and the
session is validated by checking whether a new session object is created,
redirecting the user back to the login page to input their login information if
required. With the session validated, the process enters the doGet method in
the applicationServlet; here the required information for upcoming calls is
gleaned from the session, such as subject, platform, and user ID. This
information is used to obtain an instance of a Person Managed Object,
personMO.

The Person Managed Object represents the person object in Identity
Manager, providing an interface to search and modify information relating to
the person value object. The Person Managed Object (personMO) is required
to find the services to which the user has authorization to request access.
Before any more is done with the personMO, a check is done to find out
whether Tivoli Access Manager is in use. The check is a branch in the logic,
which decides how the service list is to be defined. However, in both
branches of logic, the personMO is needed to instantiate an Account
Managed Object or AccountMO.

The Account Managed Object represents an account object in Identity
Manager, providing an interface to search and modify information relating to
the account value object. If Access Manager is in use, then a call is made to
the utility class method expiUtil.lookupAccounts to instantiate the accountMO
and another call to the expiUtil.account method to instantiate an account
object. Both objects pertain to the user’s Access Manager account. The
setRequestAttributes method is used to gather those services to which the
user is authorized to request access as defined by the Identity Manager
services and Access Manager groups in the properties file. See Figure 6-2 on
page 222 below for details.
 Chapter 6. Technical implementation phase II 221

Figure 6-2 Properties file Access Manager stanzas

If Access Manager is not in use, then a call is made to the
expiUtil.lookupAuthAccounts to obtain a collection of Service Managed
Objects, serviceMO.

The Service Managed Object represents a service object in Identity Manager,
providing an interface to search and modify information relating to the service
value object. The expiUtil.lookupAuthAccounts method instantiates an
AccountManager object with the user and platform as arguments and is used
to return the authorized services for the user from a call to its
getAuthorizedServices object method using the personMO and locale as
arguments. In both cases, that of Access Manager in use or not, the collection
containing the user’s authorized services is saved to the request object via
the request.setAttribute(TagName, Object) method using the same tag-object
combination as discussed earlier with the session set method. Just as with
the session object methods, the request object methods give the capability to
get the saved object back by calling the request.getAttribute(TagName)
method.

Note that the object is saved as an Object class type and, therefore, must be
cast back to the original data structure type. This, as with the session
222 Identity Management Advanced Design for IBM Tivoli Identity Manager

example above, gives the capability to pass data back and forth from the
JavaServer Page used to display the information and grab the user’s input.

At this point, the session is ready to be redirected to the applications.jsp for
the user’s input, which is accomplished with a call to the request objects
sendRedirect method using the name of the page to be redirected to as an
argument.

Once the users have finished with their input, the session is passed back to
the controlling servlet from the JavaServer Page and enters the doPost
method of the application servlet. Again, since the session is stateless, it must
be validated. Here TAA uses a different method of redirection to the login
page if the session is found to be invalid. TAA makes a check to see if single
sign-on is in use to find out how to redirect the user back to the login page.
With the session validated, the form returned from the applications.jsp is
checked to see if the user actually input any information or not. In the case of
the latter, the session is redirected back to the main.jsp for the user to decide
what to do next.

If the user did indeed input data, then several pieces of information are
gathered for upcoming calls, such as the subject, platform, and personMO. At
this point, a check is done to see whether Access Manager is in use or not in
order to decide how to continue processing the information gathered to this
point.

If Access Manager is in use, then a call is made to obtain the parameters set
during the user interaction with the applications.jsp. This is done by calling
the request.getParameterNames, which returns the names of the variables
used in the applications.jsp in the form of an enumeration. Now the
accountMO and account value object are retrieved from the session object.
Using the account value object, the attribute values are pulled off the object
with the account.getAttributes method. These attribute values are used to call
the utility object class method getTamGroups to obtain a list of Access
Manager groups that are currently defined for the user’s Access Manager
account. Then, a list of the possible Access Manager groups are gathered
from the properties file with a method call to getDefinedGroups.
With the two lists, a single list is created of only those groups, which are to be
added to the user. This is done by adding those that do not currently exist in
the user’s group definition and removing the groups from the list that were not
selected to be added. Once the list is complete, the account value object can
be updated with a call to the utility object’s updateAccount method, supplying
the account value object and the Account Managed Object as parameters.

In the case where Access Manager is not in use, a different thread is taken
through the processing. In order to provision an account on a service without
using Access Manager, there are a number of things that are required. An
Account Manager Object, AccountManager, is required to actually create the
 Chapter 6. Technical implementation phase II 223

account creation request. Then a Person Managed Object, a Service
Managed Object, an account value object, and finally a schedule date are all
required in order to submit an account creation request.

As in the case where Access Manager is in use, the parameter names are
gathered with a call to the request object’s getParameterNames method. Next
the collection of Service Managed Objects, which the user is authorized to
request and have access to is gathered with a call to the lookupAuthAccounts
method on the utility object. You can see here that TAA could have optimized
processing by saving this collection value when it was processed during the
doGet method call.

Now, with the list of service names that the user has selected from the
applications.jsp and the list of Service Managed Objects the user is
authorized to have access to, the Service Managed Objects needed to
provision an account are selected by matching the service names. Once the
Service Managed Objects are collected, the AccountManager object is
instantiated.

With the Person Managed Object already gathered, the account value object
needs to be created next. In order to create an account object, the correct
account profile name is required as input to the instantiation call. However,
this cannot be obtained from a remote system to the Identity Manager data
store and therefore must be maintained in the properties file. The properties
file contains a service-account profile mapping that will return the name of the
account profile if given the service profile name, which can be obtained
dynamically. This is done with a call to the service value object’s
getProfileName method. Once the service profile name is obtained, the
account profile name can be retrieved with a getProperty method call from
the utility object using the service profile name prepended with “profile” as the
key. The key is created by concatenating profile. and the service profile
name. See Figure 6-3 below for details.

Figure 6-3 Properties file Account Profile stanza

Now that the account profile name is available, the account value object can
be created. With this last piece, the account creation request can be
submitted by calling the createAccount method on the AccountManager
object with the PersonMO, ServiceMO, Account, and date arguments. Once
224 Identity Management Advanced Design for IBM Tivoli Identity Manager

the account create request is submitted, the return value is captured and the
session is redirected to the application-submitted JavaServer Page,
application_sub.jsp.

� applications.jsp

The applications JSP, applications.jsp, is called with the data generated from
the applicationServlet in order for the user to select the applications to which
they want access. The data is passed between the servlet and the JSP by
setting variables within the request object using a tag-object tuple. The data is
set to the request object by calling the request.setAttribute(TagName, Object)
method, and the data is retrieved by using the same tag used to save the data
to the request object via request.getAttribute(TagName) method.

The applications JSP, much like the applicationServlet, has two logic threads.
Here TAA left the sample code in place for the case where Access Manager
was available, therefore, not having to write it themselves, and then added
the thread for the case where Access Manager was not available. For the
case where Access Manager is not in use, the collection of authorized
Service Managed Objects is retrieved from the request object using the tag
name that it was stored with. Then the collection is iterated through and the
necessary attributes displayed in order for the user to select the services
which they want to request. For the case where Access Manager is in use,
the applications available to the user are gathered from the properties file and
displayed for the user to select those which they want to request.

Upon finishing choosing the application selection, the user then selects OK
and control is redirected along with the form to the applicationServlet to
process the request.

� applications_sub.jsp

When the final processing of the application request is completed by the
applicationServlet, control is passed to the applications submitted page to
display the result codes and status of the request. The result value is saved to
and retrieved from the session object using the method previously described.
The result code is then matched and its corresponding message is displayed
to the user. From here, control is passed back to the mainServlet and JSP
when the user selects OK.

� web.xml

This is the Web application deployment descriptor that contains all the access
control information for the Web application. The deployment descriptor,
shown in Figure 6-4 on page 226, needs to be updated with the servlets and
JSPs that have been created so that access is correctly granted.
 Chapter 6. Technical implementation phase II 225

Figure 6-4 Self-care deployment descriptor

� itim_expi.properties

This is the properties file that controls the self-care application properties. The
properties file contains JavaServer Page mappings that need to be updated
with the new pages that have been added, and, in the case of a Tivoli Access
Manager environment such as that of TAA’s production environment, the
Access Manager groups and applications also need to be updated.
Furthermore, account profiles need to be kept up to date by adding the
corresponding service profile → account profile mapping when a new service
is added to the portfolio of service offerings. See the itim_expi.properties file
below in Figure 6-5 on page 227.
226 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-5 Self-care properties file update

Self-care user interface
TAA wants the user interface to look like its current Web site’s user interface;
therefore, the user interface of the self-care application that was used as a
starting point needs to be modified according to the requirements of TAA. This is
accomplished by modifying the header and footer html files that are provided as
well as modifying the accompanying JavaServer Pages. See Figure 6-6 on
page 228 below for more information.
 Chapter 6. Technical implementation phase II 227

Figure 6-6 TAA self-care sign-on

Access Control Item (ACI)
In order for the TAA employees and business partners to take advantage of the
application subscription capabilities of the self-care application, ACIs have to be
created to allow it. Specifically, an organizational ACI for accounts needs to be
created, with Object Type erAccountItem, granting Search, Modify, and Add
operations. Attribute permissions set to grant read and write on password, and
simply read for owner, password last change date, service, user id, and others.

Since all employees will have an Identity Manager account, no ACI needs to be
created allowing the Identity Manager account to be seen or requested. See
Figure 6-7 on page 229 for details.
228 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-7 Self-care ACI Setup for principal Self

Deployment
Before the self-care application can be deployed, it must be fully tested
according to TAA’s User Acceptance Test criteria, or UAT. Along with UAT
criteria, there are documentation and training required by TAA prior to the
application deployment. Since the self-care application is fairly trivial as far as
user complexity, TAA has decided that there is not a requirement for classroom
training, but, instead, there will be an online tutorial for users in order to gain
required knowledge, along with the standard online help.
 Chapter 6. Technical implementation phase II 229

Steps toward deployment include the following:

� Install self-care Web archive file onto extranet application server.

� Configure Tivoli Access Manager single sign-on for new application.

� Configure self-care application.

� Phased deployment.

The idea is to divide the deployment into small manageable groups that can
be managed more easily by a small number of people and, therefore, not
commit the entire team to the deployment. This way, standard day to day
tasks are still taken care of within TAA’s service level agreement timeline.

– Phase 1 incorporates the internal deployment team. This enables the
team to work out any big issues prior to phase 2.

– Phase 2 incorporates internal TAA employees by region.

– Phase 3 incorporates the business partners by groups.

– Phase 4 incorporates the remaining business partners not covered in
phase 3 and customers.

6.2 Delegated administration
This section discusses the requirements, design considerations, and
implementation of a delegated administration design for TAA’s identity
management environment.

6.2.1 Requirements
Currently TAA’s business partners do not have accounts; however, they require
certain resources that are located in the TAA IT infrastructure. TAA has decided
to grant business partners access rights to some of its resources and delegate
the administrative operations for people and accounts of the business partners to
save help desk costs.

6.2.2 Design considerations
Before discussing the various areas within Identity Manager where delegation of
administration might be implemented, we need to consider the delegation
approach in general.
230 Identity Management Advanced Design for IBM Tivoli Identity Manager

Delegation areas
There are various distinct areas to consider when dealing with delegation in
Identity Manager:

� People and account management: Includes actions such as account
creations, modifications, and password resets. These operations are
controlled by Access Control Items (ACIs).

� Business processes: Includes actual auditable business tasks required to
ensure the necessary business processes are put in place to assist with
meeting the audit and business compliance controls of the organization such
as relevant approval tasks and account compliance enforcement.

� Service and policy management: Includes the management of the service
definitions in Identity Manager for the managed resources and also the roles,
the management of the provisioning, identity, and password policies. These
operations are controlled by ACIs.

� Access control definition: Includes the administration of the access controls
defined by ACIs and also the management of the organization tree and
Identity Manager groups. System administrators and domain administrators
are responsible for the management of the organization tree and Identity
Manager groups. Refer to the IBM Redpaper, Organization Chart Design for
IBM Tivoli Identity Manager, REDP-3920, for more detailed information.

In TAA’s case, the responsibilities for the management of the people and
accounts belonging to the business partners are delegated to the business
partner’s own administrators. And they are also defined as the participants of the
business processes for the business partner’s accounts. The responsibilities for
the management of services, policies, and access control definitions are not
delegated to business partners.

Principals
Every ACI has a set of principals. These are the Identity Manager users who are
granted or denied some accesses by the ACI. An ACI’s principals can be defined
by one or more Identity Manager groups or by dynamically calculated
relationships. These dynamically calculated relationships are Supervisor,
Sponsor, and Domain Administrator:

� Identity Manager groups

Each ACI can be defined with multiple Identity Manager groups as its
principals statically, however, because there are no published APIs to set the
principals of ACIs, this definition needs to be done manually for each ACI.
This can cause an increase in ACI maintenance in the case where TAA has a
large number of business partners to be controlled by ACIs.

� Supervisor
 Chapter 6. Technical implementation phase II 231

Any ACI granting a right to supervisors of an organizational unit will grant that
right to all supervisors, but only within their own organizational unit and its
sub-units. This assumes that the organizational units themselves are in the
scope of the ACI. The key consideration is that only one person can be
defined as supervisor within one organizational unit. This means that the
administrative work cannot be shared between the business partner’s
multiple administrators.

� Sponsor

Basically the same as a supervisor.

� Domain administrator

As with supervisor, an ACI granting a right to domain administrators will grant
that right to all domain administrators within only their own admin domain
located under the ACI. Additionally, multiple domain administrators can be
defined within one admin domain.

The use of admin domains automatically gives the domain administrators the
full set of privileges to control within their domain, because they can define
their own ACIs within the domain. To prevent certain operations from domain
administrators, system administrators need to define additional ACIs denying
those operations on the organizational container located above the admin
domains.

With the above considerations, TAA has decided to define their ACIs using
domain administrator as the principal.

Target
ACI target is defined with a category or a profile. Practically, it is related to the
objectclass of the target entry. For example, an ACI whose target is the person
category applies to erPersonItem entities, an ACI whose target is the person
profile applies to inetOrgPerson entities, and so on. This means, an ACI applying
to a profile also applies to profiles whose objectclass is in subordination to the
one of the former. Careful consideration about this relationship should be
required when designing custom person profiles.

Participants
Delegation of business processes is based on the definition of the participants
within workflow actions, such as approvals, RFIs, workorders, and compliance
alerts. These participants should be given access rights to view the relevant data
on their To Do list. Refer to the online IBM Tivoli Identity Manager Information
Center Version 4.6, SC23-5267, for more information about workflow
participants.
232 Identity Management Advanced Design for IBM Tivoli Identity Manager

Regarding domain administrator’s participant type, the participant is the domain
administrator of the organizational container that is associated with the subject of
the workflow. If the subject is a person, service, or policy, the organizational
container is the container in which the subject resides. For an account type
subject, the service is used to determine the organizational container. Because
TAA delegates to business partners the management of their own accounts but
not of services, domain administrator is not an appropriate participant type for
workflows that have an account type subject. Instead, we create organizational
roles for each business partner’s administrators and define them as a participant
in the account management workflows by custom participant scripts.

Based on the above considerations, TAA designed their delegated
administration scenario as follows:

� Create an admin domain and organizational role in Identity Manager for each
business partner.

� Customize business processes for business partner’s accounts.

� Define ACIs granting people and account management to the administrators
of each business partner.

� Define ACIs denying other operations to the administrators of each business
partner.

6.2.3 TAA’s implementation
In this section, we document the implementation for the delegated administration
of TAA’s business partners.

Designing admin domains and domain administrators
First, let us look at the organization tree design and how to set up the business
partner administrators.

Organization tree design
TAA has a lot of business partners and each business partner should be
registered as an admin domain with delegated administrators. Based on the
region where the partner is located, TAA divided them into three groups and
placed them under the special organizational containers holding the group for
each region. The resulting organizational tree is shown in Figure 6-8 on
page 234.
 Chapter 6. Technical implementation phase II 233

Figure 6-8 Placement of the admin domains and the domain hold containers

Each domain hold container is defined as an organizational unit with its location
code. This code is used for bulk feeding of admin domains in a later
implementation step. The attributes for a domain hold container are depicted in
Figure 6-9 on page 235.
234 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-9 The attribute of a domain hold container

As shown in Figure 6-10, each admin domain has a name and its partner code.
This code is later used for the self-registration of the business partner employees
to locate them in the proper domain.

Figure 6-10 The admin domain for a business partner

Setting up business partner administrators
Each of the business partner’s administrators, who are entitled to manage their
own employees, must be a member of:

� Administrator of the own business partner domain.

For the management of people and accounts, acting as participant type within
the person subject type workflow.

� Organizational role of the own business partner administrator.

For acting as participant type within the account subject type workflow.

� Identity Manager group that can access the Identity Manager organizational
tree.
 Chapter 6. Technical implementation phase II 235

For accessing the people located in their own domain.

To automate assigning business partner administrators, TAA made some
customizations within Identity Manager. These are based on the title attribute of
the business partner people.

As for domain administrators, TAA customized the add workflow with a script
node as depicted in Figure 6-11. This script is extended by a FESI extension that
automates the add person process for the domain administrators. Refer to
Appendix D, “Additional material” on page 389, about how to obtain the source
code.

In Example 6-1, the actual line which needs to be placed in the
<ITIM_HOME>/data/fesiextensions.properties file is given.

Example 6-1 fesiextensions.properties

fesi.extension.Workflow.AdminDomainModel=com.ibm.itim.custom.fesiextensions.Adm
inDomainModelExtension

Figure 6-11 Operation workflow for adding a business partner employee

The properties of the script node, including the required JavaScript, are shown in
Figure 6-12 on page 237.
236 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-12 JavaScript for adding a domain administrator

TAA created an organizational role on each of the business partner domains.
These organizational roles dynamically evaluate the administrative members
from the domain with title attribute filter. The definition of the organizational role
is depicted in Figure 6-13 on page 238.
 Chapter 6. Technical implementation phase II 237

Figure 6-13 Domain specific organizational role

In order to control access to the organizational tree, TAA defined an Identity
Manager group, shown in Figure 6-14, on the top container of the organization to
enable its members to access the tree.

Figure 6-14 Identity Manager group for organizational tree access

To automate the group member assignment, TAA created an organizational role
that is common for all domain administrators and a provisioning policy assigning
the Identity Manager accounts owned by domain administrators to the group. The
common organizational role has a filter using the title attribute as seen in
Figure 6-15 on page 239. Figure 6-16 on page 239 shows the provisioning policy
mapping for the common organizational role to the tree access group.
238 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-15 Common domain administrator role for organizational tree access

Figure 6-16 Provisioning policy mapping the common organizational role to the tree
access group: Membership tab

Figure 6-17 on page 240 shows the entitlement information for this provisioning
policy and Figure 6-18 on page 240 shows the provisioning parameter dialog.
 Chapter 6. Technical implementation phase II 239

Figure 6-17 Provisioning policy mapping the common organizational role to the tree
access group: Entitlements tab

Figure 6-18 Provisioning policy mapping the common organizational role to the tree
access group: Provisioning parameters

Bulk feed admin domains and organizational roles
TAA has a lot of business partners to register. To save the cost of registering
them, TAA has created a tool that imports the business partner list and creates
admin domains and organizational roles for each business partner. This tool
uses the dataservices API of Identity Manager; it is called
BulkFeedAdminDomain.sh.

The input list file consists of multiple records and each record contains three
items for the business partner company:

1. The location code of the organizational container that holds the business
partner’s admin domain. As described in “Organization tree design” on
page 233, this is based on the region of the business partner company.
240 Identity Management Advanced Design for IBM Tivoli Identity Manager

2. The business partner company name.

3. The business partner code. This is used for the self-registration of business
partner employees.

The input file content is displayed in Example 6-2.

Example 6-2 Business partners list file

1000|Austin Central Hotel|1001
1000|Cameron Transportation Services|1002
1000|Metric Rent-A-Car|1003
1000|St Louis Tourism|1004
1000|Tivoli Austin Travel Agency|1005
2000|Gracy Bus Tour|2001
2000|Hotel New York|2002
3000|Seattle Airport Service|3001

Refer to Appendix D, “Additional material” on page 389, about how to obtain the
necessary files.

Example 6-3 depicts a sample execution output of the business partners bulk
feed.

Example 6-3 Execution of business partners bulk feed

[root@itimserver1 taka]# ./BulkFeedAdminDomain.sh ./BPList.txt
Created Admin Domain: Austin Central Hotel
Created Organizational Role: Austin Central Hotel
Created Admin Domain: Cameron Transportation Services
Created Organizational Role: Cameron Transportation Services
Created Admin Domain: Metric Rent-A-Car
Created Organizational Role: Metric Rent-A-Car
Created Admin Domain: St Louis Tourism
Created Organizational Role: St Louis Tourism
Created Admin Domain: Tivoli Austin Travel Agency
Created Organizational Role: Tivoli Austin Travel Agency
Created Admin Domain: Gracy Bus Tour
Created Organizational Role: Gracy Bus Tour
Created Admin Domain: Hotel New York
Created Organizational Role: Hotel New York
Created Admin Domain: Seattle Airport Service
Created Organizational Role: Seattle Airport Service

------COMPLETED SUCCESSFULLY---------

Companies imported: 8
Total time(sec): 24
[root@itimserver1 taka]#
 Chapter 6. Technical implementation phase II 241

Customize business processes
TAA decided to delegate two responsibilities for its business processes. These
are:

� Approval Participant for self-registration of business partner employees.
� Approval Participant for recertification of the business partner accounts.

Self-registration
TAA decided to delegate the responsibility for approval for self-registration of
business partner employees to each domain administrator. The customized
selfRegister workflow is shown in Figure 6-19.

Figure 6-19 Operation workflow for business partners selfRegister

The DomainSEARCH script node, with the script displayed in Figure 6-20 on
page 243, determines the business partner company domain of the new
employee. It is based on the location attribute of the employee and business
partner code described in the organizational tree design.
242 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-20 JavaScript for resolving the business partner domain

Within the configuration of the BPDomainApproval node, shown in Figure 6-21
on page 244, the Participant is set to Domain Administrator type. Because
selfRegister is a person subject type workflow, the administrators of the domain
where the new employee attempts to register will receive an approval request.
 Chapter 6. Technical implementation phase II 243

Figure 6-21 Configuration of Approval from Domain Administrator

Recertification
Because the account recertification process should be defined as an account
subject type workflow, the approval participant is defined in the organizational
role for the business company domain resolved by a custom script. For more
details, refer to 6.5, “Recertification process” on page 290.

Define granting ACIs for domain administrators
Business partner administrators are delegated to perform people and account
management for the employees of their company within the TAA realm. TAA
defined the following three ACIs in the top container of the organizational tree to
grant the necessary operations for each domain administrator as shown in
Figure 6-22 on page 245, Figure 6-23 on page 246, and Figure 6-24 on
page 247.
244 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-22 ACI granting people management to administrators of business partners
 Chapter 6. Technical implementation phase II 245

Figure 6-23 ACI granting account management to administrators of business partners
246 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-24 ACI granting Identity Manager Account management to administrators of
business partners

Define denying ACIs for domain administrators
Policy, service, role, and container management are not allowed for business
partners. TAA created the necessary ACIs to deny these operations to business
partner domain administrators. The Provisioning Policy ACI is depicted in
Figure 6-25 on page 248. The ACI definition for service, role, and container
management has to execute accordingly.
 Chapter 6. Technical implementation phase II 247

Figure 6-25 ACI denying Provisioning Policy management to administrators of business
partners

6.3 Advanced custom report design
In this section, we discuss the requirements, design considerations, and
implementation of techniques used to extend the Identity Manager reports built-in
designer in order to mitigate error-prone administrative functions and to reduce
repetitive administrative duties. The report design techniques we show in this
section use the Identity Manager built-in report designer and editing report XML
templates in order to modify the search filter criteria and have greater flexibility to
design reports.
248 Identity Management Advanced Design for IBM Tivoli Identity Manager

6.3.1 Requirements
TAA has already addressed the basic requirements relating to the internal
control reporting for the identity lifecycle management using the standard (ready
to use) reports provided by Identity Manager.

Since some of the internal IT systems are regarded as more and more critical for
the business growth of the company, the CIO requires detailed information about
all account information (account status, account compliance, and so on) for each
regional center.

TAA wants to implement one particular report for each regional center that
discloses the non-compliant and disallowed accounts.

To ease the administrative reporting tasks, one of the goals is to have all the
information predefined and ready to use for authorized Identity Manager
administrators. The administrators only need to run the particular custom report
without the need to specify any additional criteria.

Because of cost constraints, TAA does not want to buy new software licenses for
an external reporting tool. TAA can accomplish this goal by using the Identity
Manager built-in report designer and the customization of the search filter
custom report template.

For a complete list of the Identity Manager standard reports, refer to the chapter
titled “Reporting identity management data” in the IBM Tivoli Identity Manager
Information Center Version 4.6, SC23-5267.

6.3.2 Design considerations
The design and implementation of a customized report template for the internal
control of identity management data can be approached using the built-in Identity
Manager report designer or using an external third-party reporting application,
such as Crystal Reports. The decision to use the built-in functions is principally
driven by the business requirement for cost reduction.

Note: To design report templates using the Crystal Reports designer tool is
beyond the scope of this section. Refer to the chapter titled “Using Crystal
Reports with IBM Tivoli Identity Manager” in the online IBM Tivoli Identity
Manager Information Center Version 4.6, SC23-5267, for detailed information
about Crystal Reports template creation and integration with Tivoli Identity
Manager.
 Chapter 6. Technical implementation phase II 249

Before discussing how custom reporting can be implemented with the built-in
report designer and XML editing for the search filter, we need to consider the
overall report design approach using an identity management solution:

� What are the operational target systems for the custom reports (IT critical
systems, individuals, audit operations, audit information, and so on) that are
not covered by standard Identity Manager reporting?

� What personal, service, or account attributes have to be staged for the
custom reports, and what should the prefilled (fixed) values that are defined
for the ready to use report generation be?

� What is the average number of rows that each report will show? And what is
the primary choice for the report format, for example, PDF (portable
document format) or CSV (comma-separated value text file, sometimes
called comma-delimited files)?

In the following sections, we discuss these issues in detail.

Operational targets for custom reporting
The starting point for the implementation of custom reports for the IT
environment is the analysis and definition of the critical IT systems that require
continuous and more accurate internal control. We want to avoid generating too
many reports or reports on non-critical targets and situations. Providing too many
predefined reports could actually inhibit the achievement of a business goal. The
best practice is to implement the report customization using a staged approach.

Mapping attributes and search criteria definition
Map only the entities and attributes for which you want to generate a custom
report. These mappings directly impact the performance of IBM Tivoli Identity
Manager, because all of the data from the directory server is copied to the
database each time a data synchronization is performed.

In the search filter criteria definition, you can present a lot of multiple choice lists
and open fields that can make the report template more flexible, but this could be
a very time-consuming task for an administrator who has to run this report a lot of
times with the same choice values. A prefilled value for the search can help to
consistently reduce execution time for weekly or daily reports.

Custom report format
A data analysis should be performed to verify the average number of records
included when a particular report is executed. The result can guide your choice
of the custom report format. By default, a PDF report can contain up to 5000
records. You can change this value by using the
enrole.ui.report.maxRecordsInReport property in the UI.properties file. You do
not have to restart the server for the changes to take effect. Changes take place
250 Identity Management Advanced Design for IBM Tivoli Identity Manager

within 30 seconds. This change can have an impact on execution performance
and should be carefully evaluated in a test environment.

6.3.3 TAA’s implementation
TAA wants to implement three custom reports in this phase, one for each
regional center, that show the account and compliance status of all the
employees that work in the regional center. The reports only have to show the
non-compliant and disallowed accounts and have to be ready for use by the
authorized administrators. The administrators should be able to execute the
reports without having to provide further input, only selecting the format of either
CSV or PDF.

The implementation of a custom report template involves the execution of the
following steps:

� Map the entities and attributes that can be included in the report.
� Stage the reporting tables used to generate the report.
� Create the report templates that determine the content of the custom report.
� Create the advanced search filter criteria for the custom report.

Optional: If Incremental Data Synchronizer is configured within your
environment, run the Incremental Data Synchronizer to update any changes to
the report data and access control item. If the Incremental Data Synchronizer is
not configured, you must select Synchronize Data to perform this step.

Note: To design more sophisticated report templates with sophisticated
search filter criteria, we can use the Crystal Reports Designer and then import
the templates into the IBM Tivoli Identity Manager console. Refer to the
chapter “Using Crystal Reports with IBM Tivoli Identity Manager” in the online
IBM Tivoli Identity Manager Information Center Version 4.6, SC23-5267.
 Chapter 6. Technical implementation phase II 251

The following section discusses the implementation of the three custom reports
described in Table 6-2.

Table 6-2 Custom reports overview description

Before we start with the custom report implementation steps, it is necessary to
recall the TAA organization tree and TAA entities structure involved in this report
customization.

TAA uses a location-based model for their organization tree. The resulting TAA
organization tree is shown in Figure 6-26 on page 253.

Title Columns Description

Account report for Central
Region

� Employee full name
� Employee number
� Organizational unit
� Account user ID
� Account compliance
� Service name

This report shows all
non-compliant or
disallowed accounts for
employees in the Central
Region.

Account Report for East
Region

� Employee full name
� Employee number
� Organizational unit
� Account user ID
� Account compliance
� Service name

This report shows all
non-compliant or
disallowed accounts for
employees in the Central
Region.

Account Report for West
Region

� Employee full name
� Employee number
� Organizational unit
� Account user ID
� Account compliance
� Service name

This report shows all
non-compliant or
disallowed accounts for
employees in the Central
Region.
252 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-26 TAA organization tree

People in TAA are placed in the tree based on their relevant location. For
example, a person located in the Denver CSC is placed in the Denver CSC
organizational unit. People, who are not part of the CSC, are placed into their
region’s organizational unit. This includes regional administrators. For example,
administrators for the central region are placed in the Central Region
organizational unit.

Identity Manager’s person objects are based on the LDAPv3 standard
inetOrgPerson object class. This object class does not provide an attribute
appropriate for storing the employee status (active, leave of absence, or inactive)
and the regional center in which the employee works (Central Region, East
Region, or West Region), so TAA has to define their own custom person type
with two new attributes that can hold this data.

The new object class’ name is taaEmployee. It uses inetOrgPerson as its
superior class. It adds taaEmployeeStatus and taaEmployeeRegionLoc as
allowed attributes. The new attributes created on the taaEmployee object are:

taaEmployeeStatus This attribute is not indexed; it does not allow
multiple values. It stores case-insensitive strings.

taaEmployeeRegionLoc This attribute is not indexed; it does not allow
multiple values. It stores case-insensitive strings.

The taaEmployeeRegionLoc attribute will be used for the custom report search
filter definition.
 Chapter 6. Technical implementation phase II 253

Refer to Chapter 9, “Technical implementation: Phase I”, in the Identity
Management Design Guide with IBM Tivoli Identity Manager, SG24-6996, for
more details about Identity Manager’s custom person object implementation.

Map the entities and attributes
The type of data that can be included in a custom report is determined by the
report schema. To create the custom report schema, you must create an
attribute mapping that specifies the entities and entity attributes that can be
included in a report. The Employee entity is not a default Identity Manager entity,
so its attributes are not available by default for custom reports.

To map the Employee’s attributes needed for the custom report design, complete
the following steps:

1. In the Main Navigation Bar, click Report.

2. Click Design Schema in the task bar.

3. In the Schema Designer page, select an Employee entity from the list of
objects.

Both Mapped and Unmapped attributes for the entity selected are displayed
in lists labeled Mapped Attributes and Unmapped Attributes, respectively.

4. Select Employee Number on the Unmapped Attributes list and click the >
(Map) button.

5. Repeat step 4 for Employee First Name, Employee Last Name, Employee
Region Location, and Organizational Unit Name. Figure 6-27 on page 255
shows the attributes mapped for the Employee entity.

6. Click Submit.

Note: Before we begin with the custom report implementation, we have to
ensure that the availableForNonAdministrators property in the
adhocreporting.properties file is set to true. This property enables the names
of custom reports to be displayed in the Target list of reports when you create
an ACI definition.
254 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-27 Employee entity attribute mapping

Staging data for custom reports
Generally, you do not need to perform a data synchronization task when you
modify a report. However, in this implementation, since Employee data has been
mapped to be used in the custom report, you must perform a data
synchronization for the changes to take effect. The entities and attributes that
you mapped using the Design Schema task are made available for the Design
Report task only after a data synchronization task is completed.

Creating custom report template
All reports implemented in this section are generated using report templates. A
report template defines the layout of a report and the filter criteria that determines
the contents of the report. When you select a report to run in the console, you
select the report template used to generate the report.

In the report layout details you specify the report name, sort ordering, and page
numbering as well as the entities and attributes that you want to include in the
report. The entities that you select are listed as table names in the Table field of
the report. The attributes that you select are listed as table columns in the

Note: The Ad hoc reporting functionality is not available during
Synchronization. The design report and run report functions will be available
when the Synchronization process has completed.
 Chapter 6. Technical implementation phase II 255

Column field of the report. A sample of a report layout design used for the
standard report “Individual Accounts” is shown in Figure 6-28.

Figure 6-28 Individual accounts layout report designer view

The report filters that you specify determine the contents of the report. A sample
of a report filter design used for the standard report “Individual Accounts” is
shown in Figure 6-29 on page 257.
256 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-29 Individual accounts filter report designer view

To create the custom “Account Report for Central Region” template, complete
the following steps:

1. In the Main Navigation Bar, click Report.

2. Click Design Report in the task bar.

3. In the Report List page, click Add.

4. Enter Account Report for Central Region in the Report Title field.

5. From the Table drop-down list, select Employee.

6. From the Column drop-down list, select Full Name.

7. Click Add. Your window should look like Figure 6-30 on page 258.
 Chapter 6. Technical implementation phase II 257

Figure 6-30 Account report for Central Region designer view

8. Repeat steps 5 through 7 to add the other columns listed in Table 6-3.

Table 6-3 Attributes displayed in Account Report for Central Report

At the end of the columns report template design, your window should like
Figure 6-31 on page 259.

Table name Column name

Employee Full Name

Employee Employee Number

Organizational Container Name

Account User Id

Account Account Compliance

Service Name
258 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-31 Account report for Central Region columns design view

9. Click Continue.

10.From the first Entity/User Input drop-down list, select Employee.

11.From the second Function/Operator box, select Like.

12.From the second Entity/User Input box, select _USERINPUT_.

13.From the condition box, select AND.

14.Click Add. Your window should look like Figure 6-32 on page 260.
 Chapter 6. Technical implementation phase II 259

Figure 6-32 Account report for Central Region search filter design view

15.Repeat steps 10 through 14 to add the other search filter criteria listed in
Table 6-4.

16.Click Submit.

Table 6-4 Search filter criteria defined for Account Report for Central Region

At the end of the search filter design, your window should like Figure 6-33 on
page 261.

Entity.Column Operator Entity.Column

Employee.Employee
Region Location

Like ‘_USERINPUT_’

Account.Owner Equals Employee.DN

Account.Service Equals Service.DN

Account.Parent DN Equals Organizational
Container.DN

Account.Account
Compliance

Greater Than ‘_USERINPUT_’
260 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-33 Account report for Central Region search filter

For detailed information about Tivoli Identity Manager database tables reference,
refer to IBM Tivoli Identity Manager Database and Schema Reference Version
4.6, SC32-1769.

Create the advanced search filter criteria
To implement a ready to use report for each regional center that only shows
non-compliant and disallowed accounts, you need to modify the report search
filter criteria with predefined user input values.

To do this, you must edit the XML template of the custom report. This section
discusses how to export, modify the XML report template, and import Identity
Manager database information using the DB2 command line.

To modify the custom search filter for the “Account report for Central Region”
template, complete the following steps:

1. Connect to the Identity Manager database using the command:

db2 connect to ITIMDB user enrole using <password>

ITIMDB specifies the name of the Identity Manager database and
<password> is the enrole user password.
 Chapter 6. Technical implementation phase II 261

2. Display the template report list using the command:

db2 select ID , TITLE from enrole.REPORT

Where REPORT is the table that stores details of the reports designed and
generated by Tivoli Identity Manager users, and ID and TITLE are the table
columns needed to identify the report template “Account Report for Central
Region”.

Let us take a look at the output:

D TITLE
----------- ----------------------------------
 1 individualAccounts
 2 individualAccountsByRole
 3 accountsOnService
 4 policiesGoverningRole
 5 servicesGrantedToIndividual
 6 accountOperations
 7 accountOperationsPerformedByIndividual
 8 approvalAndRejections
 9 pendingApprovals
 10 suspendedAccounts
 11 suspendedIndividuals
 12 services
 13 policies
 15 operationReport
 16 rejectedReport
 17 userReport
 18 accountReport
 19 dormantAccounts
 22 nonCompliantAccounts
 14 accessControlInformation
 20 reconciliationStatistics
 21 auditEvents
 51 Account Report for Central Region
262 Identity Management Advanced Design for IBM Tivoli Identity Manager

The schema of the table REPORT on the Identity Manager database is
shown on Table 6-5.

Table 6-5 Report table

The “Account Report for Central Region” has a report ID of 51.

3. Switch to the directory where you want to export the report template, in the
example, /tmp/reports.

Export the report template using the following command where
/tmp/reports/report.del is the output file for the result query and /tmp/reports/
is the path for the report template (binary large object type - BLOB):

db2 export to /tmp/reports/report.del of del lobs to /tmp/reports/ modified
by lobsinfile select * from REPORT where ID=51

The output of the DB2 export command is below:

db2 export to /tmp/reports/report.del of del lobs to /tmp/reports/
modified by lobsinfile select * from REPORT where id=51
SQL3104N The Export utility is beginning to export data to file
"/tmp/reports/report.del".

Column name Description Data type

ID Unique ID for the table. int

TITLE Report type given to the report. varchar

TYPE Indicates whether the report was designed
using Tivoli Identity Manager or Crystal
Reports.

varchar

AUTHOR Author of the report (designer). varchar

REPORT_SIZE The size of the report template stored in
the REPORT_DATA column of this table.

int

REPOR_ DATA The report template is stored here. binary large
object

STYLESHEET Name of the style sheet to use for
displaying the report.

varchar

REPORTSUBTYPE Identifies if this report is a user-defined
report or an out-of-box report.

varchar

REPORTCATEGORY Identifies which category the run should be
listed under on the Run Reports page.

varchar

EDITABLE Indicates if this report can be edited or not.
The value is N for reconciliation statistics
and access control information reports.

char
 Chapter 6. Technical implementation phase II 263

SQL3100W Column number "2" (identified as "TITLE") in the output DEL
format file is longer than 254 bytes.

SQL3100W Column number "3" (identified as "TYPE") in the output DEL format
file is longer than 254 bytes.

SQL3100W Column number "4" (identified as "AUTHOR") in the output DEL
format file is longer than 254 bytes.

SQL3100W Column number "7" (identified as "STYLESHEET_NAME") in the output
DEL format file is longer than 254 bytes.

SQL3100W Column number "9" (identified as "REPORTCATEGORY") in the output
DEL format file is longer than 254 bytes.

SQL3100W Column number "10" (identified as "REPORTSUBTYPE") in the output
DEL format file is longer than 254 bytes.

SQL3105N The Export utility has finished exporting "1" rows.

Number of rows exported: 1

Two files will be created on the directory specified report.del and
db2exp.001.

For a complete reference of the DB2 export command, refer to DB2 Universal
Database™ Reference Commands in the online DB2 Information Center.

In the /tmp/reports directory, the export command has now created two files:

report.del Result query of the db2 export command

db2exp.001 Report template

The report.del file contains a reference to the binary large object file (BLOB)
and its file size (see Example 6-4).

Example 6-4 Content of the report.del file

51,"Account Report for Central Region","Designer","itim
manager",1994,"db2exp.001.0.1994/","standard","Y","customReports","custom"

The report template is stored in the db2exp.001 file (see Example 6-5).

Example 6-5 Report template in XML format

<?xml version="1.0" encoding="UTF-8"?>
<AdHocReport Version="1.1">

<Created>
<Time>2006-03-07 02:21:04.494</Time>
<TimeZone>GMT</TimeZone>
264 Identity Management Advanced Design for IBM Tivoli Identity Manager

<Name>itim manager</Name>
</Created>
<LastUpdate>

<Time>2006-03-07 02:21:04.494</Time>
<TimeZone>GMT</TimeZone>
<Name>itim manager</Name>

</LastUpdate>
<Style>standard</Style>
<ReportHeader>

<Title>dummy</Title>
</ReportHeader>
<Page Lines="45">

<PageHeader>
<TimeStamp TimeZone="GMT" show="YES"/>
<User show="YES"/>
<Logo show="YES"/>

</PageHeader>
<Body>

<Query>
<Columns>

<Column Width="5" id="1">
<Header>Employee.cn</Header>
<Source>Employee.cn</Source>
<Sort Order="1" Type="ASC"/>

</Column>
<Column Width="5" id="2">

<Header>Employee.employeenumber</Header>
<Source>Employee.employeenumber</Source>
<Sort Order="2" Type="ASC"/>

</Column>
<Column Width="5" id="3">

<Header>OrganizationalContainer.name</Header>
<Source>OrganizationalContainer.name</Source>
<Sort Order="3" Type="ASC"/>

</Column>
<Column Width="5" id="4">

<Header>Account.eruid</Header>
<Source>Account.eruid</Source>
<Sort Order="4" Type="ASC"/>

</Column>
<Column Width="5" id="5">

<Header>Account.eraccountcompliance</Header>
<Source>Account.eraccountcompliance</Source>
<Sort Order="5" Type="ASC"/>

</Column>
<Column Width="5" id="6">

<Header>Service.erservicename</Header>
<Source>Service.erservicename</Source>
<Sort Order="6" Type="ASC"/>
 Chapter 6. Technical implementation phase II 265

</Column>
</Columns>
<Tables>

<Table>Service</Table>
<Table>Account</Table>
<Table>OrganizationalContainer</Table>
<Table>Employee</Table>

</Tables>
<Filter>

<![CDATA[Employee.taaemployeeregionloc like '_USERINPUT_'
AND Account.owner = Employee.DN AND Account.erservice = Service.DN AND
Account.erparent = OrganizationalContainer.DN AND
Account.eraccountcompliance > '_USERINPUT_']]>

</Filter>
</Query>

</Body>
<PageFooter>

<PageNumber Format="1OfN" show="YES"/>
</PageFooter>

</Page>
</AdHocReport>

In the body of the report XML, we focus on the following tags:

Columns List of the columns shown on the report.

Tables List of the Identity Manager database table in which
the selected columns are located.

Filter Search filter criteria used on the template report.

4. Edit the search filter criteria modifying the _USERINPUT_ values with the
following:

Employee.taaemployeeregionloc like 'Central Region'
Account.eraccountcompliance > '1'

The Account.eraccountcompliance uses one of the following values:

0 = unknown
1 = Compliant
2 = Disallowed
3 = Non-compliant

By defining a search filter criteria with Account.eraccountcompliance greater
than 1, we are selecting only the Disallowed and non-compliant accounts.

Let us take a look at the details after updating the search filter criteria:

<![CDATA[Employee.taaemployeeregionloc like 'Central Region' AND
Account.owner = Employee.DN AND Account.erservice = Service.DN AND
Account.erparent = OrganizationalContainer.DN AND
Account.eraccountcompliance > '1']]>
266 Identity Management Advanced Design for IBM Tivoli Identity Manager

5. Update the new file size information in the report.del file.

You have to update not only the REPORT_SIZE value but also the BLOB
information reference “db2exp.001.0.1994/” shown in Example 6-4 on
page 264.

In our implementation, the db2exp.001 file size after the search filter update is
1986 bytes, so the report.del has to be updated as shown in Example 6-6.

Example 6-6 Report.del file after the search filter update

51,"Account Report for Central Region","Designer","itim
manager",1986,"db2exp.001.0.1986/","standard","Y","customReports","custom"

6. Import the report template using the following command:

db2 import from /tmp/reports/report.del of del lobs from /tmp/reports/
modified by lobsinfile insert_update into REPORT

Where /tmp/reports/report.del is the output file for the result query updated
with the new report file size and /tmp/reports/ is the path for the report
template with the search filter modified.

The output of the db2 export command is shown below:

db2 import from /tmp/reports/report.del of del lobs from /tmp/reports/
modified by lobsinfile insert_update into enrole.report
SQL3109N The utility is beginning to load data from file
"/tmp/reports/report.del".

SQL3110N The utility has completed processing. "1" rows were read from
the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "1".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "1" rows were processed from the input file. "0" rows were
successfully inserted into the table. "0" rows were rejected.

Number of rows read = 1
Number of rows skipped = 0
Number of rows inserted = 0
Number of rows updated = 1
Number of rows rejected = 0
Number of rows committed = 1

The report template “Account Report for Central Region” has been updated
and you can see it on the Identity Manager built-in designer.

7. In the Main Navigation Bar, click Report.

8. Click Design Report in the task bar.
 Chapter 6. Technical implementation phase II 267

9. Click Account Report for Central Region.

10.Click Continue and verify the new search filter as shown in Figure 6-34.

Figure 6-34 Search filter designer view

11.Click Cancel to exit without saving any changes.

The “Account Report for Central Region” is now ready for all authorized
administrators, and it can be tested.

12.In the Main Navigation Bar, click Report.

13.Click Run Report in the task bar.

14.Select Custom Reports.

15.Select Account Report for Central Region report.

16.Select Report Format, for instance, PDF, and click Submit. The report result
is shown in Figure 6-35 on page 269.
268 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-35 TAA custom report

6.4 Automated operation report delivery
This section discusses the requirements, design considerations, and
implementation of an automated operation report delivery customization for
TAA’s improved audit.

6.4.1 Requirements
TAA has recently come under increased scrutiny from its board members and
from governmental agencies as it has become more profitable. Because of this,
TAA is now forming a standing audit and compliance team which can field all
requests from shareholders, board members, and auditors alike. With this action,
TAA realizes that it must change how it currently reports and tracks information
to make the team’s mission successful.

TAA uses Identity Manager to create and maintain their accounts. Their Identity
Manager administrators have performed these operations. And in our plan, these
 Chapter 6. Technical implementation phase II 269

tasks will also be performed by the delegated administrators to maintain
business partner’s accounts in the future. Currently, TAA uses Identity Manager
predefined reporting functions to audit these administrative operations as you
see in Table 6-6.

Table 6-6 Reports for monitoring account creation and password change activities

After reviewing the reporting functions, TAA found a few issues for their audit
team:

� The reporting functions predefined in Identity Manager provide no ability to
send the reports to members of the audit team automatically. Audit team
members need to access Identity Manager periodically to generate the report
of the administrative operations in the time period.

� The audit team members have to log in to Identity Manager as Identity
Manager administrators in order to be granted privileged access rights to
execute the reports. But, as administrators, they have all other Identity
Manager privileges as well, which poses a security liability.

Because of these restrictions, TAA has decided to implement a new reporting
function to audit administrative operations. The new reporting function has to
meet the following requirements:

� The new reporting function should gather information about all administrative
operations requested on Identity Manager at fixed intervals.

� The new reporting function should generate a report from the gathered
information and send it to TAA’s audit team automatically.

� The audit team members need no additional access rights on Identity
Manager to review the reports received from the new reporting function.

6.4.2 Design considerations
Audit records detailing all Identity Manager operations are stored within the
relational database. For further details, refer to the IBM Tivoli Identity Manager
Database and Schema Reference Version 4.6, SC32-1769. To gather
information about administrative operations, we use an SQL statement that
queries the audit records in the database.

Purpose Predefined Identity Manager reports

Identify password changes Account operations
Account operations performed by an individual

Identify operations performed by
an Identity Manager user

Operation report
270 Identity Management Advanced Design for IBM Tivoli Identity Manager

Lifecycle rules give Identity Manager the ability to define an event or events that
are triggered based on time intervals or immediately. The rules can also have
matching criteria evaluated against an entity or entity type, to reduce the scope
of the target entities the lifecycle rules should be performed against. Events in
lifecycle rules are constructed with a operation workflow including custom
JavaScript nodes or custom Java extension nodes to implement the business
logic. To approach this solution, we construct a new operation workflow with
custom nodes to generate a proper SQL statement and send it to the database.

A work order node in a workflow is used to send a notification to Identity
Manager users. We use it in our workflow to notify TAA’s audit team about the
result of the database query. The content of the notification is formatted using a
notification template within the work order node. The audit team members have
to be registered in Identity Manager and own their e-mail address in order to
receive the notification, but no additional access rights are required.

We also configure a post office mechanism for reducing the number of e-mail
notifications the audit team receives. It can be configured to collect similar
notifications for a period of time and combine multiple e-mails into one
notification that is then sent to a user. You can optionally enable or disable this
function in Identity Manager via the Web interface.

6.4.3 TAA’s implementation
This section describes how to create the automated periodical operation report to
meet TAA’s audit requirements. The following sections describe:

� The workflow extension for sending a query to a database and receiving the
results

� The operation workflow for generating a proper SQL statement and gathering
information about operations done in Identity Manager

� The work order node for sending the operation report to the audit team
members

� The lifecycle rule scheduling the report based on time intervals

� The post office configuration for aggregating the e-mails of the operation
report

Workflow extension for database query
To access and query the database used by Identity Manager we have
implemented two Java classes and both of them are packaged in
com/ibm/itim/custom/workflow. Refer to Appendix D, “Additional material” on
page 389 for detailed information about how to extract this code from the
deliverable.
 Chapter 6. Technical implementation phase II 271

AbstractExtension class
The AbstractExtension class defines itself as an implementation of the Identity
Manager WorkflowApplication interface. All of the other extension classes should
extend this class. The primary purpose of this class is to provide a common
interface that workflow extensions can use to report the failure of an extension
activity. In order to simplify and make the code easier to read as well as maintain,
all of the extensions have been created here where they can be accessed by all
other extensions. Each of the methods comes in two types: one method that
takes a java.lang.Throwable as an argument, and one method that does not.

DatabaseExtensions class
This class provides an extension activity: sqlSelect. It must be called with a string
that already contains the complete SQL statement and the JNDI name of a
JDBC™ data source as an input parameter. This datasource must be configured
in the application server, before you can use the extension.

The sqlSelect activity's SQL statement must be a single select. The activity
creates a List of Lists as an output parameter. Each of the inner lists contains the
data from one row of the select statement's result set. Each element of the inner
list contains the data from one column of that row. The order of the data in the
inner lists is determined by the order of the columns in the select statement. The
data is left in whatever format was returned by the JDBC driver, and varies
depending on the declared type of the column in the database. If the Java object
returned by the JDBC driver was not able to be serialized, for example, if the
column had a type of CLOB, then the value in the list will be null.

This extension reads the enRole.properties file in order to retrieve data required
to connect to the application server and requests a JDBC connection from the
data source's connection pool. It does this using the undocumented
PropertiesManager Identity Manager class.

The JDBC connection is always set to automatically commit changes after each
statement. The SQL statements are executed with a five minute timeout.

Any SQL exceptions thrown while obtaining the JDBC connection or while
executing the SQL statement cause the workflow engine to throw a Corba
transaction roll back exception. This causes the current workflow process to
hang forever while the transaction is tried repeatedly.

To use this extension in an Identity Manager workflow, you must perform the
following steps:

1. Compile the source files and create a jar archive file.

For brevity, the compiling steps are omitted. Refer to the documents located
in the <ITIM install directory>/extensions/examples directory. After
272 Identity Management Advanced Design for IBM Tivoli Identity Manager

successfully compiling the files, use the jar command to create a jar archive
file from the compiled codes. We created the custom.jar file.

2. Add the jar file to the classpath.

The custom.jar must be added to Identity Manager’s classpath. Repeat the
following steps on each server of the WebSphere cluster.

a. Make sure WebSphere server is stopped.

b. Copy custom.jar file to the
<WAS_HOME>/installedApps/<CELL_NAME>/enrole.ear folder.

c. Open the file.
<WAS_HOME>/installedApps/<CELL_NAME>/enrole.ear/app_web.war/
META-INF/MANIEST.MF with a text editor and add custom.jar to the
Class-Path list.

d. Start WebSphere server for the changes to take effect.

3. Register the extension with workflowextensions.xml.

Edit the workflowextensions.xml file in the <ITIM install directory>/data
directory to register the sqlSelect extension. Add the following XML code into
the activity list.

<ACTIVITY ACTIVITYID="sqlSelect" LIMIT="0">
<IMPLEMENTATION_TYPE>

<APPLICATION
CLASS_NAME="com.ibm.itim.custom.workflow.DatabaseExtensions"
METHOD_NAME="sqlSelect"/>

</IMPLEMENTATION_TYPE>
<PARAMETERS>

<IN_PARAMETERS PARAM_ID="dataSourceName" TYPE="String"/>
<IN_PARAMETERS PARAM_ID="sqlStatement" TYPE="String"/>
<OUT_PARAMETERS PARAM_ID="results" TYPE="List"/>

</PARAMETERS>
</ACTIVITY>

After the registration, restart the enRole application.

Operation workflow for audit report
In this step, we create an operation for the ITIMAccount profile. This operation
will be called with an ITIMAccount entity whose operations should be audited.
 Chapter 6. Technical implementation phase II 273

Figure 6-36 Operation notifyAudit

We created a notifyAudit workflow as shown in Figure 6-36.
274 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-37 Property of notifyAudit workflow

This workflow uses three relevant data entries for its database query. The
workflow Operation Type is defined as non-static. Figure 6-37 shows the
configuration dialog. You also have to specify the following details:

� dataSourceName is a string relevant data to specify the JNDI name of the
Identity Manager database. It must be defined with enroleDataSource as
default value, which is configured in the application server at the install of
Identity Manager. The configuration of the relevant data is shown in
Figure 6-38 on page 276.
 Chapter 6. Technical implementation phase II 275

Figure 6-38 dataSourceName property

� sqlStatement is another string relevant data to be set to a proper SQL
statement. It has no default value.

Figure 6-39 sqlResults property

� sqlResults is a List data to store the results of the database query. Each list
represents an operation record and contains a list of data items for the record.
Its configuration is shown in Figure 6-39.
276 Identity Management Advanced Design for IBM Tivoli Identity Manager

Workflow nodes
The notifyAudit workflow has three nodes for its operation, which is shown in
Figure 6-40.

Figure 6-40 Workflow for operation notifyAudit

The nodes are:

� setSQL script node

In this node, the workflow generates a proper SQL statement to query audit
records operated by the entity of the workflow execution.

� execSQL extension node

This node is used to send the query to the Identity Manager database with the
sqlSelect extension implemented in the previous step.

� sendEmail workorder node

This node sends the audit report to the audit team using an e-mail.

Figure 6-41 on page 278 shows the configuration of the setSQL script node.
 Chapter 6. Technical implementation phase II 277

Figure 6-41 setSQL script node

The setSQL script node generates an SQL statement and sets the sqlStatement
relevant data. For TAA’s audit requirements, we defined the following report
items:

� Process ID
� Process Type
� Submitted Date
� Requestee Name
� Result Summary

We also defined seven days as the interval of the periodical audit.
278 Identity Management Advanced Design for IBM Tivoli Identity Manager

The following script is used to generate an SQL statement to query the report
items and set it to sqlStatement relevant data within the setSQL script node.

var sqlString = "select ID, Type, Submitted, Requestee_name, Result_summary
from enrole.process ";
sqlString = sqlString + "where parent_id=0 and ";
sqlString = sqlString + "date(to_date(substr(submitted,1,19),'YYYY-MM-DD
HH24:MI:SS') + current timezone) > date(current timestamp - 8 days) and ";
sqlString = sqlString + "date(to_date(substr(submitted,1,19),'YYYY-MM-DD
HH24:MI:SS') + current timezone) < date(current timestamp) and ";
sqlString = sqlString + "requester=";
sqlString = sqlString + "'" + Entity.get().dn + "'";
sqlStatement.set(sqlString);

Refer to IBM Tivoli Identity Manager Database and Schema Reference Version
4.6, SC32-1769, for further information about the database tables.
 Chapter 6. Technical implementation phase II 279

Figure 6-42 execSQL extension node

The configuration of the execSQL extension node is shown in Figure 6-42. We
selected the Extension Name sqlSelect, which we registered before, and mapped
the relevant data to parameters of the extension.

The sendEmail work order node creates a report from the results of the database
query and sends it to audit team members. We used the HTML table option as
the report format.
280 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-43 General information within sendEmail work order node

Figure 6-43 shows the configuration of the general tab within the sendEmail work
order node. In this configuration, we specified audit team members with an
Organizational Role role_audit. Each member of the audit team must be given
the role in Identity Manager for receiving the audit report.
 Chapter 6. Technical implementation phase II 281

Figure 6-44 Notification template with sendEmail work order node

Figure 6-44 shows the notification template of the sendEmail work order node.
We used a customized template for XHTML Message Body to format the audit
report. This template is shown in Example 6-7.

Example 6-7 XHTML Message Body within sendEmail work order node

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
282 Identity Management Advanced Design for IBM Tivoli Identity Manager

<head>
 <title>$TITLE</title>
 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>
 <body bgcolor="ffffff">
<table border="1" cellspacing="0" cellpadding="1">
<caption><JS>Entity.get().getProperty("eruid")[0];</JS>'s operation</caption>
<tr>
<th><RE key="processID" /></th>
<th><RE key="processType" /></th>
<th><RE key="timeSubmitted" /></th>
<th><RE key="requestedFor" /></th>
<th><RE key="resultSummary" /></th>
</tr>
<JS>
table="";
results=sqlResults.get();
for(j=0;j<results.length-1;j++){
result=results[j];
table= table + '<tr>';

table= table + '<td>';
table= table + result[0];
table= table + '</td>';

table= table + '<td>';
table= table + '<RE><KEY>' + 'processType.' + result[1] + '</KEY></RE>';
table= table + '</td>';

subTime=result[2].substring(0,4)+result[2].substring(5,7)+result[2].substring(8
,10);
subTime=subTime+result[2].substring(11,13)+result[2].substring(14,16)+"Z";
table= table + '<td>';
table= table + '<RE><KEY>readOnlyDateFormat</KEY><PARM>'+
Enrole.toMilliseconds(subTime) + '</PARM></RE>';
table= table + '</td>';

table= table + '<td>';
table= table + result[3];
table= table + '</td>';

table= table + '<td>';
table= table + '<RE><KEY>' + 'processState.' + result[4] + '</KEY></RE>';
table= table + '</td>';

table= table + '</tr>';
}
return table;
</JS>
 Chapter 6. Technical implementation phase II 283

</table>

 </body>
</html>

Scheduling the lifecycle rule
Next, a lifecycle rule is constructed for the ITIMAccount entity. This rule is named
weeklyAuditReport and it uses the notifyAudit operation defined earlier, as
shown in Figure 6-45.

Figure 6-45 General information within the lifecycle rule for notifyAudit

This lifecycle rule is limited to administrative Identity Manager users by filtering
the title attribute of the owner person. The owner person, who has the
AdminOperator title, will be audited.
284 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-46 Event information within the lifecycle rule for notifyAudit

Figure 6-46 shows the configuration of the filter and schedule within the lifecycle
rule. The execution of the lifecycle rule was scheduled at 00:00 every Sunday.
 Chapter 6. Technical implementation phase II 285

Figure 6-47 Audit report for each of the administrative operators

Every audit team member will receive the audit report e-mails as shown in
Figure 6-47.

Post office configuration
In order to reduce the number of e-mail notifications an audit team member
receives, we enable the post office configuration as shown in Figure 6-48 on
page 287.
286 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-48 PostOffice configuration for aggregation of audit report

The post office can aggregate all the Text Message Bodies of the notifications
and combine them into one Text or XHTML Message Body. We reconfigured the
Text Message Body of the notification template within the sendEmail work order
node in Figure 6-44 on page 282.

The configured notification template is shown in Example 6-8.

Example 6-8 Text Message Body within sendEmail work order node

<table border="1" cellspacing="0" cellpadding="1">
<caption><JS>Entity.get().getProperty("eruid")[0];</JS>'s
operation</caption>
<tr>
<th><RE key="processID" /></th>
<th><RE key="processType" /></th>
<th><RE key="timeSubmitted" /></th>
<th><RE key="requestedFor" /></th>
<th><RE key="resultSummary" /></th>
</tr>
 Chapter 6. Technical implementation phase II 287

<JS>
table="";
results=sqlResults.get();
for(j=0;j<results.length-1;j++){
result=results[j];
table= table + '<tr>';

table= table + '<td>';
table= table + result[0];
table= table + '</td>';

table= table + '<td>';
table= table + '<RE><KEY>' + 'processType.' + result[1] + '</KEY></RE>';
table= table + '</td>';

subTime=result[2].substring(0,4)+result[2].substring(5,7)+result[2].substring(8
,10);
subTime=subTime+result[2].substring(11,13)+result[2].substring(14,16)+"Z";
table= table + '<td>';
table= table + '<RE><KEY>readOnlyDateFormat</KEY><PARM>'+
Enrole.toMilliseconds(subTime) + '</PARM></RE>';
table= table + '</td>';

table= table + '<td>';
table= table + result[3];
table= table + '</td>';

table= table + '<td>';
table= table + '<RE><KEY>' + 'processState.' + result[4] + '</KEY></RE>';
table= table + '</td>';

table= table + '</tr>';
}
return table;
</JS>
</table>

In the post office configuration, we edited the XTML Body template to combine
the administrative operation report as in Example 6-9 on page 289:
288 Identity Management Advanced Design for IBM Tivoli Identity Manager

Example 6-9 XHTML Message Body within Post Office Configuration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>$TITLE</title>
 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>
 <body bgcolor="ffffff">
<POGetAllBodies />
 </body>
</html>

A sample aggregated audit report is shown in Figure 6-49.

Figure 6-49 Aggregated audit report for the admin operators

This concludes the implementation of the audit reports.
 Chapter 6. Technical implementation phase II 289

6.5 Recertification process
To assist with managing the lifecycle for people, internal employees (TAA
employees), and business partner employees, a recertification for accounts is
required every three months in order to disable or remove accounts that do not
have a business need to exist.

This recertification process helps TAA to strictly control the accounts needed for
the company business and to reduce the annual software license expenses.

6.5.1 Requirements
TAA has decided to implement this certification process for internal employees
and business partner employees owning accounts on the most critical systems
and the most expensive software license applications. In TAA’s case, the
software license is charged on a per-user fee based on Linux accounts. If
temporary access for this application is granted without a particular business
reason, it can result in overlooked accounts for which TAA has to pay license
fees. In addition to paying unnecessary license fees, an account that exists
without a business reason on a critical system, or an account that is no longer
required, can be a security risk and poses a problem that needs to be solved. As
a result, a business reason has to be verified for every account every three
months.

Initially, the account owner has to certify the need for access. The second
approver is either the business partner domain administrator for each business
partner domain or the person’s supervisor for all TAA employees.

At the end of this particular TAA recertification process, a notification of the
approval or rejection is sent to both the account owner and the Linux service.

6.5.2 Design considerations
Lifecycle rules give Identity Manager administrators the ability to define events to
occur immediately or be triggered based on time intervals. The rules can also
have matching criteria evaluated against an entity or entity type to reduce the
scope of the target entities the lifecycle rules should be performed against.

Lifecycle rules can be defined as global, associated with an entity type, or
associated with an entity.

In order to differentiate the lifecycle rule schedule for each regional center we
define one lifecycle rule for each TAA regional center. These lifecycles rules will
be associated with the account entity type.
290 Identity Management Advanced Design for IBM Tivoli Identity Manager

6.5.3 TAA’s implementation
All Linux user account holders must have their business need for an account
periodically revalidated. In order to accomplish this, a lifecycle rule executes to
allow the account owner to recertify the need to have Linux accounts. Three
lifecycle rules will be implemented to maintain different schedules for each Linux
service as shown in Table 6-7.

Table 6-7 Lifecycle rules and workflow for operation

The approval for the second step is provided by the person’s supervisor for TAA
employees and the BP domain administrators for each business partner. The
certifyWestAccountNeeded, certifyCentralAccountNeeded, and
certifyEastAccountNeeded lifecycle rules are created for this purpose.

Table 6-8 shows the criteria used to define the workflow for operation and
lifecycle rules.

Table 6-8 Lifecycle rules and workflow for operation

In the following section, we describe the steps needed to implement the entity
type operational workflow and the lifecycle rules.

Service name Lifecycle rule schedule

West Region Linux 8 a.m. on the fifteenth day for each end of business quarter

Central Region Linux 8 a.m. on the sixteenth day for each end of business quarter

East Region Linux 8 a.m. on the seventeenth day for each end of business
quarter

Workflow operation
name

Lifecycle operation name Target
account

First
approval

Final
approval

recertifyAcctRequired certifyWestAccountNeeded TAA employee
Business
partner person

Account
owner

Account owner
supervisor or
BP domain
administrator

recertifyAcctRequired certifyCentralAccountNeeded TAA employee
Business
partner person

Account
owner

Account owner
supervisor or
BP domain
administrator

recertifyAcctRequired certifyEastAccountNeeded TAA employee
Business
partner person

Account
owner

Account owner
supervisor or
BP domain
administrator
 Chapter 6. Technical implementation phase II 291

Certification operation workflow
First, a lifecycle operation is constructed for the account entity type called
recertifyAcctRequired, as shown in Figure 6-50.

Figure 6-50 Operation recertifyAcctRequired

It is defined as an instance-based (non-static) operation, and so it has the
account instance itself as an input parameter. The owner, the business partner
domain administrators, or the account owner supervisor are derived in our
custom lifecycle operation workflow itself.

The business logic of the operation is defined with one Work Order activity that
e-mails either an affirmation or rejection of the Linux account in question. The
affirmation or rejection of the account is sent both to the account owner and to
the service’s supervisor. If there are multiple accounts, then the post office
feature, which aggregates e-mails of the same topic (requests for recertification
in this case), will ensure that e-mail volumes aggregate the e-mails into one, and
provide workflow request details in the same e-mail. The e-mail includes the
account details and request information is sent to the approver as a To Do
approval. The certification operation workflow is shown in Figure 6-51 on
page 293. The decision has also been made to default all escalations to Identity
Manager administrators; hence, notice that escalation participants on the
relevant nodes have not been specified.

Note: Only non-static operations can be used by lifecycle rules. Static
operations require input to them that is unavailable if used in the context of a
lifecycle rule; hence, this has been disallowed. Refer to the online IBM Tivoli
Identity Manager Information Center Version 4.6, SC23-5267, for more details
about static versus non-static operations.
292 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-51 Workflow for operation recertifyAcctRequired

Figure 6-52 on page 294 shows the operation workflow properties, which are
shown by clicking Properties in the workflow designer applet. Notice that the
operation type is non-static, and, hence, by default, the Entity-relevant data entry
will be present. The other relevant data entries need to be added using Add in
the relevant data section of the window. Also, note that the Entity-relevant data
entry is set to Subject. This is the default and cannot be changed within the
context of the operation workflow applet. That is, it cannot be set to Requestee,
Both, or Not Applicable. This is important to note for the purposes of the
supervisor approval. We explain this when we discuss the ADMIN_APP business
partner administrator domain approval node.
 Chapter 6. Technical implementation phase II 293

Figure 6-52 recertifyAcctRequired operation workflow properties

Figure 6-53 on page 295 shows the General tab of the OWNER_APP approval
workflow node.
294 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-53 OWNER_APP approval workflow node General tab

The OWNER_APP approval workflow node specifies a custom participant to use
as the approver. This uses the following script:

var account = Entity.get();
process.setRequesteeData(account);
var acctOwnerDN = account.getProperty ("owner")[0];
return new Participant(ParticipantType.USER, acctOwnerDN);

This is shown in Figure 6-54 on page 296. Essentially, this script sets the
participant to be the person’s account owner. The person’s account owner
participant is not available in operation workflows as an item in the participant
drop-down list, but can be scripted as shown here. The first two lines of the script
are needed to set the requestee object within the workflow to be the Entity
account object. Identity Manager uses the requestee object to extract the
person’s account owner; hence, it is not able to resolve the participant without a
value existing for the requestee. A simpler way is to set the Entity-relevant data
object to Both instead of Subject, as shown and described in Figure 6-51 on
page 293; but, as previously mentioned, this is impossible through the workflow
 Chapter 6. Technical implementation phase II 295

designer applet. Being able to set the Entity relevant data object to Both implies
that it is both the subject and the requestee. This would negate the need to script
the assignment of the requestee object.

Figure 6-54 OWNER_APP approval workflow node custom participant script

Figure 6-55 on page 297 shows the Action Text tab of the same approval node.
Note the nonstandard approval code, rejection code, cue text, and action text.
This is for display purposes on the window seen by the approval participant (as
shown in Figure 6-56 on page 298), as well as the notification e-mail sent to the
participant. Note that the action text on the window refers to certification activities
instead of the default approval and rejection activities shown by default for
approvals. The text seen on the window is defined in the
CustomsLabels.properties file in the data directory of the Identity Manager
installation machine. The following lines have been added to this file:

cerAA=Re-certify account
cerAR=Do not re-certify account
cer_reqApprovalCue=Re-certify/Do not re-certify account
296 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-55 OWNER_APP approval workflow node Action Text tab
 Chapter 6. Technical implementation phase II 297

Figure 6-56 Approval window for recertification of Linux account

Because of the nonstandard approval and rejection codes used by TAA in the
approval nodes, the transition lines between the nodes have to cater for the
different codes. This is shown in Figure 6-57 on page 299, which shows the
properties of the transition line between the OWNER_APP approval node and
the ADMIN_APP approval node. This transition is followed in the event that the
service owner approves the recertification of the account in question.
298 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-57 OWNER_APP approval workflow node to ADMIN_APP approval workflow
node transition line

Figure 6-58 shows the properties for the transition line between the
OWNER_APP approval node and the SUSPEND_ACCOUNT extension
workflow node. In the event the service owner rejects the recertification request,
this transition line will be followed.

Figure 6-58 OWNER_APP approval workflow node to SUSPEND_ACCOUNT extension
workflow node transition line

Figure 6-59 on page 300 shows the General tab of the ADMIN_APP approval
workflow node.
 Chapter 6. Technical implementation phase II 299

Figure 6-59 ADMIN_APP approval workflow node General tab

The ADMIN_APP approval workflow node specifies a custom participant to be
used as the approver. This uses the script shown in Example 6-10.

Example 6-10 ADMIN_APP approval workflow node custom participant script

//Route to ADMIN DOMAIN Administrator
var account = Entity.get();
process.setRequesteeData(account);
var acctOwnerDN = account.getProperty ("owner")[0];
var acctOwnerfilter = acctOwnerDN.substring(0,30);
var search = new PersonSearch();
var employeeObj =search.searchByFilter("taaBPEmployee", "(" + acctOwnerfilter +
")", 2);
if (employeeObj.length != 0) {
 var domainDN = employeeObj[0].getProperty("erparent")[0];
 var domainfilter = domainDN.substring(0,30);
 var domainsearch = new ContainerSearch();
 var currentDomain = domainsearch.searchByFilter("AdminDomain","(" +
domainfilter + ")", 2);
 var domainName = currentDomain[0].getProperty("ou")[0];
 var roles = (new RoleSearch()).searchByName(domainName);
300 Identity Management Advanced Design for IBM Tivoli Identity Manager

 var roleObj = roles[0];
 return new Participant(ParticipantType.ROLE, roleObj.dn);
} else
return new Participant(ParticipantType.SUPERVISOR);

Essentially, this script defines the custom participant to be either the business
partner administrator (if the account owner is an employee of a business
partner) or the account owner’s supervisor (if the account owner is an employee
of TAA). Using admin domains allows TAA to create and administer different
business partners as separate entities with their own policies, services, ACIs,
and so on. In this implementation, each business partner is defined as an admin
domain and can have its own administrator that cannot administer or view other
admin domains' persons, accounts, services, ACIs, and so on. In this
implementation, we have defined a dynamic role for each admin domain with a
one-to-one mapping between the dynamic role name and the admin domain
name. For instance, if the admin domain name is BP Admin Domain 1, the
dynamic role name is BP Admin Domain 1. The approval request is sent to all
members of the role mapped with the admin domain.

The reason the first two lines of the script, shown in Example 6-10 on page 300,
need to be present is to set the requestee object within the workflow to be the
Entity account object. Identity Manager uses the requestee object to extract the
account owner (acctOwnerDN). The account owner DN is used to search the
person’s account owner object. The account owner DN is used to search for a
person using a filter PersonSearch.searchByFilter. The arguments used for
PersonSearch.searchByFilter are:

profileName The name of the person profile to use, in the sample, this
is taaBPEmployee.

filter LDAP search filter that defines the criteria for returned
containers to meet, in the sample, this is a substring of the
account owner DN.

scope Optional search scope, in the sample, 2 for SubTree
Scope.

If the account owner is a TAA internal employee, then the person’s supervisor is
used as custom participant.

The person object returned by the person search is used to search the dynamic
role mapped with the business partner admin domain. To search the role, we
used the RoleSearch.searchByName() javaScript extension with the ou value of
the admin domain name as the argument.

See Figure 6-60 on page 302.
 Chapter 6. Technical implementation phase II 301

Figure 6-60 ADMIN_APP approval workflow node custom participant script

Figure 6-61 on page 303 shows the CERT_REJECTED_1 work order workflow
node. This sends an e-mail to the account owner to notify him that the
recertification process has completed, and that the account in question has not
been recertified and, hence, has been suspended. Note that the Wait For
Completion check box has not been enabled. This allows the process to
complete without having to wait for the account owner to perform any action to
the work order in their To Do list. The CERT_REJECTED_1 work order workflow
node specifies the account owner as the custom participant to use as the
approver.
302 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-61 CERT_REJECTED_1 work order workflow node

Figure 6-62 on page 304 shows the CERT_APPROVED_1 work order workflow
node. This sends an e-mail to the account owner to notify the account owner that
the recertification process has completed, and that the account in question has
been recertified. As in the CERT_APPROVED_1 work order workflow, note that
the Wait For Completion check box has not been enabled. The
CERT_APPROVED_1 work order workflow node specifies the account owner as
the custom participant to use as the approver.
 Chapter 6. Technical implementation phase II 303

Figure 6-62 CERT_APPROVED_1 work order workflow node

Figure 6-63 on page 305 shows the CERT_APPROVED_2 work order workflow
node. This sends an e-mail to the service owner to notify the service owner that
the recertification process has completed and that the account in question has
been recertified. Note that the Wait For Completion check box has not been
enabled.
304 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-63 CERT_APPROVED_2 work order workflow node

Figure 6-64 on page 306 shows the CERT_REJECTED_2 Notification tab of the
work order workflow node. This sends an e-mail to the service owner to notify the
service owner that the recertification process has completed and that the
account in question has not been recertified and, hence, has been suspended.
 Chapter 6. Technical implementation phase II 305

Figure 6-64 CERT_REJECTED_2 work order workflow node

Note that any transition lines shown in the workflow in Figure 6-51 on page 293
but not described above are standard transition lines generated by joining nodes
within the workflow applet.

Certification lifecycle rules

A lifecycle rule for each TAA regional center has been constructed for the
account Entity type. For the central region, it is named
certifyCentralAccountNeeded and uses the operation recertifyAcctRequired
defined earlier, as shown in Figure 6-65 on page 307.
306 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-65 General tab within the lifecycle rule definition for Linux central region
recertification

This lifecycle rule has been limited to the TAA employee and business partner
owners of a Linux account on the central region center by virtue of the filter
shown in Figure 6-66 on page 309.

Since the filter is based on attributes, only the attributes associated with the
schema of the Entity, or Entity Type are legal. Tivoli Identity Manager provides
two custom extensions to the filter syntax:

� Relationship expressions

Identity Manager relationship LDAP filter expressions, for example, Account
Owner → owner relationship, or host service account → service relationship.

� System expressions

System LDAP filter expressions refer to a system object and a date keyword,
which resolve to the current date and time.

These two LDAP expression types are evaluated at run time; note, however, a
lifecycle (LDAP filter) rule will be syntactically checked on definition.

The relationship syntax is the following:

(${relationship.attribute}=value)
 Chapter 6. Technical implementation phase II 307

Relationship, in this syntax, can be:

� Parent
� Owner
� Organization
� Supervisor
� Sponsor
� Administrator
� Role
� Account
� Service

In the current implementation, we used a relationship expression that selects all
Linux accounts on the Linux service “Central Region Linux”. The lifecycle filter is
shown below:

(${service.erservicename}=Central Region Linux)

Notice in Figure 6-66 on page 309 that the lifecycle rule also contains the
schedule definition.

Note: The evaluation steps are important to keep in mind while composing
relationship expressions. Most importantly, the related object type must be
known in order to refer to a valid attribute name after the dot (.) operator to
ensure the expressions are well formed, valid, and will produce a match. In the
account entity and entity type, the relationship expression types permitted are
only owner and service.

Refer to the online IBM Tivoli Identity Manager Information Center Version
4.6, SC23-5267, for more details about relationship expression evaluation.
308 Identity Management Advanced Design for IBM Tivoli Identity Manager

Figure 6-66 Event tab within the lifecycle rule definition for recertification

With this configuration, TAA will certify the need for Linux accounts each
business quarter. This process will start at 8 a.m. on the sixteenth day of each
quarter.

Similar lifecycle rules have been defined for each regional Linux service.

6.6 Conclusion
In conclusion of our advanced design business scenario at Tivoli Austin Airlines,
you can see that the business needs were best served by using a phased
approach to the different aspects of the project requirements. By utilizing an
incremental approach to deploying capabilities, feedback on the deployed
functionality could be used to drive future deployment activities, and the needs of
the business and users can be best served.
 Chapter 6. Technical implementation phase II 309

To summarize:

� Phase I: High Availability (HA)

In phase I, the infrastructure was created for the required capabilities for a
powerful and robust service offering. The components of this phase were:

– Application Server HA

– Relational Database Management System HA

– Directory Server HA

� Phase II: Application and processes

In phase II of the advanced design project, we capitalized on the Highly
Available Identity Manager environment by offering applications and
processes that helped satisfy the business requirements outlined for the
project.

– Self-care application

Provided an application interface that greatly simplified the Identity
Manager standard interface and abstracted all unnecessary tasks from the
user

– Delegated administration (extranet)

Enabled business partners to take control of the administrative duties
involved in day to day maintenance of their employees’ identity
management and, therefore, removed some of the overhead and
responsibilities of TAA’s security team

– Advanced custom report design

Enabled the capability to extend the standard reports included with Identity
Manager in order to mitigate the need for a third-party reporting system

– Automated report delivery

Provided the capability to automatically run and deliver operational reports
to the audit and reporting team

– Recertification process

Provided the capability to capture needed metrics on what application
licensing was required and how many seats (licenses), and, therefore,
enabled reducing licensing to only what is required
310 Identity Management Advanced Design for IBM Tivoli Identity Manager

Part 3 Appendixes

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 311

312 Identity Management Advanced Design for IBM Tivoli Identity Manager

Appendix A. Corporate policy and
standards

Technology should not drive the corporate policy; it should be the other way
around. Once you know what you need to protect and the potential threats and
risks to those assets, you can start protecting them. First, all the threats and risks
are classified in a study based on certain elements, such as:

� Direct financial loss
� Indirect financial loss (such as investigation, recovery, and so on)
� Loss of confidential information
� Liability
� Image impact (loss of goodwill, customer loyalty, and so on)
� Cost of risk mitigation or transfer
� Accepting residual risk

This study can process the same threats and risks applied to different assets, but
concludes at a different level of liability, based on your particular business
environment. Then, the decision has to be made: accept, mitigate, or transfer the
risk. This process can be handled by external consultants, such as IBM Global
Services, or by an internally appointed team. The process can use both formal
and informal methods, but the result is usually a blend of these approaches. The
threat identification, as well as this severity study, using a formal approach is
done in conjunction with the organization by applying a standard and a proven
methodology.

A

© Copyright IBM Corp. 2006. All rights reserved. 313

It is tempting to directly translate the threat analysis into a technical solution, but
it should first lead to the corporate policy and standards. These documents will
highlight the risks and present how they must be handled enterprise-wide.

The first document that you must write is, therefore, the corporate policy
document. It must outline the high-level directions to be applied enterprise-wide.
It is absolutely not technical; it is derived from the business of the enterprise and
should be as static as possible, as seen in Figure A-1.

Figure A-1 Dynamics for policy, standards, practices, and procedures

Note: Policies is a very common term, and in many products you l find specific
policy sections. These are the product-related policies that are covered in the
practice or procedure documents. The corporate policy is unrelated to
products and is a high-level document.

Corporate
Policy

StandardsStandardsStandardsStandards

ProceduresPractices ProceduresPractices Procedures Technical

Static
314 Identity Management Advanced Design for IBM Tivoli Identity Manager

Standards, practices, and procedures
Standards are derived from the corporate policy. They are documents explaining
how to apply the policy details in terms of authentication, access control, and so
on. They explain how the policy must be applied. Changes in threats or major
technology changes can impact them.

The standards are then mapped to practices or procedures.

The practices are descriptions of practical implementations of the standard on an
operating system, application, or any other endpoint. They detail precise
configurations, such as the services to be installed, the way to set up user
accounts, or how to securely install software.

The procedures document the single steps to apply to requests, the approval
flow, and the implementation flow. Such a procedure could be the request to
access a specific set of sensitive data, where the approval path (system owner,
application owners, and so on) and conditions (Virtual Private Network (VPN),
strong authentication, and so on) are explained in detail.

Practical example
Here is an example of how to define and implement a policy with procedures and
practices.

The operations manager has reported an increased workload on the help desk
due to problems caused by employees downloading non-business-related
programs onto their systems.

The problems range from the introduction of viruses to disruption of business
processes, with a real financial impact. To address this problem, upper
management incorporated, in the corporate policy, the following directive, “The
corporate assets may be used only to perform enterprise-related tasks”.

First, the policy must be communicated to all employees in the enterprise.

The standards for the networking part explain which services can allowed on the
employee’s computer. The practice then explains how to set up the Windows or

Tip: Approval procedures are often implemented by sending e-mails or
paperwork. The efficiency can be improved by using a computer to handle
these repetitive tasks and ensure that changes within the company are
applied quickly to the procedures. As we explain later, this can reduce human
errors.
 Appendix A. Corporate policy and standards 315

Linux clients according to the standards, and the procedures explain how to
perform a request, the requirements, and the approval paths to get special
services installed on your computer.

The existing clients are updated and controls are performed to verify the
compliance, in addition to further auditing of the environment.

We summarize the five steps we went through in Figure A-2. It is a common
approach adopted in many methodologies.

Figure A-2 The five steps in defining your IT security

External standards and certifications
The discussion about corporate policies suggests that internal business needs
are the drivers for designing corporate policies. While this is true, there are a
number of external factors that can change these business needs and policies.
Some of these external pressures can be detailed enough to specify not only
policies, but also standards and procedures.

Policies

AuditManage

RiskImplement
316 Identity Management Advanced Design for IBM Tivoli Identity Manager

We show examples of these external drivers in this section. The list is not
exhaustive, nor is each description complete. We provide this list as a guide to
the type of standards that might (or might not) apply to your organization, and,
therefore, some of the external factors you must consider when creating policies.

Many organizations use these external standards as a guide to help them
formulate their own corporate policies. It is not uncommon to find organizations
using the ISO 17799 standards, but without having them externally audited and
certified. These standards are seen as a good foundation for security.

Industry specific requirements
Some industry sectors have standards that are specific to that industry sector.
Two examples are:

� Identrus

The Identrus standards are based upon standard PKI technologies for
authenticating secure transactions. In addition to the technology layers,
Identrus provides a complete infrastructure to help companies operate
effectively and safely on the Internet, across economic and political
boundaries, and with familiar business partners and new ones.

In addition to the technology standards and processes, Identrus describes an
all important set of business rules, contracts, and liabilities that creates a
trusted environment particularly for use in the banking and finance sectors.

� CFR 21 Part 11

CFR 21 Part 11 applies to electronic records that are created, modified,
maintained, archived, retrieved, or transmitted under any record requirements
covered by Food and Drug Administration regulations.

Any pharmaceutical company that wants to sell or market its products in
America needs to abide by these rules. Corporate policies, standards, and
processes need to reflect this requirement.

Product or solution certifications
Some products or solutions can be certified before use so that a potential
purchaser has an understanding that the product or solution will fit the role for
which it is needed.

Common Criteria
This is a set of tests originally based upon the US Orange book and
European/Australian ITSEC evaluations. It is currently recognized by 14
countries. There are seven levels of tests. Evaluation Assurance Levels (EALs)
 Appendix A. Corporate policy and standards 317

1–4 are typically used in the commercial areas, while the tests representing the
higher EALs 5–7 are reserved for the security testing of highly secure
environments.

CAPS UK
In addition to internationally recognized evaluations, there can be local
evaluations that impact an organization. The UK Government's
Communications-Electronic Security Group (CESG) have produced the Assisted
Products Scheme in effort to help commercial product vendors produce
cryptographic products suitable for use by the British government. It is called
CAPS (CESG Assisted Product Scheme). CAPS is similar in purpose to the FIPS
140 (for the US and Canadian governments) and the Cryptographic Advisory
Note (CAN) (for the Australian and New Zealand governments).

Nationally and internationally recognized standards
Some standards bodies publish broad general sets of standards that an
organization can implement. These standards can be audited, and, hence, the
organization can be sure they are complying.

BS7799
The most widely known standard. British standard (BS) 7799 and its international
cousin ISO17799 are intended to serve as a single reference point for identifying
a range of security controls, needed for most situations, where information
systems are used in industry and commerce within large, medium, and small
organizations. BS7799 was written in February 1995 and was updated in May
1999.

BS 7858
BS 7858 is just one example of some of the other less, well known standards that
could affect security policy. Specifically, BS 7858 gives recommendations for the
security screening of personnel to be employed in an environment where the
security of people, goods, or property is a significant feature of the employing
organization's operations.

Legal requirements
The laws of the country in which an organization operates are many and diverse.
The application of the laws is variable from geography to geography, and it is
good to be aware of the impact of them upon corporate security policies. Modern
democracies are often fond of creating freedom of information laws. One of the
problems with these laws is that the laws are directly contrary to the same
democracies’ wish to maintain the privacy of individual information.
318 Identity Management Advanced Design for IBM Tivoli Identity Manager

Privacy law is, therefore, a growing area. Some examples are:

� UK Data Protection Act 1998

An act to make new provisions for the regulation of the processing of
information relating to individuals, including the obtaining, holding, use, or
disclosure of such information.

� European Data Directive 95/46/EC

This directive and others give direction to issues surrounding the protection of
individuals with regard to the processing of personal data and the free
movement of such data. The way they interact with national law must also be
considered.

� US Health Insurance Portability and Accountability Act 1996

The Health Insurance Portability and Accountability Act 1996 (HIPAA) was
passed by the United States Congress to ensure the privacy of an individual’s
private medical data.

Summary
Corporate policies must be thought of as business level requirements. They are
primarily internal business drivers, but they can be impacted by external factors,
so corporate policies l have to take these factors into account. Subsidiary
standards and the procedures and practices that result are also produced.

Corporate policies should be relatively static and technology free, while
standards, practices, and procedures can be more fluid and technology specific.
 Appendix A. Corporate policy and standards 319

320 Identity Management Advanced Design for IBM Tivoli Identity Manager

Appendix B. Source code

This appendix provides the complete JAVA source code for the following four
classes:

� BulkFeedAdminDomain

� AdminDomainModelExtension

� AdminModelExtension

� AbstractExtension

Appendix D, “Additional material” on page 389 describes how to download an
electronic jar file of these classes and how to use them in the context of our Tivoli
Austin Airlines business case example.

B

© Copyright IBM Corp. 2006. All rights reserved. 321

BulkFeedAdminDomain.java
package com.ibm.itim.custom.dataservices;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.LineNumberReader;
import java.io.UnsupportedEncodingException;
import java.util.StringTokenizer;

import com.ibm.itim.common.AttributeValue;
import com.ibm.itim.common.AttributeValues;
import com.ibm.itim.dataservices.model.ModelCommunicationException;
import com.ibm.itim.dataservices.model.ModelCreationException;
import com.ibm.itim.dataservices.model.ObjectNotFoundException;
import com.ibm.itim.dataservices.model.PartialResultsException;
import com.ibm.itim.dataservices.model.CompoundDN;
import com.ibm.itim.dataservices.model.SearchParameters;
import com.ibm.itim.dataservices.model.SearchResults;
import com.ibm.itim.dataservices.model.domain.AdminDomain;
import com.ibm.itim.dataservices.model.domain.AdminDomainEntity;
import com.ibm.itim.dataservices.model.domain.AdminDomainFactory;
import com.ibm.itim.dataservices.model.domain.DynamicRole;
import com.ibm.itim.dataservices.model.domain.DynamicRoleFactory;
import com.ibm.itim.dataservices.model.domain.OrganizationalContainerEntity;
import com.ibm.itim.dataservices.model.domain.OrganizationalContainerSearch;
import com.ibm.itim.dataservices.model.domain.DirectorySystemSearch;

/**
 * @author tsanui
 *
 * BulkFeedAdminDomain will import a list file of Business Partner Companies
 * and create a new Admin Domain for each Business Partner under the specified
 * organizational unit. This class will also create a dynamic role with ldap
 * filter "(title=AdminOperator)" on each of the Admin Domains.
 */
public class BulkFeedAdminDomain {

public static final String DELIMITER = "|";

/**
 * Command line interface.
 *
 * @param argv
 * Arguments of the command.
 *
322 Identity Management Advanced Design for IBM Tivoli Identity Manager

 * First argument is required and it provides a name of the file to be
 * imported.
 *
 * Second argument is optional and it provides a character for delimiter in
 * the import file.
 *
 */
public static void main(String[] argv) {

if (argv.length < 1 || argv.length > 2) {
System.out

.println("Usage: java BulkFeedAdminDomain <importFileName>
[<delimiter>] \n");

System.out
.println("Usage: Where <importFileName> is required and refers

to a file with company information to import\n");
System.out

.println("Usage: and <delimiter> is optional with default of
\"|\"and is the delimiter for fields within the text file.\n");

System.out
.println("Usage: Example - java BulkFeedAdminDomain

./companies.txt | ");
System.exit(0);

}

String delimiter;
if (argv.length == 2) {

delimiter = argv[1];
} else {

delimiter = DELIMITER;
}

int total = 0;
long beginTime = System.currentTimeMillis();

BufferedReader in;
try {

/*
 * Setting up File for Reading
 */
FileReader importFileReader = new FileReader(argv[0]);
in = new LineNumberReader(importFileReader);
String tmpString;
StringTokenizer strTokens;

while ((tmpString = in.readLine()) != null) {
strTokens = new StringTokenizer(tmpString, delimiter);
int count = strTokens.countTokens();
 Appendix B. Source code 323

if (count < 3) {
System.out

.println("----ERROR---- Importing line (wrong token
size) Line: "

+ tmpString + "\n Tokens: " + count);
System.out

.println("File format is: Parent OrgUnit Location
Code|Business Partner Company Name|Business Partner Company Code\n");

System.exit(0);
}

/*
 * Begin setting variables with tokens.
 *
 * SAMPLE
 *
 * "1000|Tivoli Austin Travel Agency|1001"
 *
 * First Token is Location of the parent organizational unit for
 * the new Admin Domain.
 */
String parentOULocation = strTokens.nextToken().trim();

/*
 * Second Token is Business Partner Company Name.
 */
String companyName = strTokens.nextToken().trim();

/*
 * Third Token is Business Partner Company Code.
 */
String companyCode = strTokens.nextToken().trim();

/*
 * Create AttributeValue pairs for Admin Domain needs.
 */
AttributeValues attrs = new AttributeValues();
AttributeValue attrOU = new AttributeValue("ou", companyName);
attrs.put(attrOU);
AttributeValue attrCode = new AttributeValue("description",

companyCode);
attrs.put(attrCode);

AdminDomain myAdminDomain = new AdminDomain(attrs);

/*
 * Look up the parent organizational unit.
 */
324 Identity Management Advanced Design for IBM Tivoli Identity Manager

OrganizationalContainerSearch myOrgContainerSearch = new
OrganizationalContainerSearch();

CompoundDN searchContext = new DirectorySystemSearch()
.lookupDefault().getLogicalNameContext();

SearchResults containerSearchResults = myOrgContainerSearch
.searchByFilter(searchContext, "(l=" + parentOULocation

+ ")", new SearchParameters());
if (containerSearchResults.size() != 1) {

System.out.println("Failed to search a parent OU for "
+ companyName);

containerSearchResults.close();
continue;

}
OrganizationalContainerEntity myOrgContainerEntity =

(OrganizationalContainerEntity) containerSearchResults
.iterator().next();

containerSearchResults.close();

/*
 * Create the new Admin Domain.
 */
AdminDomainFactory myAdDomFac = new AdminDomainFactory();
AdminDomainEntity myAdminDomainEntity = myAdDomFac.create(

myOrgContainerEntity, myAdminDomain);
System.out.println("Created Admin Domain: " + companyName);

/*
 * Create the new dynamic role with ldap filter
 * "(title=AdminOperator)"
 */
AttributeValues roleAttrs = new AttributeValues();
AttributeValue roleNameAttr = new AttributeValue("errolename",

companyName);
roleAttrs.put(roleNameAttr);
DynamicRole myDynamicRole = new DynamicRole(roleAttrs);
myDynamicRole.setDefinition("(title=AdminOperator)");
myDynamicRole.setScope(DynamicRole.SINGLE_LEVEL_SCOPE);
DynamicRoleFactory myDynRoleFac = new DynamicRoleFactory();
myDynRoleFac.create(myAdminDomainEntity, myDynamicRole);
System.out.println("Created Organizational Role: "

+ companyName);

total++;
}

} catch (UnsupportedEncodingException e) {
System.out.println("----ERROR---- " + e.getMessage());

} catch (FileNotFoundException e) {
System.out.println("----ERROR---- " + e.getMessage());

} catch (IOException e) {
 Appendix B. Source code 325

System.out.println("----ERROR---- " + e.getMessage());
} catch (ObjectNotFoundException e) {

System.out.println("----ERROR---- " + e.getMessage());
} catch (PartialResultsException e) {

System.out.println("----ERROR---- " + e.getMessage());
} catch (ModelCommunicationException e) {

System.out.println("----ERROR---- " + e.getMessage());
} catch (ModelCreationException e) {

System.out.println("----ERROR---- " + e.getMessage());
}

/*
 * Finished, print statistics
 */
System.out.println("\n------COMPLETED SUCCESSFULLY---------\n");
System.out.println("Companies imported: " + total);
System.out.println("Total time(sec): "

+ ((System.currentTimeMillis() - beginTime) / 1000));
return;

}

}

326 Identity Management Advanced Design for IBM Tivoli Identity Manager

AdminDomainModelExtension.java
package com.ibm.itim.custom.fesiextensions;

import com.ibm.itim.dataservices.model.DistinguishedName;
import com.ibm.itim.dataservices.model.ModelCommunicationException;
import com.ibm.itim.dataservices.model.ObjectNotFoundException;
import com.ibm.itim.dataservices.model.domain.AdminDomain;
import com.ibm.itim.dataservices.model.domain.AdminDomainEntity;
import com.ibm.itim.dataservices.model.domain.AdminDomainSearch;
import com.ibm.itim.script.ScriptEvaluatorException;

import FESI.jslib.JSException;
import FESI.jslib.JSExtension;
import FESI.jslib.JSFunctionAdapter;
import FESI.jslib.JSGlobalObject;
import FESI.jslib.JSObject;

/**
 * @author tsanui
 *
 * A FESI extension that allows scripts to add an administrator to an Admin
 * Domain on ITIM.
 *
 */
public class AdminDomainModelExtension implements JSExtension {

private static String DOMAIN_OBJECT = "domainEntity";

private static String RE_INVALID_ARGUMENTS =
"com.ibm.itim.script.ScriptEvaluator.CUSTOM_ERROR_INVALID_FUNCTION_ARGUMENTS";

/*
 * (non-Javadoc)
 *
 * @see

FESI.jslib.JSExtension#initializeExtension(FESI.jslib.JSGlobalObject)
 */
public void initializeExtension(JSGlobalObject go) throws JSException {

/*
 * Create an object in the root level JavaScript namespace.
 * "AdminDomain" is a constructor that creates a new instance of the
 * AdminDomainWrapper class.
 */
go.setMember("AdminDomain", new AdminDomainWrapper());

}

 Appendix B. Source code 327

/**
 * @author tsanui
 *
 * Provide "addAdministrator" function to AdminDomainWrapper object.
 *
 */
private class AddAdministratorFunction extends JSFunctionAdapter {

/*
 * (non-Javadoc)
 *
 * @see FESI.jslib.JSFunction#doCall(FESI.jslib.JSObject,
 * java.lang.Object[])
 */
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length != 1 || !DistinguishedName.isDN(args[0].toString()))

{
Object errorValues[] = { "addAdministrator(PersonDN)" };
throw new JSException("Argument error",

new ScriptEvaluatorException(RE_INVALID_ARGUMENTS,
errorValues));

}

AdminDomainEntity domainEntity = (AdminDomainEntity) thisObject
.getMember(DOMAIN_OBJECT);

DistinguishedName personDN = new DistinguishedName(args[0]
.toString());

try {
AdminDomain domain = (AdminDomain) domainEntity

.getDirectoryObject();
domain.addAdministrator(personDN);
domainEntity.update();

} catch (ModelCommunicationException mce) {
throw new JSException("Failed to add domain administrator "

+ personDN.getAsString(), mce);
} catch (ObjectNotFoundException onfe) {

throw new JSException("Failed to add domain administrator "
+ personDN.getAsString(), onfe);

}

return null;
}

}

/**
 * @author tsanui
 *
 * Provide a wrapper feature for AdminDomainEntity class in the ITIM
328 Identity Management Advanced Design for IBM Tivoli Identity Manager

 * JavaScript environment.
 */
private class AdminDomainWrapper extends JSFunctionAdapter {

/*
 * (non-Javadoc)
 *
 * @see FESI.jslib.JSFunction#doNew(FESI.jslib.JSObject,
 * java.lang.Object[])
 */
public Object doNew(JSObject thisObject, Object[] args)

throws JSException {
if (args.length != 1 || !DistinguishedName.isDN(args[0].toString()))

{
Object errorValues[] = { "AdminDomain(dn)" };
throw new JSException("Argument error",

new ScriptEvaluatorException(RE_INVALID_ARGUMENTS,
errorValues));

}
DistinguishedName dn = new DistinguishedName((String) args[0]);
try {

AdminDomainEntity domainEntity = (new AdminDomainSearch())
.lookup(dn);

JSObject domainObject = thisObject.getGlobalObject()
.makeJSObject();

domainObject.setMember(DOMAIN_OBJECT, domainEntity);
domainObject.setMember("addAdministrator",

new AddAdministratorFunction());
return domainObject;

} catch (ModelCommunicationException mce) {
throw new JSException("Failed to lookup AdminDomain "

+ dn.getAsString(), mce);
} catch (ObjectNotFoundException onfe) {

throw new JSException("Failed to lookup AdminDomain "
+ dn.getAsString(), onfe);

}
}

}

}

 Appendix B. Source code 329

AbstractExtension.java
/*
 * Created on Jan 17, 2006
 */
package com.ibm.itim.custom.workflow;

import com.ibm.itim.logging.JLogUtil;
import com.ibm.itim.workflow.application.WorkflowApplication;
import com.ibm.itim.workflow.application.WorkflowExecutionContext;
import com.ibm.itim.workflow.model.Activity;
import com.ibm.itim.workflow.model.ActivityResult;
import com.ibm.log.Level;
import com.ibm.log.PDLogger;

/**
 * @author davis, brian
 *
 * This class acts as a base for other workflow extension classes. It provides
 * a set of common error handlers for methods that implement workflow extension
 * activities. The error handlers all write either an error or warning to the
 * ITIM message log. If an exception is provided they will also write a stack
 * trace in the ITIM trace file. They will then return an ActivityResult
 * announcing that an activity has returned an failure or warning. This
 * ActivityResult can be returned by the method that is implementing the
 * failing workflow activity.
 */
public abstract class AbstractExtension implements WorkflowApplication {

private WorkflowExecutionContext workflowContext;

/*
 * (non-Javadoc)
 *
 * @see

com.ibm.itim.workflow.application.WorkflowApplication#setContext(com.ibm.itim.w
orkflow.application.WorkflowExecutionContext)

 */
public void setContext(WorkflowExecutionContext workflowContext) {

this.workflowContext = workflowContext;
}

/**
 * @return Returns the workflowContext.
 */
protected WorkflowExecutionContext getWorkflowContext() {

return workflowContext;
}

330 Identity Management Advanced Design for IBM Tivoli Identity Manager

/**
 * Log an error and stack trace.
 *
 * @param error
 * The exception to trace
 * @param msg
 * The message to write to the log file
 * @param loggingMethod
 * The name of the method that is reporting the error.
 * @return An ActivityResult reporting a failure with the same message
 * written to the log, plus the exception message.
 */
protected ActivityResult extensionError(Throwable error, String msg, String

loggingMethod) {
PDLogger logger = JLogUtil.getTraceLogger(this);
if (logger.isLoggable(Level.DEBUG_MIN)) {

Activity activity = this.workflowContext.getActivityVO();
logger.text(Level.DEBUG_MIN, this, loggingMethod, msg + ": Workflow

context process="
+ this.workflowContext.getProcessEO().getId() + ", activity=" +

activity.getId() + "["
+ activity.getIndex() + "]");

}
if (error != null) {

logger.exception(Level.ERROR, this, loggingMethod, error, msg);
msg += (": " + error.getClass().getName() + ": " +

error.getMessage());
}
return new ActivityResult(ActivityResult.FAILED, msg, null);

}

/**
 * Log an error.
 *
 * @param msg
 * The message to write to the log file
 * @param loggingMethod
 * The name of the method that is reporting the error.
 * @return An ActivityResult reporting a failure with the same message
 * written to the log.
 */
protected ActivityResult extensionError(String msg, String loggingMethod) {

return extensionError(null, msg, loggingMethod);
}

/**
 * Log a warning and stack trace.
 *
 Appendix B. Source code 331

 * @param error
 * The exception to trace
 * @param msg
 * The message to write to the log file
 * @param loggingMethod
 * The name of the method that is reporting the warning.
 * @return An ActivityResult reporting a warning with the same message
 * written to the log, plus the exception message.
 */
protected ActivityResult extensionWarning(Throwable error, String msg,

String loggingMethod) {
PDLogger logger = JLogUtil.getTraceLogger(this);
if (logger.isLoggable(Level.DEBUG_MIN)) {

Activity activity = this.workflowContext.getActivityVO();
logger.text(Level.DEBUG_MIN, this, loggingMethod, msg + ": Workflow

context process="
+ this.workflowContext.getProcessEO().getId() + ", activity=" +

activity.getId() + "["
+ activity.getIndex() + "]");

}
if (error != null) {

logger.exception(Level.WARN, this, loggingMethod, error, msg);
msg += (": " + error.getClass().getName() + ": " +

error.getMessage());
}
return new ActivityResult(ActivityResult.WARNING, msg, null);

}

/**
 * Log a warning.
 *
 * @param msg
 * The message to write to the log file
 * @param loggingMethod
 * The name of the method that is reporting the warning.
 * @return An ActivityResult reporting a warning with the same message
 * written to the log.
 */
protected ActivityResult extensionWarning(String msg, String loggingMethod)

{
return extensionWarning(null, msg, loggingMethod);

}

}

332 Identity Management Advanced Design for IBM Tivoli Identity Manager

AbstractExtension.java
/*
 * Created on Jan 16, 2006
 */
package com.ibm.itim.custom.workflow;

import java.io.IOException;
import java.io.Serializable;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import javax.sql.DataSource;

import com.ibm.itim.common.properties.PropertiesManager;
import com.ibm.itim.dataservices.model.DirectoryObject;
import com.ibm.itim.dataservices.model.domain.Account;
import com.ibm.itim.dataservices.model.domain.Person;
import com.ibm.itim.exception.ITIMException;
import com.ibm.itim.logging.JLogUtil;
import com.ibm.itim.logging.SystemLog;
import com.ibm.itim.util.EncryptionManager;
import com.ibm.itim.workflow.model.ActivityResult;
import com.ibm.log.Level;
import com.ibm.log.PDLogger;

/**
 * @author davis, brian
 *
 * Workflow extensions that do database searches and updates. The database must
 * be reachable via a DataSource defined in the application server. The SQL
 * statements may be hard coded.
 */
public class DatabaseExtensions extends AbstractExtension {

private static final String PROP_FILE = "enrole";

private static final String FACTORY_PROP =
"enrole.appServer.contextFactory";
 Appendix B. Source code 333

private static final String URL_PROP = "enrole.appServer.url";

private static final String PRINCIPAL_PROP = "enrole.appServer.systemUser";

private static final String CREDENTIALS_PROP =
"enrole.appServer.systemUser.credentials";

/**
 * Execute a SQL select statement. The statement must return a single
 * result set.
 *
 * @param dataSourceName
 * The name of the datasource without the leading "jdbc/".
 * @param sqlStatement
 * The SQL statement.
 * @return A list of lists as an output parameter. Each element of the
 * outer list will be a row from the result set. Each element of
 * the inner lists will be a column of a result row.
 */
public ActivityResult sqlSelect(String dataSourceName, String sqlStatement)

{
/*
 * Get the database connection, and execute the command.
 */
ArrayList result = new ArrayList();
Statement stmt = null;
ResultSet resultSet = null;
PDLogger logger = JLogUtil.getTraceLogger(this);
if (logger.isLoggable(Level.DEBUG_MID))

logger.entry(Level.DEBUG_MID, this, "sqlSelect", dataSourceName,
sqlStatement);

boolean maxDebug = logger.isLoggable(Level.DEBUG_MAX);
try {

stmt = getStatement(dataSourceName);
resultSet = stmt.executeQuery(sqlStatement);
int columnCount = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {

/*
 * For each row in the result set, create a new list, populate
 * it with the columns in the row, and add it to the result
 * list. Enter a null for columns with non-serializable data
 * (such as CLOB).
 */
ArrayList row = new ArrayList();
for (int i = 1; i <= columnCount; i++) {

Object o = resultSet.getObject(i);
if (o == null || Serializable.class.isInstance(o)) {

row.add(o);
334 Identity Management Advanced Design for IBM Tivoli Identity Manager

if (maxDebug)
logger.text(Level.DEBUG_MAX, this, "sqlSelect", "Column

" + i + ": " + o);
} else {

row.add(null);
if (maxDebug)

logger.text(Level.DEBUG_MAX, this, "sqlSelect", "Column
" + i

+ ": not serializable");
}

}
result.add(row);

}
} catch (SQLException e) {

return extensionError(e, "Error executing statement " + sqlStatement,
"sqlSelect");

} catch (DataSourceRetrievalException e) {
return extensionError(e.getCause(), "Error getting connection",

"sqlSelect");
} finally {

closeDown(stmt);
}

result.add(new ArrayList(Collections.singletonList("returned value")));
ArrayList outputParams = new ArrayList();
outputParams.add(result);
return new ActivityResult(ActivityResult.SUCCESS, null, outputParams);

}

/**
 * Get a connection to the database from the DataSource's connection pool.
 *
 * @param dataSourceName
 * The name of the DataSource without the leading "jdbc/".
 * @return a JDBC Connection
 * @throws DataSourceRetrievalException
 * as a wrapper for any exception encountered. This may be an
 * IOException if the ITIM properties files are not readable.
 * Or it may be a NamingException if the DataSource does not
 * exist. Or it may be a SQLException if a database connection
 * can't be created.
 */
private Connection getConnection(String dataSourceName) throws

DataSourceRetrievalException {
/*
 * Get the context info from the enRole.properties file.
 */
PropertiesManager propMgr;
 Appendix B. Source code 335

try {
propMgr = PropertiesManager.gInstance();

} catch (IOException e) {
throw new DataSourceRetrievalException(e);

}
Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY, propMgr.getProperty(PROP_FILE,

FACTORY_PROP));

p.put(Context.PROVIDER_URL, propMgr.getProperty(PROP_FILE, URL_PROP));
p.put(Context.SECURITY_PRINCIPAL, propMgr.getProperty(PROP_FILE,

PRINCIPAL_PROP));
String credentials = propMgr.getProperty(PROP_FILE, CREDENTIALS_PROP);
if (credentials.length() > 0 && credentials.charAt(credentials.length()

- 1) == '=')
/*
 * This ITIM installation encrypts the passwords stored in its
 * properties files.
 */
credentials = EncryptionManager.getInstance().decrypt(credentials);

p.put(Context.SECURITY_CREDENTIALS, credentials);

/*
 * The app server's context factory will return an instance of a
 * DataSource.
 */
DataSource dataSource;
try {

Context ctx = new InitialContext(p);
Object o = ctx.lookup(dataSourceName);
dataSource = (DataSource) PortableRemoteObject.narrow(o,

DataSource.class);
} catch (ClassCastException e) {

throw new DataSourceRetrievalException(e);
} catch (NamingException e) {

throw new DataSourceRetrievalException(e);
}

/*
 * Get the database connection.
 */
Connection con = null;
try {

con = dataSource.getConnection();
} catch (SQLException e) {

throw new DataSourceRetrievalException(e);
}
try {

/*
336 Identity Management Advanced Design for IBM Tivoli Identity Manager

 * Automatically commit after each SQL statement.
 */
con.setAutoCommit(true);

} catch (SQLException e) {
try {

con.close();
} catch (SQLException ignored) {
}
throw new DataSourceRetrievalException(e);

}

return con;
}

/**
 * Get a database connection, and use it to create a JDBC Statement object.
 *
 * @param dataSourceName
 * The name of the DataSource without the leading "jdbc/".
 * @return a JDBC Statement object
 * @throws DataSourceRetrievalException
 * as a wrapper for any exceptions encountered. This may be any
 * one of the exceptions that can be encountered by the
 * getConnection method, or a SQLException if a Statement could
 * not be created using the connection.
 */
private Statement getStatement(String dataSourceName) throws

DataSourceRetrievalException {
Connection con = getConnection(dataSourceName);
Statement stmt;
try {

stmt = con.createStatement();
} catch (SQLException e) {

try {
con.close();

} catch (SQLException ignored) {
}
throw new DataSourceRetrievalException(e);

}
try {

/*
 * Configure the statement to timeout if any SQL command runs for
 * more than 5 minutes. That should be enough for most purposes. I
 * don't want a workflow thread to hang forever waiting for a dead
 * database.
 */
stmt.setQueryTimeout(300);

} catch (SQLException e) {
closeDown(stmt);
 Appendix B. Source code 337

throw new DataSourceRetrievalException(e);
}
return stmt;

}

/**
 * Close a JDBC Statement and its Connection.
 *
 * @param stmt
 * the Statement
 */
private void closeDown(Statement stmt) {

if (stmt != null) {
Connection con = null;
try {

/*
 * Get the statement's connection.
 */
con = stmt.getConnection();

} catch (SQLException ignored) {
SystemLog.getInstance().logError(this, "Error getting con " +

ignored.toString());
}
try {

stmt.close();
} catch (SQLException ignored) {

SystemLog.getInstance().logError(this, "Error closing stmt " +
ignored.toString());

}
if (con != null)

try {
con.close();

} catch (SQLException ignored) {
SystemLog.getInstance().logError(this, "Error closing con " +

ignored.toString());
}

else
SystemLog.getInstance().logError(this,

"Lost a reference to a statement's connection. Possible
connection leak.");

}
}

/**
 * @author davisbri
 *
 * This class acts as a wrapper for any exceptions that are encountered
 * while creating JDBC connections and statements. The handlers that catch
 * this exception are actually interested in the "cause" exception.
338 Identity Management Advanced Design for IBM Tivoli Identity Manager

 */
private static class DataSourceRetrievalException extends Exception {

public DataSourceRetrievalException(Throwable cause) {
super(cause);

}
}

}

 Appendix B. Source code 339

applicationServlet.java
package examples.expi;
import java.io.IOException;
import java.util.Collection;
import java.util.Date;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.StringTokenizer;
import java.util.Vector;
import java.rmi.RemoteException;

import javax.security.auth.Subject;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import com.ibm.itim.apps.ApplicationException;
import com.ibm.itim.apps.PlatformContext;
import com.ibm.itim.apps.Request;
import com.ibm.itim.apps.identity.PersonMO;
import com.ibm.itim.apps.provisioning.AccountMO;
import com.ibm.itim.apps.provisioning.AccountManager;
import com.ibm.itim.apps.provisioning.ServiceMO;
import com.ibm.itim.common.AttributeValue;
import com.ibm.itim.common.AttributeValues;
import com.ibm.itim.dataservices.model.domain.Account;
import com.ibm.itim.dataservices.model.domain.Service;

/**
 * @version 2.0
 * @author aannas
 */

public class applicationServlet extends HttpServlet {
private HttpSession session;
private static expiUtil utilObject = null;
private static String LOGON_PAGE = "logon.jsp";

// These get loaded at init
private static String ERROR_MESSAGE;
private static String MAIN;
private static String LOGON;
private static String APPLICATIONS;
private static String APPLICATIONS_SUB;
340 Identity Management Advanced Design for IBM Tivoli Identity Manager

/**
 * Method init
 * Load up defines!
 * @see javax.servlet.GenericServlet#init()
 */

public void init() throws ServletException{
log("init(): start");

try {
utilObject = new expiUtil();

} catch (Exception e) {
e.printStackTrace();

}

LOGON = utilObject.getPropertySSOCheck(utilObject.LOGON_PAGE);
log("init(): Logon Page = " + LOGON);
log("applicationServlet:init(): end");

// Application Subscription page
APPLICATIONS = utilObject.getProperty(utilObject.APPLICATIONS_PAGE);
log("init(): Applications page: " + APPLICATIONS);
if (isNullOrEmpty(APPLICATIONS))

throw new ServletException("Could not load Applications page location
from properties file");

APPLICATIONS.trim();

// Application Subscription Submitted page
APPLICATIONS_SUB =

utilObject.getProperty(utilObject.APPLICATIONSSUB_PAGE);
log("init(): Applications Submitted page: " + APPLICATIONS_SUB);
if (isNullOrEmpty(APPLICATIONS_SUB))

throw new ServletException("Could not load Applications Submitted
page location from properties file");

APPLICATIONS_SUB.trim();
log("init()complete: Applications Submitted page: " + APPLICATIONS_SUB);

}

/**
 * Method doGet
 * Obtains the necessary attributes from the Request (user must be

authenticated) and all the required
 * data items provided in the session. If all items are provided, if TAM

is in use then a list of applications (TAM groups) is
 * processed and control is forwarded to the applications.jsp page. If TAM

is not in use, then the list of
 Appendix B. Source code 341

 * applications the authenticated user is authorized to have access to is
processed and the applications.jsp page.

 * The jsp page builds a table of Applications that the user may pick
(select or un-select).

 *
 * @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
log("doGet()");

session = req.getSession(false);
if (session == null) {

log("Session is not valid.");
req.setAttribute("message", "The Session is no longer valid");
resp.sendRedirect("logon.jsp");
return;

}

// do we have a valid subject to work with - this will be the case
// if the logon was successful, otherwise not.

if (!isSubjectAssigned(req, resp))
return;

Subject subject = (Subject) session.getAttribute(expiUtil.SUBJECT);

if (subject == null) {
log(

"applicationServlet:doGet() - no subject - redirecting to logon
page");

resp.sendRedirect(LOGON_PAGE);
}

PlatformContext platform =
(PlatformContext) session.getAttribute(expiUtil.PLATFORM_CONTEXT);

if (platform == null) {
log(

"applicationServlet:doGet() - no Platform Context object -
redirecting to logon page");

resp.sendRedirect(LOGON_PAGE);
}

String userID = (String) session.getAttribute(expiUtil.LOGON_ID);
if (userID == null) {

log(
342 Identity Management Advanced Design for IBM Tivoli Identity Manager

"applicationServlet:doGet() - no userID found - redirecting to
logon.jsp");

resp.sendRedirect(LOGON_PAGE);
}

PersonMO personMo = (PersonMO) session.getAttribute(expiUtil.PERSONMO);

if (personMo == null) {
log(

"applicationServlet:doGet() - no PersonMO object found -
redirecting to logon page");

resp.sendRedirect(LOGON_PAGE);
}

// load the Account information respective to the person
Account account = null;
AccountMO acctMO = null;
if (utilObject.isTAMService()){

log("isTAMService: doGet");
acctMO =

utilObject.lookupAccounts(
platform,
subject,
personMo,
utilObject.getProperty(expiUtil.APP_SERVICE_DN));

account = utilObject.account;
}else{

log("applicationServlet:doGet() - TAM Not in use: setting account to
null");

account = null;
}
if (account != null) {

// save off the AccountMO and respective account for this service in
order to reduce

// processing in the doPost...

session.setAttribute(expiUtil.ACCOUNTMO, acctMO);
session.setAttribute(expiUtil.ACCOUNT, account);

// add the group names from the property file to the request header.
Those placed in the

// request header are currently selected groups. Those left off are
configured in the

// property file but are not selected.

setRequestAttributes(req, account.getAttributes());

utilObject.forward(
req,
 Appendix B. Source code 343

resp,
"",
utilObject.getProperty(expiUtil.APPLICATIONS_PAGE));

} else {
log(
"applicationServlet:doGet() - no Account found for Service " +

utilObject.getProperty(expiUtil.APP_SERVICE_NAME));
Collection authAcctNames =

utilObject.lookupAuthAccounts(platform,subject,personMo);
if (!authAcctNames.isEmpty()){

log("doGet() - AuthAccounts found ");
session.setAttribute("authAccountNames",authAcctNames);
resp.sendRedirect(APPLICATIONS);

}else{
log("doGet() - No AuthAccounts found ");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"There are No Authorized Services to select",
APPLICATIONS_SUB);

}
}

}//doGet

/**
 * Method doPost
 * Processes the selections made in the applications.jsp. A delta of the

selected and unselected
 * groups is made an any changes are submitted to the account update

process.
 * @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
String sGroup;

session = req.getSession(false);
if (session == null) {

log(
"applicationServlet:doPost() - Session is not valid.");

req.setAttribute("message", "The Session is no longer valid");

// under SSO we can't error out to the logon servelet either.
// In this case we use the mapped LOGON_PAGE (which should be the
// ssoerror.jsp

if (utilObject.isSSOEnabled())
344 Identity Management Advanced Design for IBM Tivoli Identity Manager

resp.sendRedirect(LOGON_PAGE);
else

resp.sendRedirect(expiUtil.LOGON_SERVLET);
return;

}

// Make user the user input some information
if (validateSubmittedAnswers(req, resp, session)){

PlatformContext platform =
(PlatformContext) session.getAttribute(expiUtil.PLATFORM_CONTEXT);

if (platform == null) {
log(

"applicationServlet:doPost() - no Platform Context object -
redirecting to logon page");

resp.sendRedirect(LOGON_PAGE);
}

Subject subject = (Subject) session.getAttribute(expiUtil.SUBJECT);

if (subject == null) {
log(

"applicationServlet:doGet() - no subject - redirecting to logon
page");

resp.sendRedirect(LOGON_PAGE);
}

PersonMO personMo = (PersonMO)
session.getAttribute(expiUtil.PERSONMO);

if (personMo == null) {
log(

"applicationServlet:doGet() - no PersonMO object found -
redirecting to logon page");

resp.sendRedirect(LOGON_PAGE);
return;

}

log("applicationServlet:doPost()");
// If TAM is in use
if (utilObject.isTAMService()){

Enumeration pname = req.getParameterNames();

// Simply list the values in the enumeration
while (pname.hasMoreElements()) {

String element = (String) pname.nextElement();
String sValue = (String)req.getParameter(element);
 Appendix B. Source code 345

log("Parameter: " + element + ": " + sValue);
}

if (!isSubjectAssigned(req, resp))
return;

AccountMO acctMO = (AccountMO)
session.getAttribute(expiUtil.ACCOUNTMO);

if (acctMO == null) {
log(

"applicationServlet:doPost() - no accountMO - redirecting
to logon page");

resp.sendRedirect(LOGON_PAGE);
return;

}

Account account = (Account)
session.getAttribute(expiUtil.ACCOUNT);

if (account == null) {
log(

"applicationServlet:doPost() - no account - redirecting to
logon page");

resp.sendRedirect(LOGON_PAGE);
return;

}

// build the consolidated lists of new groups and those to be
removed.

Collection colExistingRoles;
Collection colNewRoles;
Collection colDefinedRoles;
AttributeValues attrValues = account.getAttributes();

colExistingRoles = utilObject.getTamGroups(attrValues);
colNewRoles = new Vector(0);

// get the set of applications (groups) that can are configured
// in the properties file...

colDefinedRoles = getDefinedGroups();

// get the roles selected in the JSP
pname = req.getParameterNames();
while (pname.hasMoreElements()) {

String element = (String) pname.nextElement();
sGroup = req.getParameter(element);
if (!sGroup.equals("")) {
346 Identity Management Advanced Design for IBM Tivoli Identity Manager

if (!colExistingRoles.contains(sGroup)) {
colNewRoles.add(sGroup);

}
colDefinedRoles.remove(sGroup);

}
// now run through the collection and consolidate the groups

that are to be
// added and deleted

boolean bChanges = false;

// build collection on new groups
Iterator it = colNewRoles.iterator();
while (it.hasNext()) {

sGroup = (String) it.next();
colExistingRoles.add(sGroup);
bChanges = true;

}

// update the list for those that are to be deleted (these were
not part of the parameters

// that were selected...thus are deleted...

it = colDefinedRoles.iterator();
while (it.hasNext()) {

sGroup = (String) it.next();
colExistingRoles.remove(sGroup);
bChanges = true;

}

// if any changes need to be made, set the attribute.
// NOTE: only the groups in the property files get

manipulated...
// other groups are left untouched.

if (bChanges) {
log("New Group Attr = " + colExistingRoles.toString());

// add the new roles to the attribute list
AttributeValue modAttrVal =

new
AttributeValue(utilObject.getProperty(expiUtil.APP_SERVICE_ATTR),
colExistingRoles);

account.setAttribute(modAttrVal);

// update the account object with the new attributes...and
if successful,
 Appendix B. Source code 347

// forward to the self care submitted page...otherwise
forward back to the

// self-care page

if (utilObject.updateAccount(acctMO, account)) {
utilObject.forward(

req,
resp,
"",
utilObject.getProperty(expiUtil.SELFCARESUB_PAGE));

return;
}

}

utilObject.forward(
req,
resp,
"Application Subscription failed (please check the server

logs).",
utilObject.getProperty(expiUtil.SELFCARE_PAGE));

}
// TAM is not in use
}else{

log("Application Servlet TAM Not in use...");
Enumeration pmeters = req.getParameterNames();
Collection authAccts = utilObject.lookupAuthAccounts(platform,

subject, personMo);
Iterator authItr = authAccts.iterator();
while (pmeters.hasMoreElements()){

String pmeterName = (String)pmeters.nextElement();
log("Parameter element: " + pmeterName);
if (!pmeterName.equals("OK")){

log("Parameter element != OK");
while (authItr.hasNext()){

ServiceMO authSvcMO = (ServiceMO)authItr.next();
try {

Service authSvc = authSvcMO.getData();
String authSvcName = authSvc.getName();
log("pmeterName: " + pmeterName + " == authSvcName: "

+ authSvcName);
if (pmeterName.equals(authSvcName)){

log("TRUE : pmeterName: " + pmeterName + " ==
authSvcName: " + authSvcName);

 AccountManager acctMgr = new
AccountManager(platform, subject);

if (acctMgr == null){
 log("AccountManager instantiation failed");

session.setAttribute("Result",new Integer(-1));
utilObject.forward(
348 Identity Management Advanced Design for IBM Tivoli Identity Manager

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}
AttributeValues newAcctParms = null;
String svcProfileName = "";
try{

newAcctParms =
acctMgr.getAccountParameters(personMo,authSvcMO);

log("New Account Attrs: " + newAcctParms);
svcProfileName =

authSvcMO.getData().getProfileName();
log("svcProfileName: " + svcProfileName);

}catch (ApplicationException e){
e.printStackTrace();
log("returning NULL Application Exception");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}catch (RemoteException e){
e.printStackTrace();
log("returning NULL Remote Exception");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}
String propName = expiUtil.APP_PROF.toString() +

"." + svcProfileName.toLowerCase();

// get the attribute name and value from the
properties file

log("propName: " + propName);
 Appendix B. Source code 349

String acctProfile =
utilObject.getProperty(propName);

if (acctProfile == null) {
log("returning NULL Profile not defined in

properties file");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}
log("Application profile: " + acctProfile);
Account acct = new Account(acctProfile);
acct.setAttributes(newAcctParms);
log("New Account Object Created : " +

acct.getName());
Request acctReq = null;
try{

acctReq =
acctMgr.createAccount(personMo,authSvcMO, acct, new Date());

}catch (ApplicationException e){
e.printStackTrace();
log("Account Create failed Application

Exception");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}catch (RemoteException e){
e.printStackTrace();
log("Account Create failed Remote Exception");
session.setAttribute("Result",new Integer(-1));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;
350 Identity Management Advanced Design for IBM Tivoli Identity Manager

}
if (acctReq == null){

log("Account Create Failed");
session.setAttribute("Result",new

String("failed"));
utilObject.forward(

req,
resp,
"Application Subscription failed (please

check the server logs).",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}
log("Account Requested ID: " + acctReq.getID());
log("Account Request Status: " +

acctReq.getStatus());

session.setAttribute("Result",new
Integer(acctReq.getStatus()));

utilObject.forward(
req,
resp,
"",

utilObject.getProperty(expiUtil.APPLICATIONSSUB_PAGE));
return;

}else
log("FALSE : pmeterName: " + pmeterName + " ==

authSvcName: " + authSvcName);

}catch (Exception e){
e.printStackTrace();
return;

}
}

}
}

}// else TAM is Not in use
}//No User Input
log("No Services Selected");
utilObject.forward(

req,
resp,
"No Services Selected, Please Select a Service and Click OK",
utilObject.getProperty(expiUtil.APPLICATIONS_PAGE));

return;
 Appendix B. Source code 351

}// doPost

/**
 * Method isSubjectAssigned.
 * Verifies if a Subject is provided in the request.
 * @param req
 * @param resp
 * @return boolean - true if Subject was found, false otherwise
 * @throws IOException
 */
private boolean isSubjectAssigned(

HttpServletRequest req,
HttpServletResponse resp)
throws IOException {
Subject subject = (Subject) session.getAttribute("subject");
if (subject == null) {

log("Session is not valid (no subject).");

session.invalidate();

req.setAttribute("message", "The Session is no longer valid.");
resp.sendRedirect(LOGON_PAGE);
return false;

}
return true;

}

private boolean validateSubmittedAnswers(
HttpServletRequest req,
HttpServletResponse resp,
HttpSession session)
throws ServletException, IOException {

Enumeration pmeters = req.getParameterNames();
while (pmeters.hasMoreElements()){

if (pmeters.nextElement().equals(null)){
return false;

}
}

return true;
}

/**
 * Method setRequestAttributes.
 * @param req
 * @param selfcareAttrs
 * @param person
352 Identity Management Advanced Design for IBM Tivoli Identity Manager

 */
public void setRequestAttributes(

HttpServletRequest req,
AttributeValues attrValues) {
log("setRequestAttributes - Groups");

Collection roles = utilObject.getTamGroups(attrValues);

log("Account contains:: ");
Iterator iter = roles.iterator();
while (iter.hasNext()) {

log("Group: " + iter.next());
}

String groups = utilObject.getProperty(expiUtil.APP_LIST);

StringTokenizer st = new StringTokenizer(groups, ",");
while (st.hasMoreTokens()) {

String sAttr = st.nextToken();
String appPropertyName =

new String("application." + sAttr + ".name");
String appPropertyDN = new String("application." + sAttr + ".dn");

if (appPropertyName != null) {
//log("sAttr=" + sAttr + " App Property: " + appPropertyName);

String appName =
new String(utilObject.getProperty(appPropertyName));

if (appName != null) {
String appNameDN =

new String(utilObject.getProperty(appPropertyDN));

if (roles.contains(appNameDN)) {
req.setAttribute(sAttr, appName);
log(

"sAttr: (dn=" + appNameDN + ") " + sAttr + " - " +
appName);

} else {
log(

"sAttr: (dn=" + appNameDN + ") " + sAttr + " -
(blank)");

req.setAttribute(sAttr, "");
}

} else
req.setAttribute(sAttr, "");

} else
req.setAttribute(sAttr, "");

}
}

 Appendix B. Source code 353

/**
 * Method getDefinedApplications.
 * Returns a collection of defined application names (DN's of the Groups)

from the property file.
 * @return Collection
 */
public Collection getDefinedGroups() {

Collection colRoles = new Vector(0);

log("getDefinedApplications - Groups: ");

String appString = utilObject.getProperty(expiUtil.APP_LIST);
log("Application List: " + appString);

StringTokenizer st = new StringTokenizer(appString, ",");
while (st.hasMoreTokens()) {

String sAttr = st.nextToken();
String appPropertyName =

new String("application." + sAttr + ".name");
String appPropertyDN = new String("application." + sAttr + ".dn");

if (appPropertyName != null) {
log("App Property: " + appPropertyName);

String appName =
new String(utilObject.getProperty(appPropertyName));

if (appName != null) {
log("App Name: " + appName);

String appNameDNStr =
new String(utilObject.getProperty(appPropertyDN));

colRoles.add(new String(appNameDNStr));
}

}
}

return colRoles;
}

private boolean isNullOrEmpty(Object o) {

if ((o == null) || (o.equals("")))
return true;

else
return false;

}

354 Identity Management Advanced Design for IBM Tivoli Identity Manager

}

 Appendix B. Source code 355

applications.jsp
<!--
* Licensed Materials - Property of IBM
* @version 2.0
* @author aannas
*
* Description:
*
* JSP to display application subscription
*
***/
-->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=WINDOWS-1252"%>
<%@ page import="examples.expi.*" %>
<%@ page import="java.util.*" %>
<%@ page import="com.ibm.itim.apps.provisioning.ServiceMO"%>
<%@ page import="com.ibm.itim.dataservices.model.domain.Service"%>
<%@ include file="expiProlog.jsp" %>

<TITLE>Tivoli Austin Airlines Self Care- Application Subscription</TITLE>

<SCRIPT language="JavaScript">
 function getLogoutURL()
 {
 document.location= "./logon";
 }

 function getHomeURL()
 {
 document.location= "./logon";
 }

 function getChangePwdURL()
 {
 document.location= "./changepwd.jsp";
 }

function submitApplications()
{

document.appForm.action = "./applicationServlet";
document.appForm.submit();

}

356 Identity Management Advanced Design for IBM Tivoli Identity Manager

function goToMainPage()
{

 document.location="./main.jsp";
}

</SCRIPT>
</HEAD>

<%@ include file="expi_header.html" %>
<BODY>
<table border=0 cellpadding=0 cellspacing=0 width=100%>

<tr>
<td width="80"><img src="images/img_clear.gif" width="80"

height="10"></td>
<td width="100%">

<table border=0 cellpadding=0 cellspacing=0 width=100%>
<tr>

<td class="heading-text">Applications Subscription</td>
</tr>
<tr>

<td class="heading-line"><img src="images/img_clear.gif" width="1"
height="2"></td>

</tr>
<tr>

<td class="text-description">Please select from the following
services

and press OK when completed</td>
</tr>

</table>
<FORM NAME="appForm" METHOD="POST">
<TABLE border="0" width="377">
<TBODY>

<%
log("applications.jsp start");
expiUtil utilObject = null;

try {
utilObject = new expiUtil();

} catch (Exception e) {
e.printStackTrace();

}
// If TAM is Not in Use
if (!utilObject.isTAMService()){

String sAttr, sAttrValue, sAttrValueDN, sAttrText = "";
String isChecked = null;
Collection authNames =

(Collection)session.getAttribute("authAccountNames");
Iterator appItr = authNames.iterator();
while (appItr.hasNext()){
 Appendix B. Source code 357

ServiceMO authSvcMO = (ServiceMO)appItr.next();
Service authSvc = authSvcMO.getData();
sAttr = authSvc.getName();
sAttrValueDN = authSvc.getDistinguishedName().toString();
sAttrText = authSvc.getName();
sAttrValue = (String)request.getAttribute(sAttr);
if (sAttrValue == null || sAttrValue.equals(""))

isChecked = "";
else {

isChecked = "checked";
}

%>
<TR>

<TH><INPUT type="checkbox" name="<%= sAttr %>" value="<%=
sAttrValueDN %>" <%= isChecked %>></TH>

<TD><%= sAttrText %></TD>
</TR>

<%
}

}else{
// If TAM Is in Use

String appAttrs = utilObject.getProperty(expiUtil.APP_LIST);

if (appAttrs != null) {
 session.setAttribute("appuserActivity","active");

StringTokenizer st = new StringTokenizer(appAttrs, ",");
while (st.hasMoreTokens()) {

String sAttr = st.nextToken();
String isChecked = null;

String sPropName = "application." + sAttr + ".name";
String sPropNameDN = "application." + sAttr + ".dn";

// get the attribute name and value from the properties
file

String sAttrText = utilObject.getProperty(sPropName);
if (sAttrText == null) {

sAttrText = "(Application name not defined in properties
file)";

}

String sAttrValueDN = utilObject.getProperty(sPropNameDN);
if (sAttrValueDN == null) {

sAttrValueDN = "(Application group name not defined in
properties file)";

}

358 Identity Management Advanced Design for IBM Tivoli Identity Manager

// if this attribute was on the request header - that means
it's selected

// otherwise not.

String sAttrValue = (String)request.getAttribute(sAttr);
if (sAttrValue == null || sAttrValue.equals(""))

isChecked = "";
else {

isChecked = "checked";
}

%>
<TR>

<TH><INPUT type="checkbox" name="<%= sAttr %>" value="<%=
sAttrValueDN %>" <%= isChecked %>></TH>

<TD><%= sAttrText %></TD>
</TR>

<%
}

}else{
 session.setAttribute("appuserActivity","none");

}
}
%>
</TBODY>

</TABLE>

<input type="submit" name="OK" id="OK" value="OK" class="button"

onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="submitApplications()">

<input type="button" name="Cancel" id="Cancel" value="Cancel"
class="button" onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="goToMainPage()">

</form>
</td>

</tr>
</table>
</body>
</html>
 Appendix B. Source code 359

application_sub.jsp
<!--
* Licensed Materials - Property of IBM
* @version 2.0
* @author aannas
*
* Description:
*
* JSP to display application submission.
*
***/
-->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<%@ page language="java" contentType="text/html; charset=WINDOWS-1252"%>
<HEAD>
<TITLE>Tivoli Austin Airlines Self Care - Application Request Submitted</TITLE>
</HEAD>

<%@ include file="expi_header.html" %>

<script language="JavaScript">
function goToMainPage() {
 document.location="main.jsp";
}
</script>

<BODY>
<table border=0 cellpadding=0 cellspacing=0 width=90%>

<tr>
<td width="80"><img src="images/img_clear.gif" width="80"

height="10"></td>
<td width="100%">

<table border=0 cellpadding=0 cellspacing=0 width=100%>
<tr>

<td></td>
</tr>
<tr>

<td class="heading-text">Application Request Submission</td>
</tr>
<tr>

<td class="heading-line"><img src="images/img_clear.gif" width="1"
height="2"></td>

</tr>
<TR>
360 Identity Management Advanced Design for IBM Tivoli Identity Manager

<TD></TD>
</TR>
<tr>
<%Integer submissionRslt = (Integer)session.getAttribute("Result");
 if (submissionRslt.intValue()== 2){
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request was successfully
submitted.</td>

<%
 }else if (submissionRslt.intValue()== 0){
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request failed to start on
submission. Please check the logs for details.</td>

 <%
 }else if (submissionRslt.intValue()== 1){
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request is in process. Please
review accounts status.</td>

 <%
 }else if (submissionRslt.intValue()== 3){
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request failed on submission.
Please check the logs for details.</td>

 <%
 }else if (submissionRslt.intValue()== 4){
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request produced a warning
during submission. Please check the logs for details.</td>

 <%
 }else{
 log("Request Submission result code: " +

submissionRslt.intValue());
 %>

<td class="text-description">Your request failed prior to
submission. Please check the logs for details.</td>

 <%
 }
 %>

 Appendix B. Source code 361

</tr>
</table>

 <!-- If there's an error message, display it! -->
 <table width="90%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td><%@ include file="error_msg_box.jsp" %></td>
 </tr>
 </table>

<P>
<table>

 <tr>
 <td>

 <input type="button" name="OK" id="Cancel" value="OK"
class="button" onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="goToMainPage()">
 </td>
 </tr>

</table>
</td>

</tr>
</table>
</body>
</html>
362 Identity Management Advanced Design for IBM Tivoli Identity Manager

todolistServlet.java
/**
 *
 * Licensed Materials - Property of IBM
 *
 * (C) COPYRIGHT IBM Corp. 2005
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 *
 *
 ***/

/**
 * FILE: %Z%%M% %I% %W% %G% %U%
 *
 * This servlet contains methods that control the self registration
 * process for the Servlet Portfolio Example.
 *
 * The user must provide a set of attributes that are considered mandatory
 * for the self registration process. The attributes used are imbedded in the
 * selfregister.jsp. This example shows the method of using variables directly
in the
 * JSP. This contrasts to the method used in the selfCareServlet which uses the
 * itim_expi.properties file to define and autoconfigure the input table.
 *
 * One the user provides the necessary data, it is validated and if it
 * appears correct, the ITIM APIs are used to create the Person object.
 * Note: Account provisioning must be configured for at least the ITIM Accounts
for
 * the samples to function correctly and allow the user to log on after
 * creating an account. In additional, TAM accounts can be provisioned to allow
 * control of Applications to which the user may subscribe. (Refer to the
 * ITIM documentation for Provisioning information).
 *
**/

package examples.expi;

import java.io.IOException;
import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Vector;
import java.util.Map;
import java.util.HashMap;
 Appendix B. Source code 363

import javax.servlet.*;
import javax.servlet.http.*;
import javax.security.auth.Subject;

import com.ibm.itim.apps.ApplicationException;
import com.ibm.itim.apps.PlatformContext;
import com.ibm.itim.apps.SchemaViolationException;
import com.ibm.itim.apps.workflow.HumanResourceMO;
import com.ibm.itim.apps.workflow.WorkflowActivityMO;
import com.ibm.itim.apps.workflow.WorkflowAssignmentMO;
import com.ibm.itim.apps.workflow.WorkflowProcessMO;
import com.ibm.itim.workflow.model.WorkflowProcess;
import com.ibm.itim.workflow.model.ActivityResult;
import com.ibm.itim.workflow.model.Activity;
import com.ibm.itim.workflow.model.Assignment;

/**
 * @version 2.0
 * @author aannas
 *
 * todoServlet:
 * This servlet works in conjuction with the todoList.jsp that provides
 * a subset of data for a user to complete their assignments in ITIM.
 *
 */
public class todolistServlet extends HttpServlet {

public static final String PLATFORM_CONTEXT = "platform";
private String LOGON_PAGE = "logon.jsp";

// Current Assigned Activities in TIM
private static final String ASSIGNMENTS = "todoListAssignments";

// These get loaded at init
private static String ERROR_MESSAGE;
private static String MAIN;
private static String LOGON;
private static String TDL_ASSIGNMENTS;

/**
 * Method init
 * Load up defines!
 * @see javax.servlet.GenericServlet#init()
 */

public void init() throws ServletException {
364 Identity Management Advanced Design for IBM Tivoli Identity Manager

log("tolodlistServlet init()");
expiUtil utilObject = new expiUtil();

/**
 * Defines
 */
ERROR_MESSAGE = utilObject.ERR_LABEL;

// Logon page
LOGON = utilObject.getPropertySSOCheck(utilObject.LOGON_PAGE);
log("init(): logon page: " + LOGON);
if (isNullOrEmpty(LOGON))

throw new ServletException("Could not load logon page location from
properties file");

LOGON.trim();

// Main page
MAIN = utilObject.getProperty(utilObject.HOME_PAGE);
log("init(): Home page: " + this.MAIN);
if (isNullOrEmpty(MAIN))

throw new ServletException("Could not load home page location from
properties file");

MAIN.trim();

// To Do List page
TDL_ASSIGNMENTS =

utilObject.getProperty(utilObject.TDLASSIGNMENTS_PAGE);
log("init(): To Do List Assignments page: " + TDL_ASSIGNMENTS);
if (isNullOrEmpty(TDL_ASSIGNMENTS))

throw new ServletException("Could not load To Do List Assignments
page location from properties file");

TDL_ASSIGNMENTS.trim();

} // init

/**
 * Method destroy
 * Right now this does nothing.
 * @see javax.servlet.Servlet#destroy()
 */

public void destroy() {

} // destroy
 Appendix B. Source code 365

/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

// Get the session
HttpSession session = req.getSession(true);

//Check if it has expired
if (session.isNew()) {

log("doPost(): No previous session; forwarding to logon page");
goToPage(

LOGON,
"Your session has expired or is invalid. Please sign on again.",
session,
req,
resp);

return;
}

Collection assignCol = new Vector();
Collection wkflMOCol = new Vector();

try {
Subject subject = (Subject) session.getAttribute(expiUtil.SUBJECT);
log("TodolistServlet : Subject = " + subject);

log("call to HumanResourceMO()");
HumanResourceMO hrMO = new

HumanResourceMO((PlatformContext)session.getAttribute(PLATFORM_CONTEXT),
subject);

log("After hrMO new()");
Collection hrMOassnmts = hrMO.getAssignments();
log("After Collection hrMOassnmts");
if (hrMOassnmts.size() == 0) {

assignCol = null;
session.setAttribute(ASSIGNMENTS,assignCol);
log("No Pending Activities");
resp.sendRedirect(TDL_ASSIGNMENTS);

}
log("executetodosearch() - after hrMOassnmts");

 Iterator it = hrMOassnmts.iterator();
 while (it.hasNext()) {

log("it.hasNext()");
WorkflowAssignmentMO wkflwAssgnMO =

(WorkflowAssignmentMO)it.next();
wkflMOCol.add(wkflwAssgnMO);
366 Identity Management Advanced Design for IBM Tivoli Identity Manager

log("Assignment added: " + wkflwAssgnMO);
WorkflowActivityMO wkflwActMO = wkflwAssgnMO.getActivity();
log("Parameter List Created");
assignCol.add(wkflwActMO);
session.setAttribute("activities",assignCol);
//Save the collection so not repeat the processing later
session.setAttribute("assignments",wkflMOCol);

}
session.setAttribute(ASSIGNMENTS, assignCol);
resp.sendRedirect(TDL_ASSIGNMENTS);

} catch (RemoteException e) {
e.printStackTrace();
goToPage(TDL_ASSIGNMENTS,"Error: Failed on Remote

assignmentCompletion",session,req, resp);
} catch (SchemaViolationException e) {

e.printStackTrace();
goToPage(TDL_ASSIGNMENTS,"Error:

SchemaViolationException",session,req, resp);
} catch (ApplicationException e) {

e.printStackTrace();
}

}//doGet

/**
 * Enables a user to view and complete the user’s assignments using the

external ITIM API HumanResource.getAssingments().
 * Minor validatation is carried out to for passwords

(attribute=ersharedsecret).
 *
 *
 * @param req Provides access to the form data parametes (data fields).
 * @exceptionServletException
 * @exceptionIOException
 */
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

log("doPost()");

// Get the session
HttpSession session = req.getSession(true);

//Check if it has expired
if (session.isNew()) {

log("doPost(): No previous session; forwarding to logon page");
goToPage(

LOGON,
 Appendix B. Source code 367

"Your session has expired or is invalid. Please sign on again.",
session,
req,
resp);

return;
}
Collection wfMOcl = (Collection)session.getAttribute("assignments");
Iterator it = wfMOcl.iterator();
WorkflowActivityMO wkflwActMO;
WorkflowAssignmentMO wkflwAssgnMO;
Activity actvty;

 while (it.hasNext()) {
log("it.hasNext()");
wkflwAssgnMO = (WorkflowAssignmentMO)it.next();
log("WorkflowAssignmentMO object instantiated: " +

wkflwAssgnMO.getID());
try{

log("About to retieve Activity");
wkflwActMO = wkflwAssgnMO.getActivity();
actvty = wkflwActMO.getData();
ActivityResult actRslt = null;
if (req.getParameter(actvty.getDesignId() +

"decision").equals("SUCCESS")){
log("Retrieving req.getParameter(actvty.getDesignId() +

reason): " + req.getParameter(actvty.getDesignId() + "reason"));
actRslt = new ActivityResult(actRslt.STATUS_COMPLETE,

actRslt.SUCCESS,
req.getParameter(actvty.getDesignId() + "reason"),new

Vector());
log("actRslt.getAttribute Description Retrieved and

actRslt.setDescription set: "
+ actRslt.getDescription());

log("Activity Result set to Success");
log("Completing wkflwAssgnMO");
wkflwAssgnMO.complete(actRslt);
log("wkflwAssgnMO Completed");

}else{
log("Retrieving req.getParameter(actvty.getDesignId() +

reason): " + req.getParameter(actvty.getDesignId() + "reason"));
actRslt = new ActivityResult(actRslt.STATUS_COMPLETE,

actRslt.REJECTED,
req.getParameter(actvty.getDesignId() + "reason"),new

Vector());
log("actRslt.getAttribute Description Retrieved and

actRslt.setDescription set: "
+ actRslt.getDescription());

log("Activity Result set to Rejected");
log("Completing wkflwAssgnMO");
wkflwAssgnMO.complete(actRslt);
368 Identity Management Advanced Design for IBM Tivoli Identity Manager

log("wkflwAssgnMO Completed");
}

}catch(ApplicationException e){
e.printStackTrace();
log("ApplictionException in doPost");

}catch (RemoteException e){
e.printStackTrace();
log("RemoteException in doPost");

}
 }

log("done doPost");
resp.sendRedirect(MAIN);

}//doPost

private boolean isNullOrEmpty(Object o) {

if ((o == null) || (o.equals("")))
return true;

else
return false;

}

/**
 * Method goToPage.
 * Set the message in the request and forward it on to the specified page.
 * @param page
 * @param errorMessage
 * @param session
 * @param request
 * @param response
 * @throws ServletException
 * @throws IOException
 */
private void goToPage(

String page,
String errorMessage,
HttpSession session,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

if (errorMessage != null){
log("Error Message :" + errorMessage);
session.setAttribute(ERROR_MESSAGE, errorMessage);

}

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/" + page);
 Appendix B. Source code 369

dispatcher.forward(request, response);

} // goToPage

}

370 Identity Management Advanced Design for IBM Tivoli Identity Manager

todolist.jsp
<!--
* Licensed Materials - Property of IBM
* @version 2.0
* @authoraannas
*
* Description:
*
* JSP to display To Do List.
*
***/
-->

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<%@ page
import="java.util.*,com.ibm.itim.workflow.model.*,com.ibm.itim.apps.workflow.*"
%>

<title>Tivoli Austin Airlines Self Care - To Do List</title>

<SCRIPT language="JavaScript">
 function getLogoutURL()
 {
 document.location= "./logon";
 }

 function getHomeURL()
 {
 document.location= "./logon";
 }

 function getChangePwdURL()
 {
 document.location= "./changepwd.jsp";
 }

function submitTodolist()
{

document.todoForm.action = "./todolistServlet";
document.todoForm.submit();

}

function goToMainPage()
{

 Appendix B. Source code 371

 document.location="./main.jsp";
}

</SCRIPT>
</head>

<%@ include file="expi_header.html" %>
<BODY>

<table width="100%" border="0" cellspacing="0" cellpadding="3">
 <tr>
 <td width="80">

 </td>

 <td width="100%">
 <table width="90%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td class="heading-text">To Do List Activities</td>
 </tr>

 <tr>
 <td class="heading-line"><img src="images/img_clear.gif"
width="1" height="2"></td>
 </tr>

 <!-- Description -->
 <tr>
 <td class="text-description"> Complete the activities and
click OK.

 </td>
 </tr>
 </table>

 <!-- If there's an error message, display it! -->
 <table width="90%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td><%@ include file="error_msg_box.jsp" %></td>
 </tr>
 </table>

<FORM NAME="todoForm" METHOD="POST">

 <table width="100%" border="0" cellspacing="0" cellpadding="3">
 <%
 Collection wkflwProcCol =
(Collection)session.getAttribute("todoListAssignments");
 if (wkflwProcCol != null) {
372 Identity Management Advanced Design for IBM Tivoli Identity Manager

 Iterator wkasnit = wkflwProcCol.iterator();
 while (wkasnit.hasNext()) {
 log("todolist.jsp hasNext");
 WorkflowActivityMO wkflwActMO =
(WorkflowActivityMO)wkasnit.next();
 log("todolist.jsp getLstItm wkflwActMO" + wkflwActMO.toString());
 %>

 <tr>

 </tr>
 <tr>
 <%
 if (!wkflwActMO.getData().getDescription().equals(null)){

 log("wkflwActMO.name(): " + wkflwActMO.getData().getName());
 log("wkflwActMO.getDescription(): " +

wkflwActMO.getData().getDescription());
 log("wkflwActMO.getDesignId(): " +

wkflwActMO.getData().getDesignId());
 %>
 <td nowrap
class="text-normal"><%=wkflwActMO.getData().getDescription() %>
 <%=wkflwActMO.getContainer().getData().getSubjectService() %>

 <%=wkflwActMO.getContainer().getData().getSubject() %>
</td>
 <%
 }else if (!wkflwActMO.getData().getName().equals(null)){

 log("wkflwActMO.name(): " + wkflwActMO.getData().getName());
 log("wkflwActMO.getDescription(): " +

wkflwActMO.getData().getDescription());
 log("wkflwActMO.getDesignId(): " +

wkflwActMO.getData().getDesignId());
 %>
 <td nowrap class="text-normal"><%=wkflwActMO.getData().getName()
%></td>
 <td nowrap
class="text-normal"><%=wkflwActMO.getContainer().getData().getSubject()%>
</
td>
 <%
 }else{

 log("wkflwActMO.getDesignId(): " +
wkflwActMO.getData().getDesignId());
 %>
 <td nowrap
class="text-normal"><%=wkflwActMO.getData().getDesignId() %>
</td>

<%
}
%>
 Appendix B. Source code 373

 </tr>
 <tr>
 </tr>

 <tr>
 <td class="text-bold">Decision</td>
 </tr>

 <tr>
<td>

<SELECT name="<%=wkflwActMO.getData().getDesignId() +
"decision" %>" >

<OPTION value="REJECT">
Reject

</option>
<OPTION value="SUCCESS">

Approve
</option>

</SELECT>
</td>

 </tr>
 <tr>
 <td class="text-bold">Reason</td>
 </tr>

<tr>
<td>
<TEXTAREA name="<%=wkflwActMO.getData().getDesignId() + "reason" %>"

rows="5" cols="66" title="" id=""></TEXTAREA>
</td>

</tr>

 <tr>
 <td nowrap class="text-normal">
</td>
 </tr>

 <%
 }
 }else{

%>
<TR>

 <td class="text-bold"> You have no pending activities at this
time </td>

</TR>
<%

 }
 %>

 <!-- buttons -->
374 Identity Management Advanced Design for IBM Tivoli Identity Manager

 <tr>
 <td>

<%
 if (wkflwProcCol != null) {
 %>

<input type="submit" name="OK" id="OK" value="OK" class="button"
onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="submitTodolist()">
 <input type="button" name="Cancel" id="Cancel" value="Cancel"
class="button" onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="goToMainPage()">

<%
}else{
%>

 <input type="button" name="OK" id="OK" value="OK" class="button"
onMouseOver="pviiClassNew(this,'buttonover')"
onMouseOut="pviiClassNew(this,'button')" onClick="goToMainPage()">

<%
}
%>

 </td>
 </tr>
 </table>

 </td>
 </tr>
</table>
</BODY>
</html>
 Appendix B. Source code 375

mainServlet.java
/**
 *
 * Licensed Materials - Property of IBM
 *
 * (C) COPYRIGHT IBM Corp. 2005
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 *
 *
 ***/

/**
 * FILE: %Z%%M% %I% %W% %G% %U%
 *
 * This servlet contains an initialization method that must be executed
 * before the main.jsp page gains control. Its responsibility is to check
 * if the TAM Service (as configured in the itim_expi.properties file)
 * is active on the targetted ITIM Server.
 **/
package examples.expi;

import java.io.IOException;
import java.util.Collection;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.StringTokenizer;
import java.util.Vector;

import javax.security.auth.Subject;
import javax.servlet.*;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import com.ibm.itim.apps.PlatformContext;
import com.ibm.itim.apps.identity.PersonMO;
import com.ibm.itim.apps.provisioning.AccountMO;
import com.ibm.itim.common.AttributeValue;
import com.ibm.itim.common.AttributeValues;
import com.ibm.itim.dataservices.model.DistinguishedName;
import com.ibm.itim.dataservices.model.domain.Account;

/**
376 Identity Management Advanced Design for IBM Tivoli Identity Manager

 * @version 2.0
 * @authoraannas
 */
public class mainServlet extends HttpServlet {

private HttpSession session;
private static expiUtil utilObject = null;
private String LOGON_PAGE = "logon.jsp";

/**
 * Method init
 * @see javax.servlet.GenericServlet#init()
 */
public void init() {

log("mainServlet:init(): start");

try {
utilObject = new expiUtil();

} catch (Exception e) {
e.printStackTrace();

}

LOGON_PAGE = utilObject.getPropertySSOCheck(utilObject.LOGON_PAGE);
log("EXPI:init(): LOGON_PAGE = " + LOGON_PAGE);
log("mainServlet:init(): end");

}

/**
 * Method doGet
 * Obtains the necessary attributes from the Request (user must be

authenticated) and all the required
 * data items provided in the session. If all items are provided, the list

of applications (TAM groups) is
 * processed and control is forwarded to the applications.jsp page. The

jsp page builds a table of
 * Applications that the user may pick (select or un-select).
 *
 * @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

log("doGet(): start");

session = req.getSession(false);
if (session == null) {

log("No session");
// See if we got here via SSO throgh WebSEAL
String userID = (String) req.getHeader("iv-user");
 Appendix B. Source code 377

if ((userID != null) && (! userID.equals(""))) {
log("iv-user = " + userID);
log("Forwarding to loginServlet.doPost()");
RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/" + "logonServlet");
dispatcher.forward(req, resp);

} else {
req.setAttribute("message", "The Session is no longer valid");
resp.sendRedirect("logon.jsp");

}
return;

}

// do we have a valid subject to work with - this will be the case
// if the logon was successful, otherwise not.

if (!isSubjectAssigned(req, resp))
return;

HttpSession session = (HttpSession) req.getSession(false);
if (session == null) {

log("mainServlet:doGet() - no session - redirecting to logo page");
resp.sendRedirect(LOGON_PAGE);

}

Subject subject = (Subject) session.getAttribute(expiUtil.SUBJECT);

if (subject == null) {
log("mainServlet:doGet() - no subject - redirecting to logon page");
resp.sendRedirect(LOGON_PAGE);

}

PlatformContext platform =
(PlatformContext) session.getAttribute(expiUtil.PLATFORM_CONTEXT);

if (platform == null) {
log("mainServlet:doGet() - no Platform Context object - redirecting

to logon page");
resp.sendRedirect(LOGON_PAGE);

}

String userID = (String) session.getAttribute(expiUtil.LOGON_ID);
if (userID == null) {

log("mainServlet:doGet() - no userID found - redirecting to
logon.jsp");

resp.sendRedirect(LOGON_PAGE);
}

378 Identity Management Advanced Design for IBM Tivoli Identity Manager

PersonMO personMo = (PersonMO) session.getAttribute(expiUtil.PERSONMO);

if (personMo == null) {
log("mainServlet:doGet() - no PersonMO object found - redirecting to

logon page");
resp.sendRedirect(LOGON_PAGE);

}

// load the Account information respective to the person
String serviceDN = utilObject.getProperty(expiUtil.APP_SERVICE_DN);

if (serviceDN == null || serviceDN.equals("")) {
log("mainServlet:doGet() - TAM Service DN not specified in property

file");
session.setAttribute(expiUtil.TAM_SERVICE_ACTIVE, "false");

}else {

AccountMO acctMO = utilObject.lookupAccounts(
platform,
subject,
personMo,

utilObject.getProperty(expiUtil.APP_SERVICE_DN));
Account account = utilObject.account;

if (account != null) {
log("mainServlet:doGet() - TAM Service is configured...forwarding

to main.jsp");

// save off the AccountMO and respective account for this service
in order to reduce

// processing in the doPost...

session.setAttribute(expiUtil.ACCOUNTMO, acctMO);
session.setAttribute(expiUtil.ACCOUNT, account);
session.setAttribute(expiUtil.TAM_SERVICE_ACTIVE, "true");

} else {
log("mainServlet:doGet() - "

+ utilObject.getProperty(expiUtil.APP_SERVICE_NAME)
+ " is NOT configured...forwarding to main.jsp");

session.setAttribute(expiUtil.TAM_SERVICE_ACTIVE, "false");
}

}

// always forward to the Home page (main.jsp by default)

utilObject.forward(
req,
resp,
 Appendix B. Source code 379

"",
utilObject.getProperty(expiUtil.HOME_PAGE));

}

/**
 * Method isSubjectAssigned.
 * Verifies if a Subject is provided in the request.
 * @param req
 * @param resp
 * @return boolean - true if Subject was found, false otherwise
 * @throws IOException
 */
private boolean isSubjectAssigned(

HttpServletRequest req,
HttpServletResponse resp)
throws IOException {
Subject subject = (Subject) session.getAttribute("subject");
if (subject == null) {

log("Session is not valid (no subject).");

session.invalidate();

req.setAttribute("message", "The Session is no longer valid.");
resp.sendRedirect(LOGON_PAGE);
return false;

}
return true;

}
}

380 Identity Management Advanced Design for IBM Tivoli Identity Manager

main.jsp
<!--
/***
 * FILE: %Z%%M% %I% %W% %G% %U%
 *
 * Description:
 *
 * JSP that handles the "main" or "home" page.
 * This is the page the user is forwarded to after a successful login.
 *
 * Licensed Materials - Property of IBM
 * @version 2.0
 * @author aannas
 ***/
-->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<%@ page language="java" contentType="text/html; charset=UTF-8"%>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=UTF-8" >
<link href="css/imperative.css" rel="stylesheet" type="text/css">
<title>Tivoli Austin Airlines Self Care - Home Page</title>
<%@ page import="examples.expi.*" %>
<%@ include file="expiProlog.jsp" %>

</HEAD>

<%@ include file="expi_header.html" %>

<table border=0 cellpadding=3 cellspacing=0 width=100%>
<tr>

<td width="80"><img src="images/img_clear.gif" width="80"
height="10"></td>

<td width="100%">
<table border=0 cellpadding=0 cellspacing=0 width=90%>

<tr>
<td></td>

</tr>
<tr>

<td class="heading-text">Home</td>
</tr>
<tr>

<td class="heading-line"><img src="images/img_clear.gif" width="1"
height="2"></td>

</tr>
<tr>
 Appendix B. Source code 381

<td class="text-description">Welcome!
</td>
</tr>

 <!-- Display any errors -->
 <tr>
 <td>
 <%@ include file="error_msg_box.jsp" %>
 </td>
 </tr>

 <!-- Warn about needed updates to challenge/response answers -->
 <tr>
 <td>
 <%@ include file="cr_warning_msg_box.jsp" %>
 </td>
 </tr>

<tr>
<td class="text-normal">

 Change My Personal
Information
 Change My Password

 Change My Challenge/Response Answers

 View and Complete My To Do List Assignments

 View My Accounts

 <!-- If TAM is installed, put up subscribe link -->
 <%

String sTAMConfigured =
(String)session.getAttribute(expiUtil.TAM_SERVICE_ACTIVE);

 if (sTAMConfigured != null &&
sTAMConfigured.equalsIgnoreCase("true")) {

 %>
 Subscribe to Applications
with Tivoli Access Manager
 <%

 }else{
 %>

 Subscribe to
Applications

<%
}

 %>

382 Identity Management Advanced Design for IBM Tivoli Identity Manager

</td>
</tr>

</table>
</td>

</tr>

</table>

</html>
 Appendix B. Source code 383

384 Identity Management Advanced Design for IBM Tivoli Identity Manager

Appendix C. Tivoli Directory Server proxy
server

In this appendix we provide a general short introduction to the Tivoli Directory
Server proxy server component.

The proxy server is a special type of IBM Tivoli Directory Server that can provide
request routing, load balancing, failover, distributed authentication, and support
for distributed/membership groups and partitioning of containers. Most of these
functions are provided in a new back-end, the proxy back-end. The proxy server
does not have an RDBM back-end and cannot take part in replication. A directory
proxy server sits at the front end of a distributed directory and provides efficient
routing of user requests, therefore, improving performance in certain situations
and providing a unified directory view to the client. The proxy server also
provides data support for groups and ACLs that are not affected by partitioning
and support for partitioning of flat namespaces. It can also be used at the front
end of a server cluster for providing failover and load balancing. For high
availability, it is not necessary to partition the data and distribute it across
multiple servers, but instead, each server can be a complete replica of the other,
as shown in Figure C-1 on page 386.

The proxy server is configured with connection information to connect to each of
the back-end servers for which it is proxying. The connection information
consists of host address, port number, bind DN, credentials, and a connection
pool size. Each of the back-end servers is configured with the DN and

C

© Copyright IBM Corp. 2006. All rights reserved. 385

credentials that the proxy server uses to connect to it. The DN must be a
member of the back-end server’s (local) administration group or local
administrator. Finally, the proxy server is configured with its own schema. You
need to ensure that the proxy server is configured with the same schema as the
back-end servers for which it is proxying. The proxy server must also be
configured with partition information.

Figure C-1 Distributed directory with a Directory Server proxy server

The proxy server is aware of all the replicas for a given partition, and load
balances read requests between the online replicas. The proxy server is aware
of all of the masters for a given partition, and must use one of these as the
primary master. The first master found in the partition is the primary master. If the
primary master server is down, the proxy server is capable of failing over to a
backup server (one of the other master servers). If the requested operation
cannot be performed by the servers that are currently online, the proxy server
returns an operations error. Note: For better performance, all back-end servers
and the proxy server should share the same stash files. The proxy server
performs load balancing for read requests, and failover for update requests. If a
back-end server is unavailable, the operation will error out. All subsequent
operations will fail over to the next available server.

Tivoli Directory Server
Server A

dc=com

Tivoli Directory Server
Server B

dc=com

Tivoli Directory
Server

proxy server
386 Identity Management Advanced Design for IBM Tivoli Identity Manager

In a proxied directory, failover support between proxies is provided by creating
an additional proxy server that is identical to the first proxy server. These are not
the same as peer masters, the proxy servers have no knowledge of each other
and must be managed through a load balancer. A Tivoli Directory Server proxy
server failover configuration is shown in Figure C-2 on page 387.

A load balancer, such as the IBM WebSphere Edge Server, has a virtual host
name that applications use when sending updates to the directory. The load
balancer is configured to send those updates to only one server. If that server is
down, or unavailable because of a network failure, the load balancer sends the
updates to the next available proxy server until the first server is back online and
available. Refer to your load balancer product documentation for information
about how to install and configure the load balancing server.

Figure C-2 Failover configuration for Tivoli Directory Server proxy server

Tivoli Directory Server
Server A

dc=com

Tivoli Directory Server
Server B

dc=com

Tivoli Directory
Server

Proxy Server

Tivoli Directory
Server

Proxy Server

Load Balancer
 Appendix C. Tivoli Directory Server proxy server 387

For more comprehensive information about configuring the Tivoli Directory
Server proxy server, such as using the command line interfaces, see Chapter 15,
“Distributed directories”, in the IBM Tivoli Directory Server Version 6.1
Administration Guide, SC32-1564.

Note: In a load-balanced proxy environment, if a proxy server fails, the first
operation sent to it fails and returns an error. All subsequent operations are
sent to the failover proxy server. The first operation that failed can be retried. It
is not automatically sent to the failover server.
388 Identity Management Advanced Design for IBM Tivoli Identity Manager

Appendix D. Additional material

This redbook refers to additional material that you can download from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247242

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247242.

D

© Copyright IBM Corp. 2006. All rights reserved. 389

ftp://www.redbooks.ibm.com/redbooks/SG247242
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this redbook includes the
following files:

File name Description
itim_expi.war Self-care Web Archive
itim_expi.properties Properties file for self-care war
BPList.txt Delegated Admin input list
BulkFeedAdminDomain.sh Delegated Admin Load Script
custom.jar Delegated Admin custom classes

System requirements for downloading the Web material
We recommend the following system configuration:

Hard disk space: /tmp: 512 MB, ITIM_HOME: 500 MB
Operating System: W2k3 Server, RH3EL, Solaris9, AIX 5.2, 5.3
Processor: 1 Ghz, 500 Mhz, 440 Mhz, 375 Mhz
Memory: 2GB

How to use the Web material
This section explains how to deploy the self-care application and how you can
install the delegated administration custom.jar file.

Self-care application

Note: The Identity Manager updates (Fixpacks and Intrim Fixes) should be
reviewed for items which might affect the materials listed within this guide.
Specifically, Fixpack 14 includes changes to the Self-Care application shipped
with the Identity Manager product, for example.

Important: For the system sizing, CPU, Operating System version and type,
and memory configuration should be taken from the Deployment plan created
for the deployment of the product. The values below are simply minimum
values and might not work for all installations.

Note: The self-care application modifications were developed and tested
solely on Windows and, therefore, might need some modifications to work
properly if used on a different platform.
390 Identity Management Advanced Design for IBM Tivoli Identity Manager

WebSphere installation
Copy the Web archive file to the system where you are installing the self-care
application. Open the WebSphere administrative console running on the system
where you are installing the self-care application.

Follow these steps:

1. Under Applications → Enterprise Applications, select Install.

2. For Local Path, specify the location of the itim_expi.war file.

3. For Context Root, type /itim_expi

4. Repeatedly click Next until you arrive at the Summary window.

5. Once at the Summary window, click Finished.

6. Save your settings.

7. Copy the itim_expi.properties file to the $WEBSPHERE_HOME/properties
directory (where $WEBSPHERE_HOME is the directory where WebSphere
Application Server is installed) on the system where the self-care application
is being installed.

8. Append the following line to the wsjaas.conf file in the
$WEBSPHERE_HOME/properties directory (where $WEBSPHERE_HOME
is the directory where WebSphere Application Server is installed) on the
system where the self-care application is being installed:

ITIM {
com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required
delegate=com.ibm.itim.apps.jaas.spi.PlatformLoginModule;
};

Restart the WebSphere Application Server on the system where you are
installing the self-care application.

SSO configuration
In order for the TAA personnel as well as business partners to use the self-care
application, the current single sign-on environment must be configured for the
new application. The following discusses how to set up the self-care application
with TAA’s Tivoli Access Manager SSO environment.

1. Create a public junction from WebSEAL to the self-care application.

A WebSEAL junction to the self-care application can be created using either
the Access Manager Web Portal Manager, or by using the pdadmin
command line interface. The example below shows setting up a WebSEAL
junction using pdadmin. Note that this example is based on the:

– WebSEAL server named default-webseald-w2kalpha

– IBM HTTP server host named w2kalpha
 Appendix D. Additional material 391

Use the pdadmin server list command to list your WebSEAL servers, and
use the correct IBM HTTP server host name when you create the WebSEAL
junction.

C:\>pdadmin -a sec_master -p password
pdadmin sec_master> server list (can be abbreviated to 's l')
 amwpm-w2kalpha
 default-webseald-w2kalpha
pdadmin sec_master> s t default-webseald-w2kalpha list
/
pdadmin sec_master> s t default-webseald-w2kalpha create -t tcp -h w2kalpha
-c iv-user -j -e utf8_bin /ihs
Created junction at /ihs
pdadmin sec_master> s t default-webseald-w2kalpha list
/
/ihs
pdadmin sec_master> s t default-webseald-w2kalpha show /ihs
 Junction point: /ihs
 Type: TCP
 Basic authentication mode: filter
 Authentication HTTP header: insert - iv_user
 Scripting support: yes
 Preserve cookie names: no
 Delegation support: no
 Mutually authenticated: no
 Insert WebSphere LTPA cookies: no
 Insert WebSEAL session cookies: no
 Request Encoding: UTF-8, Binary
 Server 1:
 Server State: running
 Hostname: w2kalpha

– -c iv-user: Insert the Tivoli Access Manager user ID into requests sent to
the junctioned server (sent in HTTP header iv-user).

– -j: Store a cookie on the browser that is used for junction resolution (this
is required for some applications and is also required for Identity Manager
to function correctly).

– -e utf8_bin: Option for utf8_bin encoding of requests. utf8_bin required
only if user IDs containing a blank need to be sent to Identity Manager (for
example, the user ID itim manager).

2. Enable SSO for Identity Manager.

Edit {ITIM_InstallDir}/data/ui.properties file and set ssoEnable=true

Single Sign On enabled (true|false)
enrole.ui.ssoEnabled=true

Edit {ITIM_InstallDir}/data/enRoleAuthentication.properties and set
idsEqual=true
392 Identity Management Advanced Design for IBM Tivoli Identity Manager

THE FOLLOWING IS FOR WEBSEAL AUTHENTICATION PROVIDER ONLY
Set to true if all ITAM IDs equal ITIM IDs
Set to false if any ITAM ID does not equal an ITIM ID
enrole.authentication.idsEqual=true

3. Create a test user common to Access Manager and Identity Manager for
testing.

pdadmin sec_master> user create "itim manager" "cn=itim manager,o=ibm,c=us"
"itim manager" manager password
pdadmin sec_master> user modify "itim manager" account-valid yes

4. Configure Access Manager link for forgotten passwords.

Edit the Access Manager login.html files:

/opt/pdweb/html.tivoli/lib/html/C/login.html

/opt/pdweb/www-default/lib/html/C/login.html

Alter the URL for forgotten passwords, so that it uses the junction created
earlier.

5. Access the Access Manager login page and click on the forgotten password
link.

Surf to the regular Access Manager Login page.

Click on the forgotten password link. You should be redirected to the self-care
application.

6. Reset the user's password.

Use the self-care application to reset the user’s password. Test the new
password, once it has been successfully changed.

Delegated administration custom.jar installation
1. Copy custom.jar to the <WAS HOME>/AppServer/installedApps/<server

name>/enRole.ear/

2. Update the fesiextensions.properties file by adding the line:

fesi.extension.Workflow.AdminDomainModel=com.ibm.itim.custom.fesiextensions
.AdminDomainModelExtension

3. Restart Identity Manager.
 Appendix D. Additional material 393

394 Identity Management Advanced Design for IBM Tivoli Identity Manager

Glossary

access (1) The ability to read, update, delete, or
otherwise use a resource. Access to protected
resources is usually controlled by system software.
(2) The ability to use data that is stored and
protected on a computer system.

access control In computer security, the process
of ensuring that the resources of a computer system
can be accessed only by principals in authorized
ways.

access control item (ACI) Data that (a) identifies
the permissions of principals and (b) is assigned to
a resource.

access control list In computer security, a list
that is associated with a resource that identifies all
the principals that can access the resource and the
permissions for those principals.

account An entity that contains a set of
parameters that define the application-specific
attributes of a principal, which include the identity,
user profile, and credentials.

ACI target The resource for which you define the
access control items. For example, an ACI target
can be a service.

adapter (1) A set of software components that
communicate with an integration broker and with
applications or technologies in order to perform
tasks, such as executing application logic or
exchanging data. (2) A transparent, intermediary
software component that allows different software
components with different interfaces to work
together.

administrative domain A logical collection of
resources that is used to separate responsibilities
and manage permissions.
© Copyright IBM Corp. 2006. All rights reserved.
adopt To assign an orphan account to the
appropriate owner.

adoption rules The set of rules that determine
which orphan accounts belong to which owners.

agent A process that manages target resources
on behalf of a system in order to respond to
requests.

aggregate message A collection of notification
messages that are combined into a single e-mail,
along with optional user-defined text.

alias In identity management, an identity for a
user, which might match the user ID. The alias is
used during reconciliation to determine who owns
the account. A person can have several aliases, for
example, GSmith, GWSmith, and SmithG.

approval A type of workflow activity that allows
someone to approve or reject a request. See also
workflow.

audit trail A chronological record of events or
transactions. You can use audit trails for examining
or reconstructing a sequence of events or
transactions, managing security, and for recovering
lost transactions.

authentication The process of verifying that an
entity is the entity that it claims to be, often by
verifying a user ID and password combination.
Authentication does not identify the permissions that
a person has in the system.

authorization The process of granting a user
either complete or restricted access to an object,
resource, or function.
 395

Certificate Authority (CA) An organization that
issues certificates. The CA authenticates the
certificate owner’s identity and the services that the
owner is authorized to use, issues new certificates,
renews existing certificates, and revokes certificates
that belong to users who are no longer authorized to
use them.

challenge-response authentication An
authentication method that requires users to
respond to a prompt by providing information to
verify their identity when they log in to the system.
For example, when users forget their password, they
are prompted (challenged) with a question to which
they must provide an answer (response) in order to
either receive a new password or receive a hint for
specifying the correct password.

Common Criteria A standardized method, which
is used by international governments, the United
States federal government, and other organizations,
for expressing security requirements in order to
assess the security and assurance of technology
products.

connector A plug-in that is used to access and
update data sources. A connector accesses the data
and separates out the details of data manipulations
and relationships.

credentials Authentication information that is
associated with a principal.

CSV In computers, a CSV (comma-separated
values) file contains the values in a table as a series
of ASCII text lines organized so that each column
value is separated by a comma from the next
column's value and each row starts a new line.
Here's an example:

Doe,John,944-7077
Johnson,Mary,370-3920
Smith,Abigail,299-3958

A CSV file is a way to collect the data from any table
so that it can be conveyed as input to another
table-oriented application. Spreadsheet programs or
relational database applications can read CSV files.
A CSV file is sometimes referred to as a flat file.

DAC Discretionary access control (DAC) is used
to control access by restricting a subject's access to
an object. It is generally used to limit a user's access
to a file. In this type of access control, it is the owner
of the file who controls other users' accesses to the
file. Using a DAC mechanism allows users control
over access rights to their files. When these rights
are managed correctly, only those users specified
by the owner may have some combination of read,
write, execute, and so on permissions to the file.

DAML Directory Access Markup Language. An
XML specification that extends the functions of
Directory Services Markup Language (DSML) 1.0 in
order to represent directory operations. In Tivoli
Identity Manager, DAML is mainly used for server to
agent communications. See also Directory Services
Markup Language v2.0.

Directory server A server that can add, delete,
change, or search directory information on behalf of
a client.

Directory Services Markup Language v1.0
(DSMLv1) An XML implementation that describes
the structure of data in a directory and the state of
the directory. DSML can be used to locate data into
a directory. DSMLv1 is an open standard defined by
OASIS. Contrast with Directory Services Markup
Language v2.0.
396 Identity Management Advanced Design for IBM Tivoli Identity Manager

Directory Services Markup Language v2.0
(DSMLv2) An XML implementation that describes
the operations that a directory can perform (such as
how to create, modify, and delete data) as well as
the results of those operations. While DSMLv1 can
be used to describe the structure of data in a
directory, DSMLv2 can be used to communicate
with other products about that data. DSMLv2 is an
open standard defined by OASIS. Contrast with
DSMLv1.

distinguished name (DN) The name that
uniquely identifies an entry in a directory. A
distinguished name is made up of name-component
pairs. For example, CN=John Doe, O=My
Organization, C=US.

domain administrator The owner of an
administrative domain.

dynamic content tags A set of XML tags (based
on the XML Text Template Language (XTTL)
schema) that allows the administrator to provide
customized information in a message, notification,
or report.

dynamic organizational role An organizational
role that is assigned to a person by using an LDAP
filter. When a user is added to the system and the
LDAP filter parameters are met, the user is
automatically added to the dynamic organizational
role.

Eclipse Eclipse is an open source community
whose projects are focused on providing an
extensible development platform and application
frameworks for building software. More information
can be obtained at: http://www.eclipse.org/

entitlement In security management, a data
structure, service, or list of attributes that contains
externalized security policy information.

entitlement workflow A workflow that defines the
business logic that is used when provisioning a
policy. For example, an entitlement workflow is used
to define approvals for managing accounts.

entity A person or object about which you want to
store information or manage. For example, a person
and an organization are both entities.

entity type Categories of managed objects. See
also entity.

escalation The process that defines what
happens and who acts when an activity has not
been completed in the specified amount of time.

escalation limit The amount of time, for example,
hours or days, that a participant has to respond to a
request, before an escalation occurs.

event The encapsulated data that is sent as a
result of an occurrence, or situation, in the system.

failover An operation that switches a system to a
redundant or standby system when services fail.

FESI extension A Java extension that can be
used to enhance JavaScript code and then be
embedded within a FESI script.

Free EcmaScript Interpreter (FESI) An
implementation of the EcmaScript scripting
language, which is an ISO standard scripting
language that is similar to the JavaScript scripting
language.

group A collection of Tivoli Identity Manager
users.

identity The subset of profile data that uniquely
represents a person or entity and that is stored in
one or more repositories.

identity feed The automated process of creating
one or more identities from one or more common
sources of identity data.

identity policy The policy that defines the user ID
to be used when creating an account for a user.

IIOP (Internet Inter-ORB Protocol) A protocol
that is used for communication between Common
Object Request Broker Architecture (CORBA) object
request brokers (ORBs).
 Glossary 397

http://www.eclipse.org/

JDBC Java Database Connectivity is an
application program interface (API) specification for
connecting programs written in Java to the data in
popular databases. The application program
interface lets you encode access request
statements in SQL that are then passed to the
program that manages the database. It returns the
results through a similar interface.

JMS Java Message Service is an application
program interface from Sun Microsystems™ that
supports the formal communication known as
messaging between computers in a network. Sun's
JMS provides a common interface to standard
messaging protocols and also to special messaging
services in support of Java programs. Sun
advocates the use of the Java Message Service for
anyone developing Java applications, which can be
run from any major operating system platform.

JNDI Java Naming and Directory Interface™
enables Java platform-based applications to access
multiple naming and directory services. Part of the
Java Enterprise application programming interface
(API) set, JNDI makes it possible for developers to
create portable applications that are enabled for a
number of different naming and directory services,
including file systems, directory services, such as
Lightweight Directory Access Protocol (LDAP),
Novell Directory Services, and Network Information
System (NIS), and distributed object systems, such
as the Common Object Request Broker Architecture
(CORBA), Java Remote Method Invocation (RMI),
and Enterprise JavaBeans™ (EJB).

join directive The set of rules that defines how to
handle attributes when two or more provisioning
policies are applied. Two or more policies might
have overlapping scope, so the join directive
specifies what actions to take when this overlap
occurs.

JSP JavaServer Page is a technology for
controlling the content or appearance of Web pages
through the use of servlets, which are small
programs that are specified in the Web page and run
on the Web server to modify the Web page before it
is sent to the user who requested it.

Kerberos Kerberos is a secure method for
authenticating a request for a service in a computer
network. Kerberos was developed in the Athena
Project at the Massachusetts Institute of Technology
(MIT). The name is taken from Greek mythology;
Kerberos was a three-headed dog who guarded the
gates of Hades. Kerberos lets a user request an
encrypted "ticket" from an authentication process
that can then be used to request a particular service
from a server. The user's password does not have to
pass through the network.

LDAP Lightweight Directory Access Protocol is a
software protocol for enabling anyone to locate
organizations, individuals, and other resources,
such as files and devices, in a network, whether on
the public Internet or on a corporate intranet. LDAP
is a "lightweight" (smaller amount of code) version of
Directory Access Protocol (DAP), which is part of
X.500, a standard for directory services in a network.

LDIF (LDAP Data Interchange Format) A file
format that is used to describe directory information
as well as changes that need to be applied to a
directory, such that directory information can be
exchanged between directory servers that are using
LDAP.

lifecycle Passage or transformation through
different stages over time. For example, markets,
brands, and offerings have life cycles.

lifecycle rules A set of rules in a policy that
determines which operations to use when
automatically handling commonly occurring events,
such as suspending an account that has been
inactive for a period of time.

location An entity that is a subdivision of an
organization, usually based on geographical area.
398 Identity Management Advanced Design for IBM Tivoli Identity Manager

MAC The need for a mandatory access control
(MAC) mechanism arises when the security policy of
a system dictates that protection decisions must not
be decided by the object owner and the system must
enforce the protection decisions (for example, the
system enforces the security policy over the wishes
or intentions of the object owner).
The POSIX.6 standard provides support for a
mandatory access control policy by providing a
labeling mechanism and a set of interfaces that can
be used to determine access based on the MAC
policy.

managed resource An entity that exists in the
run-time environment of an IT system and that can
be managed.

MASS IBM Method for Architecting Secure
Solutions.

operation An action that can be performed
against an object; for example, add, modify, or
delete.

operational workflow A workflow that defines the
life cycle process for accounts, persons, and other
entities.

organization A hierarchical arrangement of
organizational units, such that each user is included
once and only once.

organization tree A hierarchical structure of an
organization that provides a logical place to create,
access, and store organizational information.

organizational container An organization,
organizational unit, location, business partner unit,
or administration domain.

organizational role In identity management, a list
of account owners that is used to determine which
entitlements are provisioned to them.

organizational unit A type of organizational
container that represents a department or similar
grouping of people.

orphan account On a managed resource, an
account whose owner cannot be automatically
determined by the provisioning system.

password retrieval The method of retrieving a
new or changed password by accessing a
designated Web site and specifying a shared secret.

password strength policy A policy that defines
the password strength rules. A password strength
policy is applied whenever a password is set or
modified.

password strength rules The set of rules that a
password must conform to, such as the length of the
password and the type of characters that are
allowed (or not allowed) in the password.

password synchronization The process of
coordinating passwords across services and
systems such that only a single password is needed
to access those multiple services and systems.

person An individual in the system that has a
person record in one or more corporate directories.

post office A component that collects notifications
from the appropriate workflow activities and
distributes those notifications to the appropriate
workflow participants.

provisioning The process of providing,
deploying, and tracking a service or component.

provisioning policy A policy that defines the
access to various managed resources, such as
applications or operating systems. Access is
granted to all users, users with a specific role, or
users who are not members of a specific role.
 Glossary 399

RBAC With RBAC (Role-Based Access Control),
security is managed at a level that corresponds
closely to the organization's structure. Each user is
assigned one or more roles, and each role is
assigned one or more privileges that are permitted
to users in that role. Security administration with
RBAC consists of determining the operations that
must be executed by persons in particular jobs, and
assigning employees to the proper roles.
Complexities introduced by mutually exclusive roles
or role hierarchies are handled by the RBAC
software, making security administration easier.

reconciliation The process of synchronizing data
in a central data repository with data on a managed
resource.

request for information (RFI) A workflow activity
that requests additional information from the
specified participant.

ROI For a given use of money in an enterprise, the
ROI (return on investment) is how much "return,"
usually profit or cost saving, results. An ROI
calculation is sometimes used along with other
approaches to develop a business case for a given
proposal. The overall ROI for an enterprise is
sometimes used as a way to grade how well a
company is managed. If an enterprise has the
immediate objectives of getting market revenue
share, building infrastructure, positioning itself for
sale, or other objectives, a return on investment
might be measured in terms of meeting one or more
of these objectives rather than in immediate profit or
cost saving.

rule A set of conditional statements that enable
computer systems to identify relationships and
execute automated responses accordingly.

schema The fields and rules in a repository that
comprise a profile.

scope In identity management, the set of entities
that a policy or an access control item (ACI) can
affect.

service A representation of a managed resource,
application, database, or system.

service owner A role that identifies the person
who owns and maintains a particular service in Tivoli
Identity Manager. See also service.

service selection policy A policy that determines
which service to use in a provisioning policy. See
also provisioning policy.

service type A category of related services that
share the same schemas. See also service.

SOAP Simple Object Access Protocol is a way for
a program running in one kind of operating system
to communicate with a program in the same or
another kind of an operating system by using the
HTTP Protocol and XML as the mechanisms for
information exchange.

SSL The Secure Sockets Layer is a
commonly-used protocol for managing the security
of a message transmission on the Internet. SSL has
recently been succeeded by Transport Layer
Security (TLS), which is based on SSL.

static organizational role An organizational role
that is manually assigned to a person. See also
organizational role.

supervisor A role that identifies the person who
supervises another set of users and who is often
responsible for approving or rejecting requests that
are made by those users.

suspend To deactivate an account so that the
account owner cannot access the service.

system administrator A role that identifies the
person who is responsible for the configuration,
administration, and maintenance of Tivoli Identity
Manager.

universally unique identifier (UUID) The 128-bit
numerical identifier that is used to ensure that two
entities do not have the same identifier. The
identifier is unique for all space and time.
400 Identity Management Advanced Design for IBM Tivoli Identity Manager

work order A workflow activity that requires a
participant to perform an activity outside of the
scope of the system.

workflow The sequence of activities performed in
accordance with the business processes of an
enterprise.

XML Extensible Markup Language is a flexible
way to create common information formats and
share both the format and the data on the World
Wide Web, intranets, and elsewhere. For example,
computer makers might agree on a standard or
common way to describe the information about a
computer product (processor speed, memory size,
and so forth) and then describe the product
information format with XML. Such a standard way
of describing data would enable a user to send an
intelligent agent (a program) to each computer
maker's Web site, gather data, and then make a
valid comparison. XML can be used by any
individual or group of individuals or companies that
want to share information in a consistent way.
 Glossary 401

402 Identity Management Advanced Design for IBM Tivoli Identity Manager

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 404. Note that some of the documents referenced here may
be available in softcopy only.

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� Identity Management Design Guide with IBM Tivoli Identity Manager,
SG24-6996

� Deployment Guide Series: IBM Tivoli Identity Manager, SG24-6477

� IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198

� WebSphere Scalability: WLM and Clustering Using WebSphere Application
Server Advanced Edition, SG24-6153

Other publications
These publications are also relevant as further information sources:

� IBM Tivoli Identity Manager Database and Schema Reference Version 4.6,
SC32-1769

� IBM Tivoli Identity Manager Information Center Version 4.6, SC23-5267

� IBM Tivoli Identity Manager Planning for Deployment Guide Version 4.6,
SC32-1708

� IBM Tivoli Identity Manager Problem Determination Guide Version 4.6,
SC32-1491-01

� IBM Tivoli Identity Manager Version 4.6: Release Notes, GI11-4212-03

� IBM Tivoli Identity Manager Version 4.6: Manager Server Installation and
Configuration Guide for WebSphere Environments Version 4.6,
SC32-1750-01
© Copyright IBM Corp. 2006. All rights reserved. 403

� IBM Tivoli Directory Integrator 6.0: Getting Started Guide, SC32-1716

� IBM Tivoli Directory Integrator 6.0: Users Guide, SC32-1718

� IBM Tivoli Directory Integrator 6.0: Reference Guide, SC32-1720

� IBM Tivoli Directory Server Administration Guide Version 6.1, SC32-1564

� IBM Tivoli Directory Server Installation and Configuration Guide Version 6.1,
SC32-1560

Online resources
These Web sites and URLs are also relevant as further information sources:

� The online product documentation IBM Tivoli Identity Manager Information
Center Version 4.6, SC23-5267 can be obtained at the following address:

http://publib.boulder.ibm.com/tividd/td/IdentityManager4.6.html

� The online product documentation IBM DB2 UDB Version 8.2 Information
Center can be obtained at the following address:

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

� National Institute of Standards and Technologies homepage.

http://www.nist.gov/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
404 Identity Management Advanced Design for IBM Tivoli Identity Manager

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/tividd/td/IdentityManager4.6.html
http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp
http://www.nist.gov/

Index

A
Access Control Item

see ACI
Access Manager 84

Policy Server 105
single sign-on 230

account 19, 35
certification process 290
management 7, 10, 231
management module 8
recertification 115, 213
subscription 213, 220
suspension 102

AccountMO 221, 223
ACI 21, 228, 231, 251

principal 231
target 232

adapter
connectivity 12
event notification 81
high availability 76
SSL communication 89

admin domain 232–233
bulk feed 240

administration
API 12
delegation 84, 120, 210, 230

administrator
business partner 235

AES256 encryption 160
Analysis

API package 42
API 13

Analysis package 42
Application package 15, 53
Authentication package 17
Data Services package 19
Domain package 19, 26
JAAS 14
Logging package 39
Mail package 40
Model package 19–20, 48
Password rules package 43
© Copyright IBM Corp. 2006. All rights reserved.
persistent storage 19
Policy package 19, 41
Provider package 46
Provisioning package 52
Query package 51
Remote Services package 46
Schema package 20
System package 18–19, 37
Workflow package 19, 47

application
API package 53
interface module 7
subscription 213

Application Programming Interface
see API

application server
high availability 63, 125

applications JSP 225
applications.jsp 223
applicationServlet.java 221
approval 120

request 243
asynchronous messaging 10
audit 114, 116, 120, 231

trail 11
authentication

API package 17
module 9

authorization
module 10

availability
monitoring 132

B
backup 117
business partner

administrator 235
business process 231

customization 242
business requirements 113

C
cascading replication 68
 405

certification
lifecycle rules 306
process 290

challenge/response 27, 212, 214
change

management 117
circular logging 140
cluster

configuration 125
topology 128

compliance 114, 116, 231
requirement 56

component
placement 83

configuration
... of ports 86

connectivity 12
continuous operation 122, 125
controlled network 84
CORBA 398
credential 105
Crystal Reports 58, 249
custom

person type 253
report design 210, 248

operational targets 250
reports 58
service provider 57

D
DAC 396
DAML 12, 396
data

management zones 108
services module 11
store

schema 20
Data Services

API package 19
database 11

high availability 73, 132
stand-by 133

dataservices API 240
DB2

encrypted communications 89
HADR 132

configuration 138–139
takeover 150

HADR security 90
high availability 132
High Availability Disaster Recovery 75
mutual takeover multiple partition 74

delegated administration 84, 120, 230
delegation

management 39
deployment

descriptor 225
manager 63
requirement 210

deprovisioning 102
design

custom reporting 249
delegated administration 230
objectives 117
organization tree 233
self-care 212

desktop module 6
development cycle 212
directory

proxy server 385
Directory Information Tree 68
Directory Integrator 13
Directory Server

AES256 encryption 160
global administration group 191
high availability 67, 152
Master-Slave replication 161
Multiple-Master replication 161
peer-to-peer replication 161, 182
peer-to-peer topology 153
proxy server 72, 153, 185

load balancing 186
server group 200

secondary instance 154
suffix 158

Discretionary Access Control 396
DMZ 84
Domain

API package 19, 26
domain

administrator 232
granting ACIs 244

hold container 234
DSML 12–13
dynamic role 8, 37
406 Identity Management Advanced Design for IBM Tivoli Identity Manager

E
Eclipse 212
EcmaScript 55
EJB 398
entitlement workflow 56
entity

management module 8
erPersonItem 232
event notification 81
Extensible Markup Language 401
extension API 14
extranet 84

project phase 120
requirements 115

F
FESI

extensions 55–56
JavaScript interpreter 55

FESI extension 236
Firefox viii
firewall

port configuration 86
form

creation 5
design module 6
rendering module 6

Free ECMA Script Interpreter
see FESI

functional requirement 114, 210

G
global administration group 191
group 231

management 39
GUI server 84

H
HADR 132

circular logging 140
configuration 138–139
takeover 150

help desk
costs 114

high availability 61, 115, 117, 122
adapter 76
application server 63, 125

database 73, 132
Directory Server 152
directory server 67
horizontal scaling 64
LDAP 67
physical component architecture 83
project phase 119
security configuration 87
self-care application 212
topology 123

historical
information 11

horizontal cluster configuration 125
HTTPS 12
HumanResourceMO 218

I
IBM DB2 Universal Database

see DB2
IBM Tivoli Directory Integrator

see Directory Integrator
IBM Tivoli Directory Server

see Directory Server
IBM WebSphere Application Server

see WebSphere Application Server
identity

API package 15
management 7

module 8
policy 8, 13

inactivity code 102
Incremental Data Synchronizer 251
inetOrgPerson 232, 253
interface API 14
itim_expi.properties 226

J
J2EE Web application 213
JAAS

API 14
API package 16

Java
API 14
Mail API 40

Java Database Connectivity 398
Java Message Service 10, 398
Java Naming and Directory Interface 398
JavaScript
 Index 407

... in workflow script 236
API 13
extensible framework 55

JavaServer Pages 398
JDBC 398
JMS 10, 398
JNDI 398
JSP 398

applications 225
applications.jsp 223
todolist 219

K
Kerberos 398

L
LDAP 398

automated failover 71
directory 11
high availability 67
manual failover 69
master-replica replication 68
peer-to-peer replication 68
replica server 105
replication 68
SSL communication 88

liability 313
license

costs 115
fee reduction 114

lifecycle 8, 398
characteristics 22
management 55

reporting 249
recertification 290
rule 290
rule events 271
rule scheduling 284
rules 306

Lightweight Directory Access Protocol 398
logging 39

API package 39
module 11

logical component architecture 4
logical component design

service layer 9
Web User Interface 5

M
MAC 399
mail

API package 40
module 11

maintenance
costs 115
fee reduction 114

managed resource 231
managed service 57

provisioning 46
Mandatory Access Control 399
master-replica

replication model 68
Master-Slave replication 161
menu system module 6
messaging

module 10
Model

API package 19–20, 48
monitoring 132
Mozilla viii
Multi-Master replication 161

N
network diagram 102
network zone 84

controlled 84
restricted 85
secure 85

node agent 63
non-functional requirements 117–118

O
operation workflow 56, 271, 292
orchestration

module 10
organization tree 231, 252

design 233
module 6

organizational role 237–238, 400
bulk feed 240

P
participant 232
password

change 214
408 Identity Management Advanced Design for IBM Tivoli Identity Manager

editing 212
policy 8
reset 102
rule 43, 215
rules API package 43

peer-to-peer
replication 68, 182
topology 153

performance 117
persistent storage 19
personMO 221–222
personnel management 101
placement

... of components 83
policy

API package 19, 41
corporate 313
identity 13
management 7, 231
management module 8
module 9
provisioning 13, 238

port
configuration 86

post office 40, 271, 292, 399
configuration 286

practices 315
principal 231
procedures 315
Provider

API package 46
provisioning 10, 36, 52

API package 15, 52
policy 8, 13, 42, 56, 238
time reduction 114

proxy server 185, 385
load balancing 186
server group 200

Q
Query

API package 51
queue topology 65

R
RBAC 400
recertification 115, 210, 213, 217, 244, 290
reconciliation 12, 400

recovery 117
Redbooks Web site 404

Contact us xi
relational database 11
relationship 23, 231
remote services

API package 46
module 11

replication
LDAP 68

report
attribute mapping 254
automated delivery 269
custom template 255
data staging 255
design 210
filter criteria 255
operation workflow creation 273
schema 254
search filter criteria 261
template (XML) 264

reporting 58
custom design 248
module 8

requirements
custom report design 248
delegated administration 230
recertification 290
self-care 211

restricted network 85
return on investment 400
reverse proxy 105
ROI 400
role 8, 36, 231, 237

module 9
Role Based Access Control 400

S
schedule information 11
scheduling

module 10
schema 400

API package 20
script node 56, 236
search

API package 15
filter criteria 261
module 6
 Index 409

secure network 85
Secure Sockets Layer 400
security

configuration 87
policy 85

self-care 84, 115, 210–211, 215
application 220
application ACI 228
application deployment 229, 390
application properties 226
design 212
project phase 120
requirements 211
user interface 227

self-registration 210, 213, 215
workflow customization 242

service
... selection policy 8
layer 9
management 231
provider 57
provisioning 46

service level agreement 122
serviceMO 222
servlet 213

applicationServlet.java 221
todolistServlet.java 218

Simple Object Access Protocol 400
single sign-on 230

configuration 391
snapshot database 81
SOAP 400
sponsor 232
SSL 400

communication design 88
staging data

... for custom reports 255
stand-by database 133
status change 10
subscription 220
suffix 158
supervisor 232
system

API package 18–19, 37
configuration module 7

systems management zone 108

T
takeover 150
target 232
Thunderbird viii
To Do

approval 292
To Do list 217
todolist JSP 219
todolistServlet.java 218
training 211
transactional information 11

U
user management 109

W
Web User Interface Layer 5
web.xml 225
WebSEAL 84, 105
WebSphere Application Server

cluster 63, 125, 127
cluster topology 128
deployment manager 63
horizontal scaling 64

workflow 401
API 13
API package 15, 19, 47
customization 236
customization for self-registration 242
design 5
extension for database query 271
extensions 56
management capabilities 48
management module 8
module 10
operation 292
operation workflow 271
operation workflow for audit report 273
participant 232
queue topology 65
resource 218

WorkflowAssignmentMO 218

X
X.500 398
X.509 certificate authentication 9
XML 12, 401
410 Identity Management Advanced Design for IBM Tivoli Identity Manager

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Identity M
anagem

ent Advanced Design
for IBM

 Tivoli Identity M
anager

®

SG24-7242-00 ISBN 0738494879

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Identity Management
Advanced Design
for IBM Tivoli Identity Manager

Complete self-care
scenario using
workflow, lifecycle
rules, and
certification

High availability
scenario for
WebSphere, DB2,
and LDAP

Addressing
compliance with
audit and reporting

Identity and user lifecycle management projects are being
deployed more and more frequently - and demand is growing.
By demonstrating how IBM Tivoli Identity Manager can be
made resilient and adapted to special functional
requirements, this IBM Redbook creates or enhances
confidence in the IBM Tivoli Identity Manager-based solution
for senior management, architects, and security
administrators.

Advanced design topics may start with infrastructure
availability for all involved components, Web application, and
database server clustering as well as LDAP multi-master
setups, continuing with compliance challenges addressing
enhanced auditing and reporting, and designing and creating
your own self-care/self-registration application environment
that embraces external users and business partners offering
fine-tuned workflow options and lifecycle management
capabilities.

The powerful features and extensions of IBM Tivoli Identity
Manager are opening doors into a world of advanced design
and customization for every identity management challenge
you may encounter.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Advanced Identity Topics
	Chapter 1. Advanced design overview
	1.1 Understanding the system architecture
	1.1.1 Logical component architecture
	1.1.2 Web User Interface Layer
	1.1.3 Applications Layer
	1.1.4 Services Layer
	1.1.5 LDAP Directory
	1.1.6 Database
	1.1.7 Resource connectivity

	1.2 Application Programming Interface (API)
	1.2.1 Application API
	1.2.2 Authentication API
	1.2.3 Data Services
	1.2.4 Logging
	1.2.5 Mail
	1.2.6 Policy
	1.2.7 Password rules
	1.2.8 Remote Services
	1.2.9 Workflow
	1.2.10 FESI extensions

	1.3 Workflow
	1.3.1 Script nodes
	1.3.2 Workflow extensions

	1.4 Custom service provider
	1.5 Custom reporting
	1.6 Conclusion

	Chapter 2. Architect a high availability solution
	2.1 Application server
	2.2 Directory server
	2.2.1 Manual failover to secondary LDAP
	2.2.2 Automated failover to secondary LDAP

	2.3 Relational database
	2.3.1 Operating system cluster with DB2 active/standby
	2.3.2 DB2 mutual takeover multiple partition
	2.3.3 DB2 High Availability Disaster Recovery (HADR)

	2.4 Identity Manager adapters
	2.4.1 Manual failover to secondary adapter
	2.4.2 Automated failover to secondary adapter
	2.4.3 Event notification on an HA adapter configuration

	2.5 Physical HA component architecture
	2.5.1 Component configuration and placement
	2.5.2 Network zones

	2.6 Security and integrity for high availability
	2.7 Conclusion

	Part 2 Customer Scenario
	Chapter 3. Tivoli Austin Airlines, Inc.
	3.1 Company profile
	3.1.1 Geographic distribution of TAA
	3.1.2 Organization of TAA
	3.1.3 HR and personnel procedures

	3.2 Current IT architecture
	3.2.1 Overview of the TAA network
	3.2.2 TAA’s e-business initiative
	3.2.3 Security infrastructure for the e-business initiative
	3.2.4 Secured e-business initiative architecture
	3.2.5 Identity management and emerging issues

	3.3 Corporate business vision and objectives
	3.4 Project layout and implementation phases

	Chapter 4. Project design
	4.1 Business requirements
	4.2 Functional requirements
	4.3 Design approach
	4.4 Implementation approach
	4.4.1 Non-functional requirements
	4.4.2 Requirement priorities
	4.4.3 Implementation tasks and efforts
	4.4.4 Project phases

	Chapter 5. Technical implementation phase I
	5.1 TAA’s high availability scenario
	5.1.1 Requirements
	5.1.2 TAA’s high availability planning

	5.2 Application server high availability
	5.2.1 Requirements
	5.2.2 Design considerations
	5.2.3 Application server high availability implementation

	5.3 Relational database high availability
	5.3.1 Requirements
	5.3.2 Design considerations
	5.3.3 Relational database high availability implementation

	5.4 Directory Server high availability
	5.4.1 Requirements
	5.4.2 Design considerations
	5.4.3 TAA’s Directory Server high availability implementation

	5.5 Conclusion

	Chapter 6. Technical implementation phase II
	6.1 Self-care
	6.1.1 Requirements
	6.1.2 Design considerations
	6.1.3 TAA’s implementation

	6.2 Delegated administration
	6.2.1 Requirements
	6.2.2 Design considerations
	6.2.3 TAA’s implementation

	6.3 Advanced custom report design
	6.3.1 Requirements
	6.3.2 Design considerations
	6.3.3 TAA’s implementation

	6.4 Automated operation report delivery
	6.4.1 Requirements
	6.4.2 Design considerations
	6.4.3 TAA’s implementation

	6.5 Recertification process
	6.5.1 Requirements
	6.5.2 Design considerations
	6.5.3 TAA’s implementation

	6.6 Conclusion

	Part 3 Appendixes
	Appendix A. Corporate policy and standards
	Standards, practices, and procedures
	Practical example
	External standards and certifications
	Industry specific requirements
	Product or solution certifications
	Nationally and internationally recognized standards
	Legal requirements
	Summary

	Appendix B. Source code
	BulkFeedAdminDomain.java
	AdminDomainModelExtension.java
	AbstractExtension.java
	AbstractExtension.java
	applicationServlet.java
	applications.jsp
	application_sub.jsp
	todolistServlet.java
	todolist.jsp
	mainServlet.java
	main.jsp

	Appendix C. Tivoli Directory Server proxy server
	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

