

ibm.com/redbooks

WebSphere Application
Server V7.0 Security
Guide

Carla Sadtler
Fabio Albertoni
Leonard Blunt

Shu Guang Chen
Elisa Ferracane

Grzegorz Smolko
Joerg-Ulrich Veser

Sean Zhu

Secure WebSphere administration
processes

Ensure secure WebSphere
applications

Secure communication
with SSL

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V7.0 Security Guide

June 2009

International Technical Support Organization

SG24-7660-00

First Edition (June 2009)

This edition applies to WebSphere Application Server V7.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.
© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contact an IBM Software Services Sales Specialist

Our highly skilled consultants make it easy for you to design, build, test and deploy solutions, helping
you build a smarter and more efficient business. Our worldwide network of services specialists wants you
to have it all! Implementation, migration, architecture and design services: IBM Software Services has
the right fit for you. We also deliver just-in-time, customized workshops and education tailored for your
business needs. You have the knowledge, now reach out to the experts who can help you extend and
realize the value.

For a WebSphere services solution that fits your needs, contact an IBM Software Services Sales Specialist:
ibm.com/developerworks/websphere/services/contacts.html

architectural knowledge, skills, research and development . . .
that's IBM Software Services for WebSphere.

Start SMALL, Start BIG, ... JUST START
 Contact an IBM Software Services Sales Specialist iii

http://www.ibm.com/developerworks/websphere/services/contacts.html?ca=drb-sg247660
http://www.ibm.com/developerworks/websphere/services/contacts.html?ca=drb-sg247660
http://www.ibm.com/developerworks/websphere/services/contacts.html?ca=drb-sg247660

iv WebSphere Application Server V7.0 Security Guide

Contents

Contact an IBM Software Services Sales Specialist iii

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this book . xv
Become a published author . xviii
Comments welcome. xviii

Part 1. Administrative and infrastructure security . 1

Chapter 1. Introduction . 3
1.1 Core concepts and technologies . 4

1.1.1 Global security and security domains . 4
1.1.2 Securing the administrative environment . 5
1.1.3 Defining user registries to WebSphere . 6
1.1.4 Authenticating clients . 7
1.1.5 Authorizing access to applications . 9
1.1.6 Authorization providers . 10
1.1.7 Protecting file systems with Java 2 security 10
1.1.8 Single sign-on . 10
1.1.9 Web services security . 11
1.1.10 Messaging security . 12

1.2 Summary of new V7 security features and changes 13

Chapter 2. Administrative security . 17
2.1 Administrative security overview . 18
2.2 Enabling administrative security . 18

2.2.1 Enabling security at profile creation . 19
2.2.2 Enabling security after profile creation . 19
2.2.3 Stopping the application server. 25

2.3 Disabling administrative security . 26
2.4 Administrative roles . 27

2.4.1 Mapping users and groups to administrative roles 29
2.4.2 Mapping a group to an administrative role . 31
2.4.3 Mapping a user to an administrative role . 33

2.5 Fine-grained administrative security . 35
2.5.1 Authorization group . 35
© Copyright IBM Corp. 2009. All rights reserved. v

2.5.2 Granting fine-grained access . 36
2.5.3 Using fine-grained security: An example. 38

2.6 Job manager security . 41
2.7 Naming service security: CosNaming roles. 46

2.7.1 Mapping a user or a group to a CosNaming role 47
2.7.2 Applying CosNaming security: An example 47

Chapter 3. Using security domains . 51
3.1 Global security compared to security domains . 52

3.1.1 Attributes that can be configured in a security domain 52
3.1.2 Configuration files . 53
3.1.3 Security domain scope . 54

3.2 Application security domain scenarios . 54
3.2.1 Scenario: Application security at the global security level. 54
3.2.2 Scenario: Security domains that override global security 55

Chapter 4. Configuring the user registry and authentication settings . . 65
4.1 User registry basics. 66

4.1.1 User registry types . 66
4.1.2 User registry content . 67
4.1.3 Using multiple registries with domains . 68

4.2 Configuring a stand-alone LDAP registry . 69
4.2.1 Configuration checklist . 70
4.2.2 Understanding the directory structure . 71
4.2.3 Configuring a stand-alone LDAP using the console 73
4.2.4 Configuring a stand-alone LDAP using wsadmin commands 81
4.2.5 Stand-alone LDAP dynamic and nested group configuration 85
4.2.6 Stand-alone LDAP configuration defaults . 92

4.3 Federated repositories . 95
4.3.1 Configuration checklist . 98
4.3.2 Understanding user realms when using federated repositories . . . 100
4.3.3 VMM entity types. 100
4.3.4 Configuring an LDAP federated repository using the console 101
4.3.5 Configuring VMM database base adapter features. 121
4.3.6 Configuring elements of federated repositories using wsadmin . . . 127
4.3.7 Configuring a database repository in VMM 130

4.4 Authentication and authorization settings . 133
4.4.1 Identifying key authentication and authorization defaults 137
4.4.2 Custom authentication choices . 146

Chapter 5. Secure Sockets Layer administration 151
5.1 Secure communications using SSL. 152

5.1.1 Certificates . 153
5.1.2 Keystores and truststores . 155
vi WebSphere Application Server V7.0 Security Guide

5.1.3 SSL configurations . 156
5.2 Basic usage scenarios . 158

5.2.1 Securing administrative communication . 158
5.2.2 Securing LDAP communication . 158
5.2.3 Securing Web inbound and outbound communication 159
5.2.4 Securing EJB inbound and outbound communication 161
5.2.5 Securing communication with WebSphere MQ. 162

5.3 Basic SSL administration . 163
5.3.1 Creating keystores . 163
5.3.2 Managing personal certificates . 165
5.3.3 Managing signer certificates . 169
5.3.4 Recovering deleted certificates . 170
5.3.5 Certificate expiration monitoring . 172
5.3.6 Managing SSL configurations . 175
5.3.7 Creating SSL configurations . 177

5.4 Advanced concepts . 184
5.4.1 Changing default chained certificates . 184
5.4.2 Creating and defining a CA client . 186
5.4.3 SSL isolation . 191

5.5 SSL troubleshooting and traces . 191
5.5.1 Diagnostic steps . 192
5.5.2 SSL traces. 192

5.6 Implementation examples . 193
5.6.1 Securing LDAP communication . 193
5.6.2 Securing Web inbound communication. 203

Chapter 6. Common Secure Interoperability Version 2 administration . 209
6.1 Overview of CSIv2. 210
6.2 The CSIv2 authentication protocol . 211
6.3 Features of CSIv2 . 214

6.3.1 Three layers for authentication . 214
6.3.2 Identity assertion and identity mapping. 217
6.3.3 Security attribute propagation . 220
6.3.4 Error handling . 222
6.3.5 Stateful and stateless sessions. 224

6.4 Configuring CSIv2 . 224
6.4.1 Configuring CSIv2 on a server . 226
6.4.2 Configuring CSIv2 on a stand-alone client 233
6.4.3 CSIv2 considerations in special scenarios 238

6.5 Troubleshooting CSIv2 . 240
6.5.1 Identifying a CSIv2 problem . 240
6.5.2 Approach to debugging a CSIv2 problem . 241
6.5.3 Enabling trace for CSIv2 . 242
 Contents vii

6.5.4 Case studies of CSIv2 problems. 243
6.6 References . 249

Part 2. Application security . 251

Chapter 7. Application security . 253
7.1 Application security design considerations . 254

7.1.1 Programmatic and declarative security . 254
7.2 Deploying a secured enterprise application . 254

7.2.1 Mapping modules to servers filtered by security domains 255
7.2.2 Role mapping during application installation. 255
7.2.3 Run-As role mappings. 260
7.2.4 Unprotected 2.x methods . 260
7.2.5 Mapping roles at assembly compared to deployment 260

7.3 Role mapping after installation . 260
7.4 Mapping roles in the development environment 261

Chapter 8. Securing a Web application . 267
8.1 Application security . 268
8.2 Declarative security . 268

8.2.1 Defining security roles for an application . 269
8.2.2 Defining security constraints . 271

8.3 Programmatic security. 277
8.3.1 JEE security API . 277
8.3.2 Defining security role references in the deployment descriptor . . . 279
8.3.3 Defining security roles using annotations . 281

8.4 Delegation . 282
8.4.1 Delegation using a deployment descriptor 282
8.4.2 Delegation using annotation . 284
8.4.3 Annotation usage considerations . 284

8.5 Authentication mechanisms . 284
8.6 Configuring form-based authentication . 286

8.6.1 Building the login page . 288
8.6.2 Getting the login exception details . 289
8.6.3 Logout . 292

8.7 Configuring client certificate authentication. 294
8.7.1 Application configuration . 295
8.7.2 Application server configuration . 295
8.7.3 Web server configuration . 309
8.7.4 Browser configuration . 313

8.8 Customizing the login process . 315
8.9 Other security-related application settings . 318

8.9.1 Web application extensions . 318
8.9.2 Session security integration . 320
viii WebSphere Application Server V7.0 Security Guide

Chapter 9. Securing an Enterprise JavaBeans application. 325
9.1 Application security . 327
9.2 Security mechanisms . 327
9.3 JEE Security policies: Annotations and XML descriptors 328
9.4 Declarative security . 329

9.4.1 Protecting beans using annotations . 329
9.4.2 Protecting beans using the deployment descriptor 332

9.5 Programmatic security. 346
9.5.1 Security API . 347

9.6 Delegation . 353
9.6.1 Bean-level delegation . 353
9.6.2 Method-level delegation . 357

9.7 Java Authentication and Authorization Service . 361
9.7.1 WSSubject API . 363

9.8 Using annotations . 365

Part 3. z/OS specifics . 369

Chapter 10. WebSphere z/OS and local operating system security 371
10.1 Local operating system (LocalOS) security . 372
10.2 User ID strategy for a Network Deployment environment 373
10.3 Administrative security . 376

10.3.1 Common groups and user IDs . 376
10.3.2 Security configuration options . 381
10.3.3 z/OS security product options . 386

10.4 RACF jobs for WebSphere z/OS. 388
10.4.1 RACF classes . 389
10.4.2 Skeleton of the generated RACF jobs. 390

10.5 System Authorization Facility authorization. 392
10.5.1 SAF authorization for administrative roles 393
10.5.2 SAF authorization for applications . 397
10.5.3 Displaying EJBROLE profiles . 398
10.5.4 SAF EJB role mapper . 398

10.6 Generic RACF profiles (best practices). 399
10.6.1 Generic RACF profiles using wildcards. 401
10.6.2 Creating a new server with the administrative console 404

10.7 Case-sensitive passwords for RACF. 405
10.8 Fine-grained security. 407
10.9 Naming service security . 414

10.9.1 CosNaming roles. 414
10.9.2 Mapping users or groups to CosNaming roles 415

Chapter 11. Administrative security . 419
11.1 Selecting an authorization provider . 421
 Contents ix

11.2 Enabling security with a SAF user repository . 422
11.3 Disabling administrative security . 428
11.4 Security trace . 429

Chapter 12. WebSphere z/OS and user registries 433
12.1 Introduction to user registries . 434

12.1.1 Local operating system registry . 434
12.1.2 Stand-alone Lightweight Directory Access Protocol registry. 435
12.1.3 Stand-alone custom registry . 436
12.1.4 Federated repositories . 436

12.2 Our scenario and our environment . 437
12.3 Stand-alone LDAP registry . 438

12.3.1 WebSphere and z/OS LDAP SDBM back end (RACF). 438
12.3.2 WebSphere and z/OS LDAP TDBM back end (DB2) 447
12.3.3 WebSphere and z/OS LDAP TDBM native authentication 454

12.4 Federated repositories . 458
12.4.1 Federated repositories . 458
12.4.2 Our federated repositories scenario . 460
12.4.3 Federated z/OS LDAP with TDBM back end (DB2) 462
12.4.4 Federated z/OS LDAP TDBM native authentication 467
12.4.5 Federated IBM Tivoli Directory Server . 469

Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS. .
479

13.1 Keyrings and certificates in RACF. 481
13.1.1 Certificates . 481
13.1.2 Keyrings . 482
13.1.3 Building a trust chain with WebSphere for z/OS 482
13.1.4 Establishing SSL connections in an secured environment 484

13.2 Centrally managed SSL . 487
13.3 WebSphere V7 for z/OS SSSL to JSSE changes 491
13.4 Writable SAF keyrings. 493

13.4.1 Prerequisites for writable keyring support 493
13.4.2 Integration into the administrative console 497
13.4.3 Importing personal certificates . 505
13.4.4 Exporting personal certificates . 507
13.4.5 Creating personal certificates . 508
13.4.6 Removing certificates from a keyring . 512
13.4.7 Renewing certificates . 513
13.4.8 Exporting public certificates . 513
13.4.9 Common error messages . 514

13.5 RACF certificate management . 514
13.5.1 Monitoring certificate expiration . 515
x WebSphere Application Server V7.0 Security Guide

13.5.2 Importing certificates . 517
13.5.3 Exporting certificates. 517
13.5.4 Deleting certificates and keyrings . 518

13.6 Hardware cryptography and Java cryptography providers 519
13.6.1 Choosing a JCE provider . 520
13.6.2 Administrative console keystore types . 521
13.6.3 IBMJCECCA and IBMJCE characteristics 523
13.6.4 SSL and JCERACFKS keystore . 525
13.6.5 Hardware cryptography using a JCECCARACFKS keystore 526

13.7 SSL troubleshooting and traces . 533
13.7.1 Diagnostic steps . 533
13.7.2 SSL traces. 535
13.7.3 Common errors . 536

Chapter 14. Security identity propagation . 537
14.1 Sync-to-Thread Allowed and RunAs thread identity 538

14.1.1 Required RACF profiles for Sync-to-Thread 538
14.1.2 Sync-to-Thread example. 539
14.1.3 SAF delegation . 540

14.2 Propagating user credentials to DB2 using JDBC Type 2 driver. 541
14.3 Propagating credentials to CICS . 545

14.3.1 Application-related settings . 546
14.3.2 Required RACF profiles . 547

Related publications . 549
IBM Redbooks publications . 549
Online resources . 549
How to get IBM Redbooks publications . 551
Help from IBM . 551
 Contents xi

xii WebSphere Application Server V7.0 Security Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2009. All rights reserved. xiii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
DB2®
developerWorks®
Domino®
i5/OS®

IBM®
Lotus®
RACF®
Rational®
RDN®
Redbooks®

Redbooks (logo) ®
Tivoli®
WebSphere®
z/OS®
z9®

The following terms are trademarks of other companies:

Interchange, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S.
and other countries.

EJB, Enterprise JavaBeans, J2EE, J2SE, Java, JavaBeans, JavaServer, JDBC, JDK, JMX, JSP, JVM, Sun,
and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Active Directory, Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xiv WebSphere Application Server V7.0 Security Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides the information that is needed to
implement secure solutions with WebSphere® Application Server V7.0. It
focuses on security for the application server and its components, including
enterprise applications.

This book includes administrative and infrastructure security, application
security, and z/OS specifics.

This book is intended for anyone who plans to secure applications and the
application serving environment.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Rochester Center.

Carla Sadtler is a Consulting IT Specialist at the ITSO, Raleigh Center. She
writes extensively about WebSphere products and solutions. Before joining the
ITSO in 1985, Carla worked in the Raleigh branch office as a Program Support
Representative, supporting MVS clients. She holds a degree in mathematics
from the University of North Carolina at Greensboro.

Fabio Albertoni is a Senior IT Specialist working in Integrated
Technology Delivery SSO, on Hortolandia, Brazil. He has twelve
years of experience in the IT and banking industries. He has spent
the last eight years developing and implementing integrated
solutions using WebSphere Application Server and MQ Series.
He holds a degree in Data Processing from FATEC University of
Ourinhos and a Masters degree in Computer Engineering from
Instituto de Pesquisas Tecnologicas of Sao Paulo, Brazil.
© Copyright IBM Corp. 2009. All rights reserved. xv

Leonard Blunt is a Senior I/T Specialist working in ASEAN
software lab services, based in Singapore. Leonard has a history
in middleware architecture design and development, with
emphasis on multi-channel e-business applications and
application integrations. Leonard’s origins are in building
application middleware architectures, with a focus on rapid
application development through product integration and the
generation of code. Leonard is experienced in implementing
J2EE/Java™ and service-oriented architecture (SOA) solutions
and is passionate about producing robust hardened software that
incorporates from its inception performance, monitoring, and
security. Leonard has been working with WebSphere Application
Server since 2003, and graduated from Wollongong University in
New South Wales Australia with a Bachelor of Engineering
(Computer) in 1999.

Shu Guang Chen is an Advisory Product Services Professional in
IBM China. He has over nine years of experience in the IT field,
and has worked as WebSphere technical support in IBM China for
the last eight years, focusing on WebSphere Application Server
and Portal administration, problem diagnostics, and performance
tuning. He holds a degree in Computer Science and is certified in
WebSphere Application Server V3.5, V4, V5, and V6.1, Java,
AIX®, Portal, SOA, and DB2®.

Elisa Ferracane is a Software Developer working with the IBM
WebSphere Security Development team in Austin, Texas. Her
areas of expertise are WebSphere Security for z/OS® and
Common Security Interoperability Version 2 (CSIv2). She has
also worked as a system tester for WebSphere Application Server
for z/OS. She has been with IBM for over seven years. Elisa
received a Bachelor’s degree in Computer Engineering from the
University of Puerto Rico.

Grzegorz Smolko is a Certified IT Specialist with IBM Poland in
Warsaw. Grzegorz has been working for IBM for six years in IBM
Software Services for WebSphere. Prior to joining IBM, he worked
for software house companies in Poland as a Java developer and
architect. His areas of expertise include Java, Java Enterprise
Edition (JEE), and WebSphere. He holds certifications from
Sun™ and IBM in Java and WebSphere technologies. He has a
Master’s degree in Computer Science from the Warsaw University
of Technology, Poland.
xvi WebSphere Application Server V7.0 Security Guide

Joerg-Ulrich Veser is an IT Specialist working since 2006 in the
pre-Sales support for WebSphere on z/OS in Germany. His areas
of expertise include infrastructure architecture design,
implementation, problem determination, high availability, and
security on WebSphere products for z/OS. He holds a degree in
Computer Science from the University of Cooperative Education
in Mannheim (Germany).

Sean Zhu is an IBM Certified IT Specialist in the IBM Business
Partner Technical Strategy & Enablement (BPTS&E)
organization. He has over ten years of IT consulting experience,
specializing on business process reengineering and integration
using IBM SOA middleware and eCommerce solutions using
WebSphere Commerce. He is experienced in integrating major
ERP systems using WebSphere Adapters, Enterprise Service Bus
(ESB) and WebSphere Process Server. He has published IBM
Redbooks publications, white papers, and developerWorks®
articles and has presented at conferences. He is certified in
approximately twelve IBM products and technologies, including
WebSphere Process Server, WebSphere Commerce, and
WebSphere Application Server. He holds a Master of Science in
Information Systems degree and a Master of Business
Administration degree, both from Arizona State University. He is
also a The Open Group (TOG) Master Certified IT Specialist.

Thanks to the following people for their contributions to this project:

Charles Lewis
NSI Technology

Bill O’Donnell
IBM US

Keys Botzum
IBM US

Emily Tuczkowski
IBM US

Vishwanath Venkataramappa
IBM US

Daniel Morris
IBM US
 Preface xvii

Don Bagwell
IBM US

Holger Wunderlich
IBM Germany

James Kochuba
IBM US

Thanks to the authors of the previous editions of this book, the authors of the
IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316, which
was published in December 2006: Rufus Credle, Tony Chen, Asish Kumar,
James Walton, and Paul Winters

Become a published author

Join us for a two- to six-week residency program. Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, IBM Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publications form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:
xviii WebSphere Application Server V7.0 Security Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xix

xx WebSphere Application Server V7.0 Security Guide

Part 1 Administrative and
infrastructure
security

Part 1
© Copyright IBM Corp. 2009. All rights reserved. 1

2 WebSphere Application Server V7.0 Security Guide

Chapter 1. Introduction

This chapter provides a short introduction to core security concepts and security
technologies. We recommend that you understand the concepts that are
documented here to help you better understand the later chapters. Subsequent
chapters of this book will help you to understand how WebSphere Application
Server implements, supports, or uses the concepts and technologies described
here.

This chapter contains the following topics:

� “Core concepts and technologies” on page 4
� “Summary of new V7 security features and changes” on page 13

1

© Copyright IBM Corp. 2009. All rights reserved. 3

1.1 Core concepts and technologies

Securing a WebSphere Application Server environment can be complex and
requires an understanding of your WebSphere and network infrastructure, the
security requirements for the applications, and the users that you expect to
access these applications. You must consider multiple aspects of security.
Figure 1-1 shows a high-level view of a WebSphere Application Server
environment and the points at which security can be implemented.

Figure 1-1 High-level view of WebSphere Application Server security

1.1.1 Global security and security domains

WebSphere Application Server provides configuration facilities that allow you to
secure the administrative applications and services that are used to manage and

Application Server

Client

Client EJB container
Web service

Messaging App

Web services security

• Transport level: (SSL or TLS and
HTTP Basic Authentication)

• Message level: WS-Security

Single Sign-on

• LTPA
• Kerberos/SPNEGO

SSO

Admin functions

• Login
• Authorization:

Role-based

Bus Destinations

• Authorization

Bus

User Registry

Contains user and group information.
Used for authentication and authorization:
• Local operating system
• LDAP (i.e., Tivoli Directory Server)
• Federated
• Custom

JAAS subject
• Credential

Login
module

Web container

CSIv2

SSL

SSL

SSL

CSIv2

Web Application security

• Login
• Authorization: Role-based,

RunAs for invoking EJBs

EJB Application security

• Authorization: Role-based,
RunAs for invoking another
EJB

Authorization

Determines whether a user is authorized to
access a resource
• Default
• JACC provider (i.e., Tivoli Access Manager)

Authentication

Identifies who is requesting access to a resource.
Results in a credential representing a successfully
authenticated user:

• LTPA (default during profile creation)
• Kerberos (KRB5)
• RSA (admin requests only)

Client type determines the protocol used to
authenticate information:
• Enterprise beans clients use CSIv2
• Web clients use HTTP or HTTPs
4 WebSphere Application Server V7.0 Security Guide

configure a WebSphere environment and to secure applications running in that
environment. These configuration activities are done separately, although, they
can share common settings.

Global security settings are the security configuration settings that apply to all
administrative functions and provide the default settings for user applications.

New in V7, WebSphere Application Server V7 introduces the ability to create
additional security domains to secure user applications and their resources. A
security domain is specific to the application servers, clusters, and service
integration buses that are assigned to it. A security domain can have attributes
that differ from the global security settings. For example, a separate user registry
can be used to secure administrative functions and applications.

You can also associate a security domain with the cell (referred to as a cell
domain). In this case, the global security attributes are used to secure the
administrative applications while the security domain attributes are used as the
default for securing user applications. Additional security domains can be
created and used for specific servers and clusters.

1.1.2 Securing the administrative environment

Administrative security provides the core of the security structure for WebSphere
Application security and is the first step in configuring a secure system. You must
activate administrative security before any other security configuration for the
WebSphere processes can take effect. Administrative security settings are
defined in the global security settings.

The primary function of administrative security is to prevent unauthorized access
to the WebSphere processes. Administrative functions are secured based on
predefined roles that have been assigned to users or groups. Each role carries a
specific amount of authority over WebSphere runtime activity. For example,
users that are assigned to a group that has the Monitor role can view the
WebSphere configuration and status of the servers. Users that are assigned to a
group that has the Operator role can also view the configuration and status, but
in addition, can actually change the runtime state of processes (for example,
starting or stopping an application server).

Administrative security is enabled for a cell, meaning that when you create a
profile that configures a new cell (deployment manager profile, stand-alone
application server profile, or cell profile option), you have the option to enable
administrative security. This option is selected by default.

For more information: Refer to Chapter 3, “Using security domains” on
page 51.
 Chapter 1. Introduction 5

When you enable administrative security, you must configure the authentication
mechanism and user registry to be used for authorization and authentication.
This configuration is referred to as the global security configuration and applies
to all administrative functions and to applications that run on servers that are not
defined to another security domain.

Additional security domains can be configured that apply to user applications.
When you create these additional domains, you can use a separate user registry
than the user registry that is used for administrative security.

1.1.3 Defining user registries to WebSphere

WebSphere security relies on a user registry that contains information about
users and groups for authentication and authorization of user IDs. A single
registry might span multiple data repositories. The logical collection of users in a
registry is referred to as a user realm. Only one registry or repository can be
active for a security domain.

WebSphere Application Server supports four types of registries:

� The local operating system
� A federated repository
� A Lightweight Directory Access Protocol (LDAP) registry
� A custom registry

Be careful using the local operating system registry. Depending on the operating
system and registry setup, you might end up using a registry that is not
centralized. If you are running a WebSphere environment that is spread across
multiple machines, each application server uses the operating system registry on
the machine on which it runs, which, obviously, is not a wise choice. On z/OS
however, the local user registry is a centralized registry within a sysplex.
WebSphere uses the System Authorization Facility (SAF) interface to access the
registry. SAF allows security authorization requests to be processed directly
through the Resource Access Control Facility (RACF®) or a third-party z/OS
security provider.

Using a federated repository allows you to use multiple repositories that are
combined under a single security realm. The repositories can be file-based,

For more information:

� For more information about administrative security, refer to Chapter 2,
“Administrative security” on page 17.

� For more information about security domains, refer to Chapter 3, “Using
security domains” on page 51.
6 WebSphere Application Server V7.0 Security Guide

LDAP, a sub-tree of an LDAP repository, or a database. When you enable
administrative security using the profile creation wizard, this is the option that is
used with a file-based repository holding a single administrative ID that you
select. There are limitations when using a federated repository. Refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/rwim_limitations.html

WebSphere Application Server supports several Lightweight Directory Access
Protocol (LDAP) registries. For information about the supported LDAP products,
refer to the system requirements for your platform at:

http://www-01.ibm.com/support/docview.wss?uid=swg27006921

WebSphere Application Server also provides a plug-in to support any registry by
using the custom registry feature. The custom registry feature enables you to
configure any user registry that is not made available through the security
configuration panels of the WebSphere Application Server.

Before enabling administrative security, you must determine what type of registry
you will use, and if you are not using the default registry (federated repository),
you will need to have the registry in place and predefine the administrator user ID
and password to it.

1.1.4 Authenticating clients

Authentication is the verification of identity (user ID and password, digital
certificate, and so forth). The authentication process checks the information
provided by a user and determines if the user has provided sufficient information
for the identity to be accepted.

When you configure the authentication mechanism to be used in a cell, you
define how security information will be exchanged between the client and
WebSphere process. The authentication mechanism works with the user registry
to verify the identity of the client and then creates a credential that represents the
authenticated client. The abilities of the credential are determined by the
configured authentication mechanism. Only a single active authentication
mechanism can be configured within the cell.

For more information: Refer to Chapter 4, “Configuring the user registry and
authentication settings” on page 65.
 Chapter 1. Introduction 7

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rwim_limitations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rwim_limitations.html
http://www-01.ibm.com/support/docview.wss?uid=swg27006921

The authentication methods available are:

� Lightweight Third Party Authentication (LTPA)

LTPA is intended for application server environments that are distributed
across multiple machines and machine environments. LTPA also provides
the single sign-on (SSO) feature, allowing a user to authenticate only once for
all WebSphere applications in a cell. There is no inherent SSO to resources
outside the cell (WebSphere MQ, databases, and so forth)

� Kerberos (KRB5)

The Kerberos authentication mechanism enables end-to-end SSO
interoperability with other applications that support Kerberos authentication. A
Java client can participate in the Kerberos SSO using the Kerberos
credential, not the user and password, to authenticate to WebSphere
Application Server.

Java 2 Platform, Enterprise Edition (J2EE™), Web service, .NET, and Web
browser clients that use the HTTP protocol can use the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) token to authenticate to the
WebSphere Application Server and participate in SSO by using SPNEGO
Web authentication.

� RSA token authentication mechanism

RSA is used for the administrative agent only.

Simple WebSphere Authentication Mechanism (SWAM) has been deprecated
and must not be used.

Authentication for Web applications
In the WebSphere Application Server security structure, clients that access Web
and Enterprise JavaBeans™ (EJB™) applications must authenticate when they
attempt to access a secure resource. Authentication takes place differently
depending on the client type.

When a Web client requires initial authentication with WebSphere, the three
following options for authentication are supported:

� Basic authentication in which WebSphere challenges the browser, asking for
a user ID and password. The browser requests the information from the user
and passes it to WebSphere for authentication.

� Form-based login in which WebSphere invokes a custom login page.

� Certificate from the Secure Sockets Layer (SSL) connection is mapped to the
registry.
8 WebSphere Application Server V7.0 Security Guide

In each case, the authentication is performed using the user registry. A
Lightweight Third Party Authentication (LTPA) token is generated in a cookie for
use in subsequent requests.

Authentication for EJB applications
An EJB client can be a J2EE application client or Java 2 Platform, Standard
Edition (J2SE™) application external to the application server, or an application
component within the application server running in another Web or EJB
container.

If the client already has an authentication token, that token is used for
authentication. If not, and authentication is required, the client must send the
credentials to be authenticated (there is no challenge from WebSphere). The
certificate or password is validated against the user registry, and a Common
Security Interoperability Version 2 (CSIv2) session is created between the client
and server. The LTPA token flows across the CSIv2 session (not an LTPA
cookie).

1.1.5 Authorizing access to applications

When a protected Java EE resource is accessed, authorization occurs to
determine if the subject is allowed to have access to the resource. Authorization
controls are commonly linked to lists or groupings of user entities as a way to
simplify the management of access controls.

Security constraints define the authorization required by a user to an application
resource. The constraint specifies the resource and the role that a user has to
have to access it.

A resource is a servlet or EJB. Secured servlets are identified by URL pattern (as
opposed to a servlet or class name), while secured EJBs are identified by EJB
name and class. Methods within the resource can be secured individually. For
servlets, the methods can be GET, POST, and so forth. For EJBs, you can
secure access to individual methods: business methods, home methods, and so
forth.

The RunAs property can be set for servlets or EJBs that define under which user
ID the code is acting, which affects the codes’ interaction with other secured
resources. A J2EE role defines the permissions of the users and groups that are
defined to this role. Roles are specified in the application and are mapped to

For more information: Authentication is discussed further in 4.4,
“Authentication and authorization settings” on page 133.
 Chapter 1. Introduction 9

users and groups defined in the user registry during deployment in the
application bindings, or using the WebSphere administrative tools.

The security structure for an application can be expressed in a declarative
manner using entries in WAR, EJB, or EAR deployment descriptors or
annotations within the code, or programmatically within the application using the
security API. Using the programming API can give you more control over the
authorization process by allowing it to be instance-based and to use complex
rules in determining if the user is authorized.

1.1.6 Authorization providers

WebSphere Application Server supports both a default authorization provider
and an authorization provider that is based on the Java Authorization Contract for
Containers (JACC) specification. The JACC-based authorization provider
enables third-party security providers (for example, Tivoli® Access Manager) to
handle the Java EE authorization.

1.1.7 Protecting file systems with Java 2 security

Java 2 security provides protection for the code. It prevents code from accessing
other code, regardless of the user context. Java 2 security is managed using
policy files. The defaults for Java 2 security are restrictive, so a complete
understanding of your WebSphere applications and the security implications is
essential before you enable this type of security.

1.1.8 Single sign-on

Single sign-on (SSO) is popular with users, because it allows them to
authenticate only once, yet they can access multiple applications including
WebSphere applications. SSO simplifies user ID management from a user and
IT support standpoint. However, consider an SSO solution carefully, because

For more information: Refer to:

� Chapter 7, “Application security” on page 253

� Chapter 8, “Securing a Web application” on page 267

� Chapter 9, “Securing an Enterprise JavaBeans application” on page 325

For more information: Using JACC providers is not discussed in this book.
For more information, refer to IBM WebSphere Application Server V6.1
Security Handbook, SG24-6316.
10 WebSphere Application Server V7.0 Security Guide

integration might not be possible with all applications in an enterprise. SSO also
creates a possible security risk from unattended workstations where a user has
authenticated. And finally, with SSO there is one central point of authentication,
making an attack by a malicious hacker an even more serious risk.

SSO can be implemented in multiple ways, including the use of external devices
(smart cards, for example) or through software implementations. WebSphere
Application Server provides support for the use of LTPA cookies and Simple and
Protected GSS-API Negotiation (SPNEGO). LTPA cookies do not require any
particular client and allow SSO across various cells as long as the user registry
and the LTPA keys are the same. SPNEGO uses the token from a Kerberos
login (typically, Windows®) to authenticate to WebSphere Application Server.

New in V7, the trust association interceptor (TAI) that uses the SPNEGO to
securely negotiate and authenticate HTTP requests for secured resources
(introduced in WebSphere Application Server Version 6.1) is now deprecated
with V7. SPNEGO Web authentication has taken its place to provide dynamic
reload of the SPNEGO filters and to enable fallback to the application login
method.

1.1.9 Web services security

The Organization for the Advancement of Structured Information Standards
(OASIS) Web services security (WS-Security) specification defines the core
facilities for protecting the integrity and confidentiality of a message and provides
mechanisms for associating security-related claims with the message. Web
services security is a message-level standard based on securing SOAP
messages through XML digital signature, confidentiality through XML encryption,
and credential propagation through security tokens. WebSphere Application
Server V7 supports Version 1.1 of the WS-Security specification, including
features such as encrypted header, thumbprint and signature configuration,
username token profile, and X.509 token profile. In addition, limited security
scenario support is provided for the Kerberos Version 1.1 token profile,
WS-SecureConversation Version 1.3, WS-Trust Version 1.3, and
WS-SecurityPolicy Version 1.2.

For more information: Refer to WebSphere Application Server V7 Web
Services Guide, SG24-7758.
 Chapter 1. Introduction 11

1.1.10 Messaging security

WebSphere Application Server supports the following messaging providers:

� The WebSphere Application Server default messaging provider (which uses
the service integration bus as the transport for the provider)

� The WebSphere MQ messaging provider (which uses your WebSphere MQ
system as the provider). The WebSphere MQ messaging provider does not
use service integration.

� Third-party messaging providers that implement either a Java Platform,
Enterprise Edition Connector Architecture (JCA) Version 1.5 resource
adapter or the application support filter (ASF) component of the JMS Version
1.0.2 specification.

With regard to the WebSphere Application Server environment, security for
messaging using these providers can be defined at multiple points:

� A messaging client accesses a messaging provider by creating a connection
to it. This connection can be secured by requiring authentication and
authorization to take place for new connections. The credentials can be
provided by the application or specified on the connection factory that is used
to create the connection.

� Messages that travel over the network from the application server to the
messaging destination can be protected by using SSL on the transport.

� Messages are stored on queue or topic destinations. These destinations can
also be secured by requiring authentication and authorization to take place
before storing or accessing messages on the destination.

Additional security points exist within WebSphere Application Server in a
topology that uses the WebSphere default messaging provider. A service
integration bus provides the underlying transport for this provider. Application
servers and clusters are added as members of the bus, each having a
messaging engine on the bus that provides the core messaging capabilities.

Communication between messaging engines can be secured by requiring
authorization to take place. Messages stored on destinations in the bus can be
stored on a file system or a database. If using a database, it can be protected,
and a J2EE Connector architecture (J2C) authentication alias can be used to
provide the credentials required for access.

For more information about securing the default messaging provider:
Refer to WebSphere Application Server V7 Messaging Administration Guide,
SG24-7770.
12 WebSphere Application Server V7.0 Security Guide

There are alternatives to connecting to a WebSphere MQ network using the
WebSphere MQ messaging provider:

� A WebSphere MQ network can be defined as a foreign bus (using
WebSphere MQ links). A WebSphere MQ link provides a server to server
channel connection between a service integration bus and a WebSphere MQ
queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network.

Role-based authorization can be used to secure access to both the local bus
and the foreign bus. You can also authorize users to access the foreign or
alias destinations that will forward messages to a foreign bus.

� A WebSphere MQ server (a queue manager or queue-sharing group)
provides a direct client connection between a service integration bus and
queues on a WebSphere MQ queue manager or (for WebSphere MQ for
z/OS) queue-sharing group.

A WebSphere MQ server definition provides authentication settings that
service integration uses to connect to the associated WebSphere MQ queue
manager or queue-sharing group.

In each case, SSL can be used to secure communications between WebSphere
Application Server and WebSphere MQ.

1.2 Summary of new V7 security features and changes

These new features and changes are relevant to security in WebSphere
Application Server V7:

� Auditing the security infrastructure

The new security auditing feature provides the infrastructure that allows you
to implement your code to capture and store supported auditable security
events. During run time, all code other than the Java EE 5 application code is
considered to be trusted. Each time that a Java EE 5 application accesses a
secured resource, any internal application server process with an audit point
included can be recorded as an auditable event.

� Authorization providers

The Java Authorization Contract for Containers (JACC) specification 1.4 is
included to support Java EE 5, including the use of annotations for
propagating security policy information.
 Chapter 1. Introduction 13

� Configuring the Kerberos token for Web services security

The support for Kerberos with Web services security in WebSphere
Application Server Version 7.0 is included and is based on the OASIS Web
Service Security Kerberos Token Profile 1.1 specification.

� General JAX-WS default bindings for Web services security

The configuration of the default cell level and default server level bindings has
changed in WebSphere Application Server Version 7.0. Previously, you
configured only one set of default bindings for the cell and, optionally,
configured one set of default bindings for each server. In Version 7.0, you can
configure one or more general provider bindings and one or more general
client bindings. However, only one general provider binding and one general
client binding can be designated as the default.

� Kerberos (KRB5) authentication mechanism support for security

Security support for Kerberos as the authentication mechanism has been
added for this release of WebSphere Application Server. Kerberos is a
mature, flexible, open, and extremely secure network authentication protocol.
Kerberos includes authentication, mutual authentication, message integrity
and confidentiality, and delegation features. You can enable Kerberos on the
server side. Support is provided to enable the rich Java client to use the
Kerberos token for authentication to the WebSphere Application Server.
However, the thin client, administrative thin client, and application client do
not support a Kerberos token for authentication to the Application Server.
These thin clients must instead use BasicAuth/GSSUP for authentication to
the Application Server.

� Multiple security domains

Multiple security domain support allows you to create multiple security
configurations and assign them to various applications in WebSphere
Application Server processes. By creating multiple security domains, you can
configure different security attributes for administrative and user applications
within a cell environment. You can configure separate applications to use
separate security configurations by assigning the servers, clusters, or service
integration buses that host these applications to the security domains. Only
users assigned to the administrator role can configure multiple security
domains.
14 WebSphere Application Server V7.0 Security Guide

� Securing communications

WebSphere Application Server provides several methods for securing
communication between a server and a client. New in this release are
functions that ensure secure communication between a server and a client.
These functions focus on certificate management, authentication, and
ensuring trust among the application server, administrative agent, and job
manager. The new functions include:

– Creating and using certificate authority (CA) clients to enable a CA to
request, query, and revoke certificates

– Creating and using chained personal certificates to allow a certificate to be
signed with a longer life span

– Creating and revoking certificate authority (CA) certificates to ensure
secure communication between the CA client and the CA server

– Allowing the WebSphere Application Server administrator to create,
configure, and enable System Authorization Facility (SAF) keyrings by
utilizing the Open Cryptographic Services Facility (OCSF) Data library
functions for SAF keyrings

� Single sign-on for HTTP requests using SPNEGO Web authentication

In WebSphere Application Server Version 6.1, a trust association interceptor
(TAI) that uses the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) to securely negotiate and authenticate HTTP requests for secured
resources was introduced. In WebSphere Application Server 7.0, this function
is now deprecated. SPNEGO Web authentication has taken its place to
provide the following enhancements:

– You can configure and enable SPNEGO Web authentication and filters on
WebSphere Application Server by using the administrative console.

– Dynamic reload of SPNEGO is provided without the need to stop and
restart WebSphere Application Server.

– Fallback to an application login method is provided if the SPNEGO Web
authentication fails.

– SPNEGO can be customized at the WebSphere security domain level.
 Chapter 1. Introduction 15

16 WebSphere Application Server V7.0 Security Guide

Chapter 2. Administrative security

Administrative security is used to secure access to the administrative functions
for the WebSphere environment and to provide the basis for the WebSphere
security infrastructure. Enabling administrative security activates a wide variety
of security settings for WebSphere Application Server, including the mechanism
used for authentication of users, the use of Secure Sockets Layer (SSL), and the
choice of user account repository.

This chapter provides information about enabling and managing administrative
security. It contains the following topics:

� “Administrative security overview” on page 18
� “Enabling administrative security” on page 18
� “Disabling administrative security” on page 26
� “Administrative roles” on page 27
� “Fine-grained administrative security” on page 35
� “Job manager security” on page 41
� “Naming service security: CosNaming roles” on page 46

2

© Copyright IBM Corp. 2009. All rights reserved. 17

2.1 Administrative security overview

The term global security refers to the security configuration that applies to all
administrative functions and that provides the default security configuration for
user applications. By default, all administrative and user applications in
WebSphere Application Server use the global security configuration. You can
create additional WebSphere security domains if you want to specify separate
security attributes for several or all of your user applications. Administrative
security must be enabled before you can activate application security.

Enabling administrative security provides the ability to secure the basic
infrastructure of a WebSphere environment, which includes:

� Authentication of HTTP and Internet Inter-ORB Protocol (IIOP) clients

� Security for administrative functions (administrative console access, access
to execute commands, and access for wsadmin scripts)

� Naming service security

� Use of SSL transports

Enabling administrative security will require that you select a user registry. When
you enable security during profile configuration, you automatically get a
federated repository configuration. To select any other option, you will need to
deselect the option to enable administrative security and enable it after the profile
is created. The user registry that you select in the global security settings is used
for administrative security and, by default, for application security. However, a
separate user registry can be configured in a security domain for applications.
We discuss user registries further in Chapter 4, “Configuring the user registry
and authentication settings” on page 65.

2.2 Enabling administrative security

There might be environments where no security is needed, for example, on
individual test systems that are used by developers. On these systems, you can
elect to disable administrative security. However, in most environments,
administrative security needs to be enabled to prevent unauthorized users from
accessing the administrative functions.
18 WebSphere Application Server V7.0 Security Guide

2.2.1 Enabling security at profile creation

When you create a profile, you have the option to enable administrative security.
This option is selected by default, and you are asked to provide a user ID and
password for the administrator. This information is registered in a file-based
repository. After the profile is created and the process hosting the administrative
services is started, you must use this user ID and password to log in to the
administrative console. Additional users and groups can be added to the
file-based repository from the administrative console, and additional security
configuration can be performed.

2.2.2 Enabling security after profile creation

If WebSphere administrative security has not been enabled, it can be configured
and activated using the administrative console.

Follow these steps to enable administrative security:

1. Determine the user registry that you will use. If you plan to use a user registry
other than the file-based (federated) repository, you must populate it with the
user ID and password that you will specify as the admin user.

2. Select Security  Global security (as shown in Table 2-1 on page 28).
 Chapter 2. Administrative security 19

Figure 2-1 Global security configuration page

3. The Security Configuration Wizard guides you through the process of
completing the basic requirements to secure your application serving
environment.

Launch the wizard by clicking Security Configuration Wizard.

4. The first step of the wizard allows you the option of enabling application
security and Java 2 security, in addition to administrative security (Figure 2-2
on page 21).
20 WebSphere Application Server V7.0 Security Guide

Figure 2-2 Step 1 of Configuration Wizard

In this example, only administrative security will be enabled.

Application security is also essential in securing a WebSphere environment
and is discussed in Chapter 7, “Application security” on page 253.

Java 2 security provides a policy-based, fine-grained access control
mechanism that increases overall system integrity by checking for
permissions before allowing access to certain protected system resources.
Unless you have planned and prepared for using Java 2 in advance, many
existing or even new applications might not be prepared for the extremely
fine-grained access control programming model that Java 2 security is
capable of enforcing. In addition, there is a permanent cost to Java 2 security.
(It is not common to enable Java 2 security).

Click Next.

5. The second step of the wizard allows you to select the user repository
(Figure 2-3 on page 22).
 Chapter 2. Administrative security 21

Figure 2-3 Select the repository

Click Next.

6. The third step of the configuration wizard allows you to provide a primary
administrative user and other user registry information (Figure 2-4 on
page 23).
22 WebSphere Application Server V7.0 Security Guide

Figure 2-4 Enter the primary administrative user

You need to enter a valid user name in the Primary administrative user name
field. The primary administrative user is a member of the chosen repository,
but it also has the same privileges that are associated with the administrative
role ID in WebSphere Application Server, and it can access all of the
protected administrative methods.

Figure 2-4 shows the single LDAP configuration. Based on the registry you
choose in the previous step, other information in addition to the primary
administrative user will be required to configure the registry.
 Chapter 2. Administrative security 23

If local operating system registry is selected, the ID must have the following
platform-specific privileges:

– For Windows operating systems: Act as Part of Operating System
privileges

– For UNIX and Linux® operating systems: Root privileges

Click Next to view the summary page, and then complete the wizard.

Apply the changes; administrative security will be turned on by default.

7. Validate the completed security configuration by clicking OK or Apply. If
there are no validation problems, click Save to save the settings to a file that
the server uses when it restarts.

Verifying and testing administrative security
After your server has been restarted in secure mode, you can test that security is
properly enabled. There are several basic tests that you can perform:

� Verify the form login. When using the administrative console, the login page
that is displayed forces you to fill in a user ID and a password. Only a user ID
with one of the administrative roles can be able to log in.

� Verify that the Java Client Basic Authentication works by executing:

<WebSphere_home>\bin\dumpNameSpace.bat

The connection testing the dumpNameSpace script needs to be configured to
spawn a window (for example, export DISPLAY or something else
appropriate based on the operating system).

A challenge login window must open. Although you might be able to just click
Cancel, you must type any correct user ID and password defined in the user
account repository with the administrator role to test the security.

Be aware that the login panel for the previously mentioned Java client only
opens if the property com.ibm.CORBA.loginSource is set to prompt in the file
sas.client.props. Clicking Cancel works only if the CosNaming security
(refer to 2.7, “Naming service security: CosNaming roles” on page 46) allows
read access to everyone. These values are the default values when you
installed WebSphere.

Important:

� If you do not click Apply or OK in the Global security panel before you
click Save, your changes are not written to the workspace.

� The server must be restarted for any changes to take effect when you
start the administrative console.
24 WebSphere Application Server V7.0 Security Guide

Successfully running the previously listed basic tests indicates that the
administrative security is working correctly.

2.2.3 Stopping the application server

While the command to start the application server is still the same when
administrative security is enabled, stopping the server requires extra information.
You have to specify a user ID with administrator role rights, or you have to
specify the primary administrative user name specified in the user account
repository and its password.

The most secure way to stop the application server is to enter the stopServer
command without the user ID and password, and enter them at the command
prompt:

install_root\bin\stopServer.bat <server_name>

Depending on your requirements and environment, there are alternate methods
to enter the user ID and password.

You can them in the stopServer command:

install_root\bin\stopServer.bat <server_name> -username <user ID>
-password <password>

For WebSphere Application Server running under a UNIX®-based operating
system (OS), the previously mentioned command (the UNIX equivalent) carries a
serious security problem. Anybody who uses the command ps -ef while the
stopServer process is running is able to see the user ID and the password.

To avoid this problem:

1. If you are using the SOAP connection type (default) to stop the server, edit
the following file:

profile_home\properties\soap.client.props

Then, change the values of these properties:

com.ibm.SOAP.securityEnabled=true
com.ibm.SOAP.loginUserid=<user ID>
com.ibm.SOAP.loginPassword=<password>

Again, the user ID <user ID>, with its password <password>, is the user ID
with administrator role rights or the primary administrative user name defined
in the user account repository.
 Chapter 2. Administrative security 25

2. We recommend that you encode the com.ibm.SOAP.loginPassword property
value using:

<WebSphere_home>\bin\PropFilePasswordEncoder.bat soap.client.props
com.ibm.SOAP.loginPassword

Examine the result and remove the backup file, soap.client.props.bak,
which was created by the command that was used previously. It contains the
unencrypted password.

3. Make sure that proper file access rights for sensitive WebSphere Application
Server files, such as properties files and executable files, are set. At a
minimum, ensure that the permissions prevent general users from accessing
these files. WebSphere administrators must be the only users that are
granted access to these files. For optimal security, access to the entire
WebSphere directory tree must be removed for general users.

2.3 Disabling administrative security

Administrative security can be disabled in order to fix a problem that stems from
a situation in which WebSphere security is failing.

If you can log on to the administrative console, disabling security is fairly easy.
Follow these steps:

1. Click Security  Global security.

2. Clear the Enable administrative security check box.

3. Save the configuration and restart the server.

If, for some reason, the server hosting the administrative console cannot be
started, for example, because of an incorrectly configured user account
repository, you can disable administrative security using the command line:

1. At the command prompt, type the following:

<WebSphere_home>\bin\wsadmin.bat -conntype NONE

2. When the system command prompt displays again, type:

securityoff

3. When done, type exit and restart the application server.

Note: Disabling administrative security does not disable Java 2 security
automatically. Java 2 security needs to be disabled explicitly.
26 WebSphere Application Server V7.0 Security Guide

This procedure typically works without any problem, but in the event that it fails,
you can disable administrative security by directly editing the security.xml file
(Example 2-1) in the following location:

profile_home\config\cells\<cell_name>\

Open this file and change the security attribute enabled=true to enabled=false.

Other security properties, such as Java 2 security and application security, can
also be found in this file. Only modify the XML file as a last resort. Be sure to
save an original copy of the security.xml file before making any modifications.

Example 2-1 Content snippet of the file security.xml

<?xml version="1.0" encoding="UTF-8"?>
<security:Security xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
...
xmi:id="Security_1" useLocalSecurityServer="true"
useDomainQualifiedUserNames="false" enabled="true" cacheTimeout="600"
issuePermissionWarning="true" activeProtocol="BOTH"
enforceJava2Security="false" enforceFineGrainedJCASecurity="false"
appEnabled="false" dynamicallyUpdateSSLConfig="true"
allowBasicAuth="true" activeAuthMechanism="LTPA_1"
activeUserRegistry="WIMUserRegistry_1"
defaultSSLSettings="SSLConfig_1">
<authMechanisms ...
...
...
</security:Security>

2.4 Administrative roles

WebSphere Application Server extends the Java security role-based access
control to protect the product administrative and naming subsystems. Eight
administrative roles are available to define the administrative capabilities
assigned to a user or group (Table 2-1 on page 28). The administrative roles are
effective only when administrative security is enabled.

New in V7: The Auditor role has been introduced. Having this role allows an
administrator to view and modify configuration settings related to the security
auditing subsystem. This new role allows for the separation of administrative
privileges.
 Chapter 2. Administrative security 27

Table 2-1 WebSphere administrative roles

Role Description

Monitor Least privileged. This role allows a user to view the
WebSphere configuration and the current state of the
application server.

Configurator Monitor privilege plus the ability to change the WebSphere
configuration.

Operator Monitor privileges plus the ability to change the runtime
state, such as starting or stopping servers.

Administrator Operator, configurator, and iscadmins privilege, plus
privileges granted solely to the administrator role, such as:
� Modifying the primary administrative user and

password
� Creating, updating, and deleting users and groups
� Enabling or disabling administrative and Java 2

security
Note: An administrator cannot map users and groups to
administrative roles.

iscadmins Only available for administrative console users and
not for wsadmin users. Allows a user to manage users
and groups in the federated repositories.

Deployer Only available for wsadmin users and not for
administrative console users. Allows a user to change
the configuration and the runtime state on applications
using wsadmin.

Admin Security Manager Allows a user to map users and groups to administrative
roles through the administrative console, or through
wsadmin for fine-grained security. When fine-grained
administrative security is used, users granted this role can
manage authorization groups.
28 WebSphere Application Server V7.0 Security Guide

2.4.1 Mapping users and groups to administrative roles

Users and groups can be added or removed from administrative roles using the
WebSphere Application Server administrative console by a user given the
appropriate authority. The Primary administrative user name must be used to log
on to the administrative console to change the administrative user and group
roles other than the auditor role. Only a user with the auditor role can change the
auditor user and group roles. When security auditing is initially enabled, the
Primary administrative user is also given the auditor role, and can manage all of
the administrative user and group roles, including those users in the auditor role.

Auditor Users granted this role can view and modify the
configuration settings for the security auditing subsystem.
For example, a user with the auditor role can complete the
following tasks:

� Enable and disable the security auditing subsystem.

� Select the event factory implementation to be used with
the event factory plug-in point.

� Select and configure the service provider, emitter, or
both to be used with the service provider plug-in point.

� Set the audit policy that describes the behavior of the
application server in the event of an error with the
security auditing subsystem.

� Define which security events are to be audited.

The auditor role includes the monitor role, which allows the
auditor to view but not change the rest of the security
configuration.

Important information: The primary administrative user that is specified
when enabling administrative security is automatically mapped to the
administrator and AdminSecurityManager roles. Therefore, it is not necessary
to manually add this identity to either of these administrative roles.

The primary administrative user is also given the auditor role initially. Users
who want to separate the administrative privileges between audit configuration
and the remaining security configuration must define a user other than the
primary administrative user as their primary auditor user.

Role Description
 Chapter 2. Administrative security 29

In addition to mapping users or groups, a special subject can also be mapped to
the administrative roles. A special subject is a generalization of a particular class
of users. The AllAuthenticated special subject means that the access check of
the administrative role ensures that the user making the request is at least
authenticated. The Everyone special subject means that anyone, authenticated
or not, can perform the action, as though security was not enabled.

A suggested process for assigning administrative security access to users is:

1. Create groups that correspond to the administrative roles.

This step is done using the appropriate interface to the user registry.

If you are using the federated repository, you can add groups using the
panels found by selecting Users and Groups  Manage Groups in the
administrative console.

2. Create user IDs for the administrative users and add each user ID to the
appropriate group.

This step is also done using the appropriate interface to the user registry.

If you are using the federated repository, you can add users and assign them
to groups using the panels found by selecting Users and Groups  Manage
Users in the administrative console.

3. Assign administrative roles to the groups.

The panels that allow you to assign administrative roles to groups can be
found in the administrative console by selecting Users and Groups 
Administrative group roles.

Best practice: Map a group or groups, rather than specific users, to
administrative roles, because it is more flexible and easier to administer.
When users are added to the groups (therefore, the users are mapped to
administrative roles), it will be effective without the requirement to restart the
WebSphere server.
30 WebSphere Application Server V7.0 Security Guide

2.4.2 Mapping a group to an administrative role

You can use the following process to map an existing group to an administrative
role:

1. From the administrative console, click Users and Groups  Administrative
Group Roles.

2. Click Add.

3. Either a specific group, or a special subject can be mapped. Refer to
Figure 2-5 on page 32.

To map a specific group, select Map Groups As Specified Below, follow the
instructions on the page to specify a group, and then select the appropriate
administrative role. More than one role can be selected by using the Ctrl key.
 Chapter 2. Administrative security 31

Figure 2-5 Mapping a group to an administrative role

To map a special subject, select Special subjects and the appropriate
subject from the drop-down list. A special subject is a generalization of a
particular class of users. The AllAuthenticated special subject means that the
32 WebSphere Application Server V7.0 Security Guide

access check of the administrative role ensures that the user making the
request is at least authenticated. The Everyone special subject means that
anyone, authenticated or not, can perform the action, as though security was
not enabled. The AllAuthenticatedInTrustedRealms special subject is similar
to the AllAuthenticated special subject that is currently supported. The
difference is that the AllAuthenticated special subject refers to users in the
same realm as the application while the AllAuthenticatedInTrustedRealms
special subject applies to all of the users in the trusted realms and in the
realm of the application.

4. Click OK.

5. Ensure that the new mapping is in the Administrative Group Roles list, and
then click Save to save the change to the master configuration.

2.4.3 Mapping a user to an administrative role

In order for a user to perform an administrative action, the user’s identity must be
mapped to an administrative role:

1. From the administrative console, select Users and Groups 
Administrative User Roles.

2. Click Add to add a user.

3. Select the appropriate administrative role. More than one role can be selected
by using the Ctrl key. Refer to Figure 2-6 on page 34. To select the roles:

a. Enter the search string, use an asterisk (*) for a wildcard, and click
Search.

b. Select the users from the Available user list. You can use the Ctrl or Shift
key to select multiple users.

c. Click the add arrow button to add the users to the Mapped to role user
list.

d. Select the users from the Mapped to role user list. You can use the Ctrl or
Shift key to select multiple users, and then select the role from the Role(s)
list.
 Chapter 2. Administrative security 33

Figure 2-6 Mapping a user to an administrative role

4. Click OK.

5. Ensure that the new mapping is in the Administrative user roles list, and then
click Save to save the change to the master configuration.

6. You might need to restart the server for the role to become available to the
user, especially if the user has been active. Restarting the server ensures that
the cache is refreshed with the new role information.
34 WebSphere Application Server V7.0 Security Guide

2.5 Fine-grained administrative security

In releases prior to WebSphere Application Server Version 6.1, users who were
granted administrative roles administered all of the resource instances in the cell.
WebSphere Application Server is now more fine-grained, meaning that
administrative roles can now be assigned per resource instance rather than to
the entire cell. Users cannot perform actions on resources outside of those
resources that are assigned to them. Users can be granted configurator access
to a specific instance of a resource (an application, an application server, or a
node).

There is a cell-wide authorization group for backward compatibility. Users
assigned to administrative roles in the cell-wide authorization group can still
access all of the resources within the cell. When using fine-grained security, you
can assign users the cell-wide monitor role so that they can see resources
without being able to update those resources outside of their fine-grained
authorization role.

2.5.1 Authorization group

To achieve the instance-based security or fine-grained security, resources that
require the same privileges are placed in a group called the administrative
authorization group or authorization group. Users can be granted access to the
authorization group by assigning the required administrative role to them.

The following types are valid for the resource instances that are added to an
authorization group:

� Cluster
� Node
� Servers, including application servers and Web servers
� Applications, including business-level applications
� Node groups
� Assets

A resource instance can only belong to one authorization group. When you
create a new authorization group through the administrative console, you can list
the resource in different scopes, and if one resource has been added to an
authorization group, it cannot be selected for another authorization group, as
shown in Figure 2-7 on page 36.
 Chapter 2. Administrative security 35

Figure 2-7 List resources with different scopes

However, there is a containment relationship among resource instances. If a
parent resource belongs to a different authorization group than that of its child
resource instance, the child resource instance implicitly belongs to multiple
authorization groups.

For example, when you assign a node to an authorization group, it includes all of
the resources associated with this node. Then, if you assign the child resource
server to another authorization group, this server resource will belong to multiple
authorization groups.

2.5.2 Granting fine-grained access

There are two steps in granting fine-grained administration authority to users:

1. Create an authorization group and map resources to it.

2. Assign users or groups to administrative roles within the authorization groups,
using wsadmin or the administrative console.

You can find examples of wsadmin commands that can be used to manage
fine-grained access at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/csec_fineg_admsec.html
36 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_fineg_admsec.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_fineg_admsec.html

The following steps show how to configure fine-grained security through the

administrative console:

1. Log in to the administrative console, and click Security  Administrative
Authorization Groups.

2. Click New to create a new administrative authorization group.

3. Type the group name and select the resources. Refer to Figure 2-8. You can
use the Show: field to narrow the resource type that is displayed. For
example, select Servers to show all the servers in the cell.

Figure 2-8 Administration authorization groups

4. Click Apply.
 Chapter 2. Administrative security 37

5. Now, you can click Administrative user roles or Administrative group
roles to assign users or groups to administrative roles within this
authorization group. Refer to 2.4.3, “Mapping a user to an administrative role”
on page 33 and 2.4.2, “Mapping a group to an administrative role” on page 31
to assign users or groups to administrative roles. Note that the users and
groups that you assign must also have the monitor administrative role if they
will use the administrative console.

6. Click Save to save the change to the master configuration.

2.5.3 Using fine-grained security: An example

This section shows a simple, practical example of the use of fine-grained security
for the deployer role.

In this example, there are three applications (App1, App2, and App3) deployed
on server1. Each application must be isolated so that the administrator of one
application cannot modify another application. Assume that only user1 can
manage application App1, that only user2 can manage application App2, and
that App3 only can be managed by the cell-level administrator, as shown in
Figure 2-9.

Figure 2-9 Fine-grained security scenario

App1

Authorization
Group 1

App1 Server1

User1@Deployer

Authorization
Group 2

App2 Server1

User2@Deployer

User2@Monitor
User3@Monitor

App3

Cell
38 WebSphere Application Server V7.0 Security Guide

These steps illustrate how fine-grained security works using the scenario in
Figure 2-9 on page 38:

� Two authorization groups are created. Application App1 is in Group1, and
application App2 is in Group2.

� Application App3 does not belong to any authorization group.

� A deployer role is assigned from authorization group Group1 to user1 and
also from authorization group Group2 to user2.

� A monitor role is assigned to user2 and user3 at the cell level.

Consequently, user1 can perform all of the operations on application App1,
user2 on application App2, and user2 and user3 have the monitor role for the cell
level.

Because all applications share the same server, the same server cannot be put
in all authorization groups. Only a cell-level administrator can install an
application. After the installation of an application is complete, the deployer of
each application can modify their own application. To start and stop the server,
cell-level administrative authority is required.

When user1 tries to log in to the administrative console, because there is no role
assigned at the cell level, no tasks can be performed. The message that is
shown in Example 2-2 will be displayed.

Example 2-2 Message when user1 tries to log in to the administrative console

Cell wide monitor role is minimally required to effectively use the
administrative console. Assign cell level role to this user or group if
administrative console access is required.

User1 must use wsadmin to perform the operations on application App1.
Figure 2-10 on page 40 shows how user1 uses wsadmin to stop App1.

Security levels: To use fine-grained administrative security in the
administrative console, a user must be granted the monitor role at the cell
level at minimum. If the administrator gives users access only to specific
authorization groups or permissions to non-cell authorization groups, the
users must use wsadmin.
 Chapter 2. Administrative security 39

Figure 2-10 Stop App1 using wsadmin

Because user2 has the cell-wide monitor role and the deployer role on
application App2, this user can use the fine-grained security in the administrative
console in addition to using wsadmin, as shown in Figure 2-11.

Figure 2-11 Fine-grained security for App2

And, user3 only has the cell-wide monitor role and no other role within an
authorization group; therefore, this user can only monitor the status as shown in
Figure 2-12 on page 41.
40 WebSphere Application Server V7.0 Security Guide

Figure 2-12 Monitor status for user3

2.6 Job manager security

Flexible management features have been introduced in WebSphere V7. You can
use the flexible management environment to locally or remotely submit and
manage administrative jobs. A job manager allows you to submit administrative
jobs asynchronously for application servers registered to administrative agents
and for deployment managers. You can submit these jobs to a large number of
servers over a geographically dispersed area.

Two new server types have been added to support flexible management: the
administrative agent and the job manager. The job manager is absolutely central
to flexible management. The administrative agent is used for a base server to
participate in flexible management. To participate in flexible management, a
base server first registers itself with the administrative agent and then registers
with the job manager. The deployment manager registers directly with the job
manager; no administrative agent is involved in this case.

The job manager is used to queue jobs to application servers. These queued
jobs are pulled from the job manager by the administrative agent and distributed
to the appropriate application server or servers as shown in Figure 2-13 on
page 42.
 Chapter 2. Administrative security 41

Figure 2-13 Job Manager

Enabling security in a flexible management environment is similar to the way that
administrative security is enabled for servers and deployment managers.
Security can be enabled during or after profile creation. However, in a flexible
management environment, if security is to be enabled, it must be enabled before
registration with the administrative agent or job manager.

WebSphere Base
Application Server

WebSphere Deployment
Manager Cell

Admin

Admin

Admin

ServersServers

Deployment
Manager

Deployment
Manager

Job Manager

Manager

Security for flexible management environments: In a flexible management
environment, both the administrative agent and the base application server
must have the same security level; that is, they must both have security
enabled or disabled. We recommend that before registering a node with an
administrative agent that you enable administrative security for both
processes. After you register a profile with the administrative agent, the state
of administrative security enablement cannot be changed.
42 WebSphere Application Server V7.0 Security Guide

When you access the WebSphere system in a Network Deployment
environment, a single username and password is used to access all systems, but
in a flexible management environment each job manager, administrative agent,
and application server can have a separate username and password
combination. If both the job manager and the managed node have security
enabled, you will need to provide both sets of security credentials to submit a job
to the application server in the managed node. To access the job manager’s
administrative interfaces, such as the administrative console, you need to
provide the job manager’s username and password. To submit the job to the
application server, you need to provide the application server’s username and
password.

Figure 2-14 on page 44 shows the Job Manager administrative console and the
job types that you can submit for processing.
 Chapter 2. Administrative security 43

Figure 2-14 Job Manager Administrative Console

The required administrative roles for executing flexible management jobs are
defined by the underlying administrative commands that are used by those jobs.
For example, the required role for starting and stopping servers is the operator
role. The operator role is also required for the execution of the flexible
management jobs that start and stop servers. The general rules for assigning
required administrative roles are:

� Viewing data requires the monitor role.
� Updating data requires the configurator role.
44 WebSphere Application Server V7.0 Security Guide

� Managing jobs requires the operator role.
� Registering or unregistering managed nodes requires the administrator role.

But this role management is only for the Job Manager. When you submit the job
to the application server, you need to provide the application server’s username
and password combination that has the required authority to perform the
requested operation (Figure 2-15).

Figure 2-15 Submit a Job

If the user name specified does not have the required privileges, the job fails to
be processed and a message similar to the message in Example 2-3 on page 46
occurs.
 Chapter 2. Administrative security 45

Example 2-3 Incorrect privileges message

CWWSY0605E: Problem while executing job createCluster. Cause:
java.lang.SecurityException: ADMF0010E: Access denied for command
createCluster.

2.7 Naming service security: CosNaming roles

The JEE role-based authorization concept has been extended to protect the
WebSphere Common Object Request Broker Architecture (CORBA) naming
service (CosNaming) to increase the granularity of its security control. In doing
so, WebSphere is able to provide better control for a client program accessing
the content of the WebSphere name space. There are generally two ways in
which client programs make a CosNaming call:

� Through the Java Naming and Directory Interface (JNDI)
� CORBA clients invoking CosNaming methods directly

The default setup for WebSphere grants a Cos Naming Read role to the
CosNaming service for everyone, which is the default setup for WebSphere.
Table 2-2 shows all the four CosNaming roles.

Table 2-2 CosNaming roles

Role Description

Cos Naming Read Users are allowed to perform queries of the WebSphere name
space, such as through the JNDI lookup method. The special
subject Everyone is the default policy for this role.

Cos Naming Write Users are allowed to perform write operations, such as JNDI
bind, rebind, or unbind, and also CosNamingRead operations.
The special subject, AllAuthenticated, is the default policy for
this role.

Cos Naming Create Users are allowed to create new objects in the name space
through operations, such as JNDI create subcontext, and to
perform CosNamingWrite operations. The special subject
AllAuthenticated is the default policy for this role.

Cos Naming Delete Users are able to destroy objects in the name space, for
example, using the JNDI destroySubcontext method, as well as
to perform CosNamingCreate operations. The special subject
AllAuthenticated is the default policy for this role.
46 WebSphere Application Server V7.0 Security Guide

2.7.1 Mapping a user or a group to a CosNaming role

The process of mapping a user or group to a CosNaming role is similar to
mapping a user or a group to an administrative role. To map CosNaming roles,
click Environment  Naming  CORBA Naming Service Users for user
mappings and Environment  Naming  CORBA Naming Service Groups
for group mappings.

2.7.2 Applying CosNaming security: An example

This section shows a simple, practical example of the use of CosNaming
security. WebSphere Application Server provides a Java application client
<WebSphere_home>\bin\dumpNameSpace.bat, which is useful for listing all of the
CORBA naming services that are available in the server.

When running dumpNameSpace.bat in a secure WebSphere environment, you are
prompted with a window similar to the window that is shown in Figure 2-16.

Figure 2-16 A window prompted by the dumpNameSpace.bat Java application client

The window that is shown in Figure 2-16 is shown when the property
com.ibm.CORBA.loginSource is the default value “prompt” in the CORBA client
configuration file sas.client.props.

You can either fill in any correct user ID and password defined in your user
registry and click OK, or you can just simply click Cancel.

Note: CosNaming roles are only effective when administrative security is
enabled.
 Chapter 2. Administrative security 47

With a default setup of the WebSphere Application Server, both actions will run
without a problem, because the CosNaming read rights role is valid for everyone.
Refer to Figure 2-17.

Figure 2-17 Default CosNaming security for WebSphere Application Server

The following process shows a simple example of how to restrict the access to
the CORBA naming service by allowing read access only to authenticated users:

1. From the administrative console, click Environment  Naming  CORBA
Naming Service Groups.

2. Remove the entry for the special role group EVERYONE.

3. Add a new entry giving Cos Naming Read rights for the special group
ALL_AUTHENTICATED.

The final setup for the CosNaming security must be as shown in Figure 2-18
on page 49.
48 WebSphere Application Server V7.0 Security Guide

Figure 2-18 Customized CosNaming security

4. Save the setup and restart the WebSphere Application Server.

After the server has been started, running the dumpNameSpace.bat Java
application client only works if you enter a correct user ID and password during
the authentication process. Otherwise, the WebSphere Application Server
throws an exception:

org.omg.CORBA.NO_PERMISSION

Important: Granting read access to EVERYONE presents a small security risk;
therefore, it is better to keep the CosNaming security settings as shown in
Figure 2-18. If you experience unexpected results in applications that use the
CORBA naming service that you cannot resolve with application security
roles, add the default CosNaming security entry back to the configuration as
shown in Figure 2-17 on page 48. This security risk can be mitigated by
ensuring that your WebSphere Application Server infrastructure is protected
from other systems by firewalls.
 Chapter 2. Administrative security 49

50 WebSphere Application Server V7.0 Security Guide

Chapter 3. Using security domains

Security settings for WebSphere Application server processes are defined in the
global security settings. Global security is specific to one cell and is applicable
cell-wide.

With WebSphere Application Server V7, you have the ability to define additional
security domains that can override a subset of the global security settings. These
domains can be used to provide customized security settings for applications
and service integration buses. A security domain has a scope that defines where
its settings are applicable. Settings that are not defined in the domain default to
the global security settings.

This chapter describes security domains for applications. It contains the following
topics:

� “Global security compared to security domains” on page 52
� “Application security domain scenarios” on page 54

3

© Copyright IBM Corp. 2009. All rights reserved. 51

3.1 Global security compared to security domains

The global security domain in WebSphere Application Server V7 defines the
administrative security configuration and the default configuration for
applications. If no other security domains are configured, and application security
is enabled at the global security domain, all of the user applications and
administrative applications use the same security configuration.

Although extremely convenient and straightforward, a single-domain
configuration might not be the ideal configuration for certain clients that need
settings customized for applications. Fortunately, WebSphere Application Server
V7 offers the flexibility to override the global security domain configuration with
additional security domains that are configured at a different scope. Security
domains provide the flexibility to use configuration security settings that differ
from those settings that are specified in the global security settings.

Administrative security must be enabled before you can enable application
security. However, application security can be disabled at the global security
level and enabled at the security domain level.

3.1.1 Attributes that can be configured in a security domain

You define attributes at the security domain level that need to be different from
those at the global level. If the information is common, the security domain does
not need to have the information duplicated in it. Any attributes that are missing
in the domain are obtained from the global configuration.

Table 3-1 shows a comparison of the security features that can be specified in
the global security settings and those that a security domain can override.

Note for V6.1 users migrating to V7:

In WebSphere Application Server V6.1, it was possible to use server-level
security to customize security to a certain extent to override the global security
settings. This feature was commonly used to enable or disable application
security or Remote Method Invocation (RMI)/Internet Inter-ORB Protocol
(IIOP) security on the application server level. There were limitations though;
for example, it did not provide the capability to configure a different
authentication or user registry on an individual server basis.

If you used server-level security in previous releases of WebSphere
Application Server, you need to now use multiple security domains instead.
Server-level security is deprecated in this release.
52 WebSphere Application Server V7.0 Security Guide

Table 3-1 Comparison of global and domain security settings

3.1.2 Configuration files

The global security configuration data is stored in the security.xml file, which is
located in the profile_home/cells/cell_name directory.

For every security domain that is configured, two files are created in the
profile_home/config/waspolicies/default/securitydomains/domain_name
directory:

� The security-domain.xml file, which contains one or more security attributes,
such as user registry, Java 2 security, authentication, JAAS login modules,
TAI, and so forth

� The security-domain-map.xml file, which contains the scope of the security
domain

Normally, security domain attributes override the user realm defined in the
security.xml file. However, there are two exceptions:

� JAAS application logins, JAAS system logins, and JAAS J2C authentication
data defined at the domain level are merged with the attributes defined at the
global security domain.

� Custom properties defined in a security domain are also merged with those
custom properties at the global security domain.

Global security configuration Security domain overrides

� Enablement of application security
� Java 2 security
� User realm (registry)
� Trust Association Interceptor (TAI)
� SPNEGO Web authentication
� RMI/IIOP Security (CSIv2 protocol)
� JAAS
� Authentication mechanism attributes
� Authorization provider
� Custom properties
� Web attributes (single sign-on)
� SSL
� Audit
� LTPA authentication mechanism
� Kerberos authentication mechanism

� Enablement of application security
� Java 2 security
� User realm (registry)
� Trust Association Interceptor (TAI)
� SPNEGO Web authentication
� RMI/IIOP Security (CSIv2 protocol)
� JAAS
� Authentication mechanism attributes
� Authorization provider
� Custom properties
 Chapter 3. Using security domains 53

3.1.3 Security domain scope

A security domain can be scoped to an entire cell, or to a specific set of servers,
clusters, or service integration buses. Therefore, multiple security domains can
be used to allow security settings to vary from one application to another
application.

Security settings that apply to an application will be defined by the following
scope:

1. If the application is running on a server or cluster that is within the scope of a
security domain, those settings will be used. Security settings that are not
defined in this domain will be taken from the global security settings (not a
cell-level domain).

2. If the application is running on a server or cluster that is not within the scope
of a security domain, but a security domain has been defined at the cell
scope, that domain will be used. Security settings that are not defined in this
domain will be taken from the global security settings.

3. If the previous conditions do not apply, the global domain settings will be
used.

Note that you can enable or disable application security at the domain and global
level, so just falling within a domain does not necessarily mean that application
security is enabled. Also, note that naming operations always use the global
security configuration.

3.2 Application security domain scenarios

Security domains can be created and managed using the administrative console
or scripts. Only users assigned to the administrator roles can configure security
domains.

The following sections discuss two simple scenarios to illustrate the concept.

3.2.1 Scenario: Application security at the global security level

If all applications can be secured using a shared user realm, you can simply
define security at the global domain level. The global settings are found by
navigating to Security  Global security in the administrative console
(Figure 3-1 on page 55). Select Enable application security and define the
user registry and other security settings as required.
54 WebSphere Application Server V7.0 Security Guide

Figure 3-1 Enable application security at the global security domain

If no other security domains are configured to override the global security
domain, all of the applications use information from the global security domain
configuration. Applications will share the same user realm, because only one
active user registry is allowed at the global security level. The predefined user
registry is the file-based federated repository utilizing a simple fileRegistry.xml
file.

3.2.2 Scenario: Security domains that override global security

In this example, administrative security is enabled and uses a federated
repository for authorization. Application security is not enabled at the global
domain level. A security domain is created to enable application security for all
applications running on the application server, server1. The local OS user
registry is used as the user realm for the new security domain.

To create this environment, a new security domain called TestDomain is created
with the local OS defined as the user registry.

The administrative applications, as well as the naming operations in that scope,
will still use the global security configuration.

Note: The local operating system user registry is used here for demonstration
purposes. The steps are extremely similar if other user registries, such as
Lightweight Directory Access Protocol (LDAP), are chosen.
 Chapter 3. Using security domains 55

Step 1: Configure local operating system user registry
The first step in creating this environment is to configure the local operating
system user registry:

1. Start by ensuring that the deployment manager and application server
server1 are running.

2. Open the administrative console, and verify that administrative security is
enabled.

3. Create a local operating system user ID. For example, on Windows, open a
command window and execute the following command:

net user wslocalos wslocalos /add

4. Add this new user ID to the local operating system user registry. The new
user ID will be used to access the applications that run on servers in the
domain. In this example, the user ID is wslocalos.

5. Configure the new user registry to WebSphere Application Server:

a. In the administrative console, navigate to Security  Global security.

b. Select Local operating system from the Available realm definitions
pull-down (Figure 3-2 on page 57) and click Configure.

Note that the current realm for the global security domain is set to
Federated repositories. Configuring another realm does not change this
setting unless you use “Set as current.” In this case, the local operating
system realm is being configured for use later when a new security
domain is defined.
56 WebSphere Application Server V7.0 Security Guide

Figure 3-2 Configure Local operating system user registry

c. In the next panel (Figure 3-3 on page 58), enter the primary administrative
user name for this security domain.

Specify the name of a user that is defined in your local operating system.
The user name is used to log on to the administrative console when
administrative security is enabled. Note that configuring the registry is a
separate act from configuring a domain to use it. So, even though this
registry will not be used for administrative security, you still must assign a
name here.
 Chapter 3. Using security domains 57

Figure 3-3 Local OS user registry settings

The server identity is used for communications between servers.
Normally, you allow this server identity to be automatically generated.
However, if you are adding a V5 or V6 server to the domain, you must
make sure that the server identity is defined in the user repository and
specified here. This option does not apply to z/OS or i5/OS® platforms.

Click OK.

d. Save the changes.

Step 2: Create a new security domain
The next step is to create the security domain that enables application security
for server1 and specifies the local operating system as the user registry.
58 WebSphere Application Server V7.0 Security Guide

To create the new security domain, perform the following steps:

1. In the administrative console, select Security  Security domains. Click
New to create the new security domain.

2. Enter TestDomain for the name, and enter an appropriate description
(Figure 3-4).

Figure 3-4 Create a new security domain

3. Click OK and save the changes.

4. Click TestDomain in the list of security domains to open the configuration
page. The configuration page for the security domain has three major
sections. The domain name and description are in the first section.

The next section, Assigned Scopes, contains the settings that allow you to
assign the scope for the domain. All servers, clusters, or service integration
buses that are selected here will use the settings in this security domain.
Assigning a domain to the cell scope effectively creates a default
configuration for application security.

In this example, we select Server1 as the scope for the domain.

These two sections are shown in Figure 3-5 on page 60.
 Chapter 3. Using security domains 59

Figure 3-5 Configure a new Security Domain

5. The last section contains expandable sections for each type of security
attribute that you can configure in the domain (Figure 3-6 on page 61).
60 WebSphere Application Server V7.0 Security Guide

Figure 3-6 Security attributes section of the security domain configuration page

6. Under the Security Attributes section, expand Application Security.

In this example, we enable application security for this domain by selecting
Customize for this domain and Enable application security (Figure 3-7).
 Chapter 3. Using security domains 61

Figure 3-7 User realm settings of a security domain

7. Next, expand the User Realm portion. Ensure that Customize for this
domain is selected, and then, select Local operating system from the
pull-down list (Figure 3-7).

8. Click OK and save the changes.

9. Restart the application server for the changes to take effect.

Step 3: Test the new security domain
In our test environment, we ran a simple test to illustrate that the user registry
that is used for administrative security was still the file-based repository and that
the applications on server1 used the local OS. You do not have to test for this
situation; however, make sure that your applications are secured using the
registry that is specified for the domain. Verify that you set the scope for the
domain correctly and that the user registry is populated with the correct user IDs.

This scenario created a new domain that uses a separate user registry (local OS)
than the registry defined in the global security (federated repositories).

You can simply test to ensure that the the user registries have been properly
defined by attempting to access both the administrative functions and the
application with the user IDs with which you expect to have access.
62 WebSphere Application Server V7.0 Security Guide

This simple test assumes that:

� The administrator user ID, wasadmin, is only defined in the federated
repositories.

� The user ID that is required to access the application, wslocalos, is only
defined in the local operating system.

Test the administrator user IDs
With the new security domain configured, the user ID for the administrator
(wasadmin) is the same as before, because the administrator user IDs defined in
the file-based federated user repository are still being used by the global security
settings.

The goal of this test is to ensure that the administrator user IDs can still have
authority to perform administrative functions (meaning, the file-based repository
is still used when administrative functions are accessed). However, trying to
authenticate to the console using wslocalos will fail , because that user is not
defined in the file-based federated user repository (and it must also be further
defined as a console user).

To ensure that the administrative security is still working properly:

1. Restart the deployment manager and application server server1.

2. Log in to the administrative console using the wasadmin user. The login will
succeed.

3. Log out from the console and try logging in as wslocalos, which fails because
wslocalos does not exist in the federated repository.

When administrators create a security domain and associate it with a scope, only
the user applications in that scope use the security attributes that are defined in
the security domain.

Test access to the application
Because the new security domain enabled the application security for server1,
accessing the snoop servlet on that server requires the user to authenticate.

Using the wasadmin user ID for authentication to snoop will fail, because it is not
defined in the registry that is configured as part of the security domain (local
operating system registry).

Authenticating to snoop using the wslocalos user ID succeeds, because that
user ID exists in the local operating system registry.
 Chapter 3. Using security domains 63

64 WebSphere Application Server V7.0 Security Guide

Chapter 4. Configuring the user
registry and authentication
settings

This chapter provides an introduction to configuring user registries. WebSphere
Application Server uses registries to authenticate users and to retrieve users and
groups to create a map of security roles that are used to authorize user actions.

This chapter describes the approach for configuring registries for use by a
WebSphere Application Server cell. It contains the following topics:

� “User registry basics” on page 66
� “Configuring a stand-alone LDAP registry” on page 69
� “Federated repositories” on page 95
� “Authentication and authorization settings” on page 133

4

© Copyright IBM Corp. 2009. All rights reserved. 65

4.1 User registry basics

A user registry is an abstraction that is used by WebSphere Application Server to
standardize the term that is used to represent the various implementations of
user and group repositories that the application server can be configured to use.

4.1.1 User registry types

WebSphere Application Server can be configured to use the following registry
implementations:

� Local operating system (Local OS)

For Local OS, the users and user groups are retrieved from the operating
system. This implementation is the typical practice when using z/OS.

� Federated repositories

Federated repositories support the configuration of one or more user
repositories for the purpose of providing a unified view of the user and group
information that is owned by each repository. Federated repositories support
file-based, LDAP, database, and custom registry implementations. When
administrative security is enabled during profile creation, a federated
repository with a file-based registry is created to hold the administrator user
IDs.

We discuss this configuration approach further in 4.3, “Federated
repositories” on page 95.

� Stand-alone LDAP

WebSphere Application Server can connect to a stand-alone LDAP directory
server using the LDAP protocol. If you are configuring for a single registry, we
recommend this type of registry for use with distributed platform
environments.

We discuss configuring a stand-alone LDAP in 4.2, “Configuring a
stand-alone LDAP registry” on page 69.

� Stand-alone custom registry implementation

Custom registries can be written and integrated with WebSphere Application
Server. You can obtain information about writing a custom registry at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/csec_customauth.html

WebSphere provides a custom user registry example that is not meant for
production, but this example shows the application programming interfaces
(APIs) that need to be implemented if a custom registry is used.
66 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_customauth.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_customauth.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_customauth.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_customauth.html

Implementing custom security that is actually secure is not easy, and for this
reason, we do not recommend custom registry implementations. However, if
you are considering this option, be aware that:

– Custom registries must not rely on application server services, such as
Enterprise JavaBeans.

– The custom interface for stand-alone registries is a different interface that
is used by federated repositories. A custom stand-alone registry cannot be
federated without first being modified to implement the federated
repository service provider programming interface (SPI).

– The interface must be completely implemented, including error scenarios.

– Availability and failover will need to be considered.

– The custom registry implementation alone is not the only custom code that
is needed if products are used that build on the foundation of WebSphere
Application Server, for example, WebSphere Portal or WebSphere
Process Server. These products have their own security extensions that
must be considered in addition to those security extensions that are
satisfied by the stand-alone custom registry interface.

– We recommend that any custom implementations undergo rigorous
third-party penetration testing to test for security vulnerabilities.

4.1.2 User registry content

A user registry provides the application server with user and group information
for mapping with Java Platform, Enterprise Edition (JEE) security roles. Groups
are the method that is used by a registry to represent users that share a common
function or attribute.

Best practice: With the possible exception of z/OS, LDAP directories are the
repository of choice. While repository types other than LDAP are supported,
only LDAP is the recognized industry standard.

Best practice: When designing the security access model for your application
server cell, we recommend that all access relationships are mapped to groups
in the registry in preference to individual users, even if the group only has one
user. This approach decouples individual users from applications and
administrative functions in the cell, making security administration significantly
more manageable.
 Chapter 4. Configuring the user registry and authentication settings 67

4.1.3 Using multiple registries with domains

When configuring a WebSphere Application Server cell, it is possible to have
multiple user registries configured and active within the cell, because registry
implementations can be independently configured and linked to security
domains.

In a cell, there is a default global security scope. But there can also be other
security domains defined within the cell. These separate security domains can
be configured to have separate registries.

Each registry configuration is provided a name that is either defaulted by the
application server environment or explicitly named when the registry is
configured. This name is called the user realm for the registry.

Figure 4-1 on page 69 shows an example that illustrates two security realms
defined in a cell. In this example, a specific security domain has been defined for
the organization’s partner applications.

Note: While each security domain can have its own registry, it is only possible
for a federated repository to exist at the global cell domain scope. Registries
configured for other security domains are stand-alone registry configurations.
68 WebSphere Application Server V7.0 Security Guide

Figure 4-1 Simple multiple user realm illustration

We provide specific discussions about security domains in Chapter 3, “Using
security domains” on page 51. For the purposes of understanding the user
registry relationship, configuring a security registry for a domain is the same
process as configuring a stand-alone registry at the global security level.

4.2 Configuring a stand-alone LDAP registry

Before configuring WebSphere Application Server to use a stand-alone LDAP as
the user registry, the LDAP directory must be separately installed and
configured.

In most cases, organizations have established registries of user information. If
your organization is only starting with LDAP directories, we recommend that an
experienced security consulting group is engaged to assist with the directory

Internal
LDAP 1

Internal
LDAP 2

Partner
LDAP

Cell

Global Security Domain
Realm = myOrgCellRealm

Security Domain
Realm = partnerRealm

Machine 0 Machine 1 Machine 2

Deployment
Manager

Node
Agent

Node
Agent

Cluster 1

Application
Server

Application
Server

Cluster 2

Application
Server

Application
Server
 Chapter 4. Configuring the user registry and authentication settings 69

design. References, such as Understanding LDAP - Design and Implementation,
SG24-4986, and the LDAP directory documentation can also be of assistance.

For information about supported LDAP directories with WebSphere Application
Version 7, refer to the IBM Support “List of supported software for WebSphere
Application Server V7.0” at:

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

While LDAP as a protocol is a widely accepted standard, each vendor’s directory
implementation typically uses different directory structures and object classes for
users and groups for communicating with a directory. Thus, while the steps for
configuring a stand-alone LDAP are the same, the LDAP query mapping for
object classes to users and groups in the directory tends to vary from
implementation to implementation.

In the following sections, we illustrate examples of configuring a stand-alone
LDAP by using an example directory configured in IBM Tivoli Directory Server.

4.2.1 Configuration checklist

The checklist in Table 4-1 on page 71 is an abbreviated set of steps that can be
used in planning the configuration of the stand-alone LDAP registry.
70 WebSphere Application Server V7.0 Security Guide

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

Table 4-1 Configuration checklist

4.2.2 Understanding the directory structure

It is important that you understand the design of the LDAP registry that you will
use. One of the easiest ways to understand the design is to utilize a directory
information tree diagram. The directory information tree provides information
about the structure being used for users and groups. But to make this directory
information tree diagram even more useful for configuration purposes, include

Check item Description Reference

1 Verify that the chosen
LDAP directory is in the
compatible software list.

http://www-01.ibm.com
/support/docview.wss?
rs=180&uid=swg2701236
9

2 Configure LDAP to
communicate using
Secure Sockets Layer
(SSL).

5.4, “Advanced concepts”
on page 184

3 Identify general property
configurations:
- primary admin ID
- Host
- Port
- Base distinguished name
(DN)

- Bind DN
- Bind password

4.2.2, “Understanding the
directory structure” on
page 71

Figure 4-7 on page 78

4 Identify object class filters
for user and group filters.

4.2.2, “Understanding the
directory structure” on
page 71

Figure 4-5 on page 76

Figure 4-6 on page 77

5 Choose authentication and
authorization mechanisms
that might include:
- Configure SSO.
- Require SSL for
RMI/IIOP.

- Identify any realms that
might need to be trusted.

4.4, “Authentication and
authorization settings” on
page 133
 Chapter 4. Configuring the user registry and authentication settings 71

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

the directory object classes to make the configuration steps easier to understand
in later steps. Figure 4-2 shows the directory information tree for the IBM Tivoli
Directory Server that is being used in this configuration example.

Figure 4-2 Directory information tree for the example LDAP directory

organizationalUnit
ou=unit1

organization
o=ibm

o=ibm o=ibm o=ibm

groupOfUniqueNames
cn=group12

Members
uid2

groupOfUniqueNames
cn=group13

Members
uid1
uid3

groupOfUniqueNames
cn=admingroup11

Members
admin1
admin2

organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm

groupOfNames
cn=group11

Members
uid1
uid2

inetOrgPerson
uid=uid1

inetOrgPerson
uid=uid2

inetOrgPerson
uid=uid3

inetOrgPerson
uid=admin1

inetOrgPerson
uid=admin2

country
c=us

organization
o=ibm

organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm

organizationalUnit
ou-users11

organizationalUnit
ou-adminusers
72 WebSphere Application Server V7.0 Security Guide

Information that is important for configuring the LDAP registry is easy to follow in
the diagram. From the diagram, the following relevant directory information is
determined:

1. The base distinguished name for this directory is intended to be
ou=unit1,o=ibm,c=us.

2. There are two types of group objects being used:

– groupOfNames
– groupOfUniqueNames

3. The groups use the “uid” attribute of the user objects to identify the unique
distinguished names of users.

4. The type of object used for user objects is inetOrgPerson.

5. We recommend that you utilize group mappings. In this registry, there are
four groups:

– group11
– group12
– group13
– admingroup11

At the beginning of this example, only static groups are used. The directory
structure will be expanded later when we discuss dynamic and nested groups. In
static groups, members are individually added and removed from the group,
which means that it is a fixed list and the only way for the list to grow is for a new
user to be added to the list explicitly.

4.2.3 Configuring a stand-alone LDAP using the console

As was discussed in 4.1, “User registry basics” on page 66, a user registry can
be configured for the global security domain, which is the security domain that
we will configure in the example in the following pages:

1. Open the administrative console, and select Security  Global security to
navigate to the Global security panel (Figure 4-3 on page 74).

Important: This diagram illustrates the simple structure that is used for this
example. This structure is intended to assist in the demonstration of how to
configure elements of security in WebSphere Application Server. It is not
intended to be a guide for the design of an LDAP directory. Such a design
requires considerations specific to each organization.
 Chapter 4. Configuring the user registry and authentication settings 73

2. In the User account repository section of the panel, select Standalone LDAP
registry from the Available realm definitions drop-down list (Figure 4-3 on
page 74).

Figure 4-3 Global security

3. Click Configure.
74 WebSphere Application Server V7.0 Security Guide

4. Select the directory type from the Type of LDAP server drop-down list. If your
directory server is not there, you will need to use the Custom option.
(Figure 4-4).

Figure 4-4 Global security  Standalone LDAP registry and select the LDAP type

Tip: Alternatively, you can click Security Configuration Wizard (shown in
Figure 4-3 on page 74).

In the following steps, we will show that the directory information tree in this
example does not use the WebSphere Application Server default object
class types for IBM Tivoli Directory Server. The configuration wizard does
not offer the option to configure the object classes. The wizard assumes a
set of defaults based on the directory type. The wizard expects that the
directory is configured with users and groups using certain object classes;
therefore, if this situation is not true for your user object class type, the
wizard cannot complete successfully.

Thus, if you know you are using non-default object classes or you are
uncertain what is defaulted for your directory, it is better to use the
extended configuration steps that are illustrated in this example. For more
information about the various directory default object classes, refer to
4.2.6, “Stand-alone LDAP configuration defaults” on page 92.
 Chapter 4. Configuring the user registry and authentication settings 75

The directory server chosen from the drop-down list changes the default
object classes that are populated when executing the next step. In this
example, IBM Tivoli Directory Server is selected. By selecting this directory
type, the default object classes for this directory are populated into the LDAP
query strings.

5. From the Additional Properties section of the window, click Advanced
Lightweight Directory Access Protocol (LDAP) user registry settings.
This navigation takes you to the panel that is shown in Figure 4-5.

Figure 4-5 LDAP user registry settings: IBM Tivoli Directory Server defaults

6. Typically, you will be required to modify the object classes specified for the
user and group filters. Subsequently, changes to the user ID and group ID
mappings might also be needed depending on your directory configuration.

These filters and ID mappings change how the application server queries the
LDAP directory. In 4.2.2, “Understanding the directory structure” on page 71,
it was determined that the directory is using an object class of inetOrgPerson
76 WebSphere Application Server V7.0 Security Guide

for the users. So, the default object class of “ePerson” needs to be modified. It
was also discussed that the registry is configured with static group types of
groupOfNames and groupOfUniqueNames. These types are the default
groups specified, so no modifications to the group filter are required.

Change the user filter as shown in Figure 4-6.

Figure 4-6 Global security  Standalone LDAP registry  Advanced Lightweight Directory Access
Protocol (LDAP) user registry: IBM Tivoli Directory modified user filter

7. Click OK, and save the configuration.

8. Enter the general properties for the LDAP configuration (Figure 4-7 on
page 78).
 Chapter 4. Configuring the user registry and authentication settings 77

Figure 4-7 Stand-alone LDAP registry: Configure general properties

The minimum general settings that need to be configured are:

– Primary administrative user name: admin1

– Host: sys4.itso.ral.ibm.com
78 WebSphere Application Server V7.0 Security Guide

– Base Distinguished name (identified from directory information tree):
ou=unit1,o=ibm,c=us

– Bind distinguished name (the user that the application server uses to
connect to the LDAP directory. In this case, admin1 was arbitrarily chosen
for this example): uid=admin1,ou=adminusers,ou=unit1,o=ibm,c=us

– Bind password: admin1pwd01

– Ignore case for authorization: For certain directories, this field is optional.
When default authorization is active, this option allows authorization
checks that are not case-sensitive. You are required to select this option
when using IBM Tivoli Directory Server.

Optional general settings include:

– Reuse connection: We recommend that the reuse of connections is
enabled; otherwise, the performance of the LDAP connectivity with the
application server is likely to degrade significantly.

– SSL Settings: These settings are typically set for LDAP configurations.
However for this book, you can read about configuring SSL information in
Chapter 5, “Secure Sockets Layer administration” on page 151.

9. (Optional) Use Test Connection to test the connection.

10.Click OK.

11.Click Set as current to make the LDAP directory the current user repository.

12.At this time, it is normal to configure any additional authentication and
authorization preferences. We discuss these options further in “Authentication
and authorization settings” on page 133. For the continuation of this example,
assume these steps have been completed.

13.After finalizing your security preferences, click Apply on the Global security
panel.

Tip: The connection test connects to the host on the specified port and
binds to the directory using the base DN, bind DN, and bind password.
This test connection does not yet verify the successful search of the
directory for the primary administration user ID using the user and group
filters specified.
 Chapter 4. Configuring the user registry and authentication settings 79

Important: Be sure to read the instructions that are supplied in the messages
information regarding restarting and synchronizing nodes in a Network
Deployment environment (shown in Figure 4-8 on page 81). These
instructions remind you that in order to complete the configuration, you must
synchronize and restart your cell.

After restarting the environment, you can authenticate using the primary
administration ID and then proceed to configure administrative security (refer
to Chapter 2, “Administrative security” on page 17).

Tip: If you are unable to authenticate, you can turn off security to help
troubleshoot the problem by running the following wsadmin commands
(command in jacl format).

Note that this command must be run locally; it cannot be executed remotely.

This command is executed from <profile>/bin directory where <profile>
is the profile’s install directory.

wsadmin -conntype NONE

WASX7357I: By request, this scripting client is not connected to any
server process. Certain configuration and application operations
will be available in local mode.
WASX7029I: For help, enter: "$Help help"

wsadmin>securityoff
LOCAL OS security is off now but you need to restart server1 to make
it affected.

wsadmin>$AdminConfig save
wsadmin>exit
80 WebSphere Application Server V7.0 Security Guide

Figure 4-8 Global security: Click Save and take note of additional messages and warnings

14.Save the configuration.

The stand-alone LDAP registry is configured at this point. The user realm will be
given the system-defaulted realm name of the host concatenated to the port
number separated by a colon (host:port). For this example, the realm will be
sys4.itso.ibm.com:389.

4.2.4 Configuring a stand-alone LDAP using wsadmin commands

You can accomplish the same results by using the wsadmin and scripting
environment.

The following example shows the commands that can be executed to configure a
stand-alone LDAP registry. The commands use the jython scripting language
and were executed using wsadmin in an interactive mode. (Original commands
were captured courtesy of the administrative console Command Assistance).
 Chapter 4. Configuring the user registry and authentication settings 81

Follow these steps to configure a stand-alone LDAP registry using wsadmin
commands:

1. Configure the LDAP search filters and object classes used for user and
groups in the directory (Example 4-1).

Example 4-1 Configure LDAP search filters and object class mappings

AdminTask.configureAdminLDAPUserRegistry('[-userFilter
(&(uid=%v)(objectclass=inetOrgPerson)) -groupFilter
(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))
-userIdMap *:uid -groupIdMap *:cn -groupMemberIdMap
ibm-allGroups:member;ibm-allGroups:uniqueMember -certificateFilter
-certificateMapMode EXACT_DN -krbUserFilter
(&(krbPrincipalName=%v)(objectclass=inetOrgPerson)) -customProperties
["com.ibm.websphere.security.ldap.recursiveSearch="] -verifyRegistry
false]')

2. Configure the general properties of the LDAP directory, including the host,
port base DN, SSL configuration, and so forth (Example 4-2).

Example 4-2 Configure LDAP general properties

AdminTask.configureAdminLDAPUserRegistry('[-ldapHost
sys4.itso.ral.ibm.com -ldapPort 389 -ldapServerType
IBM_DIRECTORY_SERVER -baseDN ou=unit1,o=ibm,c=us -bindDN
uid=admin1,ou=adminusers,ou=unit1,o=ibm,c=us -bindPassword admin1pwd01
-searchTimeout 120 -reuseConnection true -sslEnabled false -sslConfig
-autoGenerateServerId true -primaryAdminId admin1 -ignoreCase true
-customProperties -verifyRegistry false]')

3. Validate the LDAP configuration settings (Example 4-3).

Example 4-3 Validate LDAP configuration settings

AdminTask.configureAdminLDAPUserRegistry('[-verifyRegistry true]')

4. Set the current registry type to be stand-alone LDAP and activate
administrative security (Example 4-4 on page 83).

Note: To keep the example simple, authentication settings, such as the
authentication mechanism, SSO enablement, and so forth, are not handled in
these scripts. The examples illustrate a minimal set of commands using
authentication and authorization defaults. For example, the
setAdminActiveSecuritySettings command can have many more options than
shown here.
82 WebSphere Application Server V7.0 Security Guide

Example 4-4 Set current registry type

AdminTask.setAdminActiveSecuritySettings('[-activeUserRegistry
LDAPUserRegistry -enableGlobalSecurity true]')

5. Save the configuration changes (Example 4-5).

Example 4-5 Save configuration

AdminConfig.save()

Optional LDAP failover configuration
When you configure a stand-alone LDAP for use in production systems, the
availability of the user registry to facilitate authentication and provisioning of user
information becomes vital to the availability of the applications hosted in the
application server environment. Thus, it is very desirable to have a highly
available configuration for LDAP.

When using a stand-alone LDAP, the failover list can be configured using
wsadmin scripting. There is a sample wsadmin script provided in the Information
Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/csec_secfailover_ldap.html

This script adds additional LDAP directory instances to the existing WebSphere
Application Server configuration. The added server and port configurations
create an LDAP connection/failover list.

This script can be copied, saved, and executed for the purpose of configuring
failover using WebSphere Application Server.

Figure 4-9 on page 84 shows how this environment can be extended to add
sys1.itso.ral.ibm.com/389 as an additional LDAP in the user registry host list.

Tip: While interactive mode is used for the wsadmin example here, the
options being specified in the square brackets can equally be extracted to a
properties file. A properties file model is more manageable for the
administrator and can be integrated into the asset repository for each
environment and directory configuration supported. An obvious security risk is
shown here in that the bind password is not obfuscated. Be aware of this risk if
you use scripting and do not store these passwords or scripts in an
unprotected manner.
 Chapter 4. Configuring the user registry and authentication settings 83

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_secfailover_ldap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_secfailover_ldap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_secfailover_ldap.html

Figure 4-9 LDAP failover configuration illustration

Example 4-6 shows the command used to invoke the LDAPAdd.py script and the
output that results from the script execution.

Example 4-6 LDAPAdd.py script execution example

C:\WebSphere\AppServer\profiles\LBDmgr03\bin>wsadmin -f
c:\scripts\LDAPAdd.py sys1.itso.ral.ibm.com 389
WASX7209I: Connected to process "dmgr" on node sys2CellManager03 using
SOAP connector; The type of process is: DeploymentManager
WASX7303I: The following options are passed to the scripting
environment and are available as arguments that are stored in the argv
variable: "[sys1.itso.ral.ibm.com, 389]"
Got LDAPUserRegistry ConfigId is
(cells/sys2Cell03|security.xml#LDAPUserRegistry_1)

Got Security Mbean is
WebSphere:name=SecurityAdmin,process=dmgr,platform=proxy,node=sys2CellM
anager03,version=7.0.0.1,type=SecurityAdmin,mbeanIdentifier=SecurityAdm
in,cell=sys2Cell03,spec=1.0

Done setting up attributes values for LDAP User Registry
Updated was saved successfully

C:\WebSphere\AppServer\profiles\LBDmgr03\bin>

sys4.itso.ral.ibm.com:389

sys1.itso.ral.ibm.com:389

Cell
84 WebSphere Application Server V7.0 Security Guide

When binding to a stand-alone LDAP registry, the application server writes a log
entry to the SystemOut.log. This log entry describes in detail to which LDAP
instance it is connected, as shown in Example 4-7.

Example 4-7 LDAP connection log example

[2/25/09 17:27:23:875 EST] 00000012 LdapRegistryI A SECJ0419I: The
user registry is currently connected to the LDAP server
ldap://sys4.itso.ral.ibm.com:389.

When this style of failover is configured, there are issues to consider:

� The list is not a primary/secondary configuration. Unlimited instances can be
added to the list; however, preference is determined by the order of the list
and is only considered when the security service is connecting to the LDAP
directory:

– Therefore, different servers in a cell can be bound to different LDAP
directories. However, the stated expectation of this configuration is that
the failover servers are the same in regard to schema and the content that
they manage.

– After an LDAP instance outage, servers will not fail back when the original
server is again active.

� This list is also not a workload management mechanism. An application
server instance connects to a server when it first binds to a directory and uses
that directory until stopped or until the directory to which it is connected is
determined to be unreachable.

4.2.5 Stand-alone LDAP dynamic and nested group configuration

Next, we describe the differences between stand-alone LDAP dynamic and
nested group configuration.

Dynamic groups
A dynamic group defines its members differently than a static group. Instead of
listing them individually, the dynamic group defines its members using an LDAP
search. The dynamic group uses the structural objectclass groupOfURLs (or
auxiliary objectclass ibm-dynamicGroup) and the attribute memberURL to define
the search using a simplified ldap URL syntax:

ldap:/// <base DN of search>? ?<scope of search>?<searchfilter>
 Chapter 4. Configuring the user registry and authentication settings 85

In the ldap URL syntax:

� Base DN of search

This is the point from which the search begins in the directory. It can be the
suffix or root of the directory, for example, Austin. This parameter is required.

� Scope of search

This parameter specifies the extent of the search. The default scope is base:

– base returns information only about the base DN specified in the URL.

– one returns information about entries one level below the base DN
specified in the URL. It does not include the base entry.

– sub returns information about entries at all levels below and includes the
base DN.

� Search filter

This parameter is the filter that you want to apply to the entries within the
scope of the search. The default is objectclass=*.

The search for dynamic members is always internal to the server, so unlike a full
ldap URL, a host name and port number are never specified, and the protocol is
always ldap (never “ldaps”). The memberURL attribute can contain any kind of
URL, but the server only uses memberURLs beginning with ldap:/// to
determine dynamic membership.

For example, consider the following queries:

� A single entry in which the scope defaults to base and the filter defaults to
objectclass=*:

ldap:///cn=John Doe, cn=Employees, o=Acme, c=US

� All entries that are 1-level below cn=Employees and the filter defaults to
objectclass=*:

ldap:///cn=Employees, o=Acme, c=US??one

� All entries that are under o=Acme,c=us with the objectclass=person:

Note: From the ldap URL that is shown here, it is clear that the host name
must not be present in the syntax. The remaining parameters are just like
normal ldap URL syntax. Each parameter field must be separated by a
question mark (?), even if no parameter is specified. Normally, a list of
attributes to return is included between the base DN and the scope of the
search. This parameter is also not used by the server when determining
dynamic membership, and so, it can be omitted; however, the separator ?
must still be present.
86 WebSphere Application Server V7.0 Security Guide

ldap:///o=Acme, c=US??sub?objectclass=person

Nested groups
The nesting of groups enables the creation of hierarchical relationships that can
be used to define inherited group membership. A nested group is defined is a
child group entry whose DN is referenced by an attribute contained within a
parent group entry. A parent group is created by extending one of the structural
group object classes (groupOfNames, groupOfUniqueNames, accessGroup,
accessRole, or groupOfURLs) with the addition of the ibm-nestedGroup auxiliary
object class. After nested group extension, zero or more ibm-memberGroup
attributes can be added, with their values set to the DNs of nested child groups.

Figure 4-10 illustrates the concept of a nested group.

Figure 4-10 Nested group illustration

Configuring dynamic and nested groups for stand-alone LDAP
It is important to first note that dynamic and nested groups are not supported for
all LDAP types. Be sure to check the Information Center or with IBM support to
determine if the LDAP directory that you plan to use supports these
configurations.

IBM Tivoli Directory Server supports both dynamic groups and nested groups.
From the application server perspective, configuring the dynamic and nested

Group A

Karen

Jane

Bob

Bill

Mary

Group B

Group A Members:
Bob
Mary
Bill
Karen
Jane

Group B Members:
Karen
Jane

Contains Nested
Members
 Chapter 4. Configuring the user registry and authentication settings 87

group support is easy. But, how best to utilize dynamic and nested groups is a
directory design consideration.

Next, we configure a dynamic group in WebSphere Application Server. The
directory information tree is extended to include the dynamic group
dynAdminGroup and the nested groups inner and outer. As shown in the
directory information tree in Figure 4-11, note that the original static groups
remain in the tree, but they are not shown in Figure 4-11.

Figure 4-11 Directory information tree with dynamic and nested groups

When creating a dynamic group, the group specifies a memberURL attribute.
The ldap query is placed in the memberURL. In Example 4-8 on page 89, we

organizationalUnit
ou=unit1

organization
o=ibm

o=ibm o=ibm o=ibm

groupOfNames
cn=inner
Members

uid3

groupOfNames
ibm-nestedGroup

cn=outergroup
Members

uid2
ibm-memberGroup

cn=innergroup

groupOfUrls
cn=dynAdminGroup

Members
uid-admin1
uid-admin2

organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm

country
c=us

organization
o=ibm

organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm

organizationalUnit
ou-adminusers

inetOrgPerson
uid=uid1

inetOrgPerson
uid=uid2

inetOrgPerson
uid=uid3

inetOrgPerson
uid=admin1

inetOrgPerson
uid=admin2

organization
o=ibm

o=ibm

o=ibm

unit1

unit1

unit1

o=ibm

organizationalUnit
ou-users11
88 WebSphere Application Server V7.0 Security Guide

show an example query where a dynamic group called dynAdminGroup has been
added to the LDAP directory with the member URL.

Example 4-8 Dynamic group added to directory

ldap:///ou=adminusers,ou=unit1,o=ibm,c=us??one?objectclass=inetOrgPerso
n

This LDAP query will include in the group all objects of class inetOrgPerson from
the organizational unit adminusers. Whenever someone is added to this
organizational unit or removed from it, the group is dynamically updated.

The effective group members can be found in the IBM Tivoli Directory Server, as
shown in Figure 4-12.

Figure 4-12 Manage members: cn=dynAdminGroup,ou=unit1,o=ibm,c=us panel

For the nested group scenario, a nested group called innergroup was created
and then nested in a group called outergroup as shown in Figure 4-13 on
page 90.

Important: The following screen captures are from the Web-based
administration tool of IBM Tivoli Directory Server:

� Figure 4-12 on page 89
� Figure 4-13 on page 90
� Figure 4-14 on page 90
� Figure 4-15 on page 91
 Chapter 4. Configuring the user registry and authentication settings 89

Figure 4-13 Manage members: cn=outergroup,ou=unit1,o=ibm,c=us

The group members for innergroup are shown in Figure 4-14.

Figure 4-14 Manage members: cn=innergroup,ou=unit1,o=ibm,c=us on Effective group
members panel

Effective group members for the outer group are shown in Figure 4-15 on
page 91 respectively.
90 WebSphere Application Server V7.0 Security Guide

Figure 4-15 Manage members: cn=outergroup,ou=unit1,o=ibm,c=us in Effective group members panel

The next step is to update the LDAP settings in the WebSphere administrative
console:

1. To configure dynamic and nested group support for the stand-alone LDAP
configuration, modify the group filter and group ID settings.

To find these settings, navigate to Global security. Select the Standalone
LDAP registry realm, and click Configure. Then, click Advanced
Lightweight Directory Access Protocol (LDAP) user registry settings.
(Figure 4-16).

Figure 4-16 Add dynamic group object class groupOfURLs
 Chapter 4. Configuring the user registry and authentication settings 91

2. In Figure 4-16 on page 91, make these changes:

– Modify the Group Filter to include (objectclass=groupOfURLs). The
completed filter becomes:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNa
mes)(objectclass=groupOfURLs)))

(This complete filter cannot be shown in the screen capture shown in
Figure 4-16 on page 91 due to its length)

– Confirm that the Group member ID Map includes:
ibm-allGroups:member;ibm-allGroups:uniqueMember

Click OK to save the LDAP registry settings.

3. Click OK on the Standalone LDAP registry panel.

4. Click Apply on the Global security panel.

5. Save the configuration and restart the server environment.

6. (Optional) Verify that the group is available. If you are logged in as the
primary administrative user, you can navigate to the Administrative Group
roles panel from the Users and Groups menu ,and click Add.

7. (Optional) On the Administrative group roles  Group panel, use the search
capability to show that the dynamic and nested groups are visible.

You have now completed the configuration for dynamic and nested groups in a
stand-alone LDAP configuration using IBM Tivoli Directory Server.

4.2.6 Stand-alone LDAP configuration defaults

If you are considering using the security configuration wizard to configure your
stand-alone LDAP but you are uncertain of the default object classes used, the
following properties files in Example 4-9 show the default used for the various
LDAP types.

Example 4-9 LDAP default configuration.properties

#
This file contains the default filters used by WebSphere security for
various LDAP Directory servers.
#
#
#ISMESSAGEFILE FALSE

92 WebSphere Application Server V7.0 Security Guide

types=netscape domino50 secureway actived iplanet ibm_dir_server
edirectory custom

netscape.user.filter=(&(uid=%v)(objectclass=inetOrgPerson))
netscape.group.filter=(&(cn=%v)(|(objectclass=groupOfNames)(objectclass
=groupOfUniqueNames)))
netscape.user.idmap=inetOrgPerson:uid
netscape.group.idmap=*:cn
netscape.groupmember.idmap=groupOfNames:member;groupOfUniqueNames:uniqu
eMember
netscape.krbuser.filter=(&(hpKrbPrincipalName=%v)(objectcategory=inetOr
gPerson))

domino50.user.filter=(&(uid=%v)(objectclass=Person))
domino50.group.filter=(&(cn=%v)(objectclass=dominoGroup))
domino50.user.idmap=person:uid
domino50.group.idmap=*:cn
domino50.groupmember.idmap=dominoGroup:member
domino does not have a default attribute for Kerberos principal name.
domino50.krbuser.filter=(&(krbPrincipalName=%v)(objectcategory=Person))

secureway.user.filter=(&(uid=%v)(objectclass=ePerson))
secureway.group.filter=(&(cn=%v)(|(objectclass=groupOfNames)(objectclas
s=groupOfUniqueNames)))
secureway.user.idmap=*:uid
secureway.group.idmap=*:cn
secureway.groupmember.idmap=groupOfNames:member;groupOfUniqueNames:uniq
ueMember
secureway.krbuser.filter=(&(krbPrincipalName=%v)(objectcategory=ePerson
))

 Chapter 4. Configuring the user registry and authentication settings 93

actived.user.filter=(&(sAMAccountName=%v)(objectcategory=user))
actived.group.filter=(&(cn=%v)(objectcategory=group))
actived.user.idmap=user:sAMAccountName
actived.group.idmap=*:cn
actived.groupmember.idmap=memberof:member
actived.krbuser.filter=(&(userprincipalname=%v)(objectcategory=user))

ibm_dir_server.user.filter=(&(uid=%v)(objectclass=ePerson))
ibm_dir_server.group.filter=(&(cn=%v)(|(objectclass=groupOfNames)(objec
tclass=groupOfUniqueNames)(objectclass=groupOfURLs)))
ibm_dir_server.user.idmap=*:uid
ibm_dir_server.group.idmap=*:cn
ibm_dir_server.groupmember.idmap=ibm-allGroups:member;ibm-allGroups:uni
queMember
ibm_dir_server.krbuser.filter=(&(krbPrincipalName=%v)(objectcategory=eP
erson))

iplanet.user.filter=(&(uid=%v)(objectclass=inetOrgPerson))
iplanet.group.filter=(&(cn=%v)(objectclass=ldapsubentry))
iplanet.user.idmap=inetOrgPerson:uid
iplanet.group.idmap=*:cn
iplanet.groupmember.idmap=nsRole:nsRole
iplanet.krbuser.filter=(&(krbPrincipalName=%v)(objectcategory=inetOrgPe
rson))

edirectory.user.filter=(&(cn=%v)(objectclass=Person))
edirectory.group.filter=(&(cn=%v)(objectclass=groupOfNames))
edirectory.user.idmap=person:cn
edirectory.group.idmap=*:cn
edirectory.groupmember.idmap=groupOfNames:member
edirectory.krbuser.filter=(&(krbPrincipalName=%v)(objectcategory=Person
))
94 WebSphere Application Server V7.0 Security Guide

4.3 Federated repositories

Organizations often grow in a fashion that does not always result in simple
centralized repositories of user information. Also, applications often need to
utilize information beyond the boundaries of their normal repository of
information. Federated repositories acknowledge these requirements and
provide a mechanism for unifying user information into a single view.

Federated repositories provide a unified view of the user information that is
owned by multiple user repositories. Federated repositories support file-based,
LDAP, database, and custom registry implementations. A federated repository
can only be configured as the user registry at the cell security domain level, and
only one federation is supported per cell.

Federated repositories are implemented in WebSphere Application Server by the
Virtual Member Manager (VMM). Figure 4-17 on page 96 shows the functional
components of the VMM.
 Chapter 4. Configuring the user registry and authentication settings 95

Figure 4-17 VMM functional component diagram

Beyond unifying user information into a single view, the VMM also has
specialized components and features, which include but are not limited to:

� Along with normal search capabilities, VMM supports write access, such as
create, update, and delete. This capability is provided for one of the federated
repositories. This capability can be useful for managing administration-related
groups.

� VMM has an adapter called the Property Extension Repository (PER) that
permits the extensions of user attributes in a separate database. When
retrieving user information, the VMM seamlessly joins the user information
from the PER. The PER adapter permits the extension of existing
repositories, for example, LDAP, that might not support certain attributes or
that are configured as read-only. The VMM joins the attributes from the PER
to the attributes of the extended repository as part of the repository queries.

Virtual Member Manager
Application

Virtual
Member
Manager

UR

wsadmin

Virtual
Member
Manager

User

Virtual
Member
Manager
Config

Virtual Member Manager
User Mgmt GUI

WebSphere
Application Server

Administrative Console

Virtual Member Manager
Runtime API

Config
Service

Profile
Service

Schema
Service

Virtual Member
Manager Config

Manager

Config
Service

Virtual Member Manager
Application

Authentication
(JAAS)

File
Repository

Adapter

Virtual
Member
Manager
Config
Files

Custom
Repository

Adapter

Custom

DB
Repository

Adapter

VMM DBLDAP LDAP

Property
Extension
Repository

Look-aside DB

LDAP
Repository

Adapter

File

Virtual Member Manager Repository

wsadmin
Command Framework

1...n
96 WebSphere Application Server V7.0 Security Guide

� VMM has a component called the Entry Mapping Repository (EMR), which
can be used to enhance performance when multiple respositories are
federated. This component is used in two key scenarios:

a. When multiple repositories are federated. If repositories are accessed
using a unique identifier, the EMR can create a map to identify the owning
repository for the unique identifier, thus saving the need to search all
repositories.

b. EMR is also used when one of the federated repositories does not have
support for a unique identifier. EMR in this circumstance can be used to
map a unique identifier and use this mapped identifier to identify the
repository.

� When using a database repository, the database repository can be configured
to contain group information about users from other repositories. The users
do not need to be in the database repository. This style of configuration is a
feature of the VMM and the database repository that is not supported in the
file repository or the LDAP directories.

� VMM has a programming API that can be used for applications to interface
with the repositories for user information.

There are important design considerations that can impact whether to use
federated repositories in a particular environment. A short summary of
well-known considerations includes:

� There are restrictions concerning repository type combinations and how
many separate repository types can be federated together. Refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.wim.doc.en/supportedconfigs.html

� User identities must be unique across all federated repositories.

� There are restrictions about naming realms and how to name the federated
repository when the cell is integrated with single sign-on (SSO) and

Note: In this chapter, we will discuss elements of features that focus on the
configuration of these features. But we do not discuss custom features, such
as programming to the API or implementing a custom registry using the VMM
SPI. For more information about custom interactions, refer to the Information
Centers at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/rwim_dev_vmmca.html

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.wim.doc.en/repositoryspi.html
 Chapter 4. Configuring the user registry and authentication settings 97

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwim_dev_vmmca.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/repositoryspi.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/repositoryspi.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/repositoryspi.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/supportedconfigs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/supportedconfigs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.wim.doc.en/supportedconfigs.html

LDAP-aware products, such as IBM Tivoli Access Manager. Refer to
“Understanding user realms when using federated repositories” on page 100
for more information.

� The federated repository is globally scoped and shared by all domains and
applications that use the global security scope.

� The federated repositories function is a relatively new function in WebSphere
Application Server. Configurations that include mixed cells incorporating older
versions of WebSphere Application Server V6.0.x and earlier do not support
federated repositories easily. We do not recommend using federated
repositories as a configuration in a mixed cell environment.

4.3.1 Configuration checklist

The checklist in Table 4-2 is an abbreviated set of steps that can be used in
planning the configuration of the federated repositories.

Table 4-2 Configuration checklist

Check item Description Reference

1 Verify the chosen
repositories are in the
compatible software list
and that can be configured
in the planned
combination.

http://www-01.ibm.com
/support/docview.wss?
rs=180&uid=swg2701236
9

http://publib.boulder
.ibm.com/infocenter/w
asinfo/v7r0/topic/com
.ibm.websphere.wim.do
c.en/supportedconfigs
.html

2 Configure repositories to
communicate using SSL
where appropriate, such
as LDAP repositories.

5.4, “Advanced concepts”
on page 184
98 WebSphere Application Server V7.0 Security Guide

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/supportedconfigs.html

3 Identify the general
property configurations
that are needed, which, for
LDAP repositories,
include:
- Host
- Port
- Bind DN
- Bind password
- LDAP entity types
- Group membership
attribute

4.2.2, “Understanding the
directory structure” on
page 71

Figure 4-20 on page 106

4 Identify object class filters
for user and group filters.

4.2.2, “Understanding the
directory structure” on
page 71

Figure 4-5 on page 76

Figure 4-6 on page 77

5 Ensure that user identifiers
are unique across all
federated repositories.

N/A

6 Identify whether support
adapters, such as EMR
and PER, are required.

4.3.5, “Configuring VMM
database base adapter
features” on page 121

7 Determine which of the
federated repositories will
be the base repository that
supports update accesses
from the cell. Note that
there are requirements
depending on the
repository combinations.

http://publib.boulder
.ibm.com/infocenter/w
asinfo/v7r0/topic/com
.ibm.websphere.wim.do
c.en/supportedconfigs
.html

8 Exchange SSL certificates
with LDAP.

5.4, “Advanced concepts”
on page 184

9 Choose authentication and
authorization mechanisms,
which can include:
- Configure SSO
- Require SSL for RMI/IIOP
- Identify any realms that
might need to be trusted

4.4, “Authentication and
authorization settings” on
page 133

Check item Description Reference
 Chapter 4. Configuring the user registry and authentication settings 99

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/supportedconfigs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/supportedconfigs.html

4.3.2 Understanding user realms when using federated repositories

In a stand-alone security configuration, the realm maps one-to-one with the user
registry, which is not true for federated repositories. The VMM extends the
individual repositories into its own realm forming an umbrella realm of the
federated repositories.

Each repository that is federated maps to a base entry in the federated realm,
which further maps to the base entry in the actual repository. This mapping joins
the repository to the realm of the federated repository, creating a single logical
namespace.

In other words, a realm is a collection of independent repositories where each
repository has:

� A repository name, which has an arbitrary value

� A base entry in the realm, which is a logical root entry for this particular
repository within the federated repository (virtual realm)

For example, for an LDAP, the realm is the base DN in LDAP (from where
searches start in the directory tree):

� Base entry in realm: o=ldap,o=vmm

� Base entry in LDAP repository: ou=unit1,o=ibm,c=us

� If the user in LDAP has a DN of
uid=adminuser,ou=adminusers,ou=unit1,o=ibm,c=us, the DN in VMM is then
uid=adminuser,ou=adminusers,o=ldap,o=vmm.

A consideration for configuring VMM to integrate with LDAP-related products for
SSO and other similar features arises in relation to the user realm. Many of the
products being integrated might only support one LDAP. For the trust association
and SSO to work transparently, the distinguished names of the LDAP and the
VMM realms must match. For example, when IBM Lotus® Domino® or
WebSEAL sends a DN to WebSphere Application Server, it has to be the same
DN that VMM uses. For further information about configuring VMM to work with
this style of integration, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/rwim_limitations.html

4.3.3 VMM entity types

VMM has built-in a set of entity types that are used to map the various entity
types of the federated repositories. The federated repository entity types cannot
be modified. They represent the groups, containers, and users in the federated
100 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwim_limitations.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwim_limitations.html

repositories, and when each repository is federated, the objects from the
federated repository are mapped to these entity types.

The default entity types are:

� Group
� OrgContainer
� PersonAccount

4.3.4 Configuring an LDAP federated repository using the console

File repositories and LDAP directories are the only federated repository types
that are supported through the administrative console. Other repository types are
only supported from wsadmin at this time.

Tip: The file repository was introduced to promote security being made active
at the time of profile creation. But, it was never intended to be the primary user
registry for a production environment, and it not suitable for large numbers of
entries. While file repositories can be used as part of the federated repository,
the preference for production configuration is to use highly available LDAP
configurations.
 Chapter 4. Configuring the user registry and authentication settings 101

To configure a federated repository that has an LDAP directory, perform the
following steps:

1. Open the administrative console, and select Security  Global security
(Figure 4-18 on page 103).

Important: This configuration example presents the steps to configure an
LDAP directory. In this example, the LDAP directory is an IBM Tivoli Directory
Server instance.

It is important that you understand the LDAP configuration that you will use.
Refer to 4.2.2, “Understanding the directory structure” on page 71, which
highlights points that are also relevant in the preparation of a federated LDAP
configuration.

VMM for WebSphere Application Server uses separate object class defaults
than the object class defaults that are used for stand-alone configurations. If
you are familiar with stand-alone configurations, you might already know that
the default for IBM Tivoli Directory Server is ePerson for the user object class.
While for the group, groupOfNames and groupOfUniqueNames are the default
object classes.

The defaults for VMM with regard to IBM Tivoli Directory Server are
inetOrgPerson for the user object class and groupOfNames for the group object
class. You can modify these user object class and group object class defaults
after the initial configuration.

For the bind user test to work, a user of the default object class must be used.
The defaults can be modified by changing the wimconfig.xml file. For more
information about the default object classes that are used by VMM from
various directory types, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.wim.doc.en/defaultldapconfigurationmappingbasedonldapserve
rtype.html
102 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/defaultldapconfigurationmappingbasedonldapservertype.htm
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/defaultldapconfigurationmappingbasedonldapservertype.html

Figure 4-18 Global security

2. In the User account repository section of the panel, select Federated
Repositories from the Available realm definitions drop-down list
(Figure 4-18).

3. Click Configure to open the Federated repositories configuration page
(Figure 4-19 on page 104). Many smaller configuration tasks that collaborate
to complete the configuration of a federated repository are initiated from this
page.

Note: On the first navigation to the Federated repositories configuration page,
a default realm name and file repository are created. This realm name and file
repository also exist if security was activated at profile creation, with the
addition that a primary administration ID is defined based on the user ID and
password passed as input during profile creation.
 Chapter 4. Configuring the user registry and authentication settings 103

Figure 4-19 Federated repository list
104 WebSphere Application Server V7.0 Security Guide

4. To proceed with the configuration of the LDAP directory as the base
repository, click Manage repositories in the Related Items section of the
panel (Figure 4-19 on page 104).

5. Click Add in the Manage repositories panel.

6. Provide the General properties information as shown in Figure 4-20 on
page 106.
 Chapter 4. Configuring the user registry and authentication settings 105

Figure 4-20 Manage new repositories: LDAP
106 WebSphere Application Server V7.0 Security Guide

7. The minimal General properties information includes:

– Repository Identifier: itso.unit1

– Primary host name: sys4.itso.ral.ibm.com

– Port (for primary host name): 389

– (Optional) Host name and port for failover servers:

sys1.itso.ral.ibm.com 389

– Bind Distinguished Name

uid=admin1,ou=adminusers,ou=unit1,o=ibm,c=us

– Bind password: adminpwd01

– Login properties (the default is uid)

– (Optional but recommended) Select Require SSL communications

Note that the Additional Properties cannot be completed at this time.

Click OK.

8. Click Save, and click the link to the newly created repository itso.unit1
(Figure 4-21 on page 108).

Tip: Remember when adding failover servers to the configuration:

� The bind test will test a bind with failover servers, as well as primary
servers, so all servers must be running at configuration time.

� When in failover mode, the cell will attempt to fail back to the primary
server every 15 minutes.

� You must complete certificate exchange for SSL communications for
the failover LDAP directories, as well as the primary.
 Chapter 4. Configuring the user registry and authentication settings 107

Figure 4-21 Manage repositories panel: Select the new repository

9. The links in the Additional Properties section are now active and the
repository identifier is now read-only (Figure 4-22 on page 109).
108 WebSphere Application Server V7.0 Security Guide

Figure 4-22 The itso.unit1 configuration panel
 Chapter 4. Configuring the user registry and authentication settings 109

10.We mentioned in the beginning of this configuration process that the default
object class that is supported for groups with IBM Tivoli Directory Server is
groupOfNames. In the directory information tree for the directory being
configured here (Figure 4-2 on page 72), we use the object class
groupOfUniqueNames, also. During the stand-alone configuration example
(“Stand-alone LDAP dynamic and nested group configuration” on page 85), a
dynamic group of type groupOfURLs was also added. For the cell to
understand these group types, the object class must be added to the
repository’s list of group object classes.

11.To modify the group classes, select the LDAP entity types.

12.Select Group (Figure 4-23).

Figure 4-23 Group entity type

13.In the General properties section, add the additional object classes of
groupOfUniqueNames and groupOfURLs (Figure 4-24).

Figure 4-24 Add additional object classes
110 WebSphere Application Server V7.0 Security Guide

Click OK.

14.Use the navigation trail at the top of the page to return to the Manage
repositories page. Click itso.unit1 to open the configuration page
(Figure 4-22 on page 109).

15.Select Group attribute definition from the Additional Properties section of
the panel (Figure 4-22 on page 109).

Figure 4-25 Group attribute definition panel

Most LDAP directories have a standard attribute on every person object that
identifies the groups of which the object is a member. This attribute varies
from directory to directory. Certain directories do not support this attribute, in
which case, the application server needs to perform a search of all of the
group types to identify the user group relationship. For IBM Tivoli Directory
Server, the attribute is ibm-allGroups, which will be set in the “Name of group
membership attribute” field in subsequent steps.

The radio selection on the panel in Figure 4-25 also identifies the types of
mapping that are supported by the attribute. Again, the type of mapping that
is supported can vary depending on the directory server that is being used.

Note: It is valuable to highlight two other items here:

� On the panel that is shown in Figure 4-24, you can specify particular
search bases for the entity type.

� You can also explicitly set search filters on the panel that is shown in
Figure 4-24. If a search filter is not specified, the object classes and the
relative distinguished name (RDN®) properties are used to generate
the search filter.
 Chapter 4. Configuring the user registry and authentication settings 111

But before completing the panel that is shown in Figure 4-25 on page 111,
you must first configure the Additional properties. Configure the static or
direct groups by selecting Member attributes, and set the dynamic groups
by using Dynamic member attributes.

16.In Figure 4-25 on page 111, select Member attributes in the Additional
Properties section to open the next panel (Figure 4-26). Note the default
group, groupOfNames, is already mapped with the attribute “member.”

Figure 4-26 List of member attributes

17.Click New. Figure 4-27 is displayed.

Figure 4-27 Define a new member attribute

18.Enter the values for the groupOfUniqueNames (Figure 4-27):

– Name of member attribute: uniqueMember

– Object class: groupOfUniqueNames

– Scope: Select Direct

(groupOfUniqueNames is a static list that is directly referenced)
112 WebSphere Application Server V7.0 Security Guide

Click OK. You see the new attribute definition in the list of member attributes
(Figure 4-28).

Figure 4-28 Member attribute panel

19.Click the Group attribute definition navigation link in the navigation trail to
go back to the Group attribute definition panel (Figure 4-25 on page 111), and
select Dynamic member attributes in the Additional Properties section.

20.Click New (Figure 4-29).

Figure 4-29 Add a new dynamic member attribute

21.Enter the values for the fields as shown in Figure 4-30 on page 114.
 Chapter 4. Configuring the user registry and authentication settings 113

Figure 4-30 New dynamic attribute values

Enter:

– Name of dynamic member attribute: memberURL
– Object Class: groupOfURLs

Click OK. You will see the new attribute listed in the Dynamic member
attributes panel (Figure 4-31).

Figure 4-31 New dynamic attribute

22.Click the Group attribute definition link in the navigation trail in Figure 4-31
to return to the Group attribute definition panel. Complete the panel as shown
in Figure 4-32 on page 115.
114 WebSphere Application Server V7.0 Security Guide

Figure 4-32 Complete the group attribute definition

Enter:

– Name of group membership attribute: ibm-allGroups

– Scope of group membership attribute: Select All

(IBM Tivoli Directory Server uses this attribute for all group mappings)

Click OK.

You have completed the configuration of the repository. These steps can be
repeated in a variety of combinations to add additional LDAP repositories.

23.Click OK on the itso.unit1 panel.

24.Save the configuration.

Figure 4-33 Global security  Federated repositories  Manage respositories panel
 Chapter 4. Configuring the user registry and authentication settings 115

25.Click the Federated repositories link in the navigation trail in Figure 4-33 on
page 115.

26.The next phase is to include the recently added managed repositories into the
realm mapping by clicking Add base entry to Realm on the Federated
repositories panel (refer to Figure 4-34).

Figure 4-34 Add base entry to realm

27.The panel in Figure 4-35 on page 117 appears.
116 WebSphere Application Server V7.0 Security Guide

Figure 4-35 Global security  Federated repositories  Repository reference

Complete the fields in this panel (Figure 4-35):

– Select the repository from the drop-down list: itso.unit1

– Enter the distinguished name of the base entry that uniquely identifies this
set of entries in the realm.

– Enter the distinguished name of a base entry in this repository.

This distinguished name is the base entry of the LDAP directory.

28.Click OK.

29.(Optional) Click Save.

30.The next step is to complete the general properties for the federated
repositories as shown in Figure 4-36 on page 118.
 Chapter 4. Configuring the user registry and authentication settings 117

Figure 4-36 Global security  Federated respositories

In Figure 4-36:

– Specify a meaningful realm name. Unlike the stand-alone configurations,
the federated repository allows for the explicit naming of the realm.
118 WebSphere Application Server V7.0 Security Guide

– Then, set the Primary administrative user ID. This user must exist in the
default repository. The default repository here is a file repository if the
repository was configured at installation. This field is the user that was
specified when the file-based repository was created and typically is
already populated. Otherwise, when completing this panel (Figure 4-36 on
page 118), you will be prompted for the password.

Click Apply. If a prompt appears, enter a password and click OK.

31.(Optional) Configure VMM database adapters for EMR or PER. For more
information, refer to “Configuring VMM database base adapter features” on
page 121.

32.Click OK on the Federated repositories panel, which will take you back to the
Global security panel.

33.Save the configuration.

34.In the User account repository section of the Global security panel, verify that
Federated repositories is selected in the Available realm definitions and
click Set as current to the right of the field.

35.At this time, it is normal to configure any additional authentication and
authorization preferences, which are further discussed in “Authentication and
authorization settings” on page 133. For the continuation of this example,
assume the steps have been completed.

36.After finalizing your security preferences and choosing which security types to
activate, click Apply on the Global security panel.

Note: The VMM default repository can be modified by changing the
base entry for the default parent on each of the entity types, which you
locate by navigating to the Supported entity types panel from the
Additional Properties section of the Federated repositories panel.

Important: Be sure to read the instructions supplied in the messages
information (Figure 4-37 on page 120) regarding restarting and synchronizing
nodes in a Network Deployment environment. These instructions are here to
remind you that you must synchronize and restart your cell in order to
complete the configuration.

After restarting the environment, you can authenticate using the primary
administration ID and then proceed to configure administrative security (refer
to Chapter 2, “Administrative security” on page 17).
 Chapter 4. Configuring the user registry and authentication settings 119

Figure 4-37 Global security: Click Save and take note of additional messages and warnings

Tip: If you are unable to authenticate, you can turn off security to help
troubleshoot the problem by running the following wsadmin commands
(command in jacl format). You must run this command locally; it cannot be
executed remotely.

Executed from <profile>/bin directory where <profile> is the profile’s install
directory.

wsadmin -conntype NONE
WASX7357I: By request, this scripting client is not connected to any
server process. Certain configuration and application operations
will be available in local mode.
WASX7029I: For help, enter: "$Help help"
wsadmin>securityoff
LOCAL OS security is off now but you need to restart server1 to make
it affected.
wsadmin>$AdminConfig save
wsadmin>exit
120 WebSphere Application Server V7.0 Security Guide

37.Save the configuration.

4.3.5 Configuring VMM database base adapter features

In addition to supporting the default adapters for LDAP, file-based, and database
repositories, the VMM also has adapters for the Property Extension Repository
(PER) and Entry Mapping Repository (EMR). Refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.wim.doc.en/adapters.html

Configuring an EMR
The entry mapping repository is a database repository. It is used to store data
that VMM needs to manage profiles on multiple repositories that are
entry-level-joined.

An entry-level join means that the federated repository configuration uses
multiple repositories simultaneously and recognizes the entries in the various
repositories as entries representing distinct entities. For example, a company
might have a Lightweight Directory Access Protocol (LDAP) directory that
contains entries for its employees and a database that contains entries for
business partners and clients. By configuring an entry mapping repository, a
federated repository configuration can use both the LDAP and the database at
the same time.

To configure an EMR:

1. Create the EMR database tables as shown in Example 4-10.

The jacl format of the command is:

$AdminTask setupIdMgrEntryMappingRepositoryTables{...}

Example 4-10 Create EMR tables

wsadmin>$AdminTask setupIdMgrEntryMappingRepositoryTables
{-schemaLocation "C:\WebSphere\AppServer\etc\wim\setup" -databaseType
db2 -dbURL jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB -dbAdminId
db2admin -dbDriver com.ibm.db2.jcc.DB2Driver-dbAdminPassword db2pwd01
-reportSqlError true}
CWWIM5099I Command completed successfully.

2. The execution of the command creates the database table that is shown in
Figure 4-38 on page 122.
 Chapter 4. Configuring the user registry and authentication settings 121

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/adapters.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.wim.doc.en/adapters.html

Figure 4-38 Entry mapping repository table

3. (Optional but recommended) Create the Java Database Connectivity
(JDBC™) data source for the chosen database with the default Java Naming
and Directory Interface (JNDI) name jdbc/wimDS. Because the federated
repository is cell-scoped, the data source scope is cell also. If the data source
is not found, the dbURL specified on the EMR window is defaulted.

4. Navigate to the Global security panel. Select Federated repositories in the
drop-down for the available realm definitions and click Configure. Select
Entry mapping repository in the Additional Properties section of the panel.

5. Complete the database information as shown in Figure 4-39 on page 123.

Note: We do not provide further details about the creation of a data source
here, because creating a data source is a typical administration task that is
not related specifically to security.
122 WebSphere Application Server V7.0 Security Guide

Figure 4-39 Global security  Federated respositories  Entry mapping repository
panel

Enter these values on this panel:

– Data source name: jdbc/wimDS
– Database type: DB2
– JDBC driver: com.ibm.db2.jcc.DB2Driver
– Database URL: jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB
– Database administrator user name: db2admin
– Password: db2pwd01

Click OK and save the configuration.

Configuring a property extension repository
For security and business reasons, you might not want to allow write operations
to your repositories. However, applications calling the federated repository
configuration might need to store additional properties for the entities. A
federated repository configuration provides a property extension repository
(PER), which is a database, regardless of the type of main profile repositories,
for a property-level join configuration. For example, a company that uses an
LDAP directory for its internal employees and a database for external customers
and business partners might not allow write access to its LDAP and its database.
The company can use the property extension repository in a federated repository
configuration to store additional properties for the people in those repositories,
 Chapter 4. Configuring the user registry and authentication settings 123

excluding the user ID. When an application uses the federated repository
configuration to retrieve an entry for a person, the federated repository
configuration transparently joins the properties of the person that are retrieved
from either the LDAP or the client’s database with the properties of the person
that are retrieved from the property extension repository into a single logical
person entry.

To create the PER database tables:

1. Execute a wsadmin command as shown in Example 4-11.

The jacl format is:

$AdminTask setupIdMgrPropertyExtensionRepositoryTables{...}

Example 4-11 Create property extension repository tables

wsadmin>$AdminTask setupIdMgrPropertyExtensionRepositoryTables
{-schemaLocation "C:\WebSphere\AppServer\etc\wim\setup" -laPropXML
"C:\WebSphere\AppServer\etc\wim\setup\wimlaproperties.xml"
-databaseType db2 -dbURL jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB
-dbAdminId db2admin -dbDriver com.ibm.db2.jcc.DB2Driver
-dbAdminPassword db2pwd01 -reportSqlError true}
CWWIM5099I Command completed successfully.

2. The execution of the wsadmin command creates the database tables that are
shown in Figure 4-40 on page 125.
124 WebSphere Application Server V7.0 Security Guide

Figure 4-40 Property extension repository tables

3. (Optional but recommended) Create the JDBC data source for the chosen
database with the default JNDI name jdbc/wimDS. Because the federated
repository is cell-scoped, the data source scope is cell-scoped also. If the
data source is not found, the dbURL specified on the EMR window is
defaulted.

4. Navigate to the Federated repositories panel and select Property extension
repository in the Additional Properties section of the panel.

5. Complete the database information (Figure 4-41 on page 126).
 Chapter 4. Configuring the user registry and authentication settings 125

Figure 4-41 Properties extension repository panel

Enter the attributes:

– Data source name: jdbc/wimDS

– Database type: DB2

– JDBC driver: com.ibm.db2.jcc.DB2Driver

– Database URL: jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB

– Database administrator user name: db2admin

– Password: db2pwd01

– Entity retrieval limit: 200 (default)

6. Click OK and save the configuration.
126 WebSphere Application Server V7.0 Security Guide

4.3.6 Configuring elements of federated repositories using wsadmin

You can also configure the same elements of the LDAP federated repository
using the wsadmin and the scripting environment.

Example 4-1 on page 82 shows the commands that can be executed to configure
the same federated repository. These commands use the jython scripting
language and were executed using wsadmin in an interactive mode. (We captured
the commands by using the administrative console Command Assistance).

Configuring an LDAP repository
To configure the LDAP repository:

1. Create a managed LDAP repository configuration that defines the LDAP that
WebSphere Application Server will federate (Example 4-12).

Example 4-12 Create LDAP repository

Create the repository LDAP repository
AdminTask.createIdMgrLDAPRepository('[-default true -id itso.unit1
-ldapServerType IDS -sslConfiguration -certificateMapMode exactdn
-certificateFilter -loginProperties uid]')

Modify the general properties
AdminTask.addIdMgrLDAPServer('[-id itso.unit1 -host
sys4.itso.ral.ibm.com -bindDN
uid=admin1,ou=adminusers,ou=unit1,o=ibm,c=us -bindPassword
admin1pwd01-authentication simple -referal ignore -sslEnabled false
-ldapServerType IDS -sslConfiguration -certificateMapMode exactdn
-certificateFilter -port 389]')

AdminTask.deleteIdMgrLDAPAttr('[-id itso.unit1 -name -entityTypes
PersonAccount]')

AdminTask.addIdMgrLDAPAttr('[-id itso.unit1 -propertyName kerberosId
-name -entityTypes PersonAccount]')

Add failover server

Note: For simplicity, authentication settings, such as the authentication
mechanism and SSO enablement, are not handled here. Thus, these script
examples are a minimal set of commands using the authentication and
authorization defaults. For example, the setAdminActiveSecuritySettings
command can have many more options.
 Chapter 4. Configuring the user registry and authentication settings 127

AdminTask.listIdMgrLDAPBackupServers('[-id itso.unit1 -primary_host
sys4.itso.ral.ibm.com]')

AdminTask.addIdMgrLDAPBackupServer('[-id itso.unit1 -primary_host
sys4.itso.ral.ibm.com -host sys1.itso.ral.ibm.com -port 389]')

AdminConfig.save()

2. Modify the LDAP Entity Type mapping. In Example 4-13, the script modifies
the supported object classes for the Group entity type.

Example 4-13 Modify LDAP Group entity type

AdminTask.updateIdMgrLDAPEntityType('[-id itso.unit1 -name Group
-objectClasses groupOfNames;groupOfUniqueNames;groupOfURLs -searchBases
-searchFilter]')

AdminConfig.save()

3. Most LDAP directories have a standard attribute on every person object that
identifies the groups of which the object is a member. This attributes varies
from directory to directory. Certain directories do not support this attribute; in
which case, the application server needs to search all of the group types to
identify the user group relationship. For IBM Tivoli Directory Server, the
attribute is ibm-allGroups. Example 4-14 shows how to modify the group
attribute definition. This script identifies the group membership attribute and
maps the group attributes that are identified by this attribute.

Example 4-14 Identify the LDAP group membership attribute

AdminTask.addIdMgrLDAPGroupMemberAttr('[-id itso.unit1 -name
uniqueMember -objectClass groupOfUniqueNames -scope direct]')

AdminTask.addIdMgrLDAPGroupDynamicMemberAttr('[-id itso.unit1 -name
memberURL -objectClass groupOfURLs]')

AdminTask.setIdMgrLDAPGroupConfig('[-id itso.unit1 -name ibm-allGroups
-scope all]')

AdminConfig.save()

4. Configure the base entry for the LDAP repository, and add the base entry to
the realm (Example 4-15 on page 129).
128 WebSphere Application Server V7.0 Security Guide

Example 4-15 Add base entry and add entry to realm

AdminTask.addIdMgrRepositoryBaseEntry('[-id itso.unit1 -name
o=unit1Realm -nameInRepository ou=unit1,o=ibm,c=us]')

AdminTask.addIdMgrRealmBaseEntry('[-name o=itsoRealm -baseEntry
o=unit1Realm]')

AdminConfig.save()

5. Validate the registry, set the registry type, and enable administrative security
(Example 4-16).

Example 4-16 Validate and enable security

AdminTask.validateAdminName('[-registryType WIMUserRegistry -adminUser
admin]')

AdminTask.setAdminActiveSecuritySettings('[-activeUserRegistry
WIMUserRegistry -enableGlobalSecurity true]')

AdminConfig.save()

Configuring VMM database-based support features

To configure the VMM database-based support features:

1. Configure EMR (Example 4-17).

Example 4-17 Configure EMR

AdminTask.setIdMgrEntryMappingRepository('[-dataSourceName jdbc/wimDS
-databaseType db2 -dbURL jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB
-dbAdminId db2admin -dbAdminPassword db2pwd01-JDBCDriverClass
com.ibm.db2.jcc.DB2Driver]')

2. Configure PER (Example 4-18).

Example 4-18 Configure PER

AdminTask.setIdMgrPropertyExtensionRepository('[-dataSourceName
jdbc/wimDS -databaseType db2 -dbURL

Important: The script commands demonstrated here exclude the script steps
for creating the databases that are documented in 4.3.5, “Configuring VMM
database base adapter features” on page 121. We also do not show the
creation of referenced data sources.
 Chapter 4. Configuring the user registry and authentication settings 129

jdbc:db2://sys3.itso.ral.ibm.com:50000/WIMDB -dbAdminId db2admin
-dbAdminPassword db2pwd01-JDBCDriverClass com.ibm.db2.jcc.DB2Driver
-entityRetrievalLimit 200]')

4.3.7 Configuring a database repository in VMM

You need to execute a series of wsadmin tasks to configure the repository. This
section provides an example of the configuration steps:

1. Create the database repository tables by executing a wsadmin command as
shown in Example 4-19 (jacl format $AdminTask setupIdMgrDBTables {...}).

Example 4-19 Create database repository tables: $AdminTask setupIdMgrDBTables

wsadmin>$AdminTask setupIdMgrDBTables {-schemaLocation
"C:\WebSphere\AppServer\etc\wim\setup" -dbPropXML
"C:\WebSphere\AppServer\etc\wim\setup\wimdbproperties.xml"
-databaseType db2 -dbURL jdbc:db2://sys3.itso.ral.ibm.com:50000/DBREPOS
-dbAdminId db2admin -dbDriver com.ibm.db2.jcc.DB2Driver
-dbAdminPassword db2pwd01 -reportSqlError true}
CWWIM5099I Command completed successfully.

2. If you use a database other than the database used by PER and EMR, you
create the tables that are shown in Figure 4-42 on page 131 (the tables for
PER and EMR repositories can be in the same database).

Important: The following example shows you how to configure a database
repository. We do not recommend the use of a database for the selected
repository type. The recommended industry best practice is to use an LDAP
directory.
130 WebSphere Application Server V7.0 Security Guide

Figure 4-42 Database repository tables
 Chapter 4. Configuring the user registry and authentication settings 131

3. Create the managed repository as shown in Example 4-20.

The jacl format is: $AdminTask createIdMgrDBRepository

Example 4-20 Create DB repository: $AdminTask createIdMgrDBRepositroy

wsadmin>$AdminTask createIdMgrDBRepository {-id DB2Repos
-dataSourceName jdbc/wimDBRepos -databaseType db2 -dbURL
jdbc:db2://sys3.itso.ral.ibm.com:50000/DBREPOS -JDBCDriverClass
com.ibm.db2.jcc.DB2Driver -dbAdminId db2admin -dbAdminPassword
db2pwd01}
CWWIM5046W Each configured repository must contain at least one base
entry. Add a base entry before saving the configuration. For LDAP
repository, add the LDAP server before adding the base entry.

4. Configure the base entry for the repository as shown in Example 4-21.

The jacl format is: $AdminTask addIdMgrRepositoryBaseEntry

Example 4-21 Configure base entry: $AdminTask addIdMgrRepositoryBaseEntry

wsadmin>$AdminTask addIdMgrRepositoryBaseEntry {-id DB2Repos -name
"o=database.org"}
CWWIM5028I The configuration is saved in a temporary workspace. You
must use the "$AdminConfig save" command to save it in the master
repository.

5. Add the base entry into the realm (o=itsoRealm that was created earlier) as
shown in Example 4-22.

The jacl format is: $AdminTask addIdMgrRealmBaseEntry

Example 4-22 Add base entry to realm: $AdminTask addIdMgrRealmBaseEntry

wsadmin>$AdminTask addIdMgrRealmBaseEntry { -name "o=itsoRealm"
-baseEntry "o=database.org"}
CWWIM5028I The configuration is saved in a temporary workspace. You
must use the "$AdminConfig save" command to save it in the master
repository.

6. Save the configuration as shown in Example 4-23.

Example 4-23 Save Configuration: $AdminConfig save

wsadmin>$AdminConfig save

wsadmin>
132 WebSphere Application Server V7.0 Security Guide

7. The result of the configuration (Figure 4-43) can be seen in the administrative
console in the Federated repositories page.

Figure 4-43 Global security  Federated repositories: Database repository added

4.4 Authentication and authorization settings

Authentication and authorization in the application server occur when a request
is made on a secured resource. In a Web container, this request might be a
servlet, an image, or another Web resource. In an EJB container, this request is
an EJB method.

If a user makes an initial request on a communication channel (HTTP, Remote
Method Invocation (RMI)/Internet Inter-ORB Protocol (IIOP), SOAP/HTTP, and
so forth) and if that request is for a secured resource, the user needs to provide
authentication information. If the request is on a channel that supports
 Chapter 4. Configuring the user registry and authentication settings 133

prompting, such as HTTP running Web applications, the user will be prompted
for the the required authentication information. The required authentication
information varies depending on the channel and transport configurations in the
application server. The key is that the identity of the user making the request
needs to be validated.

Additionally, most systems today deploy a form of single sign-on (SSO), so that
after a user is authenticated, the user can access all of the systems that the user
is permitted to access without needing to provide user authentication information
again. There are typically three types of SSO implementations:

� A common security infrastructure that is supported by a single token
mechanism, which is the model of LTPA and Kerberos. LTPA is the
WebSphere Application Server SSO token, and it is the default SSO
mechanism. Kerberos is an industry token for SSO.

� Identity assertion models where systems are configured to trust the
authentication that was validated on other systems. This mechanism asserts
the user identity without actually supplying the user authentication token (that
is, the password). The mechanism relies on a trust between systems. This
approach has many forms. Two examples of standards that are supported by
WebSphere Application Server are Common Security Interoperability Version
2 (CSIv2) and certain token types that are used in WS-Security.

� You can implement SSO using a re-authentication model. This approach
requires passing the user and its authentication token to the downstream
system.

After a user is authenticated, whether via SSO or a password supplied in a Web
page authentication in a Web application, the application server will authorize the
user to verify that the user of the validated identity is permitted access to the
requested resource.

A simple example of the core components involved in authentication for a trust
token authentication flow is shown in Figure 4-44 on page 135. The purpose of
this diagram is to help you to begin to think about and consider the authentication
and authorization choices that need to be made before and when enabling
security.
134 WebSphere Application Server V7.0 Security Guide

Figure 4-44 WebSphere Application Server simplified authentication component diagram

Figure 4-44 illustrates the following simplified authentication flow (these numbers
correlate to the numbers in Figure 4-44:

1. A request arrives on an input channel (for example, Web or EJB).

2. The authentication data is passed through the authentication modules.

3. This flow highlights the WebSphere Application Server default trust
association interceptor (TAI) for LTPA token. LTPA is the application server’s
default and the recommended trust token implementation. Trust is asserted at
this stage of the processing. If the token is determined valid, the user
information that it contains is trusted and the identity of the user is asserted.

4. After token processing, the user credentials are rebuilt from the information
that is retrieved from the token.

5. User credentials are created based on user information retrieved from the
registry.

6. The credential is forwarded as the request is processed by different
architectural tiers of the application server.

WebSphere Application Server

Authentication

CSIV2/SAS

TCP/IP
SSL

(1)
Basic or

token credential

(1)
Basic, token, or

certificate

HTTP/HTTPS

Local OS
registry

Stand-alone
LDAP registry

Stand-alone
custom registry

Federated
Repositories

File-based

LDAP V2

Federated
Repositories

File-based

LDAP V2

LTPA
Login

Module

Authentication module

Enterprise beans
authenticator

ORB

Web
authenticator

Java
client

Web
client

(3)

(4)

(4)

(4)

(4)

(6)
Received
credential

(6)
Received
credential

Authentication data(2)

Authentication data(2)
Credentials (5)

Cre
de

nt
ial

s (
5)

Aut
he

nt
ica

tio
n

da
ta

 (
2)

Aut
he

nt
ica

tio
n

da
ta

 (
2)
 Chapter 4. Configuring the user registry and authentication settings 135

Now, in interpreting the diagram in Figure 4-44 on page 135, it is useful to
identify the security decisions that have been made in relation to authentication
and authorization. This list summarizes the implied and explicit security decisions
that were made with regard to Figure 4-44 on page 135:

� Web requests are participating in a form of SSO, implied by the passing of the
token on the request.

Security decision: Enable SSO.

� The token of choice for SSO is LTPA.

Security decision: Choose an authentication mechanism.

� The use of a token authentication mechanism indicates establishing a trust
domain.

Security decision: Determine the boundaries of the trust.

� EJB client requests are secured, and EJB clients use CSIv2 communications.

Security decision: Secure RMI/IIOP communications.

� SSL communications are used on both RMI/IIOP and Web-based
communications.

Security decision: Secure transports.

� Identity attributes are propagated between channels.

Security decision: Propagate identity.

� Having authenticated the request, authorization checking will have been
processed. Because there is no indication of an external authorization
provider, it can be implied that the default internal authorization provider was
used.

Security decision: Use default authorization provider.

The decisions that were made for the environment that is represented by
Figure 4-44 on page 135 are the typical decisions that need to be made when
establishing each security domain in the cell. Table 4-3 on page 137 summarizes
these decision points in the form of configuration questions that need to be
answered to begin to configure the authentication and authorization settings of a
security domain.
136 WebSphere Application Server V7.0 Security Guide

Table 4-3 Summary of security questions for authentication and authorization

4.4.1 Identifying key authentication and authorization defaults

WebSphere Application Server has default authentication and authorization
settings. The following sections provide a summary of the defaults and highlights
areas where these defaults can be expanded or customized. The security
domain that is used in this example is the global or cell domain.

SSL communications
SSL communications are a special case, and they have specialized configuration
requirements. We discuss SSL communications in more detail in Chapter 5,
“Secure Sockets Layer administration” on page 151.

Decision item Security questions References

1 Do transport-based
communications need to
be secured?

“SSL communications” on
page 137

Chapter 5, “Secure
Sockets Layer
administration” on
page 151

2 What servers and domains
are trusted by this security
domain?

“Extending the trust
domain” on page 138

Chapter 3, “Using security
domains” on page 51

3 Will this server need to
forward the identity to
another server in a trust
relationship?

“Web and SIP security” on
page 139

“RMI/IIOP security” on
page 141

4 What are the
authentication
mechanisms that are used
by this security domain?

“Authentication section
defaults of the Global
security panel” on
page 138

“JAAS login modules” on
page 145

5 What is the authorization
mechanism that is used by
this security domain?

“External authorization” on
page 145
 Chapter 4. Configuring the user registry and authentication settings 137

But generally, this question needs to be answered each time that a configuration
for outbound or inbound communications is made. If a communication is made to
a system outside of the application server process, the communication transport
must be secured.

Typical examples and communications that have SSL communications include:

� HTTP communications, for example, HTTP Client to Web servers and Web
server plug-in to application server, inbound Web service communications,
and remote portal communications

� Application server to registry implementation, for example, an application
server communicating with an LDAP registry

� Application server to application server, for example, RMI/IIOP (EJB)
communications and Web services.

Less common uses of SSL communications but equally possible are:

� Application server to secured data resources over JDBC

� Enterprise information system (EIS) or secured messaging communications

Your organization’s security policy determines which communications need to be
secured.

Extending the trust domain
In a security domain, it is sometimes desirable to expand the trust of a domain by
including other realms. Be cautious when you extend the trust domain. Security
administrators are typically adverse to increasing the trust of a domain.

The addition of a realm to the trust scope means that LTPA tokens from a trusted
realm will be permitted to assert a user’s identity. Requests from the external
realm, if subsequently authorized, will be permitted to execute work in the
trusting security domain. The trusted realms at the cell level are specified as a
function of the user registry configuration. For other security domains, it is
configured as part of the domain’s configuration.

By default, other domains are not trusted.

Authentication section defaults of the Global security panel
The authentication section of the Global security panel shows the items to
consider when setting the authentication mechanisms (Figure 4-45 on
page 139).
138 WebSphere Application Server V7.0 Security Guide

Figure 4-45 Authentication section of Global security panel

Note in Figure 4-45 that LTPA is the default token type and authentication
mechanism when using token-based identity assertion.

Web and SIP security
The Web and Session Initiation Protocol (SIP) security configuration settings
consist of several links to configuration pages that allow you to adjust security
settings for Web application access.

If you select Single sign-on (SSO) to enable SSO, we recommend you use SSL
communication to protect the token confidentiality, but SSL communication is not
the default. To enforce SSL for SSO, select Requires SSL in the single sign-on

Note: Kerberos must be configured before the Kerberos option can be
selected. You use the Kerberos configuration link.
 Chapter 4. Configuring the user registry and authentication settings 139

(SSO) configuration settings (Figure 4-46). This option assumes that other SSL
configuration requirements have been satisfied. Note that the propagation of
token attributes is the default behavior.

The other configuration entry that must be configured for SSO is the Domain
name field. This field contains a delimited list that defines the host URLs that are
included in the SSO domain.

Figure 4-46 Single sign-on (SSO) settings

If authentication proxies provide the authentication before requests are
forwarded to the Web container, it is possible to activate the security domain
trust association located in the Trust association settings (Figure 4-47 on
page 141). Trust interceptors are the preferred authentication mechanism for
Web authentication.
140 WebSphere Application Server V7.0 Security Guide

Figure 4-47 Trust association settings

The interceptors configured by default are shown in Figure 4-48.

Figure 4-48 Trust association default interceptors

RMI/IIOP security
The defaults for the RMI/IIOP security include:

� Support SSL, which means that the WebSphere Application Server by default
will use SSL for RMI/IIOP if the connecting client initiates the connection
using SSL. By default, SSL is not enforced.
 Chapter 4. Configuring the user registry and authentication settings 141

� Propagation of identity attributes is enabled

� Message layer support for Basic or LTPA authentication mechanisms

To see the defaults for the inbound configuration, select CSIv2 inbound
communications from the Global security page. The defaults are shown in
Figure 4-49.

Figure 4-49 CSIv2 inbound communications
142 WebSphere Application Server V7.0 Security Guide

To see the outbound configuration defaults, select CSIv2 outbound
communications from the Global security page.

The outbound configuration defaults are shown in Figure 4-50 on page 144.
 Chapter 4. Configuring the user registry and authentication settings 143

Figure 4-50 CSIv2 outbound communications
144 WebSphere Application Server V7.0 Security Guide

The most common and recommended change here is to have CSIv2 inbound
and outbound enforce SSL by changing the Transport from SSL-supported to
SSL-required.

JAAS login modules
The login configurations that are mapped for the various logins are an important
part of the authentication and authorization framework. For example, the CSIv2
defaults utilize the RMI_INBOUND and RMI_OUTBOUND login configurations
for inbound and outbound CSIv2 communications. The Information Center
provides details of the default system and application login configurations:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/uwbs_jaasconfig.html

The defaults are normally more than sufficient for most needs. If you are
considering customizing login modules, we recommend that you seek IBM or
IBM Business Partner guidance to understand the security impacts of this
choice.

External authorization
Selecting External authorization providers on the Global security page opens
the panel that defines whether authorization decisions are deferred to an
external Java Authorization Contract for Containers (JACC) specification
authorization provider or are handled by the internal authorization provider.

The default is a built-in internal authorization provider. The built-in authorization
provider gathers its user and group information from the configured user registry.
Figure 4-51 on page 146 shows the built-in authorization as the authorization
provider.
 Chapter 4. Configuring the user registry and authentication settings 145

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/uwbs_jaasconfig.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/uwbs_jaasconfig.html

Figure 4-51 External authorization providers

4.4.2 Custom authentication choices

The JAAS security framework is inherently extensible and has many plug-in
points for custom login modules. Similarly, custom interceptors can also be
written.

For example, consider the three request types of Web Inbound, RMI inbound,
and RMI outbound. Each request type has pluggable configuration points where
custom authentication modules can be inserted.

Figure 4-52 on page 147 shows the pluggable points for Web inbound
communications.
146 WebSphere Application Server V7.0 Security Guide

Figure 4-52 Web Inbound custom authentication points

Figure 4-53 on page 148 shows the pluggable points for RMI inbound
communications.

Custom
login

module

Web request
requiring authorization

Authenticated?

TAI?

TAI

Custom
login

module

Custom
login

module

ItpaLoginModule

wsMapDefaultInboundLoginModule

Use TAI

Authenticate

Already authenticated

Subject,
security name
or unique I.D.

Optional
custom credential

Hashmap
in Subject

IBM required
authentication

modules

Web authentication
plug points

Web
container
 Chapter 4. Configuring the user registry and authentication settings 147

Figure 4-53 RMI inbound custom authentication points

Figure 4-54 on page 149 shows the pluggable points for RMI outbound
communications.

RMI request
requiring authorization

Authenticated?

Custom
login

module

Custom
login

module

ItpaLoginModule

wsMapDefaultInboundLoginModule

Authenticate

Already authenticated

Optional
custom credential

Hashmap
in Subject

IBM required
authentication

modules

Custom
login

module

EJB
container

RMI inbound
authentication

plug points
148 WebSphere Application Server V7.0 Security Guide

Figure 4-54 RMI outbound custom authentication points

For more information about configuring custom TAIs, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/tsip_cfgsecuctai.html

For more information about configuring custom login modules, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/tsec_jaascustlogmod.html

Outbound RMI
request

CSIv2 Session
established?

Custom
login

module

Custom
login

module

wsMapCSIv2OutboundLoginModule

EJB
container

Already established

Possibly modified subject
and propagation

attributes. Opportunity
for mapping if needed.

RMI outbound
authentication

plug points

Authenticate
 Chapter 4. Configuring the user registry and authentication settings 149

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsip_cfgsecuctai.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_jaascustlogmod.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_jaascustlogmod.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_jaascustlogmod.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tsec_jaascustlogmod.html

Tip: Writing custom security in itself is not always difficult, but writing custom
code that is secure can be difficult and is typically complicated. We
recommend that any custom implementation include the following
considerations:

� Confirm that the code being implemented scales and meets performance
requirements.

� Consider the implications of how secure the implementation is, such as, for
a trust interceptor, is the trust validation secure and can it truly be trusted.
Or, is it possible to forge or impersonate the trust validation?

� Custom security must be independently evaluated regarding its reliability in
relation to securing the environment.

� Remember to make infrastructure code, such as security, manageable by
including features, such as logging.

� Generally, the key recommendation is to seek out experts and specialists
in security for guidance.
150 WebSphere Application Server V7.0 Security Guide

Chapter 5. Secure Sockets Layer
administration

WebSphere Application Server utilizes the Secure Sockets Layer (SSL) protocol
to provide transport layer security that ensures a secure connection between a
client and server. WebSphere Application Server provides a full set of
mechanisms for managing SSL configuration.

This chapter will show how to implement SSL in a WebSphere Application Server
environment. It contains the following topics:

� “Secure communications using SSL” on page 152
� “Basic usage scenarios” on page 158
� “Basic SSL administration” on page 163
� “Advanced concepts” on page 184
� “SSL troubleshooting and traces” on page 191
� “Implementation examples” on page 193

5

© Copyright IBM Corp. 2009. All rights reserved. 151

5.1 Secure communications using SSL

SSL is the industry standard for data interchange encryption between clients and
servers. The foundation technology for SSL is public key cryptography. It uses a
combination of asymmetric and symmetric key encryption models.

A series of messages, referred to as a handshake, are exchanged at the start of
an SSL session. These messages allow the client to authenticate the server
using public key techniques and, optionally, for the server to authenticate the
client. The handshake uses asymmetric keys that consist of a public key and a
private key. The public key can be distributed widely, but the private key is never
distributed; it is always kept secret. When an entity encrypts data using a public
key, only entities with the corresponding private key can decrypt that data.

During the handshake, the client and server cooperate in creating symmetric
keys for speed and efficiency to use for further communication.

Java Secure Sockets Extension (JSSE) is used in WebSphere to handle the
handshake negotiation and protection capabilities that are provided by SSL to
ensure secure connectivity exists across most protocols. JSSE provides a Java
specification for the implementation of the industry standard X.509 standard
public key infrastructure (PKI).

A PKI represents a system of digital certificates, certificate authorities,
registration authorities, a certificate management service, and a certification path
validation algorithm. A PKI verifies the identity and the authority of each party
that is involved in an Internet transaction, either financial or operational, with
requirements for identity verification. It also supports the use of certificate
revocation lists (CRLs), which are lists of revoked certificates.

An SSL configuration determines whether one entity can connect to the other
entity and the peer connection that is trusted by an SSL handshake. If you do not
have the necessary certificates, the handshake fails because the peer is not
trusted. Figure 5-1 on page 153 shows a hypothetical keystore and truststore
configuration example. Private keys are stored in the keystore file. The public
keys are stored in the form of trusted certificates in the truststore.
152 WebSphere Application Server V7.0 Security Guide

Figure 5-1 KeyStore and TrustStore

In Figure 5-1, the truststore for Entity A contains the public key of Entity B. Entity
A can connect to Entity B, because Entity B can decrypt the data using its private
key, but the truststore for Entity B does not contain the public key of Entity A.
Therefore, if Entity A requires validation with Entity B, the handshake will fail.

You can think of Entity A as a client and Entity B as a server. If SSL is configured
for server authentication, it will work in this scenario. But if SSL is configured for
both client and server authentication, it will fail because there is no trust key on
the server side to authenticate the client.

5.1.1 Certificates

Digitally signed X.509 certificates are used to establish SSL connections. Among
the information you will find in an X.509 certificate is its distinguished name,
validity dates, public key information, and the certificate signature.

The contents of a certificate are signed in one of these ways:

� Certificate authority (CA)

A certificate authority is a trusted third-party organization or company that
issues the digital certificates. The certificate authority typically verifies the
identity of the individuals who are granted the unique certificate.

B-PrivateKey

TrustStore

KeyStore

Entity B

A-PrivateKey

B-PublicKey

TrustStore

KeyStore

Entity A
 Chapter 5. Secure Sockets Layer administration 153

Server-side ports that accept connections from the general public must use
CA-signed certificates. Most clients or browsers already have the signer
certificate that can validate the X.509 certificate so signer exchange is not
necessary for a successful connection.

� A root certificate in NodeDefaultRootStore or DmgrDefaultRootStore

Certificates are issued in the form of a tree structure, with the root certificate
at the top of the structure. Certificates signed by the root certificate inherit the
trustworthiness of the certificate.

� Are self-signed

Self-signed certificates are for use with a peer in a controlled environment,
such as internal network communications. To complete a handshake, you
must first send a copy of the entity certificate to every peer that connects to
the entity.

When working with SSL connections in WebSphere, you will work with the
following types of certificates:

� Personal certificates

A personal certificate without a private key is a certificate that represents the
entity that owns it during a handshake. Personal certificates contain both
public and private keys.

� Signer certificates

A signer certificate is a certificate that represents a peer entity or itself. Signer
certificates contain just the public key and verify the signature of the identity
that is received during a peer-to-peer handshake.

� Chained certificates (new in V7)

A chained certificate is a personal certificate signed by a root certificate.
Using a chained certificate enables you to refresh the personal certificate
without affecting the trust established. It also enables tailoring of the
certificate during profile creation (you can import your own or change the
distinguished name (DN) of the one created by default) as well as the ability
to change the default keystore password.

Chained certificates replace the self-signed certificate. Signer certificates
from the self-signed certificate that are distributed across the security
configuration are replaced with the signer certificates from the root certificate
that is used to sign the chained certificate.

A default chained certificate is created at profile creation and stored in the
default keystore. The root signer (public key) of the chained certificate is
added to the default truststore.
154 WebSphere Application Server V7.0 Security Guide

5.1.2 Keystores and truststores

JSSE configurations typically reference a keystore and a truststore. By
convention the keystore reference represents a Java keystore object that holds
personal certificates and the truststore reference represents a Java keystore
object that holds signer certificates. You may have only one store that holds both
- personal certificates and signer certificates.

A default keystore and truststore are created by WebSphere Application Server
during profile creation. You can also create a new keystore and truststores using
the WebSphere administration tools.

WebSphere Application Server supports following keystore types:

� JKS: Java KeyStore (*.jks)

� JCEKS: Java Cryptography Extension KeyStore (*.jceks)

� PKCS12: Public-Key Cryptography Standards #12 (*.p12), Microsoft® calls it
PFX.

� PKCS12JarSigner

� PKCS11: Cryptographic Token Device

� CMSKS: Format used by IBM HTTP Server (*.kdb)

� JCERACFKS: z/OS only, stores certificates in RACF

� JCECCARACFKS: z/OS only, uses hardware cryptography device

� JCECCAKS: z/OS only, uses hardware cryptography device

Default keystores and truststores
During profile creation, a default keystore file (called key.p12) and a default
truststore file (called trust.p12) are created. In addition, a default chained
certificate is created in the key.p12 file. The root signer, or public key, of the
chained certificate is extracted from the key.p12 file and added to the trust.p12
file. If the files do not exist already, they are created during process startup.

The default keystores and truststores for the cell and each node can be easily
identified by their suffixes: DefaultKeyStore and DefaultTrustStore. You can see
the key and truststores in the administrative console by selecting Security 
SSL certificate and key management  keystores and certificates. Select
SSL keystores in the Keystore usage drop-down list (Figure 5-2 on page 156).
 Chapter 5. Secure Sockets Layer administration 155

Figure 5-2 Default KeyStore and default TrustStore

The default keystores and truststores are located in the following locations:

� The default cell keystore and truststore are stored in the cell directory of the
configuration repository:

– profile_root/config/cells/cell_name/key.p12
– profile_root/config/cells/cell_name/trust.p12

� The default node key and truststores are stored in the node directory of the
configuration repository:

– profile_root/config/cells/cell_name/nodes/node_name/key.p12
– profile_root/config/cells/cell_name/nodes/node_name/trust.p12

5.1.3 SSL configurations

WebSphere Application Server allows you to create multiple SSL configurations
for use in specific situations. Each configuration points to a keystore and
truststore to be used for connections using that configuration. SSL configurations
are defined at specific management scopes. The scope that an SSL

Note: The default password is WebAS for all of the default keystores that are
generated by WebSphere Application Server. You must change this password
during profile creation for a more secure environment.
156 WebSphere Application Server V7.0 Security Guide

configuration inherits depends upon whether you create it using a cell, node,
server, or endpoint link in the configuration topology.

When you create an SSL configuration, you can set the following SSL connection
attributes:

� Keystore
� Default client certificate for outbound connections
� Default server certificate for inbound connections
� Truststore
� Key manager for selecting a certificate
� Trust manager or managers for establishing trust during the handshake
� Handshaking protocol
� Ciphers for negotiating the handshake
� Client authentication support and requirements

SSL configuration selection policy
There can be many SSL configurations and associated keystores and truststores
in the cell. The SSL configuration to use at run time is selected in this order:

1. Programmatic selection

Properties for an outbound connection can be specified on the thread by an
application that directly uses the IBM JSSEHelperAPI. Subsequent implicit
usage of JSSE (for example, opening an HTTPS connection with a URL
provider) uses the thread-specific settings set by the JSSEHelperAPI. Refer
to the following article for more details:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm
.websphere.nd.multiplatform.doc/info/ae/ae/tsec_ssloutconfiguseJSSE.
html

2. Dynamic selection

You can associate an SSL configuration dynamically with a specific outbound
protocol, target host, and port, or by using a predefined selection criteria.
When WebSphere establishes the connection, it checks to see if the target
host and port match a predefined criteria, which applies for both application
code usage and WebSphere Application Server usage. Refer to the following
page for more details:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm
.websphere.nd.multiplatform.doc/info/ae/ae/csec_ssldynoutboundconfig
s.html

3. Direct selection

An SSL configuration can be directly specified for this endpoint. You can
make this specification administratively for WebSphere Application Server
 Chapter 5. Secure Sockets Layer administration 157

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_ssloutconfiguseJSSE.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_ssldynoutboundconfigs.html

SSL usage. Application programs can also reference an SSL configuration
directly using the JSSEHelperAPI.

4. Scoped selection

If none of the previous SSL configurations apply, the topology-based SSL
configuration is selected.

5.2 Basic usage scenarios

SSL in WebSphere Application Server is mainly used for two purposes: to secure
data during transfer (encryption) and to restrict access to certain services
(authentication and authorization).

5.2.1 Securing administrative communication

Sensitive data can be sent over the network during administrative operations (for
example, the administrator user name and password while executing wsadmin
scripts). Fortunately, when you enable administrative security, SSL is
automatically configured for all administrative transports (HTTP, SOAP, and so
forth). You do not have to change this configuration unless you have custom
requirements.

5.2.2 Securing LDAP communication

LDAP is the typical choice for user registry. However, by default, connection to
the LDAP server is not protected in any way. While user data is sent using this
connection, we recommend that you use secured and encrypted transport: SSL.
Using SSL is extremely important when WebSphere Application Server has
“write” access to LDAP and can modify the data stored there, such as creating
users or changing a user’s group assignment.

The following steps describe how to configure SSL:

1. Enable SSL on your LDAP server. This step is product-specific and is usually
performed by the LDAP administrator.

2. Obtain the public certificate for the LDAP server from the LDAP administrator.
This certificate will be added in a later step to the truststore of the WebSphere
Application Server to establish a connection to LDAP. If the LDAP server’s
certificate is signed by a Certificate Authority (CA), you can use a signer
certificate instead.
158 WebSphere Application Server V7.0 Security Guide

3. Create a keystore at the cell scope, which will ensure that all servers have
access to the keystore. Refer to 5.3.1, “Creating keystores” on page 163 for
more details.

4. Import the LDAP certificate into the keystore as a signer certificate. Refer to
5.3.3, “Managing signer certificates” on page 169.

5. Create a new SSL configuration at the cell scope. Select the new keystore as
both the keystore and truststore. Refer to 5.3.7, “Creating SSL configurations”
on page 177.

6. Enable SSL in the user registry configuration.

On the user registry configuration page (for a stand-alone LDAP registry, or
LDAP repository that is part of the federated repositories), enable SSL,
choose Use specific SSL alias, and select the created SSL configuration.

Now, you have a secure connection to LDAP, and user data cannot be stolen
during transmission.

For detailed instructions about securing an LDAP connection, refer to 5.6.1,
“Securing LDAP communication” on page 193.

5.2.3 Securing Web inbound and outbound communication

For Web communication, there are two use cases:

� You want to secure inbound traffic to the server.

� You want to call an external application over a secured connection.

In either case, there might be an additional requirement of client certificate
authentication.

Best practice: We recommend that you create a separate keystore and
SSL configuration for the LDAP connection, which ensures that the LDAP
server certificate or signing certificate (if used) is only trusted for LDAP
connections and not other connections.

Best practice: We recommend that you use a specific alias rather than a
centrally managed configuration in this case to ensure that all servers will
use this configuration to connect to LDAP.
 Chapter 5. Secure Sockets Layer administration 159

Inbound communication
Most Web applications transmit sensitive data, for example, a user name and
password during login or personal data during the interaction with the
application. To make this data safe during transfer, we use SSL.

In the WebSphere environment, we recommend that you access application
servers through a Web server, for example, IBM HTTP Server (IHS).

If client certificate authentication is not required, perform the following steps to
configure SSL communication:

1. Configure the Web server for SSL (refer to “Configuring the Web server for
SSL” on page 203):

a. Create the key database file and certificates required for the Web server to
participate in an SSL connection. The certificate must be signed by a well
known CA.

b. Enable the directives in the Web server configuration for SSL, pointing to
the new key database.

This step allows SSL connections to be established between Web browsers
and the Web server.

2. Configure the HTTP Plug-in for SSL connections (refer to “Configuring the
plug-in for SSL connection” on page 205):

a. Add the Web server definition to WebSphere (which is usually done as a
part of the HTTP plug-in configuration process).

When a Web server definition is created, it is associated with a keystore
that contains all of the signers for the cell and the chained certificate for
the Web server node.

b. Copy the Web server keystore and stash files for the plug-in to the Web
server plug-in location.

For detailed instructions about securing a Web connection, refer to 5.6.2,
“Securing Web inbound communication” on page 203.

If client certificate authentication is required, configuration is more complex. In
addition to the previous steps, you have to configure the Web server to require
client certificates and configure mutual trust between the plug-in and the
application server. For more information, refer to Chapter 8, “Securing a Web
application” on page 267.
160 WebSphere Application Server V7.0 Security Guide

Outbound communication
Applications might need to communicate with external services. These external
services usually require encryption and often certificate authentication also.

We recommend that you create separate SSL configurations for each external
service to provide flexibility and isolation. Depending on your requirements, the
number of external services, and the topology, you can select a specific SSL
configuration selection method. Refer to “SSL configuration selection policy” on
page 157.

The following steps describe how to prepare SSL configuration for external
service:

1. Create a keystore at the appropriate scope. Choose a scope that will allow
access to the keystore for all servers that have to connect to the external
service. Refer to 5.3.1, “Creating keystores” on page 163.

2. Obtain the certificate from the external service server.

3. Import the certificate into the keystore as a signer certificate. Refer to 5.3.3,
“Managing signer certificates” on page 169.

4. If client certificate authentication is required:

a. If the service provider provides you with a client certificate, import it as a
personal certificate into the keystore.

b. Otherwise:

i. Generate a new self-signed personal certificate or chained certificate.

ii. Extract the public part of the certificate or root signer certificate.

iii. Send the extracted certificate to the service provider where it must be
added as a trusted certificate to allow a connection to be established.

Refer to 5.3.2, “Managing personal certificates” on page 165 for task details.

5. Create a new SSL configuration at the same scope. Select the new keystore
as both the keystore and the truststore. Refer to 5.3.7, “Creating SSL
configurations” on page 177.

6. Ensure that the SSL configuration will be used. Refer to “SSL configuration
selection policy” on page 157.

5.2.4 Securing EJB inbound and outbound communication

When you enable security, Remote Method Invocation (RMI)/Internet Inter-ORB
Protocol (IIOP) traffic is automatically protected by default SSL configuration.
You can customize this configuration in a way similar to Web communication. For
 Chapter 5. Secure Sockets Layer administration 161

more details, refer to Chapter 6, “Common Secure Interoperability Version 2
administration” on page 209.

5.2.5 Securing communication with WebSphere MQ

Many existing systems use WebSphere MQ for integration. By default,
WebSphere MQ communications are unsecured. If WebSphere MQ is used as
your Java Message Service (JMS) provider, we recommend that you establish
mutual SSL communication between WebSphere Application Server and
WebSphere MQ.

The following steps describe how to configure SSL to WebSphere MQ:

1. Enable SSL on WebSphere MQ; refer to WebSphere MQ-related publications
for details.

2. Obtain the public certificate for WebSphere MQ from the WebSphere MQ
administrator.

3. Create a keystore at the appropriate scope. Choose a scope that will allow all
servers that have to connect to WebSphere MQ to have access to the
keystore. Refer to 5.3.1, “Creating keystores” on page 163.

4. Import the obtained certificate into the keystore as a signer certificate. Refer
to 5.3.3, “Managing signer certificates” on page 169.

5. In the keystore, create a new personal certificate for authentication to
WebSphere MQ. Refer to “Creating a chained personal certificate” on
page 167.

6. Extract the public part of the new certificate and provide it to the WebSphere
MQ administrator, because it must be added to the MQ truststore. Refer to
5.3.2, “Managing personal certificates” on page 165.

7. Create a new SSL configuration at the same scope. Select the new keystore
as the keystore and truststore. Refer to 5.3.7, “Creating SSL configurations”
on page 177.

8. Configure the JMS MQ connection factory in WebSphere:

a. Set the correct Server connection channel.

b. Enable SSL and select the new SSL configuration.

c. Additionally, in the Client transport properties, you can set the peer name
that will be checked against the distinguished name (DN) of the MQ
certificate.

Now, if WebSphere MQ is configured correctly, it will only allow connections
using SSL from parties that have the correct certificate.
162 WebSphere Application Server V7.0 Security Guide

5.3 Basic SSL administration

This section discusses WebSphere administration tasks that are associated with
SSL management.

5.3.1 Creating keystores

You need a keystore to hold certificates. To connect over SSL to any external
party, you have to trust that party; you have to add that party’s signer certificate
to the application server truststore. Creating additional keystores for this purpose
increases the security of the environment, because a certificate is trusted only for
certain communications, and not globally.

To configure a new keystore, perform the following steps:

1. In the administrative console, click Security  SSL certificate and key
management  Manage endpoint security configurations  {Inbound |
Outbound}, and select the scope for your new keystore as cell, node group,
cluster, node, server, or endpoint. For keystore configuration, inbound or
outbound topology does not matter, the new keystore is available for both
inbound and outbound in that scope after the new keystore is created.

2. Under Related Items, click keystores and certificates, and then, click New
(Figure 5-3 on page 164).
 Chapter 5. Secure Sockets Layer administration 163

Figure 5-3 Creating a new SSL Keystore

To create a new SSL keystore:

– Type a name in the Name field. This name uniquely identifies the keystore
in the configuration.
164 WebSphere Application Server V7.0 Security Guide

– Type the location of the keystore file in the Path field. The location can be
a file name or a file URL to an existing keystore file. We recommend that
you use WebSphere environment variables in this field.

– Type the keystore password in the Password field. This password is for
the keystore file that you specified in the Path field.

– Type the keystore password again in the Confirm Password field to
confirm the password.

– Select a keystore type from the list. The type that you select is for the
keystore file that you specified in the Path field. The recommended
keystore type is PKCS12.

– Select any of the following optional selections:

• The Read only selection creates a keystore configuration object, but it
does not create a keystore file. If this option is selected, the keystore
file that you specified in the Path field must already exist.

• The “Initialize at startup” selection initializes the keystore during run
time.

• The “Enable cryptographic operations on a hardware device” option
specifies whether a hardware cryptographic device is used for
cryptographic operations only. Operations that require login are not
supported when using this option.

3. Click Apply and Save to save the configuration.

5.3.2 Managing personal certificates

Personal certificates can be used as server certificates and as client certificates.
When used as server certificates, they allow an external client to verify the
identity of the server. When used as client certificates, they provide a client
identity to the external server.

Most often, a personal certificate is created when you want to enable HTTPS on
the Web server or if you need to authenticate a client, for example, when setting
up mutual trust between the HTTP plug-in and the Web container or between an
application server and WebSphere MQ.

To manage personal certificates:

1. Open the administrative console, and click Security  SSL certificate and
key management.

2. On the right side of the panel under Related Items, click keystores and
certificates.

3. Click a keystore name to which you want to add the personal certificate.
 Chapter 5. Secure Sockets Layer administration 165

4. Under Additional Properties, click Personal certificates. The Personal
certificates management page is opened as shown in Figure 5-4.

Figure 5-4 Personal certificates management page

You can perform the following tasks on this page:

� Create personal certificates. You can create the following certificates:

– Self-signed Certificate: The self-signed certificate is the most basic type.
Because it is self-signed, it is best used in an internal or controlled
environment. The self-signed certificate can be used in communication
with business partners; however, renewing the certificate implies changes
on both sides.

– Chained Certificates: A chained certificate is a personal certificate that is
signed by a root certificate. Using a chained certificate enables you to
refresh the personal certificate without affecting the trust established.

– CA-signed Certificates: A CA-signed certificate is a personal certificate
that is signed by a Certificate Authority. It is best used for public endpoints,
because most clients or browsers already have signer certificates from
trusted authorities and can validate a certificate without a signer
exchange.

The CA client must be configured to create CA-signed certificates. Refer
to 5.4.2, “Creating and defining a CA client” on page 186.

� Delete a personal certificate: You can delete a certificate, when you no longer
need it. Deleted certificates are placed in the Deleted certificate keystore.
166 WebSphere Application Server V7.0 Security Guide

� Receive certificate from a CA: This option is used to get CA-signed
certificates without a CA client. First, you need to create a certificate request
via the Personal certificate requests page and send it to the CA. When you
receive the response, you can integrate it with the request via this function.

� Replace certificate: The first selected certificate is replaced by the second
selected certificate. All places where the old alias was used are updated with
the new alias. You can optionally delete the old certificate and signer.

� Extract: This option extracts the public part of the personal certificate. The
extracted certificate is added to the other party’s truststore to establish the
connection.

� Import: This option imports the personal certificate from a file or keystore, for
example, from a p12 file. You can use this function to import a personal
certificate that was created using other software.

� Export: You can export a personal certificate (with private keys) to a file or a
keystore. You can export a certificate for usage in other software or for
backup purposes.

� Revoke: This option revokes certificates that are signed by a CA. Use this
function when a certificate has been compromised.

� Renew: This option recreates the certificate with all the information from the
original certificate, but with a new expiration period and public/private key
pair. Only self-signed certificates and chained certificates that were created
by WebSphere can be renewed.

Creating a chained personal certificate
The server’s default personal certificate is a chained certificate that is created
when the profile is created. A new chained personal certificate can be created
through the administrative console after profile creation using the following steps:

1. Log in to the administrative console, and click Security  SSL certificate
and key management.

2. On the right side of the panel under Related Items, click keystores and
certificates.

3. Click a keystore name to which you want to add the chained personal
certificate.

4. Under Additional Properties, click Personal certificates.

5. Click Create, and select Chained Certificate.

6. Fill in the information in the General Properties section (Figure 5-5 on
page 168), and select Root certificate from the pull-down list.
 Chapter 5. Secure Sockets Layer administration 167

Figure 5-5 General properties of personal certificate

7. Click Apply, click OK, and then, click Save to save the configuration.
168 WebSphere Application Server V7.0 Security Guide

After saving the configuration, a new chained personal certificate, which is
signed by the root, is created and stored in the keystore. This certificate can be
used by the run time for SSL communication.

5.3.3 Managing signer certificates

A peer signer certificate must be trusted (added to the truststore) to successfully
establish an SSL connection. Whenever you want to establish an SSL
connection to an external service, for example, an LDAP server, you must have
its signer certificate in the truststore.

To manage signer certificates:

1. Open the administrative console, and click Security  SSL certificate and
key management.

2. On the right side of the panel under Related Items, click keystores and
certificates.

3. Click a keystore name to which you want to add the signer certificate.

4. Under Additional Properties, click Signer certificates.

5. The Signer certificates management page is opened as shown in Figure 5-6.

Figure 5-6 Signer certificates management page

You can perform the following tasks on this page:

� Add certificate: Allows you to add the signer certificate from a file.
 Chapter 5. Secure Sockets Layer administration 169

� Delete certificate: The option deletes the signer certificate. It removes any
signer certificates that are no longer needed.

� Extract: This option extracts a signer certificate to a file.

� Retrieve from port: This option makes a test connection to an SSL port and
retrieves the signer from the server during the handshake. It does not retrieve
the root certificate if the server’s certificate is a chained certificate.

� Exchange signer (available on the keystores page): This option allows you to
exchange signers between keystores. It is extremely useful when configuring
mutual trust between a plug-in and an application server to exchange their
signer certificates.

5.3.4 Recovering deleted certificates

In WebSphere Application Server V7, there is a new enhancement for certificate
deletion. The SSL configuration contains a recovery keystore to hold personal
certificates that were deleted. There are separate recovery keystores for a
deployment manager and an application server. On a stand-alone application
server, the keystore is called NodeDefaultDeletedStore. On a deployment
manager, the keystore is called DmgrDefaultDeletedStore.

When a personal certificate is deleted from a keystore using the administrative
console or in a script using the deleteCertificate AdminTask, a copy of the
certificate is stored in DmgrDeletedKeyStore or NodeDeletedKeyStore. You
have the option to recover that certificate by using the importCertificate or
exportCertificate tasks.

If a personal certificate is deleted from the recovery keystore, it is permanently
deleted and cannot be recovered. The recovery keystore will be emptied when
the certificate expiration monitor is run, and it can insure that the recovery
keystore does not hold certificates forever.

To recover a personal certificate using the administrative console, perform the
following steps:

1. Click Security  SSL certificate and key management.

2. Under Related Items, click keystores and certificates.

3. From the Keystore usages drop-down list at the top of the page, select
Deleted certificates keystore as shown in Figure 5-7 on page 171.
170 WebSphere Application Server V7.0 Security Guide

Figure 5-7 Deleted certificates keystore

4. Click DmgrDefaultDeletedStore or NodeDefaultDeletedStore depending
on the environment difference.

5. Under Additional Properties, click Personal certificates.

6. Select a certificate.

7. Select Export.

8. Perform these steps:

– Enter the keystore password of the deleted keystore.

– Enter the alias to be assigned to the certificate (in the keystore that will
receive the certificate).

– Select Managed keystore.

– Select the keystore from the drop-down list that will receive the certificate.

– Click Apply, and then, click OK.
 Chapter 5. Secure Sockets Layer administration 171

5.3.5 Certificate expiration monitoring

Certificates are created with a finite life span. When certificates expire, they can
no longer be used by the system and can cause system outages. WebSphere
Application Server provides a utility to monitor certificates that are close to
expiration or have already expired. This utility is a scheduled task that cycles
through all the keystores in the security configuration, and it will report if any
certificates are expired, fall within the expiration threshold, or fall within the
pre-notification period. It also can be configured to delete the expired certificates
and recreate certificates.

Certificate expiration monitoring relies on the following definitions:

� Expired certificates

If certificates have reached the end of their life span, self-signed or chained
certificates are reported and replaced based on the configuration setting.
CA-signed certificates cannot be replaced but will be reported.

� Certificates within the expiration threshold

The server replaces certificates to ensure that the certificate does not expire if
the certificate falls within the expiration threshold.

� Pre-notification period

The pre-notification period is the period of time prior to the expiration
threshold date, and when a certificate falls within this threshold, there are
warnings issued that indicate that the certificate will be replaced.

The certificate expiration monitor performs these steps:

1. The certificate expiration monitor clears out the NodeDefaultDeletedStore or
DmgrDefaultDeletedStore. This operation is performed silently without
reporting that the certificates are deleted.

2. The certificate expiration monitor checks the root keystores,
DmgrDefaultRootStore or NodeDefaultRootStore, and the
DmgrRSATokenRootStore or NodeRSATokenRootStore. If any root
certificates are expired or fall in the threshold period or the pre-notification
period, the certificate is noted in the report.

3. If there are any root certificates that are expired or fall in the threshold period,
that root certificate is recreated using all the information that was used to
create the original root certificate. Any signer certificates from the original root
certificate are replaced with the signers from the new root certificate.

4. If a root certificate is replaced, all the keystores are checked to see if there
are any chained certificates signed with the original root certificate. If there
are any chained certificates signed with the original root certificate, the chain
certificate is renewed (recreated with the new root certificate). Any signer
172 WebSphere Application Server V7.0 Security Guide

certificate from the original certificate is replaced with the signer from the
recreated certificate.

5. After all root keystores are processed, the rest of the keystores are checked
for expired certificates, certificates in the expiration threshold, or certificates in
the pre-notification period. Any certificate falling in any one of these
categories is noted in the report.

6. If there are any expired certificates or certificates in the expiration threshold
period and these certificates are self-signed certificates or chained
certificates created by WebSphere, they are replaced. If the chained
certificate’s root is not in the root keystore, it will be recreated as a default root
certificate. Any signer certificates from the original certificate are replaced
with the signer from the new certificate.

7. A report is generated and returned, written to a log file, or mailed.

Certificate expiration monitoring can be configured in the administrative console
through clicking Security  SSL certificate and key management  Manage
certificate expiration as shown in Figure 5-8 on page 174.
 Chapter 5. Secure Sockets Layer administration 173

Figure 5-8 Manage certificate expiration
174 WebSphere Application Server V7.0 Security Guide

You can configure the number of days threshold in the Expiration notification
threshold field, enable certificate monitoring by selecting Enable checking,
enable Automatically replace expiring self-signed certificates, enable Delete
expiring certificates and signers after replacement, select the method of
notification, and schedule running the certificate expiration monitor. You also can
start the certificate expiration monitor any time by clicking Start now.

By default, the expiration threshold is 60 days and the pre-notification period is
90 days. The expiration threshold can be configured as required on the panel
that is shown in Figure 5-8 on page 174. The pre-notification period is defined in
the com.ibm.ws.security.expirationMonitorNotificationPeriod property.

The expiration monitor automatically replaces only self-signed certificates and
chained certificates that are expired or that meet the expiration threshold criteria.
Self-signed certificates are renewed using all the information that was used to
create the original self-signed certificate. A chained certificate is renewed using
the same root certificate that was used to sign the original certificate.

5.3.6 Managing SSL configurations

SSL configurations are managed from a central location in the administrative
console (Figure 5-9 on page 176). You can associate an SSL configuration and
certificate with a specific management scope, which allows you to make changes
for the entire topology using the cell scope and specific changes using a
particular endpoint name for a specific application server process. Configuration
settings at a higher level scope are inherited by configurations at a lower scope.

The configuration scoping is separated into inbound and outbound management
scopes that represent opposing directions during the connection handshake
process.

The topology view that provides the central management capability for SSL
configurations can be found in the administrative console by selecting
Security  SSL certificates and key management  Manage endpoint
security configurations (Figure 5-9 on page 176).

Note: When the expiration monitor replaces certificates, the run time is
affected when “SSL Dynamically update” is enabled.
 Chapter 5. Secure Sockets Layer administration 175

Figure 5-9 Central SSL management

The SSL configuration scope encompasses the level where you created the
configuration and all the levels below that point. For example, when you create
an SSL configuration at a specific node, that configuration can be seen by that
node agent and by every application server that is part of that node. Any
application server or node that is not part of this particular node cannot see this
SSL configuration.
176 WebSphere Application Server V7.0 Security Guide

In order from highest (least specific) to lowest, the scopes are:

� Cell
� Node group
� Node, server
� Cluster
� Endpoint

5.3.7 Creating SSL configurations

SSL configurations contain the attributes that you need to control the behavior of
client and server SSL endpoints. While central management makes it easy to
utilize a single SSL configuration for securing an entire cell, we recommend that
you create separate SSL configurations within specific management scopes on
the inbound and outbound tree in the configuration topology. You can, however,
utilize a single keystore for managing certificates that coincide with different SSL
configurations for securing various transports. You can secure the following
transports with an SSL configuration:

� Hypertext Transfer Protocol (HTTP)
� Lightweight Directory Access Protocol (LDAP)
� Internet InterORB Protocol (IIOP)
� Simple Object Access Protocol (SOAP)
� Session Initiation Protocol (SIP)
� Service Integration Bus (SIB)
� WebSphere MQ connection (MQ)

With the integration of keystore and certificate management, specific certificates
from a keystore can be associated with an SSL configuration.

Perform the following steps to create the new SSL configuration:

1. Click Security  SSL certificate and key management  Manage
endpoint security configurations.

2. Select an SSL configuration link on either the Inbound or Outbound tree,
depending on the process that you configure.

If the scope is already associated with a configuration and alias, the SSL
configuration alias and certificate alias are noted in parentheses. Otherwise,
the scope is not associated, as shown in Figure 5-10 on page 178. Instead,
the scope inherits the configuration properties of the first scope above it that
is associated with an SSL configuration and certificate alias. The cell scope
must be associated with an SSL configuration, because it is at the top of the
topology and represents the default SSL configuration for the inbound or
outbound connection.
 Chapter 5. Secure Sockets Layer administration 177

Figure 5-10 SSL configuration scope

A configuration page for the selected endpoint will open.

3. Click SSL configurations under Related Items. You can view and select any
of the SSL configurations that are configured at this scope or higher.

4. Click New to display the SSL configuration panel (Figure 5-11 on page 179).
178 WebSphere Application Server V7.0 Security Guide

Figure 5-11 New SSL configuration

Enter the general properties for the new SSL configuration:

– Type an SSL configuration name.

– Select a trust store name from the drop-down list.

A truststore name refers to a specific truststore that holds signer
certificates that validate the trust of certificates sent by remote
connections during an SSL handshake.

– Select a keystore name from the drop-down list.

A keystore contains the personal certificates that represent a signer
identity and the private key that WebSphere Application Server uses to
encrypt and sign data.

If you change the keystore name, click Get certificate aliases to refresh
the list of certificates from which you can choose a default alias.
WebSphere Application Server uses a server alias for inbound
connections and a client alias for outbound connections.
 Chapter 5. Secure Sockets Layer administration 179

– Choose a default server certificate alias for inbound connections.

Select the default only when you have not specified an SSL configuration
alias elsewhere and have not selected a certificate alias. A centrally
managed SSL configuration tree can override the default alias.

– Choose a default client certificate alias for outbound connections.

Select the default only when the server SSL configuration specifies an
SSL client authentication.

Click Apply to configure Additional Properties.

Quality of protection (QoP) settings
Quality of protection (QoP) settings define the strength of the SSL encryption,
the integrity of the signer, and the authenticity of the certificate. You can select
the client authentication setting, the protocol for the SSL handshake, and the
Cipher suite settings.

The settings for this option are shown in Figure 5-12 on page 181.
180 WebSphere Application Server V7.0 Security Guide

Figure 5-12 Quality of protection (QoP) settings

The client authentication setting is used to establish an SSL configuration for
inbound connections and for clients to send their certificates:

� If you select None, the server does not request that a client send a certificate
during the handshake.

� If you select Supported, the server requests that a client send a certificate.
However, if the client does not have a certificate, the handshake might still
succeed.

� If you select Required, the server requests that a client send a certificate.
However, if the client does not have a certificate, the handshake fails.
 Chapter 5. Secure Sockets Layer administration 181

The cipher suite settings specify the various cipher suite groups that can be
chosen depending upon the security needs. The stronger the cipher suite
strength, the better the security. However, the strong cipher suite strength can
result in performance consequences.

Set the cipher strength groups setting to Strong, which is the default, to limit the
acceptable ciphers unless you have a good reason not to use this setting. If you
want, you can use the pick list to specify precisely the ciphers to use, but
selecting specific ciphers is not usually necessary.

Trust and key managers
A trust manager is a class that is invoked during SSL handshakes to make trust
decisions about remote endpoints requesting connections. The default trust
manager, either the IbmX509 or IbmPKIX, is used to validate the signature and
expiration of certificates, while additional custom trust managers can be plugged
in to perform extended certificate and host name checks.

The IbmX509 trust manager provides basic peer certificate validation based on
the trusted signer certificates present in the SSL configuration’s truststore.
Therefore, we highly recommend that you remove those unverified self-signed
signer certificates and default root certificates (that you do not need) from the
certificate authorities.

The IbmPKIX trust manager can replace the IbmX509 for trust decisions in an
SSL configuration. Standard certificate validation is provided, similar to the
IbmX509 trust manager, but it also provides extended certificate revocation list
(CRL) checking, where it checks that certificates contain CRL distribution points.

You can define a custom trust manager that runs with the default trust manager
that you select. The custom trust manager must implement the Java Secure
Socket Extension (JSSE) javax.net.ssl.X509TrustManager interface and,
optionally, the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain
product-specific information.

Note: The signer certificate that represents the client must be in the truststore
that you select for the SSL configuration. By default, servers within the same
cell trust each other, because they use the common truststore, trust.p12, that
is located in the cell directory of the configuration repository. However, if you
use keystores and truststores that you create, perform a signer exchange
before you select either Supported or Required.
182 WebSphere Application Server V7.0 Security Guide

Refer to “Creating a custom trust manager configuration for SSL” at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecustrustmgr.html

A key manager is a class that is used during the SSL handshake to retrieve, by
alias, the appropriate certificate from the keystore. By default, IbmX509 is the
only key manager unless you create a custom key manager.

If you choose to implement your own key manager, you can affect the alias
selection behavior, because the key manager is responsible for selecting the
certificate alias from the keystore. The custom key manager might not interpret
the SSL configuration as the WebSphere Application Server key manager
IbmX509 does.

For more information, refer to “Creating a custom key manager for SSL” at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecuskeymgr.html

5. Click OK, and then, click Save to save the new SSL configuration.

Additional SSL configuration attributes
There are a couple of other configuration options for SSL that are available from
the main SSL certificate and key management page.

Federal Information Processing Standard (FIPS)
FIPS support can be enabled by selecting Use the United States Federal
Information Processing Standard (FIPS) algorithms on the SSL certificate
and key management page. When this option is selected, the LTPA
implementation uses IBMJCEFIPS. IBMJCEFIPS supports the United States
FIPS-approved cryptographic algorithms for Data Encryption Standard (DES),
Triple DES, and Advanced Encryption Standard (AES).

Dynamic SSL configuration updates
Dynamic update functionality provides you with greater flexibility and efficiency,
because you can change SSL configurations without restarting WebSphere
Application Server for the changes to take effect. If you select Dynamically
update the run time when SSL configuration changes occur, all SSL-related
attributes that change are read from the configuration dynamically after they
have been saved and then implemented for new connections. For outbound SSL
endpoints, all outbound connections inherit the new configuration changes,
because new connections are established for each request. For inbound SSL
endpoints, only changes that are implemented by the SSL channel are affected
by dynamic updates.
 Chapter 5. Secure Sockets Layer administration 183

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecustrustmgr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecustrustmgr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecuskeymgr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_sslcreatecuskeymgr.html

5.4 Advanced concepts

This section provides information about advanced concepts and operations in
WebSphere.

5.4.1 Changing default chained certificates

The default chained certificates can be recreated with different information by
deleting the *.p12 files in the appropriate profile_home/config directory
structure and from the profile_home/etc directory and then changing the
properties that are used to create them to the values that you want the
certificates to contain. Then, restart the processes.

The properties of interest are:

� com.ibm.ssl.defaultCertReqAlias=default_alias

� com.ibm.ssl.defaultCertReqSubjectDN=cn=${host name},o=IBM,c=US

� com.ibm.ssl.defaultCertReqDays=365

� com.ibm.ssl.defaultCertReqKeySize=1024

� com.ibm.ssl.rootCertSubjectDN=cn=${host name},ou=Root Certificate,
o=IBM,c=US

� com.ibm.ssl.rootCertValidDays=7300

� com.ibm.ssl.rootCertAlias=root

� com.ibm.ssl.rootCertKeySize=1024

Values that do not exist by default can be added as new custom properties
(Figure 5-13 on page 185):

� For a client certificate in /etc, you can modify and add the properties in the
profile_home/properties/ssl.client.props file.

� For the server certificates in /config, you can modify or add the properties
using the administrative console. Click Security  Global security 
Custom properties.
184 WebSphere Application Server V7.0 Security Guide

Figure 5-13 Global security custom properties for the default chained certificates

After changing the values, you need to restart the cell. If the default certificate
does not exist, WebSphere Application Server automatically generates a new
default certificate using the new values.

When you restart the deployment manager or node agent, the server’s SSL
signer has to be added to the client’s truststore. By default, the
com.ibm.ssl.enableSignerExchangePrompt was enabled in ssl.client.props for
"DefaultSSLSettings". A GUI will prompt you to accept the signer during the
connection attempt (Figure 5-14 on page 186).
 Chapter 5. Secure Sockets Layer administration 185

Figure 5-14 SSL signer exchange prompt

If a default_alias value already exists in the keystore, the run time appends _#,
where the number sign (#) is a number that increases until it is unique in the
keystore. ${host name} is a variable that is resolved to the host name where it
was originally created. The default expiration date of chained certificates is one
year from their creation date.

5.4.2 Creating and defining a CA client

A new interface, WSPKIClient, has been introduced in WebSphere Application
Server V7 to allow users to make certificate requests directly to a certificate
authority. Information about working with this interface can be found at
“Developing a WSPKIClient interface for communicating with a certificate
authority” at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/tsec_7dev_WSPKIClient_interface.
html

A CA client must be created to connect to the CA server before creating a CA
certificate. You need to implement the com.ibm.wsspi.ssl.WSPKIClient interface
to enable WebSphere Application Server security to communicate with a remote
CA. The class name needs be provided as part of the CA client when it is created
(shown in Figure 5-15 on page 188).
186 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_7dev_WSPKIClient_interface.html

You can create a CA client in the administrative console by using following steps:

1. Click Security  SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel of existing
CA clients appears.

3. Click New to create a new CA client in the configuration.
 Chapter 5. Secure Sockets Layer administration 187

Figure 5-15 New CA client configuration

4. Fill in the information, click Apply, and then, click Save to save the
configuration.
188 WebSphere Application Server V7.0 Security Guide

When a CA Client object is configured to connect to the CA, certificates can be
created by the CA. These certificates are tracked in the security configuration in
an object called CACertificate. The certificate is stored in a keystore, and a
CACertificate object is added to the configuration to reference the certificate. CA
certificates are personal certificates.

To use the administrative console to create a CA certificate:

1. Click Security  SSL certificate and key management.

2. Under Related Items, click keystores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to create a new CA
certificate in the configuration.

5. Click Create, and select CA-signed Certificate

6. Fill in the information in the CA certificate section, as shown in Figure 5-16 on
page 190.
 Chapter 5. Secure Sockets Layer administration 189

Figure 5-16 CA Certificate
190 WebSphere Application Server V7.0 Security Guide

7. Click Apply, and then, click Save to save the configuration.

You can also create a CA certificate by using the requestCACertificate
AdminTask.

If a CA certificate is compromised and the servers cannot trust it any longer, the
CA certificate can be revoked. You can invoke the CA certificate in the manage
personal certificates page (Figure 5-16 on page 190).

5.4.3 SSL isolation

SSL enables you to ensure that any client that attempts to connect to a server
during the handshake first performs server authentication. Using an SSL
configuration at the node, application server, and cluster scopes, you can isolate
the communication between servers that are not allowed to communicate with
each other over secure ports. The key to isolation is to control the signers that
are contained in the truststores that are associated with the SSL configuration.
When the client does not contain the server signer, it cannot establish a
connection to the server. By default, WebSphere uses chained certificates, and
each node has a unique root certificate signer. Because the node shares the
same root signer, all of the servers in that node can connect to each other
because they share the same root signer.

Authenticating only the server-side of a connection is not adequate protection
when you need to isolate a server. Any client can obtain a signer certificate for
the server and add it to its truststore. SSL client authentication must also be
enabled to enforce the isolation requirements on both sides of a connection.

Isolation requires that you use centrally managed SSL configurations for all or
most endpoints in the cell.

For more information about SSL isolation, refer to Secure Sockets Layer node,
application server, and cluster isolation in the WebSphere Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sslisolation.htm
l

5.5 SSL troubleshooting and traces

SSL handshake errors are one of the most common problems that can surface
when attempting to set up secure communications in WebSphere. This section
provides diagnostic steps that can be performed to identify an incorrect SSL
setup, the types of traces to gather to diagnose them, and common problems.
 Chapter 5. Secure Sockets Layer administration 191

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sslisolation.html

5.5.1 Diagnostic steps

When attempting to diagnose SSL handshake issues, perform the following
steps to identify the cause of the problem:

1. Identify the endpoints for the SSL communication. It is important to determine
the identity of the SSL client (client initiating the SSL handshake) and the
identity of the SSL server (the receiving party in the SSL handshake attempt).
Identifying the SSL client and the SSL server is sometimes challenging,
because the SSL client can be a J2EE client or a thin client, a Web browser,
or a WebSphere process. The SSL server is usually a WebSphere process.

2. SSL handshake issues occur between two endpoints, and the SSL
handshake error usually surfaces in the error log of the client. Determine the
SSL configuration, keystore, and truststore for the SSL client and the SSL
server.

3. Knowledge of the certificates can be used to identify where the setup might
be incorrect. Display the certificate information for the signer certificate and
the personal certificate (if there is a personal certificate) using the
administrative console SSL management, or the ikeyman utility.

4. From the displayed information, check the validity period for the signer
certificate on the SSL client side and the SSL server side. Verify that the
current date falls within the start date and end date for the certificates. The
certificate’s start date must precede the current date and must not be expired.

5. From the displayed information, confirm that the SSL client’s truststore
contains the signer certificate of the server. Verify that the issuer’s
distinguished name and subject distinguished name for the server’s signer
certificate on the SSL client side match those of the server personal certificate
on the SSL server side.

5.5.2 SSL traces

When SSL errors surface and then when you analyze the certificates and
keyrings and the WebSphere setup does not provide enough information to
diagnose the problem, you can enable SSL traces in either the WebSphere
administrative console or in the Java Virtual Machine (JVM™).

WebSphere SSL trace
When diagnosing WebSphere SSL problems, SSL traces can be enabled in
WebSphere and in the JVM.
192 WebSphere Application Server V7.0 Security Guide

Follow the path in the administrative console in WebSphere, select Logging and
Tracing  server_name  Change Log Detail Levels. Click the
Configuration tab and add the WebSphere trace specification:

SSL=all

Java JSSE trace
To enable the diagnostic trace for determining the cause of SSL handshake
errors, follow the path in the administrative console to Server types 
WebSphere Application Servers  server_name  Process Definition (in
the Server Infrastructure section under Java and Process Management) 
Java Virtual Machine.

In the Generic JVM Arguments field, add:

-Djavax.net.debug=true -Djava.security.auth.debug=all

The Java trace setting cannot be enabled dynamically and requires that you
restart the application server to pick up the change.

5.6 Implementation examples

This section contains two examples of implementing SSL in a WebSphere
environment.

5.6.1 Securing LDAP communication

When configuring WebSphere Application Server to use an LDAP registry, the
default is that WebSphere Application Server connects to the LDAP server using
port 389 using LDAP protocol. Information is exchanged in plain text and can be
sniffed. There is no way to guarantee that WebSphere Application Server is
connected to the correct LDAP server. Securing the connection using SSL can
help solve this issue. When SSL is enabled, data exchanged between
WebSphere and the LDAP registry is encrypted. Both server and client
authentication are supported.

This section provides an example of how to configure SSL for an LDAP
connection with server authentication.

The example uses IBM Tivoli Directory Server V6.1 on a Windows platform. The
host name is sys4.itso.ral.ibm.com. The WebSphere Application Server
system is at Fix Pack 7.0.0.1 and runs on a Windows platform with the host
name kcfpop9.itso.ral.ibm.com.
 Chapter 5. Secure Sockets Layer administration 193

Creating a self-signed certificate for an LDAP server
To enable SSL for LDAP, start by creating a self-signed certificate and then
extract the certificate to make it available for secure communication.

Complete these steps to create a self-signed digital certificate:

1. Start the iKeyman utility, which is supplied with WebSphere Application
Server, IBM HTTP Server, and also, Tivoli Directory Server. For example, in
the C:/ibm/gsk7/bin directory, type this command:

gsk7ikm

2. On the IBM Key Management page, click Key Database File  New. Then,
Figure 5-17 appears.

Figure 5-17 Create CMS keystore

On Figure 5-17:

– Select a default key database type of CMS.

– In the File Name field, type a name for the CMS key database file. For
example, type: ldapserver.kdb

– In the Location field, specify a location to store the key database file. For
example, type C:\ssl\certs

Click OK.

3. On the Password menu that appears, type the password and then confirm the
password. Then, select Stash password to a file, and click OK (Figure 5-18
on page 195).
194 WebSphere Application Server V7.0 Security Guide

Figure 5-18 Set password for keystore

4. Click Create  New Self Signed Certificate, and specify a label for the
certificate. In this example, enter ldapservercert. Refer to Figure 5-19 on
page 196.
 Chapter 5. Secure Sockets Layer administration 195

Figure 5-19 Create self-signed certificate

Type the LDAP host name in the Common Name field. You can fill in the
remaining fields to match your organization structure. Consider increasing the
Validity Period. Click OK to generate the personal certificate.

A self-signed certificate now exists, including public and private keys.

5. For subsequent use with WebSphere Application Server, extract the contents
of the certificate into a Binary DER Data file.

Select Extract Certificate. Figure 5-20 on page 197 appears.
196 WebSphere Application Server V7.0 Security Guide

Figure 5-20 Extract the certificate

Follow these steps:

– Specify a data type of Binary DER Data. A file with an extension of .der
contains binary data. Specify this format to extract a self-signed certificate.

– Specify the name of the certificate file name that you created, such as
ldapservercert.der.

– Specify the location where you previously stored the key database file

Click OK.

Verify that the C:/ssl/certs directory contains the following files:

� ldapservercert.der: The certificate file
� ldapserver.kdb: Key database file that has the certificate
� ldapserver.sth: Stash file that has the password

Configuring the LDAP server for SSL
The next step in the process is to create the LDAP Directory Interchange™
Format (LDIF) file that is used to configure SSL on the Tivoli Directory Server.
For more details, refer to:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.it
ame.doc/am61_install319.htm

To configure the LDAP server for SSL:

1. Start the directory server.

2. Create an LDIF file, such as ssl.ldif, with the data that is shown in
Example 5-1.

Example 5-1 LDIF file data

dn:cn=SSL,cn=Configuration
changetype:modify
replace:ibm-slapdSslAuth
 Chapter 5. Secure Sockets Layer administration 197

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/am61_install319.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/am61_install319.htm

ibm-slapdSslAuth:serverauth
-
replace:ibm-slapdSecurity
ibm-slapdsecurity:SSL

dn:cn=SSL,cn=Configuration
changetype:modify
replace: ibm-slapdSslKeyDatabase
ibm-slapdSslKeyDatabase: C:/ssl/certs/ldapserver.kdb
-
replace:ibm-slapdSslCertificate
ibm-slapdSslCertificate: ldapservercert
-
replace: ibm-slapdSSLKeyDatabasePW
ibm-slapdSSLKeyDatabasePW: key1PassWd

3. Place the LDIF file in the bin directory of the Tivoli Directory server and
present this LDIF file to the directory server with the following command:

idsldapmodify -D cn=root -w <passwd> -i ssl.ldif

4. Restart the server. Ensure that the directory server is listening on secure port
636, as shown in Example 5-2.

Example 5-2 Ensure that the directory server is listening on port 636

C:\>netstat -an| grep 636
 TCP 0.0.0.0:636 0.0.0.0:0 LISTENING

Configuring SSL on WebSphere Application Server
The next step is to configure WebSphere Application Server to enable SSL
communication between the LDAP server and WebSphere Application Server:

1. Manually copy the ldapservercert.der certificate file from the C:\ssl\certs
directory on the Tivoli Directory Server to the directory on the WebSphere
Application Server.

2. Create a truststore for communication with LDAP. For a Network Deployment
environment, we recommend that you place this store at the cell level.

Perform the following steps to create the truststore:

a. Click Security  SSL certificate and key management. In the Related
Items section, click keystores and certificates.

Note: The empty lines containing only the - (hyphen) character are
required for LDIF file formatting.
198 WebSphere Application Server V7.0 Security Guide

b. Click New, specify the details as shown in Figure 5-21, and click Apply.

Figure 5-21 Creating truststore for LDAP connection

3. Add the LDAP’s signer certificate to the truststore.

a. In the Additional Properties section, click Signer certificates.

b. In the signer certificate management page, click Add to add the signer
certificate, as shown in Figure 5-22 on page 200.
 Chapter 5. Secure Sockets Layer administration 199

Figure 5-22 Adding signer certificate to truststore

c. Click OK, and save the changes.

4. Create a new SSL configuration that will be used for LDAP connection. For
the Network Deployment environment, we recommend that you place this
configuration at the cell level:

a. Click Security  SSL certificate and key management. In the Related
Items section, click SSL Configuration.

b. Click New, specify the details as shown in Figure 5-23 on page 201, and
click OK.
200 WebSphere Application Server V7.0 Security Guide

Figure 5-23 Specify the SSL configuration

c. Save the changes.

5. Enable SSL in the user registry configuration. This section assumes that a
stand-alone LDAP registry is used. The configuration for the LDAP repository
that is part of the Federated repositories is similar. Follow these steps:

a. Click Security  Global Security. In the User account repository, click
Configure.

b. Select SSL enabled, change the Port to 636 (which is the default SSL
secure port), select Use specific SSL alias, and choose
LDAPSSLSettings. These changes are shown in Figure 5-24 on
page 202.
 Chapter 5. Secure Sockets Layer administration 201

Figure 5-24 Enabling SSL for LDAP connection

6. Click Apply, and then, click Save to save the configuration.

7. Now, you can use Test Connection in the top of this page to test the LDAP
SSL connection. If the connection is successful, the message will appear as
shown in Figure 5-25 on page 203.
202 WebSphere Application Server V7.0 Security Guide

Figure 5-25 Test connection

5.6.2 Securing Web inbound communication

This section illustrates how to configure SSL for connections between the client
Web browser and the Web server and how to configure SSL for connections
between the Web server plug-in and the application server. It assumes that client
certificate authentication is not required.

The WebSphere Application Server HTTP Plug-in is used to establish a
connection between a Web server and an application server. When a request is
received by the Web server for an application in WebSphere Application Server,
the HTTP plug-in will forward it via HTTP. If the request is received via HTTPS, it
will be forwarded via HTTPS.

Figure 5-26 SSL connections

Configuring the Web server for SSL
This section illustrates how to implement a secure connection between the
browser and the IBM HTTP Web server.

In our example, we use the IBM HTTP Server V7 on a Windows platform.

Tip: Remember to disable port 389 on the LDAP server to stop non-SSL
access.

(Browser)

SSL

WebServer Application
Server

SSL
Plug-in

Client
 Chapter 5. Secure Sockets Layer administration 203

Follow these steps:

1. Create the key database file and certificates that are needed to authenticate
with the Web server during an SSL handshake.

In this example, we used a self-signed certificate. However, for production
installation, we recommend that you use a certificate signed by a well known
Certificate Authority. Refer to “Creating a self-signed certificate for an LDAP
server” on page 194 for information about using the IBM Key Management
Tool to create a self-signed certificate. The IBM Key Management Tool is
included with IBM HTTP Server. You can use the following commands to start
it:

C:\HTTPServer\gsk7\bin>set JAVA_HOME=C:\HTTPServer\java\jre

C:\HTTPServer\gsk7\bin>gsk7ikm

Save this file as c:\IBM\HTTPServer\ihskey.kdb

2. Enable the SSL directives in the IBM HTTP Server’s configuration file
(httpd.conf):

a. Remove the comment from the the ibm_ssl_module to load this module:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

b. Create an SSL VirtualHost stanza using the following example and
directives:

Listen 443
<VirtualHost *:443>
SSLEnable
SSLClientAuth None
</VirtualHost>
SSLDisable
KeyFile "c:/IBM/HTTPServer/ihskey.kdb"
SSLV2Timeout 100
SSLV3Timeout 1000

3. Save the configuration file and restart the IBM HTTP Server.

4. Access the IBM HTTP Server welcome page from a Web browser:

https://your-host name

You might see a Security Alert page as shown in Figure 5-27 on page 205.
204 WebSphere Application Server V7.0 Security Guide

Figure 5-27 SSL Security Alert

This message occurs, because the configuration uses a self-signed certificate
that is not issued by a trust-certifying authority.

5. Click Yes. You will see the welcome page.

The next step is to secure the communication between the plug-in and
application server with SSL.

Configuring the plug-in for SSL connection
This section illustrates how to configure the HTTP plug-in to enable SSL
connections to the application server.

In this example, we assume that a definition for the Web server has been created
in WebSphere Application Server. When the Web server definition was created,
WebSphere Application Server associated the Web server plug-in with a
Certificate Management Services (CMS) keystore for a specific node. This
keystore contains all of the signers for the cell with the self-signed or chained
certificate for the node. The plug-in can communicate securely to WebSphere
Application Server, even when the plug-in is configured with SSL client
authentication enabled, because its personal certificate is signed by the default
root certificate, which is trusted by the application server.
 Chapter 5. Secure Sockets Layer administration 205

Complete this configuration by performing the following steps:

1. From the WebSphere administrative console, click Servers  Server
Types  Web servers.

2. Click on the Web server name to open the configuration page.

3. Click Plug-in properties.

4. Click Manage keys and certificates to see the plug-in keystore details
(CMSKeyStore) as shown in Figure 5-28.

Figure 5-28 Plug-in properties

5. Click Signer certificates to see a list of the signer certificates. We have to
ensure that all nodes’ root certificates are there, as shown in Figure 5-29 on
page 207.
206 WebSphere Application Server V7.0 Security Guide

Figure 5-29 Filtered list of signer certificates

The default root certificate and the node root certificate are automatically
added to the keystore. If you add other nodes later, their root certificates will
be added to this keystore; however, the keystore is not automatically
propagated to Web servers.

6. Copy the Web server keystore and stash files to the Web server machine:

a. If you use managed Web servers, click Copy to Web server keystore
directory on the plug-in properties page (Figure 5-28 on page 206).

When you use this option, the plug-in keyring file is propagated from
node_profile_root/servers/web_server_def/plugin-key.kdb on the
deployment manager system to plug-in_root
/config/web_server_def/plugin-key.kdb on the Web server computer.
 Chapter 5. Secure Sockets Layer administration 207

b. If you use an unmanaged Web server, manually copy the keystore and
stash files to the Web server.

c. Ensure that the plug-in configuration points to the location where you
stored the files. The following transport directives in the plug-in.xml
configuration file will contain the location:

<Transport Hostname="w2k3" Port="9443" Protocol="https">

<Property Name="keyring"
Value="c:\HTTPServer\Plugins\config\webserver1\plugin-key.kdb"/>

<Property Name="stashfile"
Value="c:\HTTPServer\Plugins\config\webserver1\plugin-key.sth"/>

</Transport>

Note that these directives will not be included in the plug-in.xml file until
you have associated the Web server with an application module.

Summary
At the completion of this process, Web browsers can access applications that are
deployed on WebSphere Application Server over connections that are protected
by SSL.

Note: Ensure that the virtual host that is mapped to the applications includes
the SSL port and that the plug-in file is refreshed with the latest configuration.
208 WebSphere Application Server V7.0 Security Guide

Chapter 6. Common Secure
Interoperability Version 2
administration

The Common Secure Interoperability Version 2 (CSIv2) specification is an open
standard that defines how to authenticate secure requests for inter- Object
Request Broker (ORB) communication.

This chapter discusses CSIv2 security in WebSphere Application Server V7
environments. It contains the following topics:

� “Overview of CSIv2” on page 210
� “The CSIv2 authentication protocol” on page 211
� “Features of CSIv2” on page 214
� “Configuring CSIv2” on page 224
� “Troubleshooting CSIv2” on page 240
� “References” on page 249

6

© Copyright IBM Corp. 2009. All rights reserved. 209

6.1 Overview of CSIv2

The Object Management Group (OMG) defined the Common Secure
Interoperability Version 2 (CSIv2) specification. Detailed documentation about
the specification is available here:

http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2

CSIv2 specifies a Security Attribute Service (SAS) that enables interoperable
authentication, delegation, and privileges.

WebSphere Application Server Version 7.0 is compliant with the CSIv2
specification so that it can interoperate with other Java 2 Platform, Enterprise
Edition (J2EE) server vendors.

The CSIv2 SAS protocol exchanges its elements in the service context of
General Inter-ORB Protocol (GIOP) request and reply messages. It is important
to understand this basic request and reply structure when debugging CSIv2
problems. Typically, the client sends a request message to the server, along with
the client’s CSIv2 configuration. The server receives this request where it has its
own CSIv2 configuration. Both the client and server configurations are merged
into an effective authentication policy that both sides can comply with. This
authentication policy determines the level of security and the type of
authentication that occurs between the client and the server.

After the merged authentication policy is established, the server processes the
request. The server then sends a reply message back to the client with the
outcome of that request. For a more detailed discussion about the flow of this
authentication protocol, refer to 6.2, “The CSIv2 authentication protocol” on
page 211. For an in-depth look at troubleshooting CSIv2, refer to 6.5,
“Troubleshooting CSIv2” on page 240.

CSIv2 SAS as opposed to IBM SAS: Do not confuse the term CSIv2 SAS
with the IBM SAS protocol. The IBM SAS protocol is only supported between
WebSphere Application Server servers and between Version 6.0.x and earlier
version servers that have been federated in a Version 7.0 cell. The IBM SAS
protocol is deprecated and will be removed in future releases of WebSphere
Application Server.

Important: If the authentication protocol cannot come up with a policy that
both the client and server can satisfy, the request is not sent.
210 WebSphere Application Server V7.0 Security Guide

http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2

6.2 The CSIv2 authentication protocol

The authentication protocol used by WebSphere Application Server is an add-on
to the Interoperable Inter-ORB Protocol (IIOP) services. IIOP is a
request-and-reply communication protocol that is used to send messages
between two Object Request Brokers (ORBs). WebSphere injects into this
process by establishing a security context as part of the ORB request. For each
request that a client ORB makes to a server ORB, an associated reply is made
by the server ORB back to the client ORB. When this communication takes place
between two servers, the first server that is sending the request is referred to as
the upstream server. The second server that is receiving the request is referred
to as the downstream server.

Figure 6-1 illustrates the flow of the authentication protocol.

Figure 6-1 The authentication protocol flow for CSIv2

Authentication protocol flow

Step 1:
Client ORB calls the connection
interceptor to create the connection.

Step 2:
Client ORB calls the request
interceptor to get client security
information.

Step 3:
Server ORB calls the request interceptor
to receive the security information,
authenticate, and set the received credential.

Client ORB

Step 5:
Client ORB calls the request interceptor
so that the client can clean up and set
the session status as good or bad.

Step 4:
Server ORB calls the request interceptor
so that security can send information
back to the client with the reply.

Server enterprise
beans Foo

User: peter
Password: beans

foo.getCoffee()

Coffee

Stateful request
valid

Client connection
interceptor

Client request
interceptor –
send_request()

Client request
interceptor –
receive_reply()

Server request
interceptor –

receive_request()

Service context

Request

Reply

Service context
Server request
interceptor –
send_reply()

Transport connection

Invocation
credential;
User: peter
Pass: beans

Received
credential;

security
token

foo.getCoffee()

Server ORB

1

2

5

3

4

 Chapter 6. Common Secure Interoperability Version 2 administration 211

The following steps describe in more detail how the authentication protocol works
between a client and a server. The numbers correspond to the numbers in
Figure 6-1 on page 211:

1. Client connection interceptor

The client ORB and the server ORB must first establish a connection over the
TCP/IP transport (Secure Sockets Layer (SSL) is a secure version of
TCP/IP). The client ORB invokes the authentication protocol’s client
connection interceptor. This interceptor reads the tagged components in the
Interoperable Object Reference (IOR) of the object that is being requested on
the server. The client configuration and the server configuration are merged
to establish an effective authentication policy. Given this authentication policy,
the server ORB returns the strength of the connection. The client ORB makes
the appropriate connection, usually over SSL. A connection is thus
established between the client and the server.

2. Client request interceptor - send_request()

The client ORB invokes the authentication protocol’s client request
interceptor. This interceptor sends security information in addition to what has
been established by the transport. This security information can include the
following information:

– A user ID and password token that is authenticated by the server

– An authentication mechanism-specific token that is validated by the server

– An identity assertion token. Identity assertion is a way for one server to
trust another server without the need to reauthenticate or revalidate the
originating client. For more information about identity assertion, refer to
6.3.2, “Identity assertion and identity mapping” on page 217.

The interceptor sends this additional security information with the request
message in a GIOP service context. A service context has a registered
identifier so that the server ORB can identify which protocol is sending the
information. After the client request interceptor finishes adding the service
context to the message, the message is sent to the server ORB using the
send_request method.

3. Server request interceptor - receive_request()

The server ORB invokes the authentication protocol’s server request
interceptor to receive the message from the client. The interceptor calls the
method receive_request(). This interceptor looks for the service context ID
that corresponds to the CSIv2 SAS service context. When a server supports
both IBM SAS and CSIv2 SAS, the protocol invokes two different server
request interceptors. Each of these interceptors looks for different service
context IDs. However, only one interceptor finds a service context for any
given request.
212 WebSphere Application Server V7.0 Security Guide

If the server’s request interceptor finds a service context, it reads the
information in the service context. This information contains the client’s
identity.

If the server’s request interceptor does not find a service context, the
interceptor looks at the transport connection to see if the client sent a
certificate. This process is done when the client and server have client
certificate authentication configured. If the interceptor finds a client certificate,
it will extract the distinguished name (DN) from the certificate. This name
maps to an identity in the user registry. If the certificate does not map to an
identity, the server rejects the request. For more information about client
certificate authentication, refer to “Transport layer” on page 214.

The server then authenticates the client’s identity, whether it is the identity
extracted from the service context or the identity from the mapped certificate.
If the server determines that the security information from the client is valid,
the server creates a credential. If the information is not valid, the server
rejects the request by throwing a NO_PERMISSION exception.

However, if the client sends no security information, the server creates an
unauthenticated credential. The authorization engine determines if the
method requested by the client gets invoked. For an unauthenticated
credential to invoke a method on the server, the method must either have no
security roles defined or the special Everyone subject mapped to it.

The server request interceptor completes the server authentication either
successfully or with an exception.

4. Server request interceptor - send_reply()

The server request interceptor creates a new reply service context to inform
the client request interceptor of the outcome. If the server has configured
stateful sessions, a session is created with a stateful context ID that is unique
to this connection between the client and the server. For more information
about stateful and stateless sessions, refer to 6.3.5, “Stateful and stateless
sessions” on page 224. The request interceptor sends a reply by calling the
method send_reply().

5. Client request interceptor - receive_reply()

The client request interceptor receives the reply from the server by calling the
method receive_reply(). This service context in the reply message provides
information about the outcome of the request. If the request is successful and
the client has configured stateful sessions, the client marks the session as
valid. The client can then reuse this session for all subsequent requests,
without having to resend the authentication information. For more information
about stateful and stateless sessions, refer to 6.3.5, “Stateful and stateless
sessions” on page 224.
 Chapter 6. Common Secure Interoperability Version 2 administration 213

If the outcome is not successful, the client request interceptor examines the
error message that is sent by the server. Depending on the Common Object
Request Architecture (CORBA) minor codes and messages in the reply
service context, the request will simply fail or the client can retry the request.
For more information about how errors are handled in CSIv2, refer to 6.3.4,
“Error handling” on page 222.

6.3 Features of CSIv2

WebSphere’s compliance with the CSIv2 protocol allows it to take advantage of
many features in order to create a flexible yet secure and interoperable
environment. These features and the advantages are discussed in detail in the
sections that follow.

6.3.1 Three layers for authentication

The CSIv2 protocol provides the client with the flexibility to send authentication
information at three layers: the attribute layer, the message layer, and the
transport layer. The server chooses only one of these layers and authenticates
the information that is provided at this layer. The server makes this decision
based on the following order of priority: the attribute layer has the highest priority,
followed by the message layer, and then the transport layer. If a client sends
authentication information at all three layers, the server will use only the attribute
layer. If a client sends information at the message layer and at the transport
layer, then the server will use the message layer. The server will only use the
transport layer when the attribute layer and the message layer do not exist.

The advantage of having three layers for authentication is that it allows one client
to interoperate with multiple servers that might have different security
requirements.

Transport layer
The transport layer, which is the lowest layer, can contain an SSL client
certificate. This form of authentication is referred to as “client certificate
authentication.”

The identity is extracted from the certificate and then mapped to a user in the
user registry. The server then creates a credential for that user. The identity of
the certificate depends on the server’s current realm. If the realm is “Local
operating system,” the identity is the first attribute of the distinguished name (DN)
in the certificate.
214 WebSphere Application Server V7.0 Security Guide

This attribute is typically the common name. For example, if the client’s certificate
has the following DN, the identity will be Lopez, which maps to the user lopez in
the local operating system:

cn=Lopez,ou=Accounting,o=AcmeCompany,c=us

If the current realm is “Standalone LDAP registry,” there are two certificate
mapping modes from which to choose that determine how the certificate maps to
an entry in the registry. The first mapping mode maps the exact DN to a user in
the registry. For the second mapping mode, a certificate filter is defined to match
certain attributes in the certificate to certain attributes of a user in the LDAP
registry.

The disadvantage of using the transport layer is that the client’s keystores must
be set up appropriately on every client system.

Message layer
The message layer uses a token to store and receive authentication information
on the server. This token can be one of three types:

� Generic Security Service Username Password (GSSUP) token (basic
authentication)

� Lightweight Third Party Authentication (LTPA) token

� Kerberos (KRB5) token

The authentication information is sent with the message inside the service
context. The server knows which mechanism to use when reading and validating
the token by checking the object ID (OID) that is sent by the client. Each
authentication mechanism has a corresponding and unique OID.

The GSSUP token is an encoded user ID and password. Supplying this token is
also referred to as basic authentication. The OID for GGSUP is 2.23.130.1.1.1.
The GSSUP token is considered to be less secure than the mechanism-specific
tokens.

There are two mechanism-specific tokens that can be sent to a WebSphere
Application Server server. The first is a Lightweight Third Party Authentication
(LTPA) token. The LTPA OID is 1.3.18.0.2.30.2.

Benefit: The transport layer optimizes authentication performance. Because
an SSL connection is typically created anyway, there is minimal overhead in
sending the client certificate.
 Chapter 6. Common Secure Interoperability Version 2 administration 215

New in V7.0.0.3
Kerberos is the other mechanism-specific token. Although configuring the
mechanism requires overhead, the Kerberos token is the most secure and
interoperable of the three tokens. The advantages of using Kerberos include:

� The Kerberos protocol is an open standard, enabling interoperability with
other applications (such as .NET) that support Kerberos.

� The Key Distribution Center (KDC) acts as a trusted third party.

� Kerberos provides a single sign-on (SSO) end-to-end solution that preserves
the original requester’s identity. A clear text password is never sent to the
downstream server.

The OID for the Kerberos token is 1.2.840.113554.1.2.2.

A pure Java client can send either a GGSUP token or a Kerberos token. A server
acting as a client can send any of the three tokens.

Attribute layer
The attribute layer, which is the highest layer, is used to send additional security
information. This information can be custom attributes that are added to the
subject or an identity token that is sent from an upstream server. An upstream
server uses an identity token to send its already authenticated identity to the
downstream server, without having to reauthenticate on the receiving end. This
mechanism is known as identity assertion, given that the client is asserting an
identity to the server. Because the downstream server is not authenticating the
identity token, an additional validation is set in place. The downstream server
must trust the upstream server. For more information about identity assertion,
refer to 6.3.2, “Identity assertion and identity mapping” on page 217. The other
feature available on the attribute layer is the ability to pass the security attribute
information of the original authenticated login to the downstream server.
Transporting these attributes from one server to another server is called security
attribute propagation. Refer to 6.3.3, “Security attribute propagation” on
page 220 for more information.

Table 6-1 on page 217 summarizes what authentication information can be
specified at each layer, and its corresponding order of priority, from highest to
lowest.

Note: When sending an LTPA token to a server that spans another cell, the
LTPA keys must be shared between the two cells.
216 WebSphere Application Server V7.0 Security Guide

Table 6-1 CSIv2 Layers

6.3.2 Identity assertion and identity mapping

Identity assertion uses an identity token to identify a client to a server. The
benefit of identity assertion is that the downstream server does not have to
reauthenticate the asserted identity. For this assertion to occur, however, the
downstream server must trust the upstream server.

The following steps describe in more detail how identity assertion works:

1. The upstream server sets the invocation credential.

The invocation credential is determined by the RunAs mode of the enterprise
bean on the upstream server. The RunAs mode can be set to the originating
client identity, the system identity, or a different specified identity.

2. The upstream server sends an identity token along with its server identity to
the downstream server.

The identity token contains the invocation credential. There are five formats
for the identity token, and the token is defined by what kind of identity is being
asserted. Table 6-2 lists the identity token types.

Table 6-2 Identity token types

CSIv2 layer Authentication information

Attribute layer Uses an identity token to support identity assertion to an
upstream server

Message layer Uses a user ID/password token or an authenticated token with
an expiration (LTPA or Kerberos)

Transport layer Uses the SSL client certificate as the identity

Tip: The network must have strong protection so that an intruder cannot take
advantage of the trust established between the two servers.

Identity token type Meaning

ITTAbsent The token is absent, and no identity is asserted.

ITTAnonymous An unauthenticated identity is asserted.

ITTPrincipalName A GSS name is asserted.

ITTDistinguishedName An X5.01 distinguished name is asserted.

ITTX509CertChain A chain of X.509 certificates is asserted.
 Chapter 6. Common Secure Interoperability Version 2 administration 217

In addition to the identity token, the upstream server must send its server
identity so that a trust can be established between the two servers. The
server identity is sent either in the message layer, which will have the higher
priority, or in the transport layer.

If message layer security is supported on both sides, the upstream server
sends its server identity along with the identity token. The server identity is
sent in a mechanism-specific token, which depends on the settings of the
upstream server’s realm. When the realm is specified to use an automatically
generated server identity, which is the default, then an LTPA token is used. In
this case, the server identity is the uniqueId part of the accessId. When the
realm is specified to use a server identity that is stored in the repository, then
a GSSUP token is used. In this case, the server identity is the user ID. Note
that a GSSUP token is more interoperable than an LTPA token when the
downstream server is in another cell.

If message layer security is not supported on both sides, the transport layer
must be supported, or else a trust between the two servers cannot be
established. In this case, the upstream servers sends a client certificate. The
server identity is the distinguished name of the certificate.

Table 6-3 summarizes the format of the upstream server identity, depending
on what CSIv2 layer is used between the two servers.

Table 6-3 The server identity

3. The downstream server receives the identity token and the server identity of
the upstream server.

4. The downstream server authenticates the server identity of the upstream
server.

z/OS: When the downstream server’s realm is the Local Operating
System, the server identity is the System Authorization Facility (SAF) ID
that is mapped to the certificate. If a certificate is not sent, the server
identity is the started task identity of the upstream server’s control region.

CSIv2 layer Server identity

Message layer: LTPA token uniqueId of the accessIda

a. You do not need to list the server identity in the “Trusted Identities” list for the
LTPA token if the LTPA keys are shared between the two servers.

Message layer: GGSUP token user ID

Transport layer Distinguished name of the certificate
218 WebSphere Application Server V7.0 Security Guide

5. The downstream server determines if it trusts the upstream server.

Before looking at the identity token, the downstream server first determines if
it trusts the upstream server. The downstream server checks if the upstream
server’s server identity is in the “Trusted identities” list. Refer to Table 6-3 on
page 218 to determine the server identity that is sent by the upstream server.
Note that you do not need to specify anything in the “Trusted identities” list
when the servers are using the automatically generated server identity as
long as the LTPA keys are shared between the two servers.

6. The asserted identity in the identity token is mapped to a user in the realm.

The downstream server examines the format of the identity token. The
mapping of the token to a user in the realm depends on the type of the identity
token and the realm of the downstream server. Table 6-4 illustrates this
mapping.

Table 6-4 Mapping identity tokens to a user

7. The mapped credential does not need to be authenticated and can now be
used for authorization decisions on the downstream server.

z/OS: When the downstream server’s realm is the Local Operating System,
the “Trusted identities” list is not used. Instead, the trust is established by
checking if the upstream server’s server identity has UPDATE access to the
CBIND class, profile CB.BIND.<SAFprofilePrefix>.<clusterName>.

Realm Identity token Mapped user

LDAP ITTPrincipal The principal is mapped to the UID field.

ITTDistinguishedName The user is determined by the LDAP filters.

ITTX509CertChain The user is determined by the LDAP filters.

non-LDAP ITTPrincipal The principal maps one-to-one to the user
ID field.

ITTDistinguishedName The first attribute of the distinguished
name is mapped to the user ID.

ITTX509CertChain The first attribute of the distinguished
name is mapped to the user ID.

Note: The asserted identity must exist in the realm of the downstream
server. If it does not exist, additional configuration is required. For more
information, refer to “Identity mapping”.
 Chapter 6. Common Secure Interoperability Version 2 administration 219

The advantages of using identity assertion are:

� The downstream server does not have to authenticate the asserted identity.

� If there is no common authentication mechanism between the two servers,
you can use identity assertion for interoperability.

Identity mapping
Identity mapping is the mapping of a user identity. This mapping is necessary
when the downstream server’s realm differs from the upstream server’s realm, or
when mapping within a realm is needed (for example, many to one).

There are two ways that you can map an identity:

� Outbound identity mapping maps the current identity to the new identity on
the upstream server, before calling the downstream server.

� Inbound identity mapping maps the identity on the downstream server.

Deciding which of these two scenarios to use depends upon your environment
and requirements. However, it is typically easier to map the user identity before
the request is sent outbound for the following reasons:

� You have better knowledge of the source user identity.

� You do not have to share LTPA keys with the other downstream server,
because you are not mapping the identity to LTPA credentials. Typically, you
are mapping the identity to a user ID and password that are present in the
downstream server’s realm.

For more information about identity mapping, refer to the following page in the
Information center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_perfidmap.html

6.3.3 Security attribute propagation

The security attribute propagation feature allows WebSphere Application Server
to transport security attributes from one server to another server. These
attributes can be obtained in the following ways:

� When the server is performing the authentication, it can query the user
registry for static attributes, such as the user’s groups or email. The subject is
then populated with these attributes.

� You can configure a custom login module to populate dynamic security
attributes, which might include the user’s login time, the identity of the original
caller, the location of the original caller, and so on.
220 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_perfidmap.html

� If a reverse proxy server is configured, you can use the corresponding Trust
Association Interceptor (TAI) to propagate security attributes across the
servers. A reverse proxy server acts as a single entry point of authentication
to many disparate servers, including WebSphere Application Server.

WebSphere Application Server provides a token framework to support security
attribute propagation. The framework defines plug-in points for various token
types, allowing the user to define subject uniqueness, custom serialization and
data encryption, and token propagation direction. The following tokens are
defined in this interface:

� Single sign-on (SSO) token: The SSO token contains attributes that are sent
back to the browser in an HTTP cookie. This token enables the server to
perform SSO to other WebSphere Application Servers. Because it is a
user-specific token, it is added to the Java Authentication and Authorization
Service (JAAS) subject.

� Authentication token: The authentication token serves as the identity of the
user and also gets added to the JAAS subject.

� Authorization token: The authorization token carries the privilege attributes
that are used by WebSphere Application Server to make authorization
decisions.

� Propagation token: A propagation token defines the attributes that must be
tracked throughout the invocation. Because the token is not associated with
the user, it does not get added to the subject like the other tokens. Instead, it
is stored in the thread context.

� Kerberos authentication token (KRBAuthnToken): The Kerberos
authentication token contains Kerberos credentials, such as the Kerberos
principal name, GSSCredential, and Kerberos delegation credential. This
token is created when you authenticate to WebSphere Application Server
with either Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) SPNEGO Web or Kerberos authentication.

There are two kinds of propagation available:

� Horizontal propagation: Horizontal propagation uses SSO for Web requests.
It propagates security attributes between front-end servers. You can
configure a Domain Replication Service (DRS) domain so that the server
automatically propagates the security attributes to all the servers in that same
domain. You can also use Java Remote Extensions (JMX™) calls to
propagate the security attributes, which will work even when the servers are
not in the same DRS domain.
 Chapter 6. Common Secure Interoperability Version 2 administration 221

� Downstream propagation: Downstream propagation uses the CSIv2 protocol
for Java Remote Method Invocation (RMI) over IIOP requests. You can
configure not only whether a server can propagate security attributes
(outbound), but also whether a server can receive the propagated attributes
(inbound).

The advantages of security attribute propagation are:

� You do not need to perform a lookup on the downstream server’s registry to
get the attributes.

� You can keep track of the original caller information, even when user switches
occur because of different RunAs configurations.

� You can have a subject identifier that is more unique than just the user name
by using the uniqueId, which can be relevant when the dynamic attributes
change the context of a user login.

For more information about security attribute propagation, refer to the following
page in the Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_secattributeprop
.html

6.3.4 Error handling

The CSIv2 protocol provides error handling to more easily debug failures or even
retry the failing request.

CSIv2 exceptions
Whenever an exception occurs during a CSIv2 request, whether on the client or
the server, this exception is converted to a Common Object Request Broker
Architecture (CORBA) exception. Instead of sending back a normal reply, an
error message is sent back to the requestor indicating the reason for the failure.
A CORBA exception has the following fields:

� Message: A more detailed description of the cause of the failure is sometimes
included in the exception.

� Vmcid: The Vendor Minor Codeset ID is a hexadecimal 5-digit number that is
assigned to a specific vendor. The vmcid for WebSphere Application Server
is 0x49424.

� Minor code: The minor code is a hexadecimal 3-digit number that
corresponds to a more specific cause of the exception, including whether the
request can be retried.
222 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_secattributeprop.html

� Completed: The completed field indicates whether the method was
completed before the exception occurred. The values can be yes, no, or
maybe. Maybe means that the completion status cannot be determined.

All the security-related minor codes are documented in the following Information
Center article:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rtrb_securitycomp.htm
l

Example 6-1 illustrates a CORBA exception specific to CSIv2 security.

Example 6-1 A CORBA security exception

SystemException class: org.omg.CORBA.NO_PERMISSION, message:
Authentication failed. Could not validate Client Authentication Token
and/or Client Certificates during Identity Assertion;
org.omg.CORBA.NO_PERMISSION: Authentication failed. Could not validate
Client Authentication Token and/or Client Certificates during Identity
Assertion vmcid: 0x49424000 minor code: 30D completed:
No

In this example, the vmcid of 0x49424000 identifies it as an exception specific to
WebSphere Application Server. The minor code of 30D indicates that the server
identity of the sending server is not on the receiving server’s trusted principal list.
The completed: No field means that the method did not complete before the
exception was raised. Authentication is retried.

When an authentication request fails, it is possible in certain situations to
automatically retry the request a certain number of times before returning the
error back to the client. Examples of when a retry might happen include when
you enter an invalid user ID and password, or if the server has an expired
credential. The minor code in the exception determines whether a retry is
attempted, in conjunction with the CSIv2 configuration property
com.ibm.CORBA.authenticationRetryEnabled (true or false). By default, this
property is set to true, and authentication retries are enabled. Refer to the
following article in the WebSphere Information Center to determine which
security minor codes are retrievable:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rtrb_securitycomp.htm
l

Note: The range for security minor codes is 0x49424300-0x494243FF.
 Chapter 6. Common Secure Interoperability Version 2 administration 223

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rtrb_securitycomp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rtrb_securitycomp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rtrb_securitycomp.html

A retry is by default attempted three times before giving up. This number is
determined by the CSIv2 configuration property
com.ibm.CORBA.authenticationRetryCount.

6.3.5 Stateful and stateless sessions

When a security context is established, you have the option to establish a
stateful session or a stateless session. Because a security context can be
established on the client side and the server side, each side has its own session
and session table. Furthermore, each side can be configured differently and
independently.

Stateful sessions
In a stateful session, the security context is established one time and reused for
subsequent method requests. The security information only needs to be sent for
the first request. After that, a context ID is created that is unique to that
connection. This context ID is then used to look up the session in the session
table in order to get the stored credential.

The advantage of using stateful sessions is that it can increase performance,
because the authentication is performed only one time for the first request. We
do not recommend using stateful sessions for environments where
authentication is required for every client/server contact.

Stateless sessions
A stateless session exists only for the duration of the request that established the
security context. You can choose to use stateless sessions to preserve
resources when your environment has so many different connections that the
same session rarely is reused.

6.4 Configuring CSIv2

When configuring the CSIv2 settings in WebSphere, it is important to understand
the three key concepts that are discussed in the following sections:

� Client and server configuration

A CSIv2 request always involves two parties: the entity sending the request,
referred to as the client, and the entity receiving the request, referred to as
the server. A client can be a stand-alone client, for example, a Java client, or
it can be a server acting as a client, for example, an upstream server that is
sending a request to another downstream server.
224 WebSphere Application Server V7.0 Security Guide

You need to be aware of which entities in your environment are the clients
and which entities are the servers so that you can correctly configure the
CSIv2 settings to allow successful communication over RMI/IIOP.

� Inbound and outbound configuration

Every client or server has two sets of CSIv2 settings: the inbound settings
and the outbound settings.

The inbound CSIv2 settings control how incoming authentication requests are
handled. Configure these settings for the server that is receiving
authentication requests. The inbound settings are also referred to as the
claims, because they designate the type of authentication that the server is
claiming.

The outbound CSIv2 settings apply to the requests that are sent outbound.
Configure these settings for the client that is performing the authentication
requests. Because these settings control how requests are performed, they
are also referred to as performs.

� Required, supported, or not supported

The CSIv2 protocol lets you choose among three options for authenticating at
the different CSIv2 layers: required, supported, or not supported. You specify
these options for both the inbound and outbound CSIv2 settings. The
definitions for these options differ slightly depending on whether the options
are specified for inbound or outbound requests:

– Required means that a certain form of authentication must be performed
(when configured for the outbound setting), or must be received (when
configured for the inbound settings). If these conditions are not met, the
request will fail.

– Supported indicates that a certain form of authentication is performed (for
outbound) or accepted (for inbound) when it is present. This option is the
most interoperable, because the request will not fail when the certain
feature is not present.

– Not supported means that the certain form of authentication will explicitly
not be performed (for outbound) or not be accepted (for inbound).

When a client requires a feature, it can talk only to servers that either require
or support that feature. When a client supports a feature, it can talk to a
server that supports or requires that feature, but it can also talk to servers that
do not support the feature.

Note: The outbound CSIv2 settings of the client need to be compatible with
the inbound CSIv2 settings of the server.
 Chapter 6. Common Secure Interoperability Version 2 administration 225

When a server requires a feature, it can talk only to clients that either require
or support that feature. When a server supports a feature, it can talk to a
client that supports or requires the feature, but it can also talk to clients that
do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, setup is
required to either generate a self-signed certificate or to get a self-signed
certificate from a certificate authority (CA). Clients might not need to complete
these actions; therefore, you can configure this feature as not supported. By
making this decision, the client cannot communicate with a secure server that
requires client certificate authentication. Instead, this client can choose to use
the user ID and password as the method of authenticating itself to the server.

Typically, supporting a feature is the most common way of configuring
features. It is also the most successful during run time, because it is more
forgiving than requiring a feature. Knowing how secure servers are configured
in your environment, you can choose the right combination for the client to
ensure successful method invocations and still get the most security. If you
know that all of your servers support both client certificate and user ID and
password authentication for the client, you might want to require one and not
support the other. If both the user ID and password and the client certificate
are supported on the client and server, both the user ID and password and
the client certificate are performed, but the user ID and password take
precedence at the server. This action is based on the CSIv2 specification
requirements where the message layer authentication (user ID and
password) has higher precedence over the transport layer authentication
(client certificates).

6.4.1 Configuring CSIv2 on a server

To configure CSIv2 settings on a server, you can use the administrative console
or wsadmin scripting. We recommend that you initially configure the CSIv2
settings using the administrative console, because the information is more
clearly organized and more easily understood.

Administrative console
On the administrative console, the CSIv2 settings are divided into two panels:
one panel for the inbound settings and one panel for the outbound settings.
These two panels are almost identical, so we discuss them together. Remember
that the inbound settings control how the requests that the server receives are
authenticated. The outbound settings, however, determine how authentication
requests are sent out from the server.

Figure 6-2 on page 227 illustrates the administrative console panel for
configuring the CSIv2 inbound communications.
226 WebSphere Application Server V7.0 Security Guide

Figure 6-2 CSIv2 inbound communication configuration panel

Figure 6-3 on page 228 illustrates the panel for configuring the CSIv2 outbound
communications.
 Chapter 6. Common Secure Interoperability Version 2 administration 227

Figure 6-3 CSIv2 outbound communication configuration panel

Notice that in both panels, the security features are visually organized into the
three CSIv2 layers. The highest layer of precedence, the CSIv2 attribute layer, is
presented first, followed by the message layer, and then, the transport layer.
228 WebSphere Application Server V7.0 Security Guide

Attribute layer
In the Attribute Layer section (Figure 6-3 on page 228), you can configure the
following settings:

� Propagate security attributes: This setting specifies support for security
attribute propagation during login requests. When you select this option, the
application server retains additional information about the login request, such
as the authentication strength used, and retains the identity and location of
the request originator. If you do not select this option, the application server
does not accept any additional login information to propagate to downstream
servers. Refer to 6.3.3, “Security attribute propagation” on page 220 for more
information.

� Use identity assertion: This setting specifies that identity assertion is used
during a downstream Enterprise JavaBeans (EJB) invocation.

In the outbound configuration, you can additionally specify:

– Use server trusted identity: This setting uses the server identity to
establish trust.

– Specify an alternative trusted identity: This setting uses a specified
identity to establish trust. You have to provide the username and
password.

In the inbound configuration, you can additionally specify:

– Trusted identities: This setting specifies a pipe-separated (|) list of
trusted server administrator user IDs, which are trusted to perform identity
assertion to this server, for example, serverid1|serverid2|serverid3.

Identity assertion is performed in the attribute layer and is only applicable on
servers. The principal determined at the server is based on precedence rules.
If identity assertion is performed, the identity is always derived from the

Note: You can specify the asterisk character (*) on the Trusted
Identities list, which implies that all sending servers are trusted. We do
not recommend this setting, but it can be useful for debugging.

z/OS: Specify a semicolon-separated (;) or comma-separated (,) list of
trusted server administrator IDs. For example, serverid1;serverid2 or
serverid1,serverid2

z/OS: When the server’s realm is the Local Operating System, the
Trusted Identities list is not used. Instead, the trust is established by
checking that the upstream server’s server identity has UPDATE access
to the CBIND class, profile
CB.BIND.<SAFprofilePrefix>.<clusterName>.
 Chapter 6. Common Secure Interoperability Version 2 administration 229

attribute layer. If basic authentication is used without identity assertion, the
identity is always derived from the message layer. Finally, if SSL client
certificate authentication is performed without either basic authentication or
identity assertion, the identity is derived from the transport layer. Refer to
6.3.2, “Identity assertion and identity mapping” on page 217 for more detailed
information.

Message layer
In the Message Layer section (Figure 6-3 on page 228), you can configure
following settings:

� Message layer authentication: This setting defines requirements:

– Never: This setting specifies that this server cannot accept any
authentication mechanisms.

– Supported: This setting specifies that client/server can specify the
selected authentication mechanisms. However, a method might be
invoked without this type of authentication if the other side does not
support the selected mechanism. For example, an anonymous or client
certificate might be used instead.

– Required: This setting specifies that clients must authenticate using one
of the specified mechanisms.

� (New for V7) Allow client to server authentication with: This option
defines available authentication mechanisms:

– Kerberos: This option enables authentication using the Kerberos token.
The Kerberos authentication mechanism must be configured first for this
option to be available.

– LTPA: This option enables authentication using the LTPA token.

– Basic authentication: This type of authentication typically involves
sending a user ID and a password from the client to the server for
authentication. This option is also know as Generic Security Services
Username Password (GSSUP).

For more information about authenticating at the message layer, refer to
“Message layer” on page 215.
230 WebSphere Application Server V7.0 Security Guide

Transport layer
In the Transport Layer section (Figure 6-3 on page 228), you can configure the
following settings:

� Client certificate authentication: This setting defines if SSL certificates are
used for authentication:

– Never: This option specifies that clients cannot attempt client certificate
authentication with this server (inbound). The server does not attempt
client certificate authentication with downstream servers (outbound).

– Supported: This option specifies that clients can authenticate using SSL
client certificates. However, the server can invoke a method without this
type of authentication. For example, anonymous or basic authentication
can be used instead.

– Required: This option specifies that clients must authenticate using SSL
client certificates before invoking the bean method.

� Transport: This setting defines the available transports:

– TCP/IP: Client/server supports only TCP/IP; SSL connections are not
available.

– SSL supported: Client/server supports SSL and TCP/IP connections.
Transport is negotiated during connection.

– SSL Required: The connection must be established over SSL.

Depending on the Transport setting, CSIv2 can have as few as one listener
port and as many as three listener ports. You can open one port for just
TCP/IP or when SSL is required. You can open two ports when SSL is
supported, and open three ports when the SSL and the SSL client certificate
authentication is supported.

Port names that are used by ORB are:

– CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS: CSIv2 client authentication
SSL port

– CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS: CSIv2 SSL port

– ORB_LISTENER_ADDRESS: TCP/IP port

� SSL Settings: These settings define the SSL configuration that will be used
during SSL connections:

z/OS: Only one port is opened for SSL: ORB_SSL_LISTENER_ADDRESS. The
port names CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS are not used.
 Chapter 6. Common Secure Interoperability Version 2 administration 231

– Centrally managed: This option uses the centrally managed SSL
configuration.

– Use specific SSL alias: This option allows you to select a specific SSL
configuration from the list.

The following settings are in the Additional Properties and Related Items
sections:

� Login configuration: This read-only property shows the system login
configuration that is used for authentication.

� Stateful sessions: Selecting this option allows you to reuse the security
information on all subsequent contacts with valid sessions. Refer to “Stateful
and stateless sessions” on page 224 for more information.

� Custom outbound mapping: Select this setting to enable a call to the
RMI_OUTBOUND login configuration. If the Security Attribute Propagation
option is selected, WebSphere Application Server is already using this login
configuration and you do not need to enable custom outbound mapping.

You might need to modify the RMI_OUTBOUND login configuration if you
want to perform outbound identity mapping.

� Trusted authentication realms: If you want to use RMI/IIOP communication
across different realms, you have to add external realms as trusted. If you use
Kerberos authentication and have a Kerberos cross-realm trusted setup, you
also have to add external Kerberos realms as trusted.

New for V7 wsadmin scripting function
You can use AdminTasks in the wsadmin scripting framework to easily configure
and view the CSIv2 settings. The main AdminTask groups that you can use are:

� configureCSIInbound: This task configures the CSIv2 inbound authentication
for a security domain or for the global security configuration.

� configureCSIOutbound: This task configures the CSIv2 outbound
authentication for a security domain or for the global security configuration.

� getCSIInboundInfo: This task displays the current settings for CSIv2 inbound
communications in a security domain or in the global security configuration.

Note: We highly recommend that you configure both the inbound and
outbound CSIV2 transports with SSL required in a secured environment.
By default, WebSphere negotiates a mutually acceptable level of transport
security. However, if a client requests a non-SSL connection, unless SSL
required is configured, a non-secure connection is established.
232 WebSphere Application Server V7.0 Security Guide

� getCSIOutboundInfo: This task displays the current settings for CSIv2
outbound communications in a security domain or in the global security
configuration.

� unconfigureCSIInbound: This task only applies to a security domain. It
removes the CSIv2 inbound settings that are defined at the security domain
level. This way, the inbound settings of the global security configuration are
used instead.

� unconfigureCSIOutbound: This task only applies to a security domain. It
removes the CSIv2 outbound settings that are defined at the security domain
level. This way, the outbound settings of the global security configuration are
used instead.

The interactive mode prompts you for all the possible parameters of the task,
letting you know which ones are required and also displaying suggested values
for the parameters. When you complete the task in interactive mode, the entire
wsadmin command is generated and printed out, so you can use it in the future
without the interactive mode. This approach helps you avoid scripting and syntax
errors.

For a complete description of the CSIv2-related AdminTasks, refer to the
following article in the Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rxml_7securityconfig.
html

6.4.2 Configuring CSIv2 on a stand-alone client

When you use a secure stand-alone client, such as a Java client, you need to
specify a properties file that contains a list of CSIv2 settings. These settings
determine how the client will authenticate to a server. Typically, this file is
specified with the following JVM property:

-Dcom.ibm.CORBA.ConfigURL

A sample properties file, sas.client.props, is provided and is located in the
profile_root/properties directory.

Tip: Use the interactive mode the first time that you use an AdminTask.

Tip: When you use thin or thick clients, you do not need to specify the
ConfigURL property. These clients will automatically use this file:
profile_root/properties/sas.client.props
 Chapter 6. Common Secure Interoperability Version 2 administration 233

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rxml_7securityconfig.html

Example 6-2 on page 234 shows how to specify the properties file.

Example 6-2 Specifying the ConfigURL property

-Dcom.ibm.CORBA.ConfigURL=/WebSphere/AppServer/profiles/default/propert
ies/sas.client.props

The sas.client.props file consists of several properties, which we explain next,
along with their default values (marked with an asterisk character (*):

� Client Security Enablement:

– com.ibm.CORBA.securityEnabled (true*, false)

This property determines if client security is enabled. If the server’s global
security is enabled, this property must be set to true. Otherwise, the client
cannot access any of the secured remote EJB resources.

� Authentication Configuration:

– com.ibm.CORBA.authenticationTarget (BasicAuth*, KRB5)

For BasicAuth, the username and password are sent to the server for
message layer authentication.

For KRB5, a Kerberos token is sent to the server, depending on what the
com.ibm.CORBA.loginSource is set to.

– com.ibm.CORBA.authenticationRetryEnabled (true*, false)

This property determines whether a failed authentication is retried. Only
those failures that are known to be correctable are retried. This option is
valid when com.ibm.CORBA.validateBasicAuth is set to true.

– com.ibm.CORBA.authenticationRetryCount (an integer value, 3*)

This property determines how many retries are to be attempted for a failed
login when com.ibm.CORBA.authenticationRetryEnabled is set to true.

– com.ibm.CORBA.validateBasicAuth (true*, false)

This property determines if the user details are authenticated immediately
or deferred until the first method request is communicated to the server,
when the com.ibm.CORBA.authenticationTarget property is set to
BasicAuth.

– com.ibm.CORBA.securityServerHost

This property is the name (or IP address) of the security server to validate
the user ID and password.

– com.ibm.CORBA.securityServerPort

This property is the port number of the security server.
234 WebSphere Application Server V7.0 Security Guide

– com.ibm.CORBA.loginTimeoutd(an integer value, 300*)

This property is an integer within a range of 0 to 600. It is the amount of
time, in seconds, that the login prompt is available before the login is
considered invalid.

– com.ibm.CORBA.loginSource (prompt*, stdin, none, properties,
krb5Ccache, krb5Ccache:prompt, krb5Ccache:properties,
krb5Ccache:stdin)

This property determines how the authentication requests interceptor logs
if it does not find an invocation credential set:

• prompt displays a window requesting a user name and password.

• stdin displays a command line prompt requesting user details.

• none must be selected if the client uses programmatic login.

• properties retrieves the user details from the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword
properties.

When the com.ibm.CORBA.authenticationTarget is KRB5, these additional
options are available:

• krb5Ccache uses the Kerberos credential cache file.

• krb5Ccache:prompt uses the Kerberos credential cache file first. If it
fails, it falls back to prompt.

• krb5Ccache:properties uses the Kerberos credential cache file first. If
it fails, it falls back to properties.

• krb5Ccache:stdin uses the Kerberos credential cache file first. If it
fails, it falls back to stdin.

– com.ibm.CORBA.loginUserid

The user ID that is used when the com.ibm.CORBA.loginSource property is
set to properties.

– com.ibm.CORBA.loginPassword

The user password that is used when the com.ibm.CORBA.loginSource
property is set to properties.

z/OS: When the com.ibm.CORBA.loginSource is set to none, the
credentials of the logged-in user are used.
 Chapter 6. Common Secure Interoperability Version 2 administration 235

– com.ibm.CORBA.krb5ConfigFile

This property specifies the location of the Kerberos configuration file as a
URL. If this property is not set, the default Kerberos configuration file is
used, whose location depends on the operating system of the server:

• Windows: C:\winnt\krb5.ini

• Linux: /etc/krb5.conf

• UNIX, including z/OS: /etc/krb5/krb5.conf

• IBM i: /QIBM/UserData/OS400/NetworkAuthentication/krb5.conf

This property is only valid when the com.ibm.CORBA.authenticationTarget
is KRB5.

– com.ibm.CORBA.krb5CcacheFile

This property specifies the location of the Kerberos credential cache file as
a URL. This property only applies when the com.ibm.CORBA.loginSource
property is set to krb5Ccache and com.ibm.CORBA.authenticationTarget
is KRB5. If this property is not set, the default Kerberos credential cache file
is used, whose location is determined by checking the following items in
the following order:

i. The file referenced by the JVM property KRB5CCNAME

ii. <user.home>/krb5cc_<user.name>

iii. <user.home>/krb5cc (if user.name cannot be resolved)

– com.ibm.CORBA.loginRealm

This property specifies the realm of the server with which the client is
communicating. Multiple realms can be listed by using the pipe “|”
separator. This property only applies when om.ibm.CORBA.loginSource
property is set to properties. You can use this property, for example,
when you have multiple security domains with different realms defined on
the server.

� CSIV2 add-on authentication protocol

Certain security properties have supported or required property pairs. The
required properties take precedence over the supported properties pair.
Therefore, if the required property is enabled, communication with the server
must satisfy this property:

Note: A stand-alone client only specifies CSIv2 settings for outbound
requests; thus, all the CSIv2 properties begin with com.ibm.CSI.perform.
236 WebSphere Application Server V7.0 Security Guide

– com.ibm.CSI.performStateful (true*, false)

It determines whether the client supports the stateful or stateless session.

– com.ibm.CSI.performClientAuthenticationRequired (true*, false)
– com.ibm.CSI.performClientAuthenticationSupported (true*, false)

When supported, message layer client authentication is performed when
communicating with any server that supports or requires authentication.
Message layer client authentication transmits a user ID and password if
the authenticationTarget property is BasicAuth, or it transmits a
credential token if the authenticationTarget property is one of the
token-based mechanisms, for example, Lightweight Third Party
Authentication (LTPA) or Kerberos.

When required, message layer client authentication must occur when
communicating with any server. If the transport layer authentication
property is also enabled, both authentications are performed. However,
the message layer client authentication takes precedence at the server
side.

– com.ibm.CSI.performTLClientAuthenticationRequired (true*, false)
– com.ibm.CSI.performTLClientAuthenticationSupported (true*, false)

When supported, transport layer client authentication can be performed,
and the client sends the digital certificate to the server during the
authentication stage.

When required, the client only authenticates with servers that support
transport-layer client authentication.

– com.ibm.CSI.performTransportAssocSSLTLSRequired (true*, false)
– com.ibm.CSI.performTransportAssocSSLTLSSupported (true*, false)

When supported, the client can use either TCP/IP or SSL to communicate
with the server.

When required, the client only communicates with servers that support
SSL.

– com.ibm.CSI.performMessageIntegrityRequired (true*, false)
– com.ibm.CSI.performMessageIntegritySupported (true*, false)

These properties are only valid when SSL is enabled.

When supported, it can make an SSL connection either with 40-bit ciphers
or with digital-signing ciphers.

When required, the connection fails if the server does not support 40-bit
ciphers.
 Chapter 6. Common Secure Interoperability Version 2 administration 237

– com.ibm.CSI.performMessageConfidentialityRequired (true*, false)
– com.ibm.CSI.performMessageConfidentialitySupported (true*, false)

These properties are only valid when SSL is enabled.

When supported, it can make SSL connection either with 128-bit ciphers
or with a lower encryption strength.

When required, the connection fails if the server does not support 128-bit
ciphers.

– com.ibm.ssl.alias=DefaultSSLSettings

This property specifies the SSL configuration alias that is referenced in the
ssl.client.props file.

� Additional CORBA configuration:

– com.ibm.CORBA.requestTimeout (integer value, 180*)

This property specifies the timeout period, in seconds, for responding to
requests that are sent from the client. Be careful when specifying this
property, and set it only if the application is experiencing problems with
timeouts.

6.4.3 CSIv2 considerations in special scenarios

There are certain scenarios where you have to be aware of the implications of
the various CSIv2 settings. The two most common scenarios are:

� cross-cell: The client and server are part of two different cells.

� cross-registry: The client and server authenticate to two different registries.

� cross-system: The client and server are on two different machines (only
relevant on z/OS).

Cross-cell communication using LTPA
When your client and server are part of two different cells, you need to be aware
that each cell has its own set of LTPA keys and its own set of keystores and
truststores.

If the client is sending an LTPA token to the server, the server must be able to
decrypt the token in order to authenticate it. If the server does not have the same
set of LTPA keys that the client does, the decryption fails. The LTPA keys have
to be shared between the two cells in order for the server to authenticate an
LTPA token sent from the client. The LTPA keys must be shared in the following
cases:

� Authentication occurs at the message layer, meaning that client
authentication is supported or required on both the client and the server.
238 WebSphere Application Server V7.0 Security Guide

� Identity assertion is enabled on both the client and the server, and the server
identity is used to establish the trust.

You do not need to share LTPA keys in the following cases:

� Authentication occurs at the transport layer, meaning that client certificate
authentication is supported or required on both the client and the server, in
addition to the message layer and attribute layer not being supported.

� Identity assertion is enabled on both the client and the server, and an
alternative trusted identity is used to establish the trust.

If the client is sending an SSL certificate, the receiving server has to trust the
signer of the client certificate. Therefore, you need to add the signer certificate of
the client’s truststore to the server’s truststore. If you skip this step, your client
will get an SSLHandshakeException when trying to communicate over SSL with
the server.

Cross-cell communication using KRB5
For cross-cell communication using KRB5, the conditions discussed in the
previous section for LTPA still apply. In addition, when your client and server are
part of two different cells, and these cells do not use the same Kerberos realms,
you need to:

1. Set up the Kerberos cross realms as trusted.

2. Add the Kerberos external trusted realm in the CSIv2 inbound/outbound
trusted authentication realms.

Cross-registry communication
If you are authenticating to the server with a GSSUP token (user ID and
password), you have to ensure that the user ID in the client’s registry also exists
in the server’s registry. If the user ID does not exist on the server side, you need
to map the client identity to another identity that does exist. For more information
about this mapping, refer to “Identity mapping” on page 220. This additional
configuration is necessary in the following cases:

� Authentication occurs at the message layer, meaning that client
authentication is supported or required on both the client and the server.

� Identity assertion is enabled on both the client and the server, and an
alternative trusted identity and password are used to establish the trust.

Cross-system communication
CSIv2 considerations for cross-system communication are only relevant on the
z/OS platform. Certain CSIv2 settings take advantage of a special local
communication that is available on z/OS when both the client and the server are
 Chapter 6. Common Secure Interoperability Version 2 administration 239

on the same system. There are two scenarios in which this local communication
is used:

� Identity assertion: In order to establish trust between two servers, the
sending server sends its server identity. When local communication is used,
the server identity of the sending server can be set to the started task ID of
the sending server’s control region. Note that this scenario only happens
when the server identity is not sent or cannot be validated in the message
layer (as an LTPA token or GGSUP token), or in the transport layer (as a
client certificate).

� wsadmin client: When connecting the wsadmin client to a server using the
RMI connector, you can set the loginSource to none and not specify a user ID
or password. In this case, the local communication is used to inherit the
credentials of the logged-in user and these credentials are used to
authenticate to the server.

Scenarios involving these specific security aspects might have worked fine when
the client and the server were on the same system, but they will stop working if
they are no longer local, which can also explain the difference in behavior
between a local client and a remote client.

6.5 Troubleshooting CSIv2

This section describes how to debug error messages and failures related to
CSIv2.

6.5.1 Identifying a CSIv2 problem

CSIv2 is the protocol that is used for secure communications between a client
and a server over RMI/IIOP. For example, a client invokes a protected method
for an EJB that resides on a server. There are typically three areas where you
can have a problem:

� Establishing a connection between the client and the server: In this case,
the request from the client never even reaches the server. This problem can
be caused by incompatible CSIv2 settings at the transport layer.

� Authenticating the client identity: The request from the client has reached
the server. But the identity sent from the client cannot be authenticated,
meaning that the server cannot determine the identity, which can be caused
by incompatible CSIv2 settings at the message layer or at the attribute layer.

� Authorizing the client identity: The request from the client has reached the
server, and the client’s identity has been authenticated. But the client identity
240 WebSphere Application Server V7.0 Security Guide

is not authorized to invoke the EJB method. This problem lies outside the
scope of CSIv2 and can be caused by not mapping the client identity to the
role required by the method.

6.5.2 Approach to debugging a CSIv2 problem

You can use the following approach when debugging a CSIv2 problem. Note that
you do not have to follow this specific order. However, these steps follow an
order from a superficial to a more in-depth investigation:

1. Check the logs of both the client and the server for an error message.

Many times, it is sufficient to simply look at the logs without having to enable
any trace. It is important to check both the client’s logs and the server’s logs.
On z/OS, check both the control region and servant region logs of the server.

If the error message is not clear, find the message ID in the Information
Center for additional information and suggested actions. All CSIv2-related
messages in WebSphere Application Server start with JSAS, and all general
security messages start with SECJ.

If you find a CORBA exception with a security minor code (for example,
CORBA.NO_PERMISSION), refer to “CSIv2 exceptions” on page 222 for more
information.

2. Compare the CSIv2 settings of the client and the server.

Examine the outbound CSIv2 settings of the client (or the sending server),
along with the inbound CSIv2 settings of the receiving server. Make sure that
they are compatible. For example, if one side has the required setting, the
other side must at least be supported.

3. Enable the trace.

Enable the recommended security and ORB trace on both the client and the
server (refer to 6.5.3, “Enabling trace for CSIv2” on page 242). We
recommend dynamically enabling this trace immediately before running the
test, because it produces a smaller trace, which is easier to debug.

4. Analyze the trace.

Gather the logs from both the client and the server, along with any ffdc files
that were generated. Skim over these logs looking for the phrase
send_exception near the time of the test failure. This trace entry from the
CSIv2 code indicates that an exception occurred and that an exception is
being sent back to the originator of the request. From the point where the
send_exception occurs, search backwards on the same thread for the
original exception.
 Chapter 6. Common Secure Interoperability Version 2 administration 241

6.5.3 Enabling trace for CSIv2

When enabling trace to debug CSIv2 problems, the trace string to use is the
same whether on the client or on the server. However, the way to enable the
trace differs. The trace string to enable is:

com.ibm.ws.security.*=all:SASRas=all:ORBRas=all

Enabling trace on the server
Enabling CSIv2 trace on the server is the same as enabling any other kind of
trace. We recommend that you dynamically enable the trace immediately before
running the test and that you disable it after the test is complete.

On distributed systems, you can use either the administrative console or
wsadmin scripting. On the administrative console, navigate to Servers 
Application Servers  server_name  Troubleshooting  Change Log
Detail Levels, and select the Runtime tab. Enter the trace string here, and then,
click Apply. For wsadmin scripting, refer to the following article in the Information
Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/txml_aosupport.html

On z/OS, you can additionally use the MVS modify command to both enable and
disable trace.

For details about the MVS modify command, refer to this article in the
Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rxml_mvsmodify.html

Enabling trace on the client
Enabling trace on the client depends on how the client is being invoked. If you
are using launchClient, you need to specify a series of client container
name-value pair parameters, in the form of -CC<name>=<value>:

� -CCtrace specifies the trace string.

� -CCtracefile specifies the name of the file to which trace is written.

� -CCtraceMode indicates the trace format to use.

Example 6-3 on page 243 shows a launchClient command with trace enabled.

z/OS: For ease of use, we recommend using the MVS modify command to
enable and disable trace.
242 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/txml_aosupport.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rxml_mvsmodify.html

Example 6-3 Example of launchClient command with trace

launchClient.sh TechnologySamples.ear
-CCtrace=com.ibm.ws.security.*=all:SASRas=all:ORBRas=all
-CCtracefile=myTrace.log -CCtraceMode=basic
-CCjar=BasicCalculatorClient.jar -CCBootstrapPort=2809 add 1 2

If you are not using launchClient, you will need to add a system property to the
startup command of the application. This property points to a file containing the
trace string and the name of the file where the trace is written. Here are the steps
to follow:

1. Copy the install_root/properties/TraceSettings.properties file to the
classpath of the application client.

2. Edit the TraceSettings.properties file. Set the traceFileName to the fully
qualified name of the output file where the trace is written. Add the
recommended trace string for CSIv2. Example 6-4 illustrates the contents of
the TraceSettings.properties file.

Example 6-4 Contents of the TraceSettings.properties file

traceFileName=/u/bob/myTraceFile.log
com.ibm.ws.security.*=all:SASRas=all:ORBRas=all

3. Add the system property -DtraceSettingsFile to the startup command of
the client application. Set the value of the property to the name of the
properties file containing the trace settings. Example 6-5 shows the command
to trace an application program called com.ibm.samples.MyClienApp.

Example 6-5 Calling a client application with trace

java -DtraceSettingsFile=TraceSettings.properties
com.ibm.samples.MyClientApp

6.5.4 Case studies of CSIv2 problems

The following case studies provide examples of identifying a CSIv2 problem,
debugging it, and finding the solution.

Case study 1: Identity assertion
In the scenario, a servlet on server1 invokes a protected method for an EJB on
server2. The invocation credential on server1 is bob. Because identity assertion
is enabled, the identity of bob gets asserted to server2, which results in the
received credential on server2 getting set to bob. Furthermore, the trusted
identity on server1 has been set to an alternative user ID, alice, instead of using
 Chapter 6. Common Secure Interoperability Version 2 administration 243

the server identity to establish trust between the two servers. Figure 6-4
illustrates the scenario.

Figure 6-4 Case study 1: Servlet calling an EJB using identity assertion

The problem is that when the servlet on server1 invokes the protected method of
the EJB on server2, the application fails.

To analyze, the first step is to examine the logs of the client at the time of the
failure. In this case, the client is actually server1. Looking at the systemout log of
server1, we find that the server reports a CORBA exception listed in Example 6-6
when trying to invoke the secure EJB on server2.

Example 6-6 Case study 1: Exception on the client

org.omg.CORBA.NO_PERMISSION: vmcid: 0x49424000 minor code: 30D
completed: Maybe

Referring back to “CSIv2 exceptions” on page 222, we can look up the minor
code 30D in the Information Center. We learn that it means that the trusted
identity of the sending server is not on the receiving server’s trusted principal list.
But we still need more information: What is the trusted identity being sent by
server1? What identities does server2 trust? To answer these questions, we can
review the logs of the receiving server, where the trust is being established.
Looking at the logs of server2 at the time of the failure, we find an error message
listed in Example 6-7 on page 245.

Invocation credential: bob Received credential: bob

bob

Identity assertion layer

alice

Message layer

SSL

Transport layer

server1 server2

Servlet EJB
244 WebSphere Application Server V7.0 Security Guide

Example 6-7 Error message on the server

JSAS0499E: The server ID that is received for identity assertion
(alice) does not match any of the configured and trusted server IDs
(jack).

The trusted identity sent by server1 is alice. The identity that server2 trusts is
jack.

Note that we can also examine the CSIv2 settings of the servers to get the
answers to these questions. We can determine the trusted identity that is being
sent by server1 by looking at the outbound CSIv2 settings for server1 in the
identity assertion section as shown in Figure 6-5.

Figure 6-5 Case study 1: CSIv2 outbound settings on the sending server

To determine which identities are trusted by the receiving server, we examine the
inbound CSIv2 settings of server2 as illustrated in Figure 6-6 on page 246.
 Chapter 6. Common Secure Interoperability Version 2 administration 245

Figure 6-6 Case study 1: CSIv2 inbound setting on the receiving server

In conclusion, the problem is that server2 does not trust alice.

For the solution, there are two possible fixes to this problem. You can modify the
sending server server1’s trusted identity to jack, which is already trusted by the
receiving server. Or, you can modify the receiving server server2’s list of trusted
identities by adding alice to this list.

Case study 2: Client authentication
In this scenario, two security domains are defined: ldapDomain and
localOSdomain. Server1 is mapped to ldapDomain, and server2 is mapped to
localOSdomain. A servlet on server1 invokes a protected method of an EJB on
server2. The sending server authenticates to the receiving server with a GSSUP
token with user id bob. This scenario is depicted in Figure 6-7 on page 247.
246 WebSphere Application Server V7.0 Security Guide

Figure 6-7 Case study 2: Servlet calling an EJB using client certificate authentication

The problem is that the servlet on server1 receives an error message when
trying to call the protected method of the EJB on server2.

To analyze it, the first step is to examine the logs of the client, server1, at the
time of the failure. We find a CORBA exception listed in Example 6-8.

Example 6-8 Case study 2: Exception on the client

org.omg.CORBA.NO_PERMISSION: vmcid: 0x49421000 minor code: 92
ERROR: Unauthenticated credential found, client auth required by client
or server, throwing NO_PERMISSION.

The minor code 92 means that a credential is not available when it is required. In
this case, we want to use client authentication, so we need to examine why the
sending server is sending an unauthenticated credential, instead of bob. We
need to examine the outbound CSIv2 settings of server1. However, because
server1 is part of the security domain ldapDomain, it is possible these settings
are different from those settings defined in the global security. A quick way to
analyze it is to navigate to the security domain to check the RMI/IIOP Security
setting for either Global security settings or Customized. As shown in
Figure 6-8 on page 248, the ldapDomain has its own CSIv2 settings.

Security domain:
ldapDomain

Security domain:
localOSdomain

Identity assertion layer

bob / password

Message layer

Transport layer

server1 server2

Servlet EJB
 Chapter 6. Common Secure Interoperability Version 2 administration 247

Figure 6-8 Case study 2: Security attributes for ldapDomain

We examine the outbound CSIv2 settings of the security domain ldapDomain. As
shown in Figure 6-9 on page 249, we observe that the sending server is set to
never authenticate using the message layer.
248 WebSphere Application Server V7.0 Security Guide

Figure 6-9 Case study 2: CSIv2 outbound settings for client

This setting clearly conflicts with the intent of the user scenario to authenticate on
the message layer with a GSSUP token.

In conclusion, the problem is that the receiving server requires client
authentication, but the sending server does not support it.

To solve this problem, the outbound CSIv2 settings for the security domain
ldapDomain must be modified. Client authentication at the message layer must
be set to at least supported.

6.6 References

You might find the following references useful:

� IBM Education Assistant for WebSphere Application Server V6 Security:
CSIv2

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?t
opic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.htm
l

� Object Management Group (OMG) Security Web site, CSIv2 topic:

http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv
2

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

� The Common Object Request Broker: Architecture and Specification:

http://www.omg.org/docs/formal/98-12-01.pdf
 Chapter 6. Common Secure Interoperability Version 2 administration 249

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2
http://www.omg.org/docs/formal/98-12-01.pdf

250 WebSphere Application Server V7.0 Security Guide

Part 2 Application security

Part 2
© Copyright IBM Corp. 2009. All rights reserved. 251

252 WebSphere Application Server V7.0 Security Guide

Chapter 7. Application security

Application security provides application isolation and the requirements for
authenticating users of the applications. Applications can be secured in a
declarative manner or programmatically.

This chapter provides a look at how security is applied when applications are
deployed. It contains the following chapters:

� “Application security design considerations” on page 254
� “Deploying a secured enterprise application” on page 254
� “Role mapping after installation” on page 260
� “Restart the Enterprise Application for the changes to become effective.” on

page 261

7

© Copyright IBM Corp. 2009. All rights reserved. 253

7.1 Application security design considerations

Application security implementation requires close interaction and planning
among application developers, security specialists, and administrators. Two
primary decisions must be addressed during the planning stage for the overall
application security design in an enterprise.

7.1.1 Programmatic and declarative security

Management of security in an enterprise is made simpler if all application
development uses the same approach to security.

Using programmatic security means that the security policies are enforced in the
application using the Java Platform, Enterprise Edition (JEE) security application
programming interface (API).

Using declarative security means that security policies are configured
independently of the logic of the application code. Security information is
specified using metadata, either through annotations in the application or in the
EJB deployment descriptor. Security is enforced by the application server.

When declarative security is used by any application deployed in the application
server, application security has to be enabled for the run time. However, if
applications rely only on programmatic security, administrators do not
necessarily have to enable application security.

More information about securing applications using programmatic or declarative
security can be found in Chapter 9, “Securing an Enterprise JavaBeans
application” on page 325 and Chapter 8, “Securing a Web application” on
page 267.

In either case, security polices are role-based and roles must be mapped to
specific users or groups. This mapping can be done at application deployment,
after the application is deployed using the administrative tools, or in the
development environment through the application bindings deployment
descriptor.

7.2 Deploying a secured enterprise application

Deploying a secured application is similar to deploying a non-secured enterprise
application. The only difference is that during deployment, administrators can
perform the role mapping for users and groups, as well as the run-as mapping.
254 WebSphere Application Server V7.0 Security Guide

This section discusses deployment and post-deployment considerations for
managing application security.

7.2.1 Mapping modules to servers filtered by security domains

When deploying an enterprise application, administrators must select a
deployment target for each application module (Figure 7-1). In a single server
environment, the available targets are application servers and Web servers. In a
clustered environment, you also can select clusters.

In an environment with multiple security domains, administrators need to take the
security domain configurations into consideration when choosing the deployment
target for the modules.

Figure 7-1 Deploying a secure application: Map modules to servers

7.2.2 Role mapping during application installation

Another step to consider during application deployment is to map security roles
to users or groups (Figure 7-2 on page 256). At this step, administrators have the
option of selecting any of the roles and assigning a user or a group from the user
registry using one of the lookups. Administrators can also assign one of the
special subjects to the role.
 Chapter 7. Application security 255

Figure 7-2 Deploying a secure application: Map security roles to users or groups

To use a special subject, select one of the following options from the Map
Special Subjects drop-down list:

� None: No mapping to the role is performed.

� All Authenticated in Application’s Realm: All authenticated users in the
application’s realm are mapped to this role.

� All Authenticated in Trusted Realms: All of the users in the trusted realms. If
trusted realms are configured, a drop-down list of realms to search is
displayed. Users from the non-default realm are displayed as user@realm.
Everyone: Everyone is mapped to this role (essentially, there is no security).

Alternatively, specific users or groups can be mapped by clicking the
corresponding Map Users or Map Groups. When you perform this mapping, a
user registry search is available to aid the mappings of users and groups
(Figure 7-3 on page 257).
256 WebSphere Application Server V7.0 Security Guide

Figure 7-3 Deploying a secure application: Map users and groups to roles

Test the role mapping
After the application is installed and started, a Java 2 Platform, Enterprise Edition
(J2EE) client can be run to test the secured bean. In the command window, a
realm prompt window will appear with the current realm filled in. A valid realm
user and password are required to access the protected bean.

Example 7-1 shows a sample of the client script file.

Example 7-1 Client script file

@echo off

setlocal

rem ************************************
rem Modify this block according to the
rem setup of your system
rem ************************************
set WAS_HOME=C:\IBM\WebSphere\AppServer
set SERVER_HOST=think
set SERVER_PORT=2809
 Chapter 7. Application security 257

%WAS_HOME%\bin\launchclient.bat ItsohelloEAR.ear
-CCBootstrapHost=%SERVER_HOST% -CCBootstrapPort=%SERVER_PORT%

endlocal

If you execute this script in a command window, you will see output similar to
Example 7-2. Select option b to test.

Example 7-2 Executing client script

IBM WebSphere Application Server, Release 7.0
Java EE Application Client Tool
Copyright IBM Corp., 1997-2008
WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the Java EE Application Client Environment.
[3/23/09 22:40:17:885 EDT] 00000000 W UOW=null
source=com.ibm.ws.ssl.config.SSL
Config org=IBM prod=WebSphere component=Application Server
thread=[P=417619:O=0:
CT]
 CWPKI0041W: One or more key stores are using the default
password.
WSCL0035I: Initialization of the Java EE Application Client Environment
has comp
leted.
WSCL0014I: Invoking the Application Client class
com.ibm.itsohello.j2eeclient.J2
EEClient

J2EE Itsohello clients:

a. UNSECURED CLIENT.
 Access the unsecured Hello bean. If you still get an authentication
 challenge window, just click "Cancel". Or you can also change the

property
 "com.ibm.CORBA.loginSource" to "none" in the file "sas.client.props"
 found in your WebSphere application runtime client.

b. SECURED CLIENT.

Note: Substitute the environment parameter with values from your own testing
environment.
258 WebSphere Application Server V7.0 Security Guide

 Access the secured Hello bean. You must be authenticated; otherwise,
the app will throw an exception. If you do not get an authentication
challenge window, you need to change the property
"com.ibm.CORBA.loginSource" to "prompt" in the file "sas.client.props"
found in your WebSphere application runtime client.

c. SECURED CLIENT with JAAS.
 Access the secured Hello bean using JAAS. Authentication is done via
JAAS.

d. SECURED CLIENT with JAAS using custom callback handler.
 Similar like (c) but with custom callback handler.

Please enter your choice (a/b/c/d): b

Selecting this option causes the login window (Figure 7-4) to appear.

Figure 7-4 Deploying a secure application: J2EE client test

Use wslocalos/wslocalos as the username/password pair. The result in
Example 7-3 will be displayed in the command window.

Example 7-3 Results from the test

Accessing SecuredHello bean
Message from Hello bean: [Secured] Hello to you wslocalos (roles:
Anonymous Bean
Guest)
 Chapter 7. Application security 259

7.2.3 Run-As role mappings

If the application has Enterprise JavaBeans (EJBs) or EJB methods with Run-As
role mappings, the installation process includes the step: Map RunAs roles to
users, which allows you to specifically assign a user name and password (an
identity) to a Run-As (delegation) definition.

If the application has EJB or EJB methods with Run-As system mappings, the
installation process includes the step: Correct use of system identity, which gives
you the opportunity to override the default system identity with a specific user
mapping.

For more information about Run-As mapping, refer to 9.6, “Delegation” on
page 353.

7.2.4 Unprotected 2.x methods

If the application has EJB methods without security assignments, the installation
process includes the step: Ensure all unprotected 2.x methods have the correct
level of protection. This step gives you the opportunity to assign a role to these
methods on a per EJB basis (not on a per method basis). You can also exclude
the methods so that they cannot be accessed, or you can clear the check mark
from them so that they can be accessed by everyone.

For more information about EJB method security, refer to 9.1, “Application
security” on page 327.

7.2.5 Mapping roles at assembly compared to deployment

Role mappings can also be defined in the enterprise archive during assembly
time, just before deployment using Rational® Application Developer. Even if the
mappings have been performed previously, administrators can review and
modify them during deployment or even later, as discussed in 7.3, “Role mapping
after installation” on page 260.

7.3 Role mapping after installation

Role mappings can be changed after installation:

1. In the administrative console, select Applications  Application types 
WebSphere enterprise applications from the menu.

2. Select the application.
260 WebSphere Application Server V7.0 Security Guide

You will find the following items under the Detail Properties section:

– Security role to user/group mapping

– User Run-As roles

Selecting each of these options will open the same configuration page that
you see during deployment.

3. Make the appropriate mappings and save the configuration.

4. Restart the Enterprise Application for the changes to become effective.

7.4 Mapping roles in the development environment

Mapping roles in Rational Application Developer for WebSphere Software V7.5 is
done in the application bindings deployment descriptor
(ibm-application-bnd.xml).

By default, JEE 5 applications do not have deployment descriptors, so you need
to generate one. The quickest way is to select the enterprise application project,
right-click, and then select Java EE  Generate WebSphere Bindings
Deployment Descriptor. Example 7-4 shows the generated application bindings
deployment descriptor.

Example 7-4 Generated application bindings deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<application-bnd

xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee

http://websphere.ibm.com/xml/ns/javaee/ibm-application-bnd_1_0.xsd"
version="1.0">

</application-bnd>

Note: The User Run-As roles configuration link only opens in the
administrative console when the application uses Run-As delegation.
WebSphere detects whether this configuration exists in the application
and changes the interface accordingly.

The Ensure all unprotected 2.x methods have the correct level of
protection configuration is not available after deployment. After the
methods are defined as unchecked, excluded or mapped to a role, this
configuration does not change.
 Chapter 7. Application security 261

After the descriptor is generated, follow these steps to add and map the security
roles:

1. In the Enterprise Explorer view, expand the enterprise application project and
META-INF folder.

2. Double-click ibm-application-bnd.xml to open the Application Bindings
Editor. Select the Design tab.

3. Select Application Bindings and click Add.

4. Select the Security Role element as shown in Figure 7-5, and click OK.

Figure 7-5 Adding Security role

5. In the binding editor, select the new Security role element and enter the role
name (admin in this example). Refer to Figure 7-6.

Figure 7-6 Defining the security role

6. Repeat steps 3-5 to add additional roles. In this example, the user role is
added.

7. The next step is to select each role and map users, groups, or special
subjects to it.

You can map security roles to the following objects:

– Group: A group defined in the user registry
262 WebSphere Application Server V7.0 Security Guide

– User: A user ID defined in the user registry

– Special Subject: One of the following special subjects:

• Everyone: Represents all users, even unauthenticated. Anyone can
access resources protected by this role.

• All Authenticated Users (All authenticated in the application’s realm):
Represents all valid users from the application realm. When you map
this subject to a role, all users that have successfully authenticated can
access resources protected by this role.

• All Authenticated in Trusted Realms: Represents all valid users from all
trusted realms. This option is only available if multiple security domains
are defined.

Follow these steps:

a. Select the first role, Security role (admin), and click Add.

b. For this example, select User as the type of element that you will map
(Figure 7-7), and click OK.

Figure 7-7 Mapping role to user

8. Select the new User element and enter the user ID from the application
server user registry in the Name field as shown in Figure 7-8 on page 264
 Chapter 7. Application security 263

Figure 7-8 Specifying user ID for security role

Next, map the user role by selecting Security role (user), and then, clicking
Add.

9. Select Special Subject as the mapping element (Figure 7-9), and click OK.

Figure 7-9 Mapping role to Special subject

10.Select the new Special Subject element and select All Authenticated
Users as shown in Figure 7-10 on page 265.
264 WebSphere Application Server V7.0 Security Guide

Figure 7-10 Specifying Special Subject

11.Save the binding file.

After the deployment of the application to the server, you can view or edit
security role mappings in the administrative console as shown in Figure 7-11.

Figure 7-11 Security role mapping through the admin console
 Chapter 7. Application security 265

Test environment on Rational Application Developer: To be able to use
the administrative console of the WebSphere Application Server V7 test
environment server to map users and groups to roles that are defined by
annotations, you have to change the publishing settings to run with resources
on the server.

In Rational Application Developer V7.5, in the Servers view, double-click
WebSphere Application Server V7.0 at localhost. In the “Publishing
settings for WebSphere Application Server” section, select Run server with
resources on Server.
266 WebSphere Application Server V7.0 Security Guide

Chapter 8. Securing a Web application

This chapter discusses various aspects of securing Web applications. It shows
how to protect access to Web application resources using declarative and
programmatic security. It presents authentication mechanisms and explains in
detail how to configure form-based and client certificate authentication.

If you need to implement more sophisticated authentication, we describe several
WebSphere Application Server security APIs that can be used to customize the
login process.

This chapter assumes basic Java Platform, Enterprise Edition (JEE) knowledge,
so we do not explain terms, such as HTML pages, JavaServer™ Page (JSP™),
and servlets in detail.

This chapter contains the following topics:

� “Application security” on page 268
� “Declarative security” on page 268
� “Programmatic security” on page 277
� “Delegation” on page 282
� “Authentication mechanisms” on page 284
� “Configuring form-based authentication” on page 286
� “Configuring client certificate authentication” on page 294
� “Customizing the login process” on page 315
� “Other security-related application settings” on page 318

8

© Copyright IBM Corp. 2009. All rights reserved. 267

8.1 Application security

A typical JEE application consists of both Web and EJB modules. Web
components build the user interface to the application business logic. A Web
application can be accessed over the network by many users that perform
different roles and require access to different functions. It is vital that you
properly secure access to application components.

There are two primary aspects of security in Web applications: authentication,
which provides information about who the user is; and authorization, which
determines the resources that are available to the user.

WebSphere Application Server supports the authentication mechanisms that are
required by the JEE specification, including HTTP basic and form-based or client
certificates. In addition, it offers Kerberos support and support for third-party
authentication proxies.

After a user is authenticated, that user must be authorized to access protected
resources. JEE offers role-based authorization, which grants access to the
resource based on the user’s security role. Web applications can use one or both
mechanisms offered by JEE: declarative security that allows you to define
security constraints via a deployment descriptor and programmatic security that
allows you to embed more fine-grained access decisions inside a servlet or JSP
page.

When security requirements are so complex that JEE security is not enough,
consider using a third-party security framework or an external Java Authorization
Contract for Containers (JACC) provider. These concepts are beyond the scope
of this book and are not discussed.

When you design an application, always consider using JEE security first rather
than a custom-developed framework. JEE security is built on a strong security
infrastructure that is already in place and enforced by the application server.

8.2 Declarative security

Declarative security defines security information (security roles, access
constraints, and authentication requirements) in the external XML Web
deployment descriptor file. There are no security API calls hard-coded in the
servlets or JSPs. Security is enforced by the Web container based on the
requirements that are specified by the descriptor.
268 WebSphere Application Server V7.0 Security Guide

One of the benefits of declarative security is the ability to change an application’s
security settings according to client needs without changing the application code.
For example, you can opt to use client certificate authentication instead of HTTP
basic by simply changing the Web deployment descriptor. All deployment
descriptors can be created and modified using Rational Application Developer for
WebSphere Software V7.5.

JEE uses a role-based security model, meaning access to application resources
is granted based on the security role. The security role is a logical grouping of
principals.

Using declarative security involves the following steps:

1. Define security roles for the application. This step simply identifies roles that
describe the type of activities.

2. Define security constraints that define what resources are protected, the roles
to which a user has to be assigned in order to access those protected
resources, and constraints on data transport (using Secure Sockets Layer
(SSL)).

3. Deploy the application and map the security roles to actual users and groups
from the application server security realm.

8.2.1 Defining security roles for an application

The following steps describe how to create a security role using Rational
Application Developer:

1. In the Enterprise Explorer view of the Java EE perspective, expand the Web
module and double-click Web deployment descriptor to open it.

Select the Design tab.

Terms:

� A principal can be authenticated, usually a user.

� A role is a logical group of principals that provides a set of permissions.
Access to operations is controlled by granting access to a role.

� A security constraint is a declaration of how to protect a resource.

No deployment descriptor: If there is no descriptor, you can generate a
deployment descriptor by right-clicking the project name and selecting
Java EE  Generate Deployment Descriptor Stub.
 Chapter 8. Securing a Web application 269

2. Select the Web Application element, and click Add.

3. Select the Security Role element as shown in Figure 8-1, and click OK.

Figure 8-1 Adding Security Role element

4. Select the new Security Role element and enter the role name and
description as shown in Figure 8-2. In this example, user is the role name.

Figure 8-2 Editing the security role
270 WebSphere Application Server V7.0 Security Guide

5. Repeat steps 3-5 to add additional roles. In this example, we added the admin
security role.

6. Save the file.

The new <security-role> elements are added to the Web deployment descriptor.
Select the Source tab in the editor to see the entire XML file (refer to
Example 8-1).

Example 8-1 Security role element in the Web deployment descriptor

<security-role>
<description>All users of the application</description>
<role-name>user</role-name>

</security-role>
<security-role>

<description>Administrators</description>
<role-name>admin</role-name>

</security-role>

8.2.2 Defining security constraints

Security constraints are a declarative way of specifying access permissions to
Web resources. A constraint consists of the following elements:

� Web resource collections
� Authorization constraints
� User data constraints

Web resource collection
A Web resource collection is a list of URL patterns that identifies protected
resources and the list of HTTP methods that are used to access those resources.

A URL pattern is a URI that is relative to the application context. Patterns can
include:

� Path mapping, starting with “/” and ending with “/*”

This pattern identifies any resource that starts with a given path, for example,
/catalog/* or /europe/poland/*

� Extension mapping, starting with “*.”

This pattern identifies any resource with the given extension, for example,
*.jsp or *.gif

� Default servlet mapping, containing only “/”

This pattern identifies the default servlet of the application.
 Chapter 8. Securing a Web application 271

� Exact matches

This pattern uses a string that represents a specific resource, for example,
/snoop is a servlet mapping and /list/banner.jsp is a file mapping.

If the same resource matches several URL patterns at run time, the Web
container uses the following rules to determine which security constraint to use.
The URL is matched in the following order:

1. Exact match of the request path

2. The longest path prefix match

3. The extension mapping match

4. If the same URL pattern and HTTP method occur, the result is the union of
authorization constraints. The exception is authorization constraints with no
roles defined, which overrides other constraints and denies access to the
resource.

HTTP method names are no longer restricted to standard methods, such as
GET, POST, HEAD, TRACE, OPTIONS, PUT, and DELETE, but they can be any
name that does not contain a control character or separator. For example, HTTP
method names can be WEBDAV extension methods, such as LOCK, UNLOCK,
COPY, and MOVE.

Authorization constraints
An authorization constraint defines which roles are authorized to access
resources specified by Web resource collection. If there is no authorization
constraint, anyone can access the resources. If an authorization constraint is
defined without any roles, access to those resources is prohibited.

User data constraints
A user data constraint determines requirements for the transport layer security.
This constraint can use the following transport guarantee settings:

� CONFIDENTIAL: Defines that the data sent over the network must be encrypted

� INTEGRAL: Defines that the data cannot be changed in transit

� NONE: Indicates that there are no restrictions on the transport and that the
container must accept requests even on an unprotected channel

Setting the transport guarantee to CONFIDENTIAL or INTEGRAL requires the usage
of the SSL (https).

HTTP methods: If no HTTP methods are specified, the security constraint
applies to all HTTP methods.
272 WebSphere Application Server V7.0 Security Guide

Configuring the constraints
The following steps describe how to create security constraints using Rational
Application Developer:

1. In the Enterprise Explorer view of the Java EE perspective, expand the Web
module and double-click Web deployment descriptor to open it.

Select the Design tab.

2. Select Web Application, and click Add.

3. Select Security Constraint as shown in Figure 8-3, and click OK.

Figure 8-3 Adding a security constraint

Best practice: If an application sends sensitive data, for example, login
names, credit card numbers, and so forth, we recommend that the transport
guarantee is set to CONFIDENTIAL. The Web container will ensure that the
application can only be accessed via secured connection.
 Chapter 8. Securing a Web application 273

4. Select Web Resource Collection under the new security constraint element
and specify the resources and methods to protect. In this example:

– HTTP Method list: GET, POST, and HEAD
– URL Pattern list: /*
– Web Resource Name: All resources

Refer to Figure 8-4.

Figure 8-4 Editing Web resource collection element

5. Select Security Constraint and specify the roles that have access to the
Web resources and the transport security requirements. In this example:

– Role Name: user and admin
– Description: Constraint for user role.
– Transport Guarantee: CONFIDENTIAL

Refer to Figure 8-5 on page 275.
274 WebSphere Application Server V7.0 Security Guide

Figure 8-5 Editing Security Constraint element

6. It is a good practice to deny access to the application through other methods,
such as DELETE, PUT, and so forth. Repeat steps 2-5 and add another
security constraint with the following parameters:

– HTTP Method list: DELETE, PUT, TRACE, and OPTIONS

– In the URL Pattern list, add: /*

– In the Web Resource Name, enter: Denied resources

– Leave the Role Name list empty, but provide a description.

– In the Authorization Constraint Description, enter: Constraint for denied
resources. This action ensures that the authorization constraint is defined,
but that no role is added.

– In the Transport Guarantee, specify: NONE

7. Sometimes, it is required that several of the application files are available for
unauthenticated users, for example, the start page, images, scripts, and so
forth. You can make application files available for unauthenticated users by
defining a security role that represents anonymous users (for example, an
 Chapter 8. Securing a Web application 275

Everyone role) and then specifying an additional security constraint with the
following parameters:

– Add the HTTP Method list: GET, POST, and HEAD

– In the URL Pattern list, add: /images/*, /index.jsp, and so forth

– In the Web Resource Name, enter: Anonymous resources

– In the Role Name list, add the new role that represents anonymous users.

– In the Transport Guarantee, specify NONE or CONFIDENTIAL depending on
the transport restriction.

8. Save the file.

The <security-constraint> elements are added to the Web deployment
descriptor as shown in Example 8-2. Select the Source tab in the editor to see
the XML file.

Example 8-2 Security-constraint element in the deployment descriptor

<security-constraint>
<web-resource-collection>

<web-resource-name>all resources</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>HEAD</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>user</role-name>
<role-name>admin</role-name>

</auth-constraint>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

Tip: The alternative to this process is to simply not define authorization
constraints for these resources, which means that those resources can
be accessed by unauthenticated users.

However, it is more flexible to create a separate role that can be easily
mapped during the application installation process to the Everyone or
All authenticated special subjects based on the requirements.
276 WebSphere Application Server V7.0 Security Guide

Map users to security roles
After you define the security settings for the application, you have to map users
from the user registry to the security roles; you can use Rational Application
Developer or the application server during or after the application installation. For
more information, refer to Chapter 7, “Application security” on page 253.

8.3 Programmatic security

This section talks about programmatic security, which means that the application
is security-aware and contains calls to security APIs that allow the developer to
make additional security decisions. Programmatic security is often used during
Web application development, for example, to hide parts of the GUI that are not
available to a particular role.

8.3.1 JEE security API

The javax.servlet.http.HttpServletRequest interface provides three methods that
allow the Web developer to access security information about the user:

� String getRemoteUser() returns the user name that the client used to log in.

� java.security.Principal getUserPrincipal() returns the principal of the current
user.

� Boolean isUserInRole(String roleNameReference) allows the developer to
test if the calling user is in a specific role.

You can use the getRemoteUser and getUserPrincipal methods to get the name
of the calling user as shown in Example 8-3 on page 278. The user name
obtained can be displayed in the application user interface, or it can be stored in
a log file or database to provide auditing of the user’s actions in the application.

Using these methods: The getRemoteUser and getUserPrincipal methods
return null for unauthenticated users. By default, they also return null for any
unsecured resource, even for authenticated users, which however can be
changed by the use of Web container settings. Refer to “Modifying Web
authentication behavior” on page 322.
 Chapter 8. Securing a Web application 277

Example 8-3 Getting the user name in the JSP page

Remote user is: <%= request.getRemoteUser() %>

<%

String principal = null;
if(request.getUserPrincipal() != null) {

principal = request.getUserPrincipal().getName();

%>
User principal is: <%= principal %>

The user names that are obtained by both calls are usually the same, but not
always. For example, if the application server is configured to return
realm-qualified user names, getUserPrincipal will return the user name prefixed
with the realm name. For example, defaultWIMFileBasedRealm/gas instead of
gas.

This runtime setting is defined in the administrative console on the Global
security page in the Authentication section as shown in Figure 8-6.

Figure 8-6 Enabling realm-qualified user names at run time

The isUserInRole method allows the developer to make access decisions in the
method body based on the role of the current user. Example 8-4 on page 279
shows how to use this method to hide part of the user interface based on the
user’s role.
278 WebSphere Application Server V7.0 Security Guide

Example 8-4 Customizing interface based on user role

<% if(request.isUserInRole("admin")) { %>
<p>This section is displayed if you have the admin role.</p>

<% } %>
<% if(request.isUserInRole("user")) { %>

<p>This section is displayed if you have the user role.</p>
<% } %>

8.3.2 Defining security role references in the deployment descriptor

Security role references provide a level of indirection to isolate the role names
that are used by the developers in the code and the actual runtime role names.
Security role references are defined and linked to security roles using the Web
deployment descriptor. A reference provides a way to bind a role name that is
used in the code to a security role name in a descriptor.

The following steps describe how to create a security role reference and link it to
security role:

1. Open the Web deployment descriptor and select the Design tab.

2. Servlets are automatically added to the Web deployment descriptor when you
create them using the Create Servlet wizard. Expand Web Application,
select the servlet to secure (for example, SecuredServlet), and click Add.

3. Select Security Role Reference as shown in Figure 8-7 on page 280, and
click OK.

Security role reference: The parameter in the isUserInRole method is a
security role reference. If the Web container does not find a role reference with
this name, it will check the security role with the same name. Because of this
algorithm and because only role names can be used in plain JSPs (only
servlets and named JSPs, which are defined via the deployment descriptor,
can have references), the security role reference usage is infrequent. You can
still use security role references to increase the flexibility of changing role
names in the application without having to recompile the servlet.
 Chapter 8. Securing a Web application 279

Figure 8-7 Adding Security Role Reference

4. Select the new security role reference element:

– Enter the name of a defined security role in the role link field.

– Enter a role name for the reference. This name will be used in the
isUserInRole method, for example.

In this example, adminRef is the role name and admin is the role link as shown
in Figure 8-8.

Figure 8-8 Defining and linking security reference
280 WebSphere Application Server V7.0 Security Guide

5. Save the Web deployment descriptor.

A new <security-role-ref> element is added to the SecuredServlet definition in
the Web deployment descriptor. It contains reference name and role name to
which the reference is linked. Refer to Example 8-5.

Example 8-5 Security reference in the Web deployment descriptor

<servlet>
<description></description>
<display-name>SecuredServlet</display-name>
<servlet-name>SecuredServlet</servlet-name>
<servlet-class>com.ibm.itso.sample.security.servlet.SecuredServlet
</servlet-class>
<security-role-ref>

<role-name>adminRef</role-name>
<role-link>admin</role-link>

</security-role-ref>
</servlet>

8.3.3 Defining security roles using annotations

Security roles can be also defined using the @DeclareRoles annotation. The
@DeclareRoles annotation is specified at the class level and is used to define
roles that are tested by calling isUserInRole.

Example 8-6 shows how to define a role reference using the @DeclareRoles
annotation and then how to use it later in the Servlet method.

Example 8-6 DeclareRoles definition and usage sample

// Declaration of the manager role reference
@DeclareRoles({"manager"})
public class SecuredServlet extends HttpServlet {

....
// usage of the declared role
if(request.isUserInRole("manager")) {

System.out.println("User is a member of 'manager' role
");
// .. do something extra for managers

}
}

 Chapter 8. Securing a Web application 281

Any roles that are defined using the @DeclareRoles annotation must be mapped
to users or groups from the user registry. This mapping can be done in Rational
Application Developer or on the application server during or after the application
installation. For more information, refer to Chapter 7, “Application security” on
page 253.

8.4 Delegation

When a servlet calls a method in the EJB, the principal is, by default, propagated
to the bean. Sometimes, for example, when the bean expects a specific identity,
it is desirable to change the caller identity.

Delegation settings for the servlet can be defined using the @RunAs annotation
or through the Web deployment descriptor. Delegation settings affect all calls
from the servlet to the enterprise beans.

The RunAs role must be mapped to a real user at run time. Refer to Chapter 7,
“Application security” on page 253 for more information about mapping users to
roles.

8.4.1 Delegation using a deployment descriptor

Perform the following steps to define delegation using the Web deployment
descriptor:

1. Open the Web deployment descriptor and select the Design tab.

2. Expand Web Application, select the servlet that will call the bean, and click
Add.

3. Select the Run As element as shown in Figure 8-9, and click OK.

Figure 8-9 Adding Run As element
282 WebSphere Application Server V7.0 Security Guide

4. Select the new Run As element and type the role name (admin in this
example) as shown in Figure 8-10.

Figure 8-10 Specifying Run As role name

5. Save the Web deployment descriptor.

The new <run-as> element is added to the RunAsServlet definition in the Web
deployment descriptor as shown in Example 8-7.

Example 8-7 Run As element in the Web deployment descriptor

<servlet>
<description></description>
<display-name>RunAsServlet</display-name>
<servlet-name>RunAsServlet</servlet-name>
<servlet-class>com.ibm.itso.sample.security.servlet.RunAsServlet
</servlet-class>
<run-as>

<role-name>admin</role-name>
</run-as>

</servlet>
 Chapter 8. Securing a Web application 283

8.4.2 Delegation using annotation

The @RunAs security annotation defines a role that will be used for delegation.
This annotation can be specified in the servlet class as shown in Example 8-8.
The role name that is given as the annotation value must have been defined
using the DeclareRole annotation or configured as a security role in the Web
deployment descriptor.

Example 8-8 Using @RunAs annotation in a servlet

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.RunAs;

@RunAs("WebRunAsRole")
@DeclareRoles("WebRunAsRole")
public class RunAsServlet extends HttpServlet {

...
}

8.4.3 Annotation usage considerations

In JEE 5, only two annotations can be used in the Web module: @DeclareRoles
and @RunAs. All other deployment information, such as servlet definitions,
mappings, security constraints, login configuration, and so forth, must be
specified in the Web deployment descriptor, which makes the use of annotations
in Web modules questionable in terms of usefulness. However, they can be used
in EJB modules, where in most cases they can replace the deployment
descriptor completely.

8.5 Authentication mechanisms

The authentication mechanism defines how user credentials are sent to the
application server. The JEE specification mentions the following mechanisms for
Web authentication:

� HTTP basic authentication

When this mechanism is used, the Web browser displays a built-in pop-up
where the user enters a user name and password. Passwords are sent in the
simple base64 encoding. The user authenticates with the target server, but
the server does not authenticate with the user.
284 WebSphere Application Server V7.0 Security Guide

� Form-based authentication

This mechanism allows a developer to provide a custom login page for the
application. The user enters a user name and password, and then, the user
submits the form. The user name and password combination is sent in plain
text. The user authenticates with the target server, but the server does not
authenticate with the user.

� Client certificate authentication

This mechanism uses SSL certificates to authenticate both the server to the
user and the user to the server. Communication is encrypted, and no user
passwords are sent.

� HTTP digest authentication

This mechanism is similar to HTTP basic authentication, but it sends
passwords in the encrypted form. Its implementation is optional in the JEE
specification, and WebSphere Application Server does not support it.

WebSphere additionally offers:

� SPNEGO Web authentication

This mechanism uses Kerberos tokens and Simple and Protected GSSAPI
Negotiation Mechanism (SPNEGO) to authenticate users. SPNEGO is most
often used to enable desktop single sign-on (SSO), where the user does not
have to authenticate to the Web application after the user is authenticated in
the Active Directory® domain. The user’s passwords are not sent, only the
tokens.

� Trust association

This mechanism allows the use of an external authentication proxy, for
example, IBM Tivoli WebSEAL, or the use of custom tokens to authenticate
users. Refer to “Trust association interceptor” on page 316.

Security: You must always use HTTP basic and form-based authentication
over a secured transport protocol, such as HTTPS, to provide the
confidentiality of the user credentials.

Form-based authentication is preferred to HTTP basic, because HTTP basic
caches credentials in the browser and the user cannot be logged out unless
the browser is closed.
 Chapter 8. Securing a Web application 285

� JAAS authentication

WebSphere Application Server provides plug-in points to insert custom login
modules that allow customized authentication. Refer to 8.8, “Customizing the
login process” on page 315.

So far in our example, we have not provided any authentication mechanism
settings, yet we can log in and use the application, which is the result of the
default authentication mechanism, which is HTTP basic authentication. If you
define at least one security constraint and no authentication mechanism, the
default is used.

For any type of authentication to work, at least one security constraint for the
requested Web resource must be defined and application security must be
enabled on the application server.

8.6 Configuring form-based authentication

With form-based authentication, the following actions occur when the user
requests a protected resource:

1. The application server checks to see if user is authenticated.

2. If the user is unauthenticated, the server redirects to the login page. If the
user is authenticated, the resource is shown and the rest of this process is
skipped.

3. The user provides the login credentials and submits the form.

4. The server performs authentication.

5. If authentication is successful, the user is redirected to the originally
requested resource. Otherwise, the error page is displayed.

Perform the following steps to configure form-based authentication:

1. Open the Web deployment descriptor.

2. Select Web Application and click Add.

3. Select Login Configuration as shown in Figure 8-11 on page 287, and click
OK.

SSO: Form-based authentication will fail if single sign-on (SSO) is not enabled
in global security. SSO is enabled by default. To check the current setting from
the administrative console, go to Global Security  Web and SIP
security  Single sign-on (SSO). Ensure that the Enabled check box is
selected.
286 WebSphere Application Server V7.0 Security Guide

Figure 8-11 Adding Login Configuration element

4. Select the Login Configuration and specify one of the following combination
of values to select the type of authentication to use:

– For HTTP basic authentication: Enter BASIC as the authentication method
and yourRealmName as the realm name. The realm name will be
displayed in the authentication pop-up window that is shown by the
browser.

– For client certificate authentication: Enter CLIENT-CERT as the
authentication method. Refer to 8.7, “Configuring client certificate
authentication” on page 294 for more details.

– For form-based authentication: Enter FORM as the authentication method,
and enter the JSPs to use for login and login errors.

For this example, we configured form-based authentication as shown in
Figure 8-12 on page 288. We used /login.jsp as the login page and
/loginError.jsp as the login error page.
 Chapter 8. Securing a Web application 287

Figure 8-12 Configuring authentication mechanism

5. Save the Web deployment descriptor.

The new <login-config> element is added to the Web deployment descriptor as
shown in Example 8-9.

Example 8-9 Login config element in the Web deployment descriptor

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.jsp</form-login-page>
<form-error-page>/loginError.jsp</form-error-page>

</form-login-config>
</login-config>

8.6.1 Building the login page

The login and error pages can be JSPs or HTML pages. The JEE specification
determines how the login form needs to be built:

� The form must be sent via a post method.

� The form’s action must be j_security_check.

� The user name must be sent via the j_username parameter.

� The password must be sent via the j_password parameter.

A sample login form is shown in Example 8-10 on page 289.
288 WebSphere Application Server V7.0 Security Guide

Example 8-10 Sample login form

...
<form action="j_security_check" method="post">
Username: <input type="text" name="j_username" size="20">

Password: <input type="password" name="j_password" size="20">

<input type="submit" value="Login">
</form>
...

Figure 8-13 shows how this form looks in the browser.

Figure 8-13 Sample login page displayed in the browser

8.6.2 Getting the login exception details

An error page usually displays general information about a login error and
provides the ability to retry the login. It does not provide a method to get
information about the cause of the exception, because it is displayed using
redirect.

To get the root cause of the exception, use the
WSSubject.getRootLoginException()method in combination with a servlet filter.

Note: Providing the login failure reason to the user is a security exposure and
is not recommended. This technique is more appropriate for problem
determination situations.

You can also code your application to display general information, for
example, an error number, without revealing the stack trace or exact reason.
The error number can be used to contact application support without providing
the server log.
 Chapter 8. Securing a Web application 289

The WSSubject.getRootLoginException() returns the exception caught during
system login. This exception can contain several nested exceptions. To extract
the real root cause, use the method that is shown in Example 8-11.

Example 8-11 Getting the root cause of the login exception

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import javax.naming.NamingException;
...
public Throwable determineCause(Throwable e) {

Throwable rootEx = e, tempEx = null;
// keep looping until there are no more embedded
// WSLoginFailedException or WSSecurityException exceptions
while (true) {

if (e instanceof WSLoginFailedException) {
tempEx = ((WSLoginFailedException)e).getCause();

}
else if (e instanceof WSSecurityException) {

tempEx = ((WSSecurityException)e).getCause();
}
else if (e instanceof NamingException) {

// check for Ldap embedded exception
tempEx = ((NamingException)e).getRootCause();

}
else {

// this is the root from the WebSphere
// Application Server perspective
return rootEx;

}
if (tempEx != null) {

// we have nested exception, check it
rootEx = tempEx;
e = tempEx;
continue;

}
else {

// the cause was null, return parent
return rootEx;

}
} //while

}

290 WebSphere Application Server V7.0 Security Guide

We have the cause, so now we need to find a way to propagate it to an error
page. We will use HttpServletResponseWrapper, a cookie, and the servlet filter.
We discuss servlet filters in “Login filter” on page 315.

First, we need to use HttpServletResponseWrapper to overcome committing the
response by the j_security_check servlet. It is a simple wrapper that overrides
the sendRedirect method to store the location and defines its own method for
sending a redirect. It is shown in Example 8-12. This class can be a inner class in
your login filter.

Example 8-12 HttpServletResponseWrapper

class MyWrapper extends HttpServletResponseWrapper {
String originalRedirect;
public MyWrapper(HttpServletResponse response) {

super(response);
}
@Override
public void sendRedirect(String location) throws IOException {

// just store location, don’t send redirect to avoid
// committing response
originalRedirect = location;

}
// use this method to send redirect after modifying response
public void sendMyRedirect() throws IOException {

super.sendRedirect(originalRedirect);
}

}

Now, use the wrapper in the servlet filter to set the cookie as shown in
Example 8-13.

Example 8-13 Passing exception message by using a cookie

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {

//create wrapper
MyWrapper myRes = new MyWrapper((HttpServletResponse) response);
// call authentication
chain.doFilter(request, myRes);
// check for login error
Throwable t = WSSubject.getRootLoginException();
if (t != null) {

t = determineCause(t);
Cookie c = new Cookie("loginError", t.getMessage());
c.setMaxAge(-1);
 Chapter 8. Securing a Web application 291

myRes.addCookie(c);
}
else {

// authentication successful, remove the cookie
Cookie c = new Cookie("loginError", "");
c.setMaxAge(0);
myRes.addCookie(c);

}
// now it is safe to send redirect
myRes.sendMyRedirect();

}

The last task is to retrieve the cookie and display the message in the error page,
as shown in Example 8-14.

Example 8-14 Displaying the exception in the error page

...
<% Cookie cookies[] = request.getCookies();
for(int i = 0; i < cookies.length; i++) {

Cookie c = cookies[i];
if(c.getName().equals("loginError")) {

out.println(c.getValue());
}

}
%>
...

8.6.3 Logout

Almost every modern Web application requires logout functionality to ensure that
the users’ private data is securely cleared. WebSphere Application Server has
an extension to the JEE specification that allows you to log out an authenticated
user. You can use the form logout or the programmatic logout.

Using a session: Similar functionality can be achieved using a session
instead of a cookie. The downside of the session solution is that it generates a
session for every authentication request, successful or not, and it can be used
by a malicious attacker to generate a fake authentication request to
overwhelm the server with sessions.
292 WebSphere Application Server V7.0 Security Guide

Form logout
Similarly to the login page, the logout page must contain the form with specific
parameters:

� The form must be sent via the POST method.

� The form’s action must be ibm_security_logout.

� The optional hidden parameter logoutExitPage can be used to define a page
that is displayed after the logout. This parameter permits a relative or fully
qualified URL. If no exit page is specified, a default HTML logout message is
returned.

A sample logout form is shown in Example 8-15.

Example 8-15 Logout form

<FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">
<input type="submit" name="logout" value="Logout">
<input type="HIDDEN" name="logoutExitPage" value="/index.jsp">

</form>

When the form is posted, the application server performs the following actions:

� Clears the Lightweight Third Party Authentication (LTPA)/single sign-on
(SSO) cookies

� Invalidates the HTTP session

� If an exit page is defined, redirects the user to the page

Programmatic logout
If you want to combine a logout with an action in the application, you can use the
WebSphere security API to log out the user. The
WSSecurityHelper.revokeSSOCookies() method removes SSO cookies.

Example 8-16 on page 294 shows a sample logout method.

Logout: Logout only works with the form-based login. When the application is
configured to use basic authentication, the credentials are stored in the client’s
browser and the browser sends the user name and password to the server
together with every request. The only way to log out is to break the session by
closing the browser.
 Chapter 8. Securing a Web application 293

Example 8-16 Programmatic logout

public void logout(HttpServletRequest requset, HttpServletResponse
response) throws ServletException {

// invalidate session
if(request.getSession(false) != null) {

request.getSession(false).invalidate();
}
// remove SSO cookies
WSSecurityHelper.revokeSSOCookies(request, response);

}

8.7 Configuring client certificate authentication

Client certificate authentication sets up a mutual trust between the user and the
server. Each party identifies with the certificate, which must be trusted or signed
by a trusted certificate authority (CA).

The most common scenario is to use a Web server in the DMZ as a Secure
Sockets Layer (SSL) terminator. The Web server is responsible for client
authentication and certificate validation. Mutual trust is establish between the
user’s browser and the Web server. The WebSphere Application Server plug-in
installed with the Web server is responsible for passing authentication data to the
application server. For security reasons, we recommend that you establish
mutual SSL between the plug-in and the Web container also.

To successfully execute client certificate authentication, you must configure the
following components:

� Application
� Application server
� Web server
� Browser

Session considerations: In programmatic logout, invalidating the session is
critical. If the session is not invalidated and the user does not exit the browser,
the next logged in user will be able to see data from the previous session.

Refer to 8.9.2, “Session security integration” on page 320 for information
about additional session authentication that can be enabled.
294 WebSphere Application Server V7.0 Security Guide

8.7.1 Application configuration

To configure the client certificate authentication mechanism, repeat steps 1- 4
from 8.5, “Authentication mechanisms” on page 284. In step 4, specify
CLIENT-CERT as the authentication method.

The <login-config> element from the Web deployment descriptor for certificate
authentication is shown in Example 8-17.

Example 8-17 Login configuration for client certificate authentication

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

8.7.2 Application server configuration

After the application is configured to use client certificate authentication, the
application server must be able to support the client certificate authentication.

User registry
First, you have to make sure that the application server uses a user registry that
supports client certificate authentication. Currently, the local operating system
and built-in file-based registries do not support it. If you want to use federated
repositories, you have to remove the default file repository and add Lightweight
Directory Access Protocol (LDAP) registries. After the registry is configured, the
certificate mapping options must be set. These options determine how the client
certificate is mapped to the LDAP registry.

To set these options from the administrative console, navigate to the
configuration page for global security or, if domains are used, for the security
domain to be used for the application server. Select the user registry type in the
realm type field and click Configure.

For an LDAP registry in a federated repository, the mapping options can be
found in the main repository page in the Security section as shown in Figure 8-14
on page 296.
 Chapter 8. Securing a Web application 295

Figure 8-14 Certificate mapping settings in the LDAP federated repository

For a stand-alone LDAP registry, the certificate mapping settings are in the
Advanced LDAP user registry settings as shown in Figure 8-15 on page 297.
296 WebSphere Application Server V7.0 Security Guide

Figure 8-15 Certificate mapping settings in the Standalone LDAP registry

There are two options for certificate mapping:

� EXACT_DN

If EXACT_DN is selected, the distinguished name (DN) in the certificate must
exactly match the user entry in the LDAP server, including case and spaces.
For example, if the user DN is cn=john,ou=users,o=ITSO,c=US, John has to
be under the users organizational unit (ou), ITSO organization (o), US country
(c).

It is extremely hard or even impossible to support certificates that are already
owned by users and that were issued by trusted CAs. In that case, you need
to use the next option.
 Chapter 8. Securing a Web application 297

� CERTIFICATE_FILTER

If CERTIFICATE_FILTER is selected, specify the LDAP filter for mapping
attributes in the client certificate to entries in LDAP. The filter must match one
LDAP entry at run time or authentication fails.

The syntax of the filter is:

LDAP attribute=${Client certificate attribute}

The LDAP attribute portion of the filter specification is an LDAP attribute that
depends on the LDAP server’s schema.

The Client certificate attribute side of the filter specification is one of
the public attributes in the client certificate. The Client certificate attribute
must begin with a dollar sign ($), open bracket ({), and end with a close
bracket (}), for example, uid=${SubjectCN}.

The following client certificate attributes can be used:

– ${UniqueKey}

– ${PublicKey}

– ${IssuerDN}

– ${Issuerxx} - where xx is replaced by the characters that represent any
valid component of the issuer distinguished name. For example, use
${IssuerCN} for the issuer common name.

– ${NotAfter}

– ${NotBefore}

– ${SerialNumber}

– ${SigAlgName}

– ${SigAlgOID}

– ${SigAlgParams}

– ${Version}

– ${SubjectDN}

– ${Subject<xx>} - where <xx> is replaced by the characters that represent
any valid component of the Subject Distinguished Name. For example, use
${SubjectCN} for the Subject Common Name.

For example, assume:

– The user’s certificate DN is:

cn=wpsbind, o=test

– The user’s LDAP DN is:

CN=wpsbind,CN=Users,DC=ad,DC=test,DC=com,DC=pl
298 WebSphere Application Server V7.0 Security Guide

The filter can be uid=${SubjectCN}.

Web server plug-in configuration
This is an optional step. You can manage the Web server directly through its
configuration files, but we recommend that you use the administrative console,
because it is more efficient and elegant.

This process assumes that you have an IBM HTTP Server with the Web server
plug-in installed and that the Web server is defined in the WebSphere
administrative console. To configure the Web server plug-in:

1. Click Servers  Server Types  Web servers to see the Web servers list
as shown in Figure 8-16.

Figure 8-16 Web servers list

2. Click the Web server name to open the configuration page.

3. Verify the signers are in the plug-in keystore.

The Web server plug-in must be able to connect to server with the application
(servers in the case of the cluster), so it must have the server certificate in its
truststore. In the case of a default SSL configuration for the nodes, it is
enough to add the root certificate to the truststore, because all certificates
have it in the chain.

Click Servers  Server Types  Web servers  webserverName 
Plug-in properties to open the plug-in properties page, and click Manage
keys and certificates as shown in Figure 8-17 on page 300.
 Chapter 8. Securing a Web application 299

Figure 8-17 Plug-in properties

4. Click Signer certificates and look for root as shown in Figure 8-18 on
page 301.
300 WebSphere Application Server V7.0 Security Guide

Figure 8-18 Checking root signer certificate

You can safely remove any other certificates; they are not needed. They are
added by default when the keystore is created.

If there is no root certificate or custom certificates have been created for the
servers, the certificate has to be added to the truststore by a signers
exchange between the server keystore (NodeDefaultKeyStore) and the
plug-in truststore (CMSKeyStore). The default store names are given in
parentheses. Figure 8-20 on page 306 shows how to exchange signers.

5. Create the certificate for the plug-in (optional).

The plug-in needs its own certificate to authenticate to the server. When you
create the Web server definition, a CMSKeystore is created that contains a
chained certificate for the plug-in. It is signed by the default root, so the cell
will trust it, and because it is chained, it can be easily replaced when it
expires. This step is only required if you do not want the certificate signed by
the default root, for example, in isolation scenarios.

You can create a self-signed certificate for this purpose:

a. Click CMSKeyStore in the navigation trail to display the plug-in’s keystore
details.

b. Click Personal certificates. A page with a list of personal certificates is
opened.
 Chapter 8. Securing a Web application 301

c. Click Create and select Self-signed Certificate.

d. Specify the certificate details, and click OK.

6. Set the default certificate.

To successfully authenticate, the plug-in has to send its personal certificate to
the application server. The plug-in will only send the certificate marked as the
default. If there is no default certificate, authentication will fail. Currently, there
is no way to set the default certificate by using the the administrative console,
and the ikeyman tool must be used. This step must be done regardless of
whether you use the certificate created for you or create your own certificate.

Perform the following steps to configure the default certificate for the plug-in:

a. Start ikeyman using the following command:

was_install_root\bin\ikeyman.bat

b. Open the plug-in keystore file that is located in:

profile_root\config\cells\cellName\nodes\nodeName\servers\webserv
er\plugin-key.kdb

c. Enter the keystore password and click OK (the default password is WebAS).

d. Select Personal Certificates from the drop-down list.

e. Double-click the self-signed certificate, check Set the certificate as the
default as shown in Figure 8-19 on page 303, and click OK.
302 WebSphere Application Server V7.0 Security Guide

Figure 8-19 Setting the default certificate
 Chapter 8. Securing a Web application 303

f. Close the keystore file.

7. Transfer the plug-in files.

When edited by using the administrative console, the plug-in configuration file
and the keystore files are stored in the application server’s config directory.
These files need to be transferred to the appropriate directory on the Web
server machine, where the plug-in itself is installed.

Follow these steps to transfer the files for managed Web servers using the
administrative console:

– Copy the keystore files:

i. Select Servers  Server Types  Web servers 
webserverName  Plug-in properties to open the plug-in properties
page.

ii. Click Copy to Web server keystore directory on the plug-in
properties page. Refer to Figure 8-17 on page 300.

– Copy the plug-in configuration file.

Perform these steps only if automatic generation and propagation are
disabled on the plug-in properties page:

i. Click Servers  Server Types  Web servers.

ii. Check the Web server name on the Web server list (refer to
Figure 8-16 on page 299), and click Generate Plug-in.

iii. Then, check the Web server name and click Propagate Plug-in.

– For unmanaged Web servers, copy the plugin-cfg.xml, plugin-key.kdb,
and plugin-key.sth files from:

profile_root\config\cells\cellName\nodes\nodeName\servers\webserv
er\

to the following folder on the Web server machine:

plugin_root\config\webserver

Web container configuration
The plug-in sends sensitive user data to the Web container. This channel must
be secured. We recommend that you configure a mutual SSL between the
plug-in and the Web container. With this configuration, the Web container
accepts connections only from trusted Web servers.

Recommendation: For DMZ plug-in deployments, we recommend that you
copy the files manually by using ssh or scp and disable the HTTP
administration service.
304 WebSphere Application Server V7.0 Security Guide

For this configuration, you have to create a new truststore and SSL configuration.
The SSL configuration must require client authentication. In this chapter, we only
provide the general configuration steps. Refer to Chapter 5, “Secure Sockets
Layer administration” on page 151 for details about how to manage SSL
configurations.

Follow these steps to perform the required changes through the administrative
console:

1. Create a new truststore.

A new PKCS12 truststore can be created on the following page in the
administrative console by selecting:

Security  SSL certificate and key management  Manage endpoint
security configurations  Inbound  managementScope  keystores
and certificates

This new truststore will be used only for the client certificate authentication.
The recommended management scope depends on how the truststore will be
used:

– Cell for clustered servers

– Node for many servers on selected node

– Server for specific server

2. Add the signer certificates to the truststore.

The Web container must only accept connections from trusted Web servers.
Therefore, add each plug-in certificate as a signer in the Web container
truststore:

a. Click Security  SSL certificate and key management  keystores
and certificates.

b. Select the plug-in keystore (CMSKeyStore) and the created truststore,
and then, click Exchange Signers.

c. Select the plug-in certificate from CMSKeyStore and click Add to add it to
the truststore as a signer certificate. If you use the default generated
plug-in certificate, which is chained, add the signer instead of the plug-in
certificate.

Refer to Figure 8-20 on page 306.
 Chapter 8. Securing a Web application 305

Figure 8-20 Exchanging signers

3. Create a new SSL configuration at the same scope as the truststore:

a. Go to Security  SSL certificate and key management  Manage
endpoint security configurations  Inbound 
managementScope  SSL configurations, and click New.

b. Associate the configuration with the new truststore. For the keystore, you
can leave the default setting as shown in Figure 8-21.

Figure 8-21 Creating a new SSL configuration
306 WebSphere Application Server V7.0 Security Guide

4. Set the client authentication.

Configure this option by selecting Security  SSL certificate and key
management  SSL configurations  SSLSettingsName  Quality of
protection (QoP) settings as shown in Figure 8-22.

Figure 8-22 Selecting client authentication

In Figure 8-22, select Required for Client authentication. With this option, the
server requires the client to send a certificate; otherwise, the connection fails.
You must select this option to establish mutual trust between the plug-in and
the Web container and to ensure that only trusted plug-ins can connect.

5. Apply the new SSL configuration.

The new SSL configuration must be associated with all Web container SSL
endpoints in the server, for example, WC_defaulthost_secure and
WC_adminhost_secure:

a. Select Security  SSL certificate and key management  Manage
endpoint security configurations  Inbound  cellName  nodes 
nodeName  servers  serverName  WC_defaulthost_secure.

a. Select Override inherited values, and select the SSL configuration as
shown in Figure 8-23.

Figure 8-23 Selecting the SSL configuration
 Chapter 8. Securing a Web application 307

If you cannot find the specific endpoint through the configuration tree, check
Web container transport chains by using Servers  Server Types 
WebSphere Application Servers  serverName  Web Container
Settings  Web container transport chains as shown in Figure 8-24.

Figure 8-24 Web container transport chains

6. Disable all HTTP transports on the Web container.

By default, in the WebSphere Application Server V7, there are two HTTP
transports defined: HttpQueueInboundDefault and WCInboundDefault. Disable
both of them. The HTTP transports must be disabled to ensure that
communication is done through the secured SSL connection.

Note: In a stand-alone server, if the SSL administrative port is available for
internal users (not just WebSphere administrators), it has to be configured
to require client authentication also.
308 WebSphere Application Server V7.0 Security Guide

8.7.3 Web server configuration

In the most common scenario, there is a Web server between the client and
WebSphere Application Server. In this case, the Web server must be correctly
configured to support client certificate authentication.

In the following sections, we assume that IBM HTTP Server V7 is used and that
WebSphere plug-in V7 is installed. Similar steps must be performed for other
vendors’ servers.

Enabling SSL
The IBM HTTP Server is not configured to support SSL as shipped. For
information about securing the Web server with SSL, refer to the IBM HTTP
Server Information Center article, “Securing with SSL communications,” at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.ihs.doc/info/ihs/ihs/tihs_setupssl.html

Access the Web server using the HTTPs protocol to validate that SSL has been
configured:

https://webServerHostName/

A sample SSL configuration, which is located in the httpd.conf file, is shown in
Example 8-18.

Example 8-18 SSL directives for the IBM HTTP Server

Enable http server to listen on 443 port
Listen *:443
Load ssl support module
LoadModule ibm_ssl_module modules/mod_ibm_ssl.so
Define ssl enabled virtual host
<VirtualHost *:443>
 SSLEnable
 SSLProtocolDisable SSLv2
certificate alias
 SSLServerCert webserver
</VirtualHost>
Specify web server keystore location

Note: In the stand-alone server, if the HTTP administrative port is available
for internal users (not just WebSphere administrators), it has to be disabled
also.
 Chapter 8. Securing a Web application 309

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/tihs_setupssl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/tihs_setupssl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/tihs_setupssl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.ihs.doc/info/ihs/ihs/tihs_setupssl.html

KeyFile "C:/ibm/HTTPServer/etc/webserver1.kdb"
SSLDisable

Configuring client authentication
The Web server must be able to accept client certificates. If the certificates are
self-signed, each certificate needs to be added to the Web server keystore as a
signer certificate. More often, certificates are issued by a certificate authority
(CA), and only the CA certificate must be added. For simplicity, we use a
self-signed certificate in this example.

Refer to “Creating a self-signed certificate for an LDAP server” on page 194 for
details about creating a key database and certificates.

Follow these steps to create a sample client certificate:

1. Create a new PKCS12 key database using the IBM Key Management tool
(iKeyman), which is provided with IBM HTTP Server in the IHS_ROOT\bin
folder. Name it wasadminPrivate.p12.

2. Create a new self-signed certificate with a common name that matches the
user ID from the WebSphere registry, for example, wasadmin.

3. Select the new certificate, and click Extract Certificate.

4. Specify the following parameters, and click OK:

– Data type: Either text or binary form (both types are well known and
supported)

– Certificate file name, for example, wasadminPublic.arm

– Location, for example, c:\

5. Close the key database.

Two files are created:

� wasadminPrivate.p12, which holds the certificate with the secret private key.
This file allows you to authenticate using certificates; however, if it is lost or
stolen, your identity is compromised.

� wasadminPublic.arm, which holds the certificate public data. This file can be
safely distributed. It allows you to confirm your identity, for example, by
verifying signatures that were created using your private key.

Perform the following steps to add the certificate to the signer’s certificates:

1. Start the iKeyman tool.

2. Open the Web server keystore, for example:

C:/ibm/HTTPServer/etc/webserver1.kdb
310 WebSphere Application Server V7.0 Security Guide

3. Select Signer certificates from the drop-down list.

4. Click Add and specify the path to the certificate file (wasadminPublic.arm)
that was generated in the previous steps. Click OK.

5. Close the keystore.

After the keystore is updated, the Web server configuration can be changed to
support client certificate authentication:

1. Open the httpd.conf file and update the virtual host definition with the
SSLClientAuth option. This option can have the following values:

– None: This value is the default option. The Web server does not request
the client certificate. This option cannot be used.

– Optional: The server requests a client certificate; however, connection is
also established if the client does not provide a certificate. This option can
be used for client certificate authentication.

Troubleshooting steps: If you have problems importing a certificate, review
the following issues:

� If the Web server certificate is signed by a CA, check if this CA’s certificate
is in the keystore. If not, add it before adding the Web server certificate.

� If you have a message stating “The specified database has been
corrupted” message and the “InvalidKeyException: Illegal key size”
message in the trace log, update the IBM Software Developer Kit (SDK)
policy files:

– Download the files from this Web site:

http://www.ibm.com/developerworks/java/jdk/security/60/

– Extract the US_export_policy.jar file and the local_policy.jar file.

– Copy these files to the IBM HTTP Server and WebSphere
$JAVA_HOME/jre/lib/security directory (back up the original files).

Important: SDK updates might overwrite these unrestricted policy files.
Back up before applying fix packs, and reapply the fix packs after
maintenance.

� To enable trace, invoke iKeyman using the following command (this
command needs to be on one line):

gsk7ikm -Dkeyman.debug=true-Dkeyman.jnitracing=ON
-Djava.security.debug=ALL 2>ikeyman.txt

� Refer to the MustGather page for more details:

http://www-01.ibm.com/support/docview.wss?uid=swg21202820
 Chapter 8. Securing a Web application 311

http://www.ibm.com/developerworks/java/jdk/security/60/
http://www-01.ibm.com/support/docview.wss?uid=swg21202820
http://www-01.ibm.com/support/docview.wss?uid=swg21202820

This option is useful when the Web server provides access to many
applications and several of them do not require certificate authentication.
This option is also useful if the application server is configured to allow
applications to fall back to basic authentication. Refer to “Default to basic
authentication when certificate authentication for the HTTPS client fails.”
on page 323 for more details.

– Required: The server requires a valid certificate from the client to establish
connection. This option is preferred if there is no need to support different
authentication mechanisms.

The modified virtual host definition is shown in Example 8-19.

Example 8-19 Modified virtual host definition

<VirtualHost *:443>
 SSLEnable
 SSLProtocolDisable SSLv2
 SSLServerCert webserver
 SSLClientAuth required
</VirtualHost>

2. Access the Web server using https://webServerHostName/ to validate that
the server requests a certificate. Depending on the browser type and its
configuration, access to the site is forbidden or the browser displays a dialog
box asking the user of the browser to select a certificate, as shown in
Figure 8-25 on page 313.
312 WebSphere Application Server V7.0 Security Guide

Figure 8-25 Select certificate pop-up window with no valid certificates

Expect to see this pop-up window, because the Web server requests a certificate
from the client at this point, and there is not a certificate in the browser.

8.7.4 Browser configuration

To successfully connect to an application that is secured with the client
certificate, the browser must be able to use the user’s certificate. Certificates are
usually distributed to the users by companies that own the applications as files or
smart cards. They can be provided by well known CAs or by a company CA.

We use the self-signed certificate, which is stored in wasadminPrivate.p12, that
was created in “Configuring client authentication” on page 310.

Import the certificate to the browser:

� In Internet Explorer®, select Tools  Internet Options  Content, click
Certificates, and then, click Import.

� In Firefox, select Tools  Options  Advanced  Encryption, click View
Certificates, and then, click Import.
 Chapter 8. Securing a Web application 313

Access the Web server again using https://webServerHostName/ to validate that
the browser is able to use the imported certificate. Depending on the browser
type and its configuration, access to the site is granted right away. Or, the
browser displays a window allowing you to select the correct certificate, as
shown in Figure 8-26 (Internet Explorer) or in Figure 8-27 on page 315 (Firefox).

Figure 8-26 Certificate selection in Internet Explorer
314 WebSphere Application Server V7.0 Security Guide

Figure 8-27 Certificate selection in Firefox

8.8 Customizing the login process

The authentication standards that are defined by the JEE specification are
simple, and there is not much customization. Applications that require more
sophisticated authentication methods can use the WebSphere Application
Server security API, which offers greater functionality and flexibility. Because
these APIs include advanced concepts, we only provide a brief description of
them here. Detailed discussion about these features is beyond the scope of this
publication.

We now discuss the concepts based on their complexity and the effort that is
needed to develop them, from the simplest to the advanced:

� Login filter

Use the login filter when you require minor changes to the authentication
process, for example, retrieving a login exception or adding additional
parameters to a user session.
 Chapter 8. Securing a Web application 315

The login filter is the simplest solution. It uses a servlet filter, which is mapped
to the j_security_check URL. You can use a login filter for additional
authentication or processing before and after authentication, as shown in
Example 8-20.

Example 8-20 Login filter concept

public void doFilter(ServletRequest request, ServletResponse
response, FilterChain chain) throws IOException, ServletException {

// pre login actions here
chain.doFilter(request, myRes);
// post login actions here

}

The filter must be mapped in the application’s Web deployment descriptor as
shown in Example 8-21.

Example 8-21 Servlet filter in the Web deployment descriptor

...
<filter>

<description></description>
<display-name>LoginFilter</display-name>
<filter-name>LoginFilter</filter-name>
<filter-class>

com.ibm.itso.sample.security.filter.LoginFilter
</filter-class>

</filter>
<filter-mapping>

<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>

</filter-mapping>
...

� Trust association interceptor

Use a trust association interceptor (TAI) when authentication is performed by
an external proxy, a custom authentication protocol (multi-phase) is required,
or subject modification is required. A TAI can be used for Web authentication
only.

The trust association interceptor interface allows WebSphere Application
Server to use external third-party authentication proxies. This interface must
be provided by the vendor of the third-party product, or it can be implemented
to match custom needs. It provides methods to intercept HTTP requests,
validate the trust with a proxy, and create authenticated subjects.
316 WebSphere Application Server V7.0 Security Guide

The following topics in the Information Center discuss trust association usage
and the interface that must be implemented:

– http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?top
ic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_taisubcreate.html

– http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?top
ic=/com.ibm.websphere.javadoc.doc/web/spidocs/com/ibm/wsspi/secur
ity/tai/TrustAssociationInterceptor.html

� Java Authentication and Authorization Service login modules

Use Java Authentication and Authorization Service (JAAS) login modules
when subject modification is required, additional custom authentication is
required, or identity mapping is necessary. Use this option for Remote
Method Invocation (RMI) authentication. A JAAS login module is also called
during propagation login.

WebSphere Application Server supports many JAAS plug-in points. By using
a custom login module, you can make additional authentication decisions or
add information to the Subject to make additional, potentially finer-grained,
authorization decisions inside a JEE application.

You can obtain more information about developing custom login modules at
this Web site:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_jaascustlo
gmod.html

� Custom registry or custom repository adapter

Use a custom registry or custom repository adapter when applications need
to use existing or unsupported user registry implementations.

WebSphere Application Server supports the following user registries:

– Local operating system registry

– Stand-alone LDAP registry

– Federated repository, which provides support for using multiple
repositories and has adapters for file, LDAP, and database (proprietary
schema) repositories.

If an application needs another kind of registry, WebSphere Application
Server provides two plug-in points. You can implement the UserRegistry
interface to create a stand-alone custom user registry, or you can implement
the Repository interface to create a custom adapter for a federated
repository.
 Chapter 8. Securing a Web application 317

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_taisubcreate.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_taisubcreate.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_taisubcreate.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rsec_taisubcreate.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_jaascustlogmod.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.javadoc.doc/Web/spidocs/com/ibm/wsspi/security/tai/TrustAssociationInterceptor.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.javadoc.doc/web/spidocs/com/ibm/wsspi/security/tai/TrustAssociationInterceptor.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.javadoc.doc/web/spidocs/com/ibm/wsspi/security/tai/TrustAssociationInterceptor.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.javadoc.doc/web/spidocs/com/ibm/wsspi/security/tai/TrustAssociationInterceptor.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.javadoc.doc/web/spidocs/com/ibm/wsspi/security/tai/TrustAssociationInterceptor.html

For more information about developing a stand-alone custom user registry,
visit the following page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.nd.multiplatform.doc/info/ae/ae/tsec_tbucs.html

For more information about developing a custom repository adapter, visit this
page:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/rwim_dev_vmmca.html

8.9 Other security-related application settings

There are a few other application-related settings to consider from a security
point of view.

8.9.1 Web application extensions

There are three Web application extensions: directory browsing, file serving, and
serving servlets by class name, which can be set in the Web application
extension deployment descriptor (ibm-web-ext.xml).

To find these extensions in Rational Application Developer, open the Web
module deployment descriptor and click Open WebSphere Extensions as
shown in Figure 8-28 on page 319.
318 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_tbucs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_tbucs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rwim_dev_vmmca.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_tbucs.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tsec_tbucs.html

Figure 8-28 Web application extensions

File serving
File serving allows WebSphere Application Server to serve static files, such as
images, javascripts, and so forth, that are placed in the Web application. Disable
this setting if you do not need to serve static files or if you plan to put them on the
HTTP server.

Directory browsing
Directory browsing allows a remote user to view the contents of the directories of
the Web application. Disable this setting to block listing the directories.

Serving servlets by class name
This setting allows you to call servlets by their class name instead of an alias. For
example, to call the servlet that is defined in the com.ibm.itso.MyServlet,
specify a Uniform Resource Identifier (URI), such as
/servlet/com.ibm.itso.MyServlet. Disable this feature. Even if your servlet
URLs are secured, a malicious attacker might be able to bypass the normal
URL-based security.

Note: Never configure the HTTP server document root to the WAR root
directory. WAR files contain application code and sensitive information that
must not be served up by the Web server to users.
 Chapter 8. Securing a Web application 319

8.9.2 Session security integration

WebSphere Application Server by default does not authorize access to HTTP
sessions. If a malicious attacker obtains the session identifier, the attacker might
be able to access information in the session.

To protect applications from this kind of attack, consider enabling session
security. Session security can be configured from the Web administrative
console for the server (affecting all applications), the application, or the Web
module:

� For the server level, select these options:

Servers  Server Types  WebSphere Application Servers 
serverName  Session Management

� For the application level, select these options:

Applications  Application Types  WebSphere Enterprise
Applications  applicationName  Session Management

� For the Web module level, select these options:

Applications  Application Types  WebSphere Enterprise
Applications  applicationName  Manage modules  moduleName 
Session Management

Select Security integration as shown in Figure 8-29 on page 321. When this
setting is enabled, the session manager associates the identity of the users with
their HTTP sessions.

For the application or Web module level setting, also select Override session
management.
320 WebSphere Application Server V7.0 Security Guide

Figure 8-29 Enabling session security
 Chapter 8. Securing a Web application 321

Modifying Web authentication behavior
WebSphere Application Server by default only requests authentication when
protected resources are accessed. The authentication data can later be
programmatically accessed only on secured resources. After a session is
accessed from a protected page, it is not available to unprotected pages. You
might have a serious issue if an application contains a mixture of protected and
unprotected pages.

To change this behavior in the Web administrative console, select Global
security  Web and SIP security  General settings as shown in the
Figure 8-30.

Figure 8-30 Customizing authentication behavior

Important: After security integration is enabled, only the user who creates a
session is allowed to access it. This requirement can cause an application to
break if it contains a mixture of secured and unsecured pages that access the
session. After a secured page or servlet accesses the session, the owner is
set. If later, an insecure page or servlet tries to access the session, it will
receive an authorization exception.

To allow authentication data to be available for unsecured pages, configure
the Web authentication options in global security as discussed in “Modifying
Web authentication behavior” on page 322. Specifically, enable Use available
authentication data when an unprotected URI is accessed.
322 WebSphere Application Server V7.0 Security Guide

The Web authentication settings are listed next:

� Authenticate only when the URI is protected.

This selection is the default option. WebSphere Application Server only
requests authentication when a protected resource is accessed.
Authentication data is not available for unprotected pages and servlets.

– Use available authentication data when an unprotected URI is accessed.

If this option is selected, authentication is still performed only when a
protected resource is accessed, but once authenticated, the data is also
available on unprotected pages. The developer can use the
getRemoteUser, isUserInRole, and getUserPrincipal methods to retrieve
an authenticated identity on these pages. The user can go back to the
public part of the application and still retain authentication and session
data.

� Authenticate when any URI is accessed.

If this option is selected, authentication is performed when any application
resource is accessed. It might be useful, when you want to ensure that only
authenticated users access applications. For example, use this option if there
is an application without support for JEE security that needs to be available
only for authenticated users.

� Default to basic authentication when certificate authentication for the HTTPS
client fails.

Setting this option allows the client to log in using the user name and
password if client certificate authentication fails.

When these options are set on the Global security page, they apply to all servers
in the cell. However, in certain situations, you might want to enable this behavior
only for a selected application. To do this, you have to deploy the application to a
separate server in the cell and override these settings using Java virtual machine
(JVM) custom properties.

To specify the system property, complete the following steps:

1. Click Servers  Server Types  WebSphere Application Servers 
serverName.

Note: This setting applies only to the application server. If client certificate
authentication is configured as required at the Web server, it will not fail
over to basic authentication. To achieve similar behavior with the Web
server, configure the client certificate authentication as optional and not as
required.
 Chapter 8. Securing a Web application 323

2. Under Server infrastructure, click Java and Process Management 
Process definition.

3. Under Additional properties, click Java Virtual Machine  Custom
properties  New.

4. Specify the following properties from Table 8-1.

Table 8-1 Web authentication properties

Property name Value Description

com.ibm.wsspi.security.web.webAuthReq lazy Authenticate only when the URI is
protected.

com.ibm.wsspi.security.web.webAuthReq persistent Use available authentication data
when an unprotected URI is
accessed.

com.ibm.wsspi.security.web.webAuthReq always Authenticate when any URI is
accessed.

com.ibm.wsspi.security.web.failOverToBasicAuth true Default to basic authentication when
certificate authentication for the
HTTPS client fails.
324 WebSphere Application Server V7.0 Security Guide

Chapter 9. Securing an Enterprise
JavaBeans application

This chapter discusses the security aspects of Enterprise JavaBeans (EJBs) in
an enterprise application. It shows how to protect applications using declarative
and programmatic security. It explains how to use annotations to secure beans
and how these annotations are related to the deployment descriptor. This
chapter briefly discusses more advanced features, such as delegation, and the
usage of the Java Authenticating and Authorization Service (JAAS).

The second part of this chapter explains how to protect access to the EJB
container using transport and message layer authentication. This chapter also
briefly discusses more advanced concepts, such as security attribute
propagation and identity assertion.

This chapter assumes basic Java Platform, Enterprise Edition (JEE) knowledge,
so we do not discuss terms, such as session beans and message-driven beans,
in detail. This chapter contains the following topics:

� “Application security” on page 327
� “Security mechanisms” on page 327
� “JEE Security policies: Annotations and XML descriptors” on page 328
� “Declarative security” on page 329
� “Programmatic security” on page 346
� “Delegation” on page 353

9

© Copyright IBM Corp. 2009. All rights reserved. 325

� “Java Authentication and Authorization Service” on page 361
� “Using annotations” on page 365
326 WebSphere Application Server V7.0 Security Guide

9.1 Application security

A typical JEE application consists of both Web and EJB modules. EJB
components implement an application’s business logic and can provide services
for external clients. Because EJBs have access to sensitive data and can be
called by remote clients, they must be well protected.

There are two types of EJBs in EJB 3.0:

� Session beans that represent business functions and services

� Message-driven beans (MDBs) that can process asynchronous messages
that are sent to the JEE application

This chapter focuses on session beans, because they are called by clients
(servlets, other EJBs, application clients, and so forth). Message-driven beans
however are called by the server infrastructure and have no client credentials
associated with them. To call a secured EJB from a message-driven bean, you
can use delegation or the JAAS API.

9.2 Security mechanisms

Depending on the requirements, securing an application can be quite easy or
extremely challenging. Consider the following options:

� If you only need to allow a certain class of user (security role) access to
specific application functions (methods of the enterprise bean), you can start
with 9.4, “Declarative security” on page 329.

� When declarative security alone is insufficient to fulfill the security needs of an
application, you can use programmatic security to make access decisions.
Refer to 9.5, “Programmatic security” on page 346.

� If you have to switch caller identity to call an EJB, or you need to call a
secured bean from an unsecured one (such as an MDB), refer to 9.6,
“Delegation” on page 353 and 9.7, “Java Authentication and Authorization
Service” on page 361.

Note: Entity beans have been replaced by lightweight Java Persistence API
(JPA) entities and are not considered as Enterprise beans any more.
 Chapter 9. Securing an Enterprise JavaBeans application 327

� Sometimes, security requirements are so complex that JEE security is not
enough. In that case, consider using a third-party security framework or an
external Java Authorization Contract for Containers (JACC) provider. These
concepts are beyond the scope of this book and are not discussed.

When you design an application, always consider using JEE security first rather
than a custom-developed framework. JEE security relies on a strong security
infrastructure, is already built-in, and is enforced by the application server.

9.3 JEE Security policies: Annotations and XML
descriptors

JEE security policies can be defined either through entries in the XML
deployment descriptors or through annotations. Annotations are a new concept,
which was introduced in EJB 3.0, that can simplify development. Developers can
use annotations to provide assembly data inside a class file instead of in the
deployment descriptor. Annotations apply to both declarative and programmatic
security, although there are security aspects that can only be specified in a
deployment descriptor (for example, role description). An annotation can be
overridden with the deployment descriptor.

Security annotations can only be used when developing EJB 3.0 modules for
WebSphere Application Server V7 or WebSphere Application Server V6.1 with
the EJB 3.0 Feature Pack installed.

The following security annotations can be used by EJBs:

� RolesAllowed
� PermitAll
� DenyAll
� DeclareRoles
� RunAs

For more information about when to use annotations and the deployment
descriptor, refer to 9.8, “Using annotations” on page 365.
328 WebSphere Application Server V7.0 Security Guide

9.4 Declarative security

Declarative security allows security polices to be configured transparently to the
application code. All information is specified via metadata using annotations or
EJB deployment descriptors. There are no complicated security rules
hard-coded in the application code using any security API.

Security is enforced by the application server infrastructure. The EJB container
retrieves the security policy from the descriptor to get the security roles that are
allowed to execute bean methods. The container uses the security context that is
associated with the method call to determine if the user has the required role.

Prior to EJB 3.0, security information was defined in the EJB deployment
descriptor at application assembly time. Although the JEE specification
designates a separate assembler role for this process, it is mostly done by
developers. EJB 3.0 allows developers to put security annotations directly in the
bean class to define the security policies for the bean. The application assembler
can still override this information using the EJB deployment descriptor.

One of the benefits of declarative security is the ability to change application
security settings according to the client’s needs without changing the application
code. Changes are made in the EJB deployment descriptor. All deployment
descriptors can be created and modified using Rational Application Developer for
WebSphere Software V7.5.

During the installation of the application, the security policies and the roles
defined using annotations are combined with the security policies and the roles
defined within the EJB deployment descriptor. For example, certain policies can
be defined only with annotations, and other policies can only be defined using
the EJB deployment descriptor. If policies overlap, those policies defined in the
deployment descriptor take precedence.

9.4.1 Protecting beans using annotations

Protecting beans using annotations is quite easy. The @RolesAllowed
annotation defines the list of security roles that can invoke the methods of the
bean. This annotation can be placed at the class level to protect all bean
methods that are part of the business interface and can also be placed at the
method level where it affects only that method. An annotation placed at the
method level overrides an annotation specified at the class level. Example 9-1 on
page 330 shows how to use the RolesAllowed annotation at the method level.
 Chapter 9. Securing an Enterprise JavaBeans application 329

Example 9-1 Using RolesAllowed annotation at the method level

import javax.annotation.security.RolesAllowed;
...

@RolesAllowed("admin")
public String methodForRole() {

// Method that can be called by users in “admin” role
...

}

Example 9-2 shows how to use the RolesAllowed annotation at the class level
with multiple security roles specified.

Example 9-2 Using RolesAllowed annotation at the class level

import javax.annotation.security.RolesAllowed;

@RolesAllowed({"user", "manager"})
@Stateless
public class SampleClass implements SampleInterface {
....
}

To specify that a method can be called by anyone, even unauthenticated users,
use the @PermitAll annotation. The @PermitAll annotation is the default
annotation for the bean class, so if you do not specify any annotations, all bean
methods are unprotected. It can be specified at the class level or at the method
level. Example 9-3 shows how to use the PermitAll annotation.

Example 9-3 Using PermitAll annotation at the method level

import javax.annotation.security.PermitAll;
...

@PermitAll
public String methodForAll() {

// Method that can be called by any user even anauthenticated
...

}

330 WebSphere Application Server V7.0 Security Guide

For the most effective usage of annotations, you can specify @RolesAllowed
annotations at various levels. If most of methods in the bean are for a specific
role, define it at the class level and then override permissions at the method
level, as shown in Example 9-4.

Example 9-4 Combining annotations

// Default role for all methods in the class
@RolesAllowed("user")
@Stateless
public class OverrideTester implements OverrideTesterLocal {

// no annotation - uses class default - “user” role
public void aMethod() { ... }

// annotation overrides class default - mehtod for “admin” role
@RolesAllowed("admin")
public void bMethod() { ... }

If you must exclude a particular method from execution, use the @DenyAll
annotation. This annotation can be placed at the method level only. It overrides
annotations defined at the class level. Example 9-5 shows how to use the
DenyAll annotation.

Example 9-5 Using DenyAll annotation at the method level

import javax.annotation.security.RolesAllowed;
...

@DenyAll
public String methodForNobody() {

// method cannot be executed by any role - excluded
...

}

Best practice: In general, avoid the PermitAll annotation, because it allows
anyone to call the bean method. It is better to define a role, such as Everybody
or All users, and have the ability to narrow the permissions later. For example,
you can narrow the permissions later to only authenticated users or specific
groups.
 Chapter 9. Securing an Enterprise JavaBeans application 331

9.4.2 Protecting beans using the deployment descriptor

Protecting beans using the XML deployment descriptor is slightly more
complicated. First, you need a deployment descriptor. There a few ways to get
one:

� If you are creating a new EJB Project in Rational Application Developer, select
Generate deployment descriptor in the wizard, as shown in Figure 9-1.

Figure 9-1 Create project with deployment descriptor

� For existing EJB projects, right-click the project name, and then, select Java
EE  Generate Deployment Descriptor Stub as shown in Figure 9-2 on
page 333.
332 WebSphere Application Server V7.0 Security Guide

Figure 9-2 Generating deployment descriptor

Example 9-6 shows the generated, empty deployment descriptor.

Example 9-6 Generated deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd" version="3.0">

<display-name>
AppSecuritySampleEJB</display-name>

</ejb-jar>

� Or, you can manually create an XML file named ejb-jar.xml in the
ejbModule\META-INF folder.

After you have generated the deployment descriptor, you can start to secure the
beans.

Defining security roles
JEE uses a role-based security model, which means that access to application
resources is granted based on the security role. The security role is a logical
grouping of principals. A principal is an element that can be authenticated,
typically a user. When an application is deployed, security roles are mapped to
actual users or groups from the application server’s security realm.

When the security policy is defined using the deployment descriptor, security
roles are the first elements that need to be defined. The following steps describe
how to create a security role using Rational Application Developer for
WebSphere Software V7.5:

1. In the Enterprise Explorer view, double-click the application’s EJB module to
expand it.
 Chapter 9. Securing an Enterprise JavaBeans application 333

2. Double-click the EJB deployment descriptor. The EJB Deployment Descriptor
Editor opens. Select the Design tab.

3. Select EJB Project (EJBModuleName), and click Add.

4. Select Assembly as shown in Figure 9-3, and click OK. A new Assembly
element is added under the EJB Project element.

Figure 9-3 Adding the Assembly element

5. Select Assembly, and click Add.

6. Select Security Role as shown in Figure 9-4 on page 335, and click OK.
334 WebSphere Application Server V7.0 Security Guide

Figure 9-4 Adding Security Role element

7. The Add Security Role pop-up window opens. Enter user in the Security Role
field and All users of the application in the Description field. Click OK.
The new Security Role element is added under the Assembly element. The
editor looks like Figure 9-5.

Figure 9-5 EJB Deployment Descriptor Editor

8. Repeat steps 5-7 to add the admin security role.

9. Save the file using Ctrl+S.
 Chapter 9. Securing an Enterprise JavaBeans application 335

New <security-role> elements are added to the assembly section of the EJB
deployment descriptor. Refer to Example 9-7. Select the Source tab in the editor
to see the entire XML file.

Example 9-7 Security Role element in the EJB deployment descriptor

<assembly-descriptor>
<security-role>

<description>Administrators</description>
<role-name>admin</role-name>

</security-role
<security-role>

<description>All users of the application</description>
<role-name>user</role-name>

</security-role>
</assembly-descriptor>

After security roles are defined, you can use them to grant access to the bean.

Adding enterprise beans
The next step is to add the definitions of the beans that will be secured to the
deployment descriptor. The following actions describe this process:

1. In the Enterprise Explorer view, double-click application’s EJB module to
expand it.

2. Double-click the EJB deployment descriptor. The EJB Deployment Descriptor
Editor opens. Select the Design tab.

3. Select EJB Project (EJBModuleName), and click Add.

4. Select Enterprise Beans as shown in Figure 9-6 on page 337, and click OK.
336 WebSphere Application Server V7.0 Security Guide

Figure 9-6 Adding Enterprise Beans element

5. Select Enterprise Beans, and click Add.

6. Select Session bean, and click OK.

7. The New Enterprise Bean pop-up window opens. In the EJB name field, enter
the bean name, for example, OverrideTester, and click OK.

8. Select the new Session Bean element (if not already selected), and click
Browse to specify the EJB class as shown in Figure 9-7.

Figure 9-7 Session bean details

9. In the Type Selection dialog, start typing the class name, and then, select
OverrideTester from the Matching items list as shown in Figure 9-8 on
page 338. Click OK.
 Chapter 9. Securing an Enterprise JavaBeans application 337

Figure 9-8 Selecting the EJB class

10.Save the file (Ctrl+S).

A new <enterprise-bean> element is added to EJB deployment descriptor. Refer
to Example 9-8.

Example 9-8 Enterprise bean element in the EJB deployment descriptor

<enterprise-beans>
<session>

<ejb-name>OverrideTester</ejb-name>
<ejb-class>com.ibm.itso.security.ejb.OverrideTester</ejb-class>

</session>
</enterprise-beans>

Now, with the security roles and the enterprise bean defined, you can start to
define method permissions.
338 WebSphere Application Server V7.0 Security Guide

Defining method permissions
The access policy for the bean methods is defined using the
<method-permission> element of the EJB deployment descriptor. This element
associates the security roles with the set of bean methods that can be invoked by
these security roles.

The following steps describe how to define method permission:

1. In the Enterprise Explorer view, double-click the application’s EJB module to
expand it.

2. Double-click EJB deployment descriptor. The EJB Deployment Descriptor
Editor opens. Select the Design tab.

3. Expand EJB Project (EJBModuleName), select Assembly, and click Add.

4. Select Method Permission as shown in Figure 9-9, and click OK.

Figure 9-9 Adding Method Permission

5. The Add Method Permission wizard opens. The first pane allows you to
choose the security roles that will be authorized to execute methods defined
by this method permission element.

Select the admin security role as shown in Figure 9-10 on page 340, and click
Next. The unchecked option is described in “The unchecked option” on
page 344.
 Chapter 9. Securing an Enterprise JavaBeans application 339

Figure 9-10 Selecting security roles

6. The next pane allows you to select which enterprise beans will be secured by
this method permission. Select the bean as shown in Figure 9-11 on
page 341, and click Next to see the selected bean methods.
340 WebSphere Application Server V7.0 Security Guide

Figure 9-11 Selecting beans

7. On the Method Element pane, select the methods that will be accessible by
selected security roles. You can select any subset of methods by checking the
required method names, or you can check the asterisk character (*) to select
all methods. For this example, select dMethod as shown in Figure 9-12 on
page 342, and click Finish.
 Chapter 9. Securing an Enterprise JavaBeans application 341

Figure 9-12 Selecting methods

8. Save the file.

A new <method-permission> element is added to the assembly section of the
EJB deployment descriptor. Refer to Example 9-9.

Example 9-9 Method permission element in the EJB deployment descriptor

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>OverrideTester</ejb-name>
<method-name>dMethod</method-name>
342 WebSphere Application Server V7.0 Security Guide

<method-params>
<method-param></method-param>

</method-params>
</method>

</method-permission>

We have only secured access for dMethod. All of the other methods are not
secured and can be called by anyone, unless there are security annotations
defined in the bean class. You must define method permissions for the other
methods in a similar way.

The previous example used the most detailed method element definition:
consisting of ejb-name, method-name, method-params, and method-param
elements. It is best used when security settings must be defined or overridden for
specific methods. If all of the methods of the bean have the same security
settings, the wildcard notation with the asterisk character (*) can be used, as
shown in Example 9-10. In this example, all methods of the OverrideTester bean
are accessible only to users in the admin role.

Example 9-10 Using wildcard in method permission element

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>OverrideTester</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

If a bean has many client views (for example, remote, local, and Web service
endpoint), and several of them require a separate security policy, you can use
the optional <method-intf> element. This element has to be placed after the
<ejb-name> element and allows you to specify interface type (valid values are:
Home, Remote, LocalHome, Local, ServiceEndpoint). Example 9-11 shows how
to secure methods in the remote business interface.

Example 9-11 Using method-intf to secure methods in the remote interface

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>SomeBean</ejb-name>
<method-intf>Remote</method-intf>

Best practice: Always protect access to all of the business interface methods.
 Chapter 9. Securing an Enterprise JavaBeans application 343

<method-name>*</method-name>
</method>

</method-permission>

The unchecked option
Defining a method as unchecked allows anyone to invoke it. Carefully consider if
you want to use this option.

One possible scenario is when you have many methods in the bean and only a
few of them are unprotected. In this situation, you can define one method
permission for all methods using a wildcard and a second for the unchecked
methods.

Another case might be if you have beans with security annotations and plan to to
override them with the deployment descriptor. The use of this technique,
however, must be carefully considered. If the application is not prepared to be
called by anonymous users, you can break the application.

Specifying method permission with the unchecked option is shown in
Example 9-12. As you can see, there are no <role-name> elements in this
method permission.

Example 9-12 Method permission with unchecked option

<method-permission>
<unchecked />
<method>

<ejb-name>OverrideTester</ejb-name>
<method-name>eMethod</method-name>
<method-params>

<method-param></method-param>
</method-params>

</method>
</method-permission>

Troubleshooting tip: To diagnose problems related with overriding
annotations with the EJB deployment descriptor, set the trace to:
com.ibm.ws.security.role.metadata.*=all
344 WebSphere Application Server V7.0 Security Guide

Excluding methods from execution
If you want to deny access to a specific method, you can add it to the exclude list.
Methods in the exclude list cannot be invoked by any user in any role.

To add a method to the exclude list, follow these steps:

1. In the Enterprise Explorer view, double-click the application’s EJB module to
expand it.

2. Double-click the EJB deployment descriptor to open it. Select the Design tab.

3. Expand EJB Project (EJBModuleName), select Assembly, and click Add.

4. Select Exclude List as shown in Figure 9-13, and click OK.

Figure 9-13 Adding Exclude List element

5. Select the bean, and click Next.

6. Select the methods to exclude, and click Next.

7. Click Finish to end the wizard. Save the EJB deployment descriptor.

A new <exclude-list> element is added to the assembly section of the EJB
deployment descriptor. Refer to Example 9-13 on page 346.
 Chapter 9. Securing an Enterprise JavaBeans application 345

Example 9-13 Exclude list element in the EJB deployment descriptor

<exclude-list>
<method>

<ejb-name>DescriptorTester</ejb-name>
<method-name>methodExcluded</method-name>
<method-params>

<method-param></method-param>
</method-params>

</method>
</exclude-list>

When you attempt to invoke a method that is in the exclude-list, you get the
exception that is shown in the Example 9-14.

Example 9-14 Exception while executing method that is in the exclude list

[2/24/09 16:33:49:796 CET] 00000026 SecurityColla A SECJ0053E:
Authorization failed for defaultWIMFileBasedRealm/joe while invoking
(Bean)AppSecuritySample#AppSecuritySampleEJB.jar#DescriptorTester
methodExcluded::3
AppSecuritySample:AppSecuritySampleEJB.jar:DescriptorTester:methodExclu
ded::3 is excluded

After security settings for the application are defined, you have to map users
from the user registry to the security roles. You can use either Rational
Application Developer for WebSphere Software V7.5 or the application server
during or after the application installation (refer to 7.2, “Deploying a secured
enterprise application” on page 254).

9.5 Programmatic security

Programmatic security allows the developer to get details about the
authenticated user, including the user’s identity and security role. This type of
security is useful when declarative security is not enough to fulfill the application
security requirements.
346 WebSphere Application Server V7.0 Security Guide

9.5.1 Security API

The javax.ejb.EJBContext interface provides two methods that allow the bean
provider to access security information about the enterprise bean caller:

� java.security.Principal getCallerPrincipal(): This method allows the developer
to get the name of the caller.

� Boolean isCallerInRole(Sting roleNameReference): This method allows the
developer to test if the calling user has the specific role.

To use these methods, you first need to get the object that implements the
javax.ejb.SessionContext interface. The SessionContext interface extends the
EJBContext interface and has additional methods that might be useful for the
session bean developer. Use resource injection to initialize the SessionContext
variable as shown in Example 9-15.

Example 9-15 Injecting SessionContext

@Stateless
public class SecurityTester implements SecurityTesterLocal {

@Resource
SessionContext ctx;

...
}

The getCallerPrincipal method can be used to get the name of the calling user as
shown in Example 9-16. Later, you can store the user name that was obtained in
a log file or a database to provide auditing for user actions in the application.

Example 9-16 The getCallerPrincipal method

...
// get the caller principal
Principal principal = ctx.getCallerPrincipal();
// print caller name to system out
System.out.println("methodX called by: " + principal.getName());

Note: The getCallerPrincipal method, according to the specification, cannot
return null. If the bean is called by an unauthenticated user, the
principal.getName() method will return the name “UNAUTHENTICATED”.
 Chapter 9. Securing an Enterprise JavaBeans application 347

Be aware that the format of the principal name is not defined in the specification,
and it is not standardized. It can vary depending on user registry settings and
application server security settings. For example, if an application server is
configured to return realm-qualified user names, getCallerPrincipal returns a
user name prefixed with the realm name. For example, it might return
defaultWIMFileBasedRealm/gas instead of gas. You can configure this option
using the administrative console in the Global Security page as shown in
Figure 9-14.

Figure 9-14 Realm-qualified user names option

The isCallerInRole method allows the developer to make access decisions in the
method body based on the user’s role. For example, users with a specific role
can accept credit requests with a higher amount, and so forth. Example 9-17
shows how to use this method.

Example 9-17 Using isCallerInRole method

// check if user is in role
 if(ctx.isCallerInRole("manager")) {
 System.out.println("You are a member of manager role");
 // ... do something for managers here
 }
 else {
 // ordinary users go here
 }
348 WebSphere Application Server V7.0 Security Guide

The parameter in the isCallerInRole method is a security role reference. This
reference has to be defined either through annotations or in the EJB deployment
descriptor. If there is no reference with the given name specified, the container
assumes that the parameter is a security role name and checks if the user is in
this role. If the user is not in the specified role or there is no role with given name,
the method returns false.

Defining security role references using annotations
A security role reference can be defined using the @DeclareRoles annotation.
The DeclareRoles annotation can be specified at the class level only and is used
to define roles that are tested by calling isCallerInRole.

Example 9-18 shows how to define a role reference using the DeclareRole
annotation and then how to use it later in the bean method.

Example 9-18 DeclareRoles definition and usage sample

// Declaration of the manager role reference
@DeclareRoles("manager")
@Stateless
public class SecurityTester implements SecurityTesterLocal {

// We need to inject SessionContext to check the role assignment
@Resource
SessionContext ctx;

public void testRoles() {

// role defined by RolesDefined annotation
if(ctx.isCallerInRole("manager")) {

 System.out.println("You are a member of manager role");
}
// role defined by RolesAllowed annotation
if(ctx.isCallerInRole("admin")) {

Note: In the isCallerInRole method, you can use any of the references and
roles that are defined by:

� DeclareRole annotations

� RolesAllowed annotations, even if they are used in different beans

� Security role references that are defined in the EJB deployment descriptor

� Security roles that are defined in the EJB deployment descriptor

Do not repeat values from RolesAllowed or the EJB deployment descriptor in
the DeclareRoles annotation.
 Chapter 9. Securing an Enterprise JavaBeans application 349

 System.out.println("You are a member of admin role");
}
....

}

@RolesAllowed(“admin”)
public String methodForRole() {

 ... }
}

Any roles that are defined using the DeclareRole annotation must be mapped to
users or groups from the user registry. Map them using Rational Application
Developer for WebSphere Software V7.5 or on the application server during or
after the application installation (refer to Chapter 7, “Application security” on
page 253).

Defining security role references
Security role references are used to separate the role names that are hardcoded
in the bean class by the developer from the roles that are defined at assembly. At
assembly, you can link role references to the security roles defined in the
application deployment descriptor. With EJB 3.0 and security annotations, role
names are hardcoded in the bean class anyway, so the usage of references in
the EJB deployment descriptor is less important, however, still possible.

The following steps describe how to create a security role reference and link it to
a security role using the EJB deployment descriptor. We assume that the EJB
deployment descriptor is already generated. Follow these steps:

1. In the Enterprise Explorer view, double-click application’s EJB module to
expand it.

2. Double-click the EJB deployment descriptor to open it. Select the Design tab.

3. Expand EJB Project (EJBModuleName)  Enterprise Beans. Add a new
enterprise bean with the name SecurityTester and the EJB class
com.ibm.itso.security.ejb.SecurityTester (similar to “Adding enterprise
beans” on page 336).

4. Select SecurityTester bean, and click Add.

5. Select Security Role Reference as shown in Figure 9-15 on page 351 and
click OK.
350 WebSphere Application Server V7.0 Security Guide

Figure 9-15 Adding Security Role Reference

6. The Add Security Role pop-up window opens. Specify the role reference used
in the code in the Name field, and link the reference to the security role using
the Link field as shown in Figure 9-16 on page 352. If you do not have any
security roles defined, refer to “Defining security roles” on page 333 for
information about how to define one.
 Chapter 9. Securing an Enterprise JavaBeans application 351

Figure 9-16 Defining and linking security reference

Click Finish.

7. Save the EJB deployment descriptor.

A new <security-role-ref> element is added to the SecurityTester bean
definition in the EJB deployment descriptor. It contains the reference name and
the role name to which the reference is linked. Refer to Example 9-19.

Example 9-19 Security reference in the EJB deployment descriptor

<session>
<ejb-name>SecurityTester</ejb-name>
<ejb-class>com.ibm.itso.security.ejb.SecurityTester</ejb-class>
<security-role-ref>

<description></description>
<role-name>userRoleRef</role-name>
<role-link>user</role-link>

</security-role-ref>
</session>
352 WebSphere Application Server V7.0 Security Guide

9.6 Delegation

When a bean calls a method in another bean, the identity of the first caller is, by
default, propagated to the next. In this way, all EJB methods in the calling chain
see the same principal if they were to call the getCallerPrincipal() method.
Occasionally, however, it is desirable for one EJB to call another EJB with a
previously defined identity, for instance, one that is a member of a specific role.

For example, consider the message-driven bean’s onMessage() method, which
calls a protected method in a session bean. Because message-driven beans’
onMessage() methods are executed with no caller identity, this method cannot
call protected session beans. By delegating the onMessage() method to run as a
role that is allowed to invoke methods of the session bean, the onMessage()
method can successfully access the protected method.

9.6.1 Bean-level delegation

The EJB specification allows delegation only at the bean level. Therefore, all
methods of the given bean will call other beans under a specific RunAs role. This
role can be defined either by using security annotation or the deployment
descriptor. After the RunAs role is defined, it must be mapped to a real user that
is a member of the specified role. You can map it in Rational Application
Developer for WebSphere Software V7.5 or on the application server during or
after the application installation (refer to Chapter 7, “Application security” on
page 253). All calls made by the delegated bean are done using the identity of
the mapped user.

Figure 9-17 on page 354 shows EJB delegation in contrast to the default Run-As
Caller mode. Follow these steps:

� In the top scenario, the identity of the caller, caller01, is propagated from
EJB1 to EJB2.

� In the bottom scenario, EJB1 is delegated to run as role01. During run-as
mapping, another user, caller02, is mapped to role01, and therefore, it is
effectively caller02 that calls EJB2. If EJB2 were to call EJB3, EJB3 also
appears to have been called by caller02.
 Chapter 9. Securing an Enterprise JavaBeans application 353

Figure 9-17 Run as Caller compared to Run as Role

Using annotation
The @RunAs security annotation defines the role that will be used for delegation.
This annotation can be specified at the class level as shown in Example 9-20.
The role name given as the annotation value must have been defined earlier
using DeclareRole or RolesAllowed annotation.

Example 9-20 Using RunAs annotation

import javax.annotation.security.RunAs;

@DeclareRoles({"runAsRole"})
@RunAs("runAsRole")
@Stateless
public class RunAsCaller implements RunAsCallerLocal {
...
}

Run As Caller (Default)

EJB2

identity=caller01

EJB1

identity=caller01
caller01

EJB2

identity=caller02

EJB1

identity=caller01
caller01

Run as Role = Role01

username = caller02
password = xxxxxxx

Role01

Run As Role

Run As
Mapping
354 WebSphere Application Server V7.0 Security Guide

Using the deployment descriptor
Perform the following steps to define delegation using the EJB deployment
descriptor:

1. In the Enterprise Explorer view, double-click the application’s EJB module to
expand it.

2. Double-click the EJB deployment descriptor to open in the EJB Deployment
Descriptor Editor. Select the Design tab.

3. Expand EJB Project (EJBModuleName)  Enterprise Beans. Add a new
enterprise bean with the name RunAsCallerDescriptor and the EJB class
com.ibm.itso.security.ejb.RunAsCallerDescriptor (refer to “Adding enterprise
beans” on page 336).

4. Select RunAsCallerDescriptor, and click Add.

5. Select Security Identity as shown in Figure 9-18, and click OK.

Figure 9-18 Adding Security Identity element
 Chapter 9. Securing an Enterprise JavaBeans application 355

6. The Security identity wizard opens. Select the desired run-as mode:

– Use identity of caller: This mode is the default setting. The caller identity is
used to invoke other beans.

– Use identity assigned to specific role: The identity mapped to the specified
role is used to invoke other beans. You can only select from security roles
that have already been defined in the EJB deployment descriptor.

For this example, select admin from the list as shown in Figure 9-19, and
click Next.

Figure 9-19 Specifying runAs role
356 WebSphere Application Server V7.0 Security Guide

7. On the Enterprise Bean Selection panel, select RunAsCallerDescriptor, and
click Finish.

8. Save the EJB deployment descriptor.

A new <security-identity> element is added to the RunAsCallerDescriptor
bean definition in the EJB deployment descriptor as shown in Example 9-21.

Example 9-21 Security identity element in the EJB deployment descriptor

<session>
<ejb-name>RunAsCallerDescriptor</ejb-name>

<ejb-class>com.ibm.itso.security.ejb.RunAsCallerDescriptor</ejb-class>
<security-identity>

<description></description>
<run-as>

<description></description>
<role-name>admin</role-name>

</run-as>
</security-identity>

</session>

9.6.2 Method-level delegation

WebSphere Application Server supports an extension that allows you to define
the RunAs delegation at the method level. With method-level delegation, you can
specify various RunAs roles for methods in the same enterprise bean.

Method-level delegation is defined through the EJB extension deployment
descriptor (ibm-ejb-jar-ext.xml). By default, JEE 5 application does not have
deployment descriptors, so you need to generate one. The quickest way is to
select the enterprise application project, right-click, and then, select Java EE 
Generate WebSphere Extensions Deployment Descriptor as shown in
Figure 9-20.

Figure 9-20 Generating EJB extension deployment descriptor
 Chapter 9. Securing an Enterprise JavaBeans application 357

Example 9-22 shows the generated application bindings deployment descriptor.

Example 9-22 Generated extensions deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-ext

xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee

http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-ext_1_0.xsd"
version="1.0">

</ejb-jar-ext>

The following example illustrates how to define method-level delegation:

1. In the Enterprise Explorer view, expand the application’s EJB module 
ejbModule  META-INF.

2. Double-click ibm-ejb-jar-ext.xml to open the EJB Extensions Editor. Select
the Design tab.

3. Select EJB JAR Extensions, and click Add.

4. Select Session Bean, and click OK.

5. Select the newly added Session Bean element, and enter the EJB name as
shown in Figure 9-21.

Figure 9-21 Specifying bean name

6. Select Session Bean, and click Add.

7. Select Run As Mode as shown in Figure 9-22 on page 359, and click OK.
358 WebSphere Application Server V7.0 Security Guide

Figure 9-22 Adding Run As Mode element

8. Select the new Run As Mode element and select the desired mode:

– CALLER_IDENTITY: The caller identity is used to invoke other beans.

– SPECIFIED IDENTITY: An identity mapped to a specified role is used to
invoke other beans.

When SPECIFIED_IDENTITY is selected as the mode, you need to
provide the Role name also.

– SYSTEM_IDENTITY: The server identity is used to invoke other beans.

For this example, select CALLER_IDENTITY as shown in Figure 9-23 on
page 360.

Note: The RunAs system identity delegation only works when the
server ID and password are used. When the internalServerId feature is
used, it does not work, because runAs with system identity is not
supported. When internalServerID is used, use RunAsSpecified with a
user ID and password that are mapped to the administrator role.

Choosing between internalServerId or specified serverID is done on the
user registry configuration page. You can access it by clicking
Security  Global Security and clicking Configure in the User
account repository section.
 Chapter 9. Securing an Enterprise JavaBeans application 359

Figure 9-23 Selecting Run As Mode

9. Select Method and enter the method name that will use the Run As Mode as
shown in Figure 9-24.

Figure 9-24 Specifying the method name

10.Repeat steps 6-10 and add two additional Run As elements with following
parameters:

– First entry:

• Mode: SPECIFIED_IDENTITY
• Role: admin
• Method name: testRunAsRole

– Second entry:

• Mode: SYSTEM_IDENTITY
• Method name: testRunAsSystem
360 WebSphere Application Server V7.0 Security Guide

11.Save the extension deployment descriptor.

The new <run-as-mode> elements are added to the EJB extension deployment
descriptor as shown in Example 9-23.

Example 9-23 Run As Mode elements in the extension deployment descriptor

<session name="RunAsCallerMethod">
<run-as-mode mode="CALLER_IDENTITY">

<method type="UNSPECIFIED" name="testRunAsClient"/>
</run-as-mode>

<run-as-mode mode="SPECIFIED_IDENTITY">
<specified-identity role="admin"/>
<method type="UNSPECIFIED" name="testRunAsRole"/>

</run-as-mode>
<run-as-mode mode="SYSTEM_IDENTITY">

<method type="UNSPECIFIED" name="testRunAsSystem"/>
</run-as-mode>

</session>

9.7 Java Authentication and Authorization Service

In rare cases, standard authentication mechanisms might be not sufficient.
WebSphere Application Server provides Java Authentication and Authorization
Service (JAAS) to allow you to use customized login mechanisms.

Example 9-24 on page 362 shows how to use JAAS to perform programmatic
authentication to the WebSphere security run time. In this example, a
message-driven bean retrieves user data from the message, logs it, and calls a
session bean using the new credentials.

More information: A detailed explanation of the JAAS framework and its
components is out of the scope for this chapter. You can obtain more
information in the WebSphere Application Server Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.
websphere.express.doc/info/exp/ae/tsec_jaasauthentprog.html
 Chapter 9. Securing an Enterprise JavaBeans application 361

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tsec_jaasauthentprog.html

Example 9-24 Programmatic login

public void onMessage(Message message) {
// retrieve user data from the message
...
// create login context
LoginContext lc = new LoginContext("WSLogin",

new WSCallbackHandlerImpl(userid, password));
// do login
lc.login();
// retrieve subject
Subject subject = lc.getSubject();
// set new identity
WSSubject.setRunAsSubject(subject);
// call session bean
callee.ping();
// logout - destroy credentials
lc.logout();
....

}

In this example, note the following information:

� Example 9-24 uses one of the standard login configurations: WSLogin. This
login is a generic JAAS login configuration that can be used by Java clients,
client container applications, servlets, JavaServer Pages (JSP) files, and EJB
components to perform authentication based on a user ID and password, or a
token.

� In addition to the login configuration, a callback handler is also needed to get
the authentication data. Because this example is server-side authentication, it
has to use the non-prompt handler implementation, which is called
WSCallbackHandlerImpl.

� The WSSubject.setRunAsSubject method sets a new run as identity on the
current thread. The call, callee.ping(), uses this new identity.

� At the end, the lc.logout() method is called to clean up and ensure that there
are no credential leaks.
362 WebSphere Application Server V7.0 Security Guide

9.7.1 WSSubject API

The WSSubject class allows a developer to get information about the current
user. This class is available in the WebSphere containers. This list contains the
most useful methods in this class:

� String getCallerPrincipal() returns the user name of the current user.

� Subject getCallerSubject() returns the complete subject of the caller.

� doAs() methods methods allow the code to be executed under a different
identity. The doAs method requires a separate object for execution. Refer to
Example 9-25.

Example 9-25 Using a doAs() method

//login programmatically
...
//do something using identity
WSSubject.doAs(subject, newRunner(out));
//logout
...

class Runner implements java.security.PrivilegedAction{
PrintWriterout;
publicRunner(PrintWriterout) {

this.out= out;
}
public Object run() {

doSomethingSecure();
return null;

}
};

� Subject getRunAsSubject() returns the current runAs subject.

� Void setRunAsSubject() is similar to the doAs method, but it does not require
a separate object (Example 9-26).

Example 9-26 Using setRunAs method

Subject s = // login here
WSSubject.setRunAsSubject((s);
doSomethingSecure();
// logout here
....
 Chapter 9. Securing an Enterprise JavaBeans application 363

Example 9-27 shows how to get additional information about the current user
(security name, unique id, realm, groups, and so forth).

Example 9-27 Getting additional information about the current user

Subject callerSubject = WSSubject.getCallerSubject();
Set<WSCredential> credentials =

callerSubject.getPublicCredentials(WSCredential.class);
// should contain only one credential
int credSize = credentials.size();
if(credSize != 1)

throw new RuntimeException(“Invalid credential number: ”+credSize);
SCredential cred = credentials.iterator().next();
System.out.println("getSecurityName: " + cred.getSecurityName());
System.out.println("getUniqueSecurityName: " +

cred.getUniqueSecurityName());
System.out.println("getRealmName: " + cred.getRealmName());
System.out.println("getRealmSecurityName: " +

cred.getRealmSecurityName());
System.out.println("getRealmUniqueSecurityName: " +

cred.getRealmUniqueSecurityName());
// always return null
System.out.println("getRoles: " + cred.getRoles());
ArrayList groupIds = cred.getGroupIds();
System.out.println("getGroupIds: " + groupIds);

// Sample output from the above code:
getSecurityName: gas
getUniqueSecurityName: uid=gas,o=defaultWIMFileBasedRealm
getRealmName: defaultWIMFileBasedRealm
getRealmSecurityName: defaultWIMFileBasedRealm/gas
getRealmUniqueSecurityName:
defaultWIMFileBasedRealm/uid=gas,o=defaultWIMFileBasedRealm
getRoles: []
getGroupIds:
[group:defaultWIMFileBasedRealm/cn=admins,o=defaultWIMFileBasedRealm]

Note: Currently, you cannot get information about user roles. The
WSCredential.getRoles() method always returns null. It is provided for future
enhancements.
364 WebSphere Application Server V7.0 Security Guide

9.8 Using annotations

The following rules apply to using annotations:

� The PermitAll, DenyAll, and RolesAllowed annotations cannot be applied on
the same method or class.

� The method-level annotations take precedence over the class-level
annotation.

� Settings in a deployment descriptor take precedence over annotations.

� Annotations are not inherited, yet they can apply to methods, which are
inherited. So if a method is overridden, the annotation is overridden (the
super class annotation is lost). This override is explained in Example 9-28.

Example 9-28 Annotation inheritance

@RolesAllowed("user")
public class ParentClass {

public void aMethod() { ... }
public void bMethod() { ... }
public void cMethod() { ... }

}

@Stateless
public class InheritanceTester extends ParentClass implements
InheritanceTesterLocal {

// overrides annotation explicitly
@RolesAllowed(value={"admin"})
public void aMethod() { ... }

// overrides method - uses current class role assignments
public void bMethod() { ... }

// cMethod() not overridden - uses parent class role assignments
}

Assuming that aMethod, bMethod and cMethod are part of the
InheritanceTesterLocal interface, method permitions in the
InheritanceTester bean are as follows:

– aMethod - @RolesAllowed(“admin”)

– bMethod - not specified

– cMethod - @RolesAllowed(“user”)
 Chapter 9. Securing an Enterprise JavaBeans application 365

A comparison of annotations and deployment descriptor settings is shown in
Table 9-1.

Table 9-1 Annotations compared to deployment descriptors

Best practice: Although it is legal to use annotations and EJB deployment
descriptor entries at the same time to specify security settings, to avoid
confusion, we strongly recommend that you use either annotations or the EJB
deployment descriptor.

Security annotation Deployment descriptor

Security settings are defined in the Java
class file but they can be overridden by
descriptor settings.

The security settings are in an external
XML file.

Annotations are defined by the Java
developer, also known as the Bean
Provider.

The deployment descriptor is usually
defined by the Java developer, but it can
also be defined later by Assembler.

Annotations are easier to define during
development; just add the annotation in
the class.

The deployment descriptor is harder to
define during development; you need to
create and maintain the descriptor.

Annotations are harder to change; you
need to change and recompile Java
source files.

The deployment descriptor is easier to
change; just change the XML file without
touching the application code.

Annotation syntax knowledge is required. XML descriptor syntax knowledge is
required.

It is harder to see the entire application
security view. Annotations are scattered
among many classes. There are
currently no tools in Rational Application
Developer to see a generated descriptor
easily.

It is easier to see the entire application
security view, because everything is
defined in one descriptor.

Annotations still require separate
descriptors to define bindings and
extensions.

Bindings and extensions are in separate
descriptors.

Annotations are useless for web
modules. Most of the information must be
in the deployment descriptor (login
configuration, security constraints, and
so forth). Only the security roles and the
runAs role can be defined using
annotations.

The deployment descriptor must be used
for Web modules anyway.
366 WebSphere Application Server V7.0 Security Guide

For more information, refer to these resources:

� Common Annotations for the Java Platform at:

http://jcp.org/aboutJava/communityprocess/final/jsr250/index.html

� Enterprise JavaBeans, Version 3.0 core contracts and requirements at:

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
 Chapter 9. Securing an Enterprise JavaBeans application 367

http://jcp.org/aboutJava/communityprocess/final/jsr250/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr250/index.html

368 WebSphere Application Server V7.0 Security Guide

Part 3 z/OS specifics

Part 3
© Copyright IBM Corp. 2009. All rights reserved. 369

370 WebSphere Application Server V7.0 Security Guide

Chapter 10. WebSphere z/OS and local
operating system security

Protecting sensitive and confidential data from malicious intruders, deadly
viruses, and worms is not an easy task. It requires constant monitoring of the
daily IT business operations and deploying the latest security technology.
WebSphere Application Server for z/OS security and the underlying operating
system infrastructure security can provide clients running enterprise applications
with secure and reliable services. These services are consistently managed by a
security product, such as IBM Resource Access Control Facility (RACF). This
chapter will focus on the use of RACF as the underlying infrastructure for
WebSphere Application Server for z/OS security.

This chapter contains the following sections:

� “Local operating system (LocalOS) security” on page 372
� “User ID strategy for a Network Deployment environment” on page 373
� “Administrative security” on page 376
� “RACF jobs for WebSphere z/OS” on page 388
� “System Authorization Facility authorization” on page 392
� “Generic RACF profiles (best practices)” on page 399
� “Case-sensitive passwords for RACF” on page 405
� “Fine-grained security” on page 407
� “Naming service security” on page 414

10
© Copyright IBM Corp. 2009. All rights reserved. 371

10.1 Local operating system (LocalOS) security

The security infrastructure of the underlying operating system provides certain
services to the WebSphere security application. This service includes the file
system security support to secure sensitive files in WebSphere product
installation. The WebSphere system administrator can configure the product to
obtain authentication information directly from the operating system user registry.
On z/OS, the WebSphere LocalOS registry option leverages System
Authorization Facility (SAF). SAF is a common set of APIs supporting the ability
for a pluggable z/OS security manager, such as RACF or a third-party
equivalent, to manage the authentication and authorization needs on z/OS.
These security products contain information about users, groups, resources, and
resource access permissions. The purpose of these products is to provide
authentication and access control for the z/OS environment.

RACF provides the following capabilities and functionality:

� Create and manage digital certificates.

� Protect data sets and UNIX System Services hierarchical file system (HFS)
files.

� Protect system resources and services.

� Manage a large user database, and add, delete, list, and change user
profiles.

Authentication and authorization in RACF is very straightforward. When a user
requests a service from the system, RACF first checks whether the user is
defined to RACF. If yes, RACF checks whether the user is authorized to access
that resource. A user can be in a suspended or revoked state and is not given
any system privilege until the suspension or revocation is resolved.

RACF keeps a profile for each system resource user that it knows, and the profile
is kept in storage in the format that is shown in Figure 10-1.

Figure 10-1 RACF profile

TSOTCP/IPOMVS

SegmentsGroups
Security

Classifications
AttributesPasswordOwnerUser ID
372 WebSphere Application Server V7.0 Security Guide

As you can see in Figure 10-1 on page 372, the RACF profile contains:

� User ID and password. The password is encrypted.

� Owner of the profile. The owner can be a group or a single user.

� Attributes, which allow users to perform specific tasks with RACF. Five
attributes that can be specified are special, auditor, operations, restricted,
and protected.

� Security classifications are optional, but they give an additional way of
controlling user authority.

� Segments are z/OS process or address spaces, such as TSO, OMVS, and
CICS® , that can be added to a user profile.

Finally, RACF provides a way to record what is done on the system. It keeps
track of what happens on the system so that an organization can monitor who is
logged on the system at any time. RACF reports whether anyone has attempted
to perform unauthorized actions. For example, RACF can record that a user has
tried to access or change data to which that user does not have the correct
authority.

Access Control Element
The access control environment element (ACEE) is storage (a control block) that
represents a user or task credentials, which contain the profile information of a
user who is currently active. ACEE is constructed and anchored on the z/OS
address space, representing the credentials for the address space. Optionally,
another ACEE can be anchored on the Task Control Block (TCB), representing
the credential of the executing thread.

10.2 User ID strategy for a Network Deployment
environment

When planning for the customization of a cell, it is expedient to think about the
user ID strategy for the complete Network Deployment environment. During the
customization, the user IDs of all necessary started tasks (STC) is defined. As a
result, the RACF jobs will be generated to create the IDs. Changing user IDs in
an existing environment can be very painful, because they have an impact on all
RACF profiles, certificates, and keyrings. In practice, the fastest way to get all
required definitions for the new user ID is to regenerate the RACF jobs for each
node using Profile Management Tool (PMT).

As illustrated in Figure 10-2 on page 374, strategies for assigning user IDs range
from a common approach, where all control regions share one user ID and all
 Chapter 10. WebSphere z/OS and local operating system security 373

servant regions share another user ID, to a unique approach, where each
address space has a unique user ID.

Figure 10-2 Common and unique started task user IDs

Many clients have implemented the common approach. It is simpler and requires
fewer SAF profile definitions, particularly when adding new nodes and servers.
For the common approach, the number of SAF profiles can be dramatically
reduced by implementing generic RACF profiles as pointed out in 10.6.1,
“Generic RACF profiles using wildcards” on page 401.

We recommend that you at least differentiate between the control region and the
servant region as outlined in the common approach, because it isolates the
IBM-authorized code that runs in the control region from the application code that
runs in the servant region. The disadvantage of the common approach is that it
becomes more difficult to find the origin of a security violation.

In contrast, the unique approach offers the highest level of isolation and the
ability to perform charge backs in an organization where WebSphere
environments are departmentalized. The disadvantage of this solution is that a
new SAF keyring is required for every new user ID. For an insolated
environment, sharing the certificates across the cell is not an option.
Consequently, new certificates need to be generated for each keyring. Moreover
for each new application server, many SAF profiles need to be defined. As a
result, the security administration becomes more complicated.

CR SR

AppServer

CR SR

AppServer

CR

Node Agnt

CR SR

DMGR

ACR

Daemon
ID

ID

ID
ID

ID

ID

ID

ID

CR SR

AppServer

CR SR

AppServer

CR

Node Agnt

CR SR

DMGR

ACR

Daemon

Controller
ID

Servant ID

Common Unique
374 WebSphere Application Server V7.0 Security Guide

The required RACF profiles for a new server with a unique user ID are explained
in the WebSphere Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/csec_safclasses.html

In practice, a user ID strategy will be selected somewhere between both
approaches. A good approach is, for instance, to follow the common approach as
long as an application does not have special requirements regarding security.
Applications with special security requirements can then be isolated using
separate user IDs for that dedicated application server.

In addition, a user ID strategy based more on the common approach can take
advantage of the generic RACF profiles that are described in 10.6.1, “Generic
RACF profiles using wildcards” on page 401.

Figure 10-3 illustrates an environment that shares user IDs across a horizontal
cluster. In this case, the application server control regions (CRs) and servant
regions (SRs) have been isolated from the deployment manager CRs and SR. In
addition, the daemon also runs under another user ID.

Figure 10-3 Example of a user ID strategy in a cluster environment

LPAR SC05LPAR SC04

DMGR Node

Cell WPCELL

CR

WPDEMN

Daemon

CR SR

WPDMGR
Deployment Mgr.

Node WPNODEB

CR

WPN01B

Node Agent

CR

WPDEMN

Daemon

Cluster
WPC01

CR

WPS01B

SR

AppServer

CR SR

WPS02B

AppServer

Node WPNODEA

CR

WPNODEA

Node Agent

CR

WPS01A

SR

AppServer

CR SR

WPS02A

AppServer

UserID
WPDEMN

WPACR

WPDMGR WPDMGRSID ID

ID

ID

ID

WPASR
 Chapter 10. WebSphere z/OS and local operating system security 375

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_safclasses.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_safclasses.html

10.3 Administrative security

Beginning with WebSphere Application Server V6.1 for z/OS, global security has
been split into administrative and application security. Administrative security
can be enabled during profile creation for a deployment manager, stand-alone
application server, custom node, job manager, and the secured proxy.
Administrative security, which is already operational, prevents unauthorized
access to the administrative console and enables secure connections between
each component using Secure Sockets Layer (SSL). In contrast, application
security must be enabled after profile creation to restrict access to the
applications. When application security is activated, the authentication method
and the required Java Platform, Enterprise Edition (EE) roles in the deployment
descriptor of an application take effect.

With WebSphere Application Server Version 7.0, the deprecated ISPF
(Interactive System Productivity Facility)-Panels are no longer available. The
new WebSphere Configuration Tool (WCT) with the built-in Profile Management
Tool (PMT) have replaced the ISPF-Panel for customizing a WebSphere z/OS
environment. The panels that are shown in this section illustrate the security
setup options of the PMT dialog.

10.3.1 Common groups and user IDs

During profile customization, you define common groups and users for the new
WebSphere environment according to the selected user ID strategy.

Figure 10-4 on page 378 shows the panel where the following SAF user IDs are
defined:

� Administrator user ID

The server administration user ID needs to be defined with a password. The
expiry policies for passwords need to be checked with your security
administrators. We advise that you either assign a non-expiring password or
have good password reset policies.

ALTUSER WTADMIN PASSWORD(password) NOEXPIRED

With Version 6.1, a new user ID was introduced called the HFS owner (file
system owner), and it disappeared in Version 7.0. The HFS file system is
owned by the WPADMIN user, which belongs to the WPCFG group.

� Control region (CR) user ID

This user ID can be reused for the CRs of additional application servers
across the cell.
376 WebSphere Application Server V7.0 Security Guide

� Server servant region (SR) user ID

This user ID can be reused for the SRs of additional application servers
across the cell.
 Chapter 10. WebSphere z/OS and local operating system security 377

Figure 10-4 Configure common users
378 WebSphere Application Server V7.0 Security Guide

Moreover, the following SAF groups are created during the customization of the
WebSphere environment (Figure 10-5 on page 380):

� Configuration group

The configuration group contains all started task control (STC) user IDs,
such as the daemon, deployment manager CR and SR, application server CR
and SR, and the node agent. All permissions in the WebSphere configuration
file system are based on the administration user ID and the configuration
group. Most of the files in the configuration file system have the permissions
775 and 770, which allow all members of this group to access the
configuration file system.

� Servant region group

All servant region user IDs must be connected to this group. The major
advantage of this group is that permissions for connections to other
subsystems, such as CICS and DB2, can be granted centrally.

� Local user group

All unauthenticated user IDs, such as the guest user, belong to this group.
 Chapter 10. WebSphere z/OS and local operating system security 379

Figure 10-5 Configure common groups

The relationship of the user IDs to groups is shown in Figure 10-6 on page 381.
380 WebSphere Application Server V7.0 Security Guide

Figure 10-6 Relationship of user IDs to certain groups

10.3.2 Security configuration options

In the customization process, there are three options for the user registry from
which you can select as illustrated in Figure 10-7 on page 382.

Same Group
IDs used by
all Base App
Server Nodes

 Server

Cell

JCL Start
Procedure

Controller
address
space

Servant
address
spaces

JCL Start
Procedure

JCL Start
Procedure

U

G

STARTED
Profile

STARTED
Profile

STARTED
Profile

Daemon
address
space

G Configuration
Group

Servant Group

U Unauthenticated
Userid

U Controller
Userid

G Unauthenticated
User Group

Daemon
Userid

U Servant
Userid

U Administrator
Userid

Adjunct
address
space

Node
 Chapter 10. WebSphere z/OS and local operating system security 381

Figure 10-7 Administrative Security: Use a z/OS security product

In the following section, we explain the features of each option.

Option 1: Use a z/OS security product
If you want to enable administrative security and use a local z/OS repository for
authentication and authorization, you must choose this option. These
characteristics define this option:

� Each WebSphere Application Server user and group identity correspond to a
user ID or group in the z/OS system’s SAF-compliant security server, such as
RACF.

� Access to WebSphere Application Server Java Platform, Enterprise Edition
(Java EE) roles is controlled using the SAF EJBROLE class profiles in
conjunction with the GEJBROLE class, if you choose to use the grouping
class.

� Digital certificates for SSL communication are stored in the z/OS security
product.

For WebSphere Application Server for z/OS, SAF is always used to control
started task identities and the digital certificate of the location service daemon.
382 WebSphere Application Server V7.0 Security Guide

However, if this option is selected, all WebSphere Application Server
administrators and administrative groups must be defined to SAF as well.

This option is appropriate when servers or cells reside entirely on z/OS systems,
with SAF as the user registry. If you plan to implement a Lightweight Directory
Access Protocol (LDAP) or a custom user registry and plan to map LDAP/CUR
identities to SAF identities and use SAF authorization, choose this option. That
way, the initial SAF EJBROLE setup is performed. We provide more information
about LDAP as a user registry in Chapter 12, “WebSphere z/OS and user
registries” on page 433.

Option 2: Use WebSphere Application Server security
In option 1, the user authentication and authorization policy is managed through
SAF. In all options, SAF is used to control WebSphere Application Server for
z/OS started task identities, as well as the location service daemon’s digital
certificate. However with option 2, users and groups are defined in the
WebSphere Application Server user registry, and authorization is managed by
WebSphere Application Server. These characteristics define option 2:

� Each WebSphere Application Server user and group identity corresponds to
an entry in a WebSphere Application Server user registry. The initial user
registry is a federated repository, a simple file-based user registry created
during customization and residing in the configuration file system.

� Access to WebSphere Application Server roles is controlled using
WebSphere role bindings. In particular, administrative role bindings are set
through the Administrative User Roles and Administrative Group Roles
settings in the administrative console.

� Digital certificates for SSL communication are stored in the configuration file
system. All necessary server certificates are created in the configuration file
system automatically by WebSphere Application Server.

When option 2 is selected, an additional panel is provided for you to specify the
administrator user ID. This user ID is stored in the file-based user registry and
used as the initial administrative user. The sample user ID is optional. This field
appears after you have selected the option to install the sample application.

Option 3: Do not enable security
If you select Do not enable security, administrative security will not be
activated.

Recommendation
We recommend that you enable global security during the customization process
of the cell and that you select Use a z/OS security product.
 Chapter 10. WebSphere z/OS and local operating system security 383

As a result of this selection, PMT will generate a RACF job, including all
necessary RACF profiles, certificates, and keyrings for an secured environment.
If “Do not enable security” or “Use WebSphere Application Server” is selected,
these additional RACF definitions will not be generated. Moreover, the keystores
and truststores, including the certificate, will be located in the UNIX file system of
the WebSphere configuration and not in SAF. If you decide to use the SAF
authorization provider in a later stage, these RACF definitions need to be defined
manually. For SSL configuration, the keystore, as well as the truststores, must be
regenerated in the administrative console to use SAF-managed keyrings.

We also recommend that you use a z/OS security product for the following
reasons:

� Risk of falsification of data

RACF user control is much more difficult to be falsified than WebSphere
Application Server security user control, in which case information is stored in
flat files.

� Easy to change security configuration

Regarding the RACF setup, it is easier to change from z/OS security to
another option than from another option to z/OS security.

In development environments, there are sometimes requirements to disable
global security. In this case, it is a common approach to enable global security
with the SAF authorization provider during the customization process and turn off
administrative security after cell construction. The benefit of this solution is the
flexibility to turn on administrative security without the need to define additional
SAF profiles, certificates, and keyrings.

In certain cases, global security has been disabled during the construction of a
Network Deployment environment in order to avoid SSL problems with the
federation of nodes. These problems are mainly caused by untrusted CA
certificates, which must be added to the keyring of the job submitter. There is no
need to turn off security during a node federation.
384 WebSphere Application Server V7.0 Security Guide

Comparison of options
For a comparison of WebSphere Application Server security configurations, refer
to Table 10-1.

Table 10-1 Comparison of default security settings

z/OS security WebSphere Application
Server security

User account
repository

Local operating system:
User IDs, groups, and
passwords are stored in SAF.

Federated repository:
User IDs and passwords are
stored in a file-based placed
UNIX System Service.

User IDs and passwords are
stored in fileRegistry.xml.

Authorization
technology
(external
authenticated
provider
security)

System Authorization Facility
(SAF) authorization:
Uses the authorization policy
that is stored in SAF.

Built-in authorization:
Uses WebSphere Security
authorization.

Administrative
role definition

SAF EJBROLE profile:
Mapping information is stored in
SAF.

Definition of EJBROLE profiles
is required. (Default roles are
defined during server
installation process.)

WebSphere Admin Role:
Mapping information is stored in
UNIX System Services:
� Information of user IDs and

roles is stored in
admin-auth.xml.

� Primary admin user ID,
which is used to log on to
the administrative console,
is stored in security.xml.

SSL
configuration:
Key store type

System Authorization Facility
keyring:
Stored in RACF DB
Key store PATH: safkeyring:///
<keyring_name>
Type: JCERACFKS

File-based key store:
Stored in UNIX System
Services.
Key store PATH:
${CONFIG_ROOT}/cells/<cell_
name>/nodes/<node_name>/<
key_file>
Type: PKCS12
 Chapter 10. WebSphere z/OS and local operating system security 385

10.3.3 z/OS security product options

When you select the z/OS security product options, you have additional
configuration options as shown in Figure 10-8 on page 387.

Application
deployment
(role mapping)

Security Authorization Facility
(SAF)-based mapping:
� Need to define new

EJBROLE profiles in RACF.
� The “Map security roles to

users or groups” step in the
deployment of an
application is ineffective.

File-based mapping:
Need to map user and role in
the “Map security roles to users
or groups” step in the
deployment of application.

BBOxBRAK
(additional
RACF
commands)

Certificates
Keyrings
CBIND
EJBROLE
Sync-to-thread
EnableTrustedApps

None

Note: The following topics assume that the z/OS security product has been
chosen. Consequently, the z/OS security product will be the user registry
(LocalOS), as well as the authorization provider.

z/OS security WebSphere Application
Server security
386 WebSphere Application Server V7.0 Security Guide

Figure 10-8 Security Managed by the z/OS Product

SAF profile prefix
The SAF profile prefix, formerly known as the SAF security domain, specifies a
<domain> prefix, which will be prepended to all CBIND and EJBROLE profiles. If
your environment consists of multiple cells within one logical partition (LPAR) or
sysplex, this prefix can be used to distinguish the administrator role in each cell.
A common approach is to use the two-character abbreviation of the cell (in this
case, WP) as the SAF profile prefix.

If the SAF profile prefix is not specified, the corresponding RACF for a CBIND
profile is structured this way:

RDEFINE CBIND CB.BIND.** UACC(READ)
PERMIT CB.BIND.** CLASS(CBIND) ID(WPCFG) ACCESS(CONTROL)
 Chapter 10. WebSphere z/OS and local operating system security 387

If he SAF profile prefix identifier is specified, the domain name is added to the
profile. The resulting RACF command is:

RDEFINE CBIND CB.BIND.<domain>.** UACC(READ)PERMIT CB.BIND.<domain>.**
CLASS(CBIND) ID(WPCFG) ACCESS(CONTROL)

The following WebSphere Information Center article provides a good overview of
all SAF prefix cases:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/csec_safsecdom.html

In 10.5.1, “SAF authorization for administrative roles” on page 393, the
EJBROLE profiles, including the <domain> prefix, are explained in detail.

Unauthenticated user ID
All users within z/OS need an identity. In particular, if sync-to-thread is enabled
and the user has not authenticated so far, an identity needs to be passed to the
operating system. In this case, the unauthenticated user ID is used. In
WebSphere z/OS, all unauthenticated users are represented by this user ID. It is
common practice to define the unauthenticated user ID with both the restricted
and protected attributes.

Enable writable SAF keyring support
The writable keyring support enhances the capabilities of the administrative
console to consistently manage keyrings and certificates, which are stored in
SAF. If this option is enabled, the required RDATALIB profiles are generated in
the RACF job for the writable keyring support. We recommend that you use the
writable keyring support for the increased efficiency of managing SAF keyrings
and certificates. We provide more information regarding the writable keyring
support in 13.4, “Writable SAF keyrings” on page 493.

10.4 RACF jobs for WebSphere z/OS

This section discusses the RACF definitions and the jobs that are created to
define them.
388 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_safsecdom.html

10.4.1 RACF classes

This section describes the pertinent RACF classes that are applicable to
implementing WebSphere Application Server for Version 7.0 on z/OS. These
classes represent a small subset of all available classes in RACF:

� APPL: The APPL class controls access to applications, including the
administrative console.

� CBIND: The CBIND class controls the client’s ability to bind to the server.
WebSphere uses the CBIND class to control access to the server.

� DIGTCERT: The DIGTCERT class contains digital certificates and related
information.

� DSNR: The DSNR class controls access to DB2 subsystems.

� EJBROLE and GEJBROLE: These classes are used to register Enterprise
JavaBeans (EJB) roles that will be used by WebSphere Application Server
applications. EJBROLE is the member class for EJB authorization roles. The
APPLDATA field in an EJBROLE profile defines the target Java identity when
running in RunAs ROLE mode. GEJBROLE is the grouping class for EJB
authorization roles. EJBROLE profiles have to be added for the required roles
and for users to be given access to these profiles when SAF authorization is
used.

� FACILITY: This class is for miscellaneous uses. Profiles are defined in this
class so that resource managers can check users’ access to the profiles
when the users take an action. We place profiles for Digital Certificate,
Distributed Computing Environment (DCE), and Kerberos, plus UNIX System
Services profiles (for example, BPX.DAEMON), in this class.

� SERVER: This class controls the server’s ability to register with the daemon.
This class is used in WebSphere to control whether a servant can call
authorized programs in the controller.

� SERVAUTH: The SERVAUTH class contains profiles that are used by servers
to check a client’s authorization to use the server or to use the resources
managed by the server. Use this class to protect TCP/IP ports. If you use this
class, you must give WebSphere and Kerberos access.

� STARTED: This class is used for identifying authorized system started
procedures. WebSphere Application Server normally starts as a system task
and needs an entry in the STARTED class to associate a valid RACF user ID
and connected group to be able to access protected resources. This class is
used in preference to the started procedures table to assign an identity during
the processing of an MVS START command. For example, WebSphere and
Kerberos are defined as started tasks in this profile.
 Chapter 10. WebSphere z/OS and local operating system security 389

� SURROGAT: This class determines whether surrogate submission or login is
allowed, and if allowed, which user IDs can act as surrogates. SURROGAT is
used here in conjunction with BPX.SRV profiles in the SURROGAT class to
allow security context switches for unauthenticated user IDs.

� RDATALIB: This class is used for control access to SAF keyrings and
certificates.

10.4.2 Skeleton of the generated RACF jobs

Regardless of the administrative security option selected, you submit the
customization jobs to define the desired security infrastructure as part of the
server configuration process. Profiles in the STARTED class, for instance, need
to be defined in any case when running WebSphere on z/OS. In the process of
configuring a base application server, member hlq.DATA(BBOWBRAK) contains
all RACF commands. The commands in BBOWBRAK are generated by
submitting hlq.CNTL(BBOCBRAJ). If you browse hlq.DATA(BBOWBRAK), you
can examine the generated RACF commands.

These RACF commands are generated:

� The common RACF security setup is required regardless of the security
option:

– Activate RACF SERVER, STARTED, and FACILITY classes.

– Add user for WebSphere Application Server regions.

– Add default asynchronous admin task user.

– Connect servants to the WebSphere configuration group.

– Define and permit access for the log stream profile.

– Define and permit access for SERVER CB profiles. Determine whether a
servant region can initialize.

– Define FACILITY BPX.WLMSERVER profiles. Authorize servants to use
Workload Manager (WLM) services.

– Assign user IDs to STARTED tasks.

– Define permissions to work with certificates.

– Create a certificate authority (CA) certificate.

– Create an SSL keyring (WebSphere Application Server CA
certificates/commercial CAs) for the location service daemon.

– Generate a certificate for the location service daemon.

– Connect a certificate to the keyring for the location service daemon.
390 WebSphere Application Server V7.0 Security Guide

� Additional security setup for z/OS product security uses these classes and
tasks:

– Activate RACF CBIND and SURROGAT classes. The SURROGAT class
profile relating to the Sync-to-Thread feature is new in WebSphere
Application Server V7.0.

– Create a WebSphere Application Server administrator user ID and an
unauthenticated user ID.

– Set up the RACF APPL class profile.

– Set up CBIND class profiles. CBIND profiles are created and granted to
the configuration group.

– Set up EJBROLE class profiles:

• Administrative roles (administrator, monitor, configurator, operator,
deployer, and adminSecurityManager) are created, and the
administrator user ID is granted the administrator role.

• Naming roles (CosNamingRead, CosNamingWrite, CosNamingCreate,
and CosNamingDelete) are created. Permit the configuration group for
WebSphere Application Server (servers and administrators) READ
access to all of these profiles.

– Create an SSL keyring (WebSphere Application Server CA
certificates/commercial CAs) for the application server. Digital keyrings
are created for the administrator, controller, controller region adjunct, and
server user IDs.

– Generate a certificate. Digital certificates are created for each server
controller.

– Connect the certificate to the keyring.

– Create a sync-to-thread profile (new in WebSphere Application Server
Version 7.0). Refer to Chapter 14, “Security identity propagation” on
page 537 for more information.

– Create a facility class profile for trusted applications (new in WebSphere
Application Server Version 7.0).

A trusted application is an application that requires WebSphere
Application Server to build SAF credentials without an authenticator. An
example is a task control block (TCB)-level ACEE being created if
sync-to-OS-thread is enabled. The facility class profile is
BBO.TRUSTEDAPPS.<domain>.<cluster>. The control region user ID
needs to be permitted with access READ.
 Chapter 10. WebSphere z/OS and local operating system security 391

10.5 System Authorization Facility authorization

WebSphere Application Server provides three options for an authorization
provider. You can use the built-in (default) authorization provider, an external
Java Authorization Contract for Containers (JACC) authorization provider, or
SAF as the authorization provider.

When using the LocalOS as a user registry on z/OS, it is possible, though not
mandatory, to choose SAF authorization.

Use SAF authorization to have EJBROLE security enforced by the z/OS security
product, such as RACF. In that case, SAF EJBROLE profiles are used for
user-to-role authorization for both Java EE applications and the role-based
authorization requests (naming and administration) that are associated with
application server run time. WebSphere Application Server for z/OS V7.0 uses
the authorization policy that is stored in the z/OS security product for
authorization. Do not be confused by the name EJBROLE. It is used for Java EE
roles in both Java EnterpriseBeans and Web applications.

This option is available when your environment contains z/OS nodes only. It is
available by selecting Security  Global security  External authorization
providers in the administrative console.

If an LDAP registry or custom registry is configured and SAF authorization is
specified, a mapping to a z/OS principal is required at each login for any
protected methods to run. If the authentication mechanism is Lightweight Third
Party Authentication (LTPA), we recommend that you update all of the following

Tip: Back out RACF definitions. When setting up a multi-node environment, it
is convenient to have a simple way to delete the RACF definitions that have
been created during the installation process. The following article in the
WebSphere Information Center provides a REXX script, which is capable of
generating a back out script on the basis of the old BBOxBRAC script:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topi
c=/com.ibm.websphere.zseries.doc/info/zseries/ae/rsec_racftools.html

Note: If SAF authorization is chosen, WebSphere Application Server ignores
the panel for Role to User Mapping in the administrative console, which you
can reach by selecting User and Groups  Manage Users or User and
Groups  Manage Groups.
392 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rsec_racftools.html

configuration entries to include a mapping to a valid z/OS principal (such as
WEB_INBOUND, RMI_INBOUND, and DEFAULT).

10.5.1 SAF authorization for administrative roles

Table 10-2 shows a description of each administrative role. These roles are only
in effect when administrative security is enabled.

Table 10-2 Administrative roles and their descriptions

Role Description

monitor This role has the fewest privileges. A monitor is granted for
the following tasks:
� View the WebSphere Application Server configuration.
� View the current state of the application server.

configurator A configurator has monitor privileges, plus the ability to
change the WebSphere Application Server configuration.
The configurator can perform all the day-to-day
configuration tasks. For instance, a configurator can
perform the following tasks:
� Create a resource.
� Map an application server.
� Install and uninstall an application.
� Deploy an application.
� Assign users and groups to role mapping for

applications.

operator An operator has monitor privileges, plus the ability to
change the runtime state. For example, an operator can
complete the following tasks:
� Stop and start the server.
� Monitor the server status in the administrative console.
Compared to a configurator, the operator is not capable of
changing the configuration.
 Chapter 10. WebSphere z/OS and local operating system security 393

administrator An administrator has operator and configurator privileges,
plus additional privileges that are granted solely to the
administrator role. For example, an administrator can
complete the following tasks:
� Modify the server user ID and password.
� Configure authentication and authorization

mechanisms.
� Enable or disable administrative security, Java2

security, and application security.
� Create, update, or delete users/groups in the federated

repositories configuration.
Note: An administrator cannot map users and groups to the
administrator roles.

iscadmins The iscadmins role grants administrator privileges to
manage users and groups in federated repositories.
For example, a user of the iscadmins role can complete the
following tasks:
� Create, update, or delete users in the federated

repositories configuration.
� Create, update, or delete groups in the federated

repositories configuration.

deployer This role can perform configuration actions and runtime
operations on applications.

adminsecuritymanager When using wsadmin, the AdminSecurityManager role is
able to map users to administrative roles. Also, when
fine-grained admin security is used, users granted this role
can manage authorization groups. Refer to the
AdminSecurityManager role in 10.8, “Fine-grained security”
on page 407 for more details.

Role Description
394 WebSphere Application Server V7.0 Security Guide

Mapping administrative user IDs to roles
When enabling administrative security using the default authorization provider,
the primary administrative user ID that you specify is automatically mapped to
the administrator role. Additional users and groups are mapped to the
administrative roles through the administrative console (WebSphere bindings).

When SAF is your authorization provider, you need to permit users and groups to
the EJBROLE administrative profiles. If you have customized your application
server environment with the “z/OS security product” option, all administrative role
profiles are defined in the SAF EJBROLE class except for the iscadmins role.
This role is not needed for SAF authorization, because the purpose of this role is
to secure the management of users and groups in federated repositories.

EJBROLE profiles are case-sensitive. If a SAF profile prefix is enabled, the
administrative role names need to be prefixed by the domain name <domain>.
Otherwise, just the role name needs to be specified in the profile:

� RDEFINE EJBROLE <domain>.administrator UACC(NONE)
� RDEFINE EJBROLE <domain>.monitor UACC(NONE)
� RDEFINE EJBROLE <domain>.configurator UACC(NONE)
� RDEFINE EJBROLE <domain>.operator UACC(NONE)
� RDEFINE EJBROLE <domain>.deployer UACC(NONE)
� RDEFINE EJBROLE <domain>.adminsecuritymanager UACC(NONE)
� RDEFINE EJBROLE <domain>.auditor UACC(NONE)

An example is RDEFINE EJBROLE WP.administrator UACC(NONE).

auditor New in V7.0
An auditor can view and modify the configuration settings
for the security auditing subsystem and can complete the
following tasks:
� Enable and disable the security auditing subsystem.
� Select the event factory implementation to be used with

the event factory plug-in point.
� Select and configure the service provider or emitter.
� Set the audit policy that describes the behavior of the

application server in the event of an error with the
security auditing subsystem.

� Define which security events are to be audited.

The auditor role includes the monitor role, which allows the
auditor to view but not change the rest of the security
configuration.

Role Description
 Chapter 10. WebSphere z/OS and local operating system security 395

Users and groups can be permitted to these roles using the following command:

PERMIT <domain>.role_name CLASS(EJBROLE) ID(user_id or group_id)
ACCESS(READ)

An example is PERMIT WP.administrator CLASS(EJBROLE) ID(WPADMIN)
ACCESS(READ).

Mapping a RACF user or group to a specific administrative role requires READ
access to the EJBROLE profile. Instead of granting access to the EJBROLE
profile for each user of an application, it is common practice to use RACF
groups. Therefore, special RACF groups are created and permitted with READ
access to several roles. By connecting users to this group, they automatically
inherit the roles of the group.

The EJBROLE class needs to be refreshed in order to activate changes using
the following command:

SETROPTS RACLIST(EJBROLE) REFRESH

In addition, if SAF authorization is enabled during customization, the APPL
profile restricts access to WebSphere Application Server by default. Although a
user has permission to an administrative EJBROLE profile, the user cannot log
on to the administrative console as long as the user has no READ permission to
the APPL profile:

RDEFINE APPL <domain> UACC(NONE)
PERMIT <domain> CLASS(APPL) ID(WPADMIN) ACCESS(READ)
SETROPTS RACLIST(APPL) REFRESH

All identities using WebSphere Application Server, including administrative
identities, user IDs that are granted for a EJBROLE profile, and unauthenticated
identities, need access to the APPL profile. If you have not specified a SAF
profile prefix, the APPL profile used is CBS390. Otherwise, it uses the SAF profile
prefix instead. Although the APPL class has been activated, the APPL profile can
be turned off by using the administrative console. To turn off the profile, in the
following path of the administrative console, select Global security  External
authorization providers  SAF authorization options, and clear the check
box for Use the APPL profile to restrict access to the application server.

Important: Be careful with granting ALTER access on a discrete resource
profile. A user with ALTER access can alter the access control list (ACL) of
that profile. It is sufficient to grant READ access.
396 WebSphere Application Server V7.0 Security Guide

10.5.2 SAF authorization for applications

If application security is enabled, the application-specific roles are checked by
the application server. The application-specific roles are implemented the same
way as the administrative roles using EJBROLE profiles. For every Java EE role
that is defined in the deployment descriptor, a corresponding EJBROLE profile
containing the identical Java EE role has to be defined.

In Example 10-1, we have modified the deployment descriptor of the
demonstration application PlantsbyWebSphere and added a new Java EE role, a
security constraint, and an authentication method. You can make this
modification by using Eclipse-based Rational Application Developer Assemble
and Deploy. The Java EE role PlantsUACC (marked in bold) needs to be defined
in the EJBROLE profile.

Example 10-1 Extract of a deployment descriptor

<security-constraint>
<display-name>PlantsByWebSphere</display-name>
<web-resource-collection>

<web-resource-name>PlantsByWebSphere</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

 <description>
 Application PlantsByWebSphere UACC</description>
 <role-name>PlantsUACC</role-name>
 </auth-constraint>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
</login-config>
<security-role>

<description>Application PlantsByWebSphere UACC</description>
<role-name>PlantsUACC</role-name>

</security-role>

The following EJBROLE profile needs to be defined.

RDEFINE EJBROLE <domain>.PlantsUACC UACC(NONE)
 Chapter 10. WebSphere z/OS and local operating system security 397

You can grant the permission to this application-specific role by using the
command:

PERMIT <domain>.PlantsUACC CLASS(EJBROLE) ID(user_id or group_id)
ACCESS(READ)

10.5.3 Displaying EJBROLE profiles

In order to display an EJBROLE profile, including its access control list (ACL),
execute the following command:

RLIST EJBROLE <domain>.administrative_role ALL

In general, we recommend that you use JCL for the execution of RACF
commands, because the result can be viewed and documented easily. A sample
JCL to list all EJBROLE class profiles is shown in Example 10-2.

Example 10-2 Sample JCL to display all profiles in the EJBROLE class

//LSTRACF EXEC PGM=IKJEFT01
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSTSIN DD *
 RLIST EJBROLE * ALL
/*

10.5.4 SAF EJB role mapper

WebSphere Application Server for z/OS V7.0 supports the use of a custom SAF
EJB role mapper. The custom SAF EJB role mapper allows an installation to map
Java EE role names to SAF EJBRole profile names. Without the SAF EJB role
mapper, you must deploy an application by using a role in the deployment
descriptor of a component that is identical to the name of an EJBROLE class
profile. The security administrator defines EJBROLE profiles and provides the
permission to these profiles to SAF users or groups.

Using SAF EJBROLE class profiles can conflict with the standard Java EE role
naming conventions. Java EE role names are Unicode strings of any length.
Currently, RACF class profiles are restricted to 240 characters in length and
cannot be defined if these profiles contain any white spaces or extended code
page characters. If a Java EE role name for an installation conflicts with these
398 WebSphere Application Server V7.0 Security Guide

RACF restrictions, an installation can use the SAF EJB role mapper exit to map
the desired Java EE role name to an acceptable class profile name.

The custom SAF role mapper is a Java-based exit to replace the EJBROLE class
profile construction algorithm. The custom SAF role mapper is called to generate
a profile for authorization and delegation requests. The role mapper passes the
name of the application, and the name of the role then passes back the
appropriate class profile name.

This option is available using the administrative console by selecting Security 
Global security  External authorization provider, selecting SAF
authorization options, and clicking Configure.

An example for implementing a SAF EJB role mapper can be found in the
WebSphere Information Center by following the provided link:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/tsec_safrolemap.html

10.6 Generic RACF profiles (best practices)

In a Network Deployment environment, additional servers can be created within
a node using the wizard in the Application servers section in the administrative
console as shown in Figure 10-9 on page 400. But the new server usually cannot
be started without defining additional profiles to RACF. In a development
environment, it simplifies the administration if additional servers can be created
without the need of a RACF administrator.

Important: If the SAF delegation is utilized as described in 14.1.3, “SAF
delegation” on page 540, the SAF EJB role mapper has an impact on SAF
delegation.
 Chapter 10. WebSphere z/OS and local operating system security 399

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tsec_safrolemap.html

Figure 10-9 Create application server through the administrative console

Generic RACF profiles are the best practice to solve this problem. With the use
of wildcards, the RACF profiles can be made generic according to the naming
conventions. Every created server that complies with these naming conventions
can start successfully. Before starting to work with generic RACF profiles, it is
essential to find a naming convention that allows you to extend the number of
nodes, as well as the number of servers, without any limitations.

Review the documentation: IBM Washington Systems Center (WSC)
experts have summarized their best practices regarding naming conventions
in WebSphere z/OS -- WSC Sample ND Configuration, WP10653. You can
obtain this white paper at the following Web site:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10065
3

In addition, the IBM Techdocs WebSphere for z/OS Version 7 - Configuration
Planning Spreadsheets have been developed to help you create and
document your own naming convention. The spreadsheet asks for several
input parameters, such as LPAR name, high-level qualifier (HLQ) for
WebSphere, two letter cell prefix, and so forth. The spreadsheet generates a
suggestion for your naming convention. Download it from the following Web
site:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341
400 WebSphere Application Server V7.0 Security Guide

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

Using generic profiles implies that started task control (STC) user IDs will be
reused to a certain extent. Otherwise, you need to create new RACF user IDs
and profiles. Use a separate user ID for the application server control and
servant regions. But, these application server user IDs can be reused within a
node or even across multiple nodes. This reuse depends on your individual
security strategy on z/OS as discussed in 10.2, “User ID strategy for a Network
Deployment environment” on page 373.

Generic RACF profiles are of interest in a Network Deployment environment,
because a base application server is not scalable regarding the number of
application servers.

10.6.1 Generic RACF profiles using wildcards

During the customization process of an application server node, the RACF
definitions are generated by the Profile Management Tool (PMT) and uploaded
to the host. The RACF profile definitions can be found in the BBOWBRAC
member of the hlq.DATA dataset. In this section, we modify the RACF profiles
that are necessary or optional for new application servers.

To make the profiles generic, the use of wildcards is essential. In RACF, either
an asterisk (*), percent sign (%), or a combination of both characters can be
selected as a wildcard. The asterisk can substitute any number of characters
whereas the percent sign can substitute exactly one character. For instance, the
STARTED profile WPS%%%S.* accepts the started task name WPS01AS, but not
WPS001AS. If the STC name WPS001AS must be accepted by RACF, the profile
must be defined as WPS*S.* or as WPS%%%%S instead.

If you have applied a naming convention according to the rules of the white paper
WebSphere z/OS -- WSC Sample ND Configuration, WP10653, a good starting
point is to examine the BBOWBRAC member of the occurrence of “01”. This
BBOWBRAC member of the occurrence of “01” needs to be part of the short
name of the first application server, for instance, WPS01A. Within the profile
definitions, 01 can be substituted by the wildcard %%. Additional servers on the
same node can be created by increasing this number, for instance, WPS02A. Be
careful with the change all command, because this string is normally part of the
certificate expiry date. This action covers most changes in BBOWBRAC, which
we describe in detail in this section. The RACF definitions of the deployment
manager in BBODBRAC do not need to be changed, because the application
server-related definitions are all in BBOWBRAC.

In this example, we have applied a naming convention using the two character
cell abbreviation WP, and the control region (CR) and servant region (SR) user
IDs of the application server will be reused across multiple nodes.
 Chapter 10. WebSphere z/OS and local operating system security 401

The following profile assigns, for instance, the user ID WPACR to the proclib
member WPACRA. According to the WSC naming convention, the last
character, which is A, is the node identifier. If the control region (CR) user ID of
the application server is reused across multiple nodes, WPACRA can be
substituted by WPACR%.

RDEFINE STARTED WPACR%.* STDATA(USER(WPACR)
GROUP(WPCFG) TRACE(YES))

Because the control region adjunct (CRA) and the servant region (SR) will be
started by the CR, the user IDs are dependent on the STC name. For instance,
the following profiles assign the user ID WPACR to STC name WPS01AA
(control region adjunct) and WPASR to STC name WPS01AS (servant region).

RDEFINE STARTED WPS%%%A.* STDATA(USER(WPACR)
GROUP(WPCFG) TRACE(YES))

RDEFINE STARTED WPS%%%S.* STDATA(USER(WPASR)
GROUP(WPCFG) TRACE(YES))

The STC name is structured according to the WSC naming convention, as
shown in Table 10-3.

Table 10-3 STC name structure

The first two percent signs WPS%% of the profiles ensure that the server number
can be increased. The third percent sign WPS%%% represents the node identifier.
Only make the node identifier generic if the application server CRA and CR user
IDs are reused across multiple nodes.

The SERVER class is used to control whether a servant can call authorized
programs in the controller and whether the corresponding profile is structured in
the following qualifiers: CB.<server>.<cluster>.<cell>.

RDEFINE SERVER CB.*.WPC%%ADJUNCT.* UACC(NONE)
RDEFINE SERVER CB.*.WPC%%.* UACC(NONE)

PERMIT CB.*.WPC%%.* CLASS(SERVER) ID(WPACR) ACC(READ)
PERMIT CB.*.WPC%%.* CLASS(SERVER) ID(WPSRG) ACC(READ)
PERMIT CB.*.WPC%%ADJUNCT.* CLASS(SERVER) ID(WPACR) ACC(READ)

Cell prefix Server prefix Server
number

Node
identifier

Region type
(SR = S and
CRA = A)

WP S 01 A S
402 WebSphere Application Server V7.0 Security Guide

The third qualifier <cluster> is the cluster name if a cluster has been defined.
The cluster transition name is used instead for an application server that is not a
member of a cluster. The cluster transition name is a variable called
ClusterTransitionName in the custom properties of a selected application server
in Application servers  app_server_name  Administration  Custom
properties as shown in Figure 10-10. According to the naming convention of the
WSC, the cluster name usually corresponds to the server names. For additional
clusters, the number will be increased. For instance, application servers
WPS01A on node A and WPS01B on node B are cluster members of WPC01. By
substituting the cluster number with the wildcard %%, new servers and clusters
can be added without additional RACF profiles.

Figure 10-10 Location of the cluster transition name

The BBO.SYNC profile enables the sync-to-thread capabilities in order to pass
user IDs from WebSphere Application Server to DB2. Refer to Chapter 14,
“Security identity propagation” on page 537 for more information about this topic.
If the cluster number, which is part of the cluster name or cluster transition name,
is substituted by the wildcard %%, Sync-to-Thread can be managed with one
profile for the complete cell, instead of one profile for each server or cluster:

RDEFINE FACILITY BBO.SYNC.WPCELL.WPC%% UACC(NONE)

The BBO.TRUSTEDAPPS profile controls the ability of an application server to
change the thread identity of execution from its own STC user ID to the Java EE
identity of the user. We recommend that you enable Trusted Application for SAF
authorization, which is critical to the z/OS integrity statement. Therefore, the
configuration group has READ permissions to this profile. To make the
BBO.TRUSTEDASPPS profile generic, the cluster number, which is part of the cluster
 Chapter 10. WebSphere z/OS and local operating system security 403

name or cluster transition name, can be substituted with the wildcard %%.
Consequently, new servers and clusters can be added without additional RACF
profiles:

RDEFINE FACILITY BBO.TRUSTEDAPPS.WPCELL.WPC%% UACC(NONE)

PERMIT BBO.TRUSTEDAPPS.WPCELL.WPC%% CLASS(FACILITY) ID(WPCFG)
ACCESS(READ)

Finally, you can execute the modified definitions by submitting the corresponding
BBOCBRAK member in the hlq.CNTL dataset.

By implementing these generic RACF profiles in a Network Deployment
environment, new servers and nodes can be added without needing additional
RACF profiles.

10.6.2 Creating a new server with the administrative console

You can create a new application server by using the appropriate wizard in the
administrative console:

1. Select Application servers and click New to start the wizard (Figure 10-11).

Figure 10-11 Assign the node and enter the server name

2. Assign the new application server to a node, and specify the server long
name according to your naming conventions.

3. Select the default z/OS template.

4. In Figure 10-12 on page 405, select Generate Unique Ports, and specify the
server short name and server generic short name (which is the same name
as the cluster transition name) according to your naming convention.
404 WebSphere Application Server V7.0 Security Guide

Figure 10-12 Assign the server short name and cluster transition name

5. Click Finish, save, and synchronize the changes with the nodes.

If the generic RACF profiles have been implemented correctly, you can start the
new application server from the administrative console.

10.7 Case-sensitive passwords for RACF

The password is important to protect users, applications, and systems. The
harder it is to guess a password, the better the protection level. Mixed case
passwords provide a higher level of security and are harder to guess.

WebSphere for z/OS V7.0 supports multiple user registries. Both file-based and
LDAP repositories support case-sensitive passwords. RACF mixed-case
password support was introduced in z/OS V1.7. WebSphere Application Server
for z/OS V7.0 supports RACF mixed-case passwords. The WebSphere support
applies both to a local OS user registry and LDAP DB2 Technical Database
Management (TDBM) native authentication or SDBM. Passwords are validated
in RACF in both LDAP types.

RACF mixed-case password support is disabled by default. To enable
mixed-case password support, you must comply with the following prerequisites:

� WebSphere Application Server for z/OS V6.1 or later is required.

� z/OS Version 1.7 or later is required.

� In WebSphere, either local operating system registry, LDAP TDBM NA, or
LDAP SDBM is the configured registry.
 Chapter 10. WebSphere z/OS and local operating system security 405

The SETROPTS option to enable or disable mixed-case passwords is not
available through the RACF panels. You need to issue one of the following
commands.

To turn on the MIXEDCASE option (Figure 10-13), enter this command:

SETROPTS PASSWORD(MIXEDCASE)

To turn off the MIXEDCASE option, enter this command:

SETROPTS PASSWORD(NOMIXEDCASE)

To display the current system-wide RACF options for your environment, issue
this command:

SETROPTS LIST

Figure 10-13 Password excerpt of the SETROPTS LIST command output

Pass phrase passwords for RACF

Another possibility to increase the number of password combinations is to use
pass phrases, which were introduced with z/OS V1.9. A normal RACF password
is usually restricted to eight characters. In contrast, a pass phrase can be from
nine to 100 characters long, which gives you an exponentially larger number of
combinations for securing any given user ID to an application. A user ID can
have both a password and a password phrase associated with it. The user ID
uses the password for existing applications that accept an eight-character
password and the password phrase for those applications that are sensitive to
the longer character string.

PASSWORD PROCESSING OPTIONS:
 PASSWORD CHANGE INTERVAL IS 90 DAYS.
 PASSWORD MINIMUM CHANGE INTERVAL IS 0 DAYS.
 MIXED CASE PASSWORD SUPPORT IS IN EFFECT
 NO PASSWORD HISTORY BEING MAINTAINED.
 USERIDS NOT BEING AUTOMATICALLY REVOKED.
 PASSWORD EXPIRATION WARNING LEVEL IS 10 DAYS.
 NO INSTALLATION PASSWORD SYNTAX RULES ARE PRESENT.

Important: Carefully plan the use of mixed-case passwords on z/OS systems.
Instructing your users to use mixed-case passwords is of utmost importance
to avoid confusion after a user has entered a new password. Falling back to
NOMIXEDCASE has an even bigger impact, because all mixed-case
passwords must be reset.
406 WebSphere Application Server V7.0 Security Guide

In order to implement pass phrases for WebSphere Application Server for z/OS,
you must have the following requirements:

� z/OS V1.9 or higher is required.

� You must select localOS as the user repository and SAF as the authorization
provider.

� WebSphere Application Server Fix Pack 6.1.0.15 or later must be installed.

� If you want to specify a password phrase that is between nine and 13
characters, inclusive, you must also install the ICHPWX11 RACF exit routine.

After a restart of the cell, WebSphere Application Server accepts pass phrases
for authentication.

It is possible to combine pass phrases with the RACF MIXEDCASE option.

10.8 Fine-grained security

In previous WebSphere versions, administrative roles allowed users to
administer all WebSphere artifacts or resource instances (cell, nodes, servers,
clusters, and applications) in the realm of the cell. WebSphere Application Server
V7.0 fine-grained administrative security gives you the capability to define
scopes of authorization at, for instance, the cell, node, or server level.

The authorization group outlines the scope of authorization. Users can then be
granted an administrative role in an authorization group. In this way, users are
only allowed to administer a delimited scope of resources.

The following resource instances can be added to an authorization group:

� Cell
� Node
� Server cluster
� Server
� Application
� NodeGroup

A resource instance can only belong to one authorization group.

The administrative roles are granted per authorization group and therefore per
resource instance rather than to the entire cell. However, there is a cell-wide
authorization group for compatibility with previous versions. Users assigned to
administrative roles in the cell-wide authorization group can still access all of the
resources within the cell.
 Chapter 10. WebSphere z/OS and local operating system security 407

Fine-grained administrative security can also be used in single-server
environments. Various applications in the single server can be grouped and
placed in separate authorization groups. The stand-alone server itself cannot be
part of any authorization group.

The AdminSecurityManager role is only available through wsadmin. Users
granted this role can map users to administrative roles. When fine-grained
administrative security is used, users granted this role can manage authorization
groups.

There is no on-off switch to activate fine-grained administrative security. After
you set up an authorization group, it is active. In WebSphere Application Server
for z/OS, there are two ways to implement fine-grained administrative security
control, which is the same in standard administrative security. You can
implement fine-grained administrative security control through WebSphere
application security, which is used when selecting the default authorization
provider. You can also implement fine-grained administrative security control
through RACF, which is used when SAF is the authorization provider.

Fine-grained access is granted by performing the following steps:

1. Connect to the application server with wsadmin.

2. Create an authorization group.

3. Add resource instances to the authorization group.

4. Map users and groups to administrative roles at the authorization group level.
Users and groups need to exist in the configured user registry.

5. Save the changes.

6. Restart the cell to activate the changes.

Steps 1 to 3, 5, and 6 are common for all authorization providers.

Step 4 varies according to the chosen external authorization provider.

The following scenario illustrates how to map users to roles for both SAF
authorization with the z/OS security product and for default authorization with
WebSphere Application Server security.

In the scenario, a user is granted deployer access to a specific resource (an
application). This user cannot administer any other resources outside of the
user’s authorization group. Users assigned to administrative roles in the cell-wide
authorization group can still access all of the resources within the cell.
408 WebSphere Application Server V7.0 Security Guide

We used these values to build this scenario:

� Users, groups, and resource instance:

– Administrator role user: WPADMIN is assigned to the cell level administrator
role to create an authorization group, add resources to the authorization
group, and so forth.

– Authorization group: PLANTS.

– Resource instance: An application named PlantsByWebSphere is added to
PLANTS.

– Security role user: APPUSER1 is mapped to the deployer role in the PLANTS
authorization group.

� Server environment:

– Cell name: WPCell

– Node name: WPNodeA

– Server name: WPS01A

– server_profile_root:
/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default/bin

Follow these steps:

1. Connect to the application server with wsadmin.

2. Create an authorization group.

3. Add resource instances to the authorization group.

Example 10-3 shows the commands and the output of steps 1 to 3.

Example 10-3 Execution output of creating new security group

SC04:/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default/bin>
wsadmin.sh -lang jython -user WPADMIN -password wsadmin
WASX7209I: Connected to process "dmgr" on node WPDmNode using SOAP
connector; The type of process is: DeploymentManager
WASX7031I: For help, enter: "print Help.help()"
wsadmin>AdminTask.createAuthorizationGroup('[-authorizationGroupName
PLANTS]')
'cells/WPCell/authorizationgroups/PLANTS|authorizationgroup.xml#Authori
zationGroup_1236045756589'
wsadmin>AdminTask.addResourceToAuthorizationGroup('[-authorizationGroup
Name PLANTS -resourceName Application=PlantsByWebSphere]')
''
 Chapter 10. WebSphere z/OS and local operating system security 409

4. Map users and groups to roles at the authorization group scope.

If you use the default authorization provider as the authorization provider,
issue this command (Example 10-4 shows the output of this command):

AdminTask.mapUsersToAdminRole ('[-authorizationGroupName PLANTS
-roleName deployer -userids APPUSER1]')

Example 10-4 Execution output of role mapping

wsadmin>AdminTask.mapUsersToAdminRole ('[-authorizationGroupName PLANTS
-roleName deployer -userids APPUSER1]')
'true'

5. If you use the SAF authorization provider as the authorization provider, define
additional profiles to the EJBROLE class:

a. Define <authorization group>.<rolename> profiles in EJBROLE (again,
prefix those profiles with your domain identifier if you have one
configured):

RDEFINE EJBROLE <domain>.PLANTS.administrator UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.configurator UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.operator UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.monitor UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.deployer UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.adminsecuritymanager UACC(NONE)

RDEFINE EJBROLE <domain>.PLANTS.auditor UACC(NONE)

b. Permit the user to access the EJBROLE class profile:

PERMIT <domain>.PLANTS.deployer CLASS(EJBROLE) ID(APPUSER1)
ACCESS(READ)

c. In order to effectively use the administrative console, this user must have
a cell-wide monitor role.

PERMIT <domain>.monitor CLASS(EJBROLE) ID(APPUSER1) ACCESS(READ)

d. Refresh the RACLISTed class to activate the changes:

SETROPTS RACLIST(EJBROLE) REFRESH

Note: You must create EJBROLE profiles for all of the roles in each
authorization group regardless of whether any user is mapped to its
role. Or, at least define an appropriate catching profile at the
authorization group level.
410 WebSphere Application Server V7.0 Security Guide

6. Save the changes using wsadmin (Example 10-5 shows the output of this
command):

AdminConfig.save()

Example 10-5 Execution output of save command

wsadmin>AdminConfig.save()
''

7. Restart the application server to activate the changes.

APPUSER1 is assigned the deployer role for the PlantsByWebSphere
demonstration application, but APPUSER1 does not have administrative
authority for other applications. In Example 10-6, you can see that WPADMIN
can list and control all deployed applications.

Example 10-6 WPADMIN execution output

SC04:/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default/bin>
wsadmin.sh -lang jython -user WPADMIN -password wsadmin
WASX7209I: Connected to process "dmgr" on node WPDmNode using SOAP
connector; The type of process is: DeploymentManager
WASX7031I: For help, enter: "print Help.help()"
wsadmin>print AdminApp.list()
DefaultApplication
Dynamic Cache Monitor
FRCA_App
PlantsByWebSphere
SamplesGallery
Trade6
ivtApp
query
wsadmin>appManager =
AdminControl.queryNames('cell=WPCell,node=WPNodeA,type=ApplicationManag
er,process=WPS01A,*')
wsadmin>AdminControl.invoke(appManager,'stopApplication','PlantsByWebSp
here')
''
wsadmin>AdminControl.invoke(appManager,'stopApplication','DefaultApplic
ation')
''
wsadmin>

In Example 10-7 on page 412, you can see that APPUSER1 can list and control
only the authorized resource.
 Chapter 10. WebSphere z/OS and local operating system security 411

Example 10-7 APPUSER1 execution output

SC04:/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default/bin>
wsadmin.sh -lang jython -user APPUSER1 -password pswd
WASX7209I: Connected to process "dmgr" on node WPDmNode using SOAP
connector; The type of process is: DeploymentManager
WASX7031I: For help, enter: "print Help.help()"
wsadmin>print AdminApp.list()
PlantsByWebSphere
wsadmin>appManager =
AdminControl.queryNames('cell=WPCell,node=WPNodeA,type=ApplicationManag
er,process=WPS01A,*')
wsadmin>AdminControl.invoke(appManager,'stopApplication','PlantsByWebSp
here')
''
wsadmin>AdminControl.invoke(appManager,'stopApplication','DefaultApplic
ation')
WASX7015E: Exception running command:
"AdminControl.invoke(appManager,'stopApplication','DefaultApplication')
"; exception information:
 javax.management.JMRuntimeException: ADMN0022E: Access is denied for
the stopApplication operation on ApplicationManager MBean because of
insufficient or empty credentials.

wsadmin>

Figure 10-14 on page 413 shows how fine-grained security is handled by the
administrative console. A cell-wide monitor role is required to use the
administrative console.
412 WebSphere Application Server V7.0 Security Guide

Figure 10-14 Fine-grained security in the administrative console

For more information about the AdminTask object that is related to fine-grained
security, refer to the WebSphere Information Center. Obtain more information
about implementing fine-grained security in TechDoc TD103324:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103324
 Chapter 10. WebSphere z/OS and local operating system security 413

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103324

10.9 Naming service security

The naming service is used by clients of WebSphere Application Server
applications to obtain references to objects related to these applications. These
objects are bound into a mostly hierarchical structure, referred to as a name
space. The name space structure consists of a set of name bindings, each
consisting of a name relative to a specific context and the object bound with that
name.

The concept of role-based authorization has been extended to protect the
WebSphere Common Object Request Broker Architecture (CORBA) naming
service (CosNaming).

10.9.1 CosNaming roles

CosNaming security offers increased granularity of security control. CosNaming
functions are available on CosNaming servers. These functions affect the
content of the WebSphere Application Server name space.

You can access and manipulate the name space through a name server. Users
of a name server are referred to as naming clients. Naming clients typically use
two interfaces:

� Java Naming and Directory Interface (JNDI)
� Common Object Request Broker Architecture (CORBA) naming interface

You can control access to the name space by using CosNaming roles. All
CosNaming roles are shown in Table 10-4 on page 415.
414 WebSphere Application Server V7.0 Security Guide

Table 10-4 CosNaming security roles description

The CosNaming authorization policy is valid only when administrative security is
enabled. When administrative security is enabled, attempts to do CosNaming
operations without the proper role assignment result in an
org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

10.9.2 Mapping users or groups to CosNaming roles

There are two ways to map users or groups to CosNaming roles: through the
administrative console or through SAF EJBROLE profiles, depending on the
authorization provider setting.

In the administrative console, CosNaming role mapping can be defined at the
following panels: Environment  Naming  CORBA Naming Service Users
or CORBA Naming Service Groups.

Figure 10-15 on page 416 shows a default role definition granting read access to
EVERYONE.

Role Description

CosNamingRead Query the WebSphere Application Server name space
using, for example, the JNDI lookup method. The
EVERYONE special-subject is the default policy for this
role.

CosNamingWrite Perform write operations, such as JNDI bind, rebind, or
unbind, and CosNamingRead operations. The
ALL_AUTHENTICATED special-subject is the default
policy for this role.

CosNamingCreate Create new objects in the name space through such
operations as JNDI createSubcontext and
CosNamingWrite operations.
The ALL_AUTHENTICATED special-subject is the default
policy for this role.

CosNamingDelete Destroy objects in the name space, for example, using the
JNDI destroySubcontext method and CosNamingCreate
operations.
The ALL_AUTHENTICATED special-subject is the default
policy for this role.
 Chapter 10. WebSphere z/OS and local operating system security 415

Figure 10-15 Default setting of the CosNamingRead role

Users, groups, or the special-subjects ALL_AUTHENTICATED and EVERYONE
can be added or removed at any time. However, a server restart is required for
the changes to take effect.

Role mappings added through the administrative console are ignored if SAF
authorization is enabled. If you use SAF as the authorization provider, access to
the naming role is controlled by RACF. These are the commands to define the
naming profiles in the EJBROLE class. Prefix the profiles with your SAF profile
prefix identifier if you have one configured.

RDEFINE EJBROLE <domain.>CosNamingRead UACC(READ)
PERMIT <domain.>CosNamingRead CLASS(EJBROLE) ID(WPGUEST) ACCESS(READ)
RDEFINE EJBROLE <domain.>CosNamingWrite UACC(NONE)
RDEFINE EJBROLE <domain.>CosNamingCreate UACC(NONE)
RDEFINE EJBROLE <domain.>CosNamingDelete UACC(NONE)
PERMIT <domain.>CosNamingWrite CLASS(EJBROLE) ID(WPCFG) ACCESS(READ)
PERMIT <domain.>CosNamingCreate CLASS(EJBROLE) ID(WPCFG) ACCESS(READ)
PERMIT <domain.>CosNamingDelete CLASS(EJBROLE) ID(WPCFG) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

In the previous example, WPGUEST is the unauthenticated user ID and WPCFG
is the WebSphere configuration group name defined in the server configuration
416 WebSphere Application Server V7.0 Security Guide

process. CosNamingRead is defined with UACC(READ), which is the closest
thing in RACF to the EVERYONE special-subject. Note that we permit the
unauthenticated user ID specifically to the CosNamingRead role because it has
been defined with the RESTRICTED attribute. The server special-subject
WPCFG should be permitted to all of the four CosNaming roles, because it
provides processes that run under the server identity access to all the
CosNaming operations.

We recommend mapping groups or one of the special-subjects to naming roles.
That is more flexible than mapping specific users and is easier to administer.
When SAF authorization is the chosen authorization provider, you benefit from
the fact that servers do not need to be restarted in order to activate changes in
bindings to the naming roles.
 Chapter 10. WebSphere z/OS and local operating system security 417

418 WebSphere Application Server V7.0 Security Guide

Chapter 11. Administrative security

We strongly recommend that you enable administrative security to restrict
access to the administrative console. It also secures the TCP/IP connectivity
between WebSphere components with Secure Sockets Layer (SSL). The
following sections explain the necessary steps to enable administrative security,
assuming that administrative security has not been enabled during the
customization process.

This chapter contains the following sections:

� “Selecting an authorization provider” on page 421
� “Enabling security with a SAF user repository” on page 422
� “Disabling administrative security” on page 428
� “Security trace” on page 429

Table 11-1 on page 420 shows several products that you can use to implement
administrative security.

11
© Copyright IBM Corp. 2009. All rights reserved. 419

Table 11-1 Administrative security

WebSphere security z/OS security
product

Realm Federated repository Local operating
system (OS)

Authorization WebSphere (default) System Authorization
Facility (SAF)
authorization

SSL configuration Hierarchical file
system (HFS)
keystore/ truststores

SAF keyring

BBOBRAK (additional
RACF commands)

None Certificates
Keyrings
CBIND
EJBROLE
Sync-to-thread
EnableTrustedApps
420 WebSphere Application Server V7.0 Security Guide

11.1 Selecting an authorization provider

You need to select an authorization provider when enabling administrative
security. The authorization information determines whether a user or group has
the necessary privileges to access a resource. WebSphere Application Server
for z/OS supports the following authorization providers:

� SAF authorization uses the SAF EJBROLE class to control client access to
Java Platform, Enterprise Edition (Java EE) roles in Enterprise JavaBeans
(EJBs) and Web applications.

� Built-in authorization (formerly known as default authorization) does not
require special setup. Usually, the Java EE roles, user-to-role, and
group-to-role mappings are defined in the deployment descriptor of an
application and are mapped during run time by the built-in authorization
provider. The Java EE roles for the administrative console are an exception.
The administrative roles are defined in the administrative console (Users and
Groups options).

� External authorization using a Java Authorization Contract for Containers
(JACC) provider. The JACC-based authorization provider enables third-party
security providers, such as Tivoli Access Manager, to handle the J2EE
authorization.

Table 11-2 on page 422 summarizes these options.
 Chapter 11. Administrative security 421

Table 11-2 Authorization provider characteristics

11.2 Enabling security with a SAF user repository

Follow these steps to enable administrative security with SAF as the user
repository:

1. Log on to the administrative console.

2. Click Security  Global Security.

3. Click Security Configuration Wizard. Figure 11-1 on page 423 appears:

a. Specify the extent of the protection. At this point, application security and
Java 2 security can be enabled in addition to administrative security. If
application security is enabled, the roles defined in the deployment
descriptor will be activated, and the authorization provider will verify the

Authorization providers Characteristics

Built-in authorization
(default authorization)

� Access to servlets or EJB methods is based upon the role (job title,
function, and so on) of the user or caller.

� Roles are associated with servlets or EJBs at assembly time.
� Roles are stored in the application’s .ear file: application.xml.
� The users and groups and their associated roles are also stored in

the application’s .ear file: ibm-application-bnd.xmi.
� Roles are managed by the application developer and the application

deployer.
� SAF provides user and group information.

SAF authorization � Access to servlets or EJB methods is based upon the role (job title,
function, and so on) of the user or caller.

� Roles are associated with servlets or EJBs at assembly time.
� Roles are represented in the application’s .ear file: application.xml.
� The users and groups and their associated roles are determined in

SAF by profiles in the EJBROLE class.
� If a user is in the access control list (ACL) of an EJBROLE profile, the

user has that role.
� If a group is in the ACL of an EJBROLE profile, users in that group

have that role.
� Roles are managed through SAF.

External authorization
using a JACC provider

� Access to servlets or EJB methods is based upon the role (job title,
function, and so on) of the user or caller.

� Roles are associated with servlets or EJBs at assembly time.
� Roles are represented in the application’s .ear file: application.xml.
� The users and groups and their associated roles are determined in

the JACC provider.
� Roles are managed through the JACC provider.
422 WebSphere Application Server V7.0 Security Guide

roles that are assigned to a client user. Using SAF authorization provider,
the role profiles, as well the user-to-profile mappings, must be defined in
SAF.

Figure 11-1 Step 1: Specify extent of protection

Click Next.

b. Select Local operating system as the repository for users and groups
(refer to Figure 11-2 on page 424).
 Chapter 11. Administrative security 423

Figure 11-2 Step 2: Select user repository

Click Next.

c. Enter the primary administrative user ID (refer to Figure 11-3). This user
has to be defined to the SAF provider.

Figure 11-3 Step 3: Configure local operating system
424 WebSphere Application Server V7.0 Security Guide

Click Next.

d. Verify your settings in the summary, and click Finish.

4. Select the authorization provider:

a. Click Security  Global security  External authorization providers.

b. Select either the SAF authorization or Built-in authorization as shown in
Figure 11-4, and click Apply:

• If the built-in authorization (default authorization) is selected, SAF is
used as the user registry, but it is not the repository for user-to-role
mapping.

• If you choose SAF as your authorization provider, SAF is used for the
user registry, as well as for the user-to-role mapping.

Figure 11-4 Step 4: External authorization providers

Important: The security configuration wizard turns off SAF
authorization. If you run the security configuration wizard after having
enabled SAF authorization, you need to manually turn on SAF
authorization again.
 Chapter 11. Administrative security 425

c. If you choose the SAF authorization provider, click Configure for the
detailed settings that are shown in Figure 11-5.

Figure 11-5 SAF authorization options

Specify the unauthenticated user ID. It is common practice to define the
unauthenticated user ID with both the restricted and protected attributes.

The SAF profile prefix, formerly known as the SAF security domain,
specifies a prefix that will be added to all EJBROLE profiles that are used
for the Java EE roles. Moreover, this prefix is also used as the APPL
profile name. If your environment consists of multiple cells within the one
logical partition (LPAR) or one sysplex, this prefix can be used to
distinguish the administrator role in each cell. A common approach is to
use the two character abbreviation of the cell (in this case, WP) as the
SAF profile prefix. As explained in 10.5.1, “SAF authorization for
426 WebSphere Application Server V7.0 Security Guide

administrative roles” on page 393, the EJBROLE profile for the
administrator is defined as shown in the following example, where the
<domain> is the SAF profile prefix:

RDEFINE EJBROLE <domain>.administrator UACC(NONE)

In this example, WP is the SAF profile prefix:

RDEFINE EJBROLE WP.administrator UACC(NONE)

If the SAF profile prefix is not explicitly specified, no <domain> prefix is
added to the EJBROLE profiles. The default value of CBS390 will be used
as the APPL profile name.

If SAF authorization is enabled during the customization process, Use the
APPL profile to restrict access to the application server is selected by
default. The APPL profile will be selected prior to the EJBROLE profile
during the process of authorization, if this option is enabled.
Consequently, the access to the administrative console will be denied for
a user that is mapped to the EJBROLE profile administrator, but not to the
appropriate APPL profile. In the case where <domain> is the SAF profile
prefix, if there is no prefix defined, CBS390 is the default profile.

5. Save and synchronize the changes with nodes.

In a Network Deployment environment, the synchronization can be initiated
by selecting System administration  Save changes to master
repository, and click Save.

6. If the SAF authorization provider has been selected and global security with a
z/OS security product has not been enabled during the customization
process, you must define many additional SAF profiles, certificates, and
keyrings.

Important: At this point, it is very important for a Network Deployment
environment to synchronize the changes with nodes. If this important
security change is not distributed to the nodes, the node agents will start
with global security off whereas the deployment manager will start with
global security on. Finally, the components will not be able to
communicate with each other. The only fix is described in 11.3, “Disabling
administrative security” on page 428.
 Chapter 11. Administrative security 427

The EJBROLES profiles need to be defined to SAF as explained in 10.5.1,
“SAF authorization for administrative roles” on page 393.

7. Administrative security will be active after restarting the complete cell. When
logging on to the administrative console, you will need to provide the primary
administrative user ID and its password. Note that all security-related
changes to the WebSphere configuration need a restart of the cell in order to
be activated.

11.3 Disabling administrative security

If anything goes wrong during the configuration of administrative security, you
might not be able to log on to the administrative console, or other security-related
problems might occur. There are two ways to disable administrative security.

If you can still log on to the administrative console, you can disable security
through the administrative console:

1. Click Security  Global security.
2. Clear the Enable administrative security check box.
3. Save the changes and synchronize changes with nodes.
4. Restart the server.

If you cannot log on to the administrative console, you can disable the
administrative security using the wsadmin command-line interface:

1. Stop the server.

2. Log in to a UNIX System Services shell via OMVS or telnet.

3. Go to the profile_root/bin directory.

Tip: In the case of RACF, the easiest way to get the required definitions is
to regenerate the RACF jobs for each node by selecting “Use z/OS
security product” in the Profile Management Tool (PMT).

Existing PMT profiles can be changed by using Regenerate. After
customization, the generated RACF definitions can be uploaded to the
host and will be stored in hlq.DATA. If the uploaded node is a deployment
manager node, the RACF definitions will be named BBODBRAC, and for
any other node, it will be named BBOWBRAC.

If you work with an existing environment that used the ISPF panels for
customization in the past, you can import the SAVECFG dataset into the
PMT to work with the existing profile customization.
428 WebSphere Application Server V7.0 Security Guide

4. Enter the wsadmin shell by entering this command:

wsadmin.sh -conntype NONE

The connection type NONE does not require a running server process. In this
mode, wsadmin will change the configuration in the appropriate XML
configuration files and rebuild the was.env config file.

If you have a Network Deployment environment, this command needs to be
executed in the bin subdirectory of each node, because the nodes cannot be
synchronized with this connection type.

In the case of a certificate problem, the node agent will not be able to
synchronize with the deployment manager. The communication between the
deployment manager and node agent is secured through SSL with enabled
administrative security.

5. Enter securityoff, and then exit wsadmin.

6. Start the server.

Example 11-1 shows an example of the wsadmin execution output. The
/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default directory is
profile_root in this example.

Example 11-1 Command execution output of disabling security

SC04:/wasconfig/wpcell/wpdmnode/DeploymentManager/profiles/default/bin>
wsadmin.sh -conntype NONE
WASX7357I: By request, this scripting client is not connected to any
server process. Certain configuration and application operations will
be available in local mode.
WASX7029I: For help, enter: "$Help help"
wsadmin>securityoff
LOCAL OS security is off now but you need to restart server1 to make it
affected.

wsadmin>exit

11.4 Security trace

When you have administrative security enabled but administrative operations fail
to execute, you must search for the cause of the problem. Setting a security trace
helps you identify the security configuration problem. If the problems were
introduced as a result of enabling security, it is safe to assume that a problem
exists in the security configuration.
 Chapter 11. Administrative security 429

The security trace can be set in the administrative console. Select
Troubleshooting  Log and Trace  server_name  Change Log Detail
Levels.

You can change the trace level in the Configuration tab to enable the trace at
server startup or in the Runtime tab to take effect immediately.

Figure 11-6 shows an example of the trace options and the trace levels.

Figure 11-6 Trace options and levels

An alternative method is to change the trace options/level using the MVS modify
command:

F CR_short_name,tracejava='com.ibm.ws.security.*=all'

This command starts the trace dynamically and does not require a server restart.
430 WebSphere Application Server V7.0 Security Guide

After the traces are captured, you can use the following modify command to
reset to the initial trace settings:

F CR_short_name,traceinit

If a trace of the deployment manager is required, use the modify commands in
order to avoid additional trace overhead through the trace level modifications in
the administrative console.

For more information about the available modify command options, refer to the
WebSphere Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/
com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_mvsmodify.html
 Chapter 11. Administrative security 431

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_mvsmodify.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_mvsmodify.html

432 WebSphere Application Server V7.0 Security Guide

Chapter 12. WebSphere z/OS and user
registries

User registries or repositories are essential to security architectures. They
contain critical user and group information. WebSphere Application Server for
z/OS V7.0 provides flexible features to access various types of registries. The
new federated repository functionality extends its capabilities even further.

This chapter describes the following topics:

� “Introduction to user registries” on page 434
� “Our scenario and our environment” on page 437
� “Stand-alone LDAP registry” on page 438
� “Federated repositories” on page 458

12
© Copyright IBM Corp. 2009. All rights reserved. 433

12.1 Introduction to user registries

In WebSphere Application Server for z/OS V7.0, the user registry or repository
authenticates a user and retrieves information about users and groups to
perform security-related functions, including authentication and authorization.
The information about users and groups resides in a registry or repository.

WebSphere Application Server for z/OS V7.0 provides implementations that
support multiple types of registries and repositories:

� Local operating system
� Stand-alone Lightweight Directory Access Protocol (LDAP) registry
� Stand-alone custom registry
� Federated repositories

With WebSphere Application Server for z/OS V7.0, you use a user registry or
repository for the following functions:

� Authenticating a user using basic authentication, identity assertion, client
certificates, or tokens

� Retrieving information about users and groups to perform security-related
administrative functions, such as mapping users and groups to security roles

Although the WebSphere Application Server supports multiple types of user
registries, only one user registry can be active. This active registry is shared by
all of the product server processes within a cell.

12.1.1 Local operating system registry

System Authorization Facility (SAF) interfaces are defined by z/OS to enable
applications to use system authorization services or registries to control access
to resources, such as data sets and z/OS commands. SAF allows security
authorization requests to be processed directly through RACF or a third-party
z/OS security provider.

Unlike the distributed platforms, the local operating system registry on the z/OS
platform can be used in a multi-server z/OS environment, because the security
database can be easily shared across the sysplex. In such a configuration,
multiple WebSphere Application Server servers on separate z/OS logical
partitions (LPARs) share the same security database.

The local operating system registry on z/OS is compatible with z/OS Enterprise
Information Systems (EISs), such as CICS, IMS, and DB2. This compatibility is a
major benefit when sending the original identity from WebSphere Application
Server for z/OS V7.0 to the back-end EIS.
434 WebSphere Application Server V7.0 Security Guide

Use a local operating system registry in these situations:

� The authenticated users are present in the local security subsystem
(intranet).

� The best performance available is mandatory.

� Comprehensive end-to-end security is needed (user ID existing in the Web
server, Web container, EJB container, and back-end system).

� Good auditing support is needed.

� The users and application security need to be managed by the RACF security
administrators.

� OS thread security or thread identity support is needed.

12.1.2 Stand-alone Lightweight Directory Access Protocol registry

Lightweight Directory Access Protocol (LDAP) is widely used in a distributed
environment where multiple servers need access to a central user registry. LDAP
is an option on z/OS as well.

This functionality allows a more versatile WebSphere environment, making room
for cross-platform integration by allowing the use of existing user registries and
authorization tables with the security functions in WebSphere Application Server.

LDAP servers act as a repository for user and group information. WebSphere
Application Server for z/OS V7.0 binds to the LDAP server to retrieve this user
and group information. This support is provided by using user and group filters.
These filters are highly configurable to access all sorts of LDAP servers.

LDAP servers are incompatible with z/OS EISs, such as CICS, IMS, and DB2.
More complex steps are required to access these systems with the user identity.

You must use an LDAP registry in the following situations:

� A single sign-on (SSO) solution with a distributed system is needed.

� A registry on other platforms must be used.

� A cross-platform authentication mechanism is mandatory.

� User identity must be maintained across multiple environments.

� RACF identities have to be used on distributed platforms through a central
z/OS LDAP SDBM back end.

� RACF passwords need to be checked on distributed platforms through a
central z/OS LDAP TDBM back end with native authentication.
 Chapter 12. WebSphere z/OS and user registries 435

12.1.3 Stand-alone custom registry

A stand-alone custom registry is a client-implemented registry that implements
the UserRegistry Java interface that is provided by the product. A
custom-implemented registry can support virtually any type of account repository
from relational databases to flat files and so on. The custom user registry
provides flexibility in adapting product security to various environments where a
registry or repository other than federated repositories, an LDAP registry, or a
local operating system registry already exists in the operational environment. It
allows you to plug in any kind of registry whose support is not implemented by
WebSphere Application Server security.

A custom registry is written as a Java program that implements a WebSphere
Application Server for z/OS V7.0-supplied
com.ibm.websphere.security.UserRegistry interface. Make sure that the
implementation is not dependent on WebSphere Application Server resources
(for example, data sources).

12.1.4 Federated repositories

Federated repositories enable you to use multiple repositories simultaneously.
Federated repositories, which can include file-based repositories, LDAP
repositories, or a sub-tree of an LDAP repository, are defined as being combined
under a single realm. All of the user repositories that are configured under the
federated repository functionality are transparent to WebSphere Application
Server for z/OS V7.0.

The federated repositories functionality supports the logical joining of entries
across multiple user repositories when the application server searches and
retrieves entries from the repositories. For example, when an application calls for
a sorted list of people whose age is greater than twenty, WebSphere Application
Server for z/OS V7.0 searches all of the repositories in the federated repositories
configuration. The results are combined and sorted before the application server
returns the result to the application.

Unlike the local operating system, stand-alone LDAP registry, or custom registry
options, federated repositories provide user and group management with read
and write capabilities from the WebSphere administrative tools. If you do not
configure the federated repositories functionality or do not enable federated
repositories as the active repository, you cannot use the user management
capabilities that are associated with federated repositories.

More information about federated repositories is provided in 12.4.1, “Federated
repositories” on page 458.
436 WebSphere Application Server V7.0 Security Guide

12.2 Our scenario and our environment

This section focuses on configuring WebSphere Application Server for z/OS V7.0
with various registry types.We define an LDAP tree to be accessed by
WebSphere Application Server for z/OS V7.0 in various manners, illustrating
typical WebSphere configurations. This LDAP tree is shown in Figure 12-1.

Figure 12-1 Our scenario LDAP tree and supporting LDAP servers

This LDAP tree common root organization is o=itso. This LDAP tree has three
organizational units: ou=itsoitds, ou=itsotdbm, and ou=itsoracf:

� The itsoitds organizational unit is supported by a IBM Tivoli Directory
Server V6. DB2 V8.2 on a Windows platform is used as a back end. The
suffix of this subtree is ou=itsoitds,o=itso.

Backend: DB2 z/OS

o=itso

cn=Useritds cn=UserTdbm cn=valence

ITDS z/OS LDAP TDBM

Backend: DB2 Backend: RACF

racfid=valence,profiletype=user

z/OS LDAP SDBM

WebSphere Federated Repositories

Native
Authentication

ou-itsoitds,o=itso ou-itsotdbm,o=itso ou-itsoracf,o=itso
 Chapter 12. WebSphere z/OS and user registries 437

� The itsotdbm organizational unit is supported by a z/OS LDAP Technical
Database Management (TDBM) server. DB2 z/OS V8 is used as a back end.
This server runs on z/OS V1R9. The suffix of this subtree is
ou=itsotdbm,o=itso. This server has one user configured for native
authentication, which means that the password is checked against the RACF
database.

� The itsoracf organizational unit is supported by a z/OS LDAP SDBM server.
The RACF database is used as a back end. This server runs on z/OS V1R9.
The suffix of this subtree is ou=itsoracf,o=itso.

Each of these organizational units have one or two users.

In this section, we describe how to configure WebSphere Application Server for
z/OS V7.0 to use parts of this LDAP tree as a user registry. More specifically, we
explain how to configure these registries:

� Stand-alone LDAP registry with WebSphere and z/OS LDAP SDBM back end
(RACF)

� Stand-alone LDAP registry with WebSphere and z/OS LDAP TDBM back end
(DB2)

� Stand-alone LDAP registry with WebSphere and z/OS LDAP TDBM native
authentication

� Federated repositories, including Federated z/OS LDAP with TDBM back end
(DB2) and Federated IBM Tivoli Directory Server

12.3 Stand-alone LDAP registry

The stand-alone LDAP registry feature in WebSphere Application Server for
z/OS V7.0 is similar to the LDAP registry feature in V6 and V6.1.

In this section, we show how to configure the WebSphere stand-alone LDAP
registry with z/OS LDAP SDBM, with z/OS LDAP TDBM with native
authentication, and with IBM Tivoli Directory Server.

12.3.1 WebSphere and z/OS LDAP SDBM back end (RACF)

z/OS LDAP can handle many types of back ends. One of them is SDBM, which
uses the RACF database as a data repository. With an SDBM back end, RACF
user profiles, group profiles, and user to group connections appear as LDAP
entries with a distinguished name to LDAP clients. All binds are authenticated
with a RACF distinguished name and a RACF password.
438 WebSphere Application Server V7.0 Security Guide

z/OS LDAP SDBM supports add, modify, delete, and search operations. The
access controls for user and group profiles are the RACF privileges of the
authenticated user.

z/OS LDAP SDBM configuration
The z/OS LDAP installation is described in Distributed Security and High
Availability with Tivoli Access Manager and WebSphere Application Server for
z/OS, SG24-6760. In this section, we focus on the configuration.

To configure z/OS LDAP with an SDBM back end:

1. Find the LDAP configuration in the SLAPDCNF member of the LDAP
customization data set. In our environment, the z/OS LDAP configuration file
is WTSC58.LDAP1.CNTL(SLAPDCNF). In this LDAP configuration file, remove the
comment or set up the following parameters:

database sdbm GLDBSDBM
suffix "ou=itsoracf,o=itso"

The suffix is the top of the LDAP tree that you want for your organization. We
choose ou=itsoracf,o=itso in our environment. The suffix does not
necessarily need to have an organizational unit (ou=). It might contain only an
organization (o=).

Example 12-1 shows an extract of our z/OS LDAP configuration for an SDBM
back end.

Example 12-1 z/OS LDAP configuration with an SDBM back end

listen ldap://:3389
maxConnections 60
adminDN "cn=LDAP Administrator"
adminPW "secret"
SDBM-specific CONFIGURATION SETTINGS
database sdbm GLDBSDBM
suffix "ou=itsoracf,o=itso"

2. Restart the z/OS LDAP server. If your LDAP server is configured properly
with an SDBM back end, a message similar to Example 12-2 shows in the
LDAP log at startup.

Example 12-2 z/OS LDAP log with an SDBM back end

Backend type: sdbm, Backend ID: SDBM BACKEND
SDBM BACKEND manages the following suffixes:
Backend suffix: OU=ITSORACF,O=ITSO
End of suffixes managed by SDBM BACKEND.
Capability: LDAP_Backend_ID Value: SDBM BACKEND
 Chapter 12. WebSphere z/OS and user registries 439

Capability: LDAP_Backend_BldDateTime Value:
2006-04-18-15.18.14.000000
Capability: LDAP_Backend_APARLevel Value: OA15948
Capability: LDAP_Backend_Release Value: R 6.0
Capability: LDAP_Backend_Version Value: V 1.0
Capability: LDAP_Backend_Dialect Value: DIALECT 1.0
Capability: LDAP_Backend_BerDecoding Value: STRING
Capability: LDAP_Backend_ExtGroupSearch Value: YES
Capability: LDAP_Backend_krbIdentityMap Value: YES
Capability: supportedControl Value: 2.16.840.1.113730.3.4.2
Capability: supportedControl Value: 1.3.18.0.2.10.2
End of capability listing for Backend type: sdbm, Backend ID: SDBM
BACKEND.
Backend capability listing ended.
Configuration file successfully read.

3. Validate that the SDBM is functional by accessing it from an LDAP client.

Independently developed LDAP browser clients are available on the Web that
you can use if you do not have a client.

The LDAP client uses the following values for a connection in this example:

Host : wtsc58.itso.ibm.com
Port : 3389
Base DN : ou=itsoracf,o=itso
User DN : racfid=valence,profiletype=user,ou=itsoracf,o=itso

The SDBM schema requires the RACF user distinguished name to follow this
template:

racfid=<racf_id>,profiletype=user,<sdbm_suffix>

The RACF user ID (valence in our example) must have the proper access
level to list users and groups from the RACF database. It must be a RACF
user ID with the AUDITOR attribute, a valid OMVS segment (specific or
implied by a defaulted segment). It does not need a TSO segment. Using the
client, you can access the RACF content displayed as an LDAP tree. All the
RACF user IDs and groups can be accessed.

WebSphere z/OS configuration for z/OS LDAP SDBM
WebSphere Application Server for z/OS V7.0 supports accessing z/OS LDAP
with an SDBM back end (RACF) when configured as a stand-alone LDAP
registry.
440 WebSphere Application Server V7.0 Security Guide

In this section, we explain how to configure WebSphere to access z/OS LDAP
SDBM:

1. In the administrative console, select Security  Global security. Under
User account repository, in the Available realm definitions list box, select
Standalone LDAP registry, and then, click Set as current. Standalone
LDAP registry then appears in the Current realm definition field (Figure 12-2).

Figure 12-2 WebSphere user account repository

Verify that administrative security is enabled and also that application security
is enabled if necessary. Click Apply on this page to keep these settings.

2. Click Configure and set up the general properties for the z/OS LDAP server
(Figure 12-3 on page 442):

– Primary administrative user name: This ID is the security server ID, which
is only used for WebSphere Application Server administrative security and
is not associated with the system process that runs the server. We use
racfid=valence,profiletype=user,ou=itsoracf,o=itso in our
environment. This primary user name will be used to log on to the
administrative console, for example.

– Server user identity: Select Automatically generated server identity in a
WebSphere 6.1 and V7.0 environment.

– Type of LDAP server: Select Custom.

– Host and port: Enter the full Domain Name System (DNS) host name and
TCP port to access z/OS LDAP. We use wtsc58.itso.ibm.com and 3389 in
our environment.

– Base distinguished name (DN): The base DN indicates the starting point
for searches in this LDAP directory server. It is the suffix
ou=itsoracf,o=itso in our environment.

– Bind distinguished name (DN) and password: The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and
group information.
 Chapter 12. WebSphere z/OS and user registries 441

We use racfid=mogos,profiletype=user,ou=itsoracf,o=itso in our
environment. This ID is the user ID to connect to LDAP. It is allowed to list
RACF users and groups.

– Make sure that Ignore case for authorization is selected. RACF user
names and group names are not case-sensitive.

Then, click Apply.

Figure 12-3 WebSphere configuration for z/OS LDAP SDBM
442 WebSphere Application Server V7.0 Security Guide

3. In the same window, under Additional Properties, click Advanced
Lightweight Directory Access Protocol (LDAP) user registry setting and
configure the properties (Figure 12-4):

– Change user filter and group filter to racfid=%v.

– Change user ID map and group ID map to *:racfid.

– Change group member ID map to
racfconnectgroupname:racfgroupuserids.

Click OK.

Figure 12-4 WebSphere advanced configuration for z/OS LDAP SDBM

4. Save the changes in the master repository, and restart the cell.

WebSphere z/OS LDAP SDBM back-end validation
After restarting WebSphere Application Server for z/OS V7.0, log in to the
administrative console with the primary administrative user name that was
defined earlier. You can use the full distinguished name (for our example,
(racfid=valence,profiletype=USER,ou=itsoracf,o=itso) or the user name only
(valence). The user name is a RACF identity.
 Chapter 12. WebSphere z/OS and user registries 443

You can also validate the user registry with the snoop servlet, which is bundled in
WebSphere for z/OS. With application security enabled, the snoop servlet
requires basic authentication. Call the snoop with a URL, such as:

http://wtsc58.itso.ibm.com:49080/snoop/

Authenticate providing a z/OS LDAP SDBM user name and password (RACF
user name and password) as shown in Figure 12-5. The snoop servlet then
appears and shows the authenticated principal.

Figure 12-5 Snoop servlet authentication with a RACF user ID

When authenticated, the snoop servlet displays information, including the
authenticated user (valence, in our example). Refer to Figure 12-6 on page 445.
444 WebSphere Application Server V7.0 Security Guide

Figure 12-6 Snoop servlet showing authenticated RACF user ID

WebSphere, LDAP SDBM, and SAF authorization
When LDAP is the configured user registry, it is common to bind users and
groups to Java EE roles at application deployment time. Bindings to
administrative and naming roles are usually done through the administrative
console. These bindings are referred to as WebSphere bindings. In the case of
LDAP SDBM, all users and groups need to be existing RACF identities.

z/OS has a strong tradition in security and security administration. RACF
administrators might not agree that a deployer (or development team if users and
groups are already mapped to Java EE roles in the applications’ descriptors) has
the authority to decide which RACF group or user ID can be authorized to which
Java EE role. The mapping of users and groups to roles at deployment time, or
searching for users and groups in the RACF database, is done under the
credentials of the bind distinguished name (BDN). This user ID must have the
AUDITOR attribute. Therefore, audit trails only lead to that BDN identity, not to
the identity of the deployer.
 Chapter 12. WebSphere z/OS and user registries 445

This section describes how to set up SAF authorization as an alternative to
WebSphere bindings in combination with LDAP SDBM as the configured user
registry.

Only a few steps are required to configure SAF authorization:

1. To configure WebSphere to use SAF authorization, select Security  Global
Security  Custom properties. Set the value of
com.ibm.security.SAF.authorization to true.

A key component in configuring SAF authorization in combination with LDAP
SDBM authentication is a mapping module. This module maps the LDAP
distinguished name to a SAF identity. You do not need to write a JAAS
module. The SampleSAFMappingModule module is provided in the
WebSphere run time and functions in combination with LDAP
SDBM-provided credentials. In an LDAP SDBM-constructed DN, the SAF ID
is already part of the DN. We assume that Lightweight Third Party
Authentication (LTPA) is the authentication mechanism. SWAM was
deprecated after Version 6.1.

2. Add the SampleSAFMappingModule module to the JAAS login. Select
Security  Global Security. Under Authentication, expand Java
Authentication and Authorization Service, and click System Logins.

3. Modify DEFAULT, RMI_INBOUND, and WEB_INBOUND. The modification is
identical for all three system login configurations. Make sure that you alter all
three of them.

4. Click Alias in JAAS login modules, and click New. Enter
com.ibm.websphere.security.SampleSAFMappingModule for the module class
name, and select Use login module proxy. Verify that the authentication
strategy is set to REQUIRED. Click OK. Figure 12-7 shows the search order.

Figure 12-7 JAAS login modules on a system login alias

5. Make sure that the EJBROLE class is active and shows RACLIST. Optionally,
configure the grouping class GEJBROLE. Define all administrative and
naming roles and permit the appropriate user IDs and groups to the profiles. If
you already have applications deployed, examine the Java EE roles and
446 WebSphere Application Server V7.0 Security Guide

define them as well in the EJBROLE class, with the appropriate access list.
Both administrative and application security must be enabled. Remove all
WebSphere bindings from the configuration. If you are migrating from
WebSphere bindings to SAF authorization, define all EJBROLE class profiles
and permits in advance.

6. Now, stop the cell or base server, and restart.

WebSphere differs from SAF bindings in that more than one application can
specify the same Java EE role name. In the case of SAF bindings, authorization
checks to the roles in those applications result in a SAF call to the same profile in
the EJBROLE class, and therefore, grant access to all applications with identical
role names. In the case of WebSphere bindings, the mapping is at the
application level. We always recommend that the developers discuss role
naming with the RACF security administrators.

12.3.2 WebSphere and z/OS LDAP TDBM back end (DB2)

This section provides information about configuring WebSphere for z/OS LDAP
TDBM, which uses DB2 z/OS as a data repository.

z/OS LDAP TDBM configuration
The z/OS LDAP installation is described in Distributed Security and High
Availability with Tivoli Access Manager and WebSphere Application Server for
z/OS, SG24-6760. In this section, we focus on the configuration activities.

To configure z/OS LDAP with an TDBM back end:

1. Find the LDAP configuration in the SLAPDCNF member of the LDAP
customization data set. In our environment, the z/OS LDAP configuration file
is WTSC58.LDAP1.CNTL(SLAPDCNF). In this LDAP configuration file, remove the
comment or set up the following parameters:

database tdbm GLDBTDBM
suffix "ou=itsotdbm,o=itso"
servername DB2B
dbuserid GLDSRV
databasename GLDDB
dsnaoini WTSC58.LDAP1.CNTL(DSNAOINI)
attroverflowsize 255

The suffix is the top of the LDAP tree that you want for your organization. We
choose ou=itsotdbm,o=itso in our environment. The suffix does not
necessarily need to have an organizational unit (ou=). It can contain an
organization only (o=). The DB2 back-end configuration refers to the DB2
setup that was done at z/OS LDAP installation time.
 Chapter 12. WebSphere z/OS and user registries 447

Example 12-3 shows an extract of our z/OS LDAP configuration to use a
TDBM back end.

Example 12-3 z/OS LDAP configuration with a TDBM back end

listen ldap://:3389
maxConnections 60
adminDN "cn=LDAP Administrator"
adminPW "secret"
TDBM-specific CONFIGURATION SETTINGS
database tdbm GLDBTDBM
suffix "ou=itsotdbm,o=itso"
servername DB2B
dbuserid GLDSRV
databasename GLDDB
dsnaoini WTSC58.LDAP1.CNTL(DSNAOINI)
attroverflowsize 255

2. Restart the z/OS LDAP server. If your LDAP server is configured properly
with a TDBM back end, a message similar to Example 12-4 appears in the
LDAP log at startup.

Example 12-4 z/OS LDAP log with a TDBM back end

Backend type: tdbm, Backend ID: TDBM BACKEND
TDBM BACKEND manages the following suffixes:
Backend suffix: OU=ITSOTDBM,O=ITSO
End of suffixes managed by TDBM BACKEND.
Capability: LDAP_Backend_ID Value: TDBM BACKEND
Capability: LDAP_Backend_BldDateTime Value:
2006-07-25-22.56.16.000000
Capability: LDAP_Backend_APARLevel Value: OA17138
Capability: LDAP_Backend_Release Value: R 6.0
Capability: LDAP_Backend_Version Value: V 1.0
Capability: LDAP_Backend_Dialect Value: DIALECT 1.0
Capability: LDAP_Backend_BerDecoding Value: BINARY
Capability: LDAP_Backend_ExtGroupSearch Value: YES
Capability: LDAP_Backend_krbIdentityMap Value: YES
Capability: supportedControl Value: 2.16.840.1.113730.3.4.2
Capability: supportedControl Value: 1.3.18.0.2.10.2
...
Capability: LDAP_Backend_SupportedCapabilities Value:
1.3.18.0.2.32.3
Capability: LDAP_Backend_SupportedCapabilities Value:
1.3.18.0.2.32.31
...
448 WebSphere Application Server V7.0 Security Guide

Capability: LDAP_Backend_EnabledCapabilities Value: 1.3.18.0.2.32.31
End of capability listing for Backend type: tdbm, Backend ID: TDBM
BACKEND.

3. Copy the following files to the LDAP working directory /etc/ldap:

– /usr/lpp/ldap/etc/schema.user.ldif
– /usr/lpp/ldap/etc/schema.IBM.ldif

4. Edit these files and change the line cn=schema,<suffix> to reflect the TDBM
suffix that is defined in the z/OS LDAP configuration file, for example:

dn: cn=schema,ou=itsotdbm,o=itso

5. From UNIX System Services, use the ldapmodify command to load the
schema files into z/OS LDAP:

ldapmodify -h wtsc58 -p 3389 -D "cn=LDAP Administrator" -w secret -f
/etc/ldap/schema.user.ldif
ldapmodify -h wtsc58 -p 3389 -D "cn=LDAP Administrator" -w secret -f
/etc/ldap/schema.IBM.ldif

Load schema.user.ldif followed by schema.IBM.ldif. The options here are:

– -h host name defines the host name where LDAP is running.
– -p port number defines the port on which LDAP is listening.
– -D adminDN defines the administrator distinguished name (DN).
– -w password is the administrator password.

6. Add a suffix entry and a person entry to the z/OS LDAP. For this example,
create a new schema.suffix.ldif that contains the following information:

dn: ou=itsotdbm,o=itso
objectclass: organizationalUnit
objectclass:top
ou: itsotdbm

dn: cn=UserTdbm,ou=itsotdbm,o=itso
objectClass: inetOrgPerson
objectClass: ePerson
objectClass: organizationalPerson
objectClass: person
objectClass: top
cn: UserTdbm

Important: There are no spaces between the comma (,) and o=. Those
schema files contain the objects and attributes that are used to organize
the data following the IBM schema and for the SAF native authentication
object class.
 Chapter 12. WebSphere z/OS and user registries 449

uid: UserTdbm
sn: 2006
description: Test user for TDBM

Customize these entries to match your suffix and the user name that you
want for a first user.

Use a command similar to the following command to add the entries to the
LDAP tree:

ldapadd -h wtsc58 -p 3389 -D "cn=LDAP Administrator" -w secret -f
schema.suffix.ldif

7. Set up a password for the new user by creating a file called
user.password.ldif, which contains the following information:

dn: cn=UserTdbm,ou=itsotdbm,o=itso
changetype:modify
replace:userpassword
userpassword: usertdbm

Use a command similar to the following command to modify the user entry in
the LDAP tree:

ldapmodify -h wtsc58 -p 3389 -D "cn=LDAP Administrator" -w secret -f
user.password.ldif

WebSphere z/OS configuration for z/OS LDAP TDBM
WebSphere Application Server for z/OS V7.0 supports accessing z/OS LDAP
with a TDBM back end (DB2) when configured as a stand-alone LDAP registry.
In this section, we explain how to configure WebSphere Application Server for
z/OS V7.0 in order to access z/OS LDAP TDBM:

1. In the administrative console, select Security  Global security. Under
User account repository, in the Available realm definitions list box, select
Standalone LDAP registry, and then, click Set as current. The Standalone
LDAP registry then appears in the Current realm definition field (Figure 12-8).

Figure 12-8 WebSphere user account repository
450 WebSphere Application Server V7.0 Security Guide

Verify that administrative security is enabled and, if required, application
security. Click Apply on this page to keep these settings.

2. Click Configure (Figure 12-8 on page 450).

3. Set up the general properties for the z/OS LDAP server (Figure 12-9 on
page 452):

– Primary administrative user name: This ID is the security server ID, which
is only used for WebSphere Application Server security and is not
associated with the system process that runs the server. We use
cn=UserTdbm,ou=itsotdbm,o=itso in our environment. This primary user
name is used to log on to the administrative console, for example.

– Leave Automatically generated server identity selected.

– Type of LDAP server: Select IBM Tivoli Directory Server. This choice
sets up the default filters for retrieving users and groups in the Advanced
LDAP user registry settings.

– Host and port: Enter the full DNS host name and TCP port to access z/OS
LDAP. We use wtsc58.itso.ibm.com and 3389 in our environment.

– Base distinguished name (DN): The base DN indicates the starting point
for searches in this LDAP directory server. It is ou=itsotdbm,o=itso in our
environment.

– Bind distinguished name (DN) and password: The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and
group information. We use cn=LDAP Administrator in our environment.

Then, click Apply.
 Chapter 12. WebSphere z/OS and user registries 451

Figure 12-9 WebSphere configuration for z/OS LDAP TDBM

4. Save the changes in the master repository, and restart the cell.
452 WebSphere Application Server V7.0 Security Guide

WebSphere and z/OS LDAP TDBM back-end validation
After restarting WebSphere Application Server for z/OS V7.0, log in to the
administrative console with the primary administrative user name that was
defined earlier. It is possible to use the full distinguished name
(cn=UserTdbm,ou=itsotdbm,o=itso) or the user name only (usertdbm). Using our
ldif file, the password is usertdbm also.

You can validate the user registry with the snoop servlet, which is bundled in
WebSphere for z/OS. With the application security enabled, the snoop servlet
requires basic authentication. Call the snoop servlet with a URL, such as:

http://wtsc58.itso.ibm.com:49080/snoop/

Authenticate by providing the user name and password that were defined earlier.
The snoop servlet then appears and shows the authenticated principal. When
authenticated, the snoop servlet displays information, including the authenticated
user (usertdbm, in our example). Refer to Figure 12-10 on page 454.
 Chapter 12. WebSphere z/OS and user registries 453

Figure 12-10 Snoop servlet showing authenticated z/OS LDAP TDBM user ID

12.3.3 WebSphere and z/OS LDAP TDBM native authentication

LDAP has the ability to authenticate to RACF through TDBM by supplying a
RACF password on a simple bind to a TDBM back end. Authorization information
is still gathered by the LDAP server based on the distinguished name that
performed the bind operation. The LDAP entry that contains the bind DN must
contain either the ibm-nativeId attribute or uid attribute to specify the ID that is
associated with this entry. Note that the SDBM back end does not have to be
configured. The ID and password are passed to RACF, and the verification of the
password is performed by RACF. Another feature of native authentication is the
ability to change your RACF password by issuing an LDAP modify command.
454 WebSphere Application Server V7.0 Security Guide

You need to enable native authentication for the following reasons:

� You have the need for a central user registry with RACF identities (SSO).

� You want the ability to reuse RACF user IDs and passwords using an LDAP
interface.

� You plan to use a security product, such as Tivoli Access Manager, as a front
end to WebSphere Application Server for z/OS V7.0.

z/OS LDAP TDBM native authentication configuration
First, configure LDAP z/OS with a TDBM back end, as described in 12.3.2,
“WebSphere and z/OS LDAP TDBM back end (DB2)” on page 447.

Additional modification is needed in the LDAP configuration file. Specify the
native authentication options in this configuration file in the TDBM section. To do
so, remove the comment from the following directives:

� useNativeAuth: This line defines which attribute uses native authentication.
We use the selected value, which means that only the ibm-nativeId attribute
is subject to native authentication.

� nativeUpdateAllowed: This line defines whether LDAP can modify attributes,
such as the password, for the native authentication system. We choose on.

� nativeAuthSubtree: This line defines in which subtree in the LDAP tree native
authentication occurs. This option can appear multiple times to specify all
subtrees that use native authentication. If this option is omitted or is set to all,
the entire directory is subject to native authentication. If useNativeAuth
selected or all is not specified, this option is ignored.

Example 12-5 shows an extract of our z/OS LDAP configuration to use native
authentication with a TDBM back end.

Example 12-5 z/OS LDAP configuration for native authentication

listen ldap://:3389
maxConnections 60
adminDN "cn=LDAP Administrator"
adminPW "secret"
TDBM-specific CONFIGURATION SETTINGS
database tdbm GLDBTDBM
suffix "ou=itsotdbm,o=itso"
servername DB2B
dbuserid GLDSRV
databasename GLDDB
dsnaoini WTSC58.LDAP1.CNTL(DSNAOINI)
attroverflowsize 255
useNativeAuth selected
 Chapter 12. WebSphere z/OS and user registries 455

nativeUpdateAllowed on

Restart the LDAP server to activate these configuration modifications. You now
see the following message in the LDAP JOBLOG:

The useNativeAuth configuration option SELECTED has been enabled.

When using the TDBM back end for native authentication, users need to have
the ibm-nativeAuthentication objectclass and ibm-nativeId attribute. If you have
existing users in your LDAP TDBM back end, you need to modify their definitions
to include the ibm-nativeAuthentication objectclass and ibm-nativeId attribute.

For our configuration, we create a new user with the ibm-nativeAuthentication
objectclass and ibm-nativeId attribute using a file called newuser.ldif, which
contains the following information:

dn: cn=valence,ou=itsotdbm,o=itso
objectClass: inetOrgPerson
objectClass: ePerson
objectClass: organizationalPerson
objectClass: person
objectClass: top
cn: valence
uid: valence
sn: 2006
description: Test user for TDBM Native
ibm-nativeId: VALENCE
objectclass: ibm-nativeAuthentication

Use a command similar to the following command to add the entries to the LDAP
tree:

ldapadd -h wtsc58 -p 3389 -D "cn=LDAP Administrator" -w secret -f
newuser.ldif

The ldif entry does not have a password. The password will be verified against
the VALENCE entry in the RACF database.

The ibm-nativeId attribute specifies the user ID to which the entry binds in the
RACF database. In this example, the valence LDAP entry binds to the user
VALENCE in the RACF database.

WebSphere z/OS configuration for LDAP native authentication
From a WebSphere Application Server for z/OS V7.0 perspective, using native
authentication with z/OS LDAP is transparent. Consequently, the configuration is
the same as with no native authentication. Refer to 12.3.2, “WebSphere and
456 WebSphere Application Server V7.0 Security Guide

z/OS LDAP TDBM back end (DB2)” on page 447 to configure WebSphere
Application Server.

WebSphere z/OS and LDAP native authentication validation
We validate the user registry used with the snoop servlet. With application
security enabled, the snoop servlet requires basic authentication. Call the snoop
servlet with a URL such as the following URL:

http://wtsc58.itso.ibm.com:49080/snoop/

Authenticate providing the user name and password defined earlier with the
native authentication attribute and objectclass. The distinguished name
(cn=valence,ou=itsotdbm,o=itso) or the common name only (valence) can be
used. The RACF password corresponding to the ibm-nativeId attribute has to be
provided. If the common name and the ibm-nativeId match, the credentials
provided are RACF credentials. The snoop servlet then appears and shows the
authenticated principal. Refer to Figure 12-11.

Figure 12-11 Snoop servlet showing authenticated z/OS LDAP TDBM native authentication user ID
 Chapter 12. WebSphere z/OS and user registries 457

12.4 Federated repositories

In this section, we explain federated repositories and how to configure them in
our scenario.

12.4.1 Federated repositories

Inclusion of federated repositories in this WebSphere release provides a single
model for managing organizational entities. You can configure a realm that
consists of identities in the file-based repository that is built into the system, in
one or more external repositories, or in both the built-in, file-based repository and
in one or more external repositories.

Currently, most WebSphere applications have their own models and
components for managing organizational entities, and they provide various levels
of security. Most applications are dependent on specific types and brands of
repositories, assume a specific schema for the data in those repositories, and
are unable to use repositories with existing data. Federated repositories help
these applications by providing them with a common model, secure access to
various brands and types of repositories, and the ability to use repositories with
existing data. The single model includes a set of organizational entity types and
their properties, a repository-independent application programming interface
(API), and a service provider programming interface (SPI) for plugging in
repositories. XPath is the search language in the API and SPI.

The federated repository configuration uses multiple repositories simultaneously
and recognizes the entries in the various repositories as entries representing
distinct entities. By configuring an entry mapping repository, a federated
repository configuration can use both LDAP and the database at the same time.
The federated repository configuration hierarchy and constraints for identifiers
provide the aggregated namespace for both of those repositories and prevent
identifiers from colliding.

A federated repository configuration provides a property extension repository,
which is a database regardless of the type of main profile repositories for a
property-level join configuration. When an application uses the federated
repository configuration to retrieve an entry for a person, the federated repository
configuration transparently joins the properties of the person that is retrieved
from either the LDAP or the client’s database with the properties of the person
that is retrieved from the property extension repository into a single logical
person entry.
458 WebSphere Application Server V7.0 Security Guide

When you configure a property extension repository, you can supply a valid data
source, a direct connection configuration, or both. WebSphere first tries to
connect by way of the data source. If the data source is not available, the system
uses the direct access configuration.

Figure 12-12 presents the WebSphere federated repositories architecture
overview. The federated repository feature is also called the Virtual Member
Manager (VMM).

Figure 12-12 Federated repositories or VMM architecture overview

Federated repositories support the following user repositories in the cell’s
security realm:

� Built-in file-based repository

� Multiple federated LDAP servers

� Database that can be federated by the command-line interface (CLI)

The federation creates a single namespace for identities. Database
repositories are supported by using the command line only.

Application Server
Security

Administrative ConsoleApplication

VMM User
Management

VMM Configuration
Management

VMM
Configuration

APIs

Adapter Adapter Adapter Adapter

CustomDBLDAPFile
DB

Repository SPI Property Ext SPI

Adapter

User Registries

Local OSLDAP

CUR

VMM
Runtime

APIs

Administrative Command Framework

wsadmin

VMM UR

Authentication
(JAAS)

WebSphere Application Server V7
VMM = Virtual member manager
 Chapter 12. WebSphere z/OS and user registries 459

Federated repositories also provide user and group management features. The
federated repository is accessed with read and write permissions from
WebSphere Application Server. This user and group management is available
through the administrative console, through command-line utilities, or using
public APIs.

Table 12-1 shows a summary of federated repository features as compared to
other user registry options.

Table 12-1 Federated repositories compared to other user registry options

When you use the federated repositories functionality, all of the configured
repositories that you specify as part of the federated repository configuration
become active. The user ID, and the distinguished name (DN) for an LDAP
repository, must be unique in multiple user repositories that are configured
under the same federated repository configuration.

12.4.2 Our federated repositories scenario

Our federated repositories scenario relies on the LDAP tree and on the
environment that we described in 12.2, “Our scenario and our environment” on
page 437.

In this section, we focus on configuring WebSphere Application Server for z/OS
for a federated repository composed of z/OS LDAP TDBM and IBM Tivoli
Directory Server. Refer to Figure 12-13 on page 461.

Federated repositories Other user registry
options

Supported registries File-based
LDAP
DB (via wsadmin)
RACF

Local operating system
Stand-alone LDAP
Stand-alone custom

Simultaneous
multi-registry support

Yes No

Registry read/write
support

Read/write Read-only
460 WebSphere Application Server V7.0 Security Guide

Figure 12-13 Federated repositories scenario

The itsoitds organizational unit is supported by IBM Tivoli Directory Server.
The itsotdbm organizational unit is supported by z/OS LDAP TDBM. In this
scenario, we federate the two subtrees to make them available to WebSphere as
one LDAP tree whose root organization is itso. This federation is transparent to
WebSphere Application Server for z/OS V7.0. Users and groups can be
accessed in both subtrees simultaneously.

In the following section, we start the federation with z/OS LDAP TDBM. Then, we
validate that it also works with native authentication, and finally we federate IBM
Tivoli Directory Server. At the end of this federation configuration, all three users
that are defined in our scenario can access the WebSphere application
simultaneously.

Backend: DB2 z/OS

o=itso

cn=Useritds cn=UserTdbm cn=valence

ITDS z/OS LDAP TDBM

Backend: DB2 Backend: RACF

WebSphere Federated Repositories

Native
Authentication

ou-itsoitds,o=itso ou-itsotdbm,o=itso
 Chapter 12. WebSphere z/OS and user registries 461

12.4.3 Federated z/OS LDAP with TDBM back end (DB2)

In this section, we describe how to federate a z/OS LDAP with a TDBM back end.

z/OS LDAP TDBM configuration
Configure z/OS LDAP with a TDBM back end, as described in 12.3.2,
“WebSphere and z/OS LDAP TDBM back end (DB2)” on page 447.

WebSphere z/OS configuration for LDAP TDBM
WebSphere Application Server for z/OS V7.0 supports accessing a z/OS LDAP
with a TDBM back end (DB2) when configured as a federated repository LDAP
registry. In this section, we explain how to configure WebSphere to access z/OS
LDAP TDBM:

1. In the administrative console, select Security  Global security. Under User
account repository, select Federated repositories, and then, click
Configure. Under the Related Items section, select Manage repositories.
The default InternalFileRepository appears in the list. Click Add to define a
new repository.

2. Configure the new repository with the parameters for the z/OS LDAP TDBM
back end (Figure 12-14 on page 463):

– Repository identifier: Name of the repository in the WebSphere
configuration. We choose itsotdbm in our configuration.

– As a directory type, select z/OS Integrated Security Services LDAP
Server.

– Enter the primary host name and port for the z/OS LDAP server. These
values are wtsc58.itso.ibm.com and 3389 in our environment.

– It is possible to specify failover servers for high availability purposes.

– Specify the bind distinguished name and password. This ID is an LDAP
user ID that is allowed to scan and update the LDAP tree. We choose the
administrator identity for our LDAP server in our environment, which is
cn=LDAP Administrator.

– For a TDBM back end with the schema loaded, leave uid in the Login
properties field.

Note: WebSphere Application Server for z/OS V7.0 does not currently support
federated repositories with a z/OS LDAP SDBM back end. To access a z/OS
LDAP SDBM back end, WebSphere can use a stand-alone LDAP registry
configuration.
462 WebSphere Application Server V7.0 Security Guide

– Do not enter a value in the LDAP attribute for Kerberos principal name
field.

– You can configure SSL to secure the connection to the LDAP server. We
do not implement this feature in our environment.

Then, click Apply, and save to the master configuration. WebSphere
validates that it can access the LDAP server.

Figure 12-14 WebSphere z/OS LDAP TDBM as a federated repository

3. In the administrative console, select Security  Global security. Under
User account repository, select Federated repositories, and then, click
Configure. Under Repositories in the Realm, click Add Base entry to
Realm:

a. Select your new repository name. We use itsotdbm in our example.
 Chapter 12. WebSphere z/OS and user registries 463

b. Specify the distinguished name of a base entry that uniquely identifies this
set of entries in the realm. If multiple repositories are included in the realm,
you must define a separate distinguished name that uniquely identifies this
set of entries within the realm. We choose ou=itsotdbm,o=itso in our
configuration.

c. Specify the distinguished name of the base entry within the repository.
The entry and its descendents are mapped to the subtree that is identified
by the unique base name entry field. If this field is left blank, the subtree
defaults to the root of the LDAP repository. We set up ou=itsotdbm,o=itso
for our configuration.

Then, click OK, and save to the master configuration (Figure 12-15).

Figure 12-15 WebSphere z/OS LDAP TDBM

4. In the administrative console, select Security  Global security. Under
User account repository, select Federated repositories, and then, click
Configure:

a. Enter a realm name of your choice. We choose itso in our example.

b. Specify the name of the user who will have WebSphere administrative
privileges. This distinguished name has to be an existing identity in the
464 WebSphere Application Server V7.0 Security Guide

z/OS LDAP TDBM repository. We choose
cn=UserTdbm,ou=itsotdbm,o=itso in our environment.

c. Select Automatically generated server identity.

d. Remove the existing file-based InternalFileRepository by selecting it and
clicking Remove.

Then, click Apply, and save to the master configuration. WebSphere
validates that it can find the administrative user identity (Figure 12-16).

Figure 12-16 WebSphere federated repositories base entries

5. In the administrative console, select Security  Global security:

a. Under User account repository, select Federated repositories, and then,
click Set as current.

b. Select Administrative security and clear the check mark from Java2
security if it is unnecessary.
 Chapter 12. WebSphere z/OS and user registries 465

c. Then, click Apply, and save to the master configuration (Figure 12-17).

Figure 12-17 WebSphere federated repositories main security panel

6. Restart WebSphere Application Server for z/OS V7.0.

Federated z/OS LDAP TDBM validation
After restarting the cell, log in to the administrative console with the primary
administrative user name that was defined earlier. You can use the full
distinguished name (cn=UserTdbm,ou=itsotdbm,o=itso) or the user name only
(usertdbm). Using our ldif file, the password is usertdbm also.

You can also validate the user registry that is used with the snoop servlet. With
application security enabled, the snoop servlet requires basic authentication. Call
the snoop servlet with a URL, such as the following URL:

http://wtsc58.itso.ibm.com:49080/snoop/

Authenticate providing the user name and password that were defined earlier.
The snoop servlet then appears and shows the authenticated principal
(Figure 12-18 on page 467).
466 WebSphere Application Server V7.0 Security Guide

Figure 12-18 Snoop servlet showing authenticated z/OS LDAP TDBM user ID

12.4.4 Federated z/OS LDAP TDBM native authentication

In this section, we describe how to federate a z/OS LDAP TDBM with native
authentication. We explain why you might choose to enable native authentication
in 12.3.3, “WebSphere and z/OS LDAP TDBM native authentication” on
page 454.
 Chapter 12. WebSphere z/OS and user registries 467

z/OS LDAP TDBM configuration
Configure z/OS LDAP with a TDBM back end, as described in 12.3.3,
“WebSphere and z/OS LDAP TDBM native authentication” on page 454.

WebSphere z/OS configuration for LDAP TDBM
Native authentication does not imply configuration changes at the WebSphere
level. Hence, configure WebSphere for z/OS for a z/OS LDAP TDBM back end,
as described in 12.4.3, “Federated z/OS LDAP with TDBM back end (DB2)” on
page 462.

You can now access your secured applications with the user IDs and password
in RACF. For example, in our environment, the valence user can access the
snoop servlet providing this user’s RACF password. Refer to Figure 12-19.

Figure 12-19 Snoop servlet showing authenticated z/OS LDAP TDBM native authorization user ID
468 WebSphere Application Server V7.0 Security Guide

In order to access the administrative console, users need to be added to the list
of administrative roles. The user can be added in Users and Groups 
Administrative user roles.

For example, access the administrative console with the existing administrative
user ID (usertdbm in our example), and then, add any new user (valence in our
example) with an administrative role. Refer to Figure 12-20.

Figure 12-20 WebSphere administrative user roles

12.4.5 Federated IBM Tivoli Directory Server

In this section, we describe how to federate a IBM Tivoli Directory Server.

IBM Tivoli Directory Server configuration
The Tivoli Information Center describes how to install IBM Tivoli Directory
Server:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=
/com.ibm.IBMDS.doc/install04.htm

In this section, we focus on the configuration activities.

On the Windows platform, you can configure IBM Tivoli Directory Server by using
the idsxcfg utility. This utility is available using the following command:

C:\Program Files\IBM\LDAP\V6.0\sbin\idsxcfg.cmd
 Chapter 12. WebSphere z/OS and user registries 469

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDS.doc/install04.htm

We configure IBM Tivoli Directory Server to handle the following suffix:

o=itsoitds,o=itso

The LDAP administrator is cn=LDAP Administrator, and the password is secret.
Refer to Figure 12-21.

Figure 12-21 IBM Tivoli Directory Server idsxcfg current configuration display

We now add entries to IBM Tivoli Directory Server, because it is empty. We add
a suffix entry and a person entry. For this purpose, create a new
schema.suffix.ldif that contains the following information:

dn: ou=itsoitds,o=itso
ou: itsoitds
objectclass: organizationalUnit
objectclass: top
470 WebSphere Application Server V7.0 Security Guide

dn: cn=UserItds, ou=itsoitds,o=itso
uid: UserItds
description: Test user for ITDS
objectclass: inetOrgPerson
objectclass: ePerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
sn: 2007
cn: UserItds

Customize these entries to match your suffix and the user name that you want for
a first user.

Use a command similar to the following command to add the entries to the LDAP
tree:

C:\Program Files\IBM\LDAP\V6.0\bin>ldapadd -D "cn=LDAP Administrator"
-w secret -i schema.suffix.ldif

To set up a password for the new user, create a file called user.password.ldif,
which contains the following information:

dn: cn=UserItds,ou=itsoitds,o=itso
changetype:modify
replace:userpassword
userpassword: useritds

Use a command similar to the following command to modify the user entry in the
LDAP tree:

C:\Program Files\IBM\LDAP\V6.0\bin>ldapmodify -D "cn=LDAP
Administrator" -w secret -i user.password.ldif

WebSphere z/OS configuration for IBM Tivoli Directory Server
WebSphere Application Server for z/OS V7.0 supports accessing IBM Tivoli
Directory Server when configured as a federated repository LDAP registry. In this
section, we explain how to configure WebSphere to access IBM Tivoli Directory
Server:

1. In the administrative console, select Security  Global security. Under
User account repository, select Federated repositories, and then, click
Configure. Under the Related Items section, select Manage repositories.
The default InternalFileRepository appears in the list. Click Add to define a
new repository.
 Chapter 12. WebSphere z/OS and user registries 471

2. Configure the new repository with the parameters for IBM Tivoli Directory
Server (Figure 12-22 on page 473):

– Repository identifier: Name of the repository in the WebSphere
configuration. We choose itsoitds in our configuration.

– As a directory type, select IBM Tivoli Directory Server.

– Enter the primary host name and port for the z/OS LDAP server. We use
itds.itso.ibm.com and 389 in our environment.

– You can specify failover servers for high availability purposes.

– Specify the bind distinguished name and password, which needs to be an
LDAP user ID that is allowed to scan and update the LDAP tree. We
choose the administrator identity for our LDAP server in our environment,
which is cn=LDAP Administrator.

– Leave uid in the Login properties field.

– The LDAP attribute for Kerberos principal name field is protected, and it is
not possible to assign a value.

– You can configure SSL to secure the connection to the LDAP server. We
do not implement this feature in our environment.

Then, click Apply, and save to the master configuration. WebSphere
validates that it can access the LDAP server.
472 WebSphere Application Server V7.0 Security Guide

Figure 12-22 WebSphere configuration for IBM Tivoli Directory Server as a federated repository

3. In the administrative console, select Security  Global security. Under
User account repository, select Federated repositories, and then, click
Configure. Under Repositories in the Realm, click Add Base entry to
Realm:

– Select your new repository name. We use itsoitds in our example.

– Specify the distinguished name of a base entry that uniquely identifies this
set of entries in the realm. If multiple repositories are included in the realm,
it is necessary to define a separate distinguished name that uniquely
identifies this set of entries within the realm. We choose
ou=itsoitds,o=itso in our configuration.

– Specify the distinguished name of the base entry within the repository.
The entry and its descendents are mapped to the subtree that is identified
 Chapter 12. WebSphere z/OS and user registries 473

by the unique base name entry field. If this field is left blank, the subtree
defaults to the root of the LDAP repository. We set up ou=itsoitds,o=itso
for our configuration.

Then, click OK, and save to the master configuration (Figure 12-23).

Figure 12-23 WebSphere repository reference for IBM Tivoli Directory Server

4. In the administrative console, select Security  Global security. Under
User account repository, select Federated repositories, and then, click
Configure.

In the example configuration, we federate z/OS LDAP with IBM Tivoli
Directory Server. Because we have already configured this panel for z/OS
LDAP, we do not need to perform any further configuration. Therefore, the
primary administrative user name stays a user name from our first registry
(cn=UserTdbm,ou=itsotdbm,o=itso). The realm name is the name for all
federated registries. Refer to Figure 12-24 on page 475.
474 WebSphere Application Server V7.0 Security Guide

Figure 12-24 WebSphere federated repositories base entries

5. In the administrative console, click Security  Global security.

If you have not already done so, under User account repository, select
Federated repositories, and then, click Set as current. Select
Administrative security, and clear the check mark from Java2 security if it is
unnecessary. Then, click Apply, and save to the master configuration.

6. Restart WebSphere Application Server for z/OS V7.0.

Federated IBM Tivoli Directory Server validation
To log in to the administrative console, use the primary administrative user name
that was defined earlier. You can use the full distinguished name
(cn=UserTdbm,ou=itsotdbm,o=itso) or the user name only (usertdbm). Using our
ldif file, the password is usertdbm also.
 Chapter 12. WebSphere z/OS and user registries 475

You can validate the federated user registry with the snoop servlet, which is
bundled in WebSphere for z/OS. With the application security enabled, the
snoop servlet requires basic authentication. Call the snoop servlet with a URL,
such as the following URL:

http://wtsc58.itso.ibm.com:49080/snoop/

Authenticate, providing the user name and password that were defined earlier for
the last federated repository (UserItds in our example). The snoop servlet then
appears and shows the authenticated principal. Refer to Figure 12-25.

Figure 12-25 Snoop servlet showing authenticated IBM Tivoli Directory Server user ID

Because user registries are now federated, the user from z/OS LDAP TDBM
(UserTdbm) can also be used with the same configuration at the same time.
476 WebSphere Application Server V7.0 Security Guide

All of these steps validate the federated repositories set up with a z/OS LDAP
TDBM and IBM Tivoli Directory Server. Native authentication can also be used.
 Chapter 12. WebSphere z/OS and user registries 477

478 WebSphere Application Server V7.0 Security Guide

Chapter 13. Implementing Secure
Sockets Layer in WebSphere
for z/OS

This chapter explains the concepts of certificates and keyrings. In the past, many
administrators have had problems establishing Secure Sockets Layer (SSL)
connections, for instance, when invoking the wsadmin shell or by federating a new
node. Several publications even recommended that you turn off security for
federating a node. In order to work with a secured WebSphere environment on
z/OS, it is essential to understand the concepts of certificates and keyrings.

The new writable keyring support is also discussed in this chapter. This feature
enhances the capabilities of the administrative console to consistently manage
the keyrings and certificates that are stored in System Authorization Facility
(SAF). This major enhancement increases the efficiency of SSL management
within WebSphere Application Server for z/OS while SAF still has the control
over all certificates and keyrings.

This chapter contains the following sections:

� “Keyrings and certificates in RACF” on page 481
� “Centrally managed SSL” on page 487
� “WebSphere V7 for z/OS SSSL to JSSE changes” on page 491
� “Writable SAF keyrings” on page 493

13
© Copyright IBM Corp. 2009. All rights reserved. 479

� “RACF certificate management” on page 514
� “Hardware cryptography and Java cryptography providers” on page 519
� “SSL troubleshooting and traces” on page 533
480 WebSphere Application Server V7.0 Security Guide

13.1 Keyrings and certificates in RACF

Getting connected to a secured cell with administrative security enabled can
sometimes seem difficult, especially when federating a node into a existing cell.
In many client cases, the SSL connection cannot be established because of
missing keyring definitions and certificates.

Certain publications have recommended that you turn off security when
federating a node into a existing cell. But this workaround for the federation
cannot be used in large production environments with short time slots for
maintenance. For normal configuration changes with wsadmin scripting, turning
off the security is not a option either.

In order to work with a secured WebSphere environment on z/OS, it is essential
to understand the concepts of certificates and keyrings.

13.1.1 Certificates

A personal certificate represents the identity of a server. The certificate has been
certified by a Certification Authority (CA), ensuring that the server presenting the
certificate is who it pretends to be. The personal certificate consists of a
public/private key pair that is usually signed by a trusted CA. The entire concept
of asymmetric cryptography is based on the fact that a message, which is signed
by a public key, can only be decrypted by the corresponding private key and
reverse. In practice, the private key will kept secret whereas the public key is
made publicly available.

The major task of a trusted CA is to map an identity, such as a host name, to a
specific public/private key pair in order to build trust. In addition, the CA itself
consists of a self-signed public/private key pair, where the private key is the most
secret part of this concept. A personal certificate is signed with the private key of
the CA. Consequently, the trust of a personal certificate can be verified by using
the public certificate of the CA, which is a signer certificate.

Essential to this concept is that you always have to trust the CA. A lot of clients
have implemented their own CAs.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 481

13.1.2 Keyrings

A keyring is a named collection of certificates associated with a specific user. A
certificate is identified by its label, as well as the keyring to which it is connected.
Consequently, a keyring is only valid in conjunction with a RACF user ID. You can
create multiple keyrings with the same name, but assigned to separate user IDs.
Refer to Figure 13-1.

Figure 13-1 Keyring concept

For instance, a keyring named WPKeyring in conjunction with the started task
control (STC) user ID WPACR differs from the keyring WPKeyring in conjunction with
user ID WPADMIN as shown in Figure 13-1. Certificates can be connected to both
keyrings independently.

13.1.3 Building a trust chain with WebSphere for z/OS

In order to explain how a trust chain works with regard to WebSphere Application
Server on z/OS, this section uses an example that is based on the scenario that
is seen in Figure 13-2 on page 483. The concepts in this scenario can be applied
to any kind of SSL connection between client and server.

In the example, there are two situations that use SSL:

� A client initiates an SSL connection by invoking an application on WebSphere
for z/OS. In this case, the application server on z/OS has the role of a server.

� The application needs to make outbound Web service requests to a second
WebSphere environment on a distributed platform secured by SSL (we refer

WPACR

WPKeyring

userid
WPADMIN

WPKeyring

userid

KeyringWS

CertificateA CertificateB CertificateC CertificateD
482 WebSphere Application Server V7.0 Security Guide

to this environment as dWAS). In this case, the application server on z/OS has
the role of the client and dWAS has the role of server.

In both cases, the initiator of the SSL connection must be able to trust the server.

Figure 13-2 Building a trust chain with WebSphere z/OS

All incoming HTTP and SOAP requests (inbound) to the application server on
z/OS are handled by the control region (CR) of the application server. It is the
responsibility of the CR to establish the SSL connection with the client.

In contrast, the servant region (SR) of the application server is responsible for
any outbound connections to other systems, including the SSL connection to
dWAS.

Typically, CRs and SRs have separate started task control (STC) user IDs, and
consequently, they have separate keyrings. It is common to use the same
keyring name across the node. Because each keyring is assigned to a separate
user ID, they are completely independent from each other.

(public)
ForeignCA

CR

AppServer

SRClient

WebSphereCA

SSL SSL

ServerCertCR

inbound

Trust

outbound

Trust

(public)

WPACR

WPKeyring

userid

WPKeyring

userid

ServerCertCR
(private)

WPASR

connected
co

nnec
te

d

RACF (or equivalent security product)

WebSphereCA
(public)

trust established trust established

co
n

n
ected

co
n

n
ected

dWAS

ForeignCert
signed by ForeignCA
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 483

In this example, the signer certificate of the WebSphereCA is connected to both
keyrings. Additionally, a personal server certificate labeled ServerCertCR is
connected to keyring WPkeyring of the CR. This certificate is signed by the
WebSphereCA. An additional signer certificate of ForeignCA is connected to the
keyring of the SR.

To establish the SSL connection between the client and the z/OS application
server, the personal certificate ServerCertCR, which is connected to the keyring
of the CR, will be used. In order to trust the server certificate, the client has to
verify the signature using the WebSphereCA signer certificate. It is essential for that
trust relationship that the client has imported the WebSphereCA signers certificate
into its browser.

In the second case, the application server on z/OS is the initiator of the SSL
connection and is the client. For this SSL connection, dWAS provides a server
certificate labeled ForeignCert, which is signed by ForeignCA. In that trust
relationship, it is essential that the application server trusts the server certificate
of dWAS. Therefore, it is necessary to import a signer certificate of ForeignCA into
RACF and connect it to the keyring of the SR.

13.1.4 Establishing SSL connections in an secured environment

The scenario in Figure 13-3 on page 485 illustrates how SSL connections
between nodes are established. This scenario will be of interest to clients who
have had problems establishing SSL connections when federating a new node
into a secured environment or using the wsadmin shell of a federated node.
484 WebSphere Application Server V7.0 Security Guide

Figure 13-3 Keyrings and certificates using wsadmin

In order to establish an SSL connection, it is important that the connection
initiator can trust the server.

In this example, the server is the deployment manager and the initiator is the
OMVS user ID JVESER. The initiator is executing the wsadmin or addNode shell
scripts from another WebSphere node.

The user ID used to authenticate to the deployment manager and the user ID
invoking the shell script can differ. With regard to the SSL connection, only the
user ID executing the shell script is relevant. Example 13-1 on page 486 shows a
wsadmin shell script invocation from an application server node to the deployment
manager. Only the bold marked user ID is of importance for the SSL connection,
not the user ID and password passed to the wsadmin shell script.

Node WPDmNode

CR SR

WPDMGR
Deployment Mgr.

ZFS

Node WPNodeA

CR

WPS01A

SR

AppServer

ZFS

addNode.sh

wsadmin.sh
wsadmin.sh

target node
keyring

JVESER

WPKeyring WJKeyring

WebSphereCA DefaultWASCert.WPCELL
(private)

trust established

connected

connected

CR

co
n

n
ected

source node
keyring

WPDMGRInitiator in
OMVS

useriduserid

(public)

SSL

SSLSSL

RACF (or equivalent security product)

WJKeyring

co
nn

ec
te

d

 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 485

Example 13-1 Sample invocation of wsadmin shell script

JVESER @ SC04:/wasconfig/wpcell/wpnodea/AppServer/bin>wsadmin.sh
-conntype SOAP -host wtsc04.itso.ibm.com -port 12002 -username WPADMIN
-password wsadmin
WASX7209I: Connected to process "dmgr" on node WPDmNode using SOAP
connector; The type of process is: DeploymentManager
WASX7029I: For help, enter: "$Help help"
wsadmin>

If the SSL connection cannot be established, it is most likely because the initiator
does not trust the server, in this case, the deployment manager. The same
problem occurs when visiting a Web site with a browser and the certificate is
either not signed by a trusted CA, the certificate is expired, or the certificate
name does not match the host name. In contrast to z/OS, the browser will ask
the user to accept this certificate and store it in the truststore. The equivalent
truststore in z/OS is the keyring, and the certificates have to be connected to the
keyring by the RACF administrator.

The CR of the deployment manager is responsible for the connection handling
incoming SOAP requests and is the endpoint for the SSL connection.
Consequently, the personal server certificate of the deployment manager CR is
used for the SSL connections. This certificate is connected to the corresponding
keyring of the deployment manager CR (target keyring: WJkeyring), which is
defined as a keystore in the SSL section of the administrative console. Usually,
the CellDefaultKeystore is used for the deployment manager and points to the
corresponding keyring. This keyring is assigned to the CR user ID of the
deployment manager.

In order to establish an SSL connection, the initiator has to trust the personal
server certificate of the deployment manager CR. Therefore, the public CA
certificate that signed the personal server certificate needs to be added to the
initiator’s keyring. In order to determine the correct keyring for the initiator, the
source node has to be identified.

In this example, the keyring used for the source node depends on the location of
the shell script executed by the OMVS user ID. If addNode.sh and wsadmin.sh
are executed on node WPNodeA, the keyring of WPNodeA is used, in this case,
WPKeyring. If wsadmin.sh is executed on the deployment manager node, the
keyring of node WPDmNode is used, in this case, WJKeyring. The keyring of the
source node is specified in the corresponding ssl.client.props file, which is
located in the following configuration path of that node:
<WAS_HOME>/profiles/default/properties.
486 WebSphere Application Server V7.0 Security Guide

Example 13-2 shows an extract of the ssl.client.props file of node WPNodeA,
which specifies WPKeyring as the ClientDefaultKeyStore.

Example 13-2 Extract of the ssl.client.props file of node WPNODEA

KeyStore information
com.ibm.ssl.keyStoreName=ClientDefaultKeyStore
com.ibm.ssl.keyStore=safkeyring:///WPKeyring
com.ibm.ssl.keyStorePassword={xor}Lz4sLCgwLTs=
com.ibm.ssl.keyStoreType=JCERACFKS
com.ibm.ssl.keyStoreProvider=IBMJCE
com.ibm.ssl.keyStoreFileBased=false

TrustStore information
com.ibm.ssl.trustStoreName=ClientDefaultTrustStore
com.ibm.ssl.trustStore=safkeyring:///WPKeyring
com.ibm.ssl.trustStorePassword={xor}Lz4sLCgwLTs=
com.ibm.ssl.trustStoreType=JCERACFKS
com.ibm.ssl.trustStoreProvider=IBMJCE
com.ibm.ssl.trustStoreFileBased=false
com.ibm.ssl.trustStoreReadOnly=false

This keyring, in conjunction with the initiator’s user ID JVESER, is used when
executing addNode.sh on node WPNodeA. The WebSphereCA certificate needs to be
added to this keyring to establish an SSL connection with the deployment
manager CR as illustrated in Figure 13-3 on page 485.

Within a cell, it is common practice to use the same keyring name. This example
with two separate keyring names has been chosen to apply this concept also to
cross-cell considerations.

In summary, an SSL connection can be established if the signer CA certificate of
the target server certificate is added to the initiator’s keyring, which depends on
the source node.

13.2 Centrally managed SSL

WebSphere provides a approach to organizing SSL configurations by
centralizing all SSL configurations on one panel in the administrative console.
SSL configurations can be scoped at the cell (Network Deployment only), node,
server, and endpoint level so that an alias is not required for every endpoint. The
panel is broken into two hierarchies: one tree for inbound endpoints and one tree
for outbound endpoints. Select SSL certificate and key management 
Manage endpoint security configurations to see this panel.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 487

A new WebSphere base installation only has one SSL configuration defined at
the node level, as illustrated in Figure 13-4.

Figure 13-4 Centrally managed SSL configuration
488 WebSphere Application Server V7.0 Security Guide

In Figure 13-4 on page 488, the servers and endpoints under the inbound
topology for WPNodeA inherit their SSL configuration NodeDefaultSSLSettings
from the node-level SSL configuration. Additional SSL configurations can be
defined at a lower scope, overriding the node-level configuration by simply
clicking the server or endpoint and choosing a new SSL configuration.

Following any of the paths for the endpoints in Table 13-1 on page 492, the
transport chain can be changed from using an SSL configuration alias that is
specific to an endpoint to using the centrally configured SSL configuration.

Figure 13-5 on page 490 shows an example of how the SSL inbound channel of
a specific application server was changed from using an SSL configuration alias
to being centrally managed.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 489

Figure 13-5 SSL Configuration: Overwrite the default settings
490 WebSphere Application Server V7.0 Security Guide

13.3 WebSphere V7 for z/OS SSSL to JSSE changes

Since WebSphere V6.1, there have been improvements to the way SSL is
configured and managed in the administrative console. In previous versions of
WebSphere, an SSL repertoire was defined as one of two types, either as Java
Secure Socket Extension (JSSE) or System SSL (SSSL). JSSE and SSSL
differed in the following ways:

� JSSE:

– Used Java APIs for SSL
– Defined with path to a hierarchical file system (HFS) Java keystore file
– Defined with a path to a safkeyring URI

� SSSL:

– Used z/OS set of C/C++ APIs for SSL
– Defined with z/OS SAF keyring name only

Certain endpoints were designed to only work with SSSL or JSSE, and each
endpoint needed to be configured with a repertoire alias. It was important to
know the location in the administrative console for updating the alias of a
transport.

In WebSphere V7, all endpoints with the exception of the daemon use JSSE as
the SSL type. The daemon is a lightweight address space that uses system SSL,
because the address space does have a Java virtual machine (JVM). All other
endpoints are used within the CRs of the deployment manager, node agent, or
application server, each equipped with their own JVM.

Table 13-1 on page 492 shows the WebSphere V7 location for specifying an SSL
configuration for various endpoints.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 491

Table 13-1 WebSphere V7.0 endpoint details

WebSphere V7.0 for z/OS base server

Endpoint Type Central/alias Administrative console location

HTTPS JSSE Centrally
configured
(preferred)

SSL certificate and key
management 
Manage endpoint security
configurations

Alias Application servers  server
name 
Web container 
Web container transport chains 
Choose SSL enabled transport
SSL inbound channel (SSL_2)

RMI-IIOP
CSIV2

JSSE Centrally
configured
(preferred)

SSL certificate and key
management 
Manage endpoint security
configurations

Alias Global security 
RMI/IIOP security 
CSIv2 inbound/outbound
communications

Daemon
SSL

SSSL Not centrally
configured

See Alias

Alias Application servers  server
name 
z/OS location service daemon

JMX Soap
Connectors

JSSE Centrally
configured
(preferred)

SSL certificate and key
management 
Manage endpoint security
configurations

Alias Application servers  server
name 
Administration Services 
JMX connectors 
SOAPConnector 
Custom Properties  sslConfig
492 WebSphere Application Server V7.0 Security Guide

13.4 Writable SAF keyrings

In previous versions of WebSphere Application Server, you were only allowed to
use keystores and truststores that pointed to a SAF keyring in read-only mode.
You were not allowed to create, delete, import, or export certificates stored in
SAF. These operations needed to be performed by the SAF administrator. In
WebSphere V6.1, certificates stored in SAF can be viewed and their expirations
can be monitored in the administrative console.

With WebSphere Application Server for z/OS V7, the writable keyring support
has been introduced. This feature enhances the capabilities of the administrative
console to consistently manage keyrings and certificates stored in SAF. With the
writable keyring support, certificates can be created and signed by a CA,
connected to keyrings, removed from keyrings, imported, exported, and renewed
using the administrative console. This major enhancement increases the
efficiency of SSL management within WebSphere Application Server for z/OS
while SAF still has control over all certificates and keyrings.

The writable keyring support is completely optional. New keystores and
truststores marked as read-only can be created independently from the writable
keyring support. When using the read-only JCERACFKS and JCECCARACFS
keystores, the certificates in the appropriate SAF keyring can still be viewed in
the administrative console.

13.4.1 Prerequisites for writable keyring support

Writable keyring support works with z/OS V1.8 and V1.9, if the required APAR
OA22287 (RACF) and APAR OA22295 (SAF) are applied. For z/OS 1.10 and
later, these APARs are already included.

In order to make use of the writable keyring support, certain RACF definitions are
required. These definitions can be generated automatically with the Profile
Management Tool (PMT) during the customization process. During the profile
creation of the deployment manager or application server, the z/OS security
product must be chosen. In the Security Managed by the z/OS Product panel
that is shown in Figure 13-6 on page 494, the option Enable Writable SAF
Keyring support must be checked.

Important: All certificates created with the writable keyring support are
generated and signed by Java code and not by SAF. In this case, the writable
keyring support only uses SAF to store the generated certificates.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 493

Figure 13-6 Enable Writable SAF Keyring support during customization

As a result, the generated BBOxBRAC member in dataset hlq.DATA will contain
the RACF definitions for the writable keyring support. In addition, this script
contains all required keyrings and server certificates.

Required SAF profiles for writable keyring support
In an existing or migrated cell, the necessary RACF definitions need to be
created manually by using the following command structures. The writable
keyring support makes use of the FACILITY class for global profile checking and
the RDATALIB class for ring-specific profile checking. Global profile checking
applies to all the key rings whereas ring-specific profile checking applies to a
specific keyring. As long as there is no ring-specific profile defined that matches
the criteria, the global profile will be used.
494 WebSphere Application Server V7.0 Security Guide

The FACILITY profile is structured like the following example:

IRR.DIGTCERT.<function>

For more details about the IRR.DIGTCERT profile and the RDATALIB class
profiles, refer to z/OS V1R9.0 Security Server RACF Callable Service,
SA22-7691-11, which provides a complete list of RACF commands and options
regarding writable keyring support:

http://publibz.boulder.ibm.com/epubs/pdf/ichzd180.pdf

To use the ring-specific profile checking, the RDATALIB class must be activated
and on the RACLIST:

SETR CLASSACT(RDATALIB)
SETR RACLIST(RDATALIB) GENERIC(RDATALIB)

The RDATALIB profile is used to control the access to the keyrings, which
consists of the keyring owner, as well as the keyring name, as shown in the
following examples. The <ringowner> must be in uppercase whereas the
<keyringName> will automatically formatted to uppercase during profile check:

<ringowner>.<keyringName>.LST
<ringowner>.<keyringName>.UPD

Depending on the keyring operation, the user ID of the application server started
task, which executes the operation, needs to be granted to a LST profile or a UPD
profile with READ, UPDATE, or CONTROL permission.

The following RACF commands define two LST profiles for the ring owner
<UID_CR> and <UID_SR>:

RDEFINE RDATALIB <UID_CR>.**.LST UACC(NONE)
RDEFINE RDATALIB <UID_SR>.**.LST UACC(NONE)

For instance, the READ access to an LST profile allows the granted user ID to
list the certificates belonging to this keyring:

PERMIT <UID_CR>.**.LST CLASS(RDATALIB) ID(<UID_CR>) ACC(CONTROL)
PERMIT <UID_SR>.**.LST CLASS(RDATALIB) ID(<UID_CR>) ACC(CONTROL)
PERMIT <UID_SR>.**.LST CLASS(RDATALIB) ID(<UID_SR>) ACC(CONTROL)

The WebSphere configuration group gets READ access to the keyrings of the
application server CR:

PERMIT <UID_CR>.**.LST CLASS(RDATALIB) ID(<GID_CFG>) ACC(READ)

If is a user ID is permitted to access a UPD profile with READ access, it can
remove all of the certificates from the defined keyring and it can connect its own
certificates to the keyring for personal use. With an UPDATE access to this
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 495

http://publibz.boulder.ibm.com/epubs/pdf/ichzd180.pdf

profile, a certificate, which is owned by another user ID, can be added to the
keyring for personal use. The CONTROL access is needed to connect a
certificate with a private key that is owned by another user ID.

The application server CR gets CONTROL access to the keyrings of the SR,
because the keyring operation is always executed by the CR:

RDEFINE RDATALIB <UID_CR>.**.UPD UACC(NONE)
RDEFINE RDATALIB <UID_SR>.**.UPD UACC(NONE)

PERMIT <UID_CR>.**.UPD CLASS(RDATALIB) ID(<UID_CR>) ACC(CONTROL)
PERMIT <UID_SR>.**.UPD CLASS(RDATALIB) ID(<UID_CR>) ACC(CONTROL)

Finally, the RDATALIB class need to be refreshed in order to activate the
changes:

SETR RACLIST(RDATALIB) REFRESH

Additional keyrings for writable keyring support
In order to create a chained certificate using writable keyring support, a CA root
certificate is required. This CA certificate is used to sign new server certificates. If
global security and writable keyring support have been enabled during the
installation process, new additional keyrings <keyring_name>.Root and
<keyring_name>.Signers have been created.

In addition, the generated CA root certificate has been connected to the Root
keyring for personal use. Only CA root certificates that are connected to the Root
keyring can sign server certificates using the writable keyring support. The Root
keyring correlates to the JCERACFKS keystore DmgrDefaultRootStore or
NodeDefaultRootStore, which is located in the following path of the
administrative console: SSL certificate and key management  Key stores
and certificates. The keystore usage Root certificates keystore must be
selected.

Important: Currently, APAR PK81536 is an open APAR regarding writable
keyring support with target inclusion for Release 7.0.0.5 of WebSphere
Application Server for z/OS. We recommend that you apply this APAR for
using writable keyrings. Otherwise, the functionality can be limited after node
federation.
496 WebSphere Application Server V7.0 Security Guide

This example shows how to add the CA root certificate to the Root keyring for
personal use:

RACDCERT ID(WPDMGR) CONNECT (RING(WPKeyring.Root) LABEL('WebSphereCA')
CERTAUTH USAGE(PERSONAL))

In contrast, certificates connected to the Signers keyring for CERTAUTH use are
used as default signer certificates and will be added to any new keystore that is
created in the administrative console.

The following example shows how to add a default signer certificate to the
corresponding keyring:

RACDCERT ID(WPDMGR) CONNECT (RING(WPKeyring.Signers)
LABEL('WebSphereCA') CERTAUTH)

The Signers keyring correlates to the JCERACFKS keystore
DmgrDefaultSignerStore or NodeDefaultSignerStore, which is located in the
following path of the administrative console: SSL certificate and key
management  Key stores and certificates. The keystore usage Default
signers keystore must be selected.

13.4.2 Integration into the administrative console

If global security is enabled during profile creation, the following default
keystores have been defined in a cell with a deployment manager and a
federated node:

� The CellDefaultKeyStore is defined at the cell scope and includes the
keyrings of the deployment manager CRs and SRs.

� The CellDefaultTrustStore is at the cell scope.

� The NodeDefaultKeyStore is defined at the node level and contains the
keyrings of the application server CRs and SRs.

� The NodeDefaultTrustStore is at the node level.

Because a RACF keyring can contain trusted as well as personal certificates,
there is no difference between the settings of CellDefaultKeystore and
CellDefaultTruststore. If writable keyring support has been enabled during the
customization, you can use these default keystores to modify keyrings.

Important: If global security has been disabled during the customization,
these keystores will be file-based and must be manually changed to the
JCERACFKS keystores.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 497

You can see these keystores and truststores by selecting Security  SSL
certificate and key management  Key stores and certificates (Figure 13-7).

Figure 13-7 Default key and trust stores

Create a new keystore
You can create a new keystore by using the following path in the administrative
console: Security  SSL certificate and key management  Key stores and
certificates  New (Figure 13-8 on page 499).
498 WebSphere Application Server V7.0 Security Guide

Figure 13-8 Creating a new JCERACFKS keystore using safkeyring

A keyring always consists of a keyring name and a user ID. Prior to Version 7.0,
the administrative console, from a keyring management perspective, was unable
to distinguish between the CR and the SR keyrings. The certificate
administration was limited to reading certificates from a single keystore object
that represented both the SR and CR keyrings. In V7, additional fields have been
added for the writable keyring support that create a new keystore, the CR user,
and the SR user. If the optional fields for the CR user ID and SR user ID are not
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 499

filled out, the writable keyring support is not used. Figure 13-8 on page 499 is an
example of the values that are used to create a new keystore. To use writable
keyring support, the bold marked values must be used:

� Name: keystore_name
� Management scope: node
� Path: safkeyring:///WPKeyring
� CR user: Control region user ID
� SR user: Servant region user ID
� Password: password
� Confirm password: password
� Type: JCERACFKS
� Clear the check mark from the Read Only check box for using writable

keyring support (This setting is in the same panel beneath the Type field, but
it is not shown in Figure 13-8 on page 499).

The panel that is shown in Figure 13-8 on page 499 is used to accommodate
file-based and SAF-based keystore types. File-based keystores are normally
protected with a password when the keystore database is first created, and the
administrative console needs to have this password specified to access a
file-based keystore.

For certificates stored in RACF, the certificates are protected by the access
granted to the user ID by the RACF administrator. The corresponding Java
standard JSSE still requires that a password is specified to access a SAF
keystore, although the certificates are protected by the user ID’s access
privileges in the RACF database. The certificates in RACF will not be accessible
unless the password is specified correctly in this panel.

Important: The administrative console stores the exact string of the
safkeyring path in the security.xml file in the UNIX System Services. Make
sure that no trailing spaces are used when specifying the safkeyring path and
make sure that you use three slashes:

safkeyring:/// (with three slashes)

The administrative console only confirms that the change password entry and
the confirm password entry match. It does not verify that the password value is
the valid password that must be used to access certificates using a safkeyring
URI. If these fields are not entered correctly, you will not be able to view or
access your certificates in RACF, and ports configured with this SSL
configuration will not work correctly.
500 WebSphere Application Server V7.0 Security Guide

Instead of specifying the CR user ID and SR user ID, you can define a safkeyring
path that includes the keyring name and the corresponding user ID:

safkeyring://UID/keyring_name

Compared to the first option with the CR user ID and SR user ID, in this solution,
two separate keystores need to be defined to achieve the same aim.

Here is an example for the second option. The optional fields for CR user ID and
SR user ID can be left blank:

� Name: WPNodeADefaultKeystore
� Management scope: WPNodeA
� Path: safkeyring://WPDMGR/WPKeyring
� Control region user:
� Servant region user:
� Password: password
� Confirm password: password
� Type: JCERACFKS
� Clear the check mark from the Read Only check box for using writable

keyring support.

After creating the keystore, you can click the new keystore name in the list of
keystores and certificates to view it (Figure 13-9 on page 502). At first glance,
nothing seems to be changed from the previous version of WebSphere. In fact,
the properties page is still the read-only view of the previous version.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 501

Figure 13-9 Viewing the new keystore

You can browse the keyrings of the CR and SR by clicking Personal
certificates, but as the check box at the bottom indicates, in read-only mode.

For writable keyring support, two additional keystores objects have been created
in the right navigation bar for the CR and SR that are called Control region
keyring and Servant region keyring as shown in Figure 13-9.

Select Control region keyring to access the provided keyring name with the
provided CR user ID (Figure 13-10 on page 503).
502 WebSphere Application Server V7.0 Security Guide

Figure 13-10 Writable keystore of CR

In Figure 13-10, the settings of the writable CR keystore are displayed:

� The name of the keystore keystore_name-CR is the same as the read-only
keystore except for the -CR suffix, indicating the writable CR keystore.

� The safkeyring path (URI) has changed to
safkeyring://UID_CR/keyring_name. This URI specifies the keyring name as
well as the corresponding user ID.

� Finally, the Read only flag is not selected.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 503

In the SR keystore, these values, such as the keystore name keystore_name-SR,
are adjusted to the SR.

Under Additional properties on the right navigation panel, click Personal
certificates, and the certificates connected to the corresponding keyring are
displayed. Click an individual certificate to see detailed information about it.

wsadmin commands
The following wsadmin command displays all of the certificates that belong to this
keystore:

AdminTask.listPersonalCertificates('[-keyStoreName
NodeDefaultKeyStore-CR -keyStoreScope (cell):WPCell:(node):WPNodeA]')

The following command displays details about a specific certificate:

AdminTask.getCertificateChain('[-certificateAlias
DefaultWASCert.WPNODEA -keyStoreName NodeDefaultKeyStore-CR
-keyStoreScope (cell):WPCell:(node):WPNodeA]')

The following AdminTask command creates a new writable keystore:

AdminTask.createKeyStore('[-keyStoreName <keystore_name> -scopeName
(cell):WPCell:(node):WPNodeA -keyStoreDescription -keyStoreLocation
safkeyring:///<keyring_name> -keyStorePassword password
-keyStorePasswordVerify password -keyStoreType JCERACFKS
-keyStoreInitAtStartup false -keyStoreReadOnly false -keyStoreStashFile
false -keyStoreUsage SSLKeys -controlRegionUser <UID_CR>
-servantRegionUser <UID_SR>]')

The existing JCERACFKS without writable keyring support can be enabled by
using the following command:

AdminTask.enableWritableKeyrings('[-keyStoreName <keystore_name>
-scopeName (cell):WPCell:(node):WPNodeA -controlRegionUser <UID_CR>
-servantRegionUser <UID_SR>]')

Deleting keystores and truststores
Keystores and truststores can be deleted if no SSL configurations reference
them. The following example error message (Figure 13-11 on page 505) appears
when attempting to delete a keystore or truststore that is still being used by an
SSL configuration.

Important: Only certificates with the status TRUST can be viewed in the
administrative console.
504 WebSphere Application Server V7.0 Security Guide

Figure 13-11 Error received when deleting a keystore defined in an SSL configuration

To resolve this issue, delete the SSL configuration that has this keystore
specified first before deleting the keystore.

13.4.3 Importing personal certificates

You can import personal certificates into SAF by following these steps:

1. In the Personal certificates panel of the writable keystore, select a certificate
to be imported, click Import, and complete the required fields (Figure 13-12).

Figure 13-12 Importing a external certificate into the keyring

– Select Key store file to import a certificate from the UNIX System
Services file system, as shown in this example. The alternative is to select
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 505

Managed key store to import a certificate from another WebSphere
keystore. If a RACF keyring is selected, the password is password.

– Key file name:

Enter the complete path to the certificate in the UNIX System Services in
the Key file name field. Up-front, the certificate must be uploaded to a
UNIX System Services path using a secured FTP connection. Ensure that
the started task has at least read access to the selected folder.

– Type:

Select the type of certificate to be imported. In this case, the certificate is
packaged in the PKCS12 format.

– Key file password:

The password that was used to encrypt this certificate.

– Certificate alias to import

Click Get Key File Alias and the appropriate certificate alias drop-down
list will be updated. Select the certificate alias to be imported.

– Imported certificate alias

This field specifies the new alias name of the certificate in RACF. Usually,
this name matches the selected certificate alias.

2. Click OK to import the certificate, and save the changes.

The imported certificate will be displayed in the keystore as shown in
Figure 13-13 on page 507. The certificate has been imported to RACF and
connected to the selected keyring and user ID. Click the imported certificate to
see the details.
506 WebSphere Application Server V7.0 Security Guide

Figure 13-13 Imported certificate in the keyring

13.4.4 Exporting personal certificates

To export a personal certificate:

1. In the Personal certificates panel of the writable keystore, select a certificate
to be exported and click Export.

2. Specify the password in the Key store password field.

3. The alias needs to be the certificate name.

4. A certificate can either be exported to another truststore, including SAF
keyrings, or to a file in the UNIX System Services:

a. To export to another keystore, select Managed key store and specify the
target keystore.

b. To export to the UNIX System Services file system, select Key store file.
Specify the file name, including the complete UNIX System Services path
and the export type. In most cases, PKCS12 is used as an export format.
The certificate will be encrypted with the specified password.

Important: During the import and export of certificates to and from managed
SAF keystores, if the certificate already exists in SAF under another label, it
will be connected to the keyring with the existing label regardless of the label
assigned to the certificate.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 507

The corresponding wsadmin command to step 4b is:

AdminTask.exportCertificate('[-keyFilePath
/var/WebSphere/home/WPCFG/DefaultWASCert-WPNODA.p12 -keyFilePassword
passwd -keyFileType PKCS12 -keyStorePassword password -certificateAlias
DefaultWASCert.WPNODEA -aliasInKeyStore DefaultWASCert.WPNODEA
-keyStoreName NodeDefaultKeyStore-CR -keyStoreScope
(cell):WPCell:(node):WPNodeA]')

13.4.5 Creating personal certificates

When using the writable keyring support, you can create three types of
certificates:

� Self-signed certificates

Self-signed certificates are normally created in the DmgrDefaultRootStore or
NodeDefaultRootStore keystores so that new server certificates can be
signed by this self-signed certificate.

� CA-signed certificates

With the CA-signed certificate option, certificate requests to an external CA
can be issued and the received certificate will be stored in the chosen
keyring. As a prerequisite for this function, a CA client has to be created,
including a specific implementation class for the external CA.

� Chained certificates

The chained certificate option allows you to create a new personal server
certificate that is signed by a CA from the DmgrDefaultRootStore keystore
and attached to the selected keyring.

To create a new personal server certificate, select Security  SSL certificate
and key management  Key stores and certificates  key_store_name 
Control region keyring  Personal certificates. Click Create and choose the
appropriate certificate type (Figure 13-14 on page 509).
508 WebSphere Application Server V7.0 Security Guide

Figure 13-14 Create a new personal certificate

The configuration page for the new certificate will open.

For example, to create a chained certificate, you will see the panel in
Figure 13-15 on page 510.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 509

Figure 13-15 Create a new chained certificate
510 WebSphere Application Server V7.0 Security Guide

The required information is:

� Alias

The alias given to this certificate is the same as the label name in RACF and
will be displayed in the keyring overview.

� Root certificate used to sign the certificate

Any CA root certificate assigned to the DmgrDefaultRootStore or
NodeDefaultRootStore can be selected. The keystore must point to the
keyring <keyring_name>.Root as described in “Additional keyrings for
writable keyring support” on page 496. Select the CA root certificate to sign
the new personal certificate.

� Common name

Normally, the common name corresponds with the host name of the target
server. The client will check if the host name used for the SSL connection
matches the common name of the server certificate. If it does not match, the
connection can be denied.

� Validity period

The validity period of the personal server certificate needs to end before the
the CA root certificate expiration date.

Complete the remaining values according to your organizational structure. Then,
click OK and Save to create the personal certificate.

The newly created certificate appears in the keyring overview.

The following command displays a personal certificate in RACF that has been
created by the administrative console:

RACDCERT LIST (label('personal_certificate_label')) ID(user ID)

Example 13-3 shows the output of this command.

Example 13-3 List the new personal certificate in RACF

Label: WPACRDefaultCert
Certificate ID: 2QXm18HD2ebXwcPZxIWGgaSTo8OFmaNA
Status: TRUST
Start Date: 2009/03/05 18:12:38
End Date: 2010/03/05 18:12:38
Serial Number:
 >11287ED6C7E77277<
Issuer's Name:
 >CN=WAS CertAuth for Security Domain.OU=WebSphere for zOS<
Subject's Name:
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 511

 >CN=wtsc04.itso.ibm.com.OU=ITSO.O=IBM.L=Raleigh.SP=North
Carolina.C=US
Subject's AltNames:
 EMail:
ProfileUUID:default-DEPLOYMENT_MANAGER-8dff92c9-a143-4496-8379-502
 bb062479
Private Key Type: Non-ICSF
Private Key Size: 1024
Ring Associations:
 Ring Owner: WPACR
 Ring:
 >WPKeyring<

13.4.6 Removing certificates from a keyring

A certificate can be removed from the keyring by selecting the appropriate
certificate and clicking Delete in the certificate overview. The certificate will not
be deleted in SAF. If the certificate has accidentally been removed from the
keyring, it can be reconnected through SAF or it can be imported from the
DmgrDefaultDeletedStore keystore.

Currently in the default configuration, all certificates that have been removed
from the keyring will also be stored in the keystore DmgrDefaultDeletedStore in a
Network Deployment environment and in the keystore NodeDefaultDeletedStore
in a single server environment. These keystores are file-based PKCS12
keystores and are located in the following UNIX System Services path:

DMGR_Config_Root/cells/cell_name/nodes/dmgr_node/deleted.p12

This special keystore cannot be substituted by a SAF keyring.

Tip: Certificates, which have been removed from a keyring, are still present in
SAF, as well as in the file-based keystore DmgrDefaultDeletedStore. If a
mixture of SAF keyrings and file-based keystores does not conform to your
enterprise security policy, you can deactivate the functionality of this keystore
by marking it as read-only.

In order to display the DmgrDefaultDeletedStore, or equivalent, use the
administrative console to select SSL certificate and key management 
Key stores and certificates and then select Deleted certificates keystore
for keystore usage. Click DmgrDefaultDeletedStore and set the read-only
flag. Before applying this change, specify the default password for file-based
keystores, which is WebAS. Click OK, and save the changes.
512 WebSphere Application Server V7.0 Security Guide

To delete the certificate from SAF, it must be removed by the SAF administrator.
To connect a certificate to a keyring or delete a certificate from RACF, you can
use the RACDCERT commands as described in 13.5.4, “Deleting certificates
and keyrings” on page 518.

The corresponding wsadmin task command removes a certificate from a keyring:

AdminTask.deleteCertificate('[-keyStoreName NodeDefaultKeyStore-CR
-keyStoreScope (cell):WPCell:(node):WPNodeA -certificateAlias
MyCertificate]')

13.4.7 Renewing certificates

A certificate can be renewed by selecting the certificate and clicking Renew in
the personal certificates panel. The original certificate is not physically deleted
from RACF. Instead, the original certificate is removed from the selected keyring.
By renewing a certificate, a new certificate is generated and the alias (label) of
the certificate is incremented by appending _1, _2, and so forth to the existing
certificate label.

13.4.8 Exporting public certificates

Public certificates can be exported in the personal certificates panel or in the
signer certificates panel.

Select Security  SSL certificate and key management  Key stores and
certificates  key_store_name  Control region keyring  Signer
certificates. Select the certificate, and click Extract.

Just specify the file name, including UNIX System Services path and the export
format, as shown in Figure 13-16 on page 514.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 513

Figure 13-16 Export a signer certificate

13.4.9 Common error messages

If RACF authority is not granted, you receive the following message when
attempting certificate write operations on a keyring:

Error Message: An error occurred creating the key store: R_datalib
(IRRSDL00) error: One or more updates could not be completed. Not RACF
authorized to use the requested service. Function code: (7) Return
Codes: (8, 8, 8)

If you attempt to create a new keyring or perform a specific certificate write
operation and do not have native writable support, you receive the following
message:

R_datalib (IRRSDL00) error: One or more updates could not be completed.
Requested Function_code not defined. Function code: (7) Return Codes:
(8, 8, 20)

13.5 RACF certificate management

This section demonstrates certain administrative tasks with SAF keyrings and
includes sample RACF commands. The tasks include viewing, importing,
exporting, and deleting certificates.
514 WebSphere Application Server V7.0 Security Guide

For more details about the RACF commands, refer to Security Server RACF
Command Language Reference, SA22-7687, which provides a complete list of
RACF security commands and options.

The following RACF commands show how to obtain corresponding certificate
information that is displayed in the administrative console:

� View a list of certificates on a keyring for a user ID:

RACDCERT LISTRING(keyring_name) ID(user ID)

� Display all keyrings related to a user ID:

RACDCERT LISTRING(*) ID(user ID)

� View certificate authority information:

RACDCERT CERTAUTH LIST(LABEL('certificate_authority_label'))

� View personal certificate information for a user ID:

RACDCERT LIST (label('personal_certificate_label')) ID(user ID)

� Display all certificates related to a user ID:

RACDCERT ID(user ID) LIST

13.5.1 Monitoring certificate expiration

WebSphere Application Server V7 provides a certificate expiration monitoring
task that cycles through all the keystores listed in the security.xml file to check
for expired certificates. The cycle can be specified by the day of the week, or by
a certain number of days, and a notification can be provided as a message in the
message log, or as an e-mail. For e-mail notification, a Simple Mail Transfer
Protocol (SMTP) server address needs to be specified with a recipient’s e-mail
address. WebSphere Application Server issues an expiration warning before
expiration based on the number of days specified in the Expiration notification
threshold field.

The administrative console path to manage certificate expiration is SSL
certificate and key management  Manage certificate expiration.

Restriction: At the bottom of this window, there are two additional options for
automatic replacement of expiring certificates and for deleting the certificates
after replacement. These functions will not work with SAF keyrings even if the
writable keyring support is activated for that particular certificate. But
monitoring the certificate expiration works with SAF keyrings.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 515

Figure 13-17 illustrates the options for managing certificate expiration.

Figure 13-17 Certificate management expiration panel

The options to automatically replace expiring self-signed certificates and to
delete expiring certificates and signers after replacement are not applicable to
certificates stored in RACF. More information is provided in the WebSphere
Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.web
sphere.nd.multiplatform.doc/info/ae/ae/csec_sslcertmonitoring.html
516 WebSphere Application Server V7.0 Security Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sslcertmonitoring.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/csec_sslcertmonitoring.html

13.5.2 Importing certificates

The following commands show how to import a certificate from an HFS file into a
keyring:

� Copy the certificate to a data set from an HFS file:

cp -B /tmp/certificate.p12 "//'HLQ.CERT.NAME.P12'"

cp -B /tmp/certificate.cer "//'HLQ.CERT.NAME.CER'"

� Add the certificate from the data set to RACF with a label:

RACDCERT ADD('HLQ.CERT.NAME.P12') withlabel('certificate_label')
password('password’)’

RACDCERT ADD('HLQ.CERT.NAME.CER') withlabel('certificate_label')

13.5.3 Exporting certificates

You can use RACF commands to export a certificate from a keyring to a data set,
and then the data set can be placed into the HFS as a file to be used on other
systems.

The following RACF commands and steps show an example of exporting a
signer certificate or personal certificate into an HFS file to be transferred to
another system:

� Exporting a signer certificate to an HFS file:

RACDCERT ID(user ID) CERTAUTH
EXPORT(LABEL('certificate_authority_label')) DSN(’HLQ.CA.NAME.CRT’)
FORMAT(CERTDER)

After the certificate has been exported to a data set in DER format, the data
set can be moved to an HFS file with the following command:

OPUT ’CA.DSN.NAME’ '/tmp/ca.crt' binary convert(no)

� Exporting a personal certificate to an HFS file:

RACDCERT ID(user ID) EXPORT(LABEL('personal_certificate_label'))
DSN(’HLQ.CERT.NAME.P12’) FORMAT(PKCS12DER) PASSWORD('passwd')

After the certificate has been exported to a data set in PKCS12 format, the
data set can be moved to an HFS file with the following command:

OPUT ’HLQ.CERT.NAME.P12’ '/tmp/personal.p12' binary convert(no)
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 517

Table 13-2 shows the available formats that the WebSphere administrative
console can import from a file.

Table 13-2 Export formats for certificates

13.5.4 Deleting certificates and keyrings

The certificate delete operation in the administrative console using the writable
keyrings removes only the certificate from the keyring, but it does not delete the
certificate itself. There might be other keyring references to this certificate, which
cannot be displayed by the administrative console.

Important: While the CERTDER and CERTB64 keywords indicate that only a
certificate is exported, the PKCS12DER and PKCS12B64 keywords export
the certificate and the private key (which must exist and must not be an
Integrated Cryptographic Service Facility (ICSF) key). Be careful when
specifying the format to not mistakenly export a private key with the PKCS12
format when your intent is to export the signer certificate only.

Format Description

CERTB64 Specifies X.509 certificate and public key that has been encoded
using Base64. This format can be transferred in ASCII.

CERTDER Specifies encoded X.509 certificate and public key encoded in
binary DER format. This format must be transferred in binary.

PKCS12B64 Specifies a PKCS #12 package that has been encoded using
Base64. This format might not be compatible with non-IBM
applications and must be transferred in ASCII.

PKCS12DER Specifies a PKCS #12 package encoded using binary DER
format. This format must be transferred in binary.

Important: A personal certificate that contains a private key must always be
transferred to the client in binary using a secured FTP connection. If an
unauthorized person gets a copy of this private key, all SSL connections
between clients and the server can be decrypted by this person. The concept
of SSL is based on the secrecy of the private key. By using unsecured
connections for private keys, the security system is extremely vulnerable.
518 WebSphere Application Server V7.0 Security Guide

The following RACF commands remove a certificate from a keyring, remove a
keyring, and delete certificates for a user ID:

� Remove a CA signer certificate from a keyring:

RACDCERT REMOVE(CERTAUTH LABEL('certificate_authority_label')
RING(keyring_name)) ID(user ID))

� Remove a personal certificate from a keyring:

RACDCERT REMOVE(LABEL('personal_certificate_label')
RING(keyring_name)) ID(user ID)

� Delete the keyring:

RACDCERT DELRING(keyring_name) ID(user ID)

� Delete a CA signer certificate:

RACDCERT CERTAUTH DELETE(LABEL('certificate_authority_label'))

� Delete a personal certificate:

RACDCERT DELETE(LABEL('personal_certificate_label')) ID(user ID)

13.6 Hardware cryptography and Java cryptography
providers

The Java Cryptography Extension (JCE) is a set of Java packages that provides
a framework and implementations for encryption, key generation, key
agreement, and Message Authentication Code (MAC) algorithms. Support for
encryption includes symmetric, asymmetric, block, and stream ciphers. JCE is a
pluggable framework that allows other providers (security packages) signed by a
trusted entity to be plugged into the JCE framework, allowing new algorithms to
be added seamlessly.

Vendors, such as SUN and IBM, provide their implementations of JCE. The IBM
version of JCE (IBMJCE) is an implementation of the JCE cryptographic service
provider that is compatible in z/OS environments. The IBMJCE is similar to
SunJCE with a few differences. IBMJCE has a different package naming
convention, it offers more algorithms, and it supports z/OS-specific keystores.

The IBMJCECCA is an extension to IBMJCE that adds the capability to use
hardware cryptography through IBM Common Cryptographic Architecture
(CCA) interfaces. IBMJCECCA provides secure, high-speed cryptographic
services on various platforms through hardware cryptographic devices.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 519

IBMJCECCA requires the following hardware and software:

� A system at the z/OS V1R6 level or later with either:

– On a z800 or z900 processor, a Common Connector Framework (CCF)
and a PCICC card

– On a z890 or z990 processor, a CPACF and a PCIXCC card

– On a z890 or z990 processor, a CPACF and a CEX2C card

– On a z9® or z10 processor, a CPACF and a CEX2C or CEX2A card

� ICSF must be running.

There are a variety of other security providers that can be used with the JCE
architecture. The focus of this section is on the IBMJCE and IBMJCECCA
providers in a WebSphere 7.0 z/OS environment.

13.6.1 Choosing a JCE provider

A JCE provider is a Java package or set of Java packages that supplies a
concrete implementation of a subset of cryptography aspects of the Java security
API. The provider is typically packaged in a jar file and placed on the class path
for use by the Java virtual machine (JVM) during startup. The providers that the
JVM use are listed in a java.security file that is located in the HFS and are
instantiated when the JVM starts. Beginning with WebSphere V6.0 for z/OS, the
JVM is shipped as part of WebSphere. For WebSphere V7.0 for z/OS, the
provider jars and java.security file are in these locations:

� 31-bit JVM:

– <WAS_HOME>/java/lib/security (location of java.security file)

– <WAS_HOME>/java/lib (location of provider jars)

� 64-bit JVM:

– <WAS_HOME>/java64/lib/security (location of java.security file)

– <WAS_HOME>/java64/lib (location of provider jars)

<WAS_HOME> is the location of the WebSphere configuration HFS.

Important: In a Network Deployment environment, the JVMs of the
deployment manager and node agent run in 64-bit mode by default (since
WebSphere V7.0). You can choose between 31-bit and 64-bit mode for each
application server setup. As result, the environment is mixed in most cases.
Therefore, we recommend that you change the java.security file in the Java
31-bit path and the 64-bit path.
520 WebSphere Application Server V7.0 Security Guide

Example 13-4 shows a list of providers in the java.security file. IBMJCECCA
and IBMJCEFIPS are commented out in this sample. The providers are listed in
order by preference, and the first provider IBMJCE is used as the default
provider.

Example 13-4 Providers listed by preference

List of providers and their preference orders (see above):
#
#security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
#security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.1=com.ibm.crypto.provider.IBMJCE
security.provider.2=com.ibm.jsse.IBMJSSEProvider
security.provider.3=com.ibm.jsse2.IBMJSSEProvider2
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL
security.provider.7=com.ibm.security.cmskeystore.CMSProvider
security.provider.8=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.9=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.10=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.11=org.apache.harmony.security.provider.PolicyProvide
r

A new default provider can be chosen by setting the provider name as the first
provider in the list, enumerating the order of existing security providers and
saving the file. WebSphere needs to be restarted to pick up any changes that
have been made to the java.security file.

13.6.2 Administrative console keystore types

In previous versions of WebSphere, the keystore types available were only those
programmed into the administrative console. In WebSphere V7.0, the
administrative console dynamically builds its list of available keystore types
based on the providers listed in the java.security file. The java.security file is
read during server startup.

In Example 13-5, the java.security file was modified to include only the
IBMJCE provider.

Example 13-5 Modified file

List of providers and their preference orders (see above):
#
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCE
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 521

The following list contains the keystore types that are available for the IBMJCE
provider:

� JKS
� JCEKS
� JCERACFKS
� PKCS12JarSigner
� PKCS12
� CMSKS
� PKCS11

In Example 13-6, the java.security provider was modified to include an
additional hardware cryptography provider IBMJCECCA.

Example 13-6 The java.security file

List of providers and their preference orders (see above):
#
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.crypto.provider.IBMJCE

After the application server has been restarted, you can select the additional
keystore types JCECCARACFKS and JCECCAKS when creating a new
keystore. The keystore types JCECCARACFKS and JCECCAKS appear in the
list as a result of adding the IBMJCECCA provider to the front of the list in the
java.security file.

Figure 13-18 shows the additions to the keystore list. Select SSL certificate and
key management  Key stores and certificates  New.

Figure 13-18 Keystore types from the IBMJCECCA and IBMJCE providers

When using the IBMJCECCA hardware cryptography provider, the unrestricted
jar files need to be installed on the WebSphere system, and the ICSF address
space must be up and running prior to starting WebSphere.
522 WebSphere Application Server V7.0 Security Guide

Keystores and truststores
The keystore is a database that can contain public and private keys. In
WebSphere, the public keys are stored as signer certificates, while the private
keys are stored in personal certificates. The keys are used for a variety of
purposes, including authentication and data integrity.

A truststore is a type of keystore whose database contains trusted certificates
that belong to another party. In WebSphere, a trusted certificate and a public key
are stored as a signer certificate. The certificates are considered trusted,
because the truststore owner trusts that the public key in the certificate belongs
to the identity that has been identified by the subject of the certificate. The public
key certificate can be used to confirm that a person is really who the person
claims to be and that the data really came from that person. In general terms,
truststores and keystores are often referred to as keystores.

13.6.3 IBMJCECCA and IBMJCE characteristics

In WebSphere on distributed systems, the certificates in a keystore are usually
stored in a file. In WebSphere V7.0 for z/OS, the certificates in a keystore can be
stored in a file or in the SAF database. The actual public/private keys for the
corresponding certificates can be stored in a file, in a SAF database, or in
hardware, depending on the provider and the keystore used. The IBMJCE and
IBMJCECCA provider supports various keystore types that can be selected
depending on the use of the location of certificates and keys.

Table 13-3 on page 524 describes the characteristics of the IBMJCE and
IBMJCECCA providers based on the keystore types. The Use HW column
indicates that hardware is used for SSL acceleration. We assume RACF as the
SAF provider, but you can use any other security product accessible with SAF
interfaces, such as Top Secret and Advanced Communications Function 2
(ACF2).
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 523

Table 13-3 JCE characteristics

Keystore descriptions
The following list contains a description of each of the keystore types from
Table 13-3:

� Java KeyStore file (JKS)

This traditional file-based keystore format is available with the standard
JDK™. Files based on this format are usually stored with a .jks extension.

Use this option if the keystore file is stored in JKS format.

� Java Cryptography Extension Keystore (JCEKS)

JCEKS is a file-based keystore implementation of the Java Cryptography
Extensions provider. Files based on this format are usually stored with a
*.jceks extension.

Use this option if the keystore file is stored in JCEKS format.

� Public Key Cryptography Standards version 12 Keystore (PKCS12KS)

This file format is commonly used to store private keys with accompanying
public key certificates protected with a password-based symmetric key. Files
based on this format are usually stored with a .p12 extension.

Use this option if your keystore uses the PKCS#12 file format.

Provider
name

Keystore
type

Certificate
location

Key
location

Uses
HW

WebSphere
path

Tooling

IBMJCECCA
IBMJCE

JKS
JCEKS
PKCS12

File File
system

Yes path/file WebSphere
ikeyman
keytool

JCECCARACFKS RACF Hardware Yes safkeyring:///
safkeyringhw:///

RACF

JCECCAKS File Hardware Yes path/file hwkeytool

IBMJCE JKS
JCEKS
PKCS12

File File
system

No path/file WebSphere
ikeyman
keytool

JCERACFKS RACF RACF No safkeyring:/// RACF

Note: To use hardware cryptography, both the IBMJCECCA and IBMJCE
providers need to be listed in the java.security file with the IBMJCECCA
provider listed first. Refer to “Update the java.security file with the
IBMJCECCA provider” on page 529 for an example of this list.
524 WebSphere Application Server V7.0 Security Guide

� JCE RACF Keystore (JCERACFKS)

This keystore is used for certificates that are stored in a SAF keyring and the
keys are stored in RACF.

� JCE Common Cryptographic Architecture RACF Keystore
(JCECCARACFKS)

This keystore is used for certificates that are stored in a SAF keyring, and the
keys can be stored in RACF or stored in hardware and are ICSF-managed.

� JCE Common Cryptographic Architecture Keystore (JCECCAKS)

This file-based keystore is used when the certificates are stored in a file, but
the keys are in hardware that is managed with the hwkeytool utility.

� Public Key Cryptography Standards version 11 Keystore (PKCS11KS)

To better understand how to use certificates that are stored in RACF, refer to
13.6.4, “SSL and JCERACFKS keystore” on page 525 and 13.6.5, “Hardware
cryptography using a JCECCARACFKS keystore” on page 526. These sections
provide two examples that lead you through setting up and accessing certificates
in RACF with a safkeyring URI.

13.6.4 SSL and JCERACFKS keystore

This example demonstrates creating a signer certificate and a personal
certificate, attaching them to a keyring, and configuring the administrative
console to use that keyring. This example assumes that the provider is set to the
default IBMJCE and that the keys are managed in software.

These actions can be performed with the following RACF commands:

1. Generate a signer certificate labeled WebSphereCA:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('WebSphere CA') OU('IBM'))
WITHLABEL('WebSphereCA')

2. Create a personal certificate signed by WebSphereCA:

RACDCERT ID (WPACR) GENCERT SUBJECTSDN(CN('wtsc04.itso.ibm.com')
O('IBM')) WITHLABEL('WPCell Application Server CR')
SIGNWITH(CERTAUTH LABEL('WebSphereCA')) TRUST

3. Create a ring called WPKeyring for the CR’s user ID:

RACDCERT ADDRING(WPKeyring) ID(WPACR)

4. Connect the WebSphereCA to the ring WPKeyring:

RACDCERT ID(WPACR) CONNECT (RING(WPKeyring) LABEL('WebSphereCA')
CERTAUTH)
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 525

5. Connect the personal certificate to WPKeyring:

RACDCERT ID(WPACR) CONNECT (LABEL('WPCell Application Server CR')
RING(WPKeyring) DEFAULT)

13.6.5 Hardware cryptography using a JCECCARACFKS keystore

This example demonstrates creating a signer certificate and a personal
certificate with the keys in hardware and the setup needed in the administrative
console to use these certificates. This example assumes that the default provider
is set to IBMJCECCA and that ICSF is currently running.

This exercise includes these steps:

1. Create the certificates in RACF with keys in the hardware.
2. Install unrestricted policy jars in WebSphere.
3. Update the java.policy file with the IBMJCECCA provider.
4. Create a keystore in the administrative console.

Keyring and certificate setup with keys in hardware
To set this up:

1. Create a new signer certificate called WPHDCA with its key in hardware:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('wtsc04.itso.ibm.com')
OU('IBM')) WITHLABEL('WPHDCA') TRUST ICSF

2. Create a new keyring called WPKeyring.HD for the control user ID WPACR and
servant user ID WPASR:

RACDCERT ADDRING(WPKeyring.HD) ID(WPACR)
RACDCERT ADDRING(WPKeyring.HD) ID(WPASR)

3. Connect the signer certificate WPHDCA to WPKeyring.HD for WPACR and WPASR:

RACDCERT ID(WPACR) CONNECT (RING(WPKeyring.HD) LABEL('WPHDCA')
CERTAUTH)

RACDCERT ID(WPASR) CONNECT (RING(WPKeyring.HD) LABEL('WPHDCA')
CERTAUTH)

4. Create a new personal certificate HDPersonal signed by WPHDCA with its key in
hardware:

RACDCERT ID (WPACR) GENCERT SUBJECTSDN(CN('HDPersonal') O('IBM'))
WITHLABEL('HDPersonal') SIGNWITH(CERTAUTH LABEL('WPHDCA')) TRUST
ICSF
526 WebSphere Application Server V7.0 Security Guide

5. Connect the new personal certificate to the CR’s keyring:

RACDCERT ID(WPACR) CONNECT (LABEL('HDPersonal') RING(WPKeyring.HD)
DEFAULT)

The commands in step 3 connect the WPHDCA signer certificate to both the CR
and the SR keyrings. It might not be necessary to connect the signer certificate to
the SR keyring, depending on the endpoint for SSL communication. We perform
this step so that the signer certificate can be viewed in the administrative
console.

The certificates are appended with the ICSF keyword, which indicates that RACF
needs to attempt to store the private key associated with this certificate in the
ICSF PKDS.

Example 13-7 shows a display of the signer certificate information:

RACDCERT CERTAUTH LIST(LABEL('WPHDCA'))

Example 13-7 Signer certificate WPHDCA information

Digital certificate information for CERTAUTH:

 Label: WPHDCA
 Certificate ID: 2QiJmZmDhZmjgebXyMTDwUBA
 Status: TRUST
 Start Date: 2009/21/02 00:00:00
 End Date: 2012/12/31 23:59:59
 Serial Number:
 >00<
Issuer's Name:
 >CN=HDwtsc04.itso.ibm.com.OU=IBM<
 Subject's Name:
 >CN=HDwtsc04.itso.ibm.com.OU=IBM<
 Key Usage: CERTSIGN
 Private Key Type: ICSF
 Private Key Size: 1024
 PKDS Label: IRR.DIGTCERT.CERTIFAUTH.SC04.C3D1494CDB090586
 Ring Associations:
 Ring Owner: WPACR
 Ring:
 >WPKeyring.HD<
 Ring Owner: WPASR
 Ring:
 >WPKeyring.HD<
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 527

Example 13-8 shows a display of the personal certificate information:

RACDCERT LIST (label('HDPersonal')) ID(WPACR)

Example 13-8 HDPersonal certificate information

Digital certificate information for user WPACR:

 Label: HDPersonal
 Certificate ID: 2QXm18HD2cjE14WZopaVgZNA
 Status: TRUST
 Start Date: 2009/21/02 00:00:00
 End Date: 2012/30/12 23:59:59
 Serial Number:
 >01<
Issuer's Name:
 >CN=wtsc04.itso.ibm.com.OU=IBM<
 Subject's Name:
 >CN=HDPersonal.O=IBM<
 Private Key Type: ICSF
 Private Key Size: 1024
 PKDS Label: IRR.DIGTCERT.WPACR.SC04.C3D1494D6FDD2480
 Ring Associations:
 Ring Owner: WPACR
 Ring:
 >WPKeyring.HD<

Installing the unrestricted Java policy jars
The WebSphere JVM ships with policy jars that provide only limited function
cryptography. Certain countries have restrictions on the import, re-export,
possession, and use of encryption software. To use the IBMJCECCA provider
with hardware, the unrestricted policy jars that provide full function cryptography
need to be downloaded and installed in WebSphere.

To obtain the Java unrestricted policy jars and place them on the WebSphere
z/OS system:

1. Obtain the unrestricted policy jars from this URL:

http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Make a backup of the original restricted local_policy.jar and
US_export_policy.jar files.

3. Download the unrestricted local_policy.jar and US_export_policy.jar
files to your WebSphere z/OS system in
<WAS_HOME>/AppServer/java64/lib/security.
528 WebSphere Application Server V7.0 Security Guide

http://www.ibm.com/developerworks/java/jdk/security/index.html

4. After copying the local_policy.jar and US_export_policy.jar files, change
the permissions so that the CR and the SR address spaces can access the
jar files:

– chmod 644 local_policy.jar
– chmod 644 US_export_policy.jar

Update the java.security file with the IBMJCECCA provider
The java.security file that is located in the WebSphere HFS needs to be
updated with the IBMJCECCA provider as the first provider in the list of
providers. The java.security file is in ASCII, so it might be necessary to convert
the file to EBCDIC first before making changes.

Example 13-9 illustrates the addition made to the java.security file.

Example 13-9 Updating the java.security file for IBMJCECCA

List of providers and their preference orders (see above):
#
#security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.jsse.IBMJSSEProvider
security.provider.4=com.ibm.jsse2.IBMJSSEProvider2
security.provider.5=com.ibm.security.jgss.IBMJGSSProvider
security.provider.6=com.ibm.security.cert.IBMCertPath
security.provider.7=com.ibm.security.sasl.IBMSASL
security.provider.8=com.ibm.security.cmskeystore.CMSProvider
security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.10=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.11=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.12=org.apache.harmony.security.provider.PolicyProvide
r

In a Network Deployment environment, the java.security file must be adjusted
in every node.

Note: In WebSphere V7.0, the 64-bit support is enabled by default for the
deployment manager in a Network Deployment environment. Therefore,
you have to choose the correct Java directory in the <WAS_HOME> path.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 529

Figure 13-19 The JCECCARACFKS provider will be displayed

Administrative console setup
In the WebSphere for z/OS administrative console, create a new keystore by
selecting SSL certificate and key management  Key stores and
certificates  New. Enter this information:

� Name: JCECCARACFKS KeyStore
� Path: safkeyringhw:///WPKeyring.HD
� Password: password
� Confirm password: password
� Type: JCECCARACFKS
� Check Read only.

Then, click Apply, and save the changes.

The safkeyring URI needs to be specified as safkeyringhw to indicate that the
keys for the certificates in the keyring are stored in hardware. Avoid any trailing
spaces after the safkeyringhw URI. The password for accessing certificates in
RACF is password.

When setting up the certificates, the WPHDCA certificate was connected to both
the CR and SR user ID so that the certificate information can be viewed in the
administrative console.

Figure 13-20 on page 531 shows the options that were chosen in the
administrative console when setting up the keystore.
530 WebSphere Application Server V7.0 Security Guide

Figure 13-20 Creating a JSSE configuration using a safkeyring URI
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 531

Figure 13-21 shows the signer certificate information for keyring WPKeyring.HD.

Figure 13-21 Signer certificate WPHDCA information
532 WebSphere Application Server V7.0 Security Guide

13.7 SSL troubleshooting and traces

SSL handshake errors are one of the most common problems that can surface
when attempting to set up secure communications in WebSphere. This section
provides diagnostic steps that can be performed to identify an incorrect SSL
setup, the types of traces to gather to diagnose them, and common problems.

13.7.1 Diagnostic steps

When attempting to diagnose SSL handshake issues, follow these steps to
identify the cause of the problem:

1. Identify the endpoints for the SSL communication. It is important to determine
who the SSL client (client initiating the SSL handshake) is and who the SSL
server (the receiving party in the SSL handshake attempt) is. Identifying the
SSL client and the SSL server is sometimes difficult, because the SSL client
can be a distributed Java 2 Platform, Enterprise Edition (J2EE) client or thin
client, a Web browser, a WebSphere distributed process, or a z/OS
deployment manager or application server CR or SR address space. The
SSL server is usually WebSphere on a distributed process or WebSphere on
a z/OS CR.

2. Determine the SSL configuration for the SSL client and the SSL server. SSL
handshake issues occur between two endpoints, and the SSL handshake
error usually surfaces in the job output or error log of the client.

If the SSL client or server is on z/OS, obtain the user ID of the address space
or process. A keyring that contains the certificates is associated with the user
ID. Knowledge of the certificates attached to those keyrings can be used to
identify where the setup might be incorrect.

More information: You can obtain additional information about hardware
cryptographic configurations, including performance benchmarks for
WebSphere Application Server for z/OS, in the white paper SSL Options in
WebSphere for z/OS V6.1, WP101213. Moreover, this white paper provides
an additional jython script, which defines keystore, truststore, and JSEE
configuration using the IBMJCECCA provider. A second jython script assigns
the defined JSEE configuration to an HTTPS port of an application server. The
white paper is available at the following Web site:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10121
3

 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 533

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

If the SSL client or server is on a distributed network, it is necessary to obtain
the SSL configuration (keystore, truststore, and certificates).

A list of example scenarios is provided to demonstrate where to obtain the
SSL configuration for client and server:

– SSL handshake issue that occurs during synchronization between the
deployment manager and node agent:

• Deployment manager CR user ID

• Node agent CR user ID

– SSL handshake issue attempting to connect to the administrative console:

• SSL configuration of off-platform Web browser

• Deployment manager CR user ID (Network Deployment) or application
server CR user ID (base configuration)

– SSL handshake issues when attempting to connect to a Web application:

• SSL configuration of off-platform Web browser

• Application server CR user ID

– SSL handshake issues when using HFS clients (that is, wsadmin.sh,
syncNode.sh, launchClient.sh, and so on):

• User ID executing the client on z/OS

• User ID of administrative console on which it is running (either the user
ID of the deployment manager CR (Network Deployment) or the user
ID of the application CR user ID (base))

3. For a z/OS client or server, display the certificates on the keyring associated
with the user ID and provide the certificate details for the signer certificate and
personal certificate (if there is one).

For the distributed client or server, display the certificate information for the
signer certificate and personal certificate (if there is one) using the
administrative console SSL management, or iKeyman utility.

4. From the displayed information, check the validity period for the signer
certificate on the SSL client side and SSL server side. Verify that the current
date falls within the start date and end date for the certificates. The
certificate’s start date must precede the current date and not be expired.

5. From the displayed information, confirm that the SSL client’s truststore
contains the signer certificate of the server. Verify that the issuer’s
distinguished name and subject distinguished name for the server’s signer
certificate on the SSL client side match those of the server personal certificate
on the SSL server side.
534 WebSphere Application Server V7.0 Security Guide

13.7.2 SSL traces

When SSL errors surface, and analyzing the certificates, keyrings, and
WebSphere setup does not provide enough information to diagnose the problem,
SSL traces can be enabled in either the WebSphere administrative console or in
the JVM.

WebSphere SSL trace
When diagnosing WebSphere SSL problems, SSL traces can be enabled in
WebSphere and in the JVM.

Follow the path in the administrative console in WebSphere: Logging and
Tracing  server_name  Change Log Detail Levels. Click the
Configuration tab and add the WebSphere trace specification:

SSL=all

The WebSphere trace can also be turned on dynamically from the MVS console
by using the following modifying command:

F CR_short_name,TRACEJAVA=’SSL=all’

Reset the trace to the original trace specification at startup:

F CR_short_name,TRACEINIT

Java JSSE trace
To enable diagnostic trace for determining the cause of SSL handshake errors,
follow the path in the administrative console to Application servers 
server_name  Process Definition  Control/Servant  Java Virtual
Machine.

In the Generic JVM Arguments field, add:

-Djavax.net.debug=true -Djava.security.auth.debug=all

The Java trace setting cannot be enabled dynamically and requires the
application server to be restarted to pick up the change.
 Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS 535

13.7.3 Common errors

The following section includes common errors that can occur when attempting
SSL handshake communication. The examples provide the cause of the problem
that resulted in the error message:

� Error message when a signer certificate is missing from a client’s truststore in
order to attempt an SSL handshake. This type of error surfaces on the client
initiating the SSL handshake:

CWPKI0022E: SSL HANDSHAKE FAILURE: A signer with SubjectDN
"CN=wtsc04.itso.ibm.com, OU=SC04, O=IBM" was sent from target
host:port "*:9044". The signer may need to be added to local trust
store
"C:/Program1/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/
Node02Cell/nodes/Node02/trust.p12" located in SSL configuration
alias "NodeDefaultSSLSettings" loaded from SSL configuration file
"security.xml". The extended error message from the SSL handshake
exception is: "No trusted certificate found".

� The following error text shows a problem that can occur using the
IBMJCECCA provider with safkeyring URI. The ICSF address space has
become unavailable while a user is attempting to access the administrative
console or application:

Message: BBOO0220E: SSLC0008E: Unable to initialize SSL connection.
Unauthorized access was denied or security settings have expired.
Exception is javax.net.ssl.SSLHandshakeException: Client requested
protocol Unknown 0.2 not enabled or not supported.
com.ibm.ws.ssl.channel.impl.SSLHandshakeErrorTracker

� The following error text shows a problem while starting WebSphere using the
IBMJCECCA provider, but with the ICSF address space not running:

java.lang.RuntimeException: Hardware error from call CSNBOWH
returnCode 12 reasonCode 0
com.ibm.crypto.hdwrCCA.provider.SHA.a(Unknown Source)
com.ibm.crypto.hdwrCCA.provider.SHA.engineDigest(Unknown Source)
java.security.MessageDigest$Delegate.engineDigest(MessageDigest.java
:554)
java.security.MessageDigest.digest(MessageDigest.java:332)
com.ibm.ws.management.repository.DocumentDigestImpl.calc(DocumentDig
estImpljava:128)
com.ibm.ws.management.repository.FileDocument.calcDigest(FileDocumen
t.java:212)
536 WebSphere Application Server V7.0 Security Guide

Chapter 14. Security identity
propagation

This chapter discusses the use of security identity propagation, the
Sync-to-Thread Allowed option, and propagation of the client user IDs to CICS
and DB2.

The following topics are discussed here:

� “Sync-to-Thread Allowed and RunAs thread identity” on page 538
� “Propagating user credentials to DB2 using JDBC Type 2 driver” on page 541
� “Propagating credentials to CICS” on page 545

14
© Copyright IBM Corp. 2009. All rights reserved. 537

14.1 Sync-to-Thread Allowed and RunAs thread identity

The Sync-to-Thread security concept is unique to WebSphere Application Server
on z/OS. Application Sync-to-Thread provides the capability for an application to
synchronize the RunAs identity being used, with the identity on the native z/OS
thread. This identity is used by SAF to access resources (such as hierarchical file
system (HFS) files) outside of the application server that are controlled by the
operating system. This capability is provided for EJBs and for Web applications.

In more detail, the servant region’s task control block (TCB)-level accessor
environment element (ACEE) is set to the current Java Platform, Enterprise
Edition (Java EE) thread identity. This synchronization is effective as long as the
EJB or Web application is running the current request. When the EJB or Web
completes processing, the native thread is restored to its former state.

The Application Sync-to-Thread feature is only supported for local operating
system (localOS) registries and for Lightweight Directory Access Protocol
(LDAP) registries with a corresponding System Authorization Facility (SAF)
mapping module. The following conditions must all be true:

� The configured user registry is the local operating system (LocalOS).

� The Sync-to-Thread allowed value is set to true.

To set this value using the administrative console, go to Security  Global
security  z/OS security options.

A global switch is also provided for each server so that the ability to
synchronize the identities can be enabled or disabled at the server level.

If synchronization is disabled, the server identity is always used.

� The application must be configured to run with application Sync-to-Thread.
This setting is included in the application deployment descriptor as an
env-entry of com.ibm.websphere.security.SyncToOSThread={true|false}.
When this entry is not defined in the deployment descriptor, the default value
is false.

� The RACF administrator must define a FACILITY class profile and optional
SURROGAT class profile to ensure that Sync-to-Thread Allowed is utilized.

14.1.1 Required RACF profiles for Sync-to-Thread

In order to enable Sync-to-Thread, additional RACF profiles have to be created.
If the application server has been created with the z/OS product option, the
generated customization job contains the command to define the FACILITY class
538 WebSphere Application Server V7.0 Security Guide

profile, but it does not contain the permit commands to that profile, nor the define
and permit commands for the SURROGAT class profiles.

The control region (CR) user ID needs READ or CONTROL access to enable
Sync-to-Thread. With READ access, only security environments representing
users in the SURROGAT class are allowed, while CONTROL allows for security
environments to represent any RACF-defined user ID.

Create the Sync-to-Thread profile according to your naming conventions:

RDEFINE FACILITY BBO.SYNC.<cell_short_name or
saf_profil_prefix>.<cluster_short_name> UACC(NONE)

PERMIT BBO.SYNC.<cell_short_name or
saf_profile_prefix>.<cluster_short_name> CLASS(FACILITY) ID(UID_CR)
ACC(READ or CONTROL)

If the control region has only READ permissions to BBO.SYNC, an additional
SURROGAT class profile is required for implementing Sync-to-Thread:

RDEFINE SURROGAT BBO.SYNC.<UID_SR> UACC(NONE)
PERMIT BBO.SYNC.<UID_SR> CLASS(SURROGAT) ID(J2EE identity) ACC(READ)

The Java principal (Java EE identity) requesting the synchronization of the OS
thread needs READ access to a surrogate profile. In this case, UID_SR stands
for the user ID under which the application server’s servant region (SR) is
running. Again, this SURROGAT profile is optional. It will only be checked if the
control region user ID has READ access to the BBO.SYNC profile.

The following article from the WebSphere Information Center provides a table of
all supported resource adapters in combination with Sync-to-Thread:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=
/com.ibm.websphere.zseries.doc/info/zseries/ae/cdat_conthid.html

14.1.2 Sync-to-Thread example

In this example, a simple test application attempts to access a UNIX file named
/tmp/test.txt. This test application is secured by the basic authentication
method, and the application user ID USER3 is permitted to the required Java EE
role.

For testing purposes, we set the UNIX file permissions for /tmp/test.txt so that
both the SR user ID WPASR and application user ID USER3 do not have access.
 Chapter 14. Security identity propagation 539

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/cdat_conthid.html

Let us see what our security violation messages will render when Synch to OS
thread is disabled in the first example and is enabled in the second example. In
both cases, USER3 logs on to the test application with its credentials.

When running with Sync-to-Thread disabled, the following security violation
occurs:

ICH408I USER(WPASR) GROUP(WPCFG) NAME(WAS APPSVR SR)
/tmp/test.txt CL(FSOBJ) ID(01E6E2C8C6E2F800010300003C3C0000)
INSUFFICIENT AUTHORITY TO OPEN ACCESS INTENT(R--) ACCESS ALLOWED(OTHER
---) EFFECTIVE UID(0000002113) EFFECTIVE GID(0000002300)

In this case, the started task control (STC) User WPASR attempted to access file
/tmp/test.txt.

When running with Sync-to-Thread enabled, the following security violation
occurs:

ICH408I USER(USER3) GROUP(GROUP1) NAME(CB390 USER3)
/tmp/test.txt CL(FSOBJ) FID(01E6E2C8C6E2F800010300003C3C0000)
INSUFFICIENT AUTHORITY TO OPEN ACCESS INTENT(R--) ACCESS ALLOWED(OTHER
---) EFFECTIVE UID(0000033114) EFFECTIVE GID(0000033333)

This security violation shows that propagated user ID USER3 attempted to access
file /tmp/test.txt.

14.1.3 SAF delegation

SAF delegation minimizes the need to store user IDs and passwords in many
locations in the configuration. SAF delegation is used in conjunction with the
RunAs feature.

WebSphere Application Server for z/OS V7.0 supports delegation, allowing a
user identity to be represented as a Java EE role. For example, you can
establish an application to be run with a RunAs role of RoleA. RoleA can then be
mapped as UserA. WebSphere then establishes the principal as UserA, and RoleA
is defined in the deployment descriptor. With this configuration, SAF delegation
uses the specified Java EE role RoleA to determine the user identity and then
sets the Java principal with the user ID, UserA. UserA is specified in the SAF
EJBROLE’s profile APPLDATA value of the RDEFINE RACF command. The
RDEFINE command in this example looks like this command:

RDEFINE EJBROLE rolea UACC(NONE) APPLDATA(usera)

SAF delegation requires that SAF authorization is enabled. The SAF security
administrator is responsible for the assignment of users to the role.
540 WebSphere Application Server V7.0 Security Guide

This option is available in the administrative console by selecting Security 
Global security  External authorization provider, selecting SAF
authorization options, and clicking Configure.

14.2 Propagating user credentials to DB2 using JDBC
Type 2 driver

WebSphere Application Server V7.0 for z/OS allows you to assign a thread
identifier as an owner of a connection. After the Connection Manager performs
the synchronization, the native z/OS thread identity is temporarily replaced with
the Java thread identity. The Java thread identity is the identity that is used to
obtain the Enterprise Information System (EIS) connection. The Connection
Manager Sync-to-Thread support provides a way to obtain an EIS connection
using the RunAs identity. After obtaining the connection, the Connection
Manager restores the previous OS thread identity.

In order to create the thread identity function for the Java Database Connectivity
(JDBC) provider data sources, follow these steps:

1. For user ID propagation to DB2, the BBO.SYNC profile is required according to
the RACF definitions in “Required RACF profiles for Sync-to-Thread” on
page 538.

2. Assure that the DB2 Universal JDBC Driver Provider is used and that the
JDBC Type 2 connection to the local DB2 database works properly.

3. As shown in Figure 14-1 on page 542, set the Container-managed
authentication alias to none on the data source. If a container-managed
authentication alias is specified at this point, this user ID and password will be
used instead of the propagated user ID.
 Chapter 14. Security identity propagation 541

Figure 14-1 Data source settings

4. All data source resource references within the application must be set to:

– Resource authorization: Container
– Authentication method: none

These settings can be changed in the deployment descriptor of the
application.

Alternatively, the settings can be changed after application deployment in the
administrative console. Select Enterprise Applications 
application_name as shown in Figure 14-2 on page 543. A resource
reference can be changed to res-auth: Container by selecting the resource
reference, clicking Set Authorization Type, and finally, selecting the
authorization type Container. Moreover, the authentication method can be
set to none by clicking Modify Resource Authentication Method. This
procedure needs to be done for each data source resource reference in that
application.
542 WebSphere Application Server V7.0 Security Guide

Figure 14-2 Change Res-auth Container in the administrative console

5. Enable the connection manager RunAs thread identity by using the following
path in the administrative console: Security  Global security  z/OS
security options. Click Enable the connection manager RunAs thread
identity. This check box is the major switch to enable security propagation to
DB2 and additionally can be defined on a server-by-server basis.

Figure 14-3 Global switch for enable RunAS thread identity for DB2
 Chapter 14. Security identity propagation 543

6. To enable identity propagation, an authentication method must be enabled
and the Java EE roles must be defined in the deployment descriptor of the
application. In addition, the corresponding EJBROLE profiles need to be
created in RACF, and the application users need to be mapped to these
EJBROLE profiles. If authentication for the application is disabled in the
deployment descriptor, the unauthenticated user (guest user) will be used to
access DB2.

In Example 14-1, we modified the deployment descriptor of the trade
application using Rational Application Developer Assemble and Deploy and
then redeployed the application.

Example 14-1 Extract from the deployment descriptor of the trade application

<security-constraint>
<display-name>trade</display-name>

 <web-resource-collection>
 <web-resource-name>tradeResourceCollection</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>UACC to trade application</description>
 <role-name>TradeUACC</role-name>
 </auth-constraint>
</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Trade Login</realm-name>

</login-config>
<security-role>

<role-name>TradeUACC</role-name>
</security-role>

According to the Java EE role in the deployment descriptor, a new EJBROLE
WP.TradeUACC is created in RACF using the following command:

RDEFINE EJBROLE WP.TradeUACC UACC(NONE)

A new RACF group TRADEGRP is used to assign the users to the role:

AG TRADEGRP OWNER(SYS1) SUPGROUP(SYS1) DATA('TRADER')

Users of that application are assigned to the defined role by getting
connected to this group. Assure that these users have sufficient permissions
to access the DB2 tables of the application:

CONNECT JVESER GROUP(TRADEGRP)
544 WebSphere Application Server V7.0 Security Guide

Finally, the new RACF group is granted the TradeUACC role:

PERMIT WP.TradeUACC CLASS(EJBROLE) ID(TRADEGRP) ACCESS(READ)

7. Restart the cell so that the global security changes can take effect.

8. In order to verify the user ID propagation to DB2, invoke the application using
the correct context root. Consequently, the application asks for a user name
and password. This user ID will be used to access DB2. If the EJBROLE is
set up correctly, the user will be able to log in. Invoke several database
queries in the application.

9. The following MVS console command is an example of displaying all current
active DB2 threads with the appropriate authentication user ID. Use this
command to verify the user ID propagation to DB2:

D8X1 DIS THD(*)

The output of this command displays all active DB2 threads, each in its own
row. The column ID identifies the started task name of the request origin and
the AUTHID is the provided user ID. In this case, the AUTHID matches the user
ID from the application login.

Example 14-2 Output for DB2 thread command

DSNV402I -D8X1 ACTIVE THREADS - 346
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
RRSAF TD 1938 WPS02AS JVESER ?RRSAF 010E 151954
RRSAF N 1 LDAPSRV 0081 0
RRSAF T 5 LDAPD8XG LDAPSRV DSNACLI 0081 60674

14.3 Propagating credentials to CICS

Thread identity support allows WebSphere Application Server for z/OS to
automatically pass the user ID of the Java thread to CICS Transaction Server
when using the External Call Interface (ECI) resource adapter. The setting of the
thread user ID is dependent on the RunAs policy for the J2EE application. If
RunAs is set to Caller, and the user of the Web application has authenticated
with the WebSphere Application Server, the thread identity support enables the
caller’s identity to be propagated to CICS automatically. Thread identity support
enables WebSphere Application Server to behave in a way that traditional z/OS
address spaces behave. After the user ID has been authenticated, that user ID
flows with any work done within the z/OS system, which is similar to the way that
multiregion operation (MRO) requests in CICS are managed, for example.
 Chapter 14. Security identity propagation 545

In this topology, the ECI resource adapter sends only the user ID to CICS
Transaction Server with the ECI request. It is assumed that the user is already
authenticated by WebSphere Application Server. A trust relationship can be
configured between WebSphere Application Server and the CICS server using
the MRO bind-and-link security mechanisms. Surrogate security checks can also
be enabled to confirm that the user ID associated with the WebSphere
Application Server region has the appropriate authority to flow a specific user ID
(or one of a generic set of user IDs) to CICS Transaction Server. Figure 14-4 on
page 548 shows this architecture.

In contrast to user ID propagation to DB2, there is no global switch to turn on
security propagation for CICS.

The following conditions must exist to enable user ID propagation to CICS:

� CICS Transaction Gateway is installed. A local connection is used between
WebSphere Application Server and CICS.

� Global security is enabled, and the active user registry is defined as Local
OS.

14.3.1 Application-related settings

The following actions must be taken for the application:

� Application security has to be enabled in WebSphere.

� A security constraint that contains the Java EE roles must be defined in the
application deployment descriptor. The corresponding EJBROLEs must be
defined in RACF. If authentication for the application is disabled in the
deployment descriptor, the unauthenticated user (guest user) will be used to
access CICS.

� Set res-auth to Container in the EJB deployment descriptor.

In the deployment descriptor of the EJB (ejb-jar.xml), the res-auth value of
the ECI resource references must be set to Container (Example 14-3).

Example 14-3 Res-auth setting in the EJB deployment descriptor

<resource-ref id="ResourceRef_1">
<description>CICS ECI Resource adapter</description>
<res-ref-name>ECI</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

� Set RunAS to Caller in the EJB deployment descriptor.
546 WebSphere Application Server V7.0 Security Guide

A RunAs setting on a servlet or EJB affects the Java thread identity of
methods that are invoked on a subsequent call. WebSphere Application
Server RunAs policy allows three choices in assigning the Java thread
identity for the current request:

– Caller uses the caller’s identity for the method selected and to propagate
it to any subsequent methods invoked or J2EE resources accessed. Caller
is the default behavior.

– Server indicates that the method will assume the identity of the
WebSphere SR.

– Role means that the application assembler selects the name of a security
role that is defined in the application. Authorization is performed by
checking that the principal name has been assigned to one of the required
security roles.

14.3.2 Required RACF profiles

Create the RACF profiles:

� Assure that the SR has access to the CICS region.

In the FACILITY class, the DFHAPPL profile restricts the access to the CICS
region. If multiple application servers need access to CICS, the SR group can
be permitted instead. In this profile, the <APPLID> is the APPLID of the CICS
region:

PERMIT DFHAPPL.<APPLID> CLASS(FACILITY) ID(GID_SR) ACCESS(READ)
SETRPTS RACLIST(FACILITY) REFRESH

� Assure that the application users have access to the corresponding CICS
transaction. In addition, the application server SR needs to be permitted to
the CICS transaction as well. This example grants the access to a CICS
transaction:

PERMIT MIRROR CL(TCICSTRN) ID(UID_SR) ACCESS (READ)
PERMIT MIRROR CL(TCICSTRN) ID(UID) ACCESS (READ)
SETROPTS RACLIST(TCICSTRN) REFRESH
 Chapter 14. Security identity propagation 547

Figure 14-4 WebSphere and the CICS Transaction Gateway deployed on z/OS

z/OS

HTML

WebSphere Application Server CICS Transaction Server

COBOL
application

C
O

M
M

A
R

E
A

EXCI

EXCI

EJB

CICS Transaction
Gateway

CCI

JSP Servlet
548 WebSphere Application Server V7.0 Security Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, refer to “How to get IBM
Redbooks publications” on page 551. Note that several of the documents
referenced here might be available in softcopy only:

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

� WebSphere Application Server V7 Web Services Guide, SG24-7758

� WebSphere Application Server V7 Messaging Administration Guide,
SG24-7770

� Understanding LDAP - Design and Implementation, SG24-4986

� Distributed Security and High Availability with Tivoli Access Manager and
WebSphere Application Server for z/OS, SG24-6760

Online resources

These Web sites are also relevant as further information sources:

� WebSphere Application Server V7 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

� WebSphere Application Server V6.1 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� IBM Tivoli Information Center

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

� WebSphere Application Server V6 advanced security hardening: Part 1

http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/
0512_botzum1.html
© Copyright IBM Corp. 2009. All rights reserved. 549

http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum1.html
http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum1.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

� WebSphere Application Server V6 advanced security hardening: Part 2

http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/
0512_botzum2.html

� The full J2EE Connector architecture can be downloaded from Sun
Microsystems at:

http://java.sun.com/j2ee/connector/

� Choosing among JCA, JMS and Web services for EAI

http://www.ibm.com/developerworks/webservices/library/ws-jcajms.html

� IBM Education Assistant for WebSphere Application Server V6 Security:
CSIv2

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?t
opic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.htm
l

� Object Management Group (OMG) Security Web site, CSIv2 topic

http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv
2

� The Common Object Request Broker: Architecture and Specification

http://www.omg.org/docs/formal/98-12-01.pdf

� Common Annotations for the Java Platform
http://jcp.org/aboutJava/communityprocess/final/jsr250/index.html

� Enterprise JavaBeansTM,Version 3.0 EJB Core Contracts and Requirements
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

� IBM developerWorks Security information Web pages

http://www.ibm.com/developerworks/java/jdk/security/60/
http://www.ibm.com/developerworks/java/jdk/security/index.html

� MustGather: Errors using iKeyman with IBM HTTP Server

http://www-01.ibm.com/support/docview.wss?uid=swg21202820

� System Requirements for WebSphere Application Server V7.0

http://www-01.ibm.com/support/docview.wss?uid=swg27006921

� List of supported software for WebSphere Application Server V7.0

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369

� White paper WP10653 - WebSphere z/OS -- WSC Sample ND Configuration:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10065
3

� WebSphere for z/OS Version 7 - Configuration Planning Spreadsheets
550 WebSphere Application Server V7.0 Security Guide

http://www-01.ibm.com/support/docview.wss?uid=swg27006921
http://java.sun.com/j2ee/connector/
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012369
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/webservices/library/ws-jcajms.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.was_v6/was/6.0/Security/WASv6_Sec_CSIv2/player.html
http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2
http://www.omg.org/docs/formal/98-12-01.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr250/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg27012284
http://www.ibm.com/developerworks/websphere/techjournal/0512_botzum/0512_botzum2.html
http://www.ibm.com/developerworks/java/jdk/security/60/
http://www-01.ibm.com/support/docview.wss?uid=swg21202820
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3341

� Configuring Fine Grained Security in WebSphere Application Server V6.1 for
z/OS

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD10332
4

� z/OS Security Server RACF Callable Services

http://publibz.boulder.ibm.com/epubs/pdf/ichzd180.pdf

� SSL Options in WebSphere for z/OS V6.1

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP10121
3

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers,
Technotes, draft publications and Additional materials, as well as order hardcopy
IBM Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 551

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103324
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://publibz.boulder.ibm.com/epubs/pdf/ichzd180.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101213

552 WebSphere Application Server V7.0 Security Guide

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

W
ebSphere Application Server

V7.0 Security Guide

®

SG24-7660-00 ISBN 0738433004

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

WebSphere Application
Server V7.0 Security
Guide

Secure WebSphere
administration
processes

Ensure secure
WebSphere
applications

Secure
communication with
SSL

This IBM Redbooks publication provides the information that
is needed to implement secure solutions with WebSphere
Application Server V7.0. It focuses on security for the
application server and its components, including enterprise
applications.

This book includes administrative and infrastructure security,
application security, and z/OS specifics.

This book is intended for anyone who plans to secure
applications and the application serving environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contact an IBM Software Services Sales Specialist
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Administrative and infrastructure security
	Chapter 1. Introduction
	1.1 Core concepts and technologies
	1.1.1 Global security and security domains
	1.1.2 Securing the administrative environment
	1.1.3 Defining user registries to WebSphere
	1.1.4 Authenticating clients
	1.1.5 Authorizing access to applications
	1.1.6 Authorization providers
	1.1.7 Protecting file systems with Java 2 security
	1.1.8 Single sign-on
	1.1.9 Web services security
	1.1.10 Messaging security

	1.2 Summary of new V7 security features and changes

	Chapter 2. Administrative security
	2.1 Administrative security overview
	2.2 Enabling administrative security
	2.2.1 Enabling security at profile creation
	2.2.2 Enabling security after profile creation
	2.2.3 Stopping the application server

	2.3 Disabling administrative security
	2.4 Administrative roles
	2.4.1 Mapping users and groups to administrative roles
	2.4.2 Mapping a group to an administrative role
	2.4.3 Mapping a user to an administrative role

	2.5 Fine-grained administrative security
	2.5.1 Authorization group
	2.5.2 Granting fine-grained access
	2.5.3 Using fine-grained security: An example

	2.6 Job manager security
	2.7 Naming service security: CosNaming roles
	2.7.1 Mapping a user or a group to a CosNaming role
	2.7.2 Applying CosNaming security: An example

	Chapter 3. Using security domains
	3.1 Global security compared to security domains
	3.1.1 Attributes that can be configured in a security domain
	3.1.2 Configuration files
	3.1.3 Security domain scope

	3.2 Application security domain scenarios
	3.2.1 Scenario: Application security at the global security level
	3.2.2 Scenario: Security domains that override global security

	Chapter 4. Configuring the user registry and authentication settings
	4.1 User registry basics
	4.1.1 User registry types
	4.1.2 User registry content
	4.1.3 Using multiple registries with domains

	4.2 Configuring a stand-alone LDAP registry
	4.2.1 Configuration checklist
	4.2.2 Understanding the directory structure
	4.2.3 Configuring a stand-alone LDAP using the console
	4.2.4 Configuring a stand-alone LDAP using wsadmin commands
	4.2.5 Stand-alone LDAP dynamic and nested group configuration
	4.2.6 Stand-alone LDAP configuration defaults

	4.3 Federated repositories
	4.3.1 Configuration checklist
	4.3.2 Understanding user realms when using federated repositories
	4.3.3 VMM entity types
	4.3.4 Configuring an LDAP federated repository using the console
	4.3.5 Configuring VMM database base adapter features
	4.3.6 Configuring elements of federated repositories using wsadmin
	4.3.7 Configuring a database repository in VMM

	4.4 Authentication and authorization settings
	4.4.1 Identifying key authentication and authorization defaults
	4.4.2 Custom authentication choices

	Chapter 5. Secure Sockets Layer administration
	5.1 Secure communications using SSL
	5.1.1 Certificates
	5.1.2 Keystores and truststores
	5.1.3 SSL configurations

	5.2 Basic usage scenarios
	5.2.1 Securing administrative communication
	5.2.2 Securing LDAP communication
	5.2.3 Securing Web inbound and outbound communication
	5.2.4 Securing EJB inbound and outbound communication
	5.2.5 Securing communication with WebSphere MQ

	5.3 Basic SSL administration
	5.3.1 Creating keystores
	5.3.2 Managing personal certificates
	5.3.3 Managing signer certificates
	5.3.4 Recovering deleted certificates
	5.3.5 Certificate expiration monitoring
	5.3.6 Managing SSL configurations
	5.3.7 Creating SSL configurations

	5.4 Advanced concepts
	5.4.1 Changing default chained certificates
	5.4.2 Creating and defining a CA client
	5.4.3 SSL isolation

	5.5 SSL troubleshooting and traces
	5.5.1 Diagnostic steps
	5.5.2 SSL traces

	5.6 Implementation examples
	5.6.1 Securing LDAP communication
	5.6.2 Securing Web inbound communication

	Chapter 6. Common Secure Interoperability Version 2 administration
	6.1 Overview of CSIv2
	6.2 The CSIv2 authentication protocol
	6.3 Features of CSIv2
	6.3.1 Three layers for authentication
	6.3.2 Identity assertion and identity mapping
	6.3.3 Security attribute propagation
	6.3.4 Error handling
	6.3.5 Stateful and stateless sessions

	6.4 Configuring CSIv2
	6.4.1 Configuring CSIv2 on a server
	6.4.2 Configuring CSIv2 on a stand-alone client
	6.4.3 CSIv2 considerations in special scenarios

	6.5 Troubleshooting CSIv2
	6.5.1 Identifying a CSIv2 problem
	6.5.2 Approach to debugging a CSIv2 problem
	6.5.3 Enabling trace for CSIv2
	6.5.4 Case studies of CSIv2 problems

	6.6 References

	Part 2 Application security
	Chapter 7. Application security
	7.1 Application security design considerations
	7.1.1 Programmatic and declarative security

	7.2 Deploying a secured enterprise application
	7.2.1 Mapping modules to servers filtered by security domains
	7.2.2 Role mapping during application installation
	7.2.3 Run-As role mappings
	7.2.4 Unprotected 2.x methods
	7.2.5 Mapping roles at assembly compared to deployment

	7.3 Role mapping after installation
	7.4 Mapping roles in the development environment

	Chapter 8. Securing a Web application
	8.1 Application security
	8.2 Declarative security
	8.2.1 Defining security roles for an application
	8.2.2 Defining security constraints

	8.3 Programmatic security
	8.3.1 JEE security API
	8.3.2 Defining security role references in the deployment descriptor
	8.3.3 Defining security roles using annotations

	8.4 Delegation
	8.4.1 Delegation using a deployment descriptor
	8.4.2 Delegation using annotation
	8.4.3 Annotation usage considerations

	8.5 Authentication mechanisms
	8.6 Configuring form-based authentication
	8.6.1 Building the login page
	8.6.2 Getting the login exception details
	8.6.3 Logout

	8.7 Configuring client certificate authentication
	8.7.1 Application configuration
	8.7.2 Application server configuration
	8.7.3 Web server configuration
	8.7.4 Browser configuration

	8.8 Customizing the login process
	8.9 Other security-related application settings
	8.9.1 Web application extensions
	8.9.2 Session security integration

	Chapter 9. Securing an Enterprise JavaBeans application
	9.1 Application security
	9.2 Security mechanisms
	9.3 JEE Security policies: Annotations and XML descriptors
	9.4 Declarative security
	9.4.1 Protecting beans using annotations
	9.4.2 Protecting beans using the deployment descriptor

	9.5 Programmatic security
	9.5.1 Security API

	9.6 Delegation
	9.6.1 Bean-level delegation
	9.6.2 Method-level delegation

	9.7 Java Authentication and Authorization Service
	9.7.1 WSSubject API

	9.8 Using annotations

	Part 3 z/OS specifics
	Chapter 10. WebSphere z/OS and local operating system security
	10.1 Local operating system (LocalOS) security
	10.2 User ID strategy for a Network Deployment environment
	10.3 Administrative security
	10.3.1 Common groups and user IDs
	10.3.2 Security configuration options
	10.3.3 z/OS security product options

	10.4 RACF jobs for WebSphere z/OS
	10.4.1 RACF classes
	10.4.2 Skeleton of the generated RACF jobs

	10.5 System Authorization Facility authorization
	10.5.1 SAF authorization for administrative roles
	10.5.2 SAF authorization for applications
	10.5.3 Displaying EJBROLE profiles
	10.5.4 SAF EJB role mapper

	10.6 Generic RACF profiles (best practices)
	10.6.1 Generic RACF profiles using wildcards
	10.6.2 Creating a new server with the administrative console

	10.7 Case-sensitive passwords for RACF
	10.8 Fine-grained security
	10.9 Naming service security
	10.9.1 CosNaming roles
	10.9.2 Mapping users or groups to CosNaming roles

	Chapter 11. Administrative security
	11.1 Selecting an authorization provider
	11.2 Enabling security with a SAF user repository
	11.3 Disabling administrative security
	11.4 Security trace

	Chapter 12. WebSphere z/OS and user registries
	12.1 Introduction to user registries
	12.1.1 Local operating system registry
	12.1.2 Stand-alone Lightweight Directory Access Protocol registry
	12.1.3 Stand-alone custom registry
	12.1.4 Federated repositories

	12.2 Our scenario and our environment
	12.3 Stand-alone LDAP registry
	12.3.1 WebSphere and z/OS LDAP SDBM back end (RACF)
	12.3.2 WebSphere and z/OS LDAP TDBM back end (DB2)
	12.3.3 WebSphere and z/OS LDAP TDBM native authentication

	12.4 Federated repositories
	12.4.1 Federated repositories
	12.4.2 Our federated repositories scenario
	12.4.3 Federated z/OS LDAP with TDBM back end (DB2)
	12.4.4 Federated z/OS LDAP TDBM native authentication
	12.4.5 Federated IBM Tivoli Directory Server

	Chapter 13. Implementing Secure Sockets Layer in WebSphere for z/OS
	13.1 Keyrings and certificates in RACF
	13.1.1 Certificates
	13.1.2 Keyrings
	13.1.3 Building a trust chain with WebSphere for z/OS
	13.1.4 Establishing SSL connections in an secured environment

	13.2 Centrally managed SSL
	13.3 WebSphere V7 for z/OS SSSL to JSSE changes
	13.4 Writable SAF keyrings
	13.4.1 Prerequisites for writable keyring support
	13.4.2 Integration into the administrative console
	13.4.3 Importing personal certificates
	13.4.4 Exporting personal certificates
	13.4.5 Creating personal certificates
	13.4.6 Removing certificates from a keyring
	13.4.7 Renewing certificates
	13.4.8 Exporting public certificates
	13.4.9 Common error messages

	13.5 RACF certificate management
	13.5.1 Monitoring certificate expiration
	13.5.2 Importing certificates
	13.5.3 Exporting certificates
	13.5.4 Deleting certificates and keyrings

	13.6 Hardware cryptography and Java cryptography providers
	13.6.1 Choosing a JCE provider
	13.6.2 Administrative console keystore types
	13.6.3 IBMJCECCA and IBMJCE characteristics
	13.6.4 SSL and JCERACFKS keystore
	13.6.5 Hardware cryptography using a JCECCARACFKS keystore

	13.7 SSL troubleshooting and traces
	13.7.1 Diagnostic steps
	13.7.2 SSL traces
	13.7.3 Common errors

	Chapter 14. Security identity propagation
	14.1 Sync-to-Thread Allowed and RunAs thread identity
	14.1.1 Required RACF profiles for Sync-to-Thread
	14.1.2 Sync-to-Thread example
	14.1.3 SAF delegation

	14.2 Propagating user credentials to DB2 using JDBC Type 2 driver
	14.3 Propagating credentials to CICS
	14.3.1 Application-related settings
	14.3.2 Required RACF profiles

	Related publications
	IBM Redbooks publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Back cover

