
ibm.com/redbooks

IBM® Tivoli® Front cover

IBM Tivoli Directory
Server for z/OS

Karan Singh
Corey C Bryant

Jonathan Cottrell
Gillian Gainsford

Saheem Granados
Robert Green

Diane Lia
Nilesh T Patel
John M Walsh

Technical overview of Tivoli Directory
Server

Concepts, planning, and
configuration examples

Basic and advanced
replication

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM Tivoli Directory Server for z/OS

June 2011

SG24-7849-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2011)

This edition applies to Version 1, Release 12, of IBM Tivoli Directory Server for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team who wrote this book . xi
Now you can become a published author, too! . xii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiii

Part 1. Overview . 1

Chapter 1. Tivoli Directory Server for z/OS. 3
1.1 z/OS LDAP - features . 4
1.2 IBM Tivoli Directory Server for z/OS . 4
1.3 Directory Architecture . 5
1.4 Server Architectures . 5

1.4.1 Single-Server . 6
1.4.2 Multi-Server (Sysplex). 8
1.4.3 Master-Replica Replication . 10
1.4.4 Forwarding (Cascading) Replication . 12
1.4.5 Peer-to-Peer Replication. 13
1.4.6 Gateway Replication . 15
1.4.7 Remote security services using the z/OS LDAP server . 16
1.4.8 Further Information . 17

Chapter 2. Planning . 19
2.1 Planning and Considerations . 20
2.2 Where to store your data. 20
2.3 Required products. 20

2.3.1 Optional products . 21
2.4 Configuring IBM Tivoli Directory Server for z/OS . 22

2.4.1 Where and how to store user passwords? . 22
2.4.2 Configuring for advanced replication and LDAP password policy. 23
2.4.3 Activity and audit logging . 23
2.4.4 Using the dsconfig utility . 23

Part 2. Concepts . 27

Chapter 3. Back ends . 29
3.1 Back end overview . 30
3.2 TDBM back end . 32

3.2.1 TDBM configuration . 33
3.2.2 Porting TDBM data from IBM Tivoli Directory Server for z/OS to IBM Tivoli Directory

Server for z/OS. 34
3.2.3 Porting TDBM data from ISS to IBM Tivoli Directory Server for z/OS. 34
3.2.4 Using the TDBM back end . 35
3.2.5 Tuning the TDBM back end . 37

3.3 LDBM back end. 39
3.3.1 LDBM configuration . 40
© Copyright IBM Corp. 2011. All rights reserved. iii

3.3.2 Porting LDBM data . 41
3.3.3 Creating a sample server with an LDBM back end. 41
3.3.4 Using the LDBM back end . 41
3.3.5 Tuning the LDBM back end . 41
3.3.6 Sample LDBM benchmark data . 43

3.4 CDBM back end . 44
3.4.1 CDBM Configuration . 44
3.4.2 Using the CDBM back end . 46
3.4.3 Tuning the CDBM back end . 46

3.5 SDBM back end . 46
3.5.1 SDBM Configuration . 47
3.5.2 Using the SDBM back end . 50
3.5.3 Searching the SDBM back end. 52
3.5.4 Tuning the SDBM back end (RACF database) . 54
3.5.5 RACF resources . 55

3.6 GDBM back end . 64
3.6.1 GDBM configuration . 66
3.6.2 Enabling change logging. 68
3.6.3 Additional configuration for RACF change logging . 68
3.6.4 Using the GDBM back end . 70
3.6.5 Tuning the GDBM back end . 71

Chapter 4. Schemas . 73
4.1 Schema . 74
4.2 Schema configuration in IBM Tivoli Directory Server for z/OS 74

4.2.1 Applying schema to IBM Tivoli Directory Server for z/OS. 75
4.3 Attribute Types . 75

4.3.1 Attributetypes and ibmattributetypes attribute format . 79
4.4 Object Classes . 81

4.4.1 objectclasses attribute value format . 82
4.5 Defining additional schema in IBM Tivoli Directory Server for z/OS 82

4.5.1 Defining additional schema example . 83
4.6 Defining additional schema for use with RACF custom fields . 87

Chapter 5. Authentication, authorization, and security . 89
5.1 Overview . 90
5.2 Authentication mechanisms supported by IBM Tivoli Directory Server for z/OS. 92

5.2.1 Anonymous . 93
5.2.2 Simple . 93
5.2.3 CRAM-MD5. 94
5.2.4 DIGEST-MD5 . 96
5.2.5 GSS-API (Kerberos) . 98
5.2.6 External (SSL). 101

5.3 Native authentication. 104
5.3.1 Setting up native authentication . 106
5.3.2 Changing a password or password phrase of an entry participating in native

authentication . 107
5.4 Authorization using Tivoli Directory Server Access Control Lists (ACL) 108

5.4.1 Setting up IBM Tivoli Directory Server Authorization . 109
5.4.2 Normalization . 111
5.4.3 Propagation. 112
5.4.4 Authorization Permissions. 113
5.4.5 Precedence. 114
iv IBM Tivoli Directory Server for z/OS

5.4.6 Determining the Subject . 114
5.4.7 Calculating Effective Permissions. 115
5.4.8 Filtered Access Control . 116
5.4.9 Testing Authorization Configurations . 117
5.4.10 Closing thoughts on authorization. 120

5.5 Groups and group gathering in IBM Tivoli Directory Server for z/OS 121
5.5.1 Static, dynamic, and nested groups . 121
5.5.2 Querying group membership. 123
5.5.3 Static, dynamic, and nested group pros and cons . 125
5.5.4 Group gathering . 126

5.6 Password Policy . 127
5.6.1 Multiple password policies . 127
5.6.2 Meaning of various attributes in password policy . 128

5.7 Encryption and Hashing . 132
5.8 SSL/TLS . 133

5.8.1 Certificates and key repositories . 134
5.8.2 Setting up IBM Tivoli Directory Server for z/OS to use SSL/TLS 135

5.9 Persistent Search . 136

Chapter 6. Reliability, availability, and scalability . 139
6.1 Reliability, Availability and Scalability . 140

6.1.1 Availability . 140
6.2 Sysplex . 140
6.3 Replication . 141
6.4 Topology . 142

6.4.1 Master - Replica . 143
6.4.2 Peer - Peer . 143
6.4.3 Forwarding/Cascading . 143
6.4.4 Gateway . 143
6.4.5 Sysplex and Replication . 144

6.5 Setting up Replication . 144
6.5.1 Consumer Configuration . 146
6.5.2 Supplier Configuration . 146
6.5.3 Synchronizing the servers. 149
6.5.4 Maintaining the Topology . 150

6.6 Additional Advanced Replication Features . 153
6.6.1 Scheduling . 153
6.6.2 Filtering . 154

Chapter 7. Plug-ins . 155
7.1 IBM Tivoli Directory Server for z/OS Server Plug-ins . 156
7.2 Pre-operation and post-operation plug-ins . 158
7.3 Client-operation plug-ins . 160
7.4 Building an IBM Tivoli Directory Server for z/OS server plug-in 162
7.5 Steps for writing a IBM Tivoli Directory Server for z/OS server plug-in. 162
7.6 IBM Tivoli Directory Server for z/OS Server Plug-in Sample 163

7.6.1 Stepping through plugin_sample.c . 163
7.6.2 Steps for building and running the sample plug-in . 165

7.7 Exploiters of IBM Tivoli Directory Server for z/OS Plug-in Support. 166

Chapter 8. Workload Management. 167
8.1 Workload Management Overview . 168
8.2 Using Configuration Options . 168

8.2.1 Configuring WLM to support incoming requests . 169
 Contents v

8.2.2 Configuring LDAP to exploit WLM. 170
8.3 Using Workload Manager and Operations Monitor together . 171
8.4 Workload Manager Health . 171

Part 3. Installation and configuration examples . 173

Chapter 9. Implementing IBM Tivoli Directory Server on a single system 175
9.1 A basic IBM Tivoli Directory Server server with LDBM . 176

9.1.1 Prepare the z/OS system . 176
9.1.2 Implementing IBM Tivoli Directory Server with dsconfig 176
9.1.3 Starting and verifying IBM Tivoli Directory Server operation. 178

9.2 A basic IBM Tivoli Directory Server server with TDBM . 178
9.2.1 Prepare the z/OS system . 179
9.2.2 DB2 setup for IBM Tivoli Directory Server . 179
9.2.3 Implementing IBM Tivoli Directory Server with dsconfig 181
9.2.4 Starting and verifying IBM Tivoli Directory Server operation. 184

9.3 Set up file-based GDBM to track changes . 185
9.4 Set up DB2-based GDBM to track changes . 187
9.5 A basic IBM Tivoli Directory Server server with SDBM. 190
9.6 Loading the IBM-supplied schema . 192
9.7 Loading the IBM-supplied sample.ldif file . 193
9.8 Securing the IBM Tivoli Directory Server administration ID . 194
9.9 Using CRAM-MD5 and DIGEST-MD5 binds. 196
9.10 Enabling SSL authentication . 198
9.11 Password policy implementation. 210

Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 217
10.1 Setting up the LDBM back end for sysplex . 218

10.1.1 Changes to the configuration file . 218
10.1.2 Starting and verifying operation . 218

10.2 Setting up the TDBM server for sysplex . 220
10.2.1 Changes to the configuration file . 220
10.2.2 Starting and verifying operation . 221

10.3 Other shared back ends . 223
10.4 Setup a shared GDBM to track changes. 223
10.5 Set up a shared CDBM for advanced replication and password policy. 225

Chapter 11. Replication . 229
11.1 Basic Replication. 230

11.1.1 Master - replica topology. 230
11.1.2 Peer to peer topology . 234

11.2 Advanced Replication . 240
11.2.1 Major replication topologies . 240
11.2.2 Configuring replication topologies . 241
11.2.3 Master-Replica replication configuration in advanced replication. 245
11.2.4 Peer to peer replication topology configuration in advanced replication 248

Chapter 12. Using LDAP and HCD . 255
12.1 Hardware Configuration Definition (HCD) and LDAP . 256
12.2 Securing IBM Tivoli Directory Server for z/OS HCD . 258
12.3 Configuring HCD and LDAP . 258

12.3.1 Setting up the IBM Tivoli Directory Server for z/OS . 259
12.3.2 Setting up the HCD LDAP plug-in . 261
12.3.3 Integrating the LDAP schema for HCD . 264
vi IBM Tivoli Directory Server for z/OS

12.4 Using HCD and LDAP. 264
12.4.1 Authentication . 264
12.4.2 Usage examples . 265

Chapter 13. Monitoring . 267
13.1 Server monitoring . 268

13.1.1 Monitor search with scope=sub . 268
13.2 Monitoring and managing advanced replication . 276

13.2.1 Showing advanced replication configuration information: 276
13.2.2 Extended operations related to advanced replication . 279
13.2.3 Monitoring advanced replication status. 280

13.3 Using activity logging . 282
13.4 Operations monitor . 284
13.5 Audit logging . 285

Chapter 14. Debugging . 287
14.1 Overview . 288
14.2 Debugging problems . 288

14.2.1 Debugging configuration problems . 288
14.2.2 Using server debug modes . 288
14.2.3 Using CTRACE in-memory records . 289

Part 4. Appendixes . 291

Appendix A. Sample plug-in code . 293
Source code for plugin_sample.c . 294

Appendix B. Sample C code . 305
Description of sample code . 306

Related publications . 313
IBM Redbooks . 313
Other publications . 313
Online resources . 313
How to get Redbooks. 314
Help from IBM . 314

Index . 315
 Contents vii

viii IBM Tivoli Directory Server for z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
IBM®
IMS™
MVS™
OS/390®

Parallel Sysplex®
RACF®
RDN®
Redbooks®
Redbooks (logo) ®
RMF™

System z®
Tivoli®
z/OS®
z/VM®
z9®

The following terms are trademarks of other companies:

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM Tivoli Directory Server for z/OS

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication examines the IBM Tivoli® Directory Server for z/OS®. IBM
Tivoli Directory Server is a powerful Lightweight Directory Access Protocol (LDAP)
infrastructure that provides a foundation for deploying comprehensive identity management
applications and advanced software architectures.

This publication provides an introduction to the IBM Tivoli Directory Server for z/OS that
provides a brief summary of its features and a examination of the possible deployment
topologies. It discusses planning a deployment of IBM Tivoli Directory Server for z/OS, which
includes prerequisites, planning considerations, and data stores, and provides a brief
overview of the configuration process. Additional chapters provide a detailed discussion of the
IBM Tivoli Directory Server for z/OS architecture that examines the supported back ends,
discusses in what scenarios they are best used, and provides usage examples for each back
end. The discussion of schemas breaks down the schema and provides guidance on
extending it. A broad discussion of authentication, authorization, and security examines the
various access protections, bind mechanisms, and transport security available with IBM Tivoli
Directory Server for z/OS. This chapter also provides an examination of the new Password
Policy feature. Basic and advanced replication topologies are also covered. A discussion on
plug-ins provides details on the various types of plug-ins, the plug-in architecture, and
creating a plug-in, and provides an example plug-in. Integration of IBM Tivoli Directory Server
for z/OS into the IBM Workload Manager environment is also covered.

This publication also provides detailed information about the configuration of IBM Tivoli
Directory Server for z/OS. It discusses deploying IBM Tivoli Directory Server for z/OS on a
single system, with examples of configuring the available back ends. Configuration examples
are also provided for deploying the server in a Sysplex, and for both basic and advanced
replication topologies. Finally it provides guidance on monitoring and debugging IBM Tivoli
Directory Server for z/OS.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Karan Singh is a Project Leader at the International Technical Support Organization,
Poughkeepsie Center. He writes extensively and teaches IBM ITSO classes worldwide on
z/OS.

Corey C Bryant is an Advisory Software Developer for IBM Tivoli Directory Server for z/OS.
He holds a BS in Computer Science from Binghamton University and an MS in Information
Technology from RPI.

Jonathan Cottrell, CISSP, is an Advisory Software Engineer who has worked for the past ten
years on the IBM Tivoli Directory Server for z/OS Development and Level 3 teams. He joined
IBM in 1998 after graduating from Clarkson University with a Bachelor of Science degree in
Computer Engineering.

Gillian Gainsford is an Identity and Access Management specialist who works at the
University of Auckland in New Zealand. Before that, Gillian worked at IBM for 12 years
© Copyright IBM Corp. 2011. All rights reserved. xi

specializing in IT security. She is a board member of the Auckland Chapter of ISACA, and
holds CISSP and CISA designations.

Saheem Granados is an Advisory Software Engineer at the IBM Poughkeepsie Development
Lab. He currently is a member of the ITDS for z/OS development team. His expertise includes
Encryption and Java Security. Saheem holds a Master’s Degree from Binghamton University
and has been with IBM for 11 years. He is also a Certified Information Systems Security
Professional (CISSP).

Robert Green is a Field Technical Sales Specialist with IBM. Robert has worked in the
information systems field since 1990, beginning as a MVS™ applications programmer and
analyst, and then a systems programmer with an information systems bureau supporting the
insurance industry. He joined IBM in 1996, assigned to the OS/390® development lab in
Poughkeepsie, NY, where he spent 10 years as a software engineer. His current assignment
at IBM as an FTSS is to work with customers to use the mainframe for deploying applications
that go beyond the traditional CICS®, DB2® and IMS™ applications. Robert leads customers
to identify which applications are suitable candidates for the mainframe, and then assists with
deploying those applications to take advantage of the strengths of the mainframe. Robert has
a Master's degree in Information Science from the University of South Alabama.

Diane Lia is a staff software engineer who has worked on LDAP on z/OS for 10 years,
spending five of those years as a developer and five years as a functional verification tester.

Nilesh T Patel is a Software Engineer in the IBM Software Group in India. He is a solution
Advisor - Tivoli Security and Compliance Management Solutions, and has been working as a
technical leader of the Tivoli Directory Server team. His areas of expertise include IBM Tivoli
Directory Server, Tivoli Access Manager, Tivoli Identity Manager, Tivoli Directory integrator,
and Virtual Member Manager. He has published technical papers within the IBM developer
domain and integration modules on IBM Open Process Automation Library for Tivoli Security
products. He has delivered many technical web-casts to educate customers on new features
and integration of Tivoli Security products. Nilesh holds a degree in Information technology
from Pune Institute of Computer Technology in Pune, India.

John M Walsh is a software engineer who has worked for the past eight years on IBM Tivoli
Directory Server for z/OS Development and Level 3 teams. He joined IBM in 2002 after
graduating from Binghamton University with a Bachelor of Science degree in Computer
Science. His areas of expertise include networking, WLM, FFDC, and LDAP.

Thanks to the following people for their contributions to this project:

Robert Haimowitz, Richard Conway
International Technical Support Organization, Poughkeepsie Center

John C Jones, Deborah Mian, Jeff Smith
IBM

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author - all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.
xii IBM Tivoli Directory Server for z/OS

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv IBM Tivoli Directory Server for z/OS

Part 1 Overview

In this part we introduce the IBM Tivoli Directory Server for z/OS and provide planning
information.

Part 1
© Copyright IBM Corp. 2011. All rights reserved. 1

2 IBM Tivoli Directory Server for z/OS

Chapter 1. Tivoli Directory Server for z/OS

This chapter introduces IBM Tivoli Directory Server for z/OS, a powerful and authoritative
enterprise directory infrastructure that is a critical enabler for enterprise security. It provides
robust and advanced LDAP services using TCP/IP, and the directory is based on a
client/server model that can be exploited from any LDAP-compliant client applications or
middleware. Directory data can be stored in either z/OS UNIX files or in DB2 tables for a
highly scalable implementation.

This chapter will discuss the basic structure of LDAP directory content and will also touch on
the architecture of IBM Tivoli Directory Server for z/OS server deployments ranging from
basic single-server to more complex parallel sysplex and advanced replication architectures.
The chapter will provide a basic understanding and reference point for these architectures
before getting into the configuration details.

1

© Copyright IBM Corp. 2011. All rights reserved. 3

1.1 z/OS LDAP - features

The z/OS Lightweight Directory Access Protocol server is a part of the IBM Tivoli Directory
Server for z/OS that can provide LDAP services for z/OS and non-z/OS hosted applications. It
supports role based and fine-grained access control, and allows for delegated ownership of
entries. Its features include:

� The dsconfig utility and CDBM back end to make the configuration process easier.
� Multiple concurrent database instances known as back ends that allow a single z/OS

LDAP server to respond to requests from many logically separate portions of the LDAP
tree.

� Hosting to any security data made available by TCP/IP and the LDAP directory, providing
a network-accessible data repository accessible by other LDAP implementations.

� The optional use of RACF® to provide remote security services using LDAP protocols to
software components that are not usually compatible or interoperable with RACF.

� Ability to securely encrypt the values stored within the directory using the latest encryption
algorithms to protect directory data

� Encryption of data to and from LDAP clients using the z/OS Cryptographic Services
System SSL. The LDAP server supports the Start TLS extended operation to switch a
non-secure connection to a secure connection.

� Support for PKCS#11 hardware key storage and cryptographic acceleration
� Simple, CRAM-MD5, DIGEST-MD5, Kerberos (GSSAPI), and SASL EXTERNAL

authentication
� Auditing capabilities through the GDBM change log back end and optionally the ICTX

plug-in to cut SMF records
� Robust replication to enhance performance and offer flexible deployment options
� Filtered ACLs to provide greater flexibility in setting up authorisation within IBM Tivoli

Directory Server.

1.2 IBM Tivoli Directory Server for z/OS

A directory is used to organize and store data that is expected to be read much more
frequently than it is updated. A common example of a directory is a phone book, where
information such as names and phone numbers are stored for residents of a specific location.
Without a phone book, this information would likely be unorganized and difficult to access.

LDAP is based on the distributed client/server model and defines a standard method for
accessing and updating directory information. The information is stored in a repository that is
accessed and updated by the server based on client requests. Client requests are typically
initiated from a user or application, such as an employee searching an employee directory, or
an ATM's software verifying a PIN number for a transaction.

The IBM Tivoli Directory Server for z/OS deliverable that ships with the base of z/OS provides
a Version 3 LDAP client and server. The z/OS LDAP client contains C APIs and command line
utilities used to add, delete, modify, rename, compare, and search entries in an LDAP
directory. The z/OS LDAP server is used to manage directory entries.

IBM Tivoli Directory Server for z/OS LDAP directory servers can range in complexity from
small single-server deployments to larger and more complex multi-server deployments where
data can be replicated among multiple servers and networks for increased availability,
reliability, and performance.
4 IBM Tivoli Directory Server for z/OS

1.3 Directory Architecture

An LDAP directory consists of a set of objects, otherwise known as entries, arranged in a
hierarchical fashion to form a directory information tree (DIT). The entries are arranged such
that high-level entries represent the entries that fall below them. An entry typically describes a
person, place, or thing, and consists of a collection of attributes. Each attribute has a type and
one or more values. In the case of a person, the attributes that describe the person could be
the person's common name (using the cn attribute type) and telephone number (using the
telephoneNumber attribute type).

Each entry has a name that is called a distinguished name (DN), which is unique among all
other entries in the directory. A DN is formed by taking the name of the entry itself, called the
relative distinguished name (RDN®) and concatenating the names of its ancestor entries. For
example, the entry for Barb Lee in the diagram in Figure 1-1 has an RDN of cn=Barb Lee and
a DN of cn=Barb Lee, o=IBM, c=US. The unique DN allows users to refer to a specific entry
using its DN.

Figure 1-1 shows the structure of entries and attributes within a sample LDAP DIT.

Figure 1-1 Sample LDAP directory information tree

1.4 Server Architectures

The IBM Tivoli Directory Server for z/OS LDAP server can be configured to run in one of a
number of operational modes:

� Single-server mode: A single LDAP server running on a system.

� Multiple single-server mode: Multiple LDAP servers running individually on the same
system.

� Multi-server mode: Multiple LDAP servers running together in a parallel sysplex.

LDAP Directory Content

root

Attribute

Attribute

Entry

Attribute

Attribute

Attribute

Attribute

Type Value

Value

Value

c=US c=US

o=Tivoli o=IBM

cn=Bob Jonescn=Jo Smithcn=Barb Lee
Chapter 1. Tivoli Directory Server for z/OS 5

In all of these operational modes, the server can perform basic or advanced replication.
However, each server in multiple single-server operational mode must have its own separate
set of replica servers, whereas each server in multi-server operational mode must have the
same set of replica servers.

Advanced replication allows multiple LDAP servers to synchronize their data. Specific
subtrees within the directory can be selected to participate in an advanced replication
topology. These subtrees can be designated with roles such as a supplier or a consumer.
Replication topology choices can be combined to serve many directory architectures,
allowing flexibility in architecting solutions that enable data redundancy, server availability,
and scalability requirements. The following four advanced replication topologies can be
deployed with IBM Tivoli Directory Server for z/OS LDAP servers:

� Master-replica replication: Provides a read-only backup of replicated subtrees and
reduces search workload.

� Forwarding replication: Relieves replication workload from master servers in a network
containing many widely-distributed replicas and reduces search workload.

� Peer-to-peer replication: Provides a local server for handling updates in a widely
distributed topology, and also provides a backup master server that can take over if
necessary.

� Gateway replication: Primarily used to reduce network traffic for a widely distributed
topology.

1.4.1 Single-Server

The single-server IBM Tivoli Directory Server for z/OS architecture forms the foundation for all
other architectures that can be deployed with IBM Tivoli Directory Server for z/OS.

The LDAP server can be configured to use one or more of a number of back end data stores:

� SDBM: The SDBM back end provides remote LDAP access to user, group, connection,
and general resource profile information stored in RACF.

� LDBM: The LDBM back end provides a file-based back end to store directory information
in a UNIX System Services file system. LDBM is a general-purpose back end that can
store any type of directory information.

� Schema: The directory schema back end contains a set of rules and constraints
concerning directory information tree structure, object class definitions, attribute types,
and syntaxes that characterize the directory information base (DIB).

� CDBM: The CDBM back end stores configuration information, such as for advanced
replication and password policy. CDBM is file-based, storing its directory information in a
UNIX System Services file system.

� GDBM: The GDBM back end manages change log entries created as a result of changes
to the LDAP schema or to entries in other back ends, including RACF entries. The change
log entries can be kept in UNIX System Services files or in a DB2 database.

� TDBM: The TDBM back end provides a DB2-based back end to store directory
information. TDBM is a general-purpose back end that can store any type of directory
information.

� Plug-in: A plug-in is a software module that augments the functionality of the IBM Tivoli
Directory Server for z/OS LDAP server. For example, a client operation plug-in can be
written to handle specific client operation requests rather than allowing a configured
database back end to handle the requests.
6 IBM Tivoli Directory Server for z/OS

In a single-server operational mode, only a single instance of the LDAP server can use a
given TDBM, LDBM, CDBM, or GDBM database to store directory data.

In multiple single-server operational mode, two or more LDAP servers can run in
single-server mode on the same system, each with separate TDBM, LDBM, CDBM, or GDBM
back ends.

Figure 1-2 shows an LDAP client connecting to a IBM Tivoli Directory Server for z/OS LDAP
server running in single-server mode with all of the aforementioned back ends configured.

Figure 1-2 Single-server IBM Tivoli Directory Server with back ends configured

The LDAP server configuration file (ds.conf) contains configuration options that are read once
when the LDAP server is started. There are also a number of environment variables that are
processed by the LDAP server and utilities. The majority of these can be specified in the
LDAP server environment variables file (ds.envvars).

The LDAP server runs as a daemon. In other words, when the server is started, the process
runs unattended waiting for client requests to come in, and performs services based on those
client requests.

The LDAP client connects to the LDAP server over TCP/IP, using an LDAP API and requests
an operation. The most frequently used LDAP operation is a search of the directory. The
server then attempts to perform the operation and responds with the results of the request

DB2

IBM TDS for z/OS

RACF

USS

TCP/IP
stack

slapd
daemon

Optional

SSL

z/OS

LDAP
client

z/OS LDAP API

for C/C++ and Client Utilities

LDAP
V3

Security
Server

Directory
(RACF DB)

SDBM

TDBM

General Purpose
Directory (DB2)

GDBM

Change Log
Directory

(USS or DB2)

ds.envvars
(USS or
dataset)

ds.conf
(USS or
dataset)

LDBM

General Purpose
Directory (USS file)

Directory Schema
(USS file)

CDBM

SSL Key
DB or RACF

keyring

NetworkNetwork

LDAP server
LDAP client

Schema
Configuration

Directory (USS file)

Activity Log
(USS or
dataset)

SMF Audit
Log

Plug-in

User-Defined
Backend
Chapter 1. Tivoli Directory Server for z/OS 7

processing, or with a reference to another LDAP server where the application can get the
data it has requested.

LDAP client requests can be performed using an anonymous identity or the LDAP bind
operation can be used to supply an authentication identity. This authentication process can be
used by distributed applications that need to implement authentication. The LDAP server can
then use the identity to perform authorization checking when accessing entries in the
directory.

An Access Control List (ACL) protects information stored in an LDAP directory. An ACL is
used to restrict access to portions of the directory, to specific directory entries, or to specific
attributes within an entry. Access control can be specified for individual users, groups, and
even specific bind or entry access information such as the client's IP address or entry access
time of day.

LDAP has the ability to protect LDAP access with Secure Sockets Layer (SSL) and Transport
Layer Security (TLS), which use public-key infrastructure (PKI) algorithms to establish and
maintain encrypted communication between a client and server. In order for the LDAP client
to communicate with an LDAP server over an SSL/TLS-protected TCP/IP socket connection,
the LDAP server must transmit a certificate to the LDAP client and, optionally, the client can
transmit its certificate to the LDAP server.

The LDAP client and server verify the certificates sent to them by using public-key digital
signatures, by which they take a certificate and compare the digital signature in the certificate
with a signature they compute based on having the public-key of the signer of the certificate.
To do this, the LDAP client and server must have the public-key of the signer of the certificate,
which is stored in a key database, RACF key ring, or a PKCS #11 token. The same
repositories are used to store the certificates that the client or server will transmit to each
other during the startup of the SSL/TLS-protected communications.

The LDAP server can log client activity in an activity log file. This file can be referenced and
analyzed to understand the client operations that have been handled by the server. The type
of information contained in an activity log includes: operation type, client IP address, server
messages, and activity summary statistics.

The LDAP server can generate SMF type-83 subtype 3 audit records. The audit records
contain information provided on LDAP client operation requests, and can be configured to
write audit records when an operation successfully completes, fails, or for both cases. These
audit records can be unloaded using the RACF SMF data Unload utility for further analysis by
auditing tools.

The functionality of the LDAP server can be augmented by user-written software plug-ins.
When a client request is received by the LDAP server, the server initially attempts to call a
configured database back end to process the request. If a matching database back end is not
found, the LDAP server attempts to call a configured plug-in to process the request. Plug-ins
can be designed to execute at one of three points of client request processing:

� Before a client request is processed
� To handle the actual request processing
� After a client request completes

1.4.2 Multi-Server (Sysplex)

In multi-server operational mode, multiple concurrent instances of the LDAP server use the
same TDBM, LDBM, CDBM, or GDBM database to store directory data. The LDAP servers
can run on the same host system, or on separate host systems. In both cases, the z/OS
8 IBM Tivoli Directory Server for z/OS

systems are connected in a parallel sysplex, and use XCF (Cross-system coupling facility)
messaging to facilitate communication between the LDAP servers.

Multi-server mode is intended for use in an environment where high transactional volume is
common, or where maximum availability is required. This mode provides benefits of improved
reliability, availability, performance, and resource utilization. These benefits are achieved by
enabling concurrent running of multiple servers that are functionally equivalent and that
provide access to the same LDAP directory data.

The LDAP server provides Workload Manager (WLM) support, allowing an installation to set
performance goals for work within the LDAP server. The work load manager will perform load
balancing by routing requests to each of the servers in a sysplex group so that work is shared
across each of the servers in the sysplex. If more capacity is required, another server can be
brought up. If one of the LDAP servers in the sysplex goes down, WLM will route requests to
the remaining servers. The servers can also be configured to automatically restart on failure
(ARM support).

In Figure 1-3, a client connects to a IBM Tivoli Directory Server for z/OS server running in
multi-server mode.

Figure 1-3 Multi-server mode

Updates to one server are communicated to all other servers through the cross-system
coupling facility (XCF). This enables all servers to know about the updates.

LDAP
Server 2

IBM TDS for z/OS Sysplex

LDAP
Server 1
(owner)

DB2

USS

XCF (messaging support)

cache
cache

TDBM

GDBM

TDBM

GDBM

directory

Schema Schema Schema
Entry

USS

WLM / VIPAWLM / VIPA

LDAP client

Schema
Entry

directory

LDBM and file
based GDBM

work the
same
Chapter 1. Tivoli Directory Server for z/OS 9

In multi-server mode, each LDAP server will keep its own copy of the shared TDBM back end
in caches, and each server writes to the TDBM back end because of DB2 data sharing. After
a server updates the TDBM back end, it will notify all other servers of the change using XCF.
The behavior of DB2-based GDBM is similar to that of TDBM.

UNIX System Services based back end files (schema, LDBM, CDBM, and file-based GDBM)
can also be shared among servers in multi-server mode. However, only the sysplex owner
can write to these back ends. Non-sysplex owner servers maintain in-memory copies of the
UNIX System Services based files and directories. If changes are directed to a non-sysplex
owner, that server uses XCF to forward the change to the sysplex owner. The owner then
makes the change in memory and in the back end, and broadcasts the change to the other
servers using XCF. The other servers then update their directory in memory. Note that all
servers must point to, and have access to, the same back end location in a shared file
system. If the sysplex owner goes offline, another LDAP server in the sysplex group will
become the owner.

1.4.3 Master-Replica Replication

The most basic advanced replication topology is a master-server replication (otherwise
known as supplier-consumer). The master is a writable server, meaning that it is able to
receive updates from clients. One or more subtrees within the master server are designated
to participate in replication. The replicated data could be the entire directory or just a small
subtree of the directory. The read-only replica server contains a copy of the subtree that is
replicated from the master server. The master-replica topology enables data redundancy by
providing read-only backups of selected subtrees, and can reduce search workloads that can
now be targeted at any server in the topology.

A master server can have several replicas, with each replica containing either a copy of the
master's entire directory, or just a subtree of the directory. A replication context identifies the
portion of the DIT that is to be replicated from one server to another.
10 IBM Tivoli Directory Server for z/OS

Figure 1-4 shows a sample Master-Replica topology.

Figure 1-4 Master-Replica topology

In the diagram shown in Figure 1-4, the following three replication contexts are in effect:

� o=sample
� ou=austin,o=sample
� ou=group,o=sample

The server labeled Replica 2 contains a copy of the entire Master Server directory. The
servers labeled Replica 1 and Replica 3 each contain a copy of separate subtrees from the
Master Server's directory.

The flow begins as the client requests a modify of the telephonenumber attribute for cn=Joe,
ou=austin, o=sample. The update is directed to the Master Server because it is the only
writable server in the topology. If the update were directed to one of the read-only Replica
servers, they would refer the client to the Master Server. The Master Server queues the
update along with any other pending updates within its replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree, all queued
modifications, including that for cn=Joe, ou=austin, o=sample, will then be replicated to
Replica 1. Note that the replication of subtree ou=austin, o=sample does not cause
replication to the Replica 2 server. The update for cn=Joe, ou=austin, o=sample, would be
replicated to Replica 2 when replication is designated to occur for the o=sample subtree.

IBM TDS for z/OS Advanced Replication (Master-Replica)

Master Server (supplier)

Replication
Engine

LDAP client
NetworkNetwork

dn: cn=Joe, ou=austin, o=sample

changetype: modify

replace: telephonenumber

telephonenumber: 111-222-3333

Replica 3 (consumer)

Replication
Engine

ou=group,o=sample

Replica 2 (consumer)

Replication
Engine

o=sample

Replica 1 (consumer)

Replication
Engine

ou=austin,o=sample

o=sample
ou=austin,o=sample
ou=group,o=sample

NetworkNetwork

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333
Chapter 1. Tivoli Directory Server for z/OS 11

1.4.4 Forwarding (Cascading) Replication

Forwarding (cascading) replication is an advanced replication topology that consists of
multiple tiers of LDAP servers. A master server replicates to a set of read-only forwarding
servers that in turn replicate to other servers. A forwarding topology enables off-loading of
replication work from the master server, for example in a network containing many widely
distributed replicas. A forwarding topology can also enable reduced search workload because
searches can be targeted at any server in the topology.

Figure 1-5 shows a sample Forwarding topology.

Figure 1-5 Forwarding topology

In this case, the master server is a supplier to the two forwarding servers. The forwarding
servers serve as consumers of the master server and suppliers to the replica servers that are
associated with them. The replica servers serve as consumers of their respective forwarding
servers.

The following three replication contexts are in effect for the server labeled Master Server:

� o=sample
� ou=austin,o=sample
� ou=group,o=sample

IBM TDS for z/OS Advanced Replication (Forwarding)

Forwarding Server 1
(consumer/supplier)

Replication
Engine

LDAP client NetworkNetwork

dn: cn=Joe, ou=austin, o=sample

changetype: modify

replace: telephonenumber

telephonenumber: 111-222-3333

Replica 3 (consumer)

Replication
Engine

o=sample

Replica 2 (consumer)

Replication
Engine

o=sample

Replica 1 (consumer)

Replication
Engine

ou=austin,o=sample

o=sample
ou=austin,o=sample

Replica 4 (consumer)

Replication
Engine

ou=group,o=sample

Forwarding Server 2
(consumer/supplier)

Replication
Engine

o=sample
ou=group,o=sample

Network

Master Server (supplier)

Replication
Engine

o=sample
ou=austin,o=sample
ou=group,o=sample

Network

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333
12 IBM Tivoli Directory Server for z/OS

The following two replication contexts are in effect for the server labeled Forwarding Server 1:

� o=sample
� ou=austin,o=sample

The following two replication contexts are in effect for the server labeled Forwarding Server 2:

� o=sample
� ou=group,o=sample

The flow begins as the client requests a modification of the telephonenumber attribute for
cn=Joe, ou=austin, o=sample. The update is directed to the Master Server because it is the
only writable server in the topology. If the update were directed to one of the forwarding or
replica servers, they would refer the client to the Master Server. The Master Server queues
the update along with any other pending updates within its replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree of the Master
Server, all queued modifications, including that for cn=Joe, ou=austin, o=sample, will then be
replicated to Forwarding Server 1. Forwarding Server 1 then queues the updates along with
other pending updates within its replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree of Forwarding
Server 1, all queued modifications, including that for cn=Joe, ou=austin, o=sample, will then
be replicated to Replica Server 1.

1.4.5 Peer-to-Peer Replication

Peer-to-peer replication allows for several servers to act as master servers, with each master
responsible for updating other master servers and replica servers. Peer-to-peer replication
allows for performance improvements by providing a local server to handle updates in a
widely distributed network. Availability and reliability are also improved by providing a backup
master server that can take over immediately if the primary master fails. This topology can
also help reduce the search workload as clients can send search requests to all the servers.
Chapter 1. Tivoli Directory Server for z/OS 13

Figure 1-6 shows a sample Peer-to-Peer topology.

Figure 1-6 Peer-to-peer topology

The servers labeled Master Server 1 and Master Server 2 are the peer master servers. Peer
master servers only replicate client changes that were originally requested of them. They do
not replicate updates received from other peer master servers. Peer master servers must
connect to all other consumers in the topology to ensure the consumers receive all client
updates.

The following three replication contexts are in effect for the servers labeled Master Server 1
and Master Server 2:

� o=sample
� ou=austin,o=sample
� ou=group,o=sample

The flow begins as one client requests a modify of the telephonenumber attribute for cn=Joe,
ou=austin, o=sample on Master Server 1. Master Server 1 queues the update along with any
other pending updates within its replication engine.

Another client requests a modify of the telephonenumber attribute for cn=Bob, ou=austin,
o=sample on Master Server 2. Master Server 2 queues the update along with any other
pending updates within its replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree on Master
Server 2, all queued modifications, including that for cn=Bob, ou=austin, o=sample, will then
be replicated to both Master Server 1 and Replica 1.

IBM TDS for z/OS Advanced Replication (Peer-to-peer)

Master Server 1 (supplier)

Replication
Engine

LDAP client NetworkNetwork

dn: cn=Joe, ou=austin, o=sample

changetype: modify

replace: telephonenumber

telephonenumber: 111-222-3333

Replica 3 (consumer)

Replication
Engine

o=sample

Replica 2 (consumer)

Replication
Engine

o=sample

Replica 1 (consumer)

Replication
Engine

ou=austin,o=sample

Replica 4 (consumer)

Replication
Engine

ou=group,o=sample

Master Server 2 (supplier)

Replication
EngineNetworkNetwork

LDAP client

Network
Network

dn: cn=Bob, ou=austin, o=sample

changetype: modify

replace: telephonenumber

telephonenumber: 444-555-6666

o=sample
ou=austin,o=sample
ou=group,o=sample

o=sample
ou=austin,o=sample
ou=group,o=sample

NetworkNetwork

cn=Bob

telephonenumber

444-555-6666

cn=Bob

cn=Joe

cn=Joe

cn=Bob

cn=Joe

telephonenumber

111-222-3333

telephonenumber

111-222-3333

telephonenumber

555-666-7777

telephonenumber

111-222-3333

telephonenumber

555-666-7777
14 IBM Tivoli Directory Server for z/OS

When replication is designated to occur for the ou=austin, o=sample subtree on Master
Server 1, all queued modifications, including that for cn=Joe, ou=austin, o=sample, will then
be replicated to both Master Server 2 and Replica 1.

1.4.6 Gateway Replication

Gateway replication uses gateway servers to collect and distribute replication information
across the replication sites of a replicating network. The primary use of a gateway replication
is to reduce network traffic. A replication site consists of a gateway server and any master,
peer, or replica servers configured to replicate together.

A gateway server is a writable master server that acts as a peer server within its replication
site. In other words, it can receive and replicate client updates and updates from the other
peer-master servers within its replication site.

Within the gateway network, the gateway server acts as a two-way forwarding server. In one
direction, the peers in its replication site act as the suppliers to the gateway server and the
other gateway servers are its consumers. In the other direction, other gateway servers act as
suppliers to the gateway server and the servers within its own replication site act as
consumers. Note that when a gateway server receives updates from another gateway server,
it will only replicate those updates to servers within its own replication site.

Figure 1-7 shows a sample gateway topology consisting of four replication sites.

Figure 1-7 Gateway topology

IBM TDS for z/OS Advanced Replication (Gateway)

LDAP client Network
Network

dn: cn=Joe, ou=austin, o=sample

changetype: modify

replace: telephonenumber

telephonenumber: 111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333

cn=Joe

telephonenumber

111-222-3333
Chapter 1. Tivoli Directory Server for z/OS 15

The replication contexts that are in effect for the Gateway Servers labeled G1-G4 and the
Peer Servers labeled P1-P5 are as follows:

� o=sample
� ou=austin,o=sample
� ou=poughkeepise,o=sample
� ou=raleigh,o=sample
� ou=rochester,o=sample

The Replica Servers labeled R1-R4 contain the following subtrees:

� R1: ou=poughkeepise,o=sample
� R2: ou=austin,o=sample
� R3: ou=raleigh,o=sample
� R4: ou=rochester,o=sample

The flow begins when a client requests a modify of the telephonenumber attribute for cn=Joe,
ou=austin, o=sample on Peer Server P2. Peer Server P2 queues the update along with any
other pending updates within its replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree on Peer Server
P2, all queued modifications will be replicated to Peer Server P1 and Gateway Server G1.
Gateway Server G1 queues the update along with any other pending updates within its
replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree on Gateway
Server G1, all queued modifications will be replicated to Gateway Servers G2, G3, and G4.
Gateway Server G2 queues the update along with any other pending updates within its
replication engine.

When replication is designated to occur for the ou=austin, o=sample subtree on Gateway
Server G2, all queued modifications will be replicated to Peer Server P4 and Replica Server
R2. Note that Gateway Server G2 only replicates the change throughout its site, and does not
replicate the change to other gateway servers.

When replication is designated to occur for the ou=austin, o=sample subtree on Gateway
Servers G3 and G4, all queued modifications will be replicated to Peer Server P3 and Peer
Server P5, respectively.

1.4.7 Remote security services using the z/OS LDAP server

RACF can provide remote security services to applications that are requested using the
LDAP protocols. They require that IBM Tivoli Directory Server be active on the z/OS that
hosts the RACF instance, and the SDBM back end and the ICTX plug-in to be configured.The
following services are made available by RACF on z/OS to off-z/OS applications:

� Remote authorization
� Remote auditing
� Remote identity cache.

Note: The LDAP client must support extended operations (EXOP) and Distinguished
encoding rules (DER) in order for the LDAP client to connect to a remote application
16 IBM Tivoli Directory Server for z/OS

Figure 1-8 Administering RACF users and groups with LDAP

1.4.8 Further Information

For more information about configuring and deploying any of the IBM Tivoli Directory Server
for z/OS solutions discussed in this chapter, see:

– z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05

z/OS TDS
client

TCP/IP
stack

z/OS TDS
Server

config

SDBM RACF
Schema

RACF
Data
base

z/OS

z/OS UNIX

SSL/TLS
Chapter 1. Tivoli Directory Server for z/OS 17

18 IBM Tivoli Directory Server for z/OS

Chapter 2. Planning

This chapter provides planning information for deploying IBM Tivoli Directory Server for z/OS.

2

© Copyright IBM Corp. 2011. All rights reserved. 19

2.1 Planning and Considerations

Before deploying IBM Tivoli Directory Server for z/OS in your IT system environment, there
are things to consider before you configure it and start fully using it. By considering these
things up front, it is less likely you will have to do extensive changes after the LDAP server is
already in production. This chapter discusses what needs to be considered before configuring
and deploying IBM Tivoli Directory Server for z/OS.

2.2 Where to store your data

IBM Tivoli Directory Server for z/OS has several backing stores or back ends where data can
reside. The supported back ends are:

� LDBM is a file-based back end where the data resides in files stored in a z/OS UNIX
System Services file system, such as zFS. This back end is a general purpose back end
that allows user-customizable data (as long as it adheres to the LDAP server's current
schema) to be stored in the directory. The LDBM back end is meant for no more than
250,000 entries while running in 31-bit mode, and no more than 500,000 entries while
running in 64-bit mode. Multiple LDBM back ends are allowed to be configured in IBM
Tivoli Directory Server for z/OS.

� TDBM is a DB2-based back end where the data resides in DB2 tables. Like the LDBM
back end, the TDBM back end is a general purpose back end where any user
customizable data is allowed to be stored in the directory. Multiple TDBM back ends can
be configured.

� SDBM is a back end that interfaces directly with the RACF database and allows access to
RACF users, groups, user-group connections, general resource profiles, and SETROPTS
system settings affecting RACF general resource classes. This back end provides a RACF
administrator the ability to remotely manage RACF data using the LDAP protocol.

� GDBM is a file-based or DB2-based back end that logs updates made to other back ends
and in RACF. This back end is also commonly referred to as the changelog back end.

� CDBM is a specialized file-based back end that stores configuration-related entries for the
advanced replication (z/OS V1R11) and password policy (z/OS V1R12) features in the
LDAP server. See 1.4, “Server Architectures” on page 5 and 5.6, “Password Policy” on
page 127 for more information about these features.

� EXOP (extended operations) is a special back end that is used to access data in z/OS
Policy Director. The extended operations back end supports two extended operations,
GetDnForUserid and GetDNForPrivileges, for use with z/OS Policy Director.

� Plug-ins extend the existing function of the LDAP server. There are three types of plug-ins
supported in IBM Tivoli Directory Server for z/OS: pre-operation, post-operation, and
client-operation.

See Chapter 3, “Back ends” on page 29 and Chapter 7, “Plug-ins” on page 155 for more
detailed information about these back ends and plug-ins.

2.3 Required products

This section discusses the required products that are necessary for running the IBM Tivoli
Directory Server for z/OS:
20 IBM Tivoli Directory Server for z/OS

� z/OS UNIX System Services file system: A z/OS UNIX System Services file system is
needed to store the schema back end. When IBM Tivoli Directory Server for z/OS is
started for the first time, the initial or minimum schema is created in the directory specified
by the schemaPath configuration option or in /var/ldap/schema if the schemaPath
configuration option is not specified. Generally, change the default directory to one that
uses a separately mounted file system. The minimum schema allows the SDBM, GDBM,
and CDBM back ends to be used without any additional modifications.

See Chapter 4, “Schemas” on page 73 for more information about the schema.

� WLM (Workload Manager): WLM must be configured and installed to allow the IBM Tivoli
Directory Server for z/OS on V1R11 or later to run. WLM allows performance goals to be
set for work within the LDAP server. By default, all LDAP server work goes to the
GENERAL transaction name, which might need to be further tuned in your environment.
See Chapter 8, “Workload Management” on page 167 for more information about tuning
and configuring WLM for use with the LDAP server.

2.3.1 Optional products

This section discusses the optional products that might need to be installed or configured on
your system based on the features that you are planning on using in the IBM Tivoli Directory
Server for z/OS.

� TDBM or DB2-based GDBM back ends: DB2 and ODBC must be installed and configured
to use the TDBM and DB2-based GDBM back ends to be usable. See z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05 for more
information about installing and configuring DB2 and ODBC.

� SDBM back end: RACF (Resource Access Control Facility) must be installed to allow the
use of the SDBM back end. The RACF Subsystem function of RACF must be defined and
activated to allow the LDAP server to communicate with RACF through the SDBM back
end. See z/OS V1R12.0 Security Server RACF System Programmer's Guide, SA22-7861
for more information.

� LDBM, GDBM (file-based), or CDBM back ends: A z/OS UNIX System Services file
system is needed for each configured LDBM, GDBM (file-based), and CDBM back end.
The location of the file-based back ends is controlled by the databaseDirectory
configuration option in the back end specific section of the configuration file. Generally,
use a separately mounted file system when configuring a file-based back end.

� Secure communications: The z/OS Cryptographic Services System SSL must be installed
to use secure communications between your LDAP client applications and IBM Tivoli
Directory Server for z/OS. See z/OS V1R12.0 System SSL Programming, SC24-5901 for
more information about installing System SSL.

See 5.8, “SSL/TLS” on page 133 for more information about configuring IBM Tivoli
Directory Server for z/OS to use SAF key rings, SSL key database files, or PKCS#11
tokens to store your SSL certificates.

� AES and DES encryption: IBM Tivoli Directory Server for z/OS supports using ICSF
(Integrated Cryptographic Security Facility) for the AES and DES encryption of sensitive
attribute values, such as userPassword, secretKey, replicaCredentials,
ibm-replicaKeyPwd, and ibm-slapdMasterPw, in the LDBM, TDBM, and CDBM back ends.
The AES or DES keys used by the LDAP server can be stored in the ICSF CKDS
(Cryptographic Key Data Set) with the KGUP program. See 5.7, “Encryption and Hashing”
on page 132 for more information about using the ICSF KGUP program.

� Kerberos authentication: IBM Tivoli Directory Server for z/OS allows users to authenticate
to the directory using Kerberos authentication with the z/OS Integrated Security Services
Network Authentication Service product that provides the IBM implementation of Kerberos
Chapter 2. Planning 21

V5. See V1R12.0 Network Authentication Service Administration, SC24-5926 for more
information about installing and configuring Kerberos.

IBM Tivoli Directory Server for z/OS supports running in single-server or multi-server
operating modes. If IBM Tivoli Directory Server for z/OS is configured to run in multi-server
mode, parallel sysplex must be available and the schema back end must be shared among all
LDAP servers in the sysplex. See 1.2, “IBM Tivoli Directory Server for z/OS” on page 4 for
more information.

2.4 Configuring IBM Tivoli Directory Server for z/OS

IBM Tivoli Directory Server for z/OS provides the dsconfig utility to help simplify the
configuration of your own LDAP server. Before running the dsconfig utility, there are several
additional features that should be considered before configuring your LDAP server:

� Where and how to store user passwords
� Advanced replication
� Password policy
� Activity and audit logging

2.4.1 Where and how to store user passwords?

If you have decided to configure an LDBM or TDBM back end, you have two choices for your
user's passwords:

1. The userPassword attribute value of the user entries in the back end.

2. If there are already users and passwords defined in the z/OS Security Manager (e.g.
RACF), the LDBM, TDBM, or CDBM back end can use these existing users and
passwords without introducing another password repository. This is called native
authentication because the underlying z/OS Security Manager does the password
verification for the specified user and password when authenticating to the directory.

If you have decided to use the existing users and passwords already defined in the z/OS
Security Manager, make certain to fill out the native authentication section in the dsconfig
profile files. See 5.3, “Native authentication” on page 104 for more information.

If the passwords are to be stored in the entry's userPassword attribute value, there are several
encryption or hashing methods that are available to protect the passwords in the directory:

� AES (Advanced Encryption Standard)
� DES (Data Encryption Standard)
� SHA (SHA-1)
� SSHA (Salted SHA-1 – only supported in z/OS V1R12 and later)
� crypt
� md5

SHA, SSHA, crypt, and md5 are one-way hashing algorithms whereas AES and DES are
two-way encryption algorithms. AES and DES keys can be stored in the ICSF CKDS.
However, the dsconfig utility does not generate these keys. See 5.7, “Encryption and
Hashing” on page 132 for more information about AES and DES keys, and the encryption and
hashing algorithms.
22 IBM Tivoli Directory Server for z/OS

2.4.2 Configuring for advanced replication and LDAP password policy

In z/OS V1R11, IBM Tivoli Directory Server for z/OS added support for advanced replication
that allows separate replication topologies to be configured. This feature requires that the
CDBM back end be configured. When using the dsconfig utility, the
CDBM_USEADVANCEDREPLICATION parameter in the ds.profile must be set to on and
the SERVERCOMPATLEVEL in the ds.slapd.profile must be 5 or greater. See 1.4, “Server
Architectures” on page 5 for information about the supported advanced replication topologies.

In z/OS V1R12, IBM Tivoli Directory Server for z/OS introduced the LDAP password policy,
which enforces an organization's password policy when passwords are stored in the
userPassword attribute value. This feature requires that the CDBM back end be configured.
When using the dsconfig utility, the USEPASSWORDPOLICY parameter in the ds.profile
must be set to on and the SERVERCOMPATLEVEL in the ds.slapd.profile must be 6 or
greater. See 5.6, “Password Policy” on page 127 for information about how to set up
password policies in the IBM Tivoli Directory Server for z/OS.

2.4.3 Activity and audit logging

IBM Tivoli Directory Server for z/OS supports activity and audit logging of LDAP client
operations in the LDAP server, which enables an LDAP administrator to keep a log of all
connections to the LDAP server.

If planning on using the activity logging support in IBM Tivoli Directory Server for z/OS, verify
that there is enough space to store the activity log for the LDAP client operations. The activity
log can be stored in a partitioned dataset, sequential dataset, or a file in a z/OS UNIX System
Services file system. In z/OS V1R12, automatic activity log archiving or rollover support was
added that provides the ability to archive the current activity log file in a separate location (e.g.
z/OS UNIX System Services directory) for load analysis and to help manage the size of the
log file. Again, verify that there is enough space in this other location for storing these
archived activity log files. See 13.3, “Using activity logging” on page 282 for more information
about the features of the activity log support.

The audit log provides granular controls for the type of LDAP client activity (adds, searches,
modifies, and so on) that should be audited in the server. The audit log can be configured to
only log successful operations, error operations, or both. See 13.5, “Audit logging” on
page 285 for more information about auditing.

2.4.4 Using the dsconfig utility

After deciding which back ends to configure or features to enable in your LDAP server, you
are now probably ready to configure your own LDAP server. To help simplify the configuration
of your own LDAP server, the dsconfig utility is provided. The dsconfig utility has a number of
input files (ds.profile, ds.slapd.profile, ds.racf.profile, and ds.db2.profile) that

Note: If you are planning on having users bind or authenticate to the directory using the
CRAM-MD5 or DIGEST-MD5 authentication mechanisms, the passwords must be
un-encrypted, and then AES or DES encrypted to allow these bind mechanisms to
properly work. See 5.2, “Authentication mechanisms supported by IBM Tivoli Directory
Server for z/OS” on page 92 for more information about the CRAM-MD5 and DIGEST-MD5
authentication mechanisms.
Chapter 2. Planning 23

require input from one or multiple administrators (LDAP, System, Security, and Database)
depending on the back ends or features that are to be enabled in your new LDAP server.

Figure 2-1 Output from the dsconfig utility

As illustrated in Figure 2-1, the output from the dsconfig utility generates JCL jobs,
configuration files, and the LDAP server started task procedure.

Before running the dsconfig utility and updating the input files, copy the ds.profile,
ds.slapd.profile, ds.racf.profile, and ds.db2.profile files from the /usr/lpp/ldap/etc
directory to another location so that the files can easily be modified. The main input
configuration file is ds.profile, and the ds.slapd.profile, ds.racf.profile, and
ds.db2.profile files are referred to as advanced configuration files. These input files have an
explanation of all required and optional parameters.

The ds.profile is the first file that must be updated because this profile specifies the
dsconfig output dataset, LDAP administrator, the LDAP administrator's password, the back
ends that are to be configured, the user ID that the LDAP server will run under, and the group
that the user ID belongs to. Most parameters in this file are required. The location of the other
profiles pointed to by the SLAPD_PROFILE, DB2_PROFILE, and RACF_PROFILE
parameters need to be updated to point to the new directory location.

SLAPD_PROFILE = /usr/lpp/ldap/etc/ds.slapd.profile
DB2_PROFILE = /usr/lpp/ldap/etc/ds.db2.profile
RACF_PROFILE = /usr/lpp/ldap/etc/ds.racf.profile

When the LDAP server is configured with the dsconfig utility, the LDAP server's user ID is
granted CONTROL access to the UNIXPRIV.FILESYS profile. This gives the LDAP server's
user ID super user authority to create the necessary files and directories required for the
schema, file-based GDBM back end, and CDBM back end.

Security
Administrator

ds.slapd.profile

ds.profile

ds.db2.profile

ds.racf.profile

LDAP
Administrator

System
Administrator

Database
Administrator

dsconfig

APF

PROGsuffix

System
Administrator

RACF

PRGMCTRL

Security
Administrator

DSCONFIG

PROG
(LDAPUSRID)

LDAP
Administrator

DSENVVAR

DBCLI

Database
Administrator

TDBSPUFI

GDBSPUFI

DSNAOINI
24 IBM Tivoli Directory Server for z/OS

If you do not want to grant the LDAP server's user ID this file system authority, then you must
verify the following:

1. If a value is specified for the SCHEMAPATH, GDBM_DATABASEDIRECTORY, or
LDBM_DATABASEDIRECTORY parameters, the LDAP server's user ID must have the
authority to create the directory if it does not exist. If the directory exists, the LDAP server's
user ID must have read and write authority to the directory to create the necessary files.

2. If a value is not specified for the SCHEMAPATH parameter, the LDAP server's user ID
must have the authority to create the /var/ldap/schema directory if it does not already
exist, and to read and write to that directory if it does already exist.

The ds.slapd.profile has sections (global, environment, SSL/TLS, Kerberos, plug-in, and
back ends), that are used as input to create the LDAP server configuration file (DSCONFIG)
and the LDAP environment variables file (DSENVVAR). Most parameters in this profile are
optional. However, if a configuration option needs something other than the default value, this
file should be updated. This file should also be studied to verify that the default values for the
LDAP server configuration file options are appropriate.

The ds.db2.profile is used by the DB2 administrator when configuring a DB2-based back
end (TDBM or GDBM). This file allows the DB2 administrator to update the sizes of the DB2
tables and indicate which DB2 buffer pools to use. The parameters in this input file are all
pre-filled in with default values that are useful for the majority of TDBM and GDBM back end
users. When the TDBM back end is configured, the DBCLI, TDBSPUFI, and DSNAOINI files
are created in the dsconfig output dataset. When the DB2-based GDBM back end is
configured, the DBCLI, GDBSPUF and DSNAOINI files are created in the dsconfig output
dataset.

The ds.racf.profile is used by the System administrator to set the LDAP server user ID's
UID value and the GID value for the group ID. This file is used as input for the creation of the
RACF job.

After updating the input files, run the dsconfig utility:

/usr/lpp/ldap/sbin/dsconfig -i ds.profile

The dsconfig utility generates the following members in the partitioned dataset specified by
the OUTPUT_DATASET parameter in ds.profile:

� APF: A JCL job that sets APF authorization on libraries used by the LDAP server.
� PROGsuffix: A job run to grant APF authorization to datasets and libraries used by the

LDAP server.
� DSCONFIG: The LDAP server configuration file.
� PROC (LDAPUSRID): Used to start the LDAP server as a started task. The name of the

LDAP server started task procedure is the name of the LDAP user ID specified on the
LDAPUSRID parameter in ds.profile.

� DSENVVAR: The LDAP server environment variables file.
� DBCLI: A JCL job that binds the CLI packages to DB2 and the DSNACLI plan.
� TDBSPUFI: A set of DB2 SQL statements, to be executed using the SPUFI tool, that

defines database tables for the TDBM back end.
� GDBSPUFI: A set of DB2 SQL statements, to be executed using the SPUFI tool, that

defines database tables for the DB2-based GDBM back end.
� DSNAOINI: The DB2 DSNAOINI initialization file.
� RACF: A JCL job that updates RACF to allow the LDAP server to run as a started task.
� PRGMCTRL: A JCL job that sets program control on libraries used by the LDAP server.
Chapter 2. Planning 25

Now it is time to copy the members from the dsconfig output dataset and submit any jobs
created:

1. Copy the LDAP server started task procedure to the target system's procedure library.

2. Copy PROGsuffix (where suffix is specified on the PROG_SUFFIX parameter in the
ds.profile file) to the target system's PARMLIB.

3. Submit the following generated JCL in the following order:

a. RACF

b. APF

c. DBCLI (when TDBM or DB2-based GDBM is configured)

d. PRGMCTRL

If TDBSPUFI and GDBSPUFI were generated, submit them in SPUFI to create the tables
for the TDBM or DB2-based GDBM back ends.

4. The LDAP server can now be started from the operator's console or SDSF:

– From the operator's console, type: s userid

– From SDSF, type: /s userid

Now your server should be started.

See “Configuring an LDAP server using the dsconfig utility” chapter in the z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05 for more information
about the dsconfig utility.
26 IBM Tivoli Directory Server for z/OS

Part 2 Concepts

In this part we discuss the concepts and features of the IBM Tivoli Directory Server for z/OS.

Part 2
© Copyright IBM Corp. 2011. All rights reserved. 27

28 IBM Tivoli Directory Server for z/OS

Chapter 3. Back ends

This chapter discusses IBM Tivoli Directory Server for z/OS back ends.

3

© Copyright IBM Corp. 2011. All rights reserved. 29

3.1 Back end overview

A back end is a part of the LDAP server that administers a set of directory entries. Back ends
differ in the type of directory entries they can store and where they store the entries.

IBM Tivoli Directory Server for z/OS provides a number of back ends, some of which are
general purpose and some of which are used for more specific purposes. Each back end is
described briefly below, with more details in the following sections of this chapter:

� TDBM: General purpose directory

– Full LDAP V3 support
– Data stored in DB2
– Full scalability
– Useful for medium to large directories

� LDBM: General purpose directory

– Full LDAP V3 support

– Data stored in z/OS UNIX System Services file system

– Useful for small to medium sized directories

� CDBM: Configuration directory

– Used to store dynamic configuration data

– Data stored in z/OS UNIX System Services file system

� SDBM: RACF users, groups, user-group connections, and general resource profiles

– Provides remote RACF administration and authentication

– Data stored in RACF database

– Fixed schema

– Limited search capability: limited number of search filters that are supported in the
SDBM back end (i.e. objectclass=*)

� GDBM: Change log directory

– Contains records of changes to other back ends and RACF

– Data stored in DB2 or z/OS UNIX System Services file system

– Similar to LDBM/TDBM, but restricted operations

� EXOP: Extended Operation directory

– Provides support for extended operations that retrieve z/OS Policy Director data

– Not required for any other extended operations

� Schema

– Single server-wide schema used by all back ends that simplifies administration of
server

Each of the IBM Tivoli Directory Server for z/OS back ends can exploit various features
provided by the LDAP server. Table 3-1 maps each back end to features that they can exploit:

Table 3-1 Back end table

Feature TDBM LDBM CDBM SDBM GDBM EXOP Schema

Advanced Replication x x x x
30 IBM Tivoli Directory Server for z/OS

The IBM Tivoli Directory Server for z/OS LDAP features that are listed in the table above are
each briefly described below:

� Advanced Replication: The LDAP server supports advanced replication of specified
subtrees in a TDBM, LDBM, or CDBM back end to other servers. Advanced replication
provides four types of server topologies for deploying an advanced replication
environment.

� Aliases: Alias support provides a means for a TDBM, LDBM, or CDBM directory entry to
point to another entry in the same directory.

� Attribute Encryption: The LDAP server supports encryption of the values of several critical
attributes to prevent unauthorized access to these attribute values in TDBM, LDBM, or
CDBM back ends. The following attributes can be encrypted using AES or DES:
secretKey, replicaCredentials, ibm-replicaKeyPwd, and ibm-slapdMasterPw. The
userPassword attribute can also be encrypted using AES, crypt, DES, MD5, SHA, and
Salted SHA (SSHA).

� Basic Replication: The LDAP server supports basic replication of TDBM and LDBM
directory data to other servers. Basic replication provides two types of server topologies
for deploying a basic replication environment.

� Bulk Load: The LDAP server can load a large number of entries in LDIF format into a
TDBM back end directory using the ldif2ds utility.

� Bulk Unload: The LDAP server can unload a large number of entries from a TDBM, LDBM,
or CDBM back end or the schema using the ds2ldif utility into a file in LDIF format.

Aliases x x x

Attribute Encryption x x x

Basic Replication x x

Bulk Load x

Bulk Unload x x x x

Change logging x x x x

Multi-Server Operational
Modes

x x x x

Native Authentication x x x

Password Policy x x x

Policy Director x

RACF Administration x

Referrals x x

Note: The change log is implemented in the GDBM back end.

The schema back end is used by all other back ends.

The features provided in Table 3-1 on page 30 might not be exhaustive. For a full
explanation of the support provided by IBM Tivoli Directory Server for z/OS, see z/OS
V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Feature TDBM LDBM CDBM SDBM GDBM EXOP Schema
Chapter 3. Back ends 31

� Change logging: Information about a change to a TDBM, LDBM, CDBM, or schema entry
(cn=schema), or to an object controlled by an application (for example, a RACF user,
group, user-group connection, or general resource profile) entry, can be saved in a change
log entry.

� Multi-Server Operational Modes: Multiple concurrent instances of LDAP servers can use a
given TDBM, LDBM, CDBM, or GDBM database to store directory data.

� Native Authentication: The LDAP server has the ability to authenticate a user with the
Security Server using a TDBM, LDBM, or CDBM back end. The user specifies a Security
Server password or password phrase on a simple bind to the back end. The TDBM,
LDBM, or CDBM entry that contains the bind DN contains the RACF ID, which is then
used with the specified password or password phrase to authenticate the user with z/OS
Security Server.

� Password Policy: Password policy rules can be applied to TDBM, LDBM, or CDBM entries
that have a userPassword value.

� Policy Director: The EXOP back end provides support for extended operations that
retrieve z/OS Policy Director data.

� RACF Administration: The SDBM back end allows a RACF administrator to remotely
manage the RACF database using the LDAP protocol.

� Referrals: A referral entry can be added to a TDBM or LDBM back end to indicate that the
back end does not contain that entry or any entries below it and to identify another LDAP
server that might contain those entries.

3.2 TDBM back end

The z/OS LDAP server provides the TDBM back end as a general purpose directory, meaning
that any type of directory information can be stored within it. The TDBM back end uses IBM
Database 2 (DB2), a powerful and scalable database product, for its data storage facility. The
TDBM back end is therefore highly scalable itself and designed to handle medium to large
directories.

Although every installation has differing limitations, the general recommendation is that
TDBM should be used if the directory size is expected to scale beyond the maximum
recommended sizes for LDBM directories. IBM Tivoli Directory Server for z/OS recommends
a maximum of 250,000 entries in 31-bit mode and a maximum of 500,000 entries in 64-bit
mode for LDBM. If a directory is expected to scale beyond these sizes, then TDBM is
recommended. Note that TDBM is provided in 31-bit mode only.

Advantages
� TDBM is a general purpose directory.
� TDBM is highly scalable and backed by DB2.
� TDBM exploits DB2 data sharing and can be shared in a Parallel Sysplex®.
� Multiple TDBM back ends can be configured.

Considerations
� TDBM requires DB2, which is more complex to set up than a file-based back end.
� The LDAP server must be started in 31-bit mode if using TDBM.
32 IBM Tivoli Directory Server for z/OS

3.2.1 TDBM configuration

The LDAP server can be configured with a TDBM back end using the dsconfig utility to
automate the process, or manually for situations where the dsconfig utility is not adequate or
further configuration updates are required.

Automated configuration
The LDAP configuration utility, dsconfig, can simplify and automate the LDAP server
configuration process for TDBM (among other back ends). For TDBM configuration
specifically, dsconfig will generate the following members:

� DBCLI: A JCL job that binds the CLI packages to DB2 and the DSNACLI plan.

� DSNAOINI: The DB2 CLI initialization file.

� TDBSPUFI: A set of DB2 SQL statements, to be executed using the SPUFI tool, that
defines database tables for the TDBM back end.

After DB2 has been started, the DBCLI JCL can be submitted to bind the CLI packages to
DB2 and the DSNACLI plan. The TDBSPUFI member can then be submitted through the DB2
SPUFI interactive tool, to define database tables for the TDBM back end.

The dsconfig utility can also produce a number of other files, including the DSCONFIG and
DSENVVAR LDAP server configuration and environment variables files, and a procedure
member needed to start the LDAP server as a started task. Using these files, along with the
DSNAOINI CLI initialization file, the LDAP server can be started with a TDBM back end.

For a complete step by step process of using the dsconfig utility, see z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Manual configuration
The TDBM back end can be configured manually if the dsconfig utility is not adequate or if
further configuration updates are required. A roadmap for configuring a TDBM back end can
be found in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05. After DB2 is installed and set up for TDBM, the LDAP server is ready to be
configured and started.

The TDBM back end-specific section of the ds.conf configuration file contains configuration
options that are specific to the TDBM back end. It is possible to have one or more of these
sections depending on the number of TDBM back ends an installation will use. To configure
the LDAP server to run with a TDBM back end, the configuration files can first be copied from
the /usr/lpp/ldap/etc directory. Figure 3-1 shows a sample TDBM back end-specific section
of the ds.conf configuration file:

Figure 3-1 TDBM back end section

Note that GLDSRV is the TDBM database owner and o=Your Company can be any valid DN
suffix.

The database, suffix, and dbuserid configuration options are required for configuration of a
TDBM back end.

TDBM back end section
database tdbm GLDBTD31
suffix "o=Your Company"
dbuserid GLDSRV
Chapter 3. Back ends 33

The following options are optional for configuring a TDBM back end: aclSourceCacheSize,
attrOverflowCount, attrOverflowSize, changeLoggingParticipant, dnToEidCacheSize,
dsnaoini, entryCacheSize, entryOwnerCacheSize, extendedGroupSearching,
filterCacheBypassLimit, filterCacheSize, include, persistentSearch, readonly,
serverName, sizeLimit, and timeLimit.

For more details regarding configuration options, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

Depending on the type of entries intended to be added to the TDBM back end, the LDAP
server schema might need to be modified to add the required attributes and objectclasses.

3.2.2 Porting TDBM data from IBM Tivoli Directory Server for z/OS to IBM
Tivoli Directory Server for z/OS

If an existing IBM Tivoli Directory Server for z/OS TDBM database needs to be copied to a
new IBM Tivoli Directory Server for z/OS TDBM database, the ds2ldif utility can be used to
unload the existing database into an LDIF file, and either the ldif2ds or ldapadd utilities can
be used to load these entries into the new database. If the load is for more than 100,000
directory entries, use ldif2ds.

If porting entries to a TDBM database that is not on the same LDAP server as the existing
TDBM database, the target LDAP server schema might require updates. Prior to porting
entries, the target LDAP server schema might need to be updated to contain the attributes
and object classes that were in use by the TDBM entries on the existing server. The ds2ldif
or ldapsearch utilities can be used to unload the LDAP server schema from the source LDAP
server and the ldapmodify utility can then be used to load the schema LDIF file into the target
LDAP server.

3.2.3 Porting TDBM data from ISS to IBM Tivoli Directory Server for z/OS

If an existing ISS TDBM database needs to be copied to a new IBM Tivoli Directory Server for
z/OS database, the DB2 copy utility can be used. The DDL specifications defined for the
existing ISS database must be used. Otherwise, the DB2 copy utility will produce unreliable
results.

Use the following steps to create a new IBM Tivoli Directory Server for z/OS TDBM database
from an existing ISS TDBM database:

1. Create the IBM Tivoli Directory Server for z/OS database using the DDL specifications
defined for the existing ISS TDBM database.

2. Copy the ISS TDBM database into the new IBM Tivoli Directory Server for z/OS TDBM
database using the DB2 copy utility. Note that the MISCTS table space is a segmented

Note: In IBM Tivoli Directory Server for z/OS V1.11, the default SPUFI scripts increase the
DN_TRUNC column size from 32 to 64 bytes in the DIR_ENTRY table. If you need to
increase the size of the DN_TRUNC column or make other customization to the IBM Tivoli
Directory Server for z/OS DDL, you must unload the ISS TDBM database to LDIF format.
The DB2 utilities cannot be used to copy an old ISS TDBM database from a prior z/OS
release to a IBM Tivoli Directory Server for z/OS TDBM database on a later z/OS release.
The copy must be made from an ISS TDBM database to a IBM Tivoli Directory Server for
z/OS TDBM database that are both running on the same z/OS release level.
34 IBM Tivoli Directory Server for z/OS

table space and the RESUME option must be specified when loading this table space from
data unloaded from the ISS TDBM database.

The target IBM Tivoli Directory Server for z/OS server schema might require updates for the
entries being ported. Steps for updating the schema when migrating TDBM from an ISS
LDAP server to a IBM Tivoli Directory Server for z/OS LDAP server can be found in z/OS
V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

3.2.4 Using the TDBM back end

The following example adds an entry to a TDBM back end:
Create a file, joe.add, containing the entry to be added as shown in Example 3-1.

Example 3-1 Entry to be loaded

dn: cn=Joe Johnson,ou=users,dc=yourcompany,dc=com
objectclass: person
sn: Johnson
userpassword: joespw

Invoke the ldapadd utility to add the entry:

ldapadd -h 127.0.0.1 -p 389 -D cn=admin -w secret -f joe.add

The following example modifies an entry in a TDBM back end:
Create a file, joe.mod, containing the changes as shown in Example 3-2.

Example 3-2 Entry to modify

dn: cn=Joe Johnson,ou=users,dc=yourcompany,dc=com
add: telephonenumber
telephonenumber: 123-456-7890
-
replace: userpassword
userpassword: joesnewpw

Invoke the ldapmodify utility to modify the entry:

ldapmodify -h 127.0.0.1 -p 389 -D cn=admin -w secret -f joe.mod

The following example searches for an entry in a TDBM back end:
Invoke the ldapsearch utility to display all entries with sn=Johnson:

ldapsearch -h 127.0.0.1 -p 389 -D cn=admin -w secret -b dc=yourcompany,dc=com
sn=Johnson

The search result is shown in Figure 3-2 on page 36.
Chapter 3. Back ends 35

Figure 3-2 Search result

The following example deletes an entry from a TDBM back end:
Invoke the ldapdelete utility to delete the entry:

ldapdelete -h 127.0.0.1 -p 389 -D cn=admin -w secret "cn=Joe
Johnson,ou=users,dc=yourcompany,dc=com"

The following example unloads data from a TDBM back end:
Invoke the 31-bit version of ds2ldif to unload all entries from the TDBM back end named
tdbm1 in the LDAP server configuration file /etc/ldap/ds.conf:

ds2ldif31 -j -o /tdbmdata/ldif.data -n tdbm1 -f /etc/ldap/ds.conf

The two entries that are in the TDBM back end are written to the file named
/tmpdata/ldif.data as shown in Figure 3-3.

Figure 3-3 ldif contents

The following example loads data into a TDBM back end:
Invoke the ldif2ds utility to load all of the entries from the input LDIF file into a TDBM
database:

ldif2ds -cpl -i /tmpdata/ldif.data -o admin3.prv -d ERROR

cn=Joe Johnson,ou=users,dc=yourcompany,dc=com
objectclass=person
objectclass=top
sn=Johnson
userpassword=joesnewpw
cn=Joe Johnson
telephonenumber=123-456-7890

version: 1

dn: o=tdbm
objectclass: organization
objectclass: top
o: tdbm
ibm-entryuuid: 3A67E000-2E5C-1876-99D0-402064040959
aclentry: cn=Anybody:normal:rsc:system:rsc
aclpropagate: TRUE
entryowner: CN=ADMIN
ownerpropagate: TRUE

dn: cn=entry1,o=tdbm
objectclass: newPilotPerson
objectclass: person
objectclass: top
cn: entry1
sn: 1
uid: entry1
userpassword:: c2VjcmV0
ibm-entryuuid: 0C3DE000-F85D-1884-94B3-402084027431
36 IBM Tivoli Directory Server for z/OS

This ldif2ds utility invocation checks, prepares, and loads the LDIF data from
/tmpdata/ldif.data, uses the output datasets ADMIN3.PRV.BULKLOAD.INPUT.xxx and
ADMIN3.PRV.BULKLOAD.JCL, and specifies a debug level of ERROR. It also uses the
default server configuration file of /etc/ldap/ds.conf. The value of the adminDN option in the
LDAP server configuration file is used as the default creator of each loaded entry.

3.2.5 Tuning the TDBM back end

The TDBM back end uses DB2 for storing directory data and takes advantage of caching to
handle repetitive access to directory data. As with any LDAP back end, the server performs
best when directory data is read frequently and updated less frequently. If directory data is
frequently updated and non-cached data is randomly accessed, TDBM performance can
degrade.

There are a few areas where tuning can help improve the performance of the TDBM back
end:

� Cache Tuning: TDBM caches provide a significant benefit to performance, allowing the
server to bypass read operations to the database.

� DB2 tuning: DB2 tuning ensures that TDBM efficiently accesses DB2, and that response
times remain steady even while the database scales in size.

� TDBM SQL tuning: The choices made with the initial setup of the TDBM database will
influence DB2 performance.

� Configuration file tuning: The TDBM back end section of the LDAP server configuration file
will also affect DB2 performance.

Cache tuning
Caches are beneficial when the majority of directory operations read data. This allows the
server to bypass read operations to DB2. Tuning cache sizes enables high percentage cache
hit rates. The process of cache tuning involves monitoring cache effectiveness and adjusting
cache sizes to increase their percent hit rate.

Monitoring of cache use should be performed during typical workloads. This can be done
using either a cn=monitor search or the operator console MODIFY command to retrieve
current cache statistics. The cache hit rate, the current number of entries, and the maximum
allowed entries (the configured size) should be examined. The number of cache refreshes
and the average size of the cache at refresh should also be noted. If the cache hit rate is well
below 100% and the cache is frequently fully populated, consider increasing the cache size.
Because cache changes require updates to configuration options, the server configuration file
must be updated and the server must be restarted to update cache settings.

For more details about cache tuning refer to z/OS V1R12.0 IBM Tivoli Directory Server
Administration and Use for z/OS, SC23-5191-05.

DB2 tuning
The following tasks are related to DB2 tuning, and are crucial for improving TDBM
performance. These tasks are typically performed by a database administrator:

� Periodically reorganize the database (REORG) and maintain database statistics
(RUNSTATS)

The TDBM table spaces and indexes should occasionally be reorganized using the DB2
REORG utility. This process will help to improve DB2 access performance and will help to
reclaim fragmented space.

The DB2 catalog should be updated occasionally with current statistics for the TDBM
database, table spaces, tables, indexes, and partitions. This can be performed using the
Chapter 3. Back ends 37

RUNSTATS utility. This information enables DB2 to select efficient access paths to the
TDBM database. Additionally, this information can be useful for database administrators to
determine when the database should be reorganized. For suggested parameters to
specify with the RUNSTATS utility, see z/OS V1R12.0 IBM Tivoli Directory Server
Administration and Use for z/OS, SC23-5191-05.

When a z/OS LDAP directory is initially updated with a large amount of data, followed by
gradual growth, run the REORG and RUNSTATS utilities immediately after the directory is
populated with the initial data, and before being rolled out to production.

If the initial directory population is performed by an application, as opposed to the ldif2ds
load utility, it might be necessary to run REORG and RUNSTATS one or more times during
the initial directory population.

If the database is not periodically reorganized and statistics are not maintained, then poor
access paths can be chosen, causing increased response times as the database size
scales.

� Allocate DB2 buffer pools large enough to minimize I/O to the TDBM database

DB2 buffer pool allocations should be evaluated to make sure they are sufficient for the
TDBM database. It is typically beneficial to isolate specific TDBM table spaces and
indexes to their own buffer pools. Separating the indexes from the table spaces can help
ensure that index buffers remain in the buffer pools. Additionally, this technique can help
the database administrator to determine the overall TDBM usage of buffer pools when
specific tables and indexes correspond to specific buffer pools. The DB2 Performance
Monitor for z/OS can be beneficial for monitoring buffer pool activity.

If an installation has a large directory with frequent update operations on the directory,
partitioning the DB2 tables can also increase performance. See Partitioning DB2 tables for
TDBM in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05 for more information.

TDBM SQL tuning
A number of TDBM SQL choices can affect the performance of TDBM when accessing data
within DB2:

� Tablespace LOCKSIZE

The default LOCKSIZE of ANY is generally sufficient if the majority of activity consists of
read operations, with few database updates. This typically results in PAGE locking that
causes locking of rows for directory entries other than the one being updated.

On the other hand, if the database is frequently updated, DB2 deadlocks can occur in the
TDBM database with PAGE locking. In this case, LOCKSIZE ROW should be set on the
TDBM tablespaces that contains the DIR_ENTRY and the DIR_SEARCH table.

� Size of DIR_ENTRY table's DN_TRUNC column

The DN_TRUNC column is used to index data in the DIR_ENTRY table and speed up
retrieval of directory entries by their distinguished name (DN). This column holds the
leading portion of each DN, and should be defined long enough to make most values
unique.

Some applications generate directory entries where the leading portion of the DN is
identical. For example, Tivoli Access Manager (TAM) generates entries under each user
entry in the namespace where the DN starts with
"cn=secPolicyData,secAuthority=Default,". To provide uniqueness, it is suggested that
installations using TAM with the z/OS LDAP server define the DN_TRUNC column to be
64 bytes in length.
38 IBM Tivoli Directory Server for z/OS

This column length should be defined correctly during the initial setup of the directory. If
the length is changed, the DIR_ENTRY table must be redefined, and the directory must be
unloaded and reloaded to implement the change.

� Size of DIR_SEARCH table's VALUE column

The VALUE column is used to index data in the DIR_SEARCH table and speed up
retrieval of directory entries for search requests using the search filter values. This column
holds the leading portion of textual attribute values, and should be defined long enough to
accommodate most values specified in search filters. This column should not be made
significantly larger than required because this can cause the DIR_SEARCH table and its
index to increase substantially in size.

This column length should be defined correctly during the initial setup of the directory. If
the length is changed, the DIR_SEARCH table must be redefined, and the directory must
be unloaded and reloaded

Configuration file tuning
The attrOverflowSize can be modified in the TDBM back end section of the LDAP server
configuration file.

� The attrOverflowSize configuration value

This configuration option specifies the threshold size of attribute values that are to be
stored separately from the DIR_ENTRY data and are instead stored in the
DIR_LONGATTR overflow table.

This option helps to avoid reading overflow data for searches that do not request the
attribute. For example, if a directory contains an attribute with JPEG data and searches
often do not request this attribute, then attrOverflowSize can avoid reading the data from
the database.

This option value should be specified large enough so that data is typically retrieved from
the DIR_ENTRY data. Note that entries with overflow data are not eligible for the entry
cache, and so setting this value too small can impact search performance.

3.3 LDBM back end

The z/OS LDAP server provides the LDBM back end as a general purpose directory, meaning
that any type of directory information can be stored within it. The LDBM back end uses a z/OS
UNIX System Services file system for its data storage facility. The LDBM back end provides
the same functionality as the TDBM back end, but is suitable for small to medium size
directories.

Although every installation has differing limitations, use LDBM for a maximum of 250,000
entries in 31-bit mode and a maximum of 500,000 entries in 64-bit mode. If a directory should
scale beyond these sizes, use the TDBM back end.

The LDBM back end keeps its entries in memory for quick access and requires a minimum
amount of setup. When the LDAP server is not running, LDBM stores its directory information
in z/OS UNIX System Services files.

Advantages
� LDBM is a general purpose directory.
� Entries are kept in memory while the server is running, enabling quick access.
� LDBM requires a minimal amount of setup.
� LDBM runs in both 31-bit and 64-bit modes.
Chapter 3. Back ends 39

� LDBM can be shared in a Parallel Sysplex.
� Multiple LDBM back ends can be configured.

Considerations
� LDBM has limitations on scalability.
� Large LDBM directories requires a lot of memory.
� Server start-up and shutdown can be time consuming.
� Paging hurts LDBM performance.

3.3.1 LDBM configuration

IBM Tivoli Directory Server for z/OS can be configured with an LDBM back end by either
using the dsconfig utility to automate the process, or configuration can be performed
manually for situations where the dsconfig utility is not adequate or further configuration
updates are required.

Automated configuration
The LDAP configuration utility, dsconfig, can simplify and automate the LDAP server
configuration process for LDBM (among other back ends). There are no members generated
specifically for LDBM. However, there are general use members that are generated and help
to deploy an LDAP server with LDBM.

The dsconfig utility produces a number of files, including the DSCONFIG and DSENVVAR
LDAP server configuration and environment variables files, and a procedure member needed
to start the LDAP server as a started task. Using these files, the LDAP server can be started
with an LDBM back end.

For a complete step by step process of using the dsconfig utility, see z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Manual configuration
The LDBM back end can be configured manually if the dsconfig utility is not adequate or if
further configuration updates are required. A roadmap for configuring an LDBM back end can
be found in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05. After a z/OS UNIX System Services file system is set up for LDBM, the LDAP
server is ready to be configured and started.

The LDBM back end-specific section of the ds.conf configuration file contains configuration
options that are specific to the LDBM back end. It is possible to have one or more of these
sections depending on the number of LDBM back ends an installation will use. To configure
the LDAP server to run with an LDBM back end, the configuration files can first be copied
from the /usr/lpp/ldap/etc directory. Figure 3-4 is a sample LDBM back end-specific
section of the ds.conf configuration file.

Figure 3-4 LDBM back end section

LDBM back end section
database ldbm GLDBLD31/GLDBLD64
suffix "o=Your Company"

Note: Although the example uses o=Your Company as the suffix, the suffix can be any
valid DN suffix.
40 IBM Tivoli Directory Server for z/OS

The database and suffix configuration options are required for configuration of an LDBM back
end.

The following options are optional for configuring an LDBM back end: attrOverflowCount,
changeLoggingParticipant, commitCheckpointEntries, commitCheckpointTOD,
databaseDirectory, extendedGroupSearching, fileTerminate, filterCacheBypassLimit,
filterCacheSize, include, persistentSearch, readOnly, sizeLimit, and timeLimit.

For more details regarding configuration options, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

Depending on the type of entries intended to be added to the LDBM back end, the LDAP
server schema might need to be modified to add the required attributes and objectclasses.

3.3.2 Porting LDBM data

If an existing LDBM database needs to be copied to a new LDBM database, the ds2ldif
utility can be used to unload the existing database into an LDIF file, and the ldapadd utility can
be used to load these entries into the new database.

If porting entries to an LDBM database that is not on the same LDAP server as the existing
LDBM database, the target LDAP server schema might require updates. Prior to porting
entries, the target LDAP server schema might need to be updated to contain the attributes
and object classes that were in use by the LDBM entries on the existing server. The ds2ldif
or ldapsearch utilities can be used to unload the LDAP server schema from the source LDAP
server and the ldapmodify utility can then be used to load the schema LDIF file into the target
LDAP server.

3.3.3 Creating a sample server with an LDBM back end

IBM Tivoli Directory Server for z/OS ships an example that provides a set of instructions for
properly configuring an IBM Tivoli Directory Server for z/OS LDAP server with an LDBM back
end. The example files are located in /usr/lpp/ldap/examples/sample_server. The
ds.README file provides step-by-step instructions for getting an LDAP server configured and
started. The sample.ldif file contains a set of directory entries that can be added to the
LDAP server's LDBM back end.

3.3.4 Using the LDBM back end

Section 3.2.4, “Using the TDBM back end” on page 35 contains examples that can also be
used for an LDBM back end. See the examples for adding, modifying, searching, and deleting
an entry, and the example for unloading data. Note that for bulk loading data, the ldif2ds
utility can only be used for loading TDBM entries. LDBM entries can be loaded using the
ldapadd utility.

3.3.5 Tuning the LDBM back end

The LDBM back end uses a z/OS UNIX System Services file system for persistent storage of
directory data. When the LDAP server is executing, the entire directory contents are held
within its address space, including index structures for quick access.

The storage of entries in memory while the server is executing provides quick access to
directory data, because LDAP operations that read directory data involve no file I/O. LDAP
Chapter 3. Back ends 41

operations that update the directory typically perform file I/O only when writing the changed
data to the LDBM checkpoint file. Additionally, index updates only occur within memory in the
z/OS LDAP server's address space.

The LDBM back end naturally runs into resource issues as a directory scales in size. The
resources affected are listed below, with usage typically proportional to directory size:

� Memory considerations: The memory required within the LDAP server address space.
� LDAP server initialization time: The LDAP server initialization time, both elapsed time and

processor time.
� LDAP database commit processing: The time required for the LDAP server to commit the

directory.
� File system space: The file system space required to store the persistent directory data.

Memory Considerations
Because the entire LDBM directory is kept in memory in the LDAP address space, plans
should be made accordingly. The amount of memory required can be estimated based on the
size of the LDIF data used to load the directory. For 31-bit mode, the memory required to
store the data is about 7 to 10 times the size of the LDIF file. For 64-bit mode, the memory
required to store the data is as approximately 10 to 15 times the size of the LDIF file.

These are estimates only. Additionally, these estimates only pertain to the memory required
to hold the LDBM directory. Plans must also account for the storage required to run the z/OS
LDAP server.

If the z/OS LDAP server is run in multi-server mode, every LDAP server that shares the
LDBM directory will also store the entire LDBM directory in memory within their address
space. Therefore, each of these servers will require approximately the same amount of
memory as the LDAP master server.

Use the TDBM back end for systems with storage constraints or large directories.

LDAP server initialization time
When the LDAP server is started with an LDBM back end, LDBM directory is read into
memory and the necessary index structures are built. The index structures are used to
increase the performance of search processing. Server startup with LDBM can be time
consuming, taking upwards of several minutes. This startup time is dependent on a number of
factors, including the speed of the processor and DASD, and the current system workload.
The total startup time is generally proportional to the size of the directory.

As mentioned previously, when the z/OS LDAP server is run in multi-server mode, every
LDAP server that shares the LDBM directory also stores the entire LDBM directory in
memory within their address space.Although replica servers require nearly the same amount
of time as the master server to read the directory into memory, the time required to start up
the replica is typically longer than that of the master. Initialization of a sysplex replica also
consumes processor time on the sysplex master while the master sends data to the replica.
The processor time consumed by sysplex master is estimated to be approximately one-third
that consumed by the replica during startup.

LDAP database commit processing
The LDBM directory is stored in database files and the checkpoint file within a z/OS UNIX
System Services file system. There is an LDBM database file for each suffix defined in the
back end, and a single checkpoint file for the entire back end. The database files contain the
entire directory up to the last database commit point, whereas the checkpoint file contains the
directory updates made since the last commit point.
42 IBM Tivoli Directory Server for z/OS

When commit processing occurs, the checkpoint files are used to refresh the database files.
Commit processing occurs at the following times:

� When the number of checkpoint entries exceeds the commitCheckpointEntries value in
the LDAP server configuration file.

� When the time of day reaches the commitCheckpointTOD value in the LDAP server
configuration file.

� When the LDAP server COMMIT operator command is invoked.
� When the LDAP server is shut down normally.
� When the LDAP server is restarted and uncommitted updates exist in the checkpoint file

after an abnormal termination of the LDAP server.

The processor and file I/O resources required for commit processing are also proportional to
the directory size. Commit processing can take a minute or more for larger directories,
depending on resource competition.

During commit processing, copies of the database files and the checkpoint file are made, and
file system space should account for this. Therefore, enough file system space should be
available to accommodate two copies of each directory file in addition to the maximum size of
the checkpoint file. The amount of file system space required for the checkpoint file is best
determined through experimentation because it depends on the updates that are being
performed.

Another impact to account for is that update requests from clients will not be processed
during commit processing. Therefore the use of the commitCheckpointEntries configuration
option is not recommended because the timing of these commits cannot be scheduled. Use
the following methods because they can be scheduled at a time when client update requests
are minimized:

� Use the commitCheckpointTOD configuration option
� Automate the use of the LDAP server COMMIT operator command
� Use planned shutdowns of the LDAP server to control when commit processing occurs

File system space
The amount of space required to store an LDBM back end in a z/OS UNIX System Services
file system can be estimated at four to six times the size of the input LDIF data. This is
calculated based on the space required to hold the LDBM back end data, which is generally
two to three times the size of the input LDIF data, in addition to the space required for commit
processing. During LDBM commit processing, each of the LDBM back end files is copied,
therefore doubling the amount of required file system space until commit processing
completes.

3.3.6 Sample LDBM benchmark data

The following data was gathered from benchmarks using an LDBM database on z/OS UNIX
System Services using ESS800 model 2105 DASD, and running on a z9® model 2094
processor with no competing applications running.

Database size 500,000 entries

LDIF file size 590 megabytes

LDAP server storage 5464 megabytes

Sysplex master initialization elapsed time 121 seconds

Sysplex master initialization processor time 98 seconds
Chapter 3. Back ends 43

Sysplex replica initialization elapsed time 180 seconds

Sysplex replica initialization processor time 103 seconds

Sysplex master processor time consumed by replica initialization 34 seconds

LDAP server database commit elapsed time 50 seconds

LDAP server database commit processor time 43 seconds

3.4 CDBM back end

The z/OS LDAP server provides the CDBM back end to store configuration information. The
CDBM back end uses a z/OS UNIX System Services file system for its data storage facility.

The CDBM back end is used by the z/OS LDAP server to store configuration information for
features such as advanced replication and password policy support. It provides dynamic
access to configuration information, as opposed to the ds.conf configuration file that can only
be read when the LDAP server is started.

When the LDAP server is started with CDBM configured for the first time, the server creates
the following entries:

� cn=ibmpolicies
� cn=pwdpolicy,cn=ibmpolicies (if server compatibility level is 6 or greater)
� cn=configuration
� cn=Replication,cn=configuration
� cn=Log Management,cn=configuration
� cn=Replication,cn=Log Management,cn=configuration

The CDBM suffix entries are generated automatically by the LDAP server and cannot be
loaded by a client application.

Advantages
� Configuration information stored in the CDBM back end can be searched and modified

while the LDAP server is running.
� Entries are kept in memory while the server is running, enabling quick access.
� CDBM requires a minimal amount of setup.
� CDBM runs in both 31-bit and 64-bit modes.
� CDBM can be shared in a Parallel Sysplex.

Considerations
� The CDBM back end has similar disadvantages as the LDBM back end. However, many of

the disadvantages are never encountered with a CDBM directory because CDBM typically
contains only a small number of configuration entries.

3.4.1 CDBM Configuration

IBM Tivoli Directory Server for z/OS can be configured with a CDBM back end by using the
dsconfig utility to automate the process, or manually for situations where the dsconfig utility
is not adequate or further configuration updates are required.
44 IBM Tivoli Directory Server for z/OS

Automated configuration
The LDAP configuration utility, dsconfig, can simplify and automate the server configuration
process for CDBM (among other back ends). There are no members generated specifically
for CDBM. However, there are general use members that are generated and help to deploy an
LDAP server with CDBM.

The dsconfig utility produces a number of files, including the DSCONFIG and DSENVVAR
LDAP server configuration and environment variables files, and a procedure member needed
to start the LDAP server as a started task. Using these files, the LDAP server can be started
with a CDBM back end.

For a complete step by step process of using the dsconfig utility, see z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Manual configuration
The CDBM back end can be configured manually if the dsconfig utility is not adequate or if
further configuration updates are required. A roadmap for configuring a CDBM back end can
be found in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05. After a z/OS UNIX System Services file system is set up for CDBM, the LDAP
server is ready to be configured and started.

The CDBM back end-specific section of the ds.conf configuration file contains configuration
options that are specific to the CDBM back end. Only one CDBM back end can be configured
in an LDAP server.

To configure the LDAP server to run with a CDBM back end, the configuration files can first be
copied from the /usr/lpp/ldap/etc directory. Figure 3-5 is a sample CDBM back end-specific
section of the ds.conf configuration file.

Figure 3-5 CDBM back end section

The database configuration option is required for configuration of a CDBM back end.

The following options are optional for configuring a CDBM back end: attrOverflowCount,
changeLoggingParticipant, commitCheckpointEntries, commitCheckpointTOD,
databaseDirectory, extendedGroupSearching, fileTerminate, filterCacheBypassLimit,
filterCacheSize, include, persistentSearch, readOnly, sizeLimit, and timeLimit.

For more details regarding configuration options, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

Depending on the type of entries intended to be added to the CDBM back end, the LDAP
server schema might need to be modified to add the required attributes and objectclasses.

The server compatibility level must be 5 or greater for the CDBM back end to be configured.
The CDBM back end cannot be used in a Parallel Sysplex containing mixed levels of z/OS
LDAP servers. In a Parallel Sysplex such as this, the server compatibility level must be less
than 5.

#CDBM back end section
database CDBM GLDBCD31/GLDBCD64
Chapter 3. Back ends 45

3.4.2 Using the CDBM back end

The following example searches the cn=Replication,cn=configuration suffix:
Display the cn=Replication,cn=configuration entry:

ldapsearch -D cn=admin -w secret -s base -b cn=Replication,cn=configuration
objectclass=*

The command returns the data shown in Figure 3-6 on page 46.

Figure 3-6 Search results for replication configuration query

The following example modifies an attribute:
In this case we modify the ibm-replicationOnHold attribute in the
cn=Replication,cn=configuration entry.

Create a file, replconfig.mod, containing the changes that will suspend replication for all
replication agreements in the server as shown in Figure 3-7.

Figure 3-7 Modifying entry

Invoke the ldapmodify utility to modify the entry:

ldapmodify -h 127.0.0.1 -p 389 -D cn=admin -w secret -f replconfig.mod

3.4.3 Tuning the CDBM back end

If the CDBM back end is only used to store configuration entries, then no tuning is necessary.
However, if the CDBM back end is used to store user defined entries, refer to 3.3.5, “Tuning
the LDBM back end” on page 41 for performance considerations.

3.5 SDBM back end

The SDBM back end allows a RACF administrator to remotely manage the RACF database
using the LDAP protocol. This allows the RACF administrator to be anywhere in the world and
able to remotely administer the RACF database anywhere there is an LDAP client. The
SDBM back end provides these features:

� Authentication with RACF users.

cn=Replication,cn=configuration
objectclass=ibm-slapdReplicationConfiguration
objectclass=top
cn=Replication
ibm-slapdmaxpendingchangesdisplayed=200
ibm-slapdreplcontextcachesize=100000
ibm-slapdreplmaxerrors=0
ibm-slapdreplconflictmaxentrysize=0
ibm-replicationonhold=FALSE

dn: cn=Replication,cn=configuration
replace: ibm-replicationOnHold
ibm-replicationOnHold: TRUE
46 IBM Tivoli Directory Server for z/OS

� Add, modify, and delete RACF users, groups, and general resources. Note that dataset
resources are not supported.

� Add, modify, and delete user connections to groups.

� Add and remove users and groups in general resource access lists.

� Modify SETROPTS options that affect classes (for example, RACLIST).

� Retrieve RACF information for users, groups, connections, general resources, and class
options.

� Retrieve RACF user password and password phrase envelopes.

The SDBM back end uses the R_admin “run command” interface to implement portions of the
adduser, addgroup, rdefine, altuser, altgroup, ralter, permit, setropts, deluser, delgroup,
rdelete, connect, remove, and search RACF commands. However, the SDBM back end uses
the R_admin profile extract functions to retrieve specific user, group, connection, and
resource information about search and compare requests. Also, the SDBM back end uses the
R_admin setropts extract function to retrieve class options information when a search or
compare request is performed on the SETROPTS entry. The keywords of each of these
RACF commands are mapped to LDAP attribute types to enable adding, modifying, and
searching RACF data. See the Accessing RACF information chapter in z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05 for the mappings
between the RACF command keywords and LDAP attribute types. These attribute types are
already part of the initial or minimum schema, and therefore it is not necessary to modify the
schema to add them or to use the SDBM back end.

Advantages
� Ability to remotely manage RACF users, groups, user-group connections, and general

resource profiles over the LDAP protocol. Thus, the RACF administrator does not need to
be logged directly into a 3270 session to issue RACF commands. The RACF commands
issued run under the authority of the authenticated or bound RACF user.

� Ability to add, modify, and display user and group custom fields on RACF users and
groups.

Considerations
� Hardcoded directory hierarchy

� There are limited number of searches and search filters that are supported in the SDBM
back end. See 3.5.3, “Searching the SDBM back end” on page 52 for more information.

� Only one SDBM back end can be configured.

� Only RACF data (users, groups, user-group connections, and general resource profiles)
can be stored or accessed through the SDBM back end.

3.5.1 SDBM Configuration

IBM Tivoli Directory Server for z/OS can be configured with an SDBM back end by either
using the dsconfig utility to automate the process, or configuration can be performed
manually for situations where the dsconfig utility is not adequate or further configuration
updates are required.

Automated Configuration
The LDAP configuration utility, dsconfig, can simplify and automate the LDAP server
configuration process for the SDBM back end. There are no members generated specifically
Chapter 3. Back ends 47

for SDBM. However, there are general use members that are generated and help to deploy an
LDAP server with SDBM.

The dsconfig utility produces a number of files, including the DSCONFIG and DSENVVAR
LDAP server configuration and environment variables files, and a procedure member needed
to start the LDAP server as a started task. Using these files, the LDAP server can be started
with an SDBM back end.

To configure the SDBM back end using the dsconfig utility, specify a value for the
SDBM_SUFFIX parameter in the ds.profile file and this creates an SDBM back end
database section in the generated DSCONFIG file. If RACF general resource profiles are to
be managed by the SDBM back end (only available in z/OS V1R11 or later), set the
SDBM_ENABLERESOURCES parameter in ds.slapd.profile to ON.

For a complete step by step process of using the dsconfig utility, see z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Manual Configuration
The SDBM back end can be configured manually if the dsconfig utility is not adequate or if
further configuration updates are required. A roadmap for configuring an SDBM back end can
be found in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05.

The SDBM back end-specific section of the ds.conf configuration file contains configuration
options that are specific to the SDBM back end. To configure the LDAP server to run with an
SDBM back end, the configuration files can first be copied from the /usr/lpp/ldap/etc
directory. Figure 3-8 is a sample SDBM back end-specific section of the ds.conf configuration
file.

Figure 3-8 SDBM back end section

The database and suffix configuration options are required for configuration of an SDBM back
end.

The following options are optional for configuring an SDBM back end: enableResources,
include, readOnly, sizeLimit and timeLimit.

In z/OS V1R11, the ability to remotely manage general resource profiles (however not RACF
dataset profiles) and modify SETROPTS settings that directly affect classes was added to the
SDBM back end. Thus, the enableResources configuration option was introduced in z/OS
V1R11 to add those portions of the SDBM directory hierarchy. If this option is not specified or
set to off, this feature is not provided.

For more details regarding configuration options, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

database sdbm GLDBSD31/GLDBSD64

suffix cn=racf

enableResources on

Note: Although the suffix in this example is cn=racf, this value can be any valid DN suffix.
48 IBM Tivoli Directory Server for z/OS

SDBM back end directory hierarchy
When the SDBM back end is configured, the top level entries are pseudo entries that help to
better organize the data that is present in the RACF database. The users, groups, user-group,
and each RACF resource class exists as a pseudo entry directly underneath the SDBM suffix.

Figure 3-9 on page 49 displays the directory hierarchy when enableResources off is
specified in the SDBM back end section.

Figure 3-9 SDBM directory hierarchy for users, groups, and connect

If enableResources on is specified in the SDBM back end section of the configuration file,
Figure 3-10 displays the additions to the SDBM directory hierarchy. Each active RACF
general resource class exists as a psuedo entry and under those entries is each RACF
general resource profile.
Chapter 3. Back ends 49

Figure 3-10 SDBM directory hierarchy for setropts and resource profiles

3.5.2 Using the SDBM back end

SDBM back end operations can be performed after several types of binds to the LDAP server.
In each of these binds, the LDAP server associates a RACF user ID with the bound user.
SDBM invokes RACF commands under the context of this RACF user ID, and RACF uses its
normal authorization processing to determine what this RACF user ID can do.

The supported bind mechanisms are:

� Simple bind to SDBM: The RACF user ID is specified in the bind DN.

� LDBM, TDBM, or CDBM native authentication bind: The RACF user ID specified in the
native authentication entry is used.

� GSSAPI (Kerberos) bind: The RACF user ID is mapped by SDBM from the Kerberos
identity.

� EXTERNAL (SSL) bind: The RACF user ID associated with the certificate is used if
certificate mapping is successfully performed.

See 5.2, “Authentication mechanisms supported by IBM Tivoli Directory Server for z/OS” on
page 92 for additional information about these bind mechanisms.

Adding a WORKATTR segment
The following is an example of modifying existing RACF user, u1234, to add a WORKATTR
segment with values specified for the WABLDG and WADEPT keywords, with the z/OS
ldapmodify utility.

1. Create file modu1234.ldif that has the contents shown in Example 3-3 on page 51.
50 IBM Tivoli Directory Server for z/OS

Example 3-3 ldif contents

dn: racfid=u1234,profiletype=user,cn=racf
changetype: modify
add: racfBuilding
racfBuilding: 256
-
add: racfDepartment
racfDepartment: LDAP

2. Execute the ldapmodify utility to modify the RACF u1234 user ID:

ldapmodify -D “racfid=radmin,profiletype=user,cn=racf” -w radminpw -f
modu1234.ldif

3. Modify the RACF user in the SDBM back end using the following RACF ALTUSER
command, which runs the authority of the bound, radmin, RACF user.

ALTUSER U1234 WORKATTR(WABLDG('256') WADEPT('LDAP'))

Displaying a user-group connection using ldapsearch
The following is an example of using the z/OS ldapsearch utility to display user-group
connection, “racfuserid=u1234+racfgroupid=group1,profiletype=connect,cn=racf”:

ldapsearch -L -D “racfid=radmin,profiletype=user,cn=racf” -w radminpw -b
“racfuserid=u1234+racfgroupid=group1,profiletype=connect,cn=racf“ “objectclass=*”

The results of this command are shown in Example 3-4 on page 51.

Example 3-4 SDBM connect entry results

dn: racfuserid=U1234+racfgroupid=GROUP1,profiletype=CONNECT,cn=racf
racfuserid: U1234
racfgroupid: GROUP1
racfconnectauthdate: 02/08/10
racfconnectowner: RACFID=RADMIN,PROFILETYPE=USER,CN=SDBM
racfconnectgroupauthority: USE
racfconnectgroupuacc: NONE
racfconnectcount: 0
objectclass: TOP
objectclass: RACFBASECOMMON
objectclass: RACFCONNECT

The SDBM back end under the authority of the radmin RACF user does a LISTUSER U1234
and returns group information for GROUP1.

Creating a new resource profile using ldapadd
The following is an example of using the z/OS ldapadd utility to add a new resource profile for
the TERMINAL class.

1. Create a file term1.ldif that has the contents shown in Figure 3-11.
Chapter 3. Back ends 51

Figure 3-11 ldif contents

2. Issue the following command:

ldapadd -D “racfid=radmin,profiletype=user,cn=racf” -w radminpw -f term1.ldif

The SDBM back end under the authority of the radmin RACF user does the following
RACF commands:

RDEFINE TERMINAL TERM1 OWNER(GROUP1) UACC(NONE)
PERMIT TERM1 CLASS(TERMINAL) ID(U2) ACCESS(READ)

The RDEFINE is done first to create the new resource profile and then the PERMIT is
done.

Refreshing a class with ldapmodify
The following is an example of using the z/OS ldapmodify utility to refresh the RACF
FACILITY class.

1. Create file refresh.ldif that has the contents shown in Figure 3-12.

Figure 3-12 ldif contents

2. Issue the following command:

ldapmodify -D “racfid=radmin,profiletype=user,cn=racf” -w radmin -f
refresh.ldif

The SDBM back end under the authority of the radmin RACF user executes the following
RACF command:

SETROPTS REFRESH RACLIST(FACILITY)

3.5.3 Searching the SDBM back end

The SDBM back end supports a limited number of search filters based on the base
distinguished name (DN) and scope of the search request. Most searches from one of the top
level entries in the SDBM back end (e.g profiletype=user,suffix) only return the distinguished
names of entries that match the search filter because they require a search of the entire
RACF database. Generally to retrieve an entire or complete RACF user, group, user-group
connection, general resource profile, or the setropts entry, a search request for the specific
entry as the base distinguished name must be specified when performing the search.

dn: profilename=TERM1,profiletype=TERMINAL,cn=racf
objectclass: racfresource
racfOwner: GROUP1
racfUacc: NONE
racfaccesscontrol: ID(U2) ACCESS(READ)

dn: cn=setropts,cn=racf
changetype: modify
replace: racfsetroptsattributes
racfsetroptsattributes: REFRESH
-
replace: racfraclist
racfraclist: profiletype=FACILITY,cn=racf
52 IBM Tivoli Directory Server for z/OS

Table 3-2 on page 53 illustrates the supported search filters and what is returned on different
searches assuming that the authenticated user has the authority to perform the searches.

Table 3-2 search filters

Note: The RACF general resource profile and setropts entries are only returned when the
enableResources on option is specified in the SDBM back end of the LDAP server
configuration file.

Search filter Allowed base DN Description and entries
returned

objectclass=* Any entry in the SDBM back
end

Match any user, group,
connection, resource
profile, and setropts entry

Entries returned:
� DN-only entries if the search

scope includes all users,
groups, user-group
connections, resource
profiles, or setropts

� Complete entry if scope only
includes one entry

krbprincipalname=any_value suffix
profiletype=user,suffix

Complete user entry where the
KERBNAME value in the KERB
segment is equal to any_value

profilename=any_value suffix
profiletype=className,suffix

Finds the RACF general resource
profiles whose names match
any_value (can contain
wildcards)

DN-only entries returned

racfgroupid=any_value suffix
profiletype=connect,suffix

Finds connection profiles for
members of the RACF groups
whose names match any_value
(can contain wildcards)

DN-only entries returned

racfid=any_value suffix
profiletype=user,suffix
profiletype=group,suffix

Finds user and group profiles for
the RACF users and groups
whose names match any_value
(can contain wildcards)

DN-only entries returned

racflnoteshortname=any_value suffix
profiletype=user,suffix

Complete entry where the RACF
user profile has an LNOTES
SNAME value equal to any_value

racfndsusername=any_value suffix
profiletype=user,suffix

Complete entry where the RACF
user profile has an NDS UNAME
value equal to any_value
Chapter 3. Back ends 53

See the “Accessing RACF information” chapter in z/OS V1R12.0 IBM Tivoli Directory Server
Administration and Use for z/OS, SC23-5191-05 for more information about the supported
searches and search filters in the SDBM back end.

3.5.4 Tuning the SDBM back end (RACF database)

If users perform SDBM simple binds, native authentication binds, or SASL EXTERNAL binds
where the certificate is mapped to a RACF user, the LAST-ACCESS date and time are
updated by default in the RACF database. These logins can cause unanticipated updates to
the RACF database for each user's login. RACF provides a manner in which only the first user
login for the day is recorded in the LAST-ACCESS day and time, reducing the number of
concurrent updates that are being made to the RACF database. To enable this feature,
assuming that your LDAP server started task proc is GLDSRV, enter the following RACF
commands:

RDEFINE APPL GLDSRV UACC(READ) APPLDATA('RACF-INITSTATS(DAILY)')
SETROPTS RACLIST(APPL) REFRESH

racfomvsgroupid=number suffix
profiletype=group,suffix

Complete entry where the RACF
group profile for one of the RACF
groups has an OMVS GID values
equal to number

racfomvsgroupid;allOMVSids=
number

suffix
profiletype=group,suffix

Finds group profiles for all the
RACF groups whose OMVS GID
values match number

DN-only entries returned

racfomvsuid=number suffix
profiletype=user,suffix

Finds user profiles for all the
RACF users whose OMVS UID
values match number

DN-only entries returned

racfomvsuid;
allOMVSid=number

suffix
profiletype=user,suffix

Finds user profiles for all the
RACF users whose OMVS UID
values match number

DN-only entries returned

racfuserid=any_value suffix
profiletype=connect,suffix

Finds connection profiles for
RACF users whose names match
any_value (can contain
wildcards)

DN-only entries returned

(&(racfuserid=any_value1)
(racfgroupid=any_value2))

suffix
profiletype=connect,suffix

Finds connection profiles for
RACF users whose names match
any_value1 and who belong to
RACF groups whose names
match any_value2 (both can
contain wildcards)

DN-only entries returned

Search filter Allowed base DN Description and entries
returned
54 IBM Tivoli Directory Server for z/OS

The SDBM back end uses the R_admin run-command and R_admin profile extract interfaces.
Generally, the performance of the SDBM back end depends on how the RACF database is
tuned. For information about tuning your RACF database to improve performance in general,
see z/OS V1R12.0 Security Server RACF System Programmer's Guide, SA22-7681.

3.5.5 RACF resources

The SDBM back end makes RACF information available using the LDAP protocol, this
includes access to RACF General Resources. Any existing General Resource classes can be
targeted, along with defining and using classes in the CDT class.

Below is an example of how to use LDAP to define a new class in the CDT class, and then
define a profile type within the new class.

The RACF commands will be shown and then the equivalent LDAP commands.

Define a new class, activate it and refresh the newly created class.
Using RACF commands this would be accomplish by a series of command similar to
Figure 3-13.

Figure 3-13 RACF commands to create new class

The equivalent steps using LDAP commands are:

1. Define the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -a -f tstclas1.add.ldif

tstclas1.add.ldif has the contents shown in Figure 3-14.

Figure 3-14 ldif file to create RACF class

2. Alter the class to set audit parameters:

RDEFINE CDT TSTCLAS1 UACC(NONE) CDTINFO(DEFAULTUACC(NONE) FIRST(ALPHA)
 MAXLENGTH(42) OTHER(ALPHA,NUMERIC,SPECIAL) POSIT(303) RACLIST(REQUIRED)
 SECLABELSREQUIRED(YES))

RALTER CDT TSTCLAS1 AUDIT(FAILURES(READ)) WARNING

SETROPTS RACLIST(CDT)
SETROPTS CLASSACT(CDT)
SETROPTS RACLIST(CDT) REFRESH

dn: profilename=tstclas1,profiletype=cdt,cn=myRacf
racfuacc: none
racfcdtinfoDefaultUacc: none
racfcdtinfoFirst: alpha
racfcdtinfoMaxLength: 0042
racfcdtinfoOther: alpha numeric special
racfcdtinfoPosit: 303
racfcdtinfoRaclist: required
racfcdtinfoSecLabelsRequired: yes
racfMemberList: planner
racfMemberList: manager
Chapter 3. Back ends 55

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f tstclas1.mod.ldif

tstclas1.mod.ldif has the contents shown in Figure 3-15 on page 56.

Figure 3-15 ldif file to alter audit parameters

3. Add the class to RACLIST:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f raclist.ldif

raclist.ldif has the contents shown in Figure 3-16.

Figure 3-16 ldif file to add class to RACLIST

4. Activate the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f activate.ldif

activate.ldif has the contents shown in Figure 3-17.

Figure 3-17 ldif file to activate class

5. Refresh the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f refresh.ldif

refresh.ldif has the contents shown in Figure 3-18.

Figure 3-18 ldif file to refresh RACLIST class

dn: profilename=TSTclas1,profiletype=cdt,cn=myRacf
changetype: modify
add:x
racfResourceAudit: failures(read)
racfResourceAttributes: warning

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfRACLIST: cdt

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfClassAct: cdt

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfRACLIST: cdt
RACFSETROPTSATTRIBUTES: REFRESH
56 IBM Tivoli Directory Server for z/OS

List and Search information about the new class
To list and search for information about the new class using RACF commands, use
commands similar to those shown in Figure 3-19.

Figure 3-19 List and search information about new class with output

The following example lists the class using LDAP commands:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s base -b
PROFILENAME=TSTCLAS1,profiletype=CDT,cn=myracf objectclass=*

which would return output similar to Figure 3-20 on page 58.

RLIST CDT * CDTINFO

CDT TSTCLAS1
...
CDTINFO INFORMATION
CASE = UPPER
DEFAULTRC = 004
DEFAULTUACC = NONE
FIRST = ALPHA
GENLIST = DISALLOWED
GENERIC = ALLOWED
GROUP =
KEYQUALIFIERS = 0000000000
MACPROCESSING = NORMAL
MAXLENGTH = 042
MAXLENX = NONE
MEMBER =
OPERATIONS = NO
OTHER = ALPHA NUMERIC SPECIAL
POSIT = 0000000303
PROFILESALLOWED = YES
RACLIST = REQUIRED
SECLABELSREQUIRED = YES
SIGNAL = NO

SEARCH CLASS(CDT)

TSTCLAS1
Chapter 3. Back ends 57

Figure 3-20 ldapsearch output

The following searches the CDT for classes:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s one -b
profiletype=CDT,cn=myracf profilename=*

which would return:

...
profilename=TSTCLAS1,profiletype=CDT,cn=myracf
...

The following is another way to perform the search:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s one -b
cn=myracf objectclass=*

which would return

...
profiletype=TSTCLAS1,cn=myracf
...

Define a profile in a class and permit users and groups to the new profile
To define a new profile in the newly created class and to permit select users and groups to the
new profile could be done with the following RACF commands shown in Figure 3-21 on
page 59.

PROFILENAME=TSTCLAS1,profiletype=CDT,cn=myracf
...
racfcdtinfoposit=303
racfcdtinfomaxlength=42
racfcdtinfodefaultrc=4
racfcdtinfokeyqualifiers
racfcdtinfofirst=ALPHA
racfcdtinfoother=ALPHA
racfcdtinfoother=NUMERIC
racfcdtinfoother=SPECIAL
racfcdtinfooperations=NO
...
racfcdtinfosignal=NO
racfcdtinfocase=UPPER
racfcdtinfogeneric=ALLOW
objectclass=TOP
objectclass=RACFRESOURCE
objectclass=EXTENSIBLEOBJECT
58 IBM Tivoli Directory Server for z/OS

Figure 3-21 Define a profile and permit users and groups

This is accomplished in LDAP using the following steps:

1. Define a new profile in the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -a -f
tstprof1.add.ldif

tstprof1.add.ldif has the contents shown in Figure 3-22.

Figure 3-22 Define a new profile in a class

2. Alter the profile to set audit parameters:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f
tstprof1.mod.ldif

tstprof1.mod.ldif has the contents shown in Figure 3-23.

Figure 3-23 Alter audit settings

3. Refresh the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f
tstclas1.refresh.ldif

tstclas1.refresh.ldif has the contents shown in Figure 3-24 on page 60.

RDEFINE TSTCLAS1 TSTPROF1 APPLDATA('Resource profile TSTPROF1 in class
TSTCLAS1') UACC(NONE) WARNING

RALTER TSTCLAS1 TSTPROF1 AUDIT(SUCCESS(READ)) UACC(READ) NOWARNING

SETROPTS RACLIST(TSTCLAS1)
SETROPTS CLASSACT(TSTCLAS1)
SETROPTS RACLIST(TSTCLAS1) REFRESH

PERMIT TSTPROF1 ACCESS(UPDATE) CLASS(TSTCLAS1) ID(USER1 USER2 USER3 GRP1 GRP2
GRP3)

SETROPTS RACLIST(TSTCLAS1) REFRESH

dn: profilename=TSTPROF1,profiletype=tstclas1,cn=myRacf
racfApplData: 'Resource profile TSTPROF1 in class TSTCLAS1'
racfUacc: none
racfResourceAttributes: warning

dn: profilename=TSTPROF1,profiletype=tstclas1,cn=myRacf
changetype: modify
add:x
racfResourceAudit: success(read)
racfUacc: read
racfResourceAttributes: nowarning
Chapter 3. Back ends 59

Figure 3-24 Refresh

4. Activate the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f
tstclas1.activate.ldif

tstclas1.activate.ldif has the contents shown in Figure 3-25.

Figure 3-25 Activate

5. Give users access to the profile:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f permit.ldif

permit.ldif has the contents shown in Figure 3-26.

Figure 3-26 Permit

6. Refresh the profile:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f
tstclas1.refresh.ldif

tstclas1.refresh.ldif has the contents shown in Figure 3-27.

Figure 3-27 Refresh

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfRACLIST: TSTCLAS1
RACFSETROPTSATTRIBUTES: REFRESH

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfClassAct: TSTCLAS1

dn: profilename=TSTPROF1,profiletype=tstclas1,cn=myRacf
changetype: modify
add:x
RACFACCESSCONTROL: ID(USER1 GRP1 GRP2 GRP3) ACCESS(update)
racfaccesscontrol: id(user2) access(update)
racfaccesscontrol: id(user3) access(update)

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfRACLIST: TSTCLAS1
RACFSETROPTSATTRIBUTES: REFRESH
60 IBM Tivoli Directory Server for z/OS

List and Search the new profile
The following RACF command would be used to list the new profile:

RLIST TSTCLAS1 TSTPROF1 ALL

The commans returns results similar to Figure 3-28.

Figure 3-28 RLIST

TSTCLAS1 TSTPROF1
LEVEL OWNER UNIVERSAL ACCESS YOUR ACCESS WARNING
----- -------- ---------------- ----------- -------
00 SUIMGJT NONE READ NO
INSTALLATION DATA

NONE
APPLICATION DATA

RESOURCE PROFILE TSTPROF1 IN CLASS TSTCLAS1
SECLEVEL

NO SECLEVEL
CATEGORIES

NO CATEGORIES
SECLABEL

NO SECLABEL
AUDITING

SUCCESS(READ)
NOTIFY

NO USER TO BE NOTIFIED
CREATION DATE LAST REFERENCE DATE LAST CHANGE DATE
(DAY) (YEAR) (DAY) (YEAR) (DAY) (YEAR)
------------- ------------------- ----------------
08
ALTER COUNT CONTROL COUNT UPDATE COUNT READ COUNT
----------- ------------- ------------ ----------
000000 000000 000000 000000
USER ACCESS ACCESS COUNT
---- ------ ------ -----
USER1 UPDATE 000000
USER2 UPDATE 000000
USER3 UPDATE 000000
GRP1 UPDATE 000000
GRP2 UPDATE 000000
GRP3 UPDATE 000000
ID ACCESS ACCESS COUNT CLASS ENTITY NAME
-------- ------- ------------ -------- ---------------------------------------
NO ENTRIES IN CONDITIONAL ACCESS LIST
Chapter 3. Back ends 61

The following RACF command would be used to search:

SEARCH CLASS(TSTCLAS1)

which would return:

TSTPROF1

This is accomplished using the following LDAP command:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s base -b
PROFILENAME=TSTprof1,profiletype=tstclas1,cn=myracf objectclass=*

which would return results similar to Figure 3-29.

Figure 3-29 ldapsearch

PROFILENAME=TSTprof1,profiletype=tstclas1,cn=myracf
profilename=TSTPROF1,profiletype=TSTCLAS1,cn=myracf
profilename=TSTPROF1
racfauthorizationdate=06/24/10
racfowner=RACFID=admin,PROFILETYPE=USER,CN=MYRACF
racflastreferencedate=06/24/10
racflastchangedate=06/24/10
racfalteraccesscount=0
racfcontrolaccesscount=0
racfupdateaccesscount=0
racfreadaccesscount=0
racfuacc=NONE
racfresourceaudit=SUCCESS(READ)
racflevel=0
racfresourceglobalaudit=NONE
racfaccesscontrol=ID(USER1) ACCESS(UPDATE) COUNT(0)
racfAccessControl=ID(USER2) ACCESS(update) COUNT(0)
racfAccessControl=ID(USER3) ACCESS(update) COUNT(0)
racfAccessControl=ID(GRP1) ACCESS(update) COUNT(0)
racfAccessControl=ID(GRP2) ACCESS(update) COUNT(0)
racfAccessControl=ID(GRP3) ACCESS(update) COUNT(0)
objectclass=TOP
objectclass=RACFRESOURCE
objectclass=EXTENSIBLEOBJECT
62 IBM Tivoli Directory Server for z/OS

Delete the new profile and the new class
The RACF commands shown in Figure 3-30 would be used to delete the new profile and
class and verify their deletion.

Figure 3-30 Delete new profile and class

The following series of ldap commands would delete the new profile and class.

1. Delete the new profile:

ldapdelete -D racfid=admin,profiletype=user,cn=myracf -w secret
PROFILENAME=tstPROF1,profiletype=TSTCLAS1,cn=myracf

2. Refresh the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f
tstclas1.refresh.ldif

The contents of tstclas1.refresh.ldif are shown in Figure 3-31.

Figure 3-31 Refresh

3. Deactivate the class:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret
tstclas1.deact.ldif

The contents of tstclas1.deact.ldif are shown in Figure 3-32 on page 64.

RDELETE TSTCLAS1 TSTPROF1
SETROPTS RACLIST(TSTCLAS1) REFRESH
SETROPTS NOCLASSACT(TSTCLAS1)

RLIST TSTCLAS1 TSTPROF1 ALL
TSTPROF1 NOT FOUND

SEARCH CLASS(TSTCLAS1) FILTER(TSTPROF1)
NO ENTRIES MEET SEARCH CRITERIA

RDELETE CDT TSTCLAS1
SETROPTS RACLIST(CDT) REFRESH
SETROPTS NOCLASSACT(CDT)

RLIST CDT * CDTINFO
NOTHING TO LIST

SEARCH CLASS(CDT)
ENTRIES MEET SEARCH CRITERIA

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfRACLIST: TSTCLAS1
RACFSETROPTSATTRIBUTES: REFRESH
Chapter 3. Back ends 63

Figure 3-32 Deactivate class

4. Verify that the profile has been deleted:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s base -b
PROFILENAME=TSTprof1,profiletype=tstclas1,cn=myracf objectclass=*

The search command should return results similar to those shown in Figure 3-33.

Figure 3-33 Search

The following search reveals no profiles defined for the class:

ldapsearch -D racfid=admin,profiletype=user,cn=myracf -w secret -s one -b
profiletype=TSTCLAS1,cn=myracf profilename=tstPROF1

This command should return:

no output

5. Delete the class from the CDT:

ldapdelete -D racfid=admin,profiletype=user,cn=myracf -w secret
PROFILENAME=tstclas1,profiletype=cdt,cn=myracf

6. Refresh the CDT:

ldapmodify -D racfid=admin,profiletype=user,cn=myracf -w secret -f refresh.ldif

The contents of refresh.ldif are shown in Figure 3-34.

Figure 3-34 Refresh

3.6 GDBM back end

The z/OS LDAP server provides the GDBM back end to store change logging information.
The GDBM back end can use either a DB2 or a z/OS UNIX System Services file system for its
data storage facility.

where tstclas1.deact.ldif is:
dn: cn=setropts,cn=myRacf
changetype: modify
delete:racfclassact
racfClassAct: TSTCLAS1

ldap_search: No such object
ldap_search: matched: PROFILETYPE=TSTCLAS1,CN=MYRACF
ldap_search: additional info: R004071 DN
'PROFILENAME=TSTPROF1,PROFILETYPE=TSTCLAS1,CN=MYRACF' does not exist
(sdbm_search)

dn: cn=setropts,cn=myRacf
changetype: modify
add:x
racfraclist: cdt
RACFSETROPTSATTRIBUTES: REFRESH
64 IBM Tivoli Directory Server for z/OS

The change log consists of a set of entries in the GDBM directory that contain information
about changes to TDBM, LDBM, or CDBM entries, the LDAP server schema entry
(cn=schema), or to an object controlled by an application (such as a RACF user, group, group
membership, or general resource profile).

Each LDAP server can contain only one change log. The change log entries are created in
the same order as the changes are made, and each change log entry is identified by a
change number value, beginning with 1. The change number value is incremented each time
a change number is assigned to a change log entry. In this manner, the change number of a
new change log entry is always greater than all change numbers of existing change log
entries.

Change log entries are only created by the LDAP server. The user cannot directly add a
change log entry. The user also cannot modify or rename a change log entry. However, the
user can delete change log entries and manually trim the change log.

TDBM, LDBM, CDBM, and schema changes
When change logging is activated, each add, modify, delete, or modify DN operation of an
entry from a TDBM, LDBM, or CDBM back end, or each modify of the LDAP server schema
entry, results in the creation of a change log entry. Change log entries are not created for
entries that are added to a TDBM back end when using the ldif2ds load utility.

RACF changes
RACF can be customized to create LDAP change log entries when a change is made to a
user, group, group membership, or general resource profile.

The changeLogAddEntry extended operation allows an application to log changes to data that
it controls. This interface is used by RACF to log adds, modifies, and deletes of a RACF user,
group, group membership, or general resource profile. The RACF changes can either be
driven through the LDAP server through the SDBM back end or directly to RACF.

Change log entries
The change log directory consists of the following:

� A root (suffix) entry, named cn=changelog

� One or more leaf entries, named changenumber=nnn,cn=changelog

Each change log entry is created by the LDAP server as a leaf entry directly under the
change log root entry, using attributes from the changeLogEntry and ibm-changelog
objectclasses.

Change log entries are deleted by the LDAP server when the change log is trimmed because
of reaching a limit specified by the changeLogMaxEntries or changeLogMaxAge options in
the configuration file. Change log entries can also be deleted by the user through a normal
delete operation.

Change log schema
The following object classes and attributes define a change log entry. These object classes
and attributes are defined by default in the LDAP server schema.

� objectclass: changeLogEntry

– changenumber: An integer assigned to the change log entry

– targetDN: The DN to which the change was applied. For RACF, this DN is created from
a user, group, class, or resource name passed in by RACF and the SDBM suffix
Chapter 3. Back ends 65

– changeType: Can select add | modify | delete | modrdn

– changeTime: The time stamp of when the change was made (not when this entry was
created)

– changes: The added entry or the modifications, in LDIF format

– newRDN: The new RDN specified in a TDBM, LDBM, or CDBM modify DN operation

– deleteOldRdn: A boolean indicating if the old RDN was deleted in a TDBM, LDBM, or
CDBM modify DN operation

– newSuperior: The new superior distinguished name specified in a TDBM, LDBM, or
CDBM modify DN operation

� objectclass: ibm-changelog

– ibm-changeInitiatorsName: The DN of the entity that initiated the change. For RACF,
this DN is created from a user ID passed in by RACF and the SDBM suffix.

The change log root entry and change log entries also have the standard operational
attributes: the ACL attributes, creatorsname, createtimestamp, modifiersname,
modifytimestamp, and ibm-entryuuid (change log root only).

Advantages
� GDBM provides change logging.
� Entries can be stored in DB2 or in a UNIX System Services file system.
� The file-based GDBM back end runs in both 31-bit and 64-bit modes.
� Change log entries can be searched and deleted by a user application.

Considerations
� The LDAP server must be started in 31-bit mode if using DB2-based GDBM.

3.6.1 GDBM configuration

The LDAP server can be configured with a GDBM back end by either using the dsconfig
utility to automate the process, or configuration can be performed manually for situations
where the dsconfig utility is not adequate or further configuration updates are required.

Automated configuration
The LDAP configuration utility, dsconfig, can simplify and automate the LDAP server
configuration process for GDBM (among other back ends).

For DB2-based GDBM:
For DB2-based GDBM configuration specifically, dsconfig will generate the following
members:

� DBCLI: A JCL job that binds the CLI packages to DB2 and the DSNACLI plan.
� DSNAOINI: The DB2 CLI initialization file.
� GDBSPUFI member: A set of DB2 SQL statements, to be executed using the SPUFI tool,

that defines database tables for the GDBM DB2-based back end.

After DB2 has been started, the DBCLI JCL can be submitted to bind the CLI packages to
DB2 and the DSNACLI plan. The GDBSPUFI member can then be submitted through the
DB2 SPUFI interactive tool to define database tables for the GDBM back end.

For file-based GDBM:
There are no members generated specifically for a file-based GDBM.
66 IBM Tivoli Directory Server for z/OS

The dsconfig utility produces a number of other files, including the DSCONFIG and
DSENVVAR LDAP server configuration and environment variables files, and a procedure
member needed to start the LDAP server as a started task. Using these files (along with the
DSNAOINI CLI initialization file if configuring DB2-based GDBM) the LDAP server can be
started with a GDBM back end.

For a complete step by step process of using the dsconfig utility, see z/OS V1R12.0 IBM
Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05.

Manual configuration
The GDBM back end can be configured manually if the dsconfig utility is not adequate or if
further configuration updates are required. A roadmap for configuring a GDBM back end can
be found in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05. After DB2 or a z/OS UNIX System Services file system has been set up for
GDBM, the LDAP server is ready to be configured and started.

The DB2-based and file-based GDBM back end-specific sections of the ds.conf configuration
file contain configuration options that are specific to the GDBM back end. Only one GDBM
back end can be configured, either DB2-based or file-based. To configure the LDAP server to
run with a GDBM back end, the configuration files can first be copied from the
/usr/lpp/ldap/etc directory.

For DB2-based GDBM
The following is a sample DB2-based GDBM back end-specific section of the ds.conf
configuration file:

DB2-based GDBM database definition and configuration options
database GDBM GLDBGD31
dbuserid GLDSRV

GLDSRV is the DB2-based GDBM database owner.

The database and dbuserid configuration options are required for configuration of a
DB2-based GDBM back end.

The following options are optional for configuring a DB2-based GDBM back end:
aclSourceCacheSize, attrOverflowSize, changeLogging, changeLoggingParticipant,
changeLogMaxAge, changeLogMaxEntries, dnToEidCacheSize, dsnaoini, entryCacheSize,
entryOwnerCacheSize, filterCacheBypassLimit, filterCacheSize, include,
persistentSearch, readonly, serverName, sizeLimit, timeLimit.

For file-based GDBM
Following is a sample file-based GDBM back end-specific section of the ds.conf configuration
file:

File-based GDBM database definition and configuration options

database GDBM GLDBGD31/GLDBGD64

The database configuration option is required for configuration of a file-based GDBM.

The following options are optional for configuring a file-based GDBM back end:
changeLogging, changeLoggingParticipant, changeLogMaxAge, changeLogMaxEntries,
commitCheckpointEntries, commitCheckpointTOD, databaseDirectory, fileTerminate,
filterCacheBypassLimit, filterCacheSize, include, persistentSearch, readOnly,
sizeLimit, timeLimit.
Chapter 3. Back ends 67

For more details regarding configuration options, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

The attributes and object classes used by GDBM are always in the LDAP server schema.

3.6.2 Enabling change logging

Change logging is enabled by specifying a combination of configuration options in the GDBM,
LDBM, TDBM, and CDBM back end configuration sections. The following options control
change logging:

� changeLogging: This GDBM configuration option turns change logging on or off. The
default, if not specified, is for change logging to be turned on.

� changeLogMaxEntries and changeLogMaxAge: These GDBM configuration options
determine when removal of old change log entries takes place, otherwise known as
trimming the change log. The default, if not specified, is not to trim the change log. If a
change log entry exceeds the age limit set using the changeLogMaxAge configuration
option, it is removed from the log. If the number of change log entries exceeds the limit set
using the changeLogMaxEntries configuration option, the change log entries with the
lowest changenumber values are removed.

� changeLoggingParticipant: This configuration option is used in the LDBM, TDBM, CDBM,
or GDBM back end configuration sections. If specified in an LDBM, TDBM, or CDBM back
end section, the option turns on change logging for changes to entries in that back end. If
specified in the GDBM back end section, change logging is turned on for changes to the
LDAP server schema. The default, if not specified, is to turn on change logging for TDBM,
LDBM, and CDBM back ends and the LDAP server schema.

3.6.3 Additional configuration for RACF change logging

Additional configuration is required for RACF to be able to log changes to a RACF user,
group, group membership, or resource profile:

� The SDBM back end must be configured. The SDBM suffix is needed to create a DN for
the change log entry for a modification to a RACF user, group, group membership, or
resource profile. SDBM is also required for retrieving the RACF user's new password or
other changed fields. The following option must be specified in the SDBM section of the
configuration file to allow change log entries to be created for changes to resource
profiles:

enableResources on

� LDAP Program Call support must be enabled in the LDAP server containing the change
log. To do this, add the following option to either the global section of the configuration file
or to the command used to start the LDAP server:

listen ldap://:pc

The listen parameter for LDAP Program Call support is specified in addition to any other
listen parameters.

RACF uses the RACFEVNT resource class to control the event types for which change log
entries are created. If RACFEVNT is active, and the appropriate resource is protected by
either a discrete or generic profile, LDAP change log entries are created for the
corresponding event types on a system-wide basis.
68 IBM Tivoli Directory Server for z/OS

Table 3-3 shows the name of the RACF resource in the RACFEVNT class that is used to
control notifications for each type of supported change event.

Table 3-3 Resource in RACEVNT class

For more details about RACF change logging, see the Security Server RACF Security
Administrator's Guide, SA22-7683.

Change log information in the root DSE entry
The following root DSE attributes enable applications to determine the location of the change
log and the range of change numbers. The attributes appear whenever change logging is
enabled (the GDBM back end is configured), whether or not change logging is currently on.

The location of the change log:

changelog=cn=changelog

The lowest change number currently in use in the change log. A zero indicates no change log
entries:

firstchangenumber=nnn

The highest change number currently in use in the change log. A zero indicates no change
log entries:

lastchangenumber=nnn

Resource in the
RACEVNT class

Change event type

NOTIFY.LDAP.USER � Password and password phrase changes, regardless of the
command or method used

� Updates to a user's revoke status (that is, changes to the FLAG4
field in the USER profile), regardless of the command or method
used

� Users added using the ADDUSER command
� User modifications made using the ALTUSER or PASSWORD

command
� Users deleted using the DELUSER command

NOTIFY.LDAP.GROUP � Groups added using the ADDGROUP command
� Group modifications made using ALTGROUP command
� Groups deleted using the DELGROUP command

NOTIFY.LDAP.CONNECT � Group membership changes made using any of the following
commands:
ALTUSER command, only when issued with GROUP, UACC, or
AUTHORITY operand
CONNECT command
REMOVE command

� Users established in their default groups using the ADDUSER
command

NOTIFY.LDAP.class-name � General resources added using the RDEFINE command
� General resource modifications made using the RALTER

command
� Changes made using the PERMIT command to the standard or

conditional access list of a general resource
� General resource deletions made using the RDELETE command
Chapter 3. Back ends 69

Unloading and loading the change log
The ds2ldif unload utility cannot be used to unload the contents of the change log. The
search operation should instead be used to unload GDBM. Change log entries cannot be
loaded into the change log. Both the add operation and the ldif2ds load utility fail when
processing change log entries.

3.6.4 Using the GDBM back end

The following example searches the root DSE for useful change log information:

� Invoke the ldapsearch utility to search the LDAP root DSE entry for change log
information, such as the change log suffix and the lowest and highest change numbers
currently in use. Example 3-5 shows partial output.

Example 3-5 ldapsearch example for changelog information

ldapsearch -D cn=admin -w secret -s base -b "" objectclass=*
changelog=cn=changelog
firstchangenumber=1
lastchangenumber=4

The following example searches for all entries in the GDBM back end:

� Invoke the ldapsearch utility to search the change log for all changes as shown in
Example 3-6.

Example 3-6 ldapsearch example for all changes

ldapsearch -D cn=admin -w secret -b cn=changelog objectclass=*

changeNumber=1,cn=changelog
objectclass=top
objectclass=changeLogEntry
objectclass=ibm-changeLog
changenumber=1
changetype=add
targetdn=dc=yourcompany,dc=com
changes=objectClass: organization
objectClass: dcObject
description: The company domain component
o: Your Co.

ibm-changeinitiatorsname=cn=Admin
changetime=20100713205013.673322Z

changeNumber=2,cn=changelog
objectclass=top
objectclass=changeLogEntry
objectclass=ibm-changeLog
changenumber=2
changetype=add
targetdn=ou=users,dc=yourcompany,dc=com
changes=objectclass: top
objectclass: organizationalUnit
ou: users
description: Container for user entries
70 IBM Tivoli Directory Server for z/OS

ibm-changeinitiatorsname=cn=Admin
changetime=20100713205013.701144Z

changeNumber=3,cn=changelog
objectclass=top
objectclass=changeLogEntry
objectclass=ibm-changeLog
changenumber=3
changetype=add
targetdn=cn=Bill Barker,ou=users,dc=yourcompany,dc=com
changes=objectClass: organizationalPerson
sn: BaRkEr
cn: Bill Barker
telephoneNumber: 523-9494
userPassword: *ComeAndGetIt*

ibm-changeinitiatorsname=cn=Admin
changetime=20100713205013.718894Z

changeNumber=4,cn=changelog
objectclass=top
objectclass=changeLogEntry
objectclass=ibm-changeLog
changenumber=4
changetype=add
targetdn=cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com
changes=objectClass: organizationalPerson
sn: Shmoe
cn: Joe Shmoe
telephoneNumber: 593-7777
userPassword: *ComeAndGetIt*

ibm-changeinitiatorsname=cn=Admin
changetime=20100713205013.736239Z

cn=changelog
objectclass=top
objectclass=container
cn=changelog

3.6.5 Tuning the GDBM back end

The amount of space required to store a GDBM back end in a z/OS UNIX System Services
file system depends on two things:

1. The maximum number of change log entries expected to be stored
2. The estimated size of a change log entry

The changeLogMaxEntries and changeLogMaxAge configuration options can be used to control
the number of change log entries.

The size of a change log entry can be calculated based on the size of the LDIF used to add or
modify a TDBM, LDBM, or CDBM entry because an entry's LDIF is inserted into the change
Chapter 3. Back ends 71

log entry. Therefore, the size of the largest entry's LDIF is used to estimate a change log
entry's size.

The estimated space required to hold the GDBM back end data can be calculated as follows
(this includes the additional space required to copy the database files during GDBM commit
processing):

6 X (maximum number of GDBM entries) X (largest add or modify LDIF + 1000)
72 IBM Tivoli Directory Server for z/OS

Chapter 4. Schemas

This chapter discusses the IBM Tivoli Directory Server Schema.

4

© Copyright IBM Corp. 2011. All rights reserved. 73

4.1 Schema

Entries in the directory are made up of attributes that consist of an attribute type and one or
more attribute values. These are referred to as attribute=value pairs. Every entry contains one
or more objectclass=value pairs that identify what type of information the entry contains. The
object classes associated with the entry determine the set of attributes that must or might be
present in the entry.

The schema defines a set of attribute types that give characteristics to entries and further
define an entry in the LDAP server other than just having a distinguished name (DN). For
example, when describing a person you know, one could mention a person's eye color, hair
color, height, weight, home address, email address, home telephone number, cell phone
number, and whether he or she works or not. In an LDAP entry, each of these characteristics
could be an attribute type and have one or more values.

The schema also defines object classes that are used to group attribute types together. An
object class can then be used to define classifications of entries in the directory. For example,
the statistics kept for players on a baseball team varies. For a baseball pitcher, the following
types of statistics are kept: number of wins, saves, runs given up, walks allowed, strikeouts,
and current/past teams. For a position player, such as an outfielder, the following types of
statistics are kept: number of total hits, doubles, triples, home runs, runs batted in, stolen
bases, positions played, and current/past teams. If you were to represent baseball players in
an LDAP server, two object classes would be required because different types of statistics are
kept for each player.

4.2 Schema configuration in IBM Tivoli Directory Server for
z/OS

IBM Tivoli Directory Server for z/OS has a single schema for the entire server that lays out the
foundation for the type of data stored in the directory. It defines the attribute types and the
object classes that entries in the directory are allowed to have. IBM Tivoli Directory Server for
z/OS stores its schema in an entry with a distinguished name (DN) of cn=schema.

In IBM Tivoli Directory Server for z/OS, the schema is stored in an z/OS UNIX System
Services files system directory specified by the schemaPath configuration option in the LDAP
server configuration file. The default for the schemaPath configuration option is the
/var/ldap/schema directory.

If there is not already a schema present in the directory pointed to by the schemaPath
configuration option, IBM Tivoli Directory Server for z/OS populates it with the minimum or
initial schema. The minimum or initial schema can be used with the SDBM (without RACF
custom fields), CDBM (with configuration related entries), and GDBM back ends. However, it
needs to be updated for LDBM, TDBM, SDBM with RACF custom fields, and CDBM with
user-defined entries.

Generally for each new IBM Tivoli Directory Server for z/OS release, there are new attribute
types and object class definitions added to the minimum or initial schema. If migrating an
existing IBM Tivoli Directory Server for z/OS to a more recent version of IBM Tivoli Directory
Server for z/OS, these new attribute types and object class definitions are automatically
added to the schema. This enables the server to automatically take advantage of any new
features that require the new attribute types or object classes.
74 IBM Tivoli Directory Server for z/OS

4.2.1 Applying schema to IBM Tivoli Directory Server for z/OS

If you are planning on using LDBM, TDBM, SDBM with RACF custom fields, or CDBM with
user-defined entries, the minimum or initial schema is not sufficient for these needs. In these
situations, it will be necessary to apply additional schema to IBM Tivoli Directory Server for
z/OS.

IBM Tivoli Directory Server for z/OS ships two schema files, schema.user.ldif and
schema.IBM.ldif, which are shipped in the /usr/lpp/ldap/etc/ directory. The
schema.user.ldif file contains schema from industry-standard RFCs and other products.
The schema.IBM.ldif file contains schema that might be required for use with other IBM
products.

Depending on the type of entries that you are planning on storing in these back ends, the
schema definitions in schema.user.ldif and schema.IBM.ldif might be sufficient. If the
schema definitions are sufficient, you can update the cn=schema entry by running the
ldapmodify utility:

ldapmodify -D adminDN -w passwd -f /usr/lpp/ldap/etc/schema.user.ldif
ldapmodify -D adminDN -w passwd -f /usr/lpp/ldap/etc/schema.IBM.ldif

adminDN is the adminDN specified in the LDAP server configuration file and passwd is the
password for the LDAP administrator's entry.

If the schema definitions in schema.user.ldif and schema.IBM.ldif are not sufficient for your
directory needs, you might need to create your own schema definitions or obtain schema
definitions from a third party if you are running an application that requires access to IBM
Tivoli Directory Server for z/OS. See Defining additional schema in z/OS V1R12.0 IBM Tivoli
Directory Server Administration and Use for z/OS, SC23-5191-05 for more information.

4.3 Attribute Types

Each attribute type that is defined in the schema has a data type, which is commonly referred
to as the attribute syntax. The attribute syntax specifies the type of data that is allowed in its
values when used within an entry. When adding or modifying entries in the directory, the
schema enforces the attribute syntax to ensure that only allowed values can be added to
entries in the directory. For example, the baseball player's statistics such as the number of
total hits and doubles would be integers in the schema and the current/past teams would be
character strings.

Table 4-1 shows the attribute syntaxes that are supported by IBM Tivoli Directory Server for
z/OS. The schema also refers to each attribute syntax by a numeric OID (Object Identifier).
These OIDs are defined in RFC 2252:

http://www.ietf.org/rfc/rfc2252.txt

In Table 4-1, the syntaxes marked with an * are only supported when the server compatibility
(serverCompatLevel configuration option) is 6 or later. The server compatibility level of z/OS
V1R10 is 4, z/OS V1R11 is 5, and z/OS V1R12 is 6.

Table 4-1 Supported attribute syntax

Attribute syntax Attribute OID Attribute description

Binary 1.3.6.1.4.1.1466.115.121.1.5 Binary data such as a jpeg
photo
Chapter 4. Schemas 75

http://www.ietf.org/rfc/rfc2252.txt

Bit string* 1.3.6.1.4.1.1466.115.121.1.6 Binary bit data such as b'0110'
or B'0110'

Boolean 1.3.6.1.4.1.1466.115.121.1.7 A true or false value

Certificate* 1.3.6.1.4.1.1466.115.121.1.8 Binary data (no format checking
done)

Certificate List* 1.3.6.1.4.1.1466.115.121.1.9 Binary data (no format checking
done)

Certificate Pair* 1.3.6.1.4.1.1466.115.121.1.10 Binary data (no format checking
done)

Country String* 1.3.6.1.4.1.1466.115.121.1.11 Two character printable string
(alphabetic, digits, ', (,), +,,, -,.,
/,:,?, space)

Distinguished Name 1.3.6.1.4.1.1466.115.121.1.12 Sequence of attribute
types-value pairs. Can be used
to refer to other distinguished
names in the directory.

Delivery Method* 1.3.6.1.4.1.1466.115.121.1.14 UTF-8 characters (no format
checking)

Directory String 1.3.6.1.4.1.1466.115.121.1.15 UTF-8 characters

Enhanced Guide* 1.3.6.1.4.1.1466.115.121.1.21 UTF-8 characters (no format
checking)

Facsimile Telephone Number* 1.3.6.1.4.1.1466.115.121.1.22 Printable string (alphabetic,
digits, ', (,), +,,, -,., /,:,?, space)
and $(no format checking)

Fax* 1.3.6.1.4.1.1466.115.121.1.23 Binary data (no format
checking)

Generalized Time 1.3.6.1.4.1.1466.115.121.1.24 yyyymmddhhmmss.ffffff (local
time)

yyyymmddhhmmss.ffffffZ
(GMT)

yyyymmddhhmmss.ffffff-hhmm
(Time zone west)

yyyymmddhhmmss.ffffff+hhmm
(Time zone east)

The seconds (ss) and
microseconds (ffffff) can be
omitted and defaults to 0

Guide* 1.3.6.1.4.1.1466.115.121.1.25 UTF-8 characters (no format
checking)

IA5 String 1.3.6.1.4.1.1466.115.121.1.26 IA5 characters (commonly
known as 7-bit ASCII)

Integer 1.3.6.1.4.1.1466.115.121.1.27 +/- 62 digit integer

Attribute syntax Attribute OID Attribute description
76 IBM Tivoli Directory Server for z/OS

Matching rules are used by an LDAP server when performing search and compare operations
on attribute types. These rules are also used to identify the value to be added or deleted
when modifying entries, and when comparing a distinguished name with the name of an
entry. There are three types of matching rules supported:

� EQUALITY is used to determine if two values are equal.

� ORDERING is used to determine how two values are ordered. This matching rule is used
to determine what is returned when specifying a search filter such as
(changeNumber>=5000) or (changeNumber<=5000).

JPEG* 1.3.6.1.4.1.1466.115.121.1.28 Binary data (no format
checking)

MHS OR Address* 1.3.6.1.4.1.1466.115.121.1.33 UTF-8 characters (no format
checking)

Name And Optional UID* 1.3.6.1.4.1.1466.115.121.1.34 Sequence of attribute type and
value pairs

Numeric String* 1.3.6.1.4.1.1466.115.121.1.36 List of space-separated
numbers

Object Identifier 1.3.6.1.4.1.1466.115.121.1.38 Name or numeric object
identifier

Other Mailbox* 1.3.6.1.4.1.1466.115.121.1.39 UTF-8 characters (no format
checking)

Octet String 1.3.6.1.4.1.1466.115.121.1.40 Octet data

Postal Address* 1.3.6.1.4.1.1466.115.121.1.41 UTF-8 characters (no format
checking)

Protocol Information* 1.3.6.1.4.1.1466.115.121.1.42 UTF-8 characters (no format
checking)

Presentation Address* 1.3.6.1.4.1.1466.115.121.1.43 UTF-8 characters (no format
checking)

Printable String* 1.3.6.1.4.1.1466.115.121.1.44 Printable string (alphabetic,
digits, ', (,), +,,, -,., /,:,?, space)

Supported Algorithm* 1.3.6.1.4.1.1466.115.121.1.49 UTF-8 characters (no format
checking)

Telephone Number 1.3.6.1.4.1.1466.115.121.1.50 Printable string (alphabetic,
digits, ', (,), +,,, -,., /,:,?, and
space) and “

Teletex Terminal Identifier* 1.3.6.1.4.1.1466.115.121.1.51 UTF-8 characters (no format
checking)

Telex Number* 1.3.6.1.4.1.1466.115.121.1.52 Printable string (alphabetic,
digits, ', (,), +,,, -,., /,:,?, space)
and $ (no format checking)

UTC Time 1.3.6.1.4.1.1466.115.121.1.53 Like Generalized Time above,
but with a two-digit year
specification (yy)

Attribute syntax Attribute OID Attribute description
Chapter 4. Schemas 77

� SUBSTR (substring) is used to determine if the presented value is a substring of an
attribute value from the directory. This is used when wildcards, such as (cn=jo*), are
present in a search filter. This search filter could return entries that have a cn attribute
value equal to jon, joe, or john.

The matching rules along with the attribute syntax indicate the type of data that is allowed in
an entry's attribute values. These checks are performed during add, modify, compare, and
search operations involving attribute types. Each attribute syntax allows certain EQUALITY,
ORDERING, and SUBSTR (substring) matching rules which indicates how each of the
comparisons are performed. If the EQUALITY, ORDERING, or SUBSTR (substring) rules are
not specified in the attribute type definition in the schema, there are defaults assigned and
they are used. See the LDAP Directory Schema chapter in z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05 for more information about the
supported and default matching rules for each attribute syntax.

To illustrate how equality matching rules work, the cn=jon,o=ibm,c=us is in the directory as
shown in Figure 4-1.

Figure 4-1 cn=jon,o=ibm,c=us sample entry

Note the following:

a. The cn and sn attribute types have Directory string syntax and an EQUALITY matching
rule of caseIgnoreMatch.

b. The userpassword attribute type has Octet String syntax and an EQUALITY matching
rule of octetStringMatch.

c. The homephone attribute type has Telephone Number syntax and an EQUALITY
matching rule of telephoneNumberMatch.

Equality matching rules tests with the cn=jon,o=ibm,c=us entry:

1. Because the cn and sn attribute types have an EQUALITY matching rule of
caseIgnoreMatch, the attribute value case that is specified on a search filter or a compare
test does not matter; therefore (cn=jon) or (cn=JoN) are both equivalent and will
successfully return the entry. However if the EQUALITY matching rule is
caseExactMatching, only the (cn=jon) filter will successfully return the entry.

2. Because the userpassword attribute type has an EQUALITY matching rule of
octetStringMatch, a compare operation will only return the entry when using
(userpassword=secret) as a test filter.

3. Because the homephone attribute type has an EQUALITY matching rule of
telephoneNumberMatch, a compare or search operation will successfully return the entry
when specifying either (homephone=555-555-5555) or (homephone=5555555555) on a
search filter or a comparison test.

dn: cn=jon,o=ibm,c=us
objectclass: newPilotPerson
cn: jon
sn: cottrell
userpassword: secret
homephone: 555-555-5555

Note: IBM Tivoli Directory Server for z/OS does not support specifying attribute types
that are Octet String syntax on a search filter.
78 IBM Tivoli Directory Server for z/OS

The ordering and substring matching rules work in a similar manner.

Attributes types defined in the schema can be designated as single-valued or multi-valued. A
single-valued attribute is only allowed to have one value within an entry. A multi-valued
attribute is allowed to have one or more values within an entry. There are times when
multi-valued attributes are handy. For example, if devising an attribute type for the positions a
baseball player can play, the position field ought to be a multi-valued attribute so that it can
have multiple values in an entry. However, when describing the total number of hits a baseball
player has in the current season, it should be defined as a single-valued attribute type.

Each attribute type in the schema has a usage that indicates if it is operational or
non-operational. If the bound user is authorized to the attribute type, the value of an
operational attribute type in an entry is only returned by a search operation if the attribute type
is specified in the list of attribute to be returned or the plus '+' sign is specified. An
non-operational attribute type is always returned assuming that the bound user is authorized
to the attribute type.

It is also possible to define an attribute type in the schema so that users are restricted from
being able to modify its values in an entry. These attribute types are called non-user
modifiable attributes, and should only be specified for attribute types that are set by the server
because they cannot be assigned a value by a user. The vast majority of attribute types in
IBM Tivoli Directory Server for z/OS are user-modifiable.

IBM Tivoli Directory Server for z/OS supports classifying attribute types into access classes.
The supported access classes are:

� Normal
� Sensitive
� Critical
� Restricted
� System

The access class assigned to an attribute type depends on the sensitivity of the data to be
stored in the attribute type. For example, a baseball player's bank account number for direct
depositing his paycheck ought to be considered a sensitive or critical attribute.

These attribute classes can then be used to grant users or groups authorization to an entire
set of attribute types in the directory. The restricted and system attribute classes are used for
attribute types such as aclEntry and aclPropogate, so those access classes should not be
used when defining new attribute types. Generally, most attribute types in IBM Tivoli Directory
Server for z/OS are in the normal access class. See 5.4, “Authorization using Tivoli Directory
Server Access Control Lists (ACL)” on page 108 for more information.

4.3.1 Attributetypes and ibmattributetypes attribute format

The attributetypes and ibmattributetypes attribute values must be specified when adding
a new attribute type to the cn=schema entry as shown in Figure 4-2 on page 80.
Chapter 4. Schemas 79

Figure 4-2 attributetypes attribute format

attributeTypes: (numericoid [NAME qdescrs] [DESC qdstring] [OBSOLETE] [SUP oid]
[EQUALITY oid] [ORDERING oid] [SUBSTR oid] [SYNTAX noidlen] [SINGLE-VALUE]
[NO-USER-MODIFICATION] [USAGE attributeUsage])

numericoid
The unique, assigned numeric object identifier.

NAME qdescrs
The name and alias names by which this attribute type is known. This is also known as
the object identifier. The first name in the list is used as the base name and the other
names are referred to as alias names.

DESC qdstring
Text description of the attribute type.

OBSOLETE
Indicates that the attribute type is obsolete.

SUP oid
Specifies the superior attribute type. When a superior attribute type is defined, the
EQUALITY, ORDERING, SUBSTR, and SYNTAX values might be inherited from the superior
attribute type. The referenced superior attribute type must also be defined in the
schema. When the SYNTAX, EQUALITY, ORDERING, or SUBSTR values are not specified for an
attribute type, the attribute type hierarchy is used to determine these values. The
SYNTAX must be specified on the attribute type or through inheritance.

EQUALITY oid
Specifies the object identifier of the matching rule which is used to determine the
equality of values.

ORDERING oid
Specifies the object identifier of the matching rule which is used to determine the
order of values.

SUBSTR oid
Specifies the object identifier of the matching rule which is used to determine
substring matches of values.

SYNTAX noidlen
The syntax defines the format of the data stored for this attribute type. It is
specified using the numeric object identifier of the LDAP syntax and, optionally, the
maximum length of data stored for this attribute type.

SINGLE-VALUE
Limits entries to only one value for this attribute type.

NO-USER-MODIFICATION
When specified, users might not modify values of this attribute type.

USAGE attributeUsage
Indicates whether the attribute type is operational or non-operational. An operational
attribute is only returned when specifically requested on a search operation or the plus
sign ('+') is specified. Specify userApplications for attributeUsage for a
non-operational attribute or directoryOperation, distributedOperation, and DSAOperation
for an operational attribute.
80 IBM Tivoli Directory Server for z/OS

The ibmattributetypes format is shown in Figure 4-3.

Figure 4-3 ibmattributetypes attribute format

See 4.6, “Defining additional schema for use with RACF custom fields” on page 87 for more
information about modifying the schema for use with RACF user and group custom fields.

4.4 Object Classes

Object class definitions in the schema are used to group attribute types together to help
define the characteristics of individual entries. The object class definition indicates the
required and optional attribute types in an entry when it is created.

There are three types of supported object classes: structural, abstract, or auxiliary. When
creating an entry in LDAP, only one structural object class can be specified. Abstract and
auxiliary object classes are used to provide common characteristics to entries with different
structural object classes. Abstract object classes are used to derive additional object classes.
Abstract object classes must be referred to in a structural or auxiliary superior hierarchy.
Auxiliary object classes are used to extend the set of required or optional attribute types of an
entry. Therefore it is possible for an entry to include a structural object class and an auxiliary
object class to add additional attribute types to the entry.

ibmattributetypes: (numericoid [ACCESS-CLASS IBMAccessClass]
 [RACFFIELD qdescrs])

numericoid
The unique, assigned numeric object identifier of the associated attribute type.

ACCESS-CLASS ibmAccessClass
The level of sensitivity of the data values for this attribute type. The acceptable
values are normal, sensitive, and critical.

RACFFIELD qdescrs
The information needed to associate this attribute with a RACF custom field in a user or
group profile.

The format of qdescrs is either a value in single quotation marks:
RACFFIELD ’racfFieldName’
or two values in parentheses, each in single quotation marks and separated by a blank:
RACFFIELD (’racfFieldName’ ’racfFieldType’)

racfFieldName format must be: USER-CSDATA-name or GROUP-CSDATA-name

where name is the name of the associated RACF custom field. racfFieldType is the type of
custom field. The acceptable values are: char, flag, hex, num, and qchar. This value
defaults to char if the racfFieldType is not specified.
Chapter 4. Schemas 81

4.4.1 objectclasses attribute value format

The objectclasses attribute value must be specified when adding a new object class definition
to the cn=schema entry as shown in Figure 4-4.

Figure 4-4 objectclasses attribute format

4.5 Defining additional schema in IBM Tivoli Directory Server
for z/OS

It might be necessary to define your own schema if there is nothing publicly available to
represent the data that you want to store in the directory. Before defining additional schema,
consider the following:

� What information should be stored in these entries, and what type of information is it?

� After deciding in the list of data to store in the entry, decide how the data should be
represented in an LDAP entry. This is where the supported LDAP attribute syntaxes come

objectClasses: (numericoid [NAME qdescrs] [DESC qdstring]
 [OBSOLETE] [SUP oids] [ABSTRACT|STRUCTURAL|AUXILIARY]
 [MUST oids] [MAY oids])

numericoid
The unique, assigned numeric object identifier.

NAME qdescrs
The name and alias names by which this object class is known. This is also known as the
object identifier. The first name in the list is used as the base name. If name is not
specified, the numeric object identifier is used to refer to the object class.

DESC qdstring
Text description of the object class.

OBSOLETE
Indicates that the object class is obsolete.

SUP oids
List of one or more superior object classes. When a superior object class is defined,
entries specifying the object class must adhere to the superset of MUST and MAY values.
The supersets of MUST and MAY values include all MUST and MAY values specified in the
object class definition and all MUST and MAY values specified in the object class’s
superior hierarchy. When an attribute type is specified as a MUST in an object class in
the hierarchy and a MAY in another object class in the hierarchy, the attribute type is
treated as a MUST. Referenced superior object classes must be defined in the schema.

ABSTRACT | STRUCTURAL | AUXILIARY
Indicates the type of object class. STRUCTURAL is the default.

MUST oids
List of one or more mandatory attribute types. Attribute types which are mandatory must
be specified when adding or modifying a directory entry.

MAY oids
List of one or more optional attribute types. Attribute types which are optional might
be specified when adding or modifying a directory entry.
82 IBM Tivoli Directory Server for z/OS

into play. Should the data be Integer syntax, Directory string syntax, Telephone Number
syntax, Generalized Timestamp syntax, and so on? Other things to consider include
whether the attribute type should be single or multi-valued in the directory, and the
equality, ordering, and substring matching rules. The list of data obtained in these first two
steps will likely become an attribute type in the LDAP server's schema.

� After you have the list of attribute types, you need to decide which attribute types are
optional and which are required. This information can then be used to define your object
class definitions.

4.5.1 Defining additional schema example

The following example shows how to define your own schema in IBM Tivoli Directory Server
for z/OS. The attribute types and an object class in this example represent baseball position
players as entries in IBM Tivoli Directory Server for z/OS. In these baseball position player
entries, the first name, last name, hometown, position, hits, home runs, runs batted in (rbi),
salary, and hobbies need to be stored.

The attribute types for first name, last name, hometown, position, and hobbies should have
string representation in the directory. The hits, home runs, rbi, and salary should have integer
representation in the directory because we want to be able to do ordering searches based on
numeric representation instead of character representation.

For the string attribute types, determine the supported character data in these entries and the
supported matching rules when searching or comparing the data in these entries. There are
several attribute type string syntaxes with varying matching rules supported in IBM Tivoli
Directory Server for z/OS such as: Bit string, Country string, Delivery method, Directory
string, Enhanced Guide, Guide, IA5String, Numeric String, and Printable string. Before
defining new attribute types in the schema, look at schema.user.ldif, schema.IBM.ldif, or
other publicly defined schemas to see if there are any existing attribute types defined that
would meet your directory needs. Taking a quick look at the schema shipped in the
schema.user.ldif file, the cn (commonName) and sn (surName) attribute types could be
used for the baseball player's first name and last name respectively. For the remaining
attribute types, after analyzing the attribute type syntaxes and supported matching rules for
these syntaxes, the Directory string syntax seems appropriate as it allows UTF-8 characters,
which allows specifying multi-byte characters such as umlats in a person's hobbies. The
equality matching rules supported with the Directory string syntax are caseIgnoreMatch and
caseExactMatching, which provide flexibility while searching and comparing attribute values.
After analyzing these strings, we decided that the equality matching rules should be
caseIgnoreMatch because string case is not important while adding, modifying, searching, or
comparing these attribute values. It was determined that the position and hobby attribute
types should be multi-valued because baseball players are able to play multiple positions, and
many have multiple hobbies.

For the hits, home runs, rbi, and salary attribute types, there are two integer type syntaxes
supported in IBM Tivoli Directory Server for z/OS that could be used: Integer and Numeric
String. For these attribute types, we chose Integer syntax because it depicts a single number,
whereas the Numeric String is a blank separated list of numbers. Table 4-2 depicts the
attribute types that will be used to represent a baseball position player entry.

Table 4-2 Attribute types example

Attribute
types

Attribute
Syntax

Equality
matching rule

Ordering matching rule Substring matching rule Multi
valued

Required
or
optional

Access
class

cn Directory
string

caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch N Required normal
Chapter 4. Schemas 83

The attribute types in Table 4-2 on page 83 must be put into an LDIF file so that the schema
can be updated. Figure 4-5 on page 85 and Figure 4-6 on page 86 display the
schema.update.ldif file that we used to modify the schema to add the new attribute types
and the object class (baseballPlayer). The OID arc being used is the IBM OID arc, so do not
use these OIDs for your own attribute type schema definitions.

sn Directory
string

caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch N Required normal

hometown Directory
string

caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch N Required normal

position Directory
string

caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch Y Required normal

hits Integer integerMatch N/A (will let default) N/A (Substring matching rule
does not apply to Integer
syntax)

N Required normal

homeruns Integer integerMatch N/A (will let default) N/A (Substring matching rule
does not apply to Integer
syntax)

N Required normal

rbi Integer integerMatch N/A (will let default) N/A (Substring matching rule
does not apply to Integer
syntax)

N Required normal

salary Integer integerMatch N/A (will let default) N/A (Substring matching rule
does not apply to Integer
syntax)

N Required sensitive

hobby Directory
string

caseIgnoreMatch caseIgnoreOrderingMatch caseIgnoreSubstringsMatch Y Optional normal

Attribute
types

Attribute
Syntax

Equality
matching rule

Ordering matching rule Substring matching rule Multi
valued

Required
or
optional

Access
class

Note: When defining new attribute types or object classes in the schema, a unique and
numeric object identifier (OID) should be specified. OIDs are strings of numbers separated
by periods. OID “ranges” or “arcs” are allocated by naming authorities. You can get an OID
arc for your company or organization by contacting the Internet Assigned Numbers
Authority (IANA) at: http://www.iana.org. Search the site for “Private Enterprise Number”
to apply for a Private Enterprise number. After you have obtained an OID arc, you can
begin assigning OIDs to object classes and attribute types that you define.
84 IBM Tivoli Directory Server for z/OS

http://www.iana.org

Figure 4-5 schema.update.ldif

dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (
 1.3.18.0.2.1000.100.4.1
 NAME 'hometown'
 DESC 'The town where a person is from.'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.1
 ACCESS-CLASS normal
)
attributetypes: (
 1.3.18.0.2.1000.100.4.2
 NAME 'position'
 DESC 'Baseball position'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.2
 ACCESS-CLASS normal
)
attributetypes: (
 1.3.18.0.2.1000.100.4.3
 NAME 'hits'
 DESC 'Number of total hits'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.3
 ACCESS-CLASS normal
)
attributetypes: (
 1.3.18.0.2.1000.100.4.4
 NAME 'homeruns'
 DESC 'Number of homeruns hit'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.4
 ACCESS-CLASS normal
)
Chapter 4. Schemas 85

Figure 4-6 schema.update.ldif continued

The z/OS ldapmodify utility can be used to modify the schema:

ldapmodify -D adminDN -w passwd -f schema.update.ldif

adminDN is the adminDN specified in the LDAP server configuration file and passwd is the
password for the LDAP administrator's entry.

attributetypes: (
 1.3.18.0.2.1000.100.4.5
 NAME 'rbi'
 DESC 'Number of runs batted in - rbi'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.5
 ACCESS-CLASS normal
)
attributetypes: (
 1.3.18.0.2.1000.100.4.6
 NAME 'salary'
 DESC 'The total salary/income of a person'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.6
 ACCESS-CLASS sensitive
)
attributetypes: (
 1.3.18.0.2.1000.100.4.7
 NAME 'hobby'
 DESC 'The hobby of a person'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 USAGE userApplications
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.7
 ACCESS-CLASS normal
)
-
add: objectclasses
objectclasses: (
 1.3.18.0.2.1000.100.6.1
 NAME 'baseballPlayer'
 DESC 'Used to represent a baseball player'
 SUP top
 STRUCTURAL
 MUST (cn $ sn $ hometown $ position $ hits $ homeruns $ rbi $ salary)
 MAY (hobby)
)
-

86 IBM Tivoli Directory Server for z/OS

4.6 Defining additional schema for use with RACF custom
fields

The minimum schema contains the attribute types that are necessary to use the SDBM back
end without applying any additional schema. Each RACF command line keyword is mapped
to an LDAP attribute type. For example, a RACF user's OMVS segment UID keyword is
mapped to the LDAP attribute type racfOmvsUid. See the Accessing RACF information
chapter in z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05 for all of the RACF keyword and LDAP attribute type mappings. However, if
there are RACF users or groups that have a RACF custom field defined in the CSDATA
segment, the minimum schema must be updated to map the custom field to an LDAP attribute
type. This allows this data to be added, modified, and displayed on searches.

Similar to updating the schema for other new LDAP attribute types, an attributetypes and
ibmattributetypes value must be specified. However, the ibmattributetypes attribute type
format contains an optional RACFFIELD parameter that specifies the appropriate RACF user
or group CSDATA segment to map this LDAP attribute type to.

See sections Attributetypes and ibmattributetypes attribute format in z/OS V1R12.0 IBM Tivoli
Directory Server Administration and Use for z/OS, SC23-5191-05 for the format of the
attributetypes and ibmattributetypes values.

Figure 4-7 on page 88 shows the custom.field.ldif file we used to modify the schema to
add two new attribute types to map the USER.CSDATA.WRKPHNE and
GROUP.CSDATA.WRKGRP custom fields to LDAP attribute types. Both custom fields are
defined as characters fields in RACF. The OID arc being used is the IBM OID arc, so do not
use these OIDs for your own attribute type schema definitions.
Chapter 4. Schemas 87

Figure 4-7 custom.field.ldif example

The z/OS ldapmodify utility can be used to modify the schema to add these two attribute
types:

ldapmodify -D adminDN -w passwd -f custom.field.ldif

adminDN is the adminDN specified in the LDAP server configuration file and passwd is the
password for the LDAP administrator's entry.

dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (
 1.3.18.0.2.1000.100.4.10
 NAME 'racfworkphone'
 DESC 'Represents the WRKPHNE field in the RACF user CSDATA segment'
 EQUALITY caseIgnoreMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 SINGLE-VALUE
 USAGE userApplications
)
attributetypes: (
 1.3.18.0.2.1000.100.4.11
 NAME 'racfworkgroup'
 DESC 'Represents the WRKGRP field in the RACF group CSDATA segment'
 EQUALITY caseIgnoreMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 SINGLE-VALUE
 USAGE userApplications
)
-
add: ibmattributetypes
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.10
 ACCESS-CLASS sensitive
 RACFFIELD ('USER-CSDATA-WRKPHNE' 'char')
)
ibmattributetypes: (
 1.3.18.0.2.1000.100.4.11
 ACCESS-CLASS sensitive
 RACFFIELD ('GROUP-CSDATA-WRKGRP' 'char')
)
88 IBM Tivoli Directory Server for z/OS

Chapter 5. Authentication, authorization,
and security

This chapter describes issues of authentication, authorization, and security.

5

© Copyright IBM Corp. 2011. All rights reserved. 89

5.1 Overview

Needless to say, IT security is of the utmost importance for most, if not all organizations that
use IT in their day-to-day operations. Effective IT security requires mechanisms to implement,
among others, the following crucial concepts to secure critical resources and data:

� Authentication
� Authorization
� Confidentiality
� Audit

These concepts can be implemented by separate software components that can be
architected into a security engine for the enterprise. Or alternatively, IBM Tivoli Directory
Server for z/OS can be used as the security engine for an enterprise. Moreover, for
organizations that have invested in RACF as the security engine for System z® specific
critical resources and data, IBM Tivoli Directory Server for z/OS allows for RACF control
within software components that are not compatible or interoperable with RACF. The focus of
this section will be on IBM Tivoli Directory Server for z/OS's security features and capabilities
including its RACF synergy.

Before describing IBM Tivoli Directory Server for z/OS's security features, the key security
concepts should be defined in general terms:

Authentication The process of verifying a Subject's identity

Authorization The process of giving a Subject permission to perform a requested
Action against a protected Object

Confidentiality The guarantee that unauthorized Subjects do not have access to a
protected Object

Audit The process of documenting Actions done against protected Objects
by Subjects

The LDAP Internet drafts, RFC documentation, and IBM Tivoli Directory Server for z/OS
documentation use different terminology than the terms listed above when describing these
concepts. Nevertheless, the semantics defined in the general definition are equivalent to the
features described in the protocol and implemented in IBM Tivoli Directory Server. In later
sub-sections we will highlight IBM Tivoli Directory Server for z/OS's implementation of each
general concept.

The reason for beginning the security discussion in abstract terms is that there are slightly
different perspectives when it comes to IBM Tivoli Directory Server's implementation of the
key security concepts. First, IBM Tivoli Directory Server for z/OS is a repository of data, and
the data itself might need to be secured. Next, the LDAP protocol's remote nature and IBM
Tivoli Directory Server for z/OS features, especially when considering its RACF synergy, allow
it to participate in securing resources that aren't necessarily represented in its data repository.

Table 5-1 on page 91 shows the mapping of general IT security concepts to IBM Tivoli
Directory Server for z/OS features. Data stored in an LDAP directory can vary, but some
examples highlight the security implications. For instance, LDAP directories can consist of
LDAP entries that represent staff members of an organization. These entries might have
attribute values that must be secured, such as a person's Social Security Number in the US.
In this use case, IBM Tivoli Directory Server must secure its contents. It uses binds, ACLs,
SSL, and activity log to secure the data from unauthorized searches, reads, writes, and
compares.
90 IBM Tivoli Directory Server for z/OS

Table 5-1 Tivoli Directory Server - Data repository

On the other hand, Table 5-2 shows the equivalents in a RACF-backed centralized security
engine for heterogeneous environments.

Table 5-2 Tivoli Directory Server - Security Decision Engine (RACF/ICTX plug-in)

Let's look at how this software configuration can secure the enterprise by focusing on
authentication, authorization, and audit.

Authentication
A configured IBM Tivoli Directory Server for z/OS server with or without RACF could handle
all authentication within an enterprise, regardless if a user requires access to protected
resources.

For example, Linux workstation logins can be implemented by having a Linux PAM/NSS
module configured to use IBM Tivoli Directory Server for z/OS. When the user attempts to log
in by entering their credentials (username/password), the credentials (after mapping) are
used to bind to IBM Tivoli Directory Server. If the bind succeeds, workstation access is
granted. If the mapping of the credentials lead to an SDBM bind DN, or if native
authentication is set up in IBM Tivoli Directory Server, RACF will ultimately authenticate the
user. A key feature of IBM Tivoli Directory Server for z/OS R12 and later, and RACF, is the
ability to enforce password policies.

General Concept Tivoli Directory Server Equivalent

Authentication Bind

Subject Client, bind DN
RACF ID (SDBM/Native Authentication)

Object Entry
RACF entities: USERS, GROUPS, RESOURCE PROFILES
(SDBM)

Authorization ACL
RACF access check (SDBM)

Confidentiality Encrypted communication (SSL/TLS)
Encrypted passwords

Audit SMF audit, Activity Logs

Action read, write, search, compare or object add/delete

RACF access: ALTER, READ, CONTROL, UPDATE (SDBM)

General Concept Tivoli Directory Server Equivalent

Authentication Bind

Subject RACF ID

Object RACF resource profile

Authorization RACF access check

Confidentiality RACF PROTECTED

Audit SMF audit

Action ALTER, READ, CONTROL, UPDATE
Chapter 5. Authentication, authorization, and security 91

Commonly, organization set password policies to help reduce the risk of systems being
compromised. Later we discuss IBM Tivoli Directory Server and password policy in more
detail.

Authorization and Audit
A configured IBM Tivoli Directory Server for z/OS server with the ICTX plug-in will accept
LDAP extended operation requests to go to RACF for profile access checks and to issue SMF
audit records. The ICTX plug-in is a configuration option for IBM Tivoli Directory Server for
z/OS that handles special extended operation LDAP requests that result in RACF interaction.

Basically, application writers can write applications in C/C++ or Java and use widely available
LDAP client APIs to use RACF to secure resources throughout the enterprise by providing an
authorization engine and remote manner for issuing SMF audit records. Some RACF
knowledge is required. However, the LDAP protocol handles communication between RACF
and non-z/OS applications.

Now that we have given an overview of IT security and the role IBM Tivoli Directory Server for
z/OS can play in the enterprise, we will discuss in more detail all of IBM Tivoli Directory
Server for z/OS's security related features.

5.2 Authentication mechanisms supported by IBM Tivoli
Directory Server for z/OS

Authentication request operations are used to establish and end a session between an LDAP
client and server. The following terms are used to indicate the type of authentication related
operations:

Bind Initiates the connection between the client and a server. This allows
the client to prove its identity by authenticating itself to the server.

Unbind Terminate a client/server session.
Abandon Allows a client to request that the server abandon an outstanding

operation.

The LDAP RFCs (Request for Comments) specify a number of authentication or bind
mechanisms that are supported by LDAP servers. As of z/OS V1R12, IBM Tivoli Directory
Server for z/OS supports the following bind or authentication mechanisms:

� Anonymous
� Simple
� CRAM-MD5
� DIGEST-MD5
� GSS-API (Kerberos)
� EXTERNAL (SSL)

CRAM-MD5, DIGEST-MD5, GSSAPI, and EXTERNAL binds are types of Simple
Authentication and Security Layer (SASL) authentication mechanisms as documented in RFC
2222 (http://www.ietf.org/rfc/rfc2222.txt). Each LDAP bind mechanism has s different
method of allowing the client to prove its identity using credentials (username and password)
or other means. It is also possible to secure the connection between the client and server by
using SSL/TLS. See 5.8, “SSL/TLS” on page 133 for more information about configuring
SSL/TLS.
92 IBM Tivoli Directory Server for z/OS

http://www.ietf.org/rfc/rfc2222.txt

5.2.1 Anonymous

By default, IBM Tivoli Directory Server for z/OS allows anonymous or unauthenticated access
to the directory. As the name applies, an LDAP client application is automatically
anonymously bound to the LDAP server when not specifying any credentials (username and
password) on a bind request. However, usually authorization to perform LDAP requests is
limited when anonymously authenticated unless authorization has been granted to
cn=anybody in ACLs. See 5.4, “Authorization using Tivoli Directory Server Access Control
Lists (ACL)” on page 108 for more information about authorization.

By default with the IBM Tivoli Directory Server for z/OS, anonymous users are allowed to
search the root DSE and the cn=monitor entries. The rootDSE retrieves general information
about the LDAP server such as the configured suffixes, and supported and enabled
capabilities of the LDAP server. A cn=monitor search retrieves statistics such as the number
of add, search, compare, and modify requests that have occurred to each configured back
end. If the -D (bindDN) and -w (password) options are not specified on the z/OS LDAP client
utilities, an anonymous bind is performed. See IBM Tivoli Directory Server Client
Programming for z/OS V1R12.0, SA23-2214-04 for more information about the z/OS LDAP
client utilities such as ldapsearch.

For example to search the rootDSE with the ldapsearch utility while bound anonymously:

ldapsearch -s base -b “” “objectclass=*”

To search the cn=monitor entries with the ldapsearch utility while bound anonymously:

ldapsearch -s sub -b “cn=monitor” objectclass=*”

However if security regulations require that anonymous or unauthenticated access is not
allowed to IBM Tivoli Directory Server for z/OS, the allowAnonymousBinds off configuration
option can be specified in the global section of the LDAP server configuration file. By default,
anonymous binds are allowed to IBM Tivoli Directory Server for z/OS.

5.2.2 Simple

One of the most common authentication mechanisms everyone is familiar with is a simple
bind. An LDAP simple bind is performed by specifying a distinguished name (DN) and a
password value on an LDAP bind request.

If the DN specified on the bind request falls under a configured LDBM, TDBM, or CDBM suffix
and the entry has a userpassword attribute value, the password verification that is performed
depends on how the userpassword attribute value is encrypted or hashed:

� If the entry's userpassword attribute value is encrypted in AES or DES, the password value
in the entry is decrypted and checked against the password value specified on the bind
request. If the values are the same, then authentication is successful.

� If the entry's userpassword attribute value is hashed in a one-way hash, such as crypt,
md5, SHA, or SSHA (Salted SHA-1 – only in z/OS V1R12 and later), the password
specified on the bind request is hashed in the same algorithm. If the two hashes are the
same, then authentication is successful.

� If the DN specified on the bind request falls under the configured SDBM suffix, the
password checking is performed by RACF by passing the value on the bind request to
RACF.

� If the DN specified on the bind request falls under a configured LDBM, TDBM, or CDBM
suffix and the entry resides under a native authentication subtree and is participating in
native authentication, the configured z/OS security manager performs the password
Chapter 5. Authentication, authorization, and security 93

verification checking. The password specified on the bind request is sent to the security
manager by issuing __passwd() or RACROUTE REQUEST=VERIFY.

With the z/OS LDAP client utilities, a simple bind is performed by specifying the -D (bindDN)
and -w (password) options.

This example illustrates that distinguished name (DN), cn=jon,o=ibm,c=us, is attempting a
simple bind with password secret:

ldapsearch -D “cn=jon,o=ibm,c=us” -w secret -s base -b “cn=jon,o=ibm,c=us”
“objectclass=*”

One of the limitations with simple binds is that the password is exposed in the clear. However,
this problem can be rectified by using a secure SSL/TLS connection between the LDAP
server and the client application to hide the distinguished name and password while the
request is in transit. See 5.8, “SSL/TLS” on page 133 for more information about using
SSL/TLS between IBM Tivoli Directory Server for z/OS and your LDAP client applications.

5.2.3 CRAM-MD5

To help overcome one of the inherit weaknesses of simple binds (the password being
exposed in the clear on the bind request while in transit), the CRAM-MD5 bind mechanism
was developed in RFC 2195 (http://www.ietf.org/rfc/rfc2222.txt). There are a few
advantages of using the CRAM-MD5 bind mechanism:

1. The password value is no longer transmitted in the clear on the bind request. The
password entered in the LDAP client application is hashed with a random string returned
from the LDAP server when a CRAM-MD5 bind request is wanted. By hashing the
password value in this manner, it is no longer transmitted in the clear.

2. Like the simple bind, CRAM-MD5 allows a distinguished name (DN) and password value
to be specified on the bind request. However, you can also authenticate using a short
unique username that exists in an TDBM, LDBM, or CDBM entry as a uid attribute value.
This makes it easier for users because they do not need to know the underlying full
distinguished name (DN) when authenticating to IBM Tivoli Directory Server for z/OS.

The CRAM-MD5 bind involves multiple handshakes between the LDAP client application and
LDAP server to help hash the clear text password. This helps to disguise the password while
it is in transit between the client and server.

Depending on your LDBM, TDBM, and CDBM entry setup, there are multiple ways of
performing a CRAM-MD5 bind:

1. Specify a bind distinguished name (DN) on the bind request that resides under a
configured LDBM, TDBM, or CDBM suffix and a password value. This is the same as
performing a simple bind.

2. Specify a username and password value on the bind request. The username that is
specified must exist as a uid attribute value in an entry that resides under a configured
LDBM, TDBM, or CDBM suffix.

3. Specify a bind DN, username, and password value on the bind request. The username
that is specified must exist as an uid attribute value in the entry pointed to by the
distinguished name that is specified.

Note the following:

a. CRAM-MD5 binds are only supported to entries that reside in the LDBM, TDBM, and
CDBM back ends.
94 IBM Tivoli Directory Server for z/OS

http://www.ietf.org/rfc/rfc2222.txt

b. If you are planning on using CRAM-MD5 binds, the userpassword attribute values
must either be encrypted in AES or DES or not encrypted at all. The LDAP server must
be able to get clear access to the password value to allow CRAM-MD5 authentications
to successfully occur.

Figure 5-1 shows entries in the LDBM and TDBM back ends that are used in the following
CRAM-MD5 bind examples.

Figure 5-1 Example entries used for CRAM-MD5 binds

The newPilotPerson objectclass is present in the schema.user.ldif file and has the uid
attribute as an optional attribute type. Any objectclass that allows the uid attribute to be
specified in an entry can be used to perform CRAM-MD5 binds.

1. This example uses the z/OS ldapsearch client utility and performs a CRAM-MD5 bind to
user1 with password of secret. The username is specified on the -U option of the z/OS
LDAP client utilities.

ldapsearch -m CRAM-MD5 -U user1 -w secret -b “cn=user1,c=us” “objectclass=*”

The LDAP server does a search of the LDBM and TDBM back ends looking for an entry
that has a uid attribute of user1 and finds the cn=user1,c=us entry in the LDBM back end.
The password value is then checked to verify that the correct password was entered on
the z/OS LDAP client utility.

2. This example uses the z/OS ldapsearch client utility and performs a CRAM-MD5 bind with
bind distinguished name (DN), cn=user2,c=us, and a password of supersecret.

ldapsearch -m CRAM-MD5 -D “cn=user2,c=us” -w supersecret -b “cn=user2,c=us”
“objectclass=*”

Because only a distinguished name (DN) was specified on the z/OS LDAP client utility
while attempting to perform an CRAM-MD5 bind, the LDAP server finds the distinguished
name in the LDBM back end and verifies that the correct password was specified.
Chapter 5. Authentication, authorization, and security 95

3. This example uses the z/OS ldapsearch client utility and performs a CRAM-MD5 bind with
bind distinguished name (DN), cn=user3,c=ca, username, user3, and a password of
secret5.

ldapsearch -m CRAM-MD5 -D “cn=user3,c=ca” -U user3 -w secret5 -s base -b
“cn=user3,c=ca” “objectclass=*”

Because a bind distinguished name (DN) and username is specified, the DN is found in
the TDBM back end and then a check is done to ensure the entry has a uid attribute value
of user3, which it does. After that is verified, the password is checked to verify that it is
correct.

4. This example uses the z/OS ldapsearch utility and attempts to perform a CRAM-MD5 bind
with bind distinguished name (DN), cn=user4,c=ca, username nothere, and a password of
simple. However, this authentication is not successful because cn=user4,c=ca does not
have an uid attribute value of nothere.

ldapsearch -m CRAM-MD5 -D “cn=user4,c=ca” -U nothere -w simple -s base -b
“cn=user4,c=ca” “objectclass=*”

Returns:

ldap_sasl_bind: Inappropriate authentication
ldap_sasl_bind: additional info: R004112 A bind argument is not valid
(tdbm_get_user_password)

5.2.4 DIGEST-MD5

Shortly after the CRAM-MD5 bind mechanism was introduced, the DIGEST-MD5 bind
mechanism was introduced in RFC 2831, http://www.ietf.org/rfc/rfc2195.txt, to allow
for integrity and confidentiality protection on LDAP requests after a successful authentication.
This support was lacking in the CRAM-MD5 authentication mechanism. The integrity and
confidentiality protection is used to encrypt the data exchanged between the client and server
until the authenticated user unbinds or disconnects from the LDAP server.

Like the CRAM-MD5 bind mechanism, the DIGEST-MD5 bind mechanism involves multiple
handshakes between the LDAP client application and LDAP server to help hash the clear text
password. However, with the DIGEST-MD5 bind mechanism, additional data is exchanged
between the client and server to perform a better hash of the clear text password.

Depending on your LDBM, TDBM, and CDBM entry setup, there are multiple ways of
performing a DIGEST-MD5 bind:

1. Specify a username and password value on the bind request. The username that is
specified must exist as a uid attribute value in an entry that resides under a configured
LDBM, TDBM, or CDBM suffix.

2. Specify a bind DN, username, and password value on the bind request. The username
that is specified must exist as an uid attribute value in the entry pointed to by the
distinguished name that is specified.

Note the following:

1. Unlike a CRAM-MD5 bind request, the username must be specified on the DIGEST-MD5
bind request. Therefore only specifying the bind distinguished name (DN) on the
DIGEST-MD5 bind request is not supported.

2. DIGEST-MD5 binds are only supported to entries that reside in the LDBM, TDBM, and
CDBM back ends.
96 IBM Tivoli Directory Server for z/OS

http://www.ietf.org/rfc/rfc2195.txt

3. If you are planning on using DIGEST-MD5 binds, the userpassword attribute values must
either be encrypted in AES or DES, or not encrypted at all. The LDAP server must be able
to get clear access to the password value to allow DIGEST-MD5 authentications to
successfully occur.

Figure 5-2 shows entries in the LDBM and TDBM back ends that are used in the following
DIGEST-MD5 bind examples.

Figure 5-2 Example entries used for DIGEST-MD5 binds

The newPilotPerson objectclass is present in the schema.user.ldif file and has the uid
attribute as an optional attribute type. Any objectclass that allows the uid attribute to be
specified in an entry can be used to perform DIGEST-MD5 binds.

1. This example uses the z/OS ldapsearch client utility and performs a DIGEST-MD5 bind to
user10 with password of secret. The username is specified on the -U option of the z/OS
LDAP client utilities.

ldapsearch -m DIGEST-MD5 -U user10 -w secret -b “cn=user10,c=uk”
“objectclass=*”

The LDAP server does a search of the LDBM and TDBM back ends looking for an entry
that has an uid attribute of user10 and finds the cn=user10,c=uk entry in the LDBM back
end. The password value is then checked to verify that the correct password was entered
on the z/OS LDAP client utility.

2. This example uses the z/OS ldapsearch client utility and performs a DIGEST-MD5 bind
with bind distinguished name (DN), cn=user30,c=fr, username, user30, and a password
of secret5.

ldapsearch -m DIGEST-MD5 -D “cn=user30,c=fr” -U user30 -w secret5 -s base -b
“cn=user30,c=fr” “objectclass=*”

Because a bind distinguished name (DN) and username is specified, the DN is found in
the TDBM back end and then a check is done to ensure the entry has a uid attribute value
of user10, which it does. After that is verified, the password is checked to verify that it is
correct.
Chapter 5. Authentication, authorization, and security 97

3. This example uses the z/OS ldapsearch utility and attempts to perform a DIGEST-MD5
bind with a bind distinguished name (DN), cn=user4,c=fr, username nothere, and a
password of simple. However, this DIGEST-MD5 authentication is not successful because
cn=user4,c=fr does not have a uid attribute value of nothere.

ldapsearch -m DIGEST-MD5 -D “cn=user4,c=fr” -U nothere -w simple -s base -b
“cn=user4,c=fr” “objectclass=*”

Returns:

ldap_sasl_bind: Inappropriate authentication
ldap_sasl_bind: additional info: R004112 A bind argument is not valid
(tdbm_get_user_password)

5.2.5 GSS-API (Kerberos)

IBM Tivoli Directory Server for z/OS allows clients to authenticate to the server by using the
IBM Network Authentication and Privacy Service, better known as Kerberos Version 5.
Kerberos is a trusted third party, private-key, network authentication system. In Kerberos, a
ticket (a packet of information used by a client to prove its identity) is passed to a server in
place of a user name and password. This ticket is encrypted and cannot be duplicated. After
the server verifies the client ticket, it sends its own ticket to the client so the client to
authenticate it. After the mutual authentication process is complete, the client and server have
authenticated each other. See Figure 5-3 for a diagram of the LDAP server and Kerberos
setup.
98 IBM Tivoli Directory Server for z/OS

Figure 5-3 LDAP-KERBEROS setup

IBM Tivoli Directory Server for z/OS supports Kerberos integrity and confidentiality services.
Upon successful completion of a SASL bind operation using the GSS API mechanism, the
negotiated quality of protection (QOP) is used for subsequent messages sent over the
connection. This QOP continues to be used until the completion of a new SASL bind request.
If the new SASL bind request fails, the connection reverts to anonymous authentication with
no integrity or confidentiality services. See Understanding LDAP design and implementation,
SG24-4986 for additional information about Kerberos on z/OS.

As documented in the Kerberos authentication chapter of z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05, there are a number of Kerberos
related configuration options in the global and back end specific sections of the LDAP server
configuration file to fully take advantage of Kerberos authentication.

The following are the Kerberos related configuration options that belong in the global section
of the LDAP server configuration file:

� supportKrb5: This option activates Kerberos authentication in the LDAP server
� serverKrbPrinc: This option specifies the Kerberos principal name assigned to the LDAP

server.
� krbKeytab: This option specifies the Kerberos key table that is used by the LDAP server.
� krbLDAPAdmin: This option specifies the Kerberos identity that represents an LDAP

administrator. It is equivalent to the adminDN option in the LDAP server configuration file.
Chapter 5. Authentication, authorization, and security 99

If krbIdentityMap on is specified in the TDBM, LDBM, SDBM, or CDBM back ends,
additional Kerberos identity mapping is performed.

Assume that the LDAP server configuration file has the following Kerberos-related
configuration options specified Note that the configuration file in Figure 5-4 on page 100 does
not have all required configuration options present.

Figure 5-4 Partial LDAP server configuration file with Kerberos options

Our example uses the configuration file in Figure 5-4. Before performing a Kerberos
(GSSAPI) bind with the z/OS LDAP client utilities, the RACF user ID, JEFF, is updated to
specify a KERB segment with a KERBNAME value:

ALTUSER JEFF KERB(KERBNAME(JEFF))

JEFF issues a Kerberos kinit command to acquire a Kerberos ticket:

kinit JEFF
EUVF06017R Enter password:

After issuing the kinit command, the z/OS LDAP client utilities can be invoked to perform a
Kerberos bind with identity jeff@IBM.COM with the ticket retrieved from the Kerberos
Distribution Center (KDC). IBM.COM is the name of the Kerberos realm.

ldapsearch -m GSSAPI -b “cn=jeff,c=us” “objectclass=*”

During the bind process in the LDAP server, the Kerberos identity jeff@IBM.COM by default is
mapped to a bind distinguished name (DN) of ibm-kn=jeff@IBM.COM. Because Kerberos
identity mapping is configured in the SDBM back end and RACF user ID JEFF has a
KERBNAME value of JEFF, the racfid=JEFF,profiletype=user,sysplex=plex1 distinguished
name is added to what is called the alternate DN list. Because Kerberos identity mapping is

Global Section
supportKrb5 on
serverKrbPrinc LDAP/ibm.com@IBM.COM
krbLDAPAdmin ibm-kn=ldapadm@IBM.COM
krbKeytab none

TDBM Section
database tdbm GLDBTD31
suffix o=Lotus,c=us
krbIdentityMap on

LDBM Section
database ldbm GLDBLD31/GLDBLD64
suffix o=ibm,c=us
krbIdentityMap on

SDBM Section
database sdbm GLDBSD31/GLDBSD64
suffix sysplex=plex1
krbIdentityMap on

CDBM Section
database cdbm GLDBCD31/GLDBCD64
krbIdentityMap on
100 IBM Tivoli Directory Server for z/OS

also configured in the LDBM, TDBM, and CDBM back ends, identity mapping is performed in
those back ends and any distinguished names found are also added to the alternate DN list.

The bind DN and alternate DNs can be used in ACLs (Access Control Lists) for authorization
to resources in the LDBM, TDBM, or CDBM back ends. See 5.4, “Authorization using Tivoli
Directory Server Access Control Lists (ACL)” on page 108 for more information about
authorizing users to resources. See the Identity mapping section in the Kerberos
authentication chapter of z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use
for z/OS, SC23-5191-05 for information about how Kerberos identity mapping is performed in
the LDBM, TDBM, SDBM, and CDBM back ends.

5.2.6 External (SSL)

The IBM Tivoli Directory Server for z/OS supports the SASL EXTERNAL (SSL) bind
mechanism. This means that the authentication on the bind is performed using the data
obtained during the SSL/TLS client authentication that was performed on the SSL/TLS
handshake with the client.

To enable SASL EXTERNAL binds in IBM Tivoli Directory Server for z/OS, the following
updates are necessary:

1. sslAuth serverClientAuth: Must be specified so that the server can authenticate the
client.

2. sslKeyRingFile file: Must specify a valid SSL key database file, RACF keyring, or PKCS
#11 token

For more information about configuring SSL/TLS in IBM Tivoli Directory Server for z/OS, see
5.8, “SSL/TLS” on page 133.

The client connects to the LDAP server and performs the SSL/TLS handshake. The
handshake sends the client certificate to the LDAP server.

The client performs a SASL bind with a bind mechanism of EXTERNAL (-m option) on the
z/OS LDAP client utilities and specifies the SAF key ring, SSL key database file, or PKCS#11
token, and specifies the certificate label if using a certificate or token other than the default.

At this point, the LDAP server considers the bind DN of the client for authorization purposes
to be the client’s DN as transmitted in the client’s certificate on the handshake. The name
specified in the BIND request must either match the subject name in the client certificate or
be null.

In z/OS V1R10, IBM Tivoli Directory Server for z/OS added support to allow certificates on
SASL EXTERNAL binds to optionally be mapped to RACF users. The RACF RACDCERT
MAP command is used to associate a certificate to a RACF user ID. The sslMapCertificate
configuration option in the global section of the LDAP server configuration file indicates the
user ID mapping (if any) that is to be performed:

sslMapCertificate {off | check | add | replace} {fail | ignore}

When check, add, or replace is specified for the first value, RACF is searched for the user ID
associated with the certificate used during a SASL EXTERNAL bind. The sslKeyRingFile
configuration option must be specified to indicate which key database, RACF key ring, or
PKCS#11 token to use to do this. If there is no RACF user ID associated with the certificate
and fail is specified for the second value, the SASL EXTERNAL bind fails. If there is no
associated RACF user ID and ignore is specified for the second value, the bind continues
without mapping the certificate to a RACF user.
Chapter 5. Authentication, authorization, and security 101

If an associated RACF user ID is found and add or replace is specified for the first value, a
distinguished name (DN) is created based on the user ID and the SDBM suffix. For add, this
mapped DN is added to the alternate DN list associated with the bind DN that was created
from the subject's name in the certificate. For replace, this mapped DN replaces the bind DN
that was created from the subject's name in the certificate. The mapped DN is used when
gathering the groups in which the bound user exists, and when checking authorization for
LDAP operations, including SDBM operations. The SDBM back end must be configured when
add or replace is specified.

When off is specified for the first value, RACF is not searched for the user ID associated with
the certificate and no certificate mapping is performed. In this case, it does not matter what
the second value is.

The default values for the sslMapCertificate configuration option is off fail.

The following are examples of using the RACDCERT MAP command to map certificates to
existing RACF users:

1. Map a certificate that has a Subject's name of CN=JON.O=IBM.C=US to RACF user ID
JONC with a label of JONCMAP:

RACDCERT ID(JONC) MAP SDNFILTER('CN=JON.O=IBM.C=US') WITHLABEL('JONCMAP')

2. Map any certificate that has O=IBM and C=CA in the Subject's name to RACF user ID
CAUSER with a label of CAUSERMAP:

RACDCERT ID(CAUSER) MAP SDNFILTER('O=IBM.C=CA') WITHLABEL('CAUSERMAP')

3. Map all certificates that are issued by VeriSign for Class 1 Individual Subscribers with a
label of VERISIGNMAP to RACF user ID GUSER:

RACDCERT ID(GUSER) MAP
IDNFILTER(''OU=VeriSign Class 1 Individual Subscriber.O=VeriSign,
Inc..L=Internet') WITHLABEL('VERISIGNMAP')

Note the following:

1. The RACF user that issues the RACDCERT MAP command must have RACF SPECIAL
authority.

2. The RACF user ID that is being mapped to must have an OMVS segment defined in order
for IBM Tivoli Directory Server for z/OS to successfully perform the mapping.

3. If the DIGTNMAP or DIGTCRIT classes are RACLISTed, refresh the classes to activate
your changes after performing the RACDCERT MAP command:

SETROPTS RACLIST(DIGTNMAP, DIGTCRIT) REFRESH

See z/OS V1R12.0 Security Server RACF Command Language Reference, SA22-7687 for
more information about using the RACDCERT MAP command.

The following examples illustrate how the bind DN and alternate DN are set when performing
a SASL EXTERNAL bind with different sslMapCertificate option settings. These examples
assume that an SDBM back end is configured with a suffix of cn=racf and the certificate
mappings above are used.

This example performs a SASL EXTERNAL bind with SAF keyring, LDAPCLIENT and SSL
certificate with a label of CLIENT. The CLIENT certificate has a Subject's Name of
CN=JON.O=IBM.C=US and an Issuer's Name of CN=SELFSIGN.O=IBM.C=US.

ldapsearch -Z -K LDAPCLIENT -N CLIENT -m EXTERNAL -s base -b “” “objectclass=*”
102 IBM Tivoli Directory Server for z/OS

Table 5-3 SASL EXTERNAL mapping example

This example performs a SASL EXTERNAL bind with SSL certificate client in key database
file, /home/user/key.kdb, that has a password value of secret. The client certificate has a
Subject's Name of CN=JEFF.O=IBM.C=CA and an Issuer's Name of
CN=SELFSIGN.O=IBM.C=CA.

ldapsearch -Z -K /home/user/key.kdb -N client -P secret -m EXTERNAL -s base -b “”
“objectclass=*”

Table 5-4 SASl EXTERNAL mapping example

sslMapCertificate values Bind distinguished name (DN) Alternate distinguished name
(DN)

off fail CN=JON,O=IBM,C=US N/A

add fail CN=JON,O=IBM,C=US RACFID=JONC,PROFILETYPE
=USER,CN=RACF

replace fail RACFID=JONC,PROFILETYPE=
USER,CN=RACF

N/A

sslMapCertificate
values

Bind distinguished name (DN) Alternate distinguished name (DN)

off fail CN=JEFF,O=IBM,C=CA N/A

add fail CN=JEFF,O=IBM,C=US RACFID=CAUSER,PROFILETYPE=USE
R,CN=RACF

replace fail RACFID=CAUSER,PROFILETY
PE=USER,CN=RACF

N/A
Chapter 5. Authentication, authorization, and security 103

5.3 Native authentication

As described in 5.2, “Authentication mechanisms supported by IBM Tivoli Directory Server for
z/OS” on page 92, IBM Tivoli Directory Server for z/OS simple binds or authentications are
supported to the TDBM, LDBM, CDBM, or SDBM back ends when a distinguished name and
a password value are specified on the bind request. When attempting a simple bind to an
entry residing in the TDBM, LDBM, or CDBM back ends, the password value must be
specified as a userPassword attribute value in the entry itself. IBM Tivoli Directory Server for
z/OS does the password verification itself to determine if the simple bind or authentication is
successful. Figure 5-5 illustrates an LDAP client application performing a simple bind to an
entry residing in the TDBM, LDBM, or CDBM back end. First the application does an LDAP
search with a base distinguished name (DN) of o=ibm,c=us and a filter of cn=jonc to find the
entry in the directory. If the entry is found, the LDAP client application then performs a simple
bind or authentication as that entry by specifying a password of joncldap.

Figure 5-5 TDBM and LDBM simple bind example

Simple binds to the SDBM back end are also supported. In this case, the password or
password phrase is stored in the RACF database for the specified RACF user. When a simple
bind request is done with a user that resides in the SDBM back end, IBM Tivoli Directory
Server for z/OS does an __passwd() or RACROUTE REQUEST=VERIFY with the user ID
and password or password phrase that was specified on the bind request. RACF does the
verification of the user's password or password phrase on the bind request. Figure 5-6 on
page 105 illustrates an LDAP client application performing a simple bind to an entry residing
in the SDBM back end. First the application does an LDAP search with a base distinguished
name (DN) of profiletype=user,cn=sdbm and a filter of racfid=u1234 to find the entry in the
directory. If the entry is found, the LDAP client application then performs a simple bind or
authentication as that entry by specifying a password of racfpw.
104 IBM Tivoli Directory Server for z/OS

Figure 5-6 SDBM simple bind example

A disadvantage of storing passwords in TDBM, LDBM, or CDBM back end entries is that this
results in managing yet another password repository if there are already users and
passwords setup in the z/OS Security Manager (e.g. RACF). Also, there is the concern about
protecting these password (userPassword) values in the entries with the use of ACLs or
password encryption or hashing.

There are several disadvantages of performing simple binds with the SDBM back end:

� A long distinguished name (DN) is required that uses nonstandard LDAP server schema.
For example instead of using standard LDAP attribute types and values such as cn, o, and
c; an SDBM DN uses racfid and profiletype attribute values. Most LDAP administrators
are familiar with standard LDAP schema and might not be as familiar with the schema that
is used by IBM Tivoli Directory Server for z/OS for the SDBM back end.

� The SDBM back end has limited search capabilities.

� Unless there are many additional RACF custom fields set up, it is not easy to add
additional data to RACF users.

To overcome these limitations of performing simple binds to TDBM, LDBM, CDBM, and
SDBM back ends, native authentication support was added to IBM Tivoli Directory Server for
z/OS. This support allows the usage of the entries that reside in the TDBM, LDBM, or CDBM
back ends, but the passwords or password phrases are actually stored in the z/OS Security
Server. Thus, the Security Server performs the password verification on simple bind requests.
Because the Security Server stores the password, there is no need to manage or synchronize
another password repository. Also because the entry data is stored in the TDBM, LDBM, or
CDBM back end, additional attribute types and values (data) can easily be added to entries.
Chapter 5. Authentication, authorization, and security 105

Figure 5-7 illustrates an LDAP client application performing a simple bind to an entry residing
in the TDBM, LDBM, or CDBM back end that participates in native authentication. First the
application does an LDAP search with a base distinguished name (DN) of o=ibm,c=us and a
filter of cn=jonc to find the entry in the directory. If the entry is found, the LDAP client
application then performs a simple bind or authentication as that entry participating in native
authentication by specifying a password of racfpw. The racfpw value is specified on the
simple bind request because that is the password value for the RACF user, u1234.

Figure 5-7 TDBM and LDBM native authentication bind example

5.3.1 Setting up native authentication

The LDBM, TDBM, or CDBM back end entries must specify either a single uid or
ibm-nativeId attribute value that specifies the user ID in the Security Server (e.g. RACF) that
is to be used when performing the simple bind request.

Note the following:

1. If using the ibm-nativeId attribute type to store the user ID, the LDBM, TDBM, or CDBM
entries must be updated to add an objectclass value of ibm-nativeAuthentication and an
ibm-nativeId value pointing to a valid Security Server user ID. The ibm-nativeId attribute
type and ibm-nativeAuthentication objectclass are in the minimum or initial schema.

2. If the uid attribute type is used to store the user ID, the object class value on the LDBM,
TDBM, or CDBM entry must allow the specification of the uid attribute value and only one
uid attribute value can be specified. The uid attribute type is multi-valued in the LDAP
server's schema.

3. The user that is specified in the uid or ibm-nativeId attribute value must have an OMVS
segment defined with valid UID value specified in the z/OS Security Server.
106 IBM Tivoli Directory Server for z/OS

After a decision has been made on how to store the user ID in the LDBM, TDBM, or CDBM
entries, there is a set of native authentication options in the LDBM, TDBM, and CDBM back
end sections of the LDAP server configuration file that must be updated:

� useNativeAuth [all | selected | off]
� nativeAuthSubtree [all | dn]
� nativeUpdateAllowed [on | off | reset]

The useNativeAuth configuration option controls the entries that are eligible for native
authentication. When set to all, entries that contain the uid or ibm-nativeId attribute value
are eligible for native authentication. When set to selected, only entries that contain an
ibm-nativeId attribute value are eligible for native authentication. Of course, off means that
native authentication is not active in the back end.

The nativeAuthSubtree multi-valued configuration option indicates which subtree(s) in the
back end are eligible for native authentication. If this option is set to all, every entry in the
back end is eligible for native authentication. Otherwise, this option can be specified multiple
times in each back end to indicate which subtrees are eligible for native authentication.

The nativeUpdateAllowed configuration option controls whether passwords or password
phrases can be changed on modify or update requests in the Security Server. When set to on,
password or password phrases are allowed to be updated (as long as they are not already
expired). When set to off, password or password phrases are not allowed to be updated on
modify requests. When set to reset and the PasswordPolicy control (OID
1.3.6.1.4.1.42.2.27.8.5.1) is specified on the bind request, the password or password phrase
can be modified even if the user's password or password phrase has already expired.

5.3.2 Changing a password or password phrase of an entry participating in
native authentication

There are two ways of changing or updating a user's password or password phrase:

1. During a simple bind or authentication attempt

2. Performing a modify-delete and modify-add of the userPassword attribute value

To change the password or password phrase during the simple bind, specify
currentPassword/newPassword as the password or password phrase value on the bind
request. If the currentPassword is correct and the newPassword value is acceptable to the
z/OS Security Server, the password is changed. In Figure 5-7 on page 106, the
cn=jon,o=ibm,c=us entry uses the z/OS Security Server user ID, u1234, which currently has a
password value of racfpw. This example uses the z/OS ldapsearch utility to change it from
racfpw to racf1pw on a bind request.

ldapsearch -D “cn=jon,o=ibm,c=us” -w racfpw/racf1pw -s base -b “” “objectclass=*”

If nativeUpdateAllowed on is specified, the native password or password phrase is allowed to
be changed on a modify operation (assuming that the bound user is authorized to do so in the
Security Server). This is done by modifying the LDBM, TDBM, or CDBM entry to delete the
current password value and then adding the new password value. To accomplish this

Note: The nativeUpdatedAllowed reset value is only supported in z/OS V1R12 and later.

Note: The nativeUpdateAllowed configuration option setting does not affect the ability to
change the native password or password phrase on a simple bind request.
Chapter 5. Authentication, authorization, and security 107

password or password phrase change, a special type of modify (modify-delete followed by
modify-add) involving the userPassword attribute value must be done.

For example, cn=jon,o=ibm,c=us uses z/OS Security Server user ID, u1234, which now has a
password value of racf1pw. This example uses the z/OS ldapmodify utility to change it to
racf2pw.

ldapmodify -D “cn=jon,o=ibm,c=us” -w racf1pw -f racfpw.ldif

Example 5-1 shows the steps in the change.

Example 5-1 Changing password for user ID u1234 from racf1pw to racf2pw

cn=jon,o=ibm,c=us
-userpassword=racf1pw
+userpassword=racf2pw

Note the following:

1. The userPassword attribute is used as a mechanism to change the native password or
password phrase, but an entry that is using native authentication cannot actually include
the userPassword attribute.

2. The z/OS ldapchangepwd utility shipped in z/OS V1R12 and later can be used in place of
the ldapmodify utility to change the password or password phrase. See IBM Tivoli
Directory Server Client Programming for z/OS V1R12.0, SA23-2214-04 for more
information about the ldapchangepwd utility.

For more information about native authentication, see z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.

5.4 Authorization using Tivoli Directory Server Access Control
Lists (ACL)

Generally speaking, there is a set of actions that a subject must be authorized to perform on
objects in an LDAP directory. As previously defined, the objects to secure are directory
entries. Directory entries consist of attributes with one or more values. Most often a subject
seeks authorization to perform an action against one or more attribute-value pairs within an
entry. These attribute level actions are: read, write, search, and compare.

The subject seeking authorization is identified by its bind credentials, most notably its bind DN
(but could include other DNs depending on the bind mechanism). In addition to its bind
credentials, the subject can belong to groups. Group membership facilitates the authorizing of
a common set of actions for groups of subjects.

Similar to grouping subjects, the attributes within an entry belong to one of five attribute
classes:

� normal
� sensitive
� critical
� system
� restricted
108 IBM Tivoli Directory Server for z/OS

An attribute's class is defined in the schema. See Chapter 4, “Schemas” on page 73 for more
details. This allows an LDAP administrator to authorize on an attribute-class-basis as
opposed to explicitly authorizing every attribute in the entry.

Given the nature of most directories, attribute level authorization is more common. Consider
an employee directory. In most cases, the number of employees will remain fairly constant.
However, subjects might need authorization to add or delete objects. As a result, an
administrator can authorize subjects to add or delete entries. Authorization to delete allows a
subject to delete an LDAP entry, whereas add authorization allows a subject to add a direct
child entry.

Finally, to facilitate an LDAP administrator, IBM Tivoli Directory Server supports the concept
of entry ownership. If a subject is granted entry ownership, they will have full authority over
the object. That is, attribute read, write, search, and compare, and object add and delete
actions will be authorized for the owner.

In the upcoming sections, we answer the following:

� How does an administrator authorize a subject in IBM Tivoli Directory Server?
� Who exactly is the subject seeking access?
� How does an administrator consider more than a subject's identification, such as their

location or time of day, when authorizing?
� How can an administrator be sure the configuration set in LDAP satisfies all security

requirements?

5.4.1 Setting up IBM Tivoli Directory Server Authorization

IBM Tivoli Directory Server for z/OS authorization is based on ACLs defined for entries within
the directory. The ACLs are defined using basic entry attributes defined in the schema. In
addition, entry owners can also be defined using entry attributes. The following table
introduces all of the attributes related to ACLs and entry owners. Some are set by the LDAP
administrator, whereas others are informational attributes managed by IBM Tivoli Directory
Server and not modifiable by an LDAP administrator. Recall all LDAP attributes have an
associated access class. Table 5-5 also lists the access class for the authorization related
attributes.

Table 5-5 access class for the authorization related attributes

Note: This section covers securing LDAP entries stored in IBM Tivoli Directory Server.
RACF authorization is not part of this chapter. RACF-style bind DNs apply here, but READ,
UPDATE, ALTER, CONTROL authority on RACF profiles will not be covered.

Attribute Access Class Syntax

aclEntry Restricted Multi-valued Directory String

entryOwner Restricted Multi-valued Directory String

aclPropagate Restricted Single value Boolean

ownerPropagate Restricted Single value Boolean

aclSource System Single value DN (Calculated value by IBM
Tivoli Directory Server)

ownerSource System Single value DN (Calculated value by IBM
Tivoli Directory Server)
Chapter 5. Authentication, authorization, and security 109

When setting up authorization, an LDAP administrator assigns aclEntry and entryOwner
values to entries. The diagrams in Figure 5-8 and Figure 5-9 illustrate the syntax of both
attributes:

Figure 5-8 aclEntry syntax

Figure 5-9 entryOwner syntax

aclEntry: aclEntry_value

aclEntry_value :- [access-id:|group:|role:]subject_DN[granted_rights]
or,
aclEntry_value :- aclFilter:filter:operation[granted_rights]

– subject_DN :- valid DN, the subject that privileges are authorized or denied.
– filter:- valid search filter, using the following attributes only:

• ibm-filterSubject
• ibm-filterIP
• ibm-filterTimeOfDay
• ibm-filterDayOfWeek
• ibm-filterBindMechanism
• ibm-filterConnectionEncrypted.

– operation:- union | replace | intersect.

– attr_rights :- :at.attr_name:[grant:|deny:]attr_rights_list
• attr_name:- any valid attribute name
• attr_rights_list :- [r|w|s|c]

– granted_rights :- object_rights | normal_rights | sensitive_rights | critical_rights |
restricted_rights | system_rights | attr_rights
• object_rights :- :object:[grant:|deny:]object_rights_list
• object_rights_list :- [a|d]
• normal_rights :- :normal:[grant:|deny:]attr_rights_list
• sensitive_rights :- :sensitive:[grant:|deny:]attr_rights_list
• critical_rights :- :critical:[grant:|deny:]attr_rights_list
• restricted_rights :- :restricted:[grant:|deny:]attr_rights_list
• system_rights :- :system:[grant:|deny:]attr_rights_list
• attr_rights_list :- [r|w|s|c]

entryOwner: entryOwner_value
entryOwner_value :- [access-id:|group:|role:]subject_DN
or,
entryOwner_value :- ownerFilter:filter:grant|deny

– subject_DN :- valid DN, represents the subject that privileges are granted/denied.
– filter :- valid search filter, using the following attributes only:

• ibm-filterSubject
• ibm-filterIP
• ibm-filterTimeOfDay
• ibm-filterDayOfWeek
• ibm-filterBindMechanism
• ibm-filterConnectionEncrypted.
110 IBM Tivoli Directory Server for z/OS

Every entry in the directory must have an aclEntry and entryOwner associated with it. If no
aclEntry and entryOwner is defined in the directory explicitly, a default is set by IBM Tivoli
Directory Server:

aclEntry: group:CN=ANYBODY:normal:rsc:system:rsc
entryOwner: administratorDN (DN set in ds.conf for administrator)

On IBM Tivoli Directory Server for z/OS, for performance reasons, if no aclEntry and
entryOwner values are defined, all suffix entries added to the directory are updated to include
these values.

5.4.2 Normalization

One key LDAP standard requirement is that all values for multi-valued attributes within an
entry are unique. To enforce uniqueness, IBM Tivoli Directory Server relies on normalization
rules for each attribute. entryOwner and aclEntry attributes have distinct normalization rules.
In the case of non-filtered entryOwner and aclEntry attributes, the normalized value is the
normalized subject_DN field from Figure 5-8 on page 110 and Figure 5-9 on page 110.

On the other hand, in the case of filtered ACLs, the normalized filter field from the syntax
diagrams is used as the normalized value. The normalization of a filter consists of normalizing
all predicts of the filter. The table lists the normalization rules and other restrictions for the
supported attributes within a filter used for filtered ACLs.

Table 5-6 Normalization rules

Attribute Normalization Other Filter Requirements

ibm-filterBindMechanism Uppercase Substring not supported in filter.

Value can be one of the
following only:
GSSAPI
EXTERNAL
SIMPLE
CRAM-MD5
DIGEST-MD5

ibm-filterConnectionEncrypted Boolean normalization

ibm-filterDayOfWeek Integer normalization Values can only be from 0 - 6,
where:
0=Sunday … 6=Saturday. All
others are rejected.

ibm-filterTimeOfDay None Values can only be of the
format:
HH:MM. All others are rejected.

Substring not supported in filter.

ibm-filterSubject DN normalization Substring matching supported
in filter
Chapter 5. Authentication, authorization, and security 111

5.4.3 Propagation

To facilitate authorization administration, IBM Tivoli Directory Server supports the concept of
propagating ACLs and entry ownership. As previously stated, LDAP directories consist of
entries organized in a hierarchical tree layout. That is, parent entries have descendant
entries, which in turn can be parents to other entries. Given this layout, propagation allows for
an administrator to set ACLs and entry owners with limited number of updates. This is
accomplished by setting aclEntry and entryOwner values in conjunction with TRUE values for
the aclPropogate and ownerPropogate attributes on parent entries. This results in the
aclEntry and entryOwner values propagating to any descendant entries. These values
propagate down the tree until a descendent entry defines its own aclEntry and entryOwner
values. If this descendant entry sets the propagate values to TRUE, then its values propagate
to all of its descendants. On the other hand, if the descendant does not propagate its values,
its descendent children entries' aclEntry and entryOwner values are defined by its nearest
parent that is propagating. See Figure 5-10.

Figure 5-10 Propagation

ibm-filterIP All IPV4 octets are expanded to
3 digits

All IPV6 octets are expanded to
4 digit hex

Double colons in IPv6 are
expanded

IPv4/IPv6 values supported.

Substring matching supported
only when wildcard is specified
as the last digit:

9.12.5*
9.12.134.*
2001:0db8:85a3:08d3:1319:8a
2e:0370:73*

Attribute Normalization Other Filter Requirements

aclpropagate:TRUE
ownerpropage: TRUE
acIEntry:
entryOwner:

aclpropagate:FALSE
ownerpropage: FALSE
acIEntry:
entryOwner:

aclSource
ownerSource
112 IBM Tivoli Directory Server for z/OS

Clearly, the concept of propagation allows for minimal updates. However, given the possibility
of large/complex directory hierarchies with many authorization requirements, things can get
confusing for an administrator. The aclSource and ownerSource attributes help. They are
attributes that can be returned on an LDAP search (assuming the client has authority). Their
values are the DNs of the entry that defines the aclEntry and entryOwner values for the entry
returned on the search.

As we will see in upcoming sections, propagation is just one advanced concept related to
authorization. New to IBM Tivoli Directory Server for z/OS R12 is the concept of filtered
access control. Filtered access control provides great flexibility in setting up authorization
within IBM Tivoli Directory Server. Needless to say, with flexibility comes opportunity for error.
To provide administrators a means of verification of their authorization configuration, IBM
Tivoli Directory Server for z/OS R12 provides an extended operation to retrieve the aclEntry
and entryOwner values for entries and their implications to client access. Before discussing
the extended operation, we must discuss in detail what exactly aclEntry and entryOwner
values mean and define the concept of effective Access-Class/Attribute/Object Permissions.

5.4.4 Authorization Permissions

As described in the preceding sections and depicted in the aclEntry value syntax, IBM Tivoli
Directory Server authorization is based on six types of permissions. The following four
permissions are available for attributes, either using the access class, the specific attribute, or
both:

� read
� write
� search
� compare

For objects, two permissions are available:

� add

� delete

The aclEntry syntax also allows for explicit grant and deny statements to be included with the
permissions. grant is optional/assumed when attribute, object, and access-class
permissions are added to the aclEntry value. Absence of an attribute or access-class in an
aclEntry value results in all permissions being denied for that attribute or all attributes for the
access-class. Absence of the object permissions in an aclEntry value results in object
permissions being denied.

When multiple aclEntry values apply to a subject, the permissions are combined. Later we
will discuss the subject and aclEntry/entryOwner matching rules. The final results of
combining all applicable aclEntry values are known as the effective access class
permissions, effective object permissions, and effective attribute permissions. Note deny
takes precedence when performing calculation. The following shows an example of basic
effective access class, object, and attribute permissions calculation for a subject that belongs
to group1 and group2. Deny processing is shown with at.sn.

aclentry: group: cn=group1:normal:rw:at.cn:rwsc: at.sn: deny:w:object:a
aclentry: group: cn=group2:system:sw:at.sn:rwsc:object:ad

The results of these commands are:

system:sw:normal:rw
at.cn:rwsc:at.sn:rsc: OR at.cn:rwsc:at.sn:grant:rsc:deny:w
object:ad
Chapter 5. Authentication, authorization, and security 113

5.4.5 Precedence

In the example above we show the precedence of deny over grant when combining
permissions for the same attribute. There is also a set of rules when attribute level and
access-class permissions for the same attribute must be combined. The following
summarizes the complete set of precedence rules IBM Tivoli Directory Server follows when
performing authorization checking. It factors in entry ownership.

1. Subject is entry owner  grant
2. Attribute level deny  deny
3. Access class level deny  deny
4. Attribute level grant  grant
5. Access class level grant  grant
6. No effective access class or effective attribute level permissions for an attribute  deny

A combination of permissions and following a set of precedence rules is the most
straightforward aspect of IBM Tivoli Directory Server's authorization engine. Subject
determination is not as straightforward.

5.4.6 Determining the Subject

In IBM Tivoli Directory Server, the subject seeking authorization is represented by one or
more distinguished names. Table 5-7 describes all of them.

Table 5-7 Subject distinguished name

Depending on the bind mechanism and group membership, one of the DNs (or in the case of
alternate and group DNs, the group DN or alternate DN set) shown in the table are compared
against the subject_DN segment within aclEntry/entryOwner values. If using filtered access

DN Notes

Basic Bind DN Includes RACF style DNs. Specified on bind by the client. If using
SASL EXTERNAL bind, it is the subject in X.509 certificate.

If using Kerberos, the Kerberos style DN also becomes the basic
Bind DN.

Kerberos style DN Basic Bind DN generated by IBM Tivoli Directory Server when
Kerberos binds are done. The Kerberos principal name is used to
form the DN.

ibm-kn= principalName@krbRealm

1-n Alternate DNs Alternate DNs are associated with RACF mapped certificates in
SASL EXTERNAL binds and Kerberos mapped IDs.

Special IBM Tivoli Directory
Server DN: cn=this

This DN can be used when a client is working with the entry
representing it stored in IBM Tivoli Directory Server.

1-m Group DNs DNs can be added to group objects in IBM Tivoli Directory Server.
These DNs are a list of all group objects the bind DN and alternate
DNs belong to.

Special IBM Tivoli Directory
Server DN: cn=authenticated

This DN can be used when working with non-anonymous clients.

cn=anybody All clients belong to this group. Used commonly to set
authorization for anonymous clients.
114 IBM Tivoli Directory Server for z/OS

control, in addition to the subject DN, more details are used to compare against the filter
segment of aclEntry/entryOwner values. For all that match, the values are included in the
calculation of the effective attribute, access-class, and object permissions. Similar to the
preceding rules for effective permissions calculation, the client's possible subject DN(s) are
checked in a specific order. After a DN from the table matches, it will serve as the subject for
the rest of the process. This is especially important when it comes to filtered ACLs. In the next
section we put everything together to describe the IBM Tivoli Directory Server authorization
engine in detail.

5.4.7 Calculating Effective Permissions

The following describes all of the basic steps followed with the IBM Tivoli Directory Server
authorization engine. As described above, the entryOwner and aclEntry attributes are
associated with the LDAP entry being accessed by a client on a given request.

Also, prior to describing the steps, it is important for the reader to understand that
permissions calculation is done using basic set arithmetic, i.e., union, intersect, and
replace. The permissions granted or denied can be seen as elements within a basic set.

1. Check basic bind DN against all entryOwner values.
If an entryOwner value matches, grant all permissions and EXIT authorization processing.
If no matches, go to next step.

2. Check all alternate DNs against all entryOwner values.
If an entryOwner value matches for any of the alternate DNs, grant all permissions and
EXIT authorization processing.
If no matches, go to next step.

3. Check all group DNs against all entryOwner values.
If an entryOwner value matches for any of the group DNs, grant all permissions and EXIT
authorization processing.
If no matches, go to next step.

4. Check basic bind DN against all aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
access-class versus attribute level precedence rules.
If no aclEntry values match, go to next step.

5. Check all alternate DNs against all aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
access-class versus attribute level precedence rules.
If no aclEntry values match, go to next step.

6. If the basic bind DN matches the entry being accessed, check the cn=this DN against all
aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
access-class versus attribute level precedence rules.
If no aclEntry values match or basic bind DN does not equal the entry being accessed, go
to next step.

7. Check all groups DNs against all aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
Chapter 5. Authentication, authorization, and security 115

access-class versus attribute level precedence rules.
If no aclEntry values match, go to next step.

8. If the subject is not anonymous, that is, a successful LDAP bind was performed prior to
access, check the cn=authenticated DN against all aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
access-class versus attribute level precedence rules.
If no aclEntry values match or anonymous client, go to next step.

9. Check the cn=anybody DN against all aclEntry values.
For all aclEntry values that match, union all the permissions within the matching values to
perform the effective permissions calculation.
Perform authorization check using the calculated effective permissions and considering
access-class versus attribute level precedence rules.
If no aclEntry values match, no permissions are granted and thus authorization is denied.

Filtered access control extends this process.

5.4.8 Filtered Access Control

IBM Tivoli Directory Server's standard authorization engine can be summarized in the
following steps:

1. Determine all the possible Subject DNs for a given client.
2. For the LDAP entry being accessed, determine all of its aclEntry and entrOwner values,

using propagation rules if necessary.
3. Compare values from step 2 against Subject DNs from step 1, gathering all that match

(following subject matching order rules).
4. Calculate effective permissions from permissions gathered in step 3 by performing the

union operation on all matching values.
5. Follow precedence rules and perform authorization check using the results from Step 4.

For IBM Tivoli Directory Server for z/OS R12, the authorization engine was extended to
include the concept of filtered access control. Essentially filtered access control extends step
3 from the above list. In addition to matching the Subject DNs, other client details are used to
compare against aclEntry and entryOwner values that use the new filtered syntax. Step 4
also is extended because the calculation of the effective permissions is given more flexibility.

The updated list of operations for the engine now follows:

1. Determine all the possible Subject DNs for a given client.
2. For the LDAP entry being accessed, determine all of its aclEntry and entrOwner values,

using propagation rules if necessary.
3. Compare non-filtered values from step 2 against Subject DNs from step 1, gathering all

that match following subject matching order rules.
4. Perform the union operation on the results of step 3 while following precedence rules that

specifically handle the deny operator.
5. If filtered values exist, determine the client's values for the following:

a. IP
b. Bind Mechanism
c. Subject DN -- This is set by the DN or DNs that match step 3. If none match in step 3,

the order of the DNs used in step 3 is followed until a filtered value matches.
d. Encrypted connection True or False
e. Time of access
f. Day of access
116 IBM Tivoli Directory Server for z/OS

6. Using the data determined in step 5, compare against all filtered values. If filtered
entryOwner values match and none have the deny operator, the client is considered the
entry owner and given all permissions. The engine then returns. Otherwise, filtered
aclEntry values that match are gathered. The filtered aclEntry value's operator is
considered and the union operation is performed to form 3 separate sets for values with
the like operators:
a. Replace Set
b. Union Set
c. Intersect Set

7. Calculate effective permissions from permissions gathered in step 4 and 6.
a. If replace set found, discard results of Step 4.
b. If union set found, union permissions in the union set with the results in Step 6.a or

results from step 4 if no replace set is found.
c. If intersect set found, intersect permissions in the intersect set with the results in Step

7.b, results from Step 7.a if union set not found, or Step 4 if no union set and no replace
set found. The intersect operation is not performed with any deny permissions. Instead,
any deny permissions found in any of the three sets will be an element in the final
effective permissions set.

8. Perform authorization check against results from Step 7.

A note about Administrator
Prior to filtered access control, the Administrator defined in the ds.conf file had all
permissions granted. Now filtered access control allows for an administrator whose client
information, such as IP, time of access, or day of access, matches filtered aclEntry values
have a reduced set of permissions.

5.4.9 Testing Authorization Configurations

Throughout this section we described the details of the IBM Tivoli Directory Server
authorization engine. The authorization engine requires configuration by an LDAP
administrator. Because configuration is done using LDAP entries, attributes, and other
concepts like search filters, an administrator is afforded a considerable amount of flexibility.
Clearly, this flexibility is only beneficial if all organizational security requirements are met. With
large LDAP directories and complex requirements addressed by the filtered access control
feature, administrators must have a means of verifying the configuration.

As mentioned earlier, the aclSource and ownerSource attributes offer a basic indication of how
aclEntry and entryOwner values will work. These attributes allow for a quick verification of the
propagation settings.

To provide a more complete picture of the configuration, IBM Tivoli Directory Server for z/OS
R12 provides an extended operation: GetEffectiveAcl. This extended operation, issued
using the ldapexop utility from a UNIX Systems Services shell, allows an administrator to
check a client’s effective access-class, attribute, and object permissions for any LDAP entry.
Among other details, it takes as options all of the parameters required by filtered access
control. This allows an administrator to simulate a client request and test the effective
permissions that will be used by the authorization engine. The command syntax is shown in
Figure 5-11 on page 118. Note that we only highlight the syntax for GetEffectiveACL.
ldapexop has general options that are used in addition to the options listed below. Refer to
z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS, SC23-5191-05
entire ldapexop tool syntax.
Chapter 5. Authentication, authorization, and security 117

Figure 5-11 geteffectiveacl partial syntax

The syntax can be seen as defining two components of the command (hence the two lines):

1. Basic LDAP Search options to retrieve the objects being secured by the authorization
engine

2. Client information needed to calculate the effective permissions on the objects retrieved

Earlier in this section we listed the additional client information that can be taken into account
when calculating the effective permissions. Table 5-8 summarizes this information with the
extended operation option and the LDAP attribute used within a filtered aclEntry or
entryOwner value.

Table 5-8 Extended operation

GetEffectiveAcl Example
The following shows an example of the getEffectiveAcl extended operation.

In our example, we use ldapexop to perform a substree search to return two objects. The
client is a member of two groups and has alternate DNs associated with it. Note the aclEntry
and entryOwner source information is also presented.

-op geteffectiveacl -filt searchFilter [-b baseDN] [-s {base | one | sub}] [-a
{never | always | search | find}] [-z sizeLimit] [-l timeLimit]

[-m {SIMPLE | CRAM-MD5 | DIGEST-MD5 | GSSAPI | EXTERNAL}] [-dn DN] [-u
racfUserID] [-r principalRealm] [-ip bindIP] [-time accessTime] [-day
accessDay] [-en]

Client detail LDAP attribute Extended Operation
option(s)

IP ibm-filterIP -ip

Subject ibm-filiterSubject -dn
-r
-u

Note groups and alternate DNs
are determined by using these
options, the bind mechanism
option (-m), the groups in the
directory, and DN mapping
rules setup in IBM Tivoli
Directory Server.

Bind Mechanism ibm-filterBindMechanism -m

Note this value can impact the
subject used.

Connection Encrypted ibm-filterConnectionEncrypted -en

Day of Access ibm-filterDayOfWeek -day

Time of Access ibm-filterTimeOfDay -time
118 IBM Tivoli Directory Server for z/OS

Figure 5-12 ldapexop search command

Figure 5-13 ldapexop search command results - first object

ldapexop -D adminDn -w adminPw -op geteffectiveacl -filter "objectclass=*"
-base "dc=yourcompany,dc=com" -s sub -a never -z 100 -l 10
-dn "cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com" -ip 129.176.132.92
-time 18:30 -day 6 -mech SIMPLE -encrypt

#ENTRY INFORMATION:
dn: dc=yourcompany,dc=com

#SUBJECT INFORMATION:
#Bind DN:
dn: cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com

#Alternate DNs:
dn: cn=alt_01
dn: cn=alt_02

#Group DNs:
dn: cn=group_01
dn: cn=group_02

#SOURCE ATTRIBUTE VALUES:
aclEntry: group:cn=Anybody:normal:rsc:system:rsc
aclPropagate: TRUE
aclSource: dc=yourcompany,dc=com
entryOwner: cn=Admin
ownerPropagate: TRUE
ownerSource:dc=yourcompany,dc=com

#APPLICABLE ATTRIBUTE VALUES:
aclEntry: group:cn=Anybody:normal:rsc:system:rsc

#EFFECTIVE ACCESS-CLASS PERMISSIONS:
normal: grant:rsc
system: grant:rsc
Chapter 5. Authentication, authorization, and security 119

Figure 5-14 ldapexop results - second object

5.4.10 Closing thoughts on authorization

IBM Tivoli Directory Server for z/OS’s authorization engine provides administrators flexibility
when securing the directory. Because its initial release, concepts like groups, attribute access
classes, and propagation lessen the number of updates to the directory needed to configure
the authorization engine. In R12, IBM Tivoli Directory Server for z/OS’s authorization engine
was extended. In addition to static client information like the bind DN, more dynamic client
information can now be used to enhance security. For organizations that are bound by laws or
regulations requiring tighter, more dynamic control, information like the client’s location or
time of access might have security implications. Filtered access control allows for an
administrator to address these concerns. Of course all of this flexibility can lead to confusion
or error when performing administration. IBM Tivoli Directory Server for z/OS addresses this
with the GetEffectiveAcl extended operation. When planning, administrators should
consider the following:

� ACLs governing a client’s entry within the directory most often should allow, at minimum,
the client write access to the userpassword attribute. Otherwise, all password
modifications by the client would require an administrator. Considering the password
policy feature, this should be avoided.

� Access class permissions and propagation should be used to reduce the number of
aclEntry and entryOwner values required in the directory.

#ENTRY INFORMATION:
dn: ou=users,dc=yourcompany,dc=com

#SUBJECT INFORMATION:
#Bind DN:
dn: cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com

#Alternate DNs:
dn: cn=alt_01
dn: cn=alt_02

#SOURCE ATTRIBUTE VALUES:
aclEntry: group:cn=Anybody:normal:rsc:system:rsc
aclPropagate: TRUE
aclSource: dc=yourcompany,dc=com
entryOwner: cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com
ownerPropagate: TRUE
ownerSource: dc=yourcompany,dc=com

#APPLICABLE ATTRIBUTE VALUES:
entryOwner: cn=Joe Shmoe,ou=users,dc=yourcompany,dc=com

#EFFECTIVE ACCESS-CLASS PERMISSIONS:
restricted:grant:rwsc
system:grant:rwsc
critical:grant:rwsc
sensitive:grant:rwsc
normal:grant:rwsc
object:grant:ad
120 IBM Tivoli Directory Server for z/OS

� Group membership should be used to reduce the number of aclEntry and entryOwner
values required in the directory. When considering groups, one must consider the choice
of dynamic groups versus static groups.

� When using filtered access control, the union, intersect, and replace operators can be
leveraged to reduce the number of aclEntry values required in the directory. Instead of
trying to have an aclEntry value for every possible situation dictated by the client’s
dynamic information, an incremental approach can be used such that all cases can be
covered with a minimal number of values.

� The GetEffectiveAcl extended operation should be leveraged to verify the configuration,
even if not using filtered access control.

5.5 Groups and group gathering in IBM Tivoli Directory Server
for z/OS

To help simplify authorizing users to entries in the LDBM, TDBM, and CDBM back ends, an
LDAP administrator can place similar users (such as those in the same department or project)
into static, dynamic, or nested groups, and then authorize those groups to the desired
resources in the directory. See 5.4, “Authorization using Tivoli Directory Server Access
Control Lists (ACL)” on page 108 for more information about authorization.

This section discusses:

1. The supported LDAP static, dynamic, and nested groups
2. How to query group membership
3. The pros and cons of static, dynamic, and nested groups
4. How group gathering works after successfully authenticating to the LDAP server

5.5.1 Static, dynamic, and nested groups

A static group is a group where membership is statically defined by an LDAP administrator by
adding the user's distinguished name (DN) as a member or uniqueMember attribute value.
When using the member attribute, the entry must have an object class value of accessRole,
accessGroup, groupOfNames, or ibm-staticGroup to be considered a static group. When using
the uniqueMember attribute, the entry must have an object class value of groupOfUniqueNames.

Figure 5-15 Static group example in LDIF format

As illustrated in Figure 5-15, the members of a static group can reside in other back ends. For
example, the member racfid=karen,profiletype=user,cn=racf resides in the SDBM back
end.

A dynamic group is a group whose membership is determined by evaluating an LDAP search
expression. The LDAP search expression includes the search scope, base distinguished
name or baseDN (place in the directory where the search starts from), and the search filter.
The search filter is allowed to be as complex as necessary to exactly define your dynamic
group. These search expressions are allowed to be placed on the multi-valued memberURL

dn: cn=staticgroup,o=ibm,c=us
objectclass: accessRole
cn: staticgroup
member: cn=jon,o=ibm,c=us
member: cn=saheem,o=ibm,c=us
member: racfid=karen,profiletype=user,cn=racf
Chapter 5. Authentication, authorization, and security 121

attribute. To be considered a dynamic group entry, the entry must have an object class value
of groupOfURLs or ibm-dynamicGroup.

The following simplified LDAP URL syntax, shown in Figure 5-16, must be used as the value
of memberURL attribute to specify the dynamic group search expression.

Figure 5-16 memberURL attribute format

Figure 5-17 illustrates that the members of the cn=testers,o=ibm,c=us is all entries under the
c=us entry that have a title attribute value of tester.

Figure 5-17 Dynamic group entry example in LDIF format

Figure 5-18 illustrates an example where the baseDN is not in the same back end as the
dynamic group entry. The baseDN o=nothere does not exist as a valid suffix in the back end
where the dynamic group entry resides.

Figure 5-18 Dynamic group entry example in LDIF format (baseDN does not exist in this back end)

ldap:///baseDN[??[searchScope][?searchFilter]]

where

baseDN
Specifies the DN of the entry from which the search begins in the directory.
The dynamic URL is not used if the base entry is not within the same back end
as the dynamic group entry. This parameter is required. See Figure 5-18 on
page 122 for an example of an baseDN that is not in the same back end as the
dynamic group entry.

searchScope
Specifies the extent of the search. The default scope is base.
base Returns information aboutly about the baseDN specified in the URL.
one Returns information about entries one level below the baseDN
specified in the URL. It does not include the baseDN.
sub Returns information about entries at all levels below and including
the baseDN.

searchFilter
Is the filter that you want applied to the entries within the scope of the
search. See ldapsearch in IBM Tivoli Directory Server Client Programming for
z/OS V1R12.0, SA23-2214-04 for additional information about LDAP search
filters. The default is "objectclass=*".

dn: cn=testers,o=ibm,c=us
objectclass: groupOfURLs
cn: tester
memberURL: ldap:///c=us??sub?(title=tester)

dn: cn=notvalid_dynamic_group,o=nothere
objectclass: groupOfURLs
cn: notvalid_dynamic_group
memberURL: ldap:///o=nothere??one?(objectclass=person)
122 IBM Tivoli Directory Server for z/OS

A nested group is defined as a group that references static, dynamic, and even other nested
group entries. Nested groups allow LDAP administrators to construct and display group
hierarchies that describe both direct and indirect group memberships. The nested group
entries are allowed to be placed on the multi-valued ibm-memberGroup attribute. To be
considered a nested group entry, the abstract ibm-nestedGroup objectclass must be specified,
as shown in Figure 5-19.

Figure 5-19 Nested group entry example in LDIF format

5.5.2 Querying group membership

As you can imagine, it is possible to introduce complexity when defining these static,
dynamic, or nested groups. To help ease the administrative headaches of managing these
users and groups, an LDAP administrator can request the ibm-allGroups and
ibm-allMembers operational attributes on an LDAP search request. An operational attribute
is one that must be explicitly requested to be returned.

The ibm-allGroups attribute indicates the distinguished names of all groups that the user
entry belongs to, whereas the ibm-allMembers attribute displays all members of a particular
group.

dn: cn=testers_and_programmers,o=ibm,c=us
objectclass: ibm-nestedGroup
objectclass: container
ibm-memberGroup: cn=testers,o=ibm,c=us
ibm-memberGroup: cn=programmers,o=ibm,c=us
Chapter 5. Authentication, authorization, and security 123

Assume the entries contained in the LDIF file in Figure 5-20 are added to IBM Tivoli Directory
Server for z/OS.

Figure 5-20 Example static, dynamic, and nested group entries in LDIF format

dn: c=us
objectclass: country
c: us

dn: o=ibm,c=us
objectclass: organization
o: ibm

dn: cn=staticgroup,o=ibm,c=us
objectclass: accessRole
cn: staticgroup
member: cn=jon,o=ibm,c=us
member: cn=saheem,o=ibm,c=us
member: racfid=karen,profiletype=user,cn=racf

dn: cn=jon,o=ibm,c=us
objectclass: inetOrgPerson
cn: jon
sn: cottrell
uid: cottrell
userpassword: secret
title: programmer

dn: cn=saheem,o=ibm,c=us
objectclass: inetOrgPerson
cn: saheem
sn: granados
uid: granados
userpassword: secret
title: programmer

dn: cn=diane,o=ibm,c=us
objectclass: inetOrgPerson
cn: diane
sn: lia
uid: lia
userpassword: secret
title: tester

dn: cn=jeff,o=ibm,c=us
objectclass: inetOrgPerson
cn: jeff
sn: smith
uid: smith
userpassword: secret
title: tester

dn: cn=testers,o=ibm,c=us
objectclass: groupOfURLs
cn: tester
memberURL: ldap:///c=us??sub?(title=tester)

dn: cn=programmers,o=ibm,c=us
objectclass: groupOfURLs
cn: programmers
memberURL: ldap:///o=ibm,c=us??one?(title=programmer)

dn: cn=testers_and_programmers,o=ibm,c=us
objectclass: ibm-nestedGroup
objectclass: container
ibm-memberGroup: cn=testers,o=ibm,c=us
ibm-memberGroup: cn=programmers,o=ibm,c=us
124 IBM Tivoli Directory Server for z/OS

Figure 5-21 shows the results of using the z/OS ldapsearch utility to query the
ibm-allMembers and ibm-allgroups operational attribute types on an LDAP search.

ldapsearch -L -D "cn=admin" -w secret -s one -b "o=ibm,c=us" "objectclass=*"
ibm-allgroups ibm-allmembers

Figure 5-21 ibm-allMembers and ibm-allGroups search results

5.5.3 Static, dynamic, and nested group pros and cons

Although static groups are easy to define and setup, they can quickly become an
administrative headache to manage when users need to be added or removed on a regular
basis. This is when using a dynamic group might make sense. Instead of an LDAP
administrator manually adding or removing users from a group, a dynamic group search
expression could automatically find all users that ought to belong to the group. For example if
cn=jon,o=ibm,c=us in Figure 5-20 on page 124 has changed jobs and should now be an
tester instead of a programmer, the LDAP administrator only needs to change the title

dn: cn=saheem,o=ibm,c=us
ibm-allgroups: cn=staticgroup,o=ibm,c=us
ibm-allgroups: cn=programmers,o=ibm,c=us
ibm-allgroups: cn=testers_and_programmers,o=ibm,c=us

dn: cn=jeff,o=ibm,c=us
ibm-allgroups: cn=testers,o=ibm,c=us
ibm-allgroups: cn=testers_and_programmers,o=ibm,c=us

dn: cn=jon,o=ibm,c=us
ibm-allgroups: cn=staticgroup,o=ibm,c=us
ibm-allgroups: cn=programmers,o=ibm,c=us
ibm-allgroups: cn=testers_and_programmers,o=ibm,c=us

dn: cn=diane,o=ibm,c=us
ibm-allgroups: cn=testers,o=ibm,c=us
ibm-allgroups: cn=testers_and_programmers,o=ibm,c=us

dn: cn=programmers,o=ibm,c=us
ibm-allmembers: cn=jon,o=ibm,c=us
ibm-allmembers: cn=saheem,o=ibm,c=us

dn: cn=testers,o=ibm,c=us
ibm-allmembers: cn=diane,o=ibm,c=us
ibm-allmembers: cn=jeff,o=ibm,c=us

dn: cn=staticgroup,o=ibm,c=us
ibm-allmembers: racfid=karen,profiletype=user,cn=racf
ibm-allmembers: cn=saheem,o=ibm,c=us
ibm-allmembers: cn=jon,o=ibm,c=us

dn: cn=testers_and_programmers,o=ibm,c=us
ibm-allmembers: cn=jon,o=ibm,c=us
ibm-allmembers: cn=saheem,o=ibm,c=us
ibm-allmembers: cn=diane,o=ibm,c=us
ibm-allmembers: cn=jeff,o=ibm,c=us
Chapter 5. Authentication, authorization, and security 125

attribute of cn=jon,o=ibm,c=us to tester. When this change is done, cn=jon,o=ibm,c=us is
automatically added to the cn=testers,o=ibm,c=us dynamic group and is removed from the
cn=programmers,o=ibm,c=us dynamic group.

Nested groups are useful when there is a need for a “super” group to contain everyone within
a certain project. In Figure 5-20 on page 124, the cn=testers_and_programmers,o=ibm,c=us
entry contains all the testers and programmers that are working on the same project.
However, care needs to be taken when defining nested groups because they can become
difficult to manage if deep hierarchies are introduced (e.g. Group A contains Group B which
then contains Group C). A deep nested hierarchy can make it difficult for an LDAP
administrator to correctly identify all members of a particular group.

5.5.4 Group gathering

After successfully authenticating to IBM Tivoli Directory Server for z/OS, the distinguished
names of groups that the bound user belongs to are gathered and added to the bind
information. If a GSSAPI (Kerberos) or SASL EXTERNAL bind resulted in any alternate DNs
being obtained, the groups that these alternate DNs belong to are also gathered. These
group DNs can then be used to set authorization rights within the LDAP directory. See 5.4,
“Authorization using Tivoli Directory Server Access Control Lists (ACL)” on page 108 for more
information.

Groups are gathered in the following manner:

� The back end or client operation plug-in extension that contains the bind DN is contacted
to contribute DNs of any group entries that contain the bind DN or any of the alternate
DNs. If authenticated to the SDBM back end, only groups in which the user ID's
membership is active (has not been revoked) are included in the list. If the bind DN is not
in a back end or a client operation plug-in extension (for example, after a Kerberos bind),
this step is skipped.

� Each LDBM, CDBM, or TDBM back end that has extendedGroupSearching on specified in
the LDAP server configuration file is also contacted to contribute the DNs of any group
entries in the back end that contain the bind DN or any of the alternate DNs. The client
operation plug-in extensions are also contacted to contribute group DNs if they have
registered a SLAPI_TYPE_GROUPS callback type routine. Note that the SDBM back end
does not support extended group searching.

Group gathering is not performed if any of the following is true:

1. The user has bound as any of the distinguished names specified in the adminDN,
peerServerDN, and masterServerDN configuration options in the LDAP server configuration
file.

2. The authenticateOnly server control (OID 1.3.18.0.2.10.2) is specified on the bind
request. If using the SDBM back end for authentication only purposes, consider using the
authenticateOnly server control to help streamline RACF authentication and bypass its
group gathering. However this is not necessary if there is no LDBM, TDBM, GDBM, or
CDBM back ends configured.
126 IBM Tivoli Directory Server for z/OS

5.6 Password Policy

An important aspect of security when using passwords is the ability to define and administer a
password policy. Password policies govern things like when and if passwords expire, how
wrong passwords are handled, and rules for changing passwords. In LDAP, the administrator
has the ability to define a global password policy for all users. Exceptions to the global policy
can be made through the definition of group or individual password policies.

5.6.1 Multiple password policies

In z/OS v1R12 LDAP, global password policy, group password policy and individual password
policy support has been added with the CDBM back end. When determining which set of
password rules a user should adhere, all three types of policies, if they exist, will be taken into
consideration.

Global password policy
All users in the LDBM, TDBM, or CDBM back end not participating in native authentication
are forced to comply with the rules defined in global password policy entry. When the global
password policy entry is created by a server, the attribute ibm-pwdPolicy is set to FALSE,
which means all password policy entries will be ignored by the server. Only when the attribute
is set to TRUE will the password rules be enforced by the server.

An auxiliary object called ibm-pwdGroupAndIndividualPolicies is introduced. This object
class can only be added to the global password policy entry. The only attribute in this object
class would be the “MUST” attribute ibm-pwdGroupAndIndividualEnabled. If the global
password policy is turned ON, a value of TRUE indicates that global, group and individual
password policies are to be considered when evaluating password policy. A value of FALSE
indicates that only the global password policy is used. The default value is FALSE.

Group password policy
With a group password policy, an association between a group object and a password policy
entry is introduced so that the members of the group can be controlled by a set of special
password rules. A new operational attribute, ibm-pwdGroupPolicyDN pointing to a password
policy entry can be used in any user group objects, such as accessGroup, accessRole,

Notes:

If using IBM Tivoli Directory Server for z/OS V1R11 and earlier, the groups are
determined during authentication.

If using IBM Tivoli Directory Server for z/OS V1R12 or later and LDAP password policy
is active, the groups are determined during authentication time. If LDAP password
policy is not active, the groups are determined at the beginning of the next non-bind
request.

Note: The z/OS IBM Tivoli Directory Server password policy rules only apply to entries that
have a userPassword value stored in a TDBM, LDBM, or CDBM back end. The server
compatibility level must be 6 or greater and the CDBM back end must be configured to use
LDAP password policy
Chapter 5. Authentication, authorization, and security 127

groupOfNames, groupOfUniqueNames, ibm-nestedGroup, ibm-dynamicGroup and
ibm-staticGroup.

Because a user entry can belong to more than one group, multiple group password policy
entries might need to be evaluated before the user's group policy can be determined.

Attributes in all the group password policy entries are combined to form a union of attributes
with the most restrictive attribute values taking precedence. By associating a value of
cn=noPwdPolicy with attribute ibm-pwdGroupPolicyDN for a password policy extended group
entry, an administrator can exempt that group's policy from being used in the evaluation of the
composite group policy. This means if a user belongs to a group to which a cn=noPwdPolicy
value is assigned, the user's effective policy will not include any attributes from this group
policy. Other group policies and the global policy and the individual policy will still be
evaluated.

Individual password policy
With an individual password policy, every user is allowed to have his or her own password
policy. With a new operational attribute, ibm-pwdIndividualPolicyDN pointing to a password
policy entry, a user entry will have its own password policy entry. This named reference
password policy design provides an easy way to associate multiple user entries to the same
policy entry. By changing the attributes of the password policy entry, an administrator can
effectively manage a set of users without modifying any of the user entries.

By assigning a value of cn=noPwdPolicy to attribute ibm-pwdIndividualPolicyDN for a
password policy extended user entry, an administrator can exempt a user from any password
policy controls. This is different from not defining the attribute in the entry. If the attribute is not
defined, the user's effective password policy will be derived from the user's group, if it exists,
and the global policy. However, if the attribute is defined with the special value, then the
effective password policy will not be evaluated at all and the user will not be controlled by any
password rules.

5.6.2 Meaning of various attributes in password policy

This section defines the various password policy attributes and operational attributes..

Password policy attributes
� ibm-pwdPolicyStartTime: This attribute contains the time when the password policy was

turned ON.

Note: If a user belongs to one or more group(s) that have cn=noPwdPolicy specified,
belongs to no groups for which the ibm-pwdGroupPolicyDN attribute refers to a valid
password policy entry, and has no individual password policy, then the user is exempt from
any password policy rules.

Note: Not all of the password policy attributes need to be defined in a user's individual or
group password policy entry. During password policy evaluation time, a user's individual,
group and global password policy are searched in that order. If an attribute is not defined in
the individual password policy entry, it will be searched in the composite group password
policy entry. If it is not found, the attribute in the global password policy entry will be used.
In case the attribute is not defined in the global password policy entry, then a default value
will be assumed.
128 IBM Tivoli Directory Server for z/OS

� pwdAttribute: This attribute specifies the name of the attribute to which the password
policy is being applied, and can only be set to the userPassword attribute.

� pwdMinAge: This attribute specifies the number of seconds that must pass since the last
password modification before modifying a password.

� pwdMaxAge: This attribute specifies the number of seconds after which a modified
password will expire (0 means password does not expire).

� pwdInHistory: This attribute specifies the number of passwords that are stored in the
pwdHistory attribute.

� pwdCheckSyntax: This attribute indicates whether or not the password will be checked for
syntax (0 means syntax checking will not be enforced. 1 means the server will check the
syntax, and if the server is unable to check the syntax (due to a hashed password or other
reasons) it will be accepted. 2 means the server will check the syntax, and if the server is
unable to check the syntax it returns an error refusing the password).

� pwdMinLength: This attribute specifies the minimum length of the password string.

� pwdExpireWarning: This attribute specifies the maximum number of seconds before a
password is about to expire that expiration warning messages will be returned to an
authenticating user.

� pwdGraceLoginLimit: This attribute specifies the number of times an expired password
can be used to authenticate a user.

� pwdLockoutDuration: This attribute specifies the number of seconds that the password
cannot be used to authenticate due to specified pwdMaxFailure failed bind attempts.

� pwdMaxFailure: This specifies the maximum number of consecutive failed bind attempts
allowed, after which the password cannot be used to authenticate (0 means the value of
pwdLockout will be ignored).

� pwdFailureCountInterval: This attribute specifies the number of seconds after which the
password failures are removed from the failure counter even though no successful
authentication has occurred.

� passwordMinAlphaChars: This attribute specifies the minimum number of alphabetic
characters that the password string must have. If the server is unable to check the number
of alphabetic characters, then the server might continue processing, depending on the
value of the pwdCheckSyntax attribute.

� passwordMinOtherChars: This attribute specifies the minimum number of numeric and
special characters that the password string must have. If the server is unable to check the
number of other characters, then the server might continue processing, depending on the
value of the pwdCheckSyntax attribute.

� passwordMaxRepeatedChars: This attribute specifies the maximum number of times a given
character can be used in a password. If the server is unable to check the actual password
characters, then the server might continue processing, depending on the value of the
pwdCheckSyntax attribute.

� passwordMinDiffChars: This attribute specifies the minimum number of characters in the
new password that must be different from the characters in the old password. If the
password has been one-way encrypted, the server will be unable to check actual
password characters. The server might continue processing, depending on the value of
the pwdCheckSyntax attribute.

� ibm-pwdPolicy: This attribute specifies whether the password policy is turned ON or OFF.

� pwdLockout: This attribute indicates whether or not a password can be used to
authenticate after a specified number of consecutive failed bind attempts.
Chapter 5. Authentication, authorization, and security 129

� pwdAllowUserChange: This attribute specifies whether or not the users are allowed to
change their own passwords.

� pwdMustChange: This attribute specifies whether or not the users must change their
password when they first bind to the directory after the administrator has reset their
password.

� pwdSafeModify: This attribute specifies whether or not the existing password must be sent
when changing a password.

� ibm-pwdGroupAndIndividualEnabled: This attribute determines if the Group Password
policies and the Individual Password policies have to be considered or not during the
Effective Password policy evaluation.

Password policy operational attributes
There are a number of password policy operational attributes that are stored in user entries
subject to password policy that keep track of password policy state information. These
attributes are:

� pwdAccountLockedTime: Contains the time at which the account was locked. If the account
is not locked, this attribute is not present.

� pwdChangedTime: Contains the time the password was last changed or the password policy
start time whichever is recent.

� pwdExpirationWarned: Contains the time at which the password expiration warning was
first sent to the client.

� pwdFailureTime: A multi-valued attribute containing the times of previous consecutive
login failures. If the last login was successful, this attribute is not present.

� pwdHistory: A multi-valued attribute containing a history of the previous password values
used.

� pwdGraceUseTime: A multi-valued attribute containing the times of the previous grace
logins.

� pwdReset: Contains the value TRUE if the password has been reset and must be changed
by the user. The value is otherwise FALSE or not present.

� ibm-pwdAccountLocked: Indicates that the account has been administratively locked.

� ibm-pwdIndividualPolicyDn: DN of a password policy entry that can be associated with a
user entry.

� ibm-pwdGroupPolicyDn: DN of a password policy entry that can be associated with a group
entry.

Password policy checking
The z/OS IBM Tivoli Directory Server password policy is checked during;

� Pre-bind and pre-compare operations involving the userPassword attribute value to ensure
that the password has not expired or the user's account has not been locked from
authenticating to the directory.

� Post-bind and post-compare operations involving the userPassword attribute value to
record failure login, clearing failure login time only if password is not expired and operation
is successful.

� Pre-add and pre-modify operations involving the userPassword attribute value to ensure
that the password is compliant with minimum and maximum number of characters that are
given in the password, the password is allowed to be changed at this time, and if the
password must be changed at this time for the user.
130 IBM Tivoli Directory Server for z/OS

� Post-add and post-modify operations involving the userPassword attribute value to set the
account reset flag after the administrator resets the password and pwdMustChange is true.

Native Authentication and expired passwords
In general, LDAP Password Policy does not apply to the SDBM back end or to native
authentication. Password Policy for those users is determined by the underlying security
system.

However, support has been added that allows a native authentication user to change their
expired password on a modify delete-add operation. In older releases of LDAP, an expired
password caused the ldap bind to fail. The only way to change the password was to check for
the bind reason code of R004109 The password has expired and to bind again, this time with
the oldpasswd/newpasswd syntax on the bind. This was contrary to the common practice of
allowing the modify delete/add to change the password.

Now in this situation, if the server has been configured with the server config option
nativeUpdateAllowed reset, and if the password policy control is sent on the LDAP bind, the
bind will succeed with a response control called changeAfterReset. This then indicates that a
modify request with delete of the old password and add of newpassword will succeed. If any
other modify request is made, it will still fail with password expired.

These are the items that need to be set for this support to work:

� In the Server Configuration file, along with other native authenticaton options, set
nativeUpdateAllowed to reset

� Send the Password Policy Control on the ldap bind
� Check for the changeAfterReset response in the control from bind
� Do an LDAP modify with the delete-add format

The z/OS ldapmodify client command is set up to provide this functionality. The command
always sends the PasswordPolicy control and, if the z/OS IBM Tivoli Directory Server server
is configured properly, the command will check the bind response and allow the modify
delete-add operation change the password.

For example:

ldapmodify -D cn=user1,c=ca -w secret -f del_add.ldif

The contents of del_add.ldif are shown in Figure 5-22.

Figure 5-22 del_add.ldif

Sample C language code is provided in Appendix B, “Sample C code” on page 305, as an
example of using the API to recognize an expired password on a successful ldap_bind of a
native authentication user and to change the password with an ldap_modify.

dn: cn=user1,c=ca
changetype: modify
delete: userpassword
userpassword: secret
-
add: userpassword
userpassword: abcdef
Chapter 5. Authentication, authorization, and security 131

5.7 Encryption and Hashing

IBM Tivoli Directory Server for z/OS supports a number of encryption and hashing algorithms
to provide secure protection for sensitive passwords and other data that reside in LDBM,
TDBM, and CDBM back end entries.

The pwEncryption option in the LDBM, TDBM, and CDBM back end sections of the LDAP
server configuration file specifies the encryption or hashing method that is used to protect
userPassword attribute values. The following values are supported on the pwEncryption
option:

� AES:keylabel (Advanced Encryption Standard) where keylabel specifies a key in ICSF
� DES:keylabel (Data Encryption Standard) where keylabel specifies a key in ICSF
� SHA (SHA-1)
� SSHA (Salted SHA-1 – only supported in z/OS V1R12 and later)
� crypt
� md5
� none (default option)

The secretEncryption option in the LDBM, TDBM, and CDBM back end sections of the
LDAP server configuration file specifies the encryption that is used to protect the secretKey,
replicaCredentials, ibm-replicaKeyPwd, and ibm-slapdMasterPw attribute values. AES,
DES, and having no encryption is supported.

SHA, SSHA, crypt, and md5 are one-way hashing algorithms, whereas AES and DES are
two-way encryption algorithms.

When a value is hashed in an one-way hashing algorithm, the resulting hash is always the
same and the original value cannot be obtained unless you do a dictionary attack to
determine the original un-hashed value. To help prevent these dictionary attacks, the Salted
SHA-1 hashing algorithm was introduced in z/OS V1R12 to help randomize the resulting final
hash. This gives the impression that the underlying clear value is not the same when in fact it
is.

When using the crypt algorithm there are two considerations that need to be taken into
account:

1. The crypt algorithm only accepts the first 8 characters of a password value when
authenticating or storing in an LDBM, TDBM, or CDBM entry. If you need to use longer
passwords, use another hashing or encryption method.

2. There are two crypt algorithms supported in IBM Tivoli Directory Server for z/OS: an
ASCII-based and an EBCDIC-based algorithm. The ASCII-based crypt algorithm should
be used when adding or bulkloading userPassword values from LDAP servers running on
an ASCII platform so that authentications work properly on other LDAP servers. However,
the EBCDIC-based crypt algorithm should be used if you previously migrated from the
z/OS Integrated Security Services LDAP server and have not migrated all userPassword
attribute values to use the ASCII-based crypt algorithm or another encryption or hashing
method. The crypt algorithm that is used is controlled by the setting of the pwCryptCompat
option in the LDBM, TDBM, or CDBM back end. When not specified in the back end or set
to on, the EBCDIC-based crypt algorithm is used. Otherwise the ASCII-based crypt
algorithm is used.

AES and DES are two-way encryption algorithms that can use keys defined in the ICSF
CKDS (Cryptographic Key Data Set). When encrypting data with a two-way encryption
algorithm, it is possible to decrypt the data to obtain the original un-encrypted value. The keys
used for AES or DES encryption can generated using the ICSF KGUP utility and stored in the
132 IBM Tivoli Directory Server for z/OS

ICSF CKDS. Depending on the hardware and ICSF level available on your system, the AES
and DES keys can be in the clear or encrypted. DES keys in the ICSF CKDS can be
single-length (56 bit), double-length (112 bit), or triple-length (168 bit). AES keys can be 128
bytes, 192 bytes, or 256 bytes long in the ICSF CKDS.

Figure 5-23 shows examples that can be used for generating various AES or DES keys with
the ICSF KGUP utility.

Figure 5-23 Examples of creating AES and DES keys with the ICSF KGUP utility

After running the ICSF KGUP utility, make certain to refresh the CKDS so that the new AES
and DES keys are available. To use the AES256.REDBOOK.CLEAR AES key on the
pwEncryption or secretEncryption configuration option specify:

AES:AES256.REDBOOK.CLEAR

Figure 5-24 Refreshing ICSF CKDS

See z/OS V1R12.0 ICSF Overview, SA22-7519 for more information about the AES and DES
keys that are supported for your hardware and ICSF level. See z/OS V1R12 ICSF
Administrator's Guide, SA22-7512 for more information about using the KGUP utility to store
keys for AES and DES encryption.

When the userPassword, secretKey, replicaCredentials, ibm-replicaKeyPwd, and
ibm-slapdMasterPw attribute values are stored in the LDBM, TDBM, or CDBM back ends, the
values are tagged with the encryption or hashing algorithm used (for example SSHA or
AES:AES256.REDBOOK.CLEAR). When the pwEncryption or secretEncryption
configuration options are changed to a new encryption or hashing algorithm, the values
hashed or encrypted in the old method are still usable. See 5.2, “Authentication mechanisms
supported by IBM Tivoli Directory Server for z/OS” on page 92 for information about how
authentications occur with different hashing or encryption methods.

5.8 SSL/TLS

IBM Tivoli Directory Server for z/OS can be configured to use SSL (Secure Sockets Layer)
and TLS (Transport Layer Security) protocols to provide protected communications between
the LDAP server and client applications. This is especially important when sensitive

ADD TYPE(DATA) LENGTH(32) ALGORITHM(AES),
 LABEL(AES256.REDBOOK.ENCRYPTED)

ADD TYPE(CLRAES) LABEL(AES256.REDBOOK.CLEAR),
 KEY(0123456789ABCDEF,0123456789ABCDEF,
 0123456789ABCDEF,0123456789ABCDEF)

ADD TYPE(DATA) ALGORITHM(DES) LENGTH(8),
 LABEL(DES56.REDBOOK.ENCRYPTED)

ADD TYPE(CLRDES) LABEL(DES56.REDBOOK.CLEAR),
 KEY(0123456789ABCDEF)

RDEFINE CSFKEYS AES256.REDBOOK.CLEAR UACC(NONE)
PERMIT AES256.REDBOOK.CLEAR CLASS(CSFKEYS) ACCESS(READ) ID(GLDSRV)
SETROPTS RACLIST(CSFKEYS) REFRESH
Chapter 5. Authentication, authorization, and security 133

information, such as the user's bind distinguished name and password, is exchanged
between the LDAP server and client applications. An SSL/TLS connection between the
server and client can be used to encrypt the connection to make it more difficult to obtain this
sensitive data and help prevent man-in-the-middle attacks. Authorization to entries in the
LDBM, TDBM, and CDBM back ends can also be protected based on whether an encrypted
connection is used during an SSL/TLS connection. See 5.4, “Authorization using Tivoli
Directory Server Access Control Lists (ACL)” on page 108 for more information about setting
up access control filters.

The SSL and TLS protocols use PKI (public-key infrastructure) to establish and maintain the
encrypted communications between the LDAP server and client applications. The z/OS
Cryptographic Services SSL component of z/OS provides the services necessary for
communicating with SSL/TLS.

When establishing an SSL/TLS connection between IBM Tivoli Directory Server for z/OS and
the LDAP client application, the LDAP server transmits a certificate to verify its identity to the
LDAP client. The client can optionally transmit its own certificate to the LDAP server to verify
its identity. Both the LDAP server and client must verify that the certificates that they receive
are valid by comparing the digital signature in the certificates with a signature that it computes
based on having the public-key signer of the certificate. The LDAP server and client do this by
reading a file or repository that contains these public keys or certificates.

These public keys or certificates are associated with the signers of the certificates and in
z/OS they can be stored in an SSL key database file, RACF (SAF) key ring, or a PKCS#11
token. Generally, verifying a certificate requires another certificate that is known as the
signing certificate or public key. Therefore, it is possible to introduce a chain of certificates
where each certificate needs to be verified by its signing certificate until all certificates are
verified. A certificate can be defined as a root certificate, which is a self-signed certificate. A
self-signed certificate contains the public-key that was used to sign the certificate.

The key repository used by either the LDAP server or client must contain enough certificates
to verify the certificates exchanged during the initial SSL/TLS handshakes to establish the
encrypted connection. If any of these certificates are self-signed, they must be stored in the
other's key repository. Similarly, if the certificates are signed by another certificate signer, then
the signer's certificate and any certificates that this certificate depends upon must be stored
in the key repository.

See Implementing PKI Services on z/OS, SG24-6968 for more information about how
certificates and PKI work.

5.8.1 Certificates and key repositories

As mentioned earlier, there are three certificate key repositories supported by z/OS and IBM
Tivoli Directory Server for z/OS:

� RACF(SAF) key ring: Key rings and certificates are created, stored, and managed in
RACF by using the RACDCERT command.

� SSL key database file: Key database files and certificates are created, stored, and
managed by a file in the UNIX System Services file system with the gskkyman utility.

� PKCS#11 tokens (ICSF): PKCS#11 tokens are stored in ICSF (Integrated Cryptographic
Security Facility) but are managed using the RACF RACDCERT command or the
gskkyman utility.

The RACDCERT command provides the ability to let the RACF database store the key
repository and certificates for SSL. The key repository in RACF is called the key ring and
134 IBM Tivoli Directory Server for z/OS

contains the certificates. The RACDCERT command provides the ability to create certificates,
import and export certificates (public keys) to and from other repositories, and change
existing certificate information. The following are the main RACDCERT subcommands that
are used when creating a RACF key ring repository:

� RACDCERT ADD: Imports in a certificate and assigns it to a RACF user.
� RACDCERT ADDRING: Creates a RACF key ring
� RACDCERT CONNECT: Connects a certificate to a RACF key ring.
� RACDCERT GENCERT: Used to generate a certificate
� RACDCERT LIST: Lists the contents of a certificate.
� RACDCERT LISTRING: Lists the certificates connected to a RACF key ring.

See 5.2.6, “External (SSL)” on page 101 for an example of creating a RACF key ring and a
certificate for the LDAP server. For more information about these RACDCERT subcommands
and the remaining RACDCERT subcommands, see z/OS V1R12.0 Security Server RACF
Command Language Reference, SA22-7687.

The gskkyman utility is a z/OS OMVS shell based menu-driven utility shipped by System SSL.
This utility manages a password-protected file called the key database file in the UNIX
System Services file system. The key database file contains the private and public keys used
by certificates connected to the file. The gskkyman utility provides the ability to create
certificates, import and export certificates (public keys) to and from other repositories, and
change existing certificate information. See Chapter 10 of z/OS V1R12.0 System SSL
Programming, SC24-5901 for more information about the gskkyman utility.

As mentioned earlier, either the RACDCERT command or the gskkyman utility can be used to
create or manage PKCS#11 tokens that are stored in ICSF. These PKCS#11 tokens can
contain certificates that are used by either IBM Tivoli Directory Server for z/OS or the LDAP
client. The issuer of the RACDCERT command or gskkyman utility must have access to the
CRYPTO SAF class to perform operations against the PKCS#11 token. See the above
references for more information about managing PKCS#11 tokens in ICSF.

5.8.2 Setting up IBM Tivoli Directory Server for z/OS to use SSL/TLS

IBM Tivoli Directory Server for z/OS has a number of SSL configuration options that must be
specified to setup the LDAP server to use SSL/TLS protected communications. These
configuration options are specified in the global section of the LDAP server's configuration
file.

� listen
� sslAuth
� sslCertificate
� sslCipherSpecs
� sslKeyRingFile
� sslKeyRingFilePW
� sslKeyRingPWStashFile
� sslMapCertificate

The multi-valued listen configuration option indicates the port and optionally the host name
or IP address in LDAP URL format (ldap[s]://[hostname | IP address]:[port]) that the LDAP
server should listen for incoming client requests on.

� When ldap:// is specified as the URL prefix, it indicates that the LDAP server will listen for
either non-secure or secure communications on the port and TCP/IP interface specified.
By default, the LDAP server accepts only non-secure communications on these ports, but
it can be changed to a secure connection using the StartTLS extended operation.
Following the StartTLS extended operation, a secure SSL/TLS connection is negotiated
Chapter 5. Authentication, authorization, and security 135

and the connection is secured until the connection is broken, the user unbinds or
disconnects from the LDAP server, or a StopTLS extended operation is done. The
StopTLS extended operation results in a non-secure connection being re-established
between the client and server.

� When ldaps:// is specified as the URL prefix, it indicates that the LDAP server will only
listen for secure communications on the port and TCP/IP interface specified.

The sslKeyRingFile configuration option specifies the name of the RACF key ring, SSL key
database file, or PKCS#11 token that is used by the LDAP server. If using a PKCS#11 token,
it must be specified as *TOKEN*/NAME where NAME is the name of the PKCS#11 token.

If the sslKeyRingFile configuration option specifies a SSL key database file, either the
sslKeyRingFilePW or sslKeyRingPWStashFile configuration option must be specified. The
sslKeyRingFilePW option specifies the password assigned to the SSL key database file, and
the sslKeyRingPWStashFile specifies a stash file that better protects the password for the key
database file. The stash file is created using the gskkyman utility.

The sslCertificate configuration option specifies the label of the certificate to use in the
SSL key database, RACF key ring, or PKCS#11 token. If this option is not specified, the
default certificate (if there is one) is used in the key database file, RACF key ring, or PKCS#11
token.

The sslAuth configuration option indicates whether server authentication or server and client
authentication occurs.

� When set to serverAuth, the LDAP server sends the client its certificate, which the client
then validates. If the client successfully validates the server's certificate during the
handshake, secure communications begin between the server and client.

� When set to serverClientAuth, both the LDAP server and client exchange certificates and
they must both be verified. After both certificates are verified, secure communications
begin between the server and client.

To perform SASL EXTERNAL binds, the sslAuth option must be set to serverClientAuth. For
more information about SASL EXTERNAL binds, see 5.2.6, “External (SSL)” on page 101.

The sslCipherSpecs configuration option specifies the ciphers that are accepted from
connected clients. If this option is not specified, then all ciphers accepted by the LDAP server
are used.

The sslMapCertificate configuration option indicates if the client certificate ought to be
mapped to a RACF user when doing a SASL EXTERNAL bind. For information about how
SASL EXTERNAL bind mapping works, see 5.2.6, “External (SSL)” on page 101.

5.9 Persistent Search

Often application are designed to fetch data from back end systems and store them in
application-specific cache memory to speed up response times and enhance the user
experience. While doing so, they also need to take care of refreshing the data in cache and
making sure that stale data is not presented to the user. Maintaining stale data in the cache
can potentially impact business critical applications.

As its name implies, the Persistent Search feature of IBM Tivoli Directory Server is a search
operation that continues after the initial set of matching entries is returned. This feature allows
136 IBM Tivoli Directory Server for z/OS

you to perform a search, gather the results of the search operation, and then, whenever an
entry in the result set is modified, get a new copy of that entry.

Persistent Search is an extension to the LDAP v3 search operation that moves the burden of
checking for updates within a search result set from the client to the server. The Persistent
Search control allows the client to perform a normal LDAP search operation (specifying the
base DN, scope of search, search filter, and so on) and then, rather than having the server
return a SearchResultDone message at the end, the operation maintains a connection so the
client can be updated each time an entry in the result set changes. This allows the client to
maintain a cache of the entries it is interested in, or trigger logic whenever an update occurs.

In LDAP, a control is an extension mechanism that allows you to change the way an existing
LDAP operation works. In this case, the control applies to the search operation. In addition to
the normal things you specify when performing a search (like baseDN, scope, filter, and so
on), this control lets you specify data that will help the server know how to process the
Persistent Search.

The advantages of Persistent Search are:

� Cache Consistency

In an LDAP client application with high performance needs, you might want to maintain a
temporary, local cache of information obtained through an LDAP search operation. To
improve performance, the local cache is always consulted before sending a request to an
LDAP server. A Persistent Search request where the changesOnly flag is False can be
used if it is desired to prime the cache. Otherwise, changesOnly would be set to True in the
request.

Caches are also used for reasons other than performance improvement. In certain cases,
they arise naturally out of a particular application's design. For example, an LDAP client
designed for administration of information held in LDAP servers will undoubtedly generate
window displays that show information gleaned from an LDAP server. The window display
is a cache that is active and visible until the user of the application takes an action that
causes other information to be displayed. A refresh button or similar control may be
provided to users to allow them to update the cached display. A Persistent Search request
can be used instead by the administrative application to automatically refresh the window
display as soon as the underlying LDAP information changes.

� Triggered Actions

An LDAP client application might want to take action when an entry in the directory is
changed. A Persistent Search request can be used to proactively monitor one or more
LDAP servers for interesting changes that in turn cause specific actions to be taken by an
application. For example, an electronic mail repository might want to perform a “create
mailbox” task when a new person entry is added to an LDAP directory, and a “delete
mailbox” task when a person entry is deleted from an LDAP directory.

Note: The Persistent Search operation is memory and connection-intensive for the
LDAP server, as it not only needs to maintain an open TCP connection but also needs
to maintain the search request associated with that connection. Every change that
happens in the directory database needs to be evaluated against the search criteria of
the Persistent Search client, and the client is notified of the change or not accordingly.
Chapter 5. Authentication, authorization, and security 137

138 IBM Tivoli Directory Server for z/OS

Chapter 6. Reliability, availability, and
scalability

This chapter discusses IBM Tivoli Directory Server reliability, availability, and scalability.

6

© Copyright IBM Corp. 2011. All rights reserved. 139

6.1 Reliability, Availability and Scalability

For most organizations, the reliability, availability, and scalability (RAS) of their systems are
crucial characteristics that, if lacking, could be detrimental to the overall sustainability of the
organization. IBM Tivoli Directory Server for z/OS has many features that specifically address
many common RAS requirements. In previous sections, the overall IBM Tivoli Directory
Server architecture and its use of DB2 highlighted the server's scalability. In the upcoming
sections, we will discuss IBM Tivoli Directory Server's features that work towards ensuring the
server's availability while allowing you to limit the amount of overall system resources that are
consumed by the IBM Tivoli Directory Server server.

6.1.1 Availability

Many times a system's availability is enhanced using redundancy. For systems that manage
data, redundancy can come in two forms: data redundancy and application redundancy. Data
redundancy involves having duplicated data. Often business processes or perhaps the
applications managing data ensure the duplicated data remains consistent across all copies.
Application redundancy involves applications that have rigid availability requirements being
duplicated across the enterprise. In both cases, the idea is that if a system running a mission
critical application or storing critical data becomes unavailable, a transfer of operation can
occur seamlessly to another system that houses the duplicated data, application, or both. If
all goes well, the users of the data or applications should not even notice the shift. Similarly, if
a system is overworked, its workload could be distributed to other systems housing duplicated
data, applications, or both. Once again the availability of the system will be retained. IBM
Tivoli Directory Server addresses availability in the same fashion. That is, it supports
application redundancy using Sysplex and shared data, and data redundancy through its
built-in replication model. These two features, in combination with something like VIPA, allow
seamless transfer of LDAP workloads throughout the enterprise to ensure availability.

6.2 Sysplex

As shown in 1.4.2, “Multi-Server (Sysplex)” on page 8, IBM Tivoli Directory Server leverages
z/OS's sysplex features to help ensure application availability. It relies on z/OS's XCF facility
to allow multiple LDAP instances across many LPARS to communicate and work in concert
as though they are all just one LDAP server. In this configuration, there is one sysplex master
LDAP server instance and multiple sysplex replica LDAP server instances. When working
with CDBM, LDBM or file-system-backed GDBM back ends, the directory data is initially
shared using a shared UNIX Systems Services file system. At start time, the sysplex group
master (the first server initialized) reads into memory the persistent data from the shared file
system. When the sysplex group replicas initialize, they request a copy of the data read in by
the sysplex group master. After initialization is complete, all updates to the data are
coordinated through the sysplex group master. As a result, the managing of the persistent
storage is only done by the sysplex group master. When working with TDBM back ends or
DB2-backed GDBM back ends, the directory data is shared through DB2 data sharing. If
advanced replication is enabled, similar to the file-system-backed back ends, all LDAP update
requests are coordinated through the sysplex group master. If advanced replication is not
enabled, each sysplex group member that handles an LDAP update request updates DB2
directly. See configuration examples in Chapter 10, “Using IBM Tivoli Directory Server in a
Parallel Sysplex” on page 217 for details about configuring a sysplex.

If a virtual IP address configuration is setup, LDAP clients connect to a virtualized IP address.
TCP/IP then handles connecting to one of the servers in the sysplex. It could be the sysplex
140 IBM Tivoli Directory Server for z/OS

master or a sysplex replica. Depending on the operation, the server contacted might satisfy
the client request using the shared data. Sometimes, if the server contacted is a sysplex
replica, it might not be able to satisfy the client request due to IBM Tivoli Directory Server
internal implementation requirements. The replica server will then use XCF messaging to
communicate with the sysplex master instance and have the master instance satisfy the
request. When it is done, the sysplex replica relays the results to the client. This is all
transparent to the client. To ensure availability, if the master server instance becomes
unavailable, another replica server instance is promoted to replica master.

Because it is using shared data, IBM Tivoli Directory Server's sysplex support provides
application redundancy only. In the upcoming section, we will show how IBM Tivoli Directory
Server for z/OS relies on its replication feature to facilitate data redundancy.

6.3 Replication

Generally, LDAP servers provide a mechanism for replicating entries across multiple server
instances. The basic idea is the directory is duplicated across multiple LDAP servers
participating in a replication configuration. When a client updates the directory in a server,
either by adding, deleting, moving, or modifying LDAP entries, the update is replicated using
the LDAP protocol to all participating servers. Note that only certain servers can accept
update requests from clients. Other servers will only service search requests and refer all
client update requests to other servers that can accept updates.

IBM Tivoli Directory Server for z/OS provides two options for replication. One model is
referred to as basic replication. This is the model available since IBM Tivoli Directory Server
for z/OS became generally available. For IBM Tivoli Directory Server for z/OS R11, an
advanced replication model was introduced. Among other things, the advanced replication
feature allows a more granular replication model. That is, instead of maintaining an entire
back end as is done with basic replication, advanced replication allows replication to be
configured at a sub-tree level. Moreover, different sub-trees within a directory can take on
different roles in the replication configuration. Because advanced replication has many more
features, it will be the focus of this section.

Note that the process of replicating should not impact the client's interaction with the server.
IBM Tivoli Directory Server for z/OS performs the replication activity on distinct threads of
execution. To ensure this, IBM Tivoli Directory Server internally queues updates to replicate.
Then another thread of execution retrieves updates from the queue and replicates it to the
consumer. The queue of updates is maintained persistently. Thus, if IBM Tivoli Directory
Server shuts down, when it is restarted it will continue to replicate the updates that had not
been replicated prior to its shutdown.

Before going into details, we will highlight key terminology:

Replication Context A sub-tree within the directory that participates in replication

Supplier A general term for a server that will replicate any updates it
receives for a replication context

Consumer A general term for a server that will accept replicated updates from
a supplier for a replication context

Note: IBM Tivoli Directory Server can be configured to register with z/OS's Automatic
Restart Manager (ARM) to automatically restart when an instance fails.
Chapter 6. Reliability, availability, and scalability 141

Referral The LDAP return code and server addresses returned by the
consumer server when a client attempts to update a context

Replication Agreement An LDAP entry that defines the details required to configure a
connection between a Supplier and a Consumer for a given
replication context.

Master A supplier that will accept updates from a client for a context. It will
replicate updates from clients to all consumers it has an agreement
defined with.

Peer A supplier and a consumer that will accept updates from a Client
and be a consumer of other peer or master updates for a context. It
will replicate updates from clients to all consumers it has an
agreement defined with. It will NOT replicate updates from another
peer or master.

Read Only Replica A consumer that contains replicated contexts, but will only accept
updates from a supplier. Client requests will result in a referral to a
Master or (less likely) a Peer.

Forwarder A consumer that contains replicated contexts, but will only accept
updates from a supplier. Client requests will result in a referral to a
Master or (less likely) a Peer. Unlike the read only replica, this
consumer replicates supplier updates for a context with
agreements.

Gateway A special peer that serves as an entry point for replicating updates
within a distinct sub-network of servers. When connected to other
peer gateways, it will replicate updates from the peer gateway to all
of its consumers in the sub-network, but not to other gateway
peers. Any updates it receives from its sub-network of servers will
only be replicated to other peer gateways only. Any client updates
will be replicated to all consumers, including peer gateways.

Topology The type of configuration used when deploying a replication
environment consisting of LDAP consumers and suppliers. There
are four topologies: master - replica, peer - peer,
cascading/forwarding, and gateway.

6.4 Topology

Prior to configuring IBM Tivoli Directory Server for advanced replication, the LDAP
administrator should take the time to decide on what replication topology to deploy. You
should consider the following factors:

� The complexity of the network or network(s) topologies where the various LDAP servers
will be deployed

� The number of servers that should service client update requests
� The number of servers that should service search requests
� The “cost” of replicating updates across the network or networks
� The acceptable time that servers can remain out of sync

IBM Tivoli Directory Server for z/OS provides four replication topology options. The following
sections summarizes the four topologies while giving guidance as to when the topology
should be chosen.
142 IBM Tivoli Directory Server for z/OS

Because the LDAP protocol is used between supplier and consumer, IBM Tivoli Directory
Server for z/OS also supports replicating to LDAP servers on non-z/OS platforms. Certain
features of IBM Tivoli Directory Server for z/OS might not be replicated due to compatibility
issues. However, the common replication topologies can be set up such that updates from a
master can be replicated to other LDAP servers on other platforms. In the upcoming section
we will describe how to configure advanced replication on IBM Tivoli Directory Server for
z/OS.

6.4.1 Master - Replica

This is the most common basic topology. The master accepts client requests and replicates
updates to the read only replica. The read only replica will only accept updates from the
master. This topology can be deployed for data redundancy purposes and to help reduce the
search workload of the master server because clients can send search requests to both the
replica and the master. However, because all updates are done over TCP/IP, there can be
times when the replica and master are not synchronized. If the time the two servers are out of
sync is a critical metric, analyze the network performance to determine if this topology is
acceptable.

6.4.2 Peer - Peer

This is a common topology with more flexibility than the master - replica topology. Peers
accept updates from clients and replicate the updates to each other. If a peer also has
replication agreements to other consumers, it will replicate client updates to the others
servers, but will not replicate updates to other peers. This topology can be deployed to
provide a backup master server that can take over immediately if the primary master fails, and
can help reduce the workloads of the servers because clients can send requests to all peers.
However, because all updates are done over TCP/IP, there can be times when the peers are
not synchronized. If the time the two servers are out of sync is a critical metric, analyze the
network performance to determine if this topology is acceptable.

The peer-peer topology can also lead to conflicts. Consider if the same LDAP entry is being
updated on two peers at the same time by clients. This will result in a conflict occurring when
each server attempts to replicate to each other. IBM Tivoli Directory Server for z/OS provides
an option to enable conflict resolution.

6.4.3 Forwarding/Cascading

This is an extension of the master - replica topology. In between a master and a replica is a
forwarding/cascading server. The master accepts client requests and replicates updates to
the cascading server. The cascading server will only accept updates from the master and
then replicates those updates to the read only replica. The read only replica will only accept
updates from the cascading server. This topology can be deployed to relieve replication
workload from master servers in a network containing many widely distributed replicas. This
topology can also be deployed to help reduce the search workload of the master server
because clients can send search requests to all the servers. If the time the master and replica
servers are out of sync is a critical metric, deploy this topology to reduce the latency.

6.4.4 Gateway

This topology is a complex topology intended for wide area networks where subnetworks can
have replication topologies with many servers. The idea is to reduce network traffic among all
the servers across the WAN. Instead the subnetworks communicate through Gateway peer
Chapter 6. Reliability, availability, and scalability 143

servers. Gateway peer servers will replicate updates from other Gateway peer servers to all
servers in their sub-network only. On the other hand, a Gateway will replicate to other
gateway peers any updates received from clients or servers within its sub-network. If
necessary, in each sub-network, any synchronization latency can be reduced with one or
more of the other topologies.

Note that for all of the listed topologies, when a server does not accept an update from a
client, it is often configured to return a referral to the client. This referral can then be used by
the client to redirect the request to a server that accepts client requests. Also note these
topologies are not mutually exclusive. Clearly the Gateway topology would not be necessary
unless it is deployed in conjunction with the other topologies.

6.4.5 Sysplex and Replication

As previously stated, sysplex is a mechanism for providing application redundancy, whereas
replication is a mechanism for providing data redundancy. Note these two options are not
mutually exclusive. That is, IBM Tivoli Directory Server server instances that are participating
in a replication topology can also be set up as a sysplex group. IBM Tivoli Directory Server's
replication support is sysplex-aware. Replication related requests against servers in a sysplex
group will be properly coordinated among all of the servers in the group.

For suppliers that are set up as a sysplex group, the sysplex group master instance is
responsible for sending replicated updates to consumers. If the sysplex group master shuts
down, the IBM Tivoli Directory Server sysplex support automatically elects a new sysplex
group member as the sysplex master. This server instance then will be responsible for doing
all of the replication.

In a sysplex environment, all data is shared. This includes the replication queues. As a result,
the new sysplex group master should seamlessly pick up where the former sysplex group
master had left off prior to shutting down.

6.5 Setting up Replication

Prior to setting up advanced replication, a few updates are required in the IBM Tivoli Directory
Server configuration file for all the server instances participating in the topology:

� In the global section of the file, the serverCompatLevel value must be 5 or higher.

� The suffixes of all the replication contexts must be defined as a suffix in the configuration
file.

� A CDBM back end must be defined and the useAdvancedReplication value should be on:

#CDBM
database cdbm GLDBCD31/GLDBCD64 cdbm
useAdvancedReplication on

After the configuration files have been updated and the LDAP server instances restarted, all
of the remaining configuration is done by adding and modifying various LDAP entries in the

Note: There is no requirement for back end types of consumers and suppliers to be
equivalent or for all contexts to exist in the same back end. For example, on a supplier
the context can exist in a TDBM back end and be replicated to a consumer's LDBM
back end.
144 IBM Tivoli Directory Server for z/OS

directory. The configuration can be separated into two sets: supplier configuration and
consumer configuration. Recall suppliers can be master, peer, gateway, and cascading
servers. Consumer severs can be peer, gateway, read only replica, and cascading servers. In
the case of peers, gateways, and cascading servers, both supplier and consumer setup must
occur. After updating the configuration file, a few more preliminary steps are required before
moving ahead to consumer and supplier setup.

ServerID
For all servers participating in advanced replication, a server ID is required. The server ID is
stored/set in the cn=configuration entry's ibm-slapdServerId attribute. It is a string attribute.
By default, IBM Tivoli Directory Server for z/OS will generate a random entry-UUID value for
this value. This value is needed for the rest of configuration and entry-UUIDs are not simple
strings. The cn=configuration entry should be modified to set a ibm-slapdServerId that is
easier to use when performing configuration.

SSL
All data is replicated unencrypted unless one way hashes are used for attributes like
userpassword. Set up all consumer servers to support SSL connections so all suppliers can
then use SSL connections to the consumers to help ensure data confidentiality.

Other replication-related configuration options
Advanced replication provides many features to manage replication topologies. The
cn=Replication, cn=Configuration, cn=Replication, cn=Log Management, and
cn=Configuration entries contain attribute settings that manage things like conflict resolution,
error handling, and how queue status is displayed. Refer to z/OS V1R12.0 IBM Tivoli
Directory Server Administration and Use for z/OS, SC23-5191-05 for tuning the advanced
replication feature.

Maintenance Mode
IBM Tivoli Directory Server for z/OS supports maintenance mode. In this mode, no non-admin
client updates are accepted by a server. To ensure no client updates are lost while configuring
replication, switch all servers to maintenance mode. This is done by issuing the following
z/OS console command:

F procName,MAINTMODE ON

After configuration is complete, the following z/OS console command can be issued to
activate all servers:

F procName,MAINTMODE OFF

After all preliminary steps are completed, the administrator must decide how the directory
data in the suppliers and consumers will be initially synchronized. There are many questions
to consider when deciding:

� Do any of the participating servers already contain the directory data?

� Are you starting with an empty directory that you will populate over time?

� If working with existing directory data that you would like to now replicate, how many
entries or sub-trees will need to be remain synchronized?

As implied by the questions to consider, the configuration process has flexibility and thus can
be varied. For sake of simplicity, the following sections will assume the directory data already
exists in one supplier only and all servers are IBM Tivoli Directory Server for z/OS servers.
LDIF files and the ldapadd or ldif2ds command can be used to populate the supplier, if it has
not been done already. Also, there can be different commands and steps available than what
Chapter 6. Reliability, availability, and scalability 145

is described below. Refer to the IBM Tivoli Directory Server for z/OS publications for
additional configuration options. Finally, configuring IBM Tivoli Directory Server for the
distributed platforms is similar to the steps outlined here. However, differences do exist,
especially in the areas of setting up SSL and setting the server ID. Refer to the IBM Tivoli
Directory Server for distributed platforms publications for more information.

6.5.1 Consumer Configuration

The first step in setting up the consumer is establishing the supplier's bind DN and password.
To perform this step it is necessary to know each replication context's root entry DN.
Figure 6-1 shows how to define two replication contexts' supplier bind credentials.

Figure 6-1 Define two replication contexts' supplier bind credentials

After the supplier bind credentials are established, the consumer's directory might need to be
primed. That is, if a replication context is not a defined suffix in the configuration file, all the
parent entries of the context, up to the suffix must exist in the consumer's directory. If, in the
example used here, the contexts are not suffixes, suffix entries o=sampleLDBM and
o=sampleTDBM must exist in the consumer's directory.

Finally a referral list should be established in case client's direct updates to a read only replica
and cascading servers. In our example, we will set the referral list on the supplier.

6.5.2 Supplier Configuration

Supplier configuration is not as straightforward as consumer configuration. The first step is to
set the replication contexts. As stated, we are assuming the directory data already exists in
one supplier. Thus we must modify the root entry of the replication context to add the
ibm-replicationContext object class as shown in Figure 6-2.

dn: cn=Supplier Master1, cn=configuration
cn: Supplier Master
ibm-slapdMasterDN: cn=master1
ibm-slapdMasterPW: secret
ibm-slapdReplicaSubtree: o=Olympia,o=sampleLDBM
objectclass: ibm-slapdSupplier

dn: cn=Supplier Master2, cn=configuration
cn: Supplier Master
ibm-slapdMasterDN: cn=master2
ibm-slapdMasterPW: secret
ibm-slapdReplicaSubtree: o=Olympia,o=sampleTDBM
objectclass: ibm-slapdSupplier
146 IBM Tivoli Directory Server for z/OS

Figure 6-2 Add the ibm-replicationContext objectclass

After the replication contexts have been set, various other LDAP entries must be added. First,
add an ibm-replicaGroup entry as shown in Figure 6-3.

Figure 6-3 ibm-replicaGroup entry

The ibm-replicaGroup must be directly beneath the ibm-replicationContext object. It only
serves as a grouping entry. Conceivably, one could group supplier to consumer relationships
logically and have them represented in the directory using multiple ibm-replicaGroup objects.

The next entry needed is an ibm-replicaSubentry object. Unlike ibm-replicaGroup entries,
ibm-replicaSubentry objects are critical for determining a server's role in replication.

Figure 6-4 ibm-replicaSubentry

The two critical attributes in an ibm-replicaSubentry object are
ibm-replicationserverismaster and ibm-replicaserverid. For a server to serve as a
supplier, the ibm-replicaserverid value must be equal to the ibm-slapdServerId value in the

dn:o=Olympia,o=sampleTDBM
changetype: modify
add: objectclass
objectclass: ibm-replicationContext

dn:o=Olympia,o=sampleLDBM
changetype: modify
add: objectclass
objectclass: ibm-replicationContext

dn: ibm-replicaGroup=default, o=Olympia,o=sampleLDBM
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicagroup: default

dn: ibm-replicaGroup=default, o=Olympia,o=sampleTDBM
objectclass: top
objectclass:ibm-replicaGroup
ibm-replicagroup: default

dn: cn=master,ibm-replicaGroup=default, o=Olympia,o=sampleLDBM
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicationserverismaster: true
description: master server
ibm-replicaserverid: thisServerID

dn: cn=master,ibm-replicaGroup=default, o=Olympia,o=sampleTDBM
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicationserverismaster: true
description: master server
ibm-replicaserverid: thisServerID
Chapter 6. Reliability, availability, and scalability 147

cn=configuration entry. If these values do not match, the server will not behave as a
supplier. If they do match, the ibm-replcationserverismaster is the attribute that
distinguishes a cascading server from a master/peer server. If the value is FALSE, the
supplier is a cascading server. Otherwise its a master or peer. This dictates how the server
will react to client updates.

Immediately below the ibm-replicaSubentry object, one ibm-replicationAgreement object is
needed for every consumer. See Figure 6-5.

Figure 6-5 ibm-replicationAgreement

The key attributes in these entries are ibm-replicaurl and ibm-replicacredentialsdn. The
ibm-repliaurl defines the LDAP URL of the consumer. In the above examples, we are using
ldaps to stress the importance of using SSL when replicating sensitive data. The
ibm-repliacredentialsdn attribute defines the DN of the entry that contains the credentials
for binding to the consumer. The reason the credentials are not included in the agreement
entry is that the agreement entry, with all of the other entries shown in this section, ultimately
is replicated to consumers. Because the bind credentials for a consumer allow full access to
the consumer, it might be prudent to limit the exposure, especially when a supplier must
connect to many consumers. Further, the possibility of replicating in the clear without SSL
could lead to the credentials being compromised. In our example, we store the credential
objects under cn=localhost. cn=localhost can never set up as a replication context.

The DN must point to an object with one of the following objectclasses:
ibm-replicationCredentialsExternal or ibm-replicationCredentialsSimple. The
ibm-replicationCredentialsExternal credentials object requires an SSL connection to the
consumer and will force the supplier to bind to the consumer using the SASL EXTERNAL
mechanism. The ibm-replicationCrednetialsSimple entry will contain information for a
simple bind to the consumer. See Figure 6-6.

dn: cn=aggr1,cn=master,ibm-replicaGroup=default, o=Olympia,o=sampleLDBM
objectclass: top
objectclass: ibm-replicationAgreement
ibm-replicaconsumerid: consumerServerID
ibm-replicaurl: ldaps://consumer1.abc.com:669
ibm-replicacredentialsdn: cn=simple1,cn=localhost
description: consumer connection

dn: cn=aggr1,cn=master,ibm-replicaGroup=default, o=Olympia,o=sampleTDBM
objectclass: top
objectclass: ibm-replicationAgreement
ibm-replicaconsumerid: consumerServerID
ibm-replicaurl: ldaps://consumer2.abc.com:669
ibm-replicacredentialsdn: cn=simple2,cn=localhost
description: consumer connection
148 IBM Tivoli Directory Server for z/OS

Figure 6-6 ibm-replicationCredentialsSimple

Note the replicaBindDN and replicaCredentials attributes listed match the
ibm-slapdMasterDN and ibm-slapdMasterPW attributes shown in the Consumer section above.

If more than one supplier will participate in the topology, ibm-replicagroup,
ibm-replicaSubentry and ibm-replicaAgreement entries required by other suppliers can be
added to the initial supplier being configured (assumed in this example to contain all data to
replicate). Care must be taken to set the correct ibm-replicaserverid and
ibm-replicacredentialsdn attribute values because for every supplier they could be
separate, especially in the case of the server ID. Further, the credentials entries will be
needed on each supplier.

6.5.3 Synchronizing the servers

After the servers have been properly configured and the credential entries exist on all
suppliers, the next step is to perform initial synchronization among all the servers. In our
example, most of the initial configuration for all suppliers was done on one server. Thus, the
ds2ldif command can be used to unload all of the directory data from that server into an
LDIF file. The LDIF can be transported through FTP to all the systems where LDAP server
instances will be deployed. Then the ldapadd or ldif2ds (if TDBM) command can be used to
prime all other servers in the topology. After ldapadd or ldif2ds is complete, the configuration
is complete. The console messages in Figure 6-7 should be seen on all supplier systems.

Figure 6-7 Console messages

At this point, the servers are ready to actively participate in replication. Maintenance mode
can be turned off and clients can begin sending updates.

dn: cn=simple1,cn=localhost
objectclass: ibm-replicationCredentialsSimple
cn: zForwarder simpl
replicaBindDN: cn=master1
replicaCredentials: secret

dn: cn=simple2,cn=localhost
objectclass: ibm-replicationCredentialsSimple
cn: zForwarder simpl
replicaBindDN: cn=master2
replicaCredentials: secret

GLD8650I Replication agreement
'CN=AGGR1,CN=MASTER,IBM-REPLICAGROUP=DEFAULT,O=OLYMPIA,O=SAMPLELDBM' is active.

GLD8517I Replication starting for replica
'CN=AGGR1,CN=MASTER,IBM-REPLICAGROUP=DEFAULT,O=OLYMPIA,O=SAMPLELDBM'.

GLD8650I Replication agreement
'CN=AGGR1,CN=MASTER,IBM-REPLICAGROUP=DEFAULT,O=OLYMPIA,O=SAMPLETDBM' is active.

GLD8517I Replication starting for replica
'CN=AGGR1,CN=MASTER,IBM-REPLICAGROUP=DEFAULT,O=OLYMPIA,O=SAMPLETDBM'.
Chapter 6. Reliability, availability, and scalability 149

6.5.4 Maintaining the Topology

IBM Tivoli Directory Server for z/OS provides many tools to maintain an active replication
topology. First, certain replication agreement operational attributes can be retrieved to
determine the state of supplier to consumer replication queue as shown in Table 6-1.

Table 6-1 Replication agreement operational attributes

Operational Attributes Description

ibm-replicationChangeLdif This attribute provides the pending changes in an LDIF
format. Pending changes are the updates in the context
that are to be replicated to the consumer, but are still
pending in the queue.

ibm-replicationLastResult This attribute provides the results of the last attempted
update, in the form:
timestamp changeid resultcode operation entry DN

ibm-replicationPendingChangeCount This attribute indicates the number of changes pending on
an agreement.

ibm-replicationNextTime This attribute returns the time when the next pending
change will dispatched by this agreement to the consumer.
This value is useful when using scheduling.

ibm-replicationState This attribute indicates the state of the agreement.
The following are the values that ibm-replicationState can
take:
� Active means that replication is going on over this

agreement.
� Binding indicates that the supplier is in the process of

binding to the consumer
� On Hold indicate that the supplier replication

agreement's replication processing is on hold.
� Retrying indicates that the supplier is retrying a

queued reapplication update
� Waiting indicates that the agreement is waiting for

agreement to be activated
� Connecting indicates that the agreement is currently

waiting for the supplier to connect to the consumer.
� Suspended indicates that the agreement is suspended

and no more replication updates will be sent to the
consumer by this agreement until it returns to the
ready state

� Full indicates that the queue for this agreement is full,
and also displays a value that indicates the amount of
progress.

� Ready indicates immediate replication mode, ready to
send updates as they occur.

ibm-replicationLastResultAdditional This attribute returns the message component from the
last attempted update.

Ibm-replicationLastFinishTime This attribute returns the time when the last pending
change was dispatched by this agreement to the
consumer.

Ibm-replicationLastActivationTime This attribute returns the time that the last replication
session started between this supplier and consumer.
150 IBM Tivoli Directory Server for z/OS

Similarly, replication context entries have operational attributes that provide information as
well as shown in Table 6-2.

Table 6-2 Replication context operational attributes

A simple shell script can be used to retrieve all the attributes for all replication related entries
in the directory is shown in Figure 6-8.

Figure 6-8 Shell script to retrieve replication attributes

Ibm-replicationPendingChanges This attribute provides the pending changes, one line per
change, including the change ID and the operation.

ibm-replicationLastChangeId This attribute indicates the change ID of the last completed
change sent to the consumer.

ibm-replicationFailedChangeCount This attribute indicates the number of changes that
resulted in an error being returned by the consumer.

Ibm-replicationFailedChanges This attribute provides the changes that resulted in an
error, one line per error, including the change ID and the
operation.

ibm-replicationOnHold This attribute indicates if the agreement is on hold, i.e.,
changes are queued, but not replicated to consumer.

Operational Attribute Description

ibm-replicationIsQuiesced This attribute returns the quiesced state of replication
context. Quiesced contexts will reject non-administrator
client updates.

ibm-replicationThisServerIsMaster This attribute returns true if the server is a master for the
context, i.e., a ibm-replicaSubentry contains the server's
server ID and its is-master attribute is set to true.

ldapsearch -h localhost -D cn=admin -w secret -p 389 -s sub -b
"o=olympia,o=sampleTDBM" "objectclass=ibm-replication*" dn \
ibm-replicationChangeLdif \
ibm-replicationLastResult \
ibm-replicationPendingChangeCount \
ibm-replicationNextTime \
ibm-replicationState \
ibm-replicationLastResultAdditional \
ibm-replicationPerformance \
ibm-replicationLastFinishTime \
ibm-replicationLastActivationTime \
ibm-replicationPendingChanges \
ibm-replicationLastChangeId \
ibm-replicationFailedChangeCount \
ibm-replicationFailedChanges \
ibm-replicationOnHold \
ibm-replicationIsQuiesced ibm-replicationThisServerIsMaster

Operational Attributes Description
Chapter 6. Reliability, availability, and scalability 151

The operational attributes provide state information that might show the queue requires
maintenance. IBM Tivoli Directory Server for z/OS provides various extended operations to
manage advanced replication. Table 6-3 lists all of the extended operations and the
operational attributes that will provide information necessary for using the extended
operation.

Table 6-3 Advanced replication related extended operations

IBM Tivoli Directory Server ships with the ldapexop command, a UNIX Systems Services
Shell command line utility that can be used to issue the extended operations shown in
Table 6-3.

Extended
Operation

ldapexop -op Operational
Attribute

Description

Cascading
Control
Replication
extop

cascrepl ibm-replicationState
ibm-replicationIsQuiesced

This extended operation manages the state of
the replication queue when the supplier is
sending updates to a consumer that is also a
supplier (a cascading server). It allows users
to quiesce and unquiesce the supplier and
wait until that operation has been applied to all
consumers in the topology. It also allows the
user to force replication on the supplier and
wait until the queue has been completely
replicated to all of the consumers in the
topology.

Control
Replication

controlrepl ibm-replicationState This extended operation manages the state of
the replication queue. It allows the user to
suspend, resume, or immediately kick off
replication (in the case of scheduled
replication).

Control
Replication
Queue

controlqueue ibm-replicationPendingChanges
ibm-replicationPendingChangeCoun
t

This extended operation manages the pending
changes in the queue. It allows the user to skip
pending operations.

Control
Replication
Error Log

controlreple
rr

ibm-replicationFailedChanges
ibm-replicationFailedChangeCount

This extended operation manages the error
log. It allows the user to delete the error, show
the LDIF of the update causing the error, and
retry the operation that caused the error.

Quiesce
Context

quiesce ibm-replicationIsQuiesced This extended operation quiesces or
unquiesces a replication context. Similar to
maintenance mode, a quiesced context
cannot receive updates from a client unless
the client is an administrator and the update
includes the administrator control.

Replicate
Topology
Entries

repltopology n/a This extended operation ensures the LDAP
entries necessary to set up a supplier are
replicated to all the consumers. This extended
operation is commonly used when you are
setting up a directory that will be replicated
while it is being populated.
152 IBM Tivoli Directory Server for z/OS

6.6 Additional Advanced Replication Features

As outlined throughout this section, IBM Tivoli Directory Server for z/OS's advanced
replication provides a great amount of flexibility. Sub-tree based replication, a variety of
topologies to choose from, operational attributes to monitor status, and extended operations
to manage replication are the main features discussed thus far. However there is more.
Advanced replication provides additional opportunity for customization of the replication
environment.

6.6.1 Scheduling

One feature that resembles a familiar paradigm seen on mainframes is scheduled replication.
Scheduled replication allows for pending changes to be queued and then replicated at
designated times. To set up scheduled replication, the replication agreement objects must
contain a value for the ibm-replicascheduledn attribute. This value must define the
distinguished name of an entry with the ibm-replicationDailySchedule or
ibm-replicationWeeklySchedule object class.

In the case of daily scheduling, a time for immediate replication can be set using the
ibm-replicationImmediateStart attribute in an ibm-replicationDailySchedule entry. This
attribute contains the time in 24 hour format to begin replicating updates. It will continue
replicating updates as they arrive until a batch start time is defined. A batch start is defined by
using the ibm-replicationBatchStart attribute. The ibm-replicationBatchStart attribute
defines the time when all the pending changes are replicated. Unlike the immediate start,
batch start will result in any new changes after the start time being queued until the next
immediate or batch start. An example is shown in Figure 6-9.

Figure 6-9 ibm-replicationBatchStart

For weekly scheduling, the ibm-replicationWeeklySchedule entry contains attributes for
each day in the week:

� ibm-scheduleSunday
� ibm-scheduleMonday
� ibm-scheduleTuesday
� ibm-scheduleWednesday
� ibm-scheduleThursday
� ibm-scheduleFriday
� ibm-scheduleSaturday

These attributes define the distinguished names of entries of type
ibm-replicationDailySchedule or ibm-replicationWeeklySchedule. An example is shown
in Figure 6-10 on page 154.

dn: cn=tight, cn=localhost
objectclass: ibm-replicationDailySchedule
ibm-replicationTimesUTC: FALSE
ibm-replicationBatchStart: T183500
ibm-replicationBatchStart: T183700
ibm-replicationImmediateStart: T183600
ibm-replicationImmediateStart: T183600
ibm-replicationImmediateStart: T184000
Chapter 6. Reliability, availability, and scalability 153

Figure 6-10 Weekly and Daily scheduling

6.6.2 Filtering

Another feature of advanced replication is the option to partially replicate updates. This is
done by introducing a filter that is applied against all replicated updates prior to sending the
update. This filter would remove any portions of the update prior to replicating to the
consumer. Similar to scheduling, a filter must be associated with the replication agreement
object using the ibm-replicationfilterdn attribute. This attribute must define the
distinguished name of an entry with ibm-replicationFilter object class. This entry contains
one or more values for the ibm-replicationFilterAttr attribute that represent the actual
filter(s). The basic syntax of a filter is:

(objectclass=objectclassOfEntryTofilter):(attr1toInclude,attr2ToInclude,...)
(objectclass=objectclassOfEntryTofilter):!(attr1ToRemove,attr2ToRemove,...)

Here are examples:

Only replicate cn, sn, userpassword of person entries:

(objectclass=person):(cn,sn,userpassword)

Replicate all attributes of a person entry except the telephone number and employee number:

(objectclass=person):!(telephonenumber, employeeNumber)

Wild-cards are supported as shown is this example to replicate all attributes of all entries:

(objectclass=*):(*)

Conceivably filters can be defined that preclude an entire update from being replicated. If the
update is an LDAP add to a parent entry, all replicated add operations for children of that
parent entry would fail due to the missing parent. To address this, the replication agreement
can be updated to include the ibm-replicationCreateMissingEntries attribute with a TRUE
value. If this attribute is set to TRUE and a missing parent error is encountered, IBM Tivoli
Directory Server will send a consumer a generated parent entry that will resolve all missing
parent errors.

dn: cn=tight schedule, cn=localhost
objectclass: ibm-replicationWeeklySchedule
ibm-scheduleSunday: cn=tight, cn=localhost
ibm-scheduleMonday: cn=tight, cn=localhost
ibm-scheduleTuesday: cn=tight, cn=localhost
ibm-scheduleWednesday: cn=tight, cn=localhost
ibm-scheduleThursday: cn=tight, cn=localhost
ibm-scheduleFriday: cn=tight, cn=localhost
ibm-scheduleSaturday: cn=tight, cn=localhost
154 IBM Tivoli Directory Server for z/OS

Chapter 7. Plug-ins

This chapter provides information about IBM Tivoli Directory Server plug-ins.

7

© Copyright IBM Corp. 2011. All rights reserved. 155

7.1 IBM Tivoli Directory Server for z/OS Server Plug-ins

The functionality of IBM Tivoli Directory Server for z/OS can be extended by software
plug-ins. Plug-in support enables the development of routines that are plugged in to the
server to handle client request processing.

The following types of plug-ins are supported by IBM Tivoli Directory Server for z/OS:

� Pre-operation: A plug-in that is executed before a client request is processed.
� Client-operation: A plug-in that is called to process a client request.
� Post-operation: A plug-in that is executed after a client request is processed.

After a plug-in has been developed, it is subsequently built into a dynamically loaded library
(DLL) that is loaded into the LDAP server's address space when the server is started. When a
plug-in is loaded, its designated plug-in initialization routine is called to register its plug-in
functions. After the plug-in functions are registered, the server is able to call the plug-in
functions for client request processing.

The LDAP server retrieves the plug-in DLL and initialization routine name from the plug-in
configuration option. This configuration option can be specified separately in the LDAP
configuration file for each of the pre-operation, client-operation, and post-operation plug-ins.

When the LDAP server receives a client request for an ADD, BIND, COMPARE, DELETE,
EXTENDED OPERATION, MODIFY, MODIFY DN, or SEARCH, the server processes the
request as follows:

1. The server calls all registered pre-operation plug-ins. If a pre-operation plug-in returns a
non-zero return code, processing goes to step 4 (skipping steps 2 and 3).

2. If a configured database back end is found that accepts the client request, that back end
processes the request.

3. If a client request is not accepted by a configured database back end, then if a registered
client-operation plug-in is found that accepts the client request, that plug-in processes the
request.

4. The server calls all registered post-operation plug-ins.

When a request is processed by a configured database back end or by a client-operation
plug-in (steps 2 and 3), that back end or plug-in must return a message to the client. If the
client request is not processed, the LDAP server returns an error message to the client. Only
one message is returned to the client.
156 IBM Tivoli Directory Server for z/OS

Figure 7-1 shows the server flow for the request processing described in steps 1-4.

Figure 7-1 IBM Tivoli Directory Server for z/OS Plug-in Flow

When the LDAP server receives a client request for an ABANDON or UNBIND, the server
processes the request as follows:

1. The server first calls all registered pre-operation plug-ins.

2. The server processes the request.

3. The server calls all registered client-operation plug-ins.

4. The server then calls all registered post-operation plug-ins.

IBM TDS for z/OS Plug-in Flow
(ADD, BIND, COMPARE, DELETE, EXTENDED OPERATION, MODIFY, MODIFY DN, SEARCH)

z/OS
LDAP client

NetworkNetwork

ldapsearch -b “ou=users, o=sample” objectclass=*

LDAP Server

Request

processing
Backend

request

processing

Client-op

plug-in

Pre-op

plug-in(s)

Post-op

plug-in(s)

If a pre-op plug-in returns non-zero, go to
post-op processing.

If configured backend found that accepts
request, that backend processes request.

If configured plug-in found that accepts
request, that plug-in processes request.
Chapter 7. Plug-ins 157

Figure 7-2 shows the server flow for the ABANDON and UNBIND request processing
described in steps 1-4.

Figure 7-2 IBM Tivoli Directory Server for z/OS Plug-in Flow (Abandon and Unbind)

When an ABANDON or UNBIND request is processed by a configured database back end or
by a client-operation plug-in, the back-end or plug-in does not return a response to the client
because there is no client response for these type of requests.

This chapter gives an overview of the IBM Tivoli Directory Server for z/OS plug-in support.
For more details about the IBM Tivoli Directory Server for z/OS plug-in support and a detailed
reference describing each of the SLAPI plug-in application service routines (routines that are
prefixed with slapi_), see V1R10.0 IBM Tivoli Directory Server Plug-in Reference for z/OS,
SA76-0148-00.

7.2 Pre-operation and post-operation plug-ins

A pre-operation plug-in is executed before a client request is processed and a post-operation
plug-in is executed after a client request is processed.

Pre-operation and post-operation plug-ins can be written for a variety of reasons. One reason
for writing a pre-operation plug-in is to check for the existence of a new entry before the new
entry is added to a directory. One reason for writing a post-operation plug-in is to audit clients
after they bind to the server.

IBM TDS for z/OS Plug-in Flow
(ABANDON and UNBIND)

z/OS
LDAP client

NetworkNetwork

ldap_abandon()

LDAP Server

Request

processing
Server

request

processing

Pre-op

plug-in(s)

Post-op

plug-in(s)

Client-op

plug-in(s)
158 IBM Tivoli Directory Server for z/OS

The plug-in initialization function is responsible for registering the functions for request
message types supported by the plug-in by calling the slapi_pblock_set() routine. The
plug-in will not be called for a request message type that it has not registered.

The prototype for a pre-operation plug-in must return an integer and take a plug-in parameter
block (Slapi_PBlock) pointer as the input parameter. For example:

int pre_op_function (Slapi_PBlock * pb);

The return value from the pre-operation function is zero if request processing continues and
non-zero if request processing terminates. If a non-zero value is returned, the pre-operation
plug-in must return a result message to the client by calling the slapi_send_ldap_result()
routine. If a zero value is returned, the pre-operation plug-in must not return a result to the
client. A result message is not returned for ABANDON and UNBIND requests, and the plug-in
return value is ignored for these message types. Post-operation plug-ins are called even if a
nonzero value is returned by the pre-operation plug-in.

The prototype for a post-operation plug-in must return a void and take a plug-in parameter
block pointer as the parameter. For example:

void post_op_function (Slapi_PBlock * pb);

A post-operation function does not return a value. A post-operation plug-in must not return a
result message to the client because this will have already been done before the
post-operation plug-in is called. The slapi_pblock_get() routine can be called to obtain the
result code returned to the client for the request.

Pre-operation and post-operation plug-in functions can be registered by the
slapi_pblock_set() routine to handle pre and post client requests for any of the following
request message types:

ABANDON Each pre-operation and post-operation plug-in is called for an
ABANDON request if the plug-in has registered corresponding
SLAPI_PLUGIN_ABANDON_FN routine(s).

ADD Each pre-operation and post-operation plug-in is called for an ADD
request if the plug-in has registered corresponding
SLAPI_PLUGIN_ADD_FN routine(s).

BIND Each pre-operation and post-operation plug-in is called for a BIND
request if the plug-in has registered corresponding
SLAPI_PLUGIN_BIND_FN routine(s).

COMPARE Each pre-operation and post-operation plug-in is called for a
COMPARE request if the plug-in has registered corresponding
SLAPI_PLUGIN_COMPARE_FN routine(s).

DELETE Each pre-operation and post-operation plug-in is called for a DELETE
request if the plug-in has registered corresponding
SLAPI_PLUGIN_DELETE_FN routine(s).

EXTENDED

OPERATION Each pre-operation and post-operation plug-in is called for an
EXTENDED OPERATION request if the plug-in has registered
corresponding SLAPI_PLUGIN_EXT_OP_FN routine(s).

MODIFY Each pre-operation and post-operation plug-in is called for a MODIFY
request if the plug-in has registered corresponding
SLAPI_PLUGIN_MODIFY_FN routine(s).
Chapter 7. Plug-ins 159

MODIFY DN Each pre-operation and post-operation plug-in is called for a MODIFY
DN request if the plug-in has registered corresponding
SLAPI_PLUGIN_MODRDN_FN routine(s).

SEARCH Each pre-operation and post-operation plug-in is called for a SEARCH
request if the plug-in has registered corresponding
SLAPI_PLUGIN_SEARCH_FN routine(s).

UNBIND Each pre-operation and post-operation plug-in is called for an UNBIND
request if the plug-in has registered corresponding
SLAPI_PLUGIN_UNBIND_FN routine(s).

7.3 Client-operation plug-ins

A client-operation plug-in is executed to handle a client request. Client-operation plug-ins can
be written for a variety of reasons. One reason for writing a client-operation plug-in could be
to implement a back end directory that is independent from any of those provided by IBM
Tivoli Directory Server for z/OS.

For ADD, BIND, COMPARE, DELETE, MODIFY, MODIFY DN and SEARCH requests, the
corresponding client-operation plug-in is called if the plug-in registered a suffix that matches
the target DN for the request. For EXTENDED OPERATION requests, the corresponding
plug-in is called if the plug-in registered an object identifier (OID) that matches the OID
specified in the request. All corresponding client-operation plug-ins are called for ABANDON
and UNBIND requests.

The client-operation plug-in initialization function is responsible for registering the request
message types, distinguished name suffixes and extended operations supported by the
plug-in by calling the slapi_pblock_set() routine. A plug-in is only called for request
message types or extended operations that it has registered for.

The prototype for a client-operation plug-in must return a void and take a plug-in parameter
block pointer as the parameter. For example:

void client_op_function (Slapi_PBlock * pb);

The client-operation function does not return a value. The client operation plug-in must return
a result message to the client for all message types except ABANDON and UNBIND because
these message types do not return a response to the client. The slapi_send_ldap_result()
routine is used to send the result message to the client.

Client-operation plug-in functions can be registered by the slapi_pblock_set() routine to
handle client requests for any of the following request message types:

ABANDON Each client-operation plug-in is called for an ABANDON request if the
plug-in has registered a SLAPI_PLUGIN_ABANDON_FN routine. The
plug-in must not return a response to the client because there is no
client response for an ABANDON request. The plug-in stops
processing a request that is abandoned by the client.

ADD The client-operation plug-in is called for an ADD request if the entry
DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_ADD_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client.

BIND The client-operation plug-in is called for a simple BIND if the
authentication DN matches a suffix registered by the plug-in and the
160 IBM Tivoli Directory Server for z/OS

plug-in registered a SLAPI_PLUGIN_BIND_FN routine. A SASL BIND
is not passed to the plug-in. The plug-in is responsible for
authenticating the DN and returning the result message to the client.
Extended group gathering is performed for an authentication DN
located in a plug-in database but plug-in databases are not included in
the group gathering process.

COMPARE The client-operation plug-in is called for a COMPARE request if the
entry DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_COMPARE_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client.

DELETE The client-operation plug-in is called for a DELETE request if the entry
DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_DELETE_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client.

EXTENDED

OPERATION The client-operation plug-in is called for an EXTENDED OPERATION
request if the request OID matches an OID registered by the plug-in
and the plug-in registered a SLAPI_PLUGIN_EXT_OP_FN routine.
The plug-in is responsible for processing the extended operation
request and returning the result to the client. The slapi_pblock_set()
routine is used to set the extended operation result OID
(SLAPI_EXT_OP_RET_OID) and value
(SLAPI_EXT_OP_RET_VALUE) in the result message. The
slapi_send_ldap_result() routine is then used to return the result to
the client.

MODIFY The client-operation plug-in is called for a MODIFY request if the entry
DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_MODIFY_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client.

MODIFY DN The client-operation plug-in is called for a MODIFY DN request if the
entry DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_MODRDN_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client.

SEARCH The client-operation plug-in is called for a SEARCH request if the base
DN matches a suffix registered by the plug-in and the plug-in
registered a SLAPI_PLUGIN_SEARCH_FN routine. The plug-in is
responsible for processing the request and returning the result
message to the client. Search entries are returned by calling the
slapi_send_ldap_search_entry() routine, search referrals are
returned by calling the slapi_send_ldap_referral() routine, and the
search result is then returned by calling the
slapi_send_ldap_result() routine.

UNBIND Each client-operation plug-in is called for an UNBIND request if the
plug-in registered a SLAPI_PLUGIN_UNBIND_FN routine. The plug-in
must not return a response to the client because there is no client
response for an UNBIND request. The plug-in does not release any
resources that are allocated for the connection.
Chapter 7. Plug-ins 161

7.4 Building an IBM Tivoli Directory Server for z/OS server
plug-in

Each plug-in is a separate DLL that is loaded by the LDAP server. The slapi-plugin.h
include file defines the various structures and service routine prototypes that are available to
the plug-in.

LDAP server SLAPI export definitions are contained in one of two DLL load modules:

� The GLDSLP31.x side file contains the export definitions for a 31-bit plug-in DLL.
� The GLDSLP64.x side file contains the export definitions for a 64-bit plug-in DLL.

The plug-in must be stored as a member of a PDS or PDSE. In addition, a 64-bit plug-in DLL
must be stored in a PDSE. The plug-in data set must be in the load list for the LDAP server,
either through a STEPLIB statement or the system LNKLST.

The LDAP server plugin configuration option is used to define a plug-in, and must be added
to the LDAP server configuration file. It has three required parameters and one optional
parameter:

1. The plug-in type: preOperation, clientOperation or postOperation

2. The plug-in DLL name

3. The name of the plug-in initialization routine that will be called during LDAP server
initialization

4. Optional parameters that the plug-in can retrieve

For example:

plugin postOperation PLUGSAMP plugin_init "auditFile"

7.5 Steps for writing a IBM Tivoli Directory Server for z/OS
server plug-in

To build an IBM Tivoli Directory Server for z/OS plug-in, perform the following steps:

1. Design and write the plug-in initialization routine and SLAPI service functions

The plug-in initialization routine must register the following that are supported by the
plug-in:

• Request message functions

• Service functions

• Distinguished name suffixes

• Extended operation OIDs

Return code 0 must be returned when successful and non-zero when not successful. The
plug-in initialization routine receives as input, the plug-in parameter block (Slapi_PBlock)
and returns an integer as the return value. An example of an initialization routine
prototype:

int plugin_init (Slapi_PBlock * pb);

2. When writing the SLAPI service functions that implement the plug-in design, see V1R10.0
IBM Tivoli Directory Server Plug-in Reference for z/OS, SA76-0148-00 for application
162 IBM Tivoli Directory Server for z/OS

service routines to use and for defined prototypes. You can also see slapi-plugin.h for
defined prototypes.

3. Decide on any input parameters for the plug-in. Plug-in input parameters can be retrieved
using the SLAPI_PLUGIN_ARGC or SLAPI_PLUGIN_ARGV parameters with the
slapi_pblock_get() service routine.

4. Include slapi-plugin.h, which contains defined SLAPI data structures and prototypes.

5. Export the plug-in initialization routine.

6. Compile the plug-in code into object files.

7. Link the plug-in object files with one of the LDAP server SLAPI side files listed above.

8. Ensure the plug-in DLL module is in the load list of the LDAP server and is a member of
either a PDS or PDSE.

9. APF authorize the data set that contains the plug-in DLL.

10.Edit and add the plugin configuration option to the LDAP server configuration file.

11.Restart the LDAP server

You might want to program trace statements to follow processing flow in the plug-in. The trace
macro, SLAPI_TRACE(), is provided in slapi-plugin.h. The syntax is:

SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));

7.6 IBM Tivoli Directory Server for z/OS Server Plug-in Sample

A sample plug-in and its makefile are provided in /usr/lpp/ldap/examples.

The sample plug-in, /usr/lpp/ldap/examples/plugin_sample.c, creates a post-operation
plug-in that logs LDAP server BIND requests and result codes to a log file. The log file is
specified as an input parameter on the plugin configuration option.

For reference, plugin_sample.c is also located in Appendix A, “Sample plug-in code” on
page 293.

The makefile, /usr/lpp/ldap/examples/makefile.plugin, is used for building
plugin_sample.c.

7.6.1 Stepping through plugin_sample.c

The initialization routine, client request BIND routine, CLOSE routine, and function calls in
plugin_sample.c help to give a better understanding of plug-in coding practices and code
flows. The following bullets each describe a line of code from plugin_sample.c, followed by
the actual line number and line of code. For more details about any of the SLAPI macros or
functions described here, seeV1R10.0 IBM Tivoli Directory Server Plug-in Reference for
z/OS, SA76-0148-00.

� The SLAPI_TRACE macro uses the slapi_trace() service routine to write an LDAP
server trace message. Note that the LDAP_DEBUG_PLUGIN trace messages are only
issued if the PLUGIN debug level was requested.

90 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));

� The SLAPI_PLUGIN_TYPE operational parameter is specified on a call to the
slapi_pblock_get() routine to determine whether the plug-in initialization routine was
called for a pre-operation, client-operation, or post-operation plug-in. In this case, if the
Chapter 7. Plug-ins 163

initialization routine was not called for a post-operation plug-in, then the initialization
routine must have incorrectly been specified for a pre-operation or client-operation on the
plugin configuration file option.

95 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_TYPE, &type);

� The slapi_log_error() routine is used to write a message to the LDAP server job log,
and optionally to the console.

97 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
98 "Unable to get plug-in type: Error %d\n",errno);

� The SLAPI_PLUGIN_ARGC operational parameter is specified on a call to the
slapi_pblock_get() routine to retrieve the number of arguments that were specified on
the plugin configuration statement.

111 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_ARGC, &argc);

� The SLAPI_PLUGIN_ARGV operational parameter is specified on a call to the
slapi_pblock_get() routine to retrieve a NULL-terminated array of arguments that were
specified on the plugin configuration statement.

127 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_ARGV, &argv);

� The SLAPI_PLUGIN_CLOSE_FN registration parameter is specified on a call to the
slapi_pblock_set() routine to register the plugin_close_fn() routine to be called during
LDAP server termination.

138 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_CLOSE_FN, (void *)plugin_close_fn);

� The SLAPI_PLUGIN_BIND_FN registration parameter is specified on a call to the
slapi_pblock_set() routine to register the plugin_bind_fn() routine to process a client
BIND request.

148 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_BIND_FN, (void *)plugin_bind_fn);

� The slapi_ch_malloc() routine is used to allocate storage for use by the plug-in. The
slapi_ch_free() routine is used to release the storage when it is no longer needed.

158 pdata = (plugin_private *)slapi_ch_malloc(sizeof(plugin_private));

� The fopen() C/C++ API is used to open the log file, the name of which was specified using
the plugin configuration option.

218 pdata->auditFile = fopen(pdata->auditFilename, "a");

� The SLAPI_PLUGIN_PRIVATE operational parameter is specified on a call to the
slapi_pblock_set() routine to store the pointer to the storage where the initialized
plugin_private structure resides.

229 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_PRIVATE, &pdata);

� The SLAPI_PLUGIN_PRIVATE operational parameter is specified on a call to the
slapi_pblock_get() routine to retrieve the pointer to the storage where the initialized
plugin_private structure resides.

281 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_PRIVATE, &pdata);

� The SLAPI_BIND_TARGET bind request parameter is specified on a call to the
slapi_pblock_get() routine to retrieve the authentication DN from the BIND request.

302 rc = slapi_pblock_get(pb, SLAPI_BIND_TARGET, &bindDN);

� The SLAPI_PLUGIN_OPRETURN general result parameter is specified on a call to the
slapi_pblock_get() routine to retrieve the result code for the current operation. The result
code can be set by the slapi_send_ldap_result() routine. In the case of this sample, a
configured back end database routine has already set the result code.

309 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_OPRETURN, &resultCode);
164 IBM Tivoli Directory Server for z/OS

� The SLAPI_REQUESTOR_GROUPS general request parameter is specified on a call to
the slapi_pblock_get() routine to retrieve a NULL-terminated array of normalized group
names for the authentication DN. The value is NULL if the authentication DN is not a
member of any groups or if group gathering was not enabled for the BIND request.

316 rc = slapi_pblock_get(pb, SLAPI_REQUESTOR_GROUPS, &groupList);

� The SLAPI_REQUESTOR_ALT_NAMES general request parameter is specified on a call
to the slapi_pblock_get() routine to retrieve a NULL-terminated array of normalized
alternate names for the authentication DN. The value is NULL if there are no alternate
names.

323 rc = slapi_pblock_get(pb, SLAPI_REQUESTOR_ALT_NAMES, &dnList);

� The fprintf() C/C++ API is used to write a log record to the log file, the name of which
was specified on the plugin configuration option.

346 rc = fprintf(pdata->auditFile, "Result: %d DN: %s\n", resultCode, cnvName);

7.6.2 Steps for building and running the sample plug-in

To build and run the sample plug-in, perform the following steps:

1. Start by creating either a PDS or a PDSE dataset with the same attributes as
SYS1.SIEALNKE. A PDSE dataset is required when building the plug-in sample as a
64-bit module.

2. APF authorize the dataset created.

3. Ensure the dataset is in the load list for the LDAP server, either through a STEPLIB
statement or the system LNKLST.

4. Copy /usr/lpp/ldap/examples/plugin_sample.c and
/usr/lpp/ldap/examples/makefile.plugin to a directory that you have write access to.

5. Edit makefile.plugin and update PLUGSAMP_DLL with the name of the dataset you
created. For example:

PLUGSAMP_DLL = "//'GLD.PLUGIN.SIEALNKE(PLUGSAMP)'"

Also, if you are building a 64-bit DLL, set PLUGSAMP_ADDR_MODE to 64.

6. Save makefile.plugin.

7. To compile and linkedit the sample plug-in using the makefile.plugin, enter make -f
makefile.plugin.

8. Verify that no build or link errors occurred. Verify that your dataset now contains the
member PLUGSAMP, or a member with the name you updated.

9. Stop the server.

10.Edit the LDAP server configuration file and add the plugin configuration option to the
global section:

plugin postOperation PLUGSAMP plugin_init "logFilename"

"logFilename" is the name of the file you want to have the log records written to, and it
must be in double quotes.

11.If you are building a 64-bit DLL, then add the plugin configuration option in the following
format:

plugin postOperation PLUGSM31/PLUGSAMP plugin_init "logFilename"

A plug-in that supports both 31-bit and 64-bit addressing modes should specify both file
names separated by a slash (/), such as plugin31/plugin64. For this 64-bit example,
Chapter 7. Plug-ins 165

PLUGSAMP is the name used when the 64-bit DLL was built, as shown above. Because
the syntax of the configuration option requires a 31 bit plug-in name preceding the / when
specifiying a 64 bit plug in DLL, the name PLUGSM31 was used as placeholder name for
the plugin configuration option. Because in this example we do not create a 31 bit version,
this can be any name, and no DLL with that name needs to exist.

12.Restart the LDAP server.

If you use the debug parameter PLUGIN, sample plug-in trace messages will be written to
the LDAP server job log. For example:

START LDAPSRV,PARMS='-d PLUGIN'

LDAPSRV is an example name and represents the name of your LDAP server start-up
procedure.

After it is started, browse your LDAP server job log for plug-in initialization and trace
messages. Also, verify that the sample plug-in created an empty log file.

To test, perform an LDAP operation binding to the LDAP server. The sample plug-in will write
a message to the log including the result code of the bind operation and the bind DN. For
example:

Result: 0 DN: o=your company

7.7 Exploiters of IBM Tivoli Directory Server for z/OS Plug-in
Support

The IBM Tivoli Directory Server for z/OS plug-in functionality is exploited internally by IBM
Tivoli Directory Server for z/OS as well as other z/OS deliverables. The IBM Tivoli Directory
Server for z/OS Advanced Replication support is implemented with LDAP plug-ins.
Additionally, the following z/OS deliverables use LDAP plug-ins:

� z/OS Integrated Security Services EIM (Enterprise Identity Mapping)

z/OS EIM allows administrators and application developers to more easily manage
multiple user registries and user identities.

The ICTX Java API that ships with z/OS EIM provides the ability to use IBM Tivoli
Directory Server for z/OS to perform remote RACF authorization and auditing, and to
remotely access the z/OS Identity Cache. ICTX is an LDAP extended operation and is
implemented as an LDAP client-operation plug-in.

For more information, see Integrated Security Services Enterprise Identity Mapping (EIM)
Guide and Reference, SA22-7875.

� z/OS HCD (Hardware Configuration Definition)

z/OS HCD provides an interactive interface that allows the definition of hardware
configuration for both a processor's channel subsystem and the operating system running
on the processor, and stores the entire configuration data in a central repository: the
input/output definition file (IODF).

Together with IBM Tivoli Directory Server for z/OS and the RACF back end SDBM, the
HCD LDAP back end can be used to remotely access and update IODF data through
LDAP.

For more information, see HCD User's Guide, SC33-7988.
166 IBM Tivoli Directory Server for z/OS

Chapter 8. Workload Management

This chapter describes IBM Tivoli Directory Server support for the z/OS Workload Manager.

8

© Copyright IBM Corp. 2011. All rights reserved. 167

8.1 Workload Management Overview

The idea of z/OS Workload Manager is to make a contract between IBM Tivoli Directory
Server for z/OS and the operating system. IBM Tivoli Directory Server for z/OS allows
different kinds of work running on the server to be classified in separate ways so that they can
be given different goals in z/OS Workload Manager. This allows the user to set separate goals
for each work classification in IBM Tivoli Directory Server for z/OS.

Most work should run under the same goal setting in WLM. However some transactions need
to be given separate goals, either at a higher or lower velocity. These transactions should be
considered exceptions. Transactions can be differentiated by their client IP address, bind DN
(Distinguished Name), or their search pattern.

A search pattern is a collection of search attributes, where arbitrary data is removed, used to
identify similar search requests made to IBM Tivoli Directory Server for z/OS. This data is
collected by the operations monitor and is useful in conjunction with the IBM Tivoli Directory
Server for z/OS WLM support to identify SPAM or performance intensive searches and assign
them an appropriate priority in WLM separate from the rest of the IBM Tivoli Directory Server
for z/OS work.

All work in IBM Tivoli Directory Server for z/OS normally runs under an enclave with the WLM
Transaction Name GENERAL. If the user has created exception classes, these transactions
will run under an enclave with the WLM Transaction Name supplied by the user during IBM
Tivoli Directory Server for z/OS server configuration.

IBM Tivoli Directory Server for z/OS only supports execution velocity goals for use with
Workload Manger. Execution velocity goals define the amount of delay that is acceptable, or,
in other words, how long a resource is used compared to the amount of time waiting to use it.
Execution velocity depends on how many samples are collected for a service class and
therefore, on the amount of work running in a service class. The achievable velocity for a
workload also depends on the number of CPUs on the system. For these reasons a default
execution velocity is not given for IBM Tivoli Directory Server for z/OS. Look at the RMF™
report for a typical IBM Tivoli Directory Server for z/OS run and determine what the typical
execution velocity is for IBM Tivoli Directory Server for z/OS on the user's system. Then
determine if this is too high or too low relative to the execution velocities for other work
running on the system.

Most IBM Tivoli Directory Server for z/OS transactions should be set to this execution velocity
in the service class with WLM Transaction Name GENERAL because most or all IBM Tivoli
Directory Server for z/OS work will run under this service class. There should be at least a
difference of 10 between execution velocity goal settings in two service classes. Service
classes with execution velocity goals that have a difference of less than 10 are almost
equivalent in WLM calculations. If you need to create an exception service class for IBM Tivoli
Directory Server for z/OS work, set the execution velocity at least 10 lower or higher than the
execution velocity for the service class with Transaction Name GENERAL.

8.2 Using Configuration Options

IBM Tivoli Directory Server can exploit WLM to classify work within IBM Tivoli Directory
Server based on the client’s IP address, the distinguished name (DN) associated with the
requests, or both. This allows the installation to set performance goals for requests within IBM
Tivoli Directory Server.
168 IBM Tivoli Directory Server for z/OS

For example, for a high priority user, you can set that user’s requests to be dispatched by
z/OS at a higher priority. Likewise, if there is work coming into the system that is less vital, you
can set WLM to classify that work as a lower priority.

WLM Service Classes are used to specify the performance characteristics of requests.
Classification rules within WLM assign the incoming request to a service class based on a
transaction name. Transaction names are identified in the IBM Tivoli Directory Server
configuration file with the wlmExcept configuration option.

This configuration will show three transaction types being classified: normal LDAP requests,
high priority request (requested to be dispatched at a higher priority), and spam requests
(classified with a lower dispatching priority).

The following sections show the configuration options needed in WLM, and the associated
changes needed in the configuration file for IBM Tivoli Directory Server.

8.2.1 Configuring WLM to support incoming requests

The following configuration changes are made within the WLM ISPF application panels. The
user must have write authority to the WLM policy definition datasets.

Add service classes
Create the service classes necessary to support the LDAP workload. In this example
configuration, there are three service classes with the following characteristics:

LDAPNORM Importance 3, execution velocity 50

LDAPHIGH Importance 3, execution velocity 70

LDAPSPAM Importance 4, execution velocity 20

Figure 8-1 illustrates defining the LDAPHIGH service class. The LDAPNORM and LDAPSPAM
service classes are defined in much the same way.

Figure 8-1 Creating the WLM service class LDAPHIGH

Adding classification rules
After the service classes are defined, WLM needs to know how to associate incoming work
with service classes. This is done with classification rules. In this example configuration, the

--
 Create a Service Class Row 1 to 2 of 2
Command ===> __

Service Class Name LDAPHIGH (Required)
Description LDAP workload ex. velocity=70
Workload Name WRKLD1 (name or ?)
Base Resource Group ________ (name or ?)
Cpu Critical NO (YES or NO)

Specify BASE GOAL information. Action Codes: I=Insert new period,
E=Edit period, D=Delete period.

 -- Period -- ------------------- Goal -------------------
Action # Duration Imp. Description
 __ _ _________ _ __
 __ 1 _________ 3 Execution velocity of 70
Chapter 8. Workload Management 169

service classes that were previously defined are selected based on a transaction name.
Transaction name is derived from the LDAP configuration file option wlmExcept, or from the
WLMEXCEPT operator modify command.

Any transactions that arrive in the system with a transaction name of SPAM are assigned to
the LDAPSPAM service class, and any transactions that arrive with a transaction name of
HIGHPRI are assigned to the LDAPHIGH service class. All other requests are assigned the
default service class LDAPNORM, as shown in Figure 8-2.

Figure 8-2 Classification rules for LDAP transactions

Save and activate the policy
After creating the service classes and report classes, and setting up the classification rules,
save the modified policy to the WLM datasets, and activate the policy for it to take effect.

8.2.2 Configuring LDAP to exploit WLM

LDAP can exploit WLM workload classification by requestor IP address, requestor
distinguished name (DN) or a combination of both. This is done using the wlmExcept option in
the configuration file. The wlmExcept configuration option can be specified many times in the
configuration file. The order in which they appear in the configuration file determines which
option will apply because they are processed on a first come/first served basis.

The WLMEXCEPT operator modify command can also be used to change a running LDAP
configuration. WLMEXCEPT operator modify command specifications are evaluated before
any wlmExcept configuration options. The RESET WLMEXCEPT operator command can be
used to remove specific WLM routing that was added using the WLMEXCEPT operator
command.

You should ensure that WLM transaction names specified on wlmExcept configuration options
or on the WLMEXCEPT operator modify commands be mapped to a WLM service class. If a
default service class was specified for all non-mapped transactions, that service class will be
chosen. Otherwise, a discretionary service class is selected, resulting in these operations
receiving lower priority than other work, which can cause unpredictable results.

DSCONFIG example
After analyzing the searchStats and searchIPStats attributes returned on a
cn=operations,cn=monitor search, it has been determined there is a spamming LDAP client

--
 Modify Rules for the Subsystem Type Row 1 to 2 of 2
Command ===> ___ Scroll ===> PAGE

Subsystem Type . : LDAP Fold qualifier names? Y (Y or N)
Description . . . LDAP workload

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule
 More ===>
 --------Qualifier-------- -------Class--------
Action Type Name Start Service Report
 DEFAULTS: LDAPNORM LDAPNORM
 ____ 1 TN SPAM ___ LDAPSPAM LDAPSPAM
 ____ 1 TN HIGHPRI ___ LDAPHIGH LDAPHIGH
***************************** BOTTOM OF DATA ******************************
170 IBM Tivoli Directory Server for z/OS

application on IP address 1.2.3.4 that has been affecting performance of the LDAP server.
Also, requests from bound user cn=importantguy,o=ibm should have a higher priority within
the LDAP server.

The LDAP administrator can add the following wlmExcept configuration options to route these
requests to the appropriate WLM transaction name:

� wlmExcept SPAM 1.2.3.4
� wlmExcept HIGHPRI cn=importantguy,o=ibm

After the LDAP server is restarted, LDAP client requests originating from IP address 1.2.3.4
are routed to WLM transaction name SPAM with a service class of LDAPSPAM. The server routes
requests from bound user cn=importantguy,o=ibm to WLM transaction name HIGHPRI with a
service class of LDAPHIGH. All other requests are routed to the default service class of
LDAPNORM. See z/OS MVS Planning: Workload Management, SA22-7602 for more information
about configuring WLM.

If the transaction name specified on the wlmExcept configuration option or on the
WLMEXCEPT operator modify command does not exist in WLM, any client requests
associated with that transaction name would use the default service class LDAPNORM. If a
default service class is not defined, then client requests are assigned to a discretionary
service class.

8.3 Using Workload Manager and Operations Monitor together

IBM Tivoli Directory Server for z/OS can also exploit WLM to classify work within TDS, based
on the client's search pattern. The WLMEXCEPT operator modify command can be used to
change the routing of incoming client requests to new or separate WLM transaction names
while the server is running. The WLMEXCEPT operator modify command can be used to
associate a search pattern in the cn=operations,cn=monitor entry to a WLM transaction
name. Each time the WLMEXCEPT operator modify command is issued, the new mappings
are added before any of the configured wlmExcept configuration options or previously issued
WLMEXCEPT operator modify commands.

The WLMEXCEPT operator modify commands last for the life of the LDAP server. However,
the RESET WLMEXCEPT can be issued to remove all previously issued WLMEXCEPT
operator modify commands and default to using the initial LDAP server configuration. If the
operations monitor ID (OPID) is specified on the RESET WLMEXCEPT operator modify
command, then just that specific WLM routing is removed.

If the operations monitor is enabled, the searchStats and searchIPStats attributes in the
cn=operations,cn=monitor entry can be used to identify spamming client applications or
certain search requests that should have a higher priority within the LDAP server. This type of
information is valuable when configuring LDAP to use WLM transaction names, and assigning
service or report classes to those transaction names. For a spamming client application, a
WLM transaction name with a low priority service or report class ought to be used. For
important search requests, a WLM transaction name with a high priority service or report
class ought to be used.

8.4 Workload Manager Health

The IBM Tivoli Directory Server for z/OS uses the WLM health service to indicate a health
value to WLM. The WLM health value is used by the TCP/IP sysplex distributor to help route
Chapter 8. Workload Management 171

incoming client requests to servers within the sysplex. After the LDAP server initialization, the
WLM health value is set to 100%. The WLM health value is calculated by the number of
failures during the past 5000 operations if one minute has passed since the value was last
calculated. If the percentage of failures changes by 25% or more, the z/OS LDAP server
increases or decreases the WLM health value. An LDAP server operation is considered a
failure when it has one of the following return codes:

LDAP_OPERATIONS_ERROR (1)
LDAP_TIMELIMIT_EXCEEDED (3)
LDAP_ADMIN_LIMIT_EXCEEDED (11)
LDAP_BUSY (51)
LDAP_UNAVAILABLE (52)
LDAP_UNWILLING_TO_PERFORM (53)
LDAP_OTHER (80)
172 IBM Tivoli Directory Server for z/OS

Part 3 Installation and
configuration examples

This section provides on installing and configuring IBM Tivoli Directory Server for z/OS.

Part 3
© Copyright IBM Corp. 2011. All rights reserved. 173

174 IBM Tivoli Directory Server for z/OS

Chapter 9. Implementing IBM Tivoli
Directory Server on a single
system

This chapter provides a step-by-step procedure for implementing IBM Tivoli Directory Server
on z/OS. Different implementations are shown, starting with a basic LDBM. Next, a basic
TDBM implementation is shown.

We also will show how to secure the administrator password instead of specifying it in clear
text in the configuration file.

9

© Copyright IBM Corp. 2011. All rights reserved. 175

9.1 A basic IBM Tivoli Directory Server server with LDBM

The LDBM back end keeps its entries in memory for quick access and requires a minimum
amount of setup. When the LDAP server is not running, LDBM stores its directory information
in z/OS UNIX System Services files. There is no restriction on the type of information that can
be stored in LDBM.

This section describes the steps needed to implement IBM Tivoli Directory Server using
LDBM.

The IBM Tivoli Directory Server installation utility dsconfig is used to build a PDS containing
the jobs, configuration files, and the ldap-started task needed to run IBM Tivoli Directory
Server.

9.1.1 Prepare the z/OS system

The following steps need to be done prior to implementing IBM Tivoli Directory Server:

� UNIX System Services must be operating in full-function mode. There must be sufficient
space for storing the schema in the file system.

� IBM Tivoli Directory Server must be installed using the standard SMP/E process.

Refer to z/OS Program Directory and z/OS Distributed File Service zSeries File System
Administration for information about installing IBM Tivoli Directory Server and
implementing z/OS UNIX System Services.

� Workload Manager must be implemented to be able to prioritize IBM Tivoli Directory
Server with other work running on the system.

� dsconfig assumes that RACF is the security product in use on the system. If another
security product is being used, then the generated job to populate RACF will need to be
modified accordingly.

� Decide on a naming convention for your IBM Tivoli Directory Server servers. The
convention used in our examples is LDAPxxyy, where xx is the LPAR ID and yy is a unique
instance for this server.

9.1.2 Implementing IBM Tivoli Directory Server with dsconfig

Refer to chapter 5 of z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for
z/OS, SC23-5191-05 for more information about each of these steps.

1. Copy the following sample files from /usr/lpp/ldap/etc to a new location. You can use
/etc. However, because we are implementing multiple instances of IBM Tivoli Directory
Server on a single system, we chose to create a home directory under /u for each
instance.

– ds.profile
– ds.slapd.profile
– ds.racf.profile
– ds.db2.profile (not changed in this implementation, however ds.profile has a link to

this file.)

2. Modify ds.profile with the following changes:

– ADMINDN ="cn=root"
– ADMINPW = root
– LDBM_SUFFIX = "o=ibm,c=us"
176 IBM Tivoli Directory Server for z/OS

– LDBM_DATABASEDIRECTORY = /u/ldap8001/ldbm
– SCHEMAPATH = /u/ldap8001/schema
– PROG_SUFFIX = NP
– LDAPUSRID = ldap8001
– LDAPUSRGRP = LDAPGRP
– OUTPUT_DATASET = LDAP8001.CNFOUT
– OUTPUT_DATASET_VOLUME = BH8ST4
– Added jobcard statements for APF_JOBCARD, PRGCTRL_JOBCARD,

DB2_JOBCARD, and RACF_JOBCARD
– SLAPD_PROFILE = /u/ldap8001/ds.slapd.profile
– DB2_PROFILE = /u/ldap8001/ds.db2.profile
– RACF_PROFILE = /u/ldap8001/ds.racf.profile

3. Modify ds.slapd.profile with the following changes:

– ARMNAME = LDP8001
– LISTEN = ldap://:4389 (this port must be unique for each ldap running on a single

system)
– LOGFILE = /u/ldap8001/logs/gldlog.output

4. Modify ds.racf.profile with the following changes:

– LDAPGID = 22 (group ID must be a unique decimal number. Do not use gid 0.)
– LDAPUID = 224 (user ID must be unique decimal number. Do not use uid 0.)

5. Prior to running dsconfig, the following variables must be exported on the z/OS UNIX
System Services session where dsconfig will be run:

– export STEPLIB=SYS1.SIEALNKE:$STEPLIB
– export PATH=/usr/lpp/ldap/sbin:$PATH
– export NLSPATH=/usr/lpp/ldap/lib/nls/msg/%L/%N:$NLSPATH
– export LANG=En_US.IBM-1047

6. Run dsconfig with the ds.profile file that was customized:

dsconfig -i /u/ldap8001/ds.profile

Expect the following messages to be produced:

100623 14:20:06.502052 GLD2002I Directory Server configuration utility has
started.
100623 14:20:06.873252 GLD2003I Directory Server configuration utility has
ended.

7. Access the PDS in TSO that was created by dsconfig. You should find the following
members were created:

Note: The /logs subdirectory will not be created by IBM Tivoli Directory Server, and
must exist prior to starting IBM Tivoli Directory Server. Also verify that the LDAP
server's user ID has write access to this entire directory.

Note: You might see the following when running dsconfig from an rlogin session:

alloc DA('LDAP8001.CNFOUT') RECFM(F,B) LRECL(80) SPACE(6,1) DSNTYPE(PDS)
TRACKS DSORG(PO) BLKSIZE(3200) DIR(10) VOL(BH8ST4)
free DA('LDAP8001.CNFOUT')
IKJ56247I DATA SET LDAP8001.CNFOUT NOT FREED, IS NOT ALLOCATED
RC(12)

This error return code of 12 can be ignored. The error is caused when both dsconfig
and the rlogin environment free the OUTPUT_DATASET. No data is lost.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 177

– RACF: Creates the ldap8001 user and ldapgrp group and grants authority to
RACF-protected resources

– PROGxx: APF-authorizes certain datasets for ldap
– APF: Issues a console command SET PROG=XX, points to progxx member that was

created by dsconfig
– LDAP8001: The proc to run the ldap started task.
– PRGCNTRL: Sets program control for related libraries
– DSCONFIG: The configuration file for ldap
– DSENVVAR: Environment variables that must be used for running ldap

8. Copy PROGxx to a system parmlib.

9. Submit the job APF, which was created by dsconfig, to authorize the datasets listed in
PROGxx.

10.Submit the job RACF to grant the RACF permissions necessary for the server to run. If
using a security product other than RACF, then make the necessary modifications to this
job prior to submitting.

11.Copy the LDAP started task JCL (in our example, LDAP8001) to a system proclib.

9.1.3 Starting and verifying IBM Tivoli Directory Server operation

To start IBM Tivoli Directory Server, issue a console start command for the started task JCL
that was created by dsconfig and you copied to a system proclib. Refer to the comments
within the started task proc for parameters that can be specified when starting IBM Tivoli
Directory Server. To start IBM Tivoli Directory Server with no parameters, enter S LDAP8001
on the console, replacing LDAP8001 with the name of your server in proclib.

Verify successful start by watching for the following messages:

GLD1004I LDAP server is ready for requests.
GLD1059I Listening for requests on 9.12.4.45 port 4389.
GLD1059I Listening for requests on 9.12.4.46 port 4389.
GLD1059I Listening for requests on 9.12.5.26 port 4389.
GLD1059I Listening for requests on 127.0.0.1 port 4389.
GLD6051I No database changes to commit for LDBM back end named LDBM-0001.

To verify IBM Tivoli Directory Server functionality, enter the following command from z/OS
UNIX System Services:

ldapsearch -h 127.0.0.1 -p 4389 -s base -b “” "objectclass=*”

9.2 A basic IBM Tivoli Directory Server server with TDBM

The TDBM back end is based on DB2 and is a highly scalable database implementation.
There is no restriction on the type of information that can be stored in the LDBM. DB2 is
required to use TDBM.

This section describes the steps needed to implement IBM Tivoli Directory Server using
TDBM.

Important: The datasets must be added to the system APF list to make authorizations
persistent across IPLs.
178 IBM Tivoli Directory Server for z/OS

The IBM Tivoli Directory Server installation utility dsconfig is used to build a PDS containing
the jobs, configuration files, and the ldap-started task needed to run IBM Tivoli Directory
Server.

9.2.1 Prepare the z/OS system

The following steps need to be done prior to implementing IBM Tivoli Directory Server:

� UNIX System Services must be operating in full-function mode. There must be sufficient
space for storing the schema in the file system.

� IBM Tivoli Directory Server must be installed using the standard SMP/E process.

� DB2 v8 or higher is needed to support TDBM as the back end datastore for IBM Tivoli
Directory Server. The system on which this work is performed is running DB2 v9.1.

Refer to z/OS Program Directory and z/OS Distributed File Service zSeries File System
Administration for information about installing IBM Tivoli Directory Server and implementing
z/OS UNIX System Services.

� Workload Manager must be implemented to be able to prioritize IBM Tivoli Directory
Server with other work running on the system.

� dsconfig assumes that RACF is the security product in use on the system. If another
security product is being used, the generated job will need to be modified accordingly.

� Decide on a naming convention for your IBM Tivoli Directory Server servers. The
convention used in our examples is LDAPxxyy, where xx is the LPAR ID and yy is a unique
instance for this server.

9.2.2 DB2 setup for IBM Tivoli Directory Server

After DB2 is installed, ask the DB2 system administrator for a user ID that has SYSADM
authority. This is needed to submit the JCL associated with setting up IBM Tivoli Directory
Server with TDBM. You will also need to get the following information from the system
administrator:

� DB2 subsystem name. For example, D9NG.

� DB2 server location (or data source). For example, LOC1.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 179

Regardless of whether your DB2 database is local or remote (i.e., on the same z/OS system
or a separate z/OS system), you still need to specify the LOCATION. Your database
administrator can provide this to you, or you can issue the SPUFI command shown in
Figure 9-1. The results of the command are shown in Figure 9-2.

Figure 9-1 Display DB2 Location

Figure 9-2 DDF report

 DB2 COMMANDS SSID: D9NG
 ===>

 Position cursor on the command line you want to execute and press ENTER

 Cmd 1 ===> -DISPLAY DDF
 Cmd 2 ===>
 Cmd 3 ===>
 ...>
 Cmd 4 ===>
 ...>
 Cmd 5 ===>
 ...>
 ...>
 Cmd 6 ===>
 ...>
 ...>
 Cmd 7 ===>
 ...>
 ...>
 ...>

 PRESS: ENTER to process END to save and exit HELP for more information

DSNL080I -D9N2 DSNLTDDF DISPLAY DDF REPORT FOLLOWS:
DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I DB9N USIBMSC.SCPD9N2 -NONE
DSNL084I TCPPORT=37824 SECPORT=0 RESPORT=37826 IPNAME=-NONE
DSNL085I IPADDR=::9.12.4.47
DSNL086I SQL DOMAIN=wtsc81.itso.ibm.com
DSNL086I RESYNC DOMAIN=wtsc81.itso.ibm.com
DSNL089I MEMBER IPADDR=::9.12.4.47
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Local and remote databases: The DDF component does not need to be started for IBM
Tivoli Directory Server if the database is local. If you are using a DB2 database that is on a
remote system, the DDF component of DB2 must be configured and started on systems
using the DB2 Call Level Interface (CLI). CLI is used by the LDAP server for requesting
services from DB2. The DB2 Call Level Interface is the IBM callable SQL interface used by
the DB2 family of products, based on the ISO Call Level Interface Draft International
Standard specification and the Microsoft Open Database Connectivity specification.
180 IBM Tivoli Directory Server for z/OS

DB2 buffer pools, communication threads and TEMP space might need to be configured for
your configuration. Refer to 3.2.5, “Tuning the TDBM back end” on page 37 for more
information about performance tuning.

9.2.3 Implementing IBM Tivoli Directory Server with dsconfig

Refer to chapter 5 of z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for
z/OS, SC23-5191-05 for more information about each of these steps.

1. Copy the following sample files from /usr/lpp/ldap/etc to a new location. You can use
/etc. However, because we are implementing multiple instances of IBM Tivoli Directory
Server on a single system, we chose to create a home directory under /u for each
instance.

– ds.profile
– ds.slapd.profile
– ds.racf.profile
– ds.db2.profile (this file is not changed in this implementation, but ds.profile has a

link to it)

2. Modify ds.profile with the following changes:

– ADMINDN = "cn=root"
– ADMINPW = "root"
– TDBM_SUFFIX = "o=ibm,c=us"
– PROG_SUFFIX = NP
– LDAPUSRID = ldap8102
– LDAPUSRGRP = LDAPGRP
– OUTPUT_DATASET = LDAP8102.CNFOUT
– OUTPUT_DATASET_VOLUME = BH8ST4
– DSN_SDSNEXITHLQ = DB9N9
– SDSNEXITVOL = BH8DB1
– DSN_SDSNLOADHLQ = DB9N9
– SDSNLOADVOL = BH8DB1
– DSN_SDSNDBRMHLQ = DB9N9
– DSN_SSID = D9NG
– DB2_VERSION = V9
– Added jobcard statements for APF_JOBCARD, PRGCTRL_JOBCARD,

DB2_JOBCARD, and RACF_JOBCARD
– SLAPD_PROFILE = /u/ldap8102/ds.slapd.profile
– DB2_PROFILE = /u/ldap8102/ds.db2.profile
– RACF_PROFILE = /u/ldap8102/ds.racf.profile

3. Modify ds.slapd.profile with the following changes:

– ARMNAME = LDP8001
– LISTEN = ldap://:4390 (this port must be unique for each ldap running on a single

system)
– LOGFILE = /u/ldap8102/logs/gldlog.output

4. Modify ds.db2.profile with the following changes:

– TDBM_DB2_USERID = GLDSRV (owner of the tables that will be created)
– DB2_LOCATION = DB9N

Note: The /logs subdirectory will not be created by IBM Tivoli Directory Server, and
must exist prior to starting IBM Tivoli Directory Server. Also verify that the LDAP
server's user ID has write access to this entire directory.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 181

5. Modify ds.racf.profile with the following changes:

– LDAPGID = 22 (group ID must be a unique decimal number. Do not use gid 0.)
– LDAPUID = 225 (user ID must be unique decimal number. Do not use uid 0.)

6. Prior to running dsconfig, the following variables must be exported on the z/OS UNIX
System Services session where dsconfig will be run:

– export STEPLIB=SYS1.SIEALNKE:$STEPLIB
– export PATH=/usr/lpp/ldap/sbin:$PATH
– export NLSPATH=/usr/lpp/ldap/lib/nls/msg/%L/%N:$NLSPATH
– export LANG=En_US.IBM-1047

7. Run dsconfig with the ds.profile file that was customized:

dsconfig -i /u/ldap8102/ds.profile

Expect the following output:

100629 09:34:47.701052 GLD2002I Directory Server configuration utility has
started.
100629 09:34:49.196760 GLD2003I Directory Server configuration utility has
ended

8. Access the PDS in TSO that was created by dsconfig. You should find the following
members were created:

– RACF: Creates the ldap8102 user and ldapgrp group, and grants authority to
RACF-protected resources

– PROGxx: APF-authorizes certain datasets for ldap
– APF: Issues a console command SET PROG=XX that points to the progxx member

that was created by dsconfig
– LDAP8001: The proc to run the ldap-started task
– DSCONFIG: Configuration file for ldap
– DSENVVAR: Environment variables that must be used for running ldap
– DBCLI: binds the CLI packages to DB2 and the DSNACLI plan
– PRGCNTRL: Sets program control for related libraries
– DSNAOINI: DB2 CLI initialization file
– TDBSPUFI: DB2 DDL needed to create the database, tablesplaces, tables, and

indexes, and the associated GRANT statements.

9. Copy PROGxx to a system parmlib.

10.Submit job APF, which was created by dsconfig, to authorize the datasets listed in PROGxx.

Note: you might see the following when running dsconfig from an rlogin session:

alloc DA('LDAP8102.CNFOUT') RECFM(F,B) LRECL(80) SPACE(6,1) DSNTYPE(PDS)
TRACKS DSORG(PO) BLKSIZE(3200) DIR(10) VOL(BH8ST4)
free DA('LDAP8102.CNFOUT')
IKJ56247I DATA SET LDAP8102.CNFOUT NOT FREED, IS NOT ALLOCATED
RC(12)

This error return code of 12 can be ignored. The error is caused when both dsconfig
and the rlogin environment free the OUTPUT_DATASET. No data is lost

Note: The datasets must be added to a the system APF list to make authorizations
persistent across IPLs.
182 IBM Tivoli Directory Server for z/OS

11.Submit job RACF to grant the RACF permissions necessary for the server to run. If using
a security product other than RACF, then make the necessary modifications to this job
prior to submitting.

12.Copy the LDAP started task JCL (in our example, LDAP8102) to a system proclib.

13.Edit member DBCLI. Read the following note prior to submitting this job.

14.Submit DDL using DB2 SPUFI interface as shown in Figure 9-3.

Figure 9-3 DB2 SPUFI DDL submission

Note: You MUST add a JOBLIB/STEPLIB to run this job, if not already defined in your
active linklist configuration, as follows:

//JOBLIB DD DISP=SHR,
// DSN=DB9N9.SDSNLOAD

 SPUFI SSID: D9NG
 ===>

 Enter the input data set name: (Can be sequential or partitioned)
 1 DATA SET NAME ... ===> 'LDAP8102.CNFOUT(TDBSPUFI)'
 2 VOLUME SERIAL ... ===> (Enter if not cataloged)
 3 DATA SET PASSWORD ===> (Enter if password protected)

 Enter the output data set name: (Must be a sequential data set)
 4 DATA SET NAME ... ===> 'tdbspufi.output'

 Specify processing options:
 5 CHANGE DEFAULTS ===> YES (Y/N - Display SPUFI defaults panel?)
 6 EDIT INPUT ===> YES (Y/N - Enter SQL statements?)
 7 EXECUTE ===> YES (Y/N - Execute SQL statements?)
 8 AUTOCOMMIT ===> YES (Y/N - Commit after successful run?)
 9 BROWSE OUTPUT ... ===> YES (Y/N - Browse output data set?)

 For remote SQL processing:
 10 CONNECT LOCATION ===>

 PRESS: ENTER to process END to exit HELP for more information
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 183

All statements should complete with SQLCODE=0. Review and revise the DDL for any that
generated a nonzero SQLCODE as shown in Figure 9-4.

Figure 9-4 SPUFI output for TDBM

9.2.4 Starting and verifying IBM Tivoli Directory Server operation

To start IBM Tivoli Directory Server, issue a console start command for the started task JCL
that was created by dsconfig and you copied to a system proclib. Refer to the comments
within the started task proc for parameters that can be specified when starting IBM Tivoli
Directory Server. To start IBM Tivoli Directory Server with no parameters, enter S LDAP8102
on the console, replacing LDAP8102 with the name of your server in proclib.

Test the operation with the following command and watch for the subsequent messages:

ldapsearch -h 127.0.0.1 -p 4390 -V 3 -s base -b "" "objectclass=*"

Substitute your host for 127.0.0.1 and the correct listening port for 4390.

vendorname=International Business Machines (IBM)
vendorversion=z/OS V1R12
ibmdirectoryversion=z/OS V1R12
subschemasubentry=cn=schema
supportedldapversion=2
supportedldapversion=3
supportedcontrol=1.3.18.0.2.10.20
supportedcontrol=2.16.840.1.113730.3.4.3

 BROWSE TDBSPUFI.OUTPUT Line 00000082 Col 001 080
 Command ===> Scroll ===> PAGE
--* If necessary, the Database Administrator must manually
--* update LDAP8102.CNFOUT(TDBSPUFI)
--* with PRIQTY and SECQTY information for those statements.
--**

CREATE DATABASE GLDDB STOGROUP SYSDEFLT CCSID EBCDIC;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

CREATE TABLESPACE ENTRYTS IN GLDDB
 USING STOGROUP SYSDEFLT
 PRIQTY 14400
 SECQTY 7200
 BUFFERPOOL BP0;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

CREATE TABLESPACE LENTRYTS IN GLDDB
 USING STOGROUP SYSDEFLT
 PRIQTY 14400
 SECQTY 7200
 BUFFERPOOL BP0;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+
184 IBM Tivoli Directory Server for z/OS

supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.10
supportedcontrol=1.3.18.0.2.10.11
supportedcontrol=1.3.18.0.2.10.15

9.3 Set up file-based GDBM to track changes

This section shows how to set up a file-based GDBM to track changes to the server database.

To enable GDBM for a LDBM IBM Tivoli Directory Server instance, perform the following:

1. Stop the LDAP server:

P LDAP8001

2. Open LDAP8001.CNFOUT(DSCONFIG).

3. Uncomment the line database GDBM GLDBGD31/GLDBGD64 as shown in Figure 9-5.

Figure 9-5 DSCONFIG example of database GDBM

Note: Do not uncomment the line database GDBM GLDBGD31 because this is used for the
DB2-based GDBM back end section of the configuration file.

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.01 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003669 #--
 003670 # database dbtype dblibpath
 003671 #
 003672 # Description:
 003673 # The database option marks the beginning of a new database section.
 003674 #
 003675 # Example:
 003676 # database GDBM GLDBGD31/GLDBGD64
 003677 #
 003678 # Notes:
 003679 # All global options must appear before the first database section.
 003680 # An optional name may be specified to identify this back end.
 003681 #--
 003682 database GDBM GLDBGD31/GLDBGD64
 003683
 003684 #--
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 185

4. Specify the database directory where IBM Tivoli Directory Server server will create GDBM
/ change log related files. If a specified directory is not available, then the IBM Tivoli
Directory Server instance will create them. See Figure 9-6.

Figure 9-6 DSCONFIG example of databaseDirectory

5. Start the LDAP server:

S LDAP8001

6. To verify that GDBM is setup correctly, create an ldif file to test logging. Name it
addpassword.ldif.

dn : cn=Bob Garcia, ou=Poughkeepsie, o=ibm,c=us
changetype : modify
add : userpassword
userpassword : passw0rd

Use the ldapmodify command to load the addpassword.ldif file:

ldapmodify -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4389 -f
addpassword.ldif 2>&1 | tee addpassword.out

Look for the following:

modifying entry cn=Bob Garcia, ou=Poughkeepsie, o=ibm,c=us

7. Review the changelog record. Use ldapsearch command with cn=changelog as a base.

ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4389 -s sub -b
"cn=changelog" objectclass=*

Look for the following:

changeNumber=1,cn=changelog
objectclass=top

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.02 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003815
 003816 #--
 003817 # databaseDirectory <name>
 003818 #
 003819 # Default Value: /var/ldap/gdbm
 003820 #
 003821 # Description:
 003822 # The databaseDirectory option specifies the name of the file system
 003823 # directory containing the data files used by this back end, to store
 003824 # the directory data.
 003825 #
 003826 # Example:
 003827 # databaseDirectory /home/myLdap/gdbmData
 003828 #
 003829 # Notes:
 003830 # A fully-qualified directory path must be specified. A unique file
 003831 # system directory must be specified for each file-based back end.
 003832 # In addition, when multi-server mode is active, the same directory
 003833 # path must be specified for each instance of this back end within the
 003834 # cross-system group.
 003835 #--
 003836 databaseDirectory /u/ldap8001/gdbm
 003837
 003838 #--
186 IBM Tivoli Directory Server for z/OS

objectclass=changeLogEntry
objectclass=ibm-changeLog
changenumber=1
changetype=modify
targetdn=cn=Bob Garcia, ou=Poughkeepsie, o=ibm,c=us
changes=add: userpassword
userpassword: *ComeAndGetIt*
-
ibm-changeinitiatorsname=cn=LDAP Admin, o=ibm, c=us
changetime=20100624184719.357902Z

cn=changelog
objectclass=top
objectclass=container
cn=changelog

9.4 Set up DB2-based GDBM to track changes

This section shows how to set up a DB2-based GDBM to track changes to the server
database. When using DB2 to store its entries, the GDBM database is identical to a TDBM
database and is created in the same way using the same SPUFI script. A DB2-based GDBM
back end cannot share a database with a TDBM back end. Like TDBM, a DB2-based GDBM
back end cannot run in 64-bit mode.

To enable GDBM for a TDBM IBM Tivoli Directory Server instance, do the following:

1. Stop the LDAP server:

P LDAP8102

2. Open LDAP8102.CNFOUT(DSCONFIG).

3. Uncomment the line database GDBM GLDBGD31 and specify a database name as shown in
Figure 9-7.

Figure 9-7 DSCONFIG example of database

EDIT LDAP8102.CNFOUT(DSCONFIG) - 01.05 Columns 00001 00072
Command ===> Scroll ===> CSR
002006 #--
002007 # database dbtype dblibpath
002008 #
002009 # Description:
002010 # The database option marks the beginning of a new database section.
002011 #
002012 # Example:
002013 # database GDBM GLDBGD31
002014 #
002015 # Notes:
002016 # All global options must appear before the first database section.
002017 # An optional name may be specified to identify this back end.
002018 #--
002019 database GDBM GLDBGD31 GDBMDB
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 187

4. Uncomment the line dbuserid and specify a unique name that must be different than the
dbuserid value for the TDBM back end. An example is shown in Figure 9-8.

Figure 9-8 DSCONFIG example of dbuserid

5. Because the database layout for GDBM is identical to the layout for TDBM, use the same
DDL that was created for TDBM.

6. Update all occurrences of the database owner to match the dbuserid that was specified in
DSCONFIG.

7. Update all occurrences of the database name to match the name that was specified for
database GDBM GLDBGD31 in DSCONFIG

Note: Do not uncomment the line database GDBM GLDBGD31/GLDBGD64 because this is
used for the file-based GDBM back end section of the configuration file.

EDIT LDAP8102.CNFOUT(DSCONFIG) - 01.05 Columns 00001 00072
Command ===> Scroll ===> CSR
002153 #--
002154 # dbuserid <userid>
002155 #
002156 # Description:
002157 # The dbuserid option specifies the z/OS user ID that will be the
002158 # owner of the DB2 tables. This option indicates that this GDBM
002159 # back end is DB2-based and not file-based.
002160 #
002161 # Example:
002162 # dbuserid LDAPSRV
002163 #
002164 # Notes:
002165 # This option is required when using the DB2-based GDBM back end.
002166 # this value must be unique within this configuration file.
002167 # Multiple back ends on an LDAP server cannot share a database.
002168 #--
002169 dbuserid GLDSRVG
188 IBM Tivoli Directory Server for z/OS

8. Specify multiserver on in the GDBM-specific section of DSCONFIG as shown in
Figure 9-9.

Figure 9-9 Specifying multiserver on for gdbm

9. Submit the DDL using DB2 SPUFI as shown in Figure 9-10.

Figure 9-10 SPUFI panel for GDBM DDL

EDIT LDAP8102.CNFOUT(DSCONFIG) - 01.07 Columns 00001 00072
Command ===> Scroll ===> CSR
002292 #--
002293 # multiserver <on | off>
002294 #
002295 # Default Value: off
002296 #
002297 # Description:
002298 # The multiserver option specifies the operating mode for this
002299 # back end.
002300 #
002301 # Example:
002302 # multiserver on
002303 #
002304 # Notes:
002305 # You can configure a back end to operate in single-server mode while
002306 # another back end operates in multi-server mode except when GDBM or
002307 # CDBM is configured. When CDBM or GDBM is configured, all TDBM,
002308 # LDBM, GDBM, and CDBM back ends must be configured to use the same
002309 # operating mode.
002310 #--
002311 multiserver on

 SPUFI SSID: D9NG
===>

Enter the input data set name: (Can be sequential or partitioned)
 1 DATA SET NAME ... ===> 'LDAP8102.CNFOUT(GDBSPUFI)'
 2 VOLUME SERIAL ... ===> (Enter if not cataloged)
 3 DATA SET PASSWORD ===> (Enter if password protected)

Enter the output data set name: (Must be a sequential data set)
 4 DATA SET NAME ... ===> 'TDBSPUFI.OUTPUT'

Specify processing options:
 5 CHANGE DEFAULTS ===> YES (Y/N - Display SPUFI defaults panel?)
 6 EDIT INPUT ===> YES (Y/N - Enter SQL statements?)
 7 EXECUTE ===> YES (Y/N - Execute SQL statements?)
 8 AUTOCOMMIT ===> YES (Y/N - Commit after successful run?)
 9 BROWSE OUTPUT ... ===> YES (Y/N - Browse output data set?)

For remote SQL processing:
10 CONNECT LOCATION ===>

PRESS: ENTER to process END to exit HELP for more information
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 189

All SQL codes should equal zero. If any do not, review the DDL to determine the reason as
shown in Figure 9-11.

Figure 9-11 SPUFI output for GDBM

10.Stop all instances of IBM Tivoli Directory Server that are sharing the same TDBM.

11.Make the same DSCONFIG updates for all instances of IBM Tivoli Directory Server that
are sharing the same TDBM, if you are using a different DSCONFIG file for each instance.

12.Restart all instances of IBM Tivoli Directory Server.

9.5 A basic IBM Tivoli Directory Server server with SDBM

RACF (Resource Access Control Facility) is a security system that provides access control
and auditing functionality for the z/OS and z/VM® operating systems.

RACF provides:

� Identification and verification of a user using user ID and password check (authentication)
� Protection of resources by maintenance of access rights (authorization)
� Logging of accesses to protected resources (auditing)

The z/OS IBM Tivoli Directory Server server can provide remote LDAP access to the user,
group, connection, and general resource profile information stored in RACF. It also supports

 BROWSE TDBSPUFI.OUTPUT Line 00000084 Col 001 080
 Command ===> Scroll ===> PAGE
--* with PRIQTY and SECQTY information for those statements.
--**

CREATE DATABASE GDBMDB STOGROUP SYSDEFLT CCSID EBCDIC;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

CREATE TABLESPACE ENTRYTS IN GDBMDB
 USING STOGROUP SYSDEFLT
 PRIQTY 14400
 SECQTY 7200
 BUFFERPOOL BP0;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

CREATE TABLESPACE LENTRYTS IN GDBMDB
 USING STOGROUP SYSDEFLT
 PRIQTY 14400
 SECQTY 7200
 BUFFERPOOL BP0;
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+---------+---------+

CREATE TABLESPACE LATTRTS IN GDBMDB
 USING STOGROUP SYSDEFLT
190 IBM Tivoli Directory Server for z/OS

setting RACF options that affect classes. Using SDBM, the RACF database back end of the
LDAP provides these features:

� Authentication of RACF users.

� Add, modify, and delete RACF users, groups, and general resources. Note that dataset
resources are not supported.

� Add, modify, and delete user connections to groups.

� Add and remove users and groups in general resource access lists.

� Modify SETROPTS options that affect classes (for example, RACLIST).

� Retrieve RACF information for users, groups, connections, general resources, and class
options.

� Retrieve RACF user password and password phrase envelopes.

z/OS IBM Tivoli Directory Server automatically provides the attributes and objectclasses used
by SDBM. However, attributes need to be added to schema to manage RACF custom fields
with the LDAP server.

To configure your LDAP server to run with the SDBM back end of the LDAP server:

1. Stop the LDAP Server:

P LDAP8001

2. Edit the configuration file and enable SDBM as shown in Figure 9-12.

Figure 9-12 Adding SDBM to the configuration

3. Specify the SDBM suffix as shown in Figure 9-13 on page 192.

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.07 Columns 00001 00072
 Command ===> Scroll ===> CSR
 001175
 001176 #--
 001177 # database dbtype dblibpath
 001178 #
 001179 # Description:
 001180 # The database option marks the beginning of a new database section.
 001181 #
 001182 # Example:
 001183 # database SDBM GLDBSD31/GLDBSD64
 001184 #
 001185 # Notes:
 001186 # All global options must appear before the first database section.
 001187 # An optional name may be specified to identify this back end.
 001188 #--
 001189 database SDBM GLDBSD31/GLDBSD64

Note: SDBM suffix must be a unique suffix and it should not overlap with existing
suffixes.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 191

Figure 9-13 Adding the SDBM suffix

4. Save the configuration file.

5. Start the server:

S LDAP8001

6. Use the following command to retrieve SDBM back end data:

ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4389 -s base -b
"cn=RACF,o=ibm,c=in" objectclass=*

9.6 Loading the IBM-supplied schema

z/OS IBM Tivoli Directory Server stores the schema as an entry in the database, and the
distinguished name of the schema entry is cn=schema. Use ldapsearch with cn=schema base
to list the schema entry in the running IBM Tivoli Directory Server instance:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s base -b "cn=schema"
objectclass=*

Replace ldaphost with your host name, port with the correct the port number, and adminDN
and passwd with the administrator distinguished name and password.

For example:

ldapsearch -D cn=root -w root -p 4389 -s base -b "cn=schema" objectclass=*

The value of the schemaPath option in the IBM Tivoli Directory Server for z/OS configuration
file defines the location where IBM Tivoli Directory Server stores the schema entry. The z/OS
IBM Tivoli Directory Server instance owner needs to have read and write permission to the
schema location. The default value is /var/ldap/schema. If multiple instances of IBM Tivoli
Directory Server are running on one system in single-server mode, update the schemaPath
configuration option to specify a separate directory location for each server that is running. If
running multiple servers on a system in multi-server mode, the schemaPath configuration
option must be the same in all configuration files and the schema directory location must
reside in a shared file system.

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.08 Columns 00001 00072
 Command ===> Scroll ===> CSR
 001202
 001203 #--
 001204 # suffix <dn-suffix>
 001205 #
 001206 # Description:
 001207 # The suffix option specifies the root of a subtree in the namespace
 001208 # managed by this server within this back end.
 001209 #
 001210 # Example:
 001211 # suffix "sysplex=sysplex1"
 001212 #
 001213 # Notes:
 001214 # This option is required when using the SDBM back end.
 001215 #--
 001216 suffix "cn=RACF,o=ibm,c=in"
192 IBM Tivoli Directory Server for z/OS

On first start-up IBM Tivoli Directory Server creates an initial default schema that is sufficient
for usage of the GDBM, CDBM, and SDBM (w/o custom fields), but needs to be updated for
usage of LDBM, TDBM, SDBM with RACF custom fields, and CDBM with user-defined
entries.

z/OS IBM Tivoli Directory Server is shipped with the predefined schema files
schema.IBM.ldif and schema.user.ldif. Use the ldapmodify command to load the schema
files to the running IBM Tivoli Directory Server instance. The commands to load the
schema.user.ldif and schema.IBM.ldif schema files are:

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f schemaFile

Replace ldaphost with your host name, ldapport with the correct portnumber, and adminDN
and passwd with the administrator distinguished name and password.

For example:

ldapmodify -D cn=root -w root -p 4389 -f /usr/lpp/ldap/etc/schema.user.ldif
modifying entry cn=schema

ldapmodify -D cn=root -w root -p 4389 -f /usr/lpp/ldap/etc/schema.IBM.ldif
modifying entry cn=schema

9.7 Loading the IBM-supplied sample.ldif file

The ldapadd command is used to populate IBM Tivoli Directory Server with data. A sample
file is included to populate and test IBM Tivoli Directory Server. The file is located in
/usr/lpp/ldap/examples/sample_server/sample.ldif.

Use the ldapadd command as follows to load the sample data from sample.ldif:

ldapadd -p 4389 -D cn=root -w root -f sample.ldif

Expect to see output similar to the following:

adding new entry o=ibm,c=us
adding new entry ou=Poughkeepsie, o=ibm,c=us
adding new entry ou=In Flight Systems, ou=Poughkeepsie, o=ibm,c=us
adding new entry ou=Home Entertainment, ou=Poughkeepsie, o=ibm,c=us
adding new entry ou=Groups, o=ibm,c=us
adding new entry cn=Bowling team, ou=Groups, o=ibm,c=us
adding new entry ou=Widget Division, ou=Poughkeepsie, o=ibm,c=us
adding new entry cn=Mary Burnnet, ou=Widget Division, ou=Poughkeepsie, o=ibm,c=us
adding new entry cn=David Campbell, ou=Widget Division, ou=Poughkeepsie,
o=ibm,c=us
adding new entry cn=James Campbell, ou=Widget Division, ou=Poughkeepsie,
o=ibm,c=us

If your ldif file has a large number of users and group and the data is to be loaded into a
TDBM back end, use the ldif2ds command to load the data. ldif2ds cannot be used to load
entries into a GDBM, LDBM, CDBM, or SDBM directory. The IBM Tivoli Directory Server
instance should be stopped while running ldif2ds.

The ldif2ds command will not replicate data even if a replica is configured.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 193

9.8 Securing the IBM Tivoli Directory Server administration ID

The adminPW parameter in the instance configuration file defines the password for the server
administrator, who has unrestricted access to all entries in the directory irrespective of the
replication configuration and ACLs. z/OS IBM Tivoli Directory Server stores the value of the
adminPW parameter in cleartext, which can be a security risk. Therefore, do not specify the
admin password in the instance configuration file after the Directory Information Tree (DIT) is
configured.

Another and more secure way is for the user to define adminDN as an entry in the back end
under the predefined suffix entry. The userPassword attribute is used to hold the password for
the administrator in this case. The encryption method given in the value of the pwEncryption
parameter is used to encrypt the userPassword attribute.

Use the following steps to secure the administrator distinguished name for the running IBM
Tivoli Directory Server instance.

1. Create an ldif file with the following contents, and name it admin.ldif:

dn: cn=LDAP Admin, o=ibm, c=us
objectclass: person
cn: LDAP Admin
description: Administrator DN for the server
sn: Administrator
userpassword: sec001ret

2. Load the admin.ldif file. Use the ldapadd command to load the file:

ldapadd -h ldaphost -p port -D adminDN -w passwd -f admin.ldif

For example:

ldapadd -p 4389 -D cn=root -w root -f admin.ldif

3. Stop the IBM Tivoli Directory Server instance from the MVS console:

P LDAP8001

Watch for the following messages to confirm the server is stopped:

GLD1006I LDAP server stop command received.
GLD1007I LDAP server is stopping.
GLD6033I Committing changes to database for LDBM back end named LDBM-0001.
GLD6034I Completed committing changes to database for LDBM back end named
LDBM-0001.

Important: Do not use this example without changing the password value, and the actual
distinguished name.
194 IBM Tivoli Directory Server for z/OS

4. Update the IBM Tivoli Directory Server configuration file that is used at ldap startup.
Figure 9-14 uses the PDS file LDAP8001.CNFOUT(DSCONFIG). Specify the value for
AdminDN that you specified for dn: in the admin.ldif file. There is no need to edit the
adminPW parameter.

Figure 9-14 Sample DSCONFIG file showing update for adminDN

5. Start the IBM Tivoli Directory Server instance from the MVS console:

S LDAP8001

You should see the following messages:

GLD1004I LDAP server is ready for requests.
GLD1059I Listening for requests on 9.12.4.45 port 4389.
GLD1059I Listening for requests on 9.12.4.46 port 4389.
GLD1059I Listening for requests on 9.12.5.26 port 4389.
GLD1059I Listening for requests on 127.0.0.1 port 4389.
GLD6051I No database changes to commit for LDBM back end named LDBM-0001.

6. Test the new admin ID with the new password:

ldapsearch -p 4389 -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -s base -b
o=ibm,c=us objectclass=*

Watch for the following messages:

o=ibm,c=us
objectclass=top
objectclass=organization
o=ibm

 EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> CSR
 000070 # adminDN "cn=LDAP Administrator"
 000071 #
 000072 # Recommendation:
 000073 # After the schema is loaded it is recommended, though not necessary,
 000074 # that the DN be loaded into the directory with the same suffix as
 000075 # one of the suffix option values below.
 000076 #
 000077 # Once the entry is loaded in the directory for this distinguished
 000078 # name the adminDN should be changed to reflect the new DN. The
 000079 # entry is used when evaluating an LDAP bind operation for the
 000080 # adminDN.
 000081 #
 000082 # Example:
 000083 # adminDN "cn=Admin, o=Your Company"
 000084 #
 000085 # Notes:
 000086 # This configuration option must be specified.
 000087 #--
 000088 adminDN "cn=LDAP Admin, o=ibm, c=us"
 000089
 000090 #--
 000091 # adminPW <password>
 000092 #
 000093 # Description:
 000094 # The adminPW option specifies the password for the administrator
 000095 # defined by the adminDN option.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 195

7. Use the ldapsearch command to crosscheck the bind with old password, it should return
an error:

ldapsearch -p 4389 -D "cn=LDAP Admin, o=ibm, c=us" -w root -s base -b
o=ibm,c=us objectclass=*

Watch for the following:

ldap_sasl_bind: Credentials are not valid
ldap_sasl_bind: additional info: R004062 Credentials are not valid
(process_simple_bind)

9.9 Using CRAM-MD5 and DIGEST-MD5 binds

The Digest and Challenge response authentication (CRAM) message digest algorithm 5 are
simple authentication and security layer (SASL) authentication mechanisms. When a client
uses DIGEST-MD5 or CRAM-MD5, the password in the bind request is not transmitted in
clear text and the protocol prevents replay attacks. Both the CRAM-MD5 and DIGEST-MD5
mechanisms are multi-stage binds where the server sends the client a challenge and then the
client sends a challenge response back to the server to complete the authentication. The
client challenge response contains a hash of the password entered by the user, the
username, and other pieces of data encoded to the specifications of either the CRAM-MD5 or
DIGEST-MD5 RFCs.

The CRAM-MD5 and DIGEST-MD5 bind mechanisms on the z/OS LDAP server do not
require any additional products to be installed or configured, and SASL bind mechanisms are
more secure than performing simple binds because the credentials are not passed in clear
text.

This section shows how to enable MD5 security checking, using both CRAM-MD5 and
DIGEST-MD5. Refer to chapter 20 of z/OS V1R12.0 IBM Tivoli Directory Server
Administration and Use for z/OS, SC23-5191-05 for more information about this topic.

To enable MD5 security, perform the following steps:

1. Stop the IBM Tivoli Directory Server instance:

P LDAP8001

2. Open LDAP8001.CNFOUT(DSCONFIG).
196 IBM Tivoli Directory Server for z/OS

3. Uncomment the digestRealm parameter, and specify the host name of the z/OS on which
the IBM Tivoli Directory Server instance is running (Figure 9-15).

Figure 9-15 DSCONFIG digestRealm example

4. Save the LDAP8001.CNFOUT(DSCONFIG) file.

5. Start the server:

S LDAP8001

6. Specify the username in the bind mechanism using -U option of the ldapsearch client
utility. The username that is specified must map to one of the uid attribute values in one of
the TDBM, LDBM, or CDBM entries.

ldapsearch -U Nilesh -w secret -p 4389 -s base -b "o=ibm,c=us" objectclass=*

You should see the following messages:

o=ibm,c=us
objectclass=top
objectclass=organization
o=ibm

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.02 Columns 00001 00072
 Command ===> Scroll ===> CSR
 001021 #--
 001022 # digestRealm <hostname>
 001023 #
 001024 # Default Value: primary host name obtained from DNS
 001025 #
 001026 # Description:
 001027 # The digestRealm option specifies a realm name to be used when doing
 001028 # DIGEST-MD5 or CRAM-MD5 SASL authentication binds.
 001029 #
 001030 # Example:
 001031 # digestRealm host.server.com
 001032 #
 001033 # Notes:
 001034 # This value is sent to the client to help hash the password while
 001035 # doing a DIGEST-MD5 or CRAM-MD5 SASL bind.
 001036 #--
 001037 digestRealm WTSC80.ITSO.IBM.COM

Note: The uid attribute values specified on the entries to be used for CRAM-MD5 or
DIGEST-MD5 authentication must be unique across every TDBM, LDBM, and CDBM back
end that is configured on the LDAP server. Authentication fails if more than one entry has
the same uid attribute value.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 197

9.10 Enabling SSL authentication

In this section we show how to enable SSL authentication using a self-signed certificate. The
process would need to be modified slightly if using an external certificate provider. The other
options that are supported by IBM Tivoli Directory Server, in addition to a RACF key ring, are
a key database and PKCS #11 token. To enable SSL authentication:

1. The user ID under which the LDAP server runs must be authorized by RACF to use RACF
key rings. To authorize the LDAP server, use the following RACF commands:

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(LDAP8001) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(LDAP8001) ACCESS(CONTROL)
SETROPTS RACLIST(FACILITY) REFRESH

2. Create a RACF key ring for the IBM Tivoli Directory Server instance:

RACDCERT ID(LDAP8001) ADDRING(LDAP8001.KEYRING)

RACDCERT ID(LDAP8001) GENCERT SUBJECTSDN(CN('LDAP8001') O('IBM') C('US'))
WITHLABEL('LDAPSSLCERT') KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)
NOTAFTER(DATE(2020-12-31))

SETROPTS RACLIST(DIGTCERT) REFRESH

RACDCERT ID(LDAP8001) CONNECT(LABEL('LDAPSSLCERT') RING(LDAP8001.KEYRING)
USAGE(PERSONAL))

SETROPTS RACLIST(FACILITY) REFRESH

RACDCERT ID(LDAP8001) EXPORT(LABEL('LDAPSSLCERT')) DSN('LDAP8001.LDAP.CERT')
FORMAT(CERTB64)

3. Stop the LDAP server if it is running. In this example, the instance name is LDAP8001.

P LDAP8001

4. Open the configuration PDS file, in our example LDAP8001.CNFOUT(DSCONFIG).

Important: The keyring name is case-sensitive. The same case used in the RACDCERT
MUST be used when updating the configuration file.
198 IBM Tivoli Directory Server for z/OS

5. Add a port for secure communication in the IBM Tivoli Directory Server configuration file
as shown in Figure 9-16.

Figure 9-16 Sample DSCONFIG showing update for adding a port for ldaps

6. Add the sslCertificate label to the IBM Tivoli Directory Server configuration file as shown in
Figure 9-17.

Figure 9-17 Adding sslCertificate

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.03 Columns 00001 00072
 Command ===> Scroll ===> CSR
 000368 #
 000369 # Listen for client requests from IPv6 address 1080::8:800:200C:417A
 000370 # on the default non-secure port 389:
 000371 # listen ldap://Ý1080::8:800:200C:417A¨
 000372 #
 000373 # Listen for client requests from IPv6 address 1080::8:800:200C:417B
 000374 # on non-secure port 489:
 000375 # listen ldap://Ý1080::8:800:200C:417B¨:489
 000376 #
 000377 # Listen for client requests from IPv6 address 1080::8:800:200C:417C
 000378 # on secure port 436:
 000379 # listen ldaps://Ý1080::8:800:200C:417C¨:436
 000380 #
 000381 # Notes:
 000382 # Only one LDAP server on each system can listen for requests using
 000383 # the Program Call interface. The listen option overrides any values
 000384 # specified by the deprecated options; security, port and securePort.
 000385 #--
 000386 listen ldap://:4389
 000387 listen ldaps://:4636
 000388
 000389 #--

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.04 Columns 00001 00072
 Command ===> Scroll ===> CSR
 000906
 000907 #--
 000908 # sslCertificate <certificate-label | none>
 000909 #
 000910 # Default Value: none
 000911 #
 000912 # Description:
 000913 # The sslCertificate option specifies the label of the certificate
 000914 # that is used for LDAP server authentication.
 000915 #
 000916 # Example:
 000917 # sslCertificate cert1
 000918 #
 000919 # Notes:
 000920 # If the value is none, the default certificate is used for server
 000921 # authentication.
 000922 #--
 000923 sslCertificate LDAPSSLCERT
 000924
 000925 #--
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 199

7. Add sslKeyRingFile to the configuration file as shown in Figure 9-18.

Figure 9-18 Adding sslKeyRingFile

8. Save the configuration file, then start the server:

S LDAP8001

You should see output similar to the following:

S LDAP8001
$HASP100 LDAP8001 ON STCINRDR IEF695I START LDAP8001 WITH JOBNAME LDAP8001 IS
ASSIGNED TO USER LDAP8001, GROUP LDAPGRP
$HASP373 LDAP8001 STARTED
BPXM023I (LDAP8001) GLD1004I LDAP server is ready for requests.
GLD1005I LDAP server start command processed.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.4.45 port 4389.
BPXM023I (LDAP8001) GLD1211I Listening for requests on 9.12.4.45 secure port
4636.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.4.46 port 4389.
BPXM023I (LDAP8001) GLD1211I Listening for requests on 9.12.4.46 secure port
4636.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.5.26 port 4389.
BPXM023I (LDAP8001) GLD1211I Listening for requests on 9.12.5.26 secure port
4636.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 127.0.0.1 port 4389.
BPXM023I (LDAP8001) GLD1211I Listening for requests on 127.0.0.1 secure port
4636.

9. Copy dataset LDAP8001.LDAP.CERT to an LDAPSSLCERT file in the UNIX file system
tree.

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.04 Columns 00001 00072
 Command ===> Scroll ===> CSR
 000938
 000939 #--
 000940 # sslKeyRingFile <filename | keyring | token>
 000941 #
 000942 # Description:
 000943 # The sslKeyRingFile option specifies the path and file name of the
 000944 # SSL/TLS key database file, RACF key ring name, or PKCS #11 token
 000945 # name for the LDAP server. SSL/TLS connections are only
 000946 # available when this option is specified.
 000947 #
 000948 # Examples:
 000949 # sslKeyRingFile /etc/ldap/key.kdb
 000950 # sslKeyRingFile LDAPRING
 000951 # sslKeyRingFile *TOKEN*/MYTOKEN
 000952 #
 000953 # Notes:
 000954 # The sslKeyRingFilePW and sslKeyRingPWStashFile configuration
 000955 # options must not be specified when a RACF key ring name or
 000956 # PKCS #11 token name is specified for this option.
 000957 #--
 000958 sslKeyRingFile LDAP8001.KEYRING
 000959
200 IBM Tivoli Directory Server for z/OS

10.Using gskkyman command to perform the following steps:

a. Create a new database (Figure 9-19 and Figure 9-20).

Figure 9-19 Create new database

Figure 9-20 Database parameters

NPATEL:/u/npatel/sslkeys: >gskkyman

Database Menu

 1 - Create new database
 2 - Open database
 3 - Change database password
 4 - Change database record length
 5 - Delete database
 6 - Create key parameter file
 7 - Display certificate file (Binary or Base64 ASN.1 DER)

 11 - Create new token
 12 - Delete token
 13 - Manage token
 14 - Manage token from list of tokens

 0 - Exit program

Enter option number: 1

Enter key database name (press ENTER to return to menu): ldapcltcert.kdb
Enter database password (press ENTER to return to menu):
Re-enter database password:
Enter password expiration in days (press ENTER for no expiration):
Enter database record length (press ENTER to use 5000):

Enter 1 for FIPS mode database or 0 to continue: 0

Key database /u/npatel/sslkeys/ldapcltcert.kdb created.

Press ENTER to continue.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 201

b. Create a self-signed certificate (Figure 9-21, Figure 9-22, Figure 9-23, and Figure 9-24
on page 203.

Figure 9-21 Select Create a self-signed certificate

Figure 9-22 Select certificate type

Figure 9-23 Select Signature Digest type

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

 Certificate Type

 1 - CA certificate with 1024-bit RSA key
 2 - CA certificate with 2048-bit RSA key
 3 - CA certificate with 4096-bit RSA key
 4 - CA certificate with 1024-bit DSA key
 5 - User or server certificate with 1024-bit RSA key
 6 - User or server certificate with 2048-bit RSA key
 7 - User or server certificate with 4096-bit RSA key
 8 - User or server certificate with 1024-bit DSA key

Select certificate type (press ENTER to return to menu): 1

 Signature Digest Type

 1 - SHA-1
 2 - SHA-224
 3 - SHA-256
 4 - SHA-384
 5 - SHA-512

Select digest type (default SHA-1):
202 IBM Tivoli Directory Server for z/OS

Figure 9-24 Enter certificate information

c. Import an LDAPSSLCERTcertificate (Figure 9-25, Figure 9-26, Figure 9-27 on
page 204, and Figure 9-28 on page 204).

Figure 9-25 Select import a certificate

Figure 9-26 Import IBM Tivoli Directory Server server authentication certificate

Enter label (press ENTER to return to menu): ldapclt
Enter subject name for certificate
 Common name (required): ldapclt
 Organizational unit (optional): poughkeepsie
 Organization (required): ibm
 City/Locality (optional):
 State/Province (optional):
 Country/Region (2 characters - required): us
Enter number of days certificate will be valid (default 365):

Enter 1 to specify subject alternate names or 0 to continue: 0

Please wait

Certificate created.
Press ENTER to continue.

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 7

Enter import file name (press ENTER to return to menu): /u/npatel/cert
Enter label (press ENTER to return to menu): LDAPSSLCERT

Certificate imported.

Press ENTER to continue.
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 203

Figure 9-27 Select ENTER to return to previous menu

Figure 9-28 Exit gskkyman

11.Use the ldapsearch command to test the server auth SSL configuration:

ldapsearch -h ldaphost -p sslport -Z -K keyfile -P keypasswd -D adminDN -w
passwd -s base -b o=ibm,c=us objectclass=*

Example:

ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4636 -Z -K
"/u/npatel/sslkeys/ldapcltcert.kdb" -P "sec001ret" -s base -b "o=ibm,c=us"
objectclass=*

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu):

 Database Menu

 1 - Create new database
 2 - Open database
 3 - Change database password
 4 - Change database record length
 5 - Delete database
 6 - Create key parameter file
 7 - Display certificate file (Binary or Base64 ASN.1 DER)

 11 - Create new token
 12 - Delete token
 13 - Manage token
 14 - Manage token from list of tokens

 0 - Exit program

Enter option number: 0
NPATEL:/u/npatel/sslkeys: >
204 IBM Tivoli Directory Server for z/OS

You should see messages similar to the following:

o=ibm,c=us
objectclass=top
objectclass=organization
o=ibm

12.After server auth SSL completes successfully, use the gskkyman command and follow
these steps:

a. Open the ldapcltcert.kdb database (Figure 9-29 and Figure 9-30).

Figure 9-29 Start gskkyman and select open the database

Figure 9-30 Enter database information

NPATEL:/u/npatel/sslkeys: >gskkyman

 Database Menu

 1 - Create new database
 2 - Open database
 3 - Change database password
 4 - Change database record length
 5 - Delete database
 6 - Create key parameter file
 7 - Display certificate file (Binary or Base64 ASN.1 DER)

 11 - Create new token
 12 - Delete token
 13 - Manage token
 14 - Manage token from list of tokens

 0 - Exit program

Enter option number: 2

Enter key database name (press ENTER to return to menu): ldapcltcert.kdb
Enter database password (press ENTER to return to menu):
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 205

b. Create a new certificate (Figure 9-31, Figure 9-32, Figure 9-33 on page 207, and
Figure 9-34 on page 207).

Figure 9-31 Select Create a new certificate request

Figure 9-32 Enter certificate information

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 4

 Certificate Type

 1 - Certificate with 1024-bit RSA key
 2 - Certificate with 2048-bit RSA key
 3 - Certificate with 4096-bit RSA key
 4 - Certificate with 1024-bit DSA key

Enter certificate type (press ENTER to return to menu): 1
Enter request file name (press ENTER to return to menu): ldapcltcert
Enter label (press ENTER to return to menu): ldapcltcert
Enter subject name for certificate
 Common name (required): Nilesh
 Organizational unit (optional): Poughkeepsie
 Organization (required): ibm
 City/Locality (optional):
 State/Province (optional):
 Country/Region (2 characters - required): us

Enter 1 to specify subject alternate names or 0 to continue: 0

Please wait

Certificate request created.

Press ENTER to continue.
206 IBM Tivoli Directory Server for z/OS

Figure 9-33 Select Manage certificate requests

Figure 9-34 Return to Key Management menu and select Manage keys and certificates

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 2

 Key Management Menu

 Database: /u/npatel/sslkeys/ldapcltcert.kdb
 Expiration: None

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 1
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 207

c. Export certificate to a clientcert.der file (Figure 9-35, Figure 9-36, and Figure 9-37).

Figure 9-35 Select the certificate to export

Figure 9-36 Select export certificate to a file

Figure 9-37 Select encoding format and file name then exit gskkyman

13.Copy the exported clientcert.der to a z/OS dataset such as LDAP8001.LDAP.CCERTB.

 Key and Certificate List

 Database: /u/npatel/sslkeys/ldapcltcert.kdb

 1 - ldapclt

 0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list): 1

 Key and Certificate Menu

 Label: ldapclt

 1 - Show certificate information
 2 - Show key information
 3 - Set key as default
 4 - Set certificate trust status
 5 - Copy certificate and key to another database/token
 6 - Export certificate to a file
 7 - Export certificate and key to a file
 8 - Delete certificate and key
 9 - Change label
 10 - Create a signed certificate and key
 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

 Export File Format

 1 - Binary ASN.1 DER
 2 - Base64 ASN.1 DER
 3 - Binary PKCS #7
 4 - Base64 PKCS #7

Select export format (press ENTER to return to menu): 1
Enter export file name (press ENTER to return to menu): clientcert.der

Certificate exported.

Press ENTER to continue.
208 IBM Tivoli Directory Server for z/OS

14.Add and connect LDAP8001.LDAP.CCERTB to the server’s keyring file (in our example,
LDAP8001.KEYRING):

RACDCERT ID(LDAP8001) ADD('LDAP8001.LDAP.CCERTB') TRUST WITHLABEL('LDAPCLT')

RACDCERT ID(LDAP8001) CONNECT(ID(LDAP8001) LABEL ('LDAPCLT')
RING(LDAP8001.KEYRING) USAGE(PERSONAL))

15.Stop the LDAP Server:

P LDAP8001

16.Open the configuration file PDS (in our example, LDAP8001.CNFOUT.DSCONFIG).

17.Edit the sslAuth parameter, and set it to serverClientAuth as shown in Figure 9-38.

Figure 9-38 Sample of DSCONFIG showing update for sslAuth

18.Start the LDAP server:

S LDAP8001

19.Test the client-server auth SSL using the ldapsearch command:

ldapsearch -h ldaphost -p sslport -D adminDN -w passwd -Z -K keyfile -P
keypasswd -s base -b “o=ibm,c=us” objectclass=*

You should see output similar to that seen in Example 9-1.

Example 9-1 ldapsearch command output

NPATEL:/u/npatel/sslkeys: >ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w
sec001ret -p 4636 -Z -K "/u/npatel/sslkeys/ldapcltcert.kdb" -P "sec001ret" -s
base -b "o=ibm,c=us" objectclass=*
o=ibm,c=us
objectclass=top
objectclass=organization
o=ibm

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.05 Columns 00001 00072
 Command ===> Scroll ===> CSR
 000890 #--
 000891 # SSL/TLS specific CONFIGURATION SETTINGS
 000892 #--
 000893
 000894 #--
 000895 # sslAuth <serverAuth | serverClientAuth>
 000896 #
 000897 # Default Value: serverAuth
 000898 #
 000899 # Description:
 000900 # The sslAuth option specifies the SSL/TLS authentication method.
 000901 #
 000902 # Example:
 000903 # sslAuth serverClientAuth
 000904 #--
 000905 sslAuth serverClientAuth
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel
 . .
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 209

NPATEL:/u/npatel/sslkeys: >

9.11 Password policy implementation

Consider the following password rules defined by an example organization:

� Organization X has decided for security purposes they want their users to change their
passwords every 28 days. Starting a week before a password expires, a user is to receive
a warning when they log in. If a password expires, the administrator has to reset it. In
addition, they decide a user can change their password as often as they like. There is no
minimum time they must keep the same password.

� The organization realizes a user may be on vacation for two weeks and their password
might expire during that time. It is decided that a user should be given one grace login
after expiration to change their password. After that, if a user doesn't change their
password, the admin has to reset it for them.

� This organization also wants the user to change their password immediately after the
administrator resets it.

� Organization X has also decided that a user will only have three chances in a ten minute
window to enter the correct password. If a user enters a bad password 3 times in ten
minutes, they will be locked out. However, after an hour they can try again.

� When a user does change their password, the new password must be at least eight
characters long, have six alphabetic characters, and two non-alphabetic characters. The
password cannot have more than three of the same characters in a row. At least three
characters should be different from the last password, and they cannot use their past two
passwords. They must also provide their old password when they are changing their
password for verification.

� There are five employees in the organization that belong to a group that only use the
system occasionally, and it would be a pain if their passwords expired every month, so
their passwords should only expire every 3 months. But they should follow all the other
password policy rules.

� The organization's LDAP administrator, whose user ID and password are stored in the
directory, doesn't need or want to adhere to any password policy rules such as expiration,
lock out, or syntax rules for changing her password. It is decided that the administrator
should be exempt from password policy.

How would this be accomplished? With a global password policy, and a group and individual
policy.

The LDAP Server has a default global password policy, but by default it is disabled. To see the
default after the server is first started, an ldapsearch can be performed:

ldapsearch -s base -b cn=pwdpolicy,cn=IBMpolicies objectclass=*

This command returns the output shown in Figure 9-39 on page 211.
210 IBM Tivoli Directory Server for z/OS

Figure 9-39 Searching the default global password policy

To implement Organization X's password policy, the administrator would modify the global
policy, define a group policy for those five employees in the occasional group, and define an
individual policy for herself. She would then turn on the LDAP password policy.

Below are a sequence of operation that the administrator could do to implement the
organizations requirements:

1. The administrator can perform an ldapmodify to modify the default global policy with the
appropriate attribute values:

ldapmodify -D cn=admin,o=organizationX,c=ca -w secret -f aaa.ldif

cn=pwdpolicy,cn=ibmpolicies
objectclass=ibm-pwdgroupandindividualpolicies
objectclass=ibm-pwdPolicyExt
objectclass=pwdPolicy
objectclass=container
objectclass=top
pwdattribute=userpassword
pwdMinAge=0
pwdMaxAge=0
pwdInHistory=0
pwdCheckSyntax=0
pwdMinLength=0
pwdExpireWarning=0
pwdGraceLoginLimit=0
pwdLockout=false
pwdLockoutDuration=0
pwdMaxFailure=0
pwdFailureCountInterval=0
pwdMustChange=true
pwdAllowUserChange=TRUE
pwdSafeModify=FALSE
passwordMinAlphaChars=0
passwordMinOtherChars=0
passwordMaxRepeatedChars=0
passwordMinDiffChars=0
passwordMaxConsecutiveRepeatedChars=0
ibm-pwdPolicy=false
ibm-pwdGroupAndIndividualEnabled=false
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 211

The contents of the aaa.ldif file are shown in Figure 9-40.

Figure 9-40 Modifying the global policy

2. The administrator can perform an ldapmodify -a to add a group password policy that
overrides only the expiration time of the global policy but uses all the other values from the
global policy. An ldapmodify -a for the group must also be done:

ldapmodify -D cn=admin,o=organizationX,c=ca -w secret -a -f aab.ldif

The contents of aab.ldif are shown in Figure 9-41.

Figure 9-41 Adding a group policy and enabling it

dn: cn=pwdpolicy,cn=IBMpolicies
changetype:modify
replace:x
pwdMinAge: 0
pwdMaxAge: 2419200
pwdInHistory: 2
pwdCheckSyntax: 1
pwdMinLength: 8
pwdExpireWarning: 604800
pwdGraceLoginLimit: 1
pwdLockout: true
pwdLockoutDuration: 3600
pwdMaxFailure: 3
pwdFailureCountInterval: 600
pwdMustChange: true
pwdAllowUserChange: true
pwdSafeModify: true
passwordMinAlphaChars: 6
passwordMinOtherChars: 2
passwordMaxRepeatedChars: 0
passwordMinDiffChars: 3
passwordMaxConsecutiveRepeatedChars: 3
ibm-pwdGroupAndIndividualEnabled: true

Note:

� Times are entered in seconds.
� pwdmustchange true and pwdallowuserchange false together are unacceptable.
� Although the global policy has enabled group and individual policies, those policies and

the global policy will not take effect until the global policy is enabled. In other words
password policy is not turned on yet. We will do that later.

dn: cn=ocassionalFolksPolicy,cn=IBMpolicies
objectclass: pwdPolicy
objectclass: ibm-pwdPolicyExt
objectclass: container
pwdattribute: userpassword
pwdMaxAge: 7776000
ibm-pwdPolicy: true
212 IBM Tivoli Directory Server for z/OS

For our example, adding the group with five members and a link to the group policy:

ldapmodify -D cn=admin,o=organizationX,c=ca -w secret -a -f aac.ldif

The contents of aac.ldif are shown in Figure 9-42.

Figure 9-42 Adding a group with five members and a link to the group policy

3. The administrator can perform an ldapmodify that exempts herself from having to follow
any password policy rules:

ldapmodify -D cn=admin,o=organizationX,c=ca -w secret -f aad.ldif

The contents of aad.ldif are shown in Figure 9-43.

Figure 9-43 Modifying the Admin to be exempt from password policy with a special value

4. Lastly, the administrator can perform an ldapmodify to enable the global password policy
and the group and individual password policies. This turns on LDAP password policy.

ldapmodify -D cn=admin,o=organizationX,c=ca -w secret -f aae.ldif

The contents of aae.ldif are shown in Figure 9-44.

Figure 9-44 Turning the global password policy on

dn: cn=GroupX,o=organizationX,c=ca
objectclass: groupOfNames
member: cn=Joe,o=organizationX,c=ca
member: cn=Sue,o=organizationX,c=ca
member: cn=Sally,o=organizationX,c=ca
member: cn=Fred,o=organizationX,c=ca
member: cn=Amanda,o=organizationX,c=ca
ibm-pwdGroupPolicyDN: cn=ocassionalFolksPolicy,cn=IBMpolicies

Note: The policy is enabled, but will not take effect until the global policy is enabled.
Defining a group and individual policy is done exactly the same way.

dn: cn=admin,o=organizationX,c=ca
changetype:modify
add:ibm-pwdIndividualPolicyDN
ibm-pwdIndividualPolicyDN: cn=noPwdPolicy

Note: ibm-pwdIndividualPolicyDN is used to assign an individual policy. In this case, a
special policy name cn=noPwdPolicy is assigned. This special value is used to indicate that
the user is exempt from all password policy checking.

dn: cn=pwdpolicy,cn=IBMpolicies
changetype:modify
replace:x
ibm-pwdPolicy: true
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 213

5. And now search the existing policies:

ldapsearch -s sub -b cn=IBMpolicies objectclass=pwdPolicy

Sample output is shown in Figure 9-45.

Figure 9-45 Search the existing policies

Remember there is no individual policy because cn=noPwdPolicy is just a special value.

There are a few extended operations and utilities that can help determine what is going on
with password policy for a user or group and can facilitate in changing a user's password. The
full syntax can be found in the z/OS V1R12.0 IBM Tivoli Directory Server Administration and

cn=pwdpolicy,cn=ibmpolicies
objectclass=ibm-pwdgroupandindividualpolicies
objectclass=ibm-pwdPolicyExt
objectclass=pwdPolicy
objectclass=container
objectclass=top
pwdattribute=userPassword
pwdgraceloginlimit=1
pwdsafemodify=true
pwdmaxfailure=3
pwdfailurecountinterval=600
pwdmaxage=2419200
pwdexpirewarning=604800
pwdminlength=8
pwdlockout=true
pwdallowuserchange=true
pwdmustchange=true
ibm-pwdpolicy=true
ibm-pwdgroupandindividualenabled=true
passwordmaxconsecutiverepeatedchars=3
passwordmaxrepeatedchars=0
passwordminalphachars=6
passwordminotherchars=2
passwordmindiffchars=3
pwdminage=0
pwdinhistory=2
pwdchecksyntax=1
cn=pwdpolicy
pwdlockoutduration=3600
ibm-pwdpolicystarttime=20100617190305.166676Z

cn=ocassionalFolksPolicy,cn=IBMpolicies
objectclass=pwdPolicy
objectclass=ibm-pwdPolicyExt
objectclass=container
objectclass=top
pwdattribute=userpassword
pwdmaxage=7776000
ibm-pwdpolicy=true
cn=ocassionalFolksPolicy
214 IBM Tivoli Directory Server for z/OS

Use for z/OS, SC23-5191-05. Below are examples on how you might use them and, if
appropriate, a sample result.

1. ldapexop acctstatus: An extended operation to show account status of open, locked, or
expired:

ldapexop -D cn=admin,o=organizationX,c=ca -w secret -op acctstatus -d
cn=Laura,o=organizationX,c=ca

It will return one of the following:

• acctstatus_extended_op: Account is open.
• acctstatus_extended_op: Account is locked.
• acctstatus_extended_op: Account has expired.

2. ldapexop effectpwdpolicy: An extended operation to show the effective password policy,
resolution of the combination of individual, group, and global policies.

ldapexop -D cn=admin,o=organizationX,c=ca -w secret -op effectpwdpolicy -d
cn=Laura,o=organizationX,c=ca

This operation produces the output shown in Figure 9-46.

Figure 9-46 Output of ldapexop effectpwdpolicy

3. ldapchangepwd utility: Changes a user’s password using current and new password:

ldapchangepwd -D cn=Laura,o=organizationX,c=ca -w secret -n rose1bud2

The effective password policy is calculated based on the following entries
cn=pwdpolicy,cn=ibmpolicies

The effective password policy is:
ibm-pwdgroupandindividualenabled=TRUE
ibm-pwdpolicy=TRUE
ibm-pwdpolicystarttime=20100628200304.819480Z
passwordmaxconsecutiverepeatedchars=3
passwordmaxrepeatedchars=0
passwordminalphachars=6
passwordmindiffchars=3
passwordminotherchars=2
pwdallowuserchange=TRUE
pwdattribute=userpassword
pwdchecksyntax=1
pwdexpirewarning=604800
pwdfailurecountinterval=600
pwdgraceloginlimit=1
pwdinhistory=2
pwdlockout=TRUE
pwdlockoutduration=3600
pwdmaxage=2419200
pwdmaxfailure=3
pwdminage=0
pwdminlength=8
pwdmustchange=TRUE
pwdsafemodify=TRUE
Chapter 9. Implementing IBM Tivoli Directory Server on a single system 215

4. ldapmodify utility: The ldapmodify client utility can be used to change a password. Below
is an example of how to change it, when pwdSafeModify is TRUE.

ldapmodify -D cn=Laura,o=organizationX,c=ca -w rose1bud2 -f change.ldif

The contents of change.ldif are shown in Figure 9-47.

Figure 9-47 Change a password when pwdSafeModify is TRUE

dn: cn=Laura,o=organizationX,c=ca
changetype: modify
delete: userpassword
userpassword: rose1bud2
-
add: userpassword
userpassword: myword34
216 IBM Tivoli Directory Server for z/OS

Chapter 10. Using IBM Tivoli Directory Server
in a Parallel Sysplex

This chapter will show how to use IBM Tivoli Directory Server in a Parallel Sysplex
environment. Changes to the LDBM and TDBM implementations that were done in the
previous chapters will be shown.

10
© Copyright IBM Corp. 2011. All rights reserved. 217

10.1 Setting up the LDBM back end for sysplex

In this section, the changes that are needed for enhancing an existing LDBM instance to
support sysplex will be shown.

The easiest way to set up IBM Tivoli Directory Server for sysplex is to use the same
configuration files for each IBM Tivoli Directory Server instance and run IBM Tivoli Directory
Server using the same started task name on each system in the sysplex. This guarantees
that all instances are using the same configuration. If you decide to use a separate set of
configuration options for each instance, ensure that the following options are set for each
instance in the sysplex.

10.1.1 Changes to the configuration file

Specify the following options in the configuration file. In the example server, the changes are
being made to the PDS that was created when dsconfig was run.

1. serverSysplexGroup LDAPLDB

The XCF group name specified must be the same for all servers sharing the same
schema and back end database.

2. database LDBM GLDBLD31/GLDBLD64 LDBMDB1

3. schemaPath /u/ldapldbm/schema

Each LDAP server in the XCF group must specify the same value for the schemaPath
configuration option and must have read/write access to the specified directory or to
/var/ldap/schema if the option is not specified. The schema directory used must exist
within a shared z/OS UNIX System Services file system and must be accessible to all
servers in the XCF group.

In the example setup, /u is an automounted directory that is shared across the sysplex.
We created a z/FS dataset for LDAPTDBM that gets mounted automatically when the
/u/ldapldbm directory is referenced.

4. multiserver on

Specify this in each server’s shared configuration file

5. Save the configuration file.

10.1.2 Starting and verifying operation

To verify the operation, perform the following steps:

1. Stop the LDAP instance if it is running:

P LDAD8001
P LDAP8101

2. Start the LDAP instances on each system using the modified configuration file in the
sysplex that are part of the XCF group:

On System SC81 - S LDAD8101
On System SC80 - S LDAP8001
218 IBM Tivoli Directory Server for z/OS

3. Confirm that each LDAP instance has joined the XCF sharing group as shown in
Example 10-1.

Example 10-1 XCF display

D XCF,GROUP,LDAPLDB,ALL
IXC333I 09.36.08 DISPLAY XCF 893
 INFORMATION FOR GROUP LDAPLDB
 MEMBER NAME: SYSTEM: JOB ID: STATUS:
 SC8000BB SC80 LDAP8001 ACTIVE
 SC8100B1 SC81 LDAP8101 ACTIVE

 INFO FOR GROUP LDAPLDB MEMBER SC8000BB ON SYSTEM SC80

 FUNCTION: Not Specified
 MEMTOKEN: 01000017 002A0001 ASID: 00BB SYSID: 01000110
 INFO: CURRENT COLLECTED: 07/01/2010 09:36:08.621483

 ATTRIBUTES JOINED: 07/01/2010 09:33:36.776472
 JOIN TASK ASSOCIATION
 LOCAL CLEANUP NEEDED
 TERMLEVEL IS TASK
 MEMSTALL RESOLUTION IS NO ACTION
 EXITS DEFINED: MESSAGE, GROUP, NOTIFY

 SIGNALLING SERVICE
 MSGO ACCEPTED: 6 NOBUFFER: 0
 MSGO XFER CNT: 8 LCL CNT: 0 BUFF LEN: 956
 MSGO XFER CNT: 1 LCL CNT: 0 BUFF LEN: 53180
 MSGO XFER CNT: 14 LCL CNT: 0 BUFF LEN: 62464

 SENDPND RESPPND COMPLTD MOSAVED MISAVED
 MESSAGE TABLE: 0 0 0 0 0
 CRITICAL: 0 0 0 0 0

 MSGI RECEIVED: 9 PENDINGQ: 0
 MSGI XFER CNT: 8 XFERTIME: N/A

 IO BUFFERS DREF PAGEABLE CRITICAL
 MSGI PENDINGQ: 0 0 0 0
 SYMPATHY SICK: 0

 GROUP SERVICE
 EVNT RECEIVED: 2 PENDINGQ: 0

 EXIT 05D56190: 07/01/2010 09:33:41.952754 01 00:00:00.000003

 INFO FOR GROUP LDAPLDB MEMBER SC8100B1 ON SYSTEM SC81

 FUNCTION: Not Specified
 MEMTOKEN: 02000012 002A0002 ASID: 00B1 SYSID: 0200010F
 INFO: CURRENT COLLECTED: 07/01/2010 09:36:08.722777

 ATTRIBUTES JOINED: 07/01/2010 09:33:41.942851
 JOIN TASK ASSOCIATION
 LOCAL CLEANUP NEEDED
 TERMLEVEL IS TASK
 MEMSTALL RESOLUTION IS NO ACTION
 EXITS DEFINED: MESSAGE, GROUP, NOTIFY
 SIGNALLING SERVICE
Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 219

 MSGO ACCEPTED: 6 NOBUFFER: 0
 MSGO XFER CNT: 9 LCL CNT: 0 BUFF LEN: 956

 SENDPND RESPPND COMPLTD MOSAVED MISAVED
 MESSAGE TABLE: 0 0 0 0 0
 CRITICAL: 0 0 0 0 0

 MSGI RECEIVED: 6 PENDINGQ: 0
 MSGI XFER CNT: 23 XFERTIME: N/A

 IO BUFFERS DREF PAGEABLE CRITICAL
 MSGI PENDINGQ: 0 0 0 0
 SYMPATHY SICK: 0

 EXIT 0263F300: 07/01/2010 09:35:38.955125 DS 00:00:00.000024
 EXIT 0263FB00: 07/01/2010 09:33:42.944653 NA 00:00:00.000061
 EXIT 0263FD00: 07/01/2010 09:33:42.915742 NA 00:00:00.000032
 EXIT 02640100: 07/01/2010 09:33:42.944793 OM 00:00:00.000241

 GROUP SERVICE
 EVNT RECEIVED: 0 PENDINGQ: 0

10.2 Setting up the TDBM server for sysplex

In this section, the changes that are needed for enhancing an existing TDBM instance to
support sysplex will be shown.

The easiest way to setup of IBM Tivoli Directory Server for sysplex is to use the same
configuration files for each IBM Tivoli Directory Server instance and run IBM Tivoli Directory
Server using the same started task name on each system in the sysplex. This guarantees
that all instances are using the same configuration. If you decide to use a separate set of
configuration options for each instance, ensure that the following options are set for each
instance in the sysplex.

10.2.1 Changes to the configuration file

Specify the following options in the configuration file. In the example server, the changes are
being made to the PDS that was created when dsconfig was run.

1. serverSysplexGroup LDAPXCF

The XCF group name specified must be the same for all servers sharing the same
schema and back end database.

2. database TDBM GLDBTD31 GLDDB

For GLDDB, specify the name of the database that was identified in the DDL that was
generated in your TDBSPUFI PDS member created by dsconfig. If you changed this
name in your DDL, specify the name you used in this option.

3. schemaPath /u/ldaptdbm/schema

Each LDAP server in the XCF group must specify the same value for the schemaPath
configuration option and must have read/write access to the specified directory or to
/var/ldap/schema if the option is not specified. The schema directory used must exist
220 IBM Tivoli Directory Server for z/OS

within a shared z/OS UNIX System Services file system and must be accessible to all
servers in the XCF group.

In the example setup, /u is an automounted directory that is shared across the sysplex.
We created a z/FS dataset for LDAPTDBM that gets mounted automatically when the
/u/ldaptdbm directory is referenced.

4. multiserver on

Specify this in each server’s shared configuration file

5. Save the configuration file.

6. The GRANT statements in the DDL that were built and included in the PDS must be run
for all LDAP servers participating in the datasharing TDBM group. Use SPUFI to execute
the GRANT statements, usually located at the bottom of the DDL file.

10.2.2 Starting and verifying operation

To verify the operation, perform the following steps:

1. Stop the LDAP instance if it is running:

P LDAD8102
P LDAP8002

2. Start the LDAP instances on each system using the modified configuration file in the
sysplex that are part of the XCF group:

On System SC81 - S LDAD8102
On System SC80 - S LDAP8002

3. Confirm that each LDAP instance has joined the XCF sharing group as shown in
Example 10-2.

Example 10-2 XCF display

D XCF,GROUP,LDAPXCF,ALL
IXC333I 11.44.17 DISPLAY XCF 842
 INFORMATION FOR GROUP LDAPXCF
 MEMBER NAME: SYSTEM: JOB ID: STATUS:
 SC8000B7 SC80 LDAP8002 ACTIVE
 SC8100BA SC81 LDAP8102 ACTIVE

 INFO FOR GROUP LDAPXCF MEMBER SC8000B7 ON SYSTEM SC80

Note about schema: Setting up the TDBM instance as described in the earlier chapter
uses the default location for the schema of /var/ldap/schema. If you load the default
schema, and then update the configuration to point to a new location for schema, you
will get a mismatch on the schema definition and the database when you start your
ldap instance:

GLD3301E Unable to load TDBM back end named GLDDB because attribute type
2.5.4.27 is not defined.
GLD1106E TDBM back end initialization failed for back end named GLDDB.
GLD1101A Unable to load the database back ends.
GLD1007I LDAP server is stopping.

To get around this problem, copy the schema directory from the original location to the
location you have specified in your configuration and restart the ldap instance.
Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 221

 FUNCTION: Not Specified
 MEMTOKEN: 01000007 00290002 ASID: 00B7 SYSID: 01000110
 INFO: CURRENT COLLECTED: 06/30/2010 11:44:17.103051

 ATTRIBUTES JOINED: 06/30/2010 10:23:14.325369
 JOIN TASK ASSOCIATION
 LOCAL CLEANUP NEEDED
 TERMLEVEL IS TASK
 MEMSTALL RESOLUTION IS NO ACTION
 EXITS DEFINED: MESSAGE, GROUP, NOTIFY

 SIGNALLING SERVICE
 MSGO ACCEPTED: 5 NOBUFFER: 0
 MSGO XFER CNT: 8 LCL CNT: 0 BUFF LEN: 956

 SENDPND RESPPND COMPLTD MOSAVED MISAVED
 MESSAGE TABLE: 0 0 0 0 0
 CRITICAL: 0 0 0 0 0
 MSGI RECEIVED: 5 PENDINGQ: 0
 MSGI XFER CNT: 22 XFERTIME: N/A

 IO BUFFERS DREF PAGEABLE CRITICAL
 MSGI PENDINGQ: 0 0 0 0
 SYMPATHY SICK: 0

 EXIT 065AC700: 06/30/2010 11:44:07.298328 DS 00:00:00.000007

 GROUP SERVICE
 EVNT RECEIVED: 0 PENDINGQ: 0

 INFO FOR GROUP LDAPXCF MEMBER SC8100BA ON SYSTEM SC81

 FUNCTION: Not Specified
 MEMTOKEN: 0200000B 00290001 ASID: 00BA SYSID: 0200010F
 INFO: CURRENT COLLECTED: 06/30/2010 11:44:17.200326

 ATTRIBUTES JOINED: 06/30/2010 10:04:39.937859
 JOIN TASK ASSOCIATION
 LOCAL CLEANUP NEEDED
 TERMLEVEL IS TASK
 MEMSTALL RESOLUTION IS NO ACTION
 EXITS DEFINED: MESSAGE, GROUP, NOTIFY

 SIGNALLING SERVICE
 MSGO ACCEPTED: 15 NOBUFFER: 0
 MSGO XFER CNT: 24 LCL CNT: 0 BUFF LEN: 956
 MSGO XFER CNT: 42 LCL CNT: 0 BUFF LEN: 62464

 SENDPND RESPPND COMPLTD MOSAVED MISAVED
 MESSAGE TABLE: 0 0 0 0 0
 CRITICAL: 0 0 0 0 0

 MSGI RECEIVED: 25 PENDINGQ: 0
 MSGI XFER CNT: 21 XFERTIME: N/A

 IO BUFFERS DREF PAGEABLE CRITICAL
 MSGI PENDINGQ: 0 0 0 0
 SYMPATHY SICK: 0

222 IBM Tivoli Directory Server for z/OS

 GROUP SERVICE
 EVNT RECEIVED: 8 PENDINGQ: 0

 EXIT 01BBED50: 06/30/2010 10:23:14.334583 01 00:00:00.000005

10.3 Other shared back ends

This section describes how to enable sharing of CDBM and GDBM back ends to supplement
the sharing of LDBM and TDBM back ends. Although they are not required to be shared, the
user might find this to be useful.

Each LDBM, TDBM, CDBM, and GDBM back end can be shared within the XCF group. To
share a back end, specify multiserver in the back end section in the configuration file of each
LDAP server. If multiserver off is specified or if the multiserver option is not specified, the
back end is not shared and changes to the back end are not reflected in the other servers on
the sysplex, even if they contain the same suffix. If GDBM or CDBM back ends are
configured, all LDBM, TDBM, CDBM, and GDBM back ends must be shared or not shared.
However, if GDBM and CDBM back ends are not configured, some LDBM and TDBM back
ends can be shared while others are not shared.

10.4 Setup a shared GDBM to track changes

This section shows how to setup GDBM to track changes to the server database. To enable
GDBM for an LDBM IBM Tivoli Directory Server instance, do the following:

1. Stop the LDAP server:

P LDAP8001
P LDAP8101

2. Open LDAP8001.CNFOUT(DSCONFIG).

3. If not already specifying the database to use for GDBM, uncomment the line database
GDBM GLDBGD31/GLDBGD64 and add the name of the database. In the example shown in
Figure 10-1 on page 224, the database name is GDBML.

Note: Do not uncomment the line database GDBM GLDBGD31 because it is used for the
DB2-based GDBM back end section of the configuration file.
Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 223

Figure 10-1 DSCONFIG example of database GDBM

4. If you have not already specified the database directory for the GDBM database,
uncomment the GDBM-specific databaseDirectory option, where IBM Tivoli Directory
Server server will create GDBM / change log related files. If the specified directory is not
available, then IBM Tivoli Directory Server instance will create one. See Figure 10-2.

Figure 10-2 DSCONFIG example of databaseDirectory

5. Specify multiserver on in the GDBM-specific section

6. Save the configuration file.

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.01 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003669 #--
 003670 # database dbtype dblibpath
 003671 #
 003672 # Description:
 003673 # The database option marks the beginning of a new database section.
 003674 #
 003675 # Example:
 003676 # database GDBM GLDBGD31/GLDBGD64
 003677 #
 003678 # Notes:
 003679 # All global options must appear before the first database section.
 003680 # An optional name may be specified to identify this back end.
 003681 #--
 003682 database GDBM GLDBGD31/GLDBGD64 GDBML
 003683
 003684 #--

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.02 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003815
 003816 #--
 003817 # databaseDirectory <name>
 003818 #
 003819 # Default Value: /var/ldap/gdbm
 003820 #
 003821 # Description:
 003822 # The databaseDirectory option specifies the name of the file system
 003823 # directory containing the data files used by this back end, to store
 003824 # the directory data.
 003825 #
 003826 # Example:
 003827 # databaseDirectory /home/myLdap/gdbmData
 003828 #
 003829 # Notes:
 003830 # A fully-qualified directory path must be specified. A unique file
 003831 # system directory must be specified for each file-based back end.
 003832 # In addition, when multi-server mode is active, the same directory
 003833 # path must be specified for each instance of this back end within the
 003834 # cross-system group.
 003835 #--
 003836 databaseDirectory /u/ldapldbm/gdbm
 003837
 003838 #--
224 IBM Tivoli Directory Server for z/OS

7. Start the LDAP server:

S LDAP8001
GLD1004I LDAP server is ready for requests.

8. LDAP will create the directory specified in the databaseDirectory configuration option.
However, the permissions may not be correct to allow read/write to all servers that will be
accessing the directory. In this example, the gdbm directory was created with permissions
set to 740, so we changed this to 777:

ls -l
total 6
drwxr----- 2 LDAP8001 LDAPGRP 352 Jul 1 10:03 gdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 10:03 ldbm
drwxrwx--- 2 LDAP8001 LDAPGRP 320 Jun 30 15:20 schema

Update the permissions on the gdbm directory to 777:

chmod 770 gdbm
ls -l /u/ldapldbm
total 6
drwxrwx--- 2 LDAP8001 LDAPGRP 352 Jul 1 10:03 gdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 10:03 ldbm
drwxrwx--- 2 LDAP8001 LDAPGRP 320 Jun 30 15:20 schema

9. The files within the gdbm directory may not be created with permissions set to allow
read/write to all servers. Change the permissions to 660:

ls -l
total 4
-rw-r----- 1 LDAP8001 LDAPGRP 706 Jul 1 10:03 LDBM-1.db
-rw-r----- 1 LDAP8001 LDAPGRP 35 Jul 1 10:03 LDBM.ckpt
chmod 660 *
ls -l
total 4
-rw-rw---- 1 LDAP8001 LDAPGRP 706 Jul 1 10:03 LDBM-1.db
-rw-rw---- 1 LDAP8001 LDAPGRP 35 Jul 1 10:03 LDBM.ckpt

10.Start the other LDAP servers in the same sysplex group to pick up the changes.

10.5 Set up a shared CDBM for advanced replication and
password policy

This section shows how to set up CDBM for advanced replication functions. To enable CDBM
for an LDBM IBM Tivoli Directory Server instance, perform the following steps:

1. Stop the LDAP server:

P LDAP8001
P LDAP8101

2. Open LDAP8001.CNFOUT(DSCONFIG).
Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 225

3. If not already specifying the database to use for CDBM, uncomment the line database
CDBM GLDBCD31/GLDBCD64 and add the name of the database. In the example shown in
Figure 10-3, the database name is cdbm.

Figure 10-3 Adjusting LCDAP8001.CNFOUT(DSCONFIG)

4. If not already specifying the database directory for the CDBM database, uncomment the
CDBM specific databaseDirectory configuration option as shown in Figure 10-4.

Figure 10-4 Uncommenting the databaseDirectory configuration option

Command ===> Scroll ===> PAGE
003021
003022 # CDBM-specific CONFIGURATION SETTINGS
003023
003024 #--
003025 #--
003026 #--
003027 #--
003028
003029
003030 #--
003031 # database dbtype dblibpath
003032 #
003033 # Description:
003034 # The database option marks the beginning of a new database section.
003035 #
003036 # Example:
003037 # database CDBM GLDBCD31/GLDBCD64
003038 #
003039 # Notes:
003040 # All global options must appear before the first database section.
003041 # An optional name may be specified to identify this back end.
003042 #--
003043 database CDBM GLDBCD31/GLDBCD64 cdbm

EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.30 Columns 00001 00072
Command ===> Scroll ===> CSR
003134 #--
003135 # databaseDirectory <name>
003136 #
003137 # Default Value: the value of schemaPath
003138 #
003139 # Description:
003140 # The databaseDirectory option specifies the name of the file system
003141 # directory containing the data files used by this back end, to store
003142 # the directory data.
003143 #
003144 # Example:
003145 # databaseDirectory /home/myCDBM
003146 #
003147 # Notes:
003148 # A fully-qualified directory path must be specified. It is
003149 # recommended that this option is set to the same value as
003150 # schemaPath. The LDAP server will set this value to the value of
003151 # schemaPath when this value is not explicitly set.
003152 #--
003153 # databaseDirectory /u/ldapldbm/cdbm
226 IBM Tivoli Directory Server for z/OS

5. Specify multiserver on in the CDBM-specific section.

6. Save the configuration file.

7. Start the LDAP server:

S LDAP8001
GLD1004I LDAP server is ready for requests.

8. LDAP will create the directory specified in the databaseDirectory configuration option.
However, the permissions may not be correct to allow read/write to all servers that will be
accessing the directory. In this example, the cdbm directory was created with permissions
set to 740, so we changed them to 777:

ls -l
ttotal 8
drwxr----- 2 LDAP8001 LDAPGRP 352 Jul 1 11:46 cdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 11:46 gdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 11:46 ldbm
drwxrwx--- 2 LDAP8001 LDAPGRP 320 Jun 30 15:20 schema

Update the permissions on the cdbm directory to 777:

chmod 770 cdbm
ls -l /u/ldapldbm
total 8
drwxrwx--- 2 LDAP8001 LDAPGRP 352 Jul 1 11:46 cdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 11:46 gdbm
drwxrwx--- 2 LDAP8001 LDAPGRP 384 Jul 1 11:46 ldbm
drwxrwx--- 2 LDAP8001 LDAPGRP 320 Jun 30 15:20 schema

9. The files within the cdbm directory may not be created with permissions set to allow
read/write to all servers. Change the permissions to 660:

ls -l
total 12
-rw-r----- 1 LDAP8001 LDAPGRP 37 Jul 1 11:46 LDBM-1.db
-rw-r----- 1 LDAP8001 LDAPGRP 35 Jul 1 11:46 LDBM-2.db
-rw-r----- 1 LDAP8001 LDAPGRP 3330 Jul 1 11:46 LDBM.ckpt
chmod 660 *
ls -l
total 12
-rw-rw---- 1 LDAP8001 LDAPGRP 37 Jul 1 11:46 LDBM-1.db
-rw-rw---- 1 LDAP8001 LDAPGRP 35 Jul 1 11:46 LDBM-2.db
-rw-rw---- 1 LDAP8001 LDAPGRP 3330 Jul 1 11:46 LDBM.ckpt

10.Make the same modifications to the configuration files for the other servers in the same
sysplex group.

11.Start the other LDAP servers in the same sysplex group to pick up the changes.

Note: If GDBM or CDBM back ends are configured, then all LDBM, TDBM, CDBM and
GDBM back ends must be shared, or they all must be not shared.
Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex 227

228 IBM Tivoli Directory Server for z/OS

Chapter 11. Replication

Replication is a technique used by directory servers to improve performance, availability, and
reliability. The replication process keeps the data in multiple directory servers synchronized.
Through replication, a change made to one directory is propagated to one or more additional
directories. In effect, a change to one directory is propagated to multiple directories.

Replication provides three main benefits:

� Redundancy of information: Replicas back up the content of their supplier servers.
� Faster searches: Search requests can be spread among several servers instead of a

single server. This improves the response time for request completion.
� Security and content filtering: Replicas can contain subsets of the data in a supplier

server.

In z/OS IBM Tivoli Directory Server, we can have two types of replication:

1. Basic replication

2. Advanced replication

This chapter provides sample configuration of both replication types.

11
© Copyright IBM Corp. 2011. All rights reserved. 229

11.1 Basic Replication

Basic replication is simple to configure, but it has limitations:

� Nested replication is not allowed.

� Subtree-based replication is not allowed.

� Scheduled replication is not allowed.

� There is no way to monitor configured replication.

� Partial replication is not allowed.

You can configure several topologies using basic replication, which are covered in the
following sections.

11.1.1 Master - replica topology

The simplest replication topology for basic replication is that of a master server and its replica
server. The master server can contain a directory or a subtree of a directory. The master is
writable, which means it can receive updates from clients for a given subtree. The replica
server contains a copy of the directory of the master server. The replica is read only: it cannot
be directly updated by clients. Instead it refers client requests to the master server, which then
performs the updates and replicates them to the replica server.

A master server can have several replicas. Each replica can contain a copy of the master’s
entire directory.

Master-Replica replication topology configuration in basic replication
Configuring a simple master-replica scenario involves the following steps:

1. Define replication configuration parameters:

a. Master server’s host name or IP address and the port on which it is listening

b. Replica server’s host name or IP address and the port on which it is listening

c. Replicating suffix

d. Secure or non-secure replication communication between master and replica server

e. Replication bind DN, which the master uses as a bind DN while replicating changes to
replica

f. Replication bind credentials, which is the password of the replication bind DN

g. Replication log file name and location

In our replication configuration example, we used the following parameters:

a. Master server is listening on WTSC80.ITSO.IBM.COM: 13389.

b. Replica is listening on WTSC81.ITSO.IBM.COM: 13389.

c. Replication starting point would be o=ibm,c=us, which is configured as a suffix in the
LDBM back end.

d. Non-SSL based replication is being configured.

e. Replication bind DN is cn=Master.

Note: Basic replication is not allowed if CDBM is configured.
230 IBM Tivoli Directory Server for z/OS

f. Replication bind credential is secret.

g. Replication log file name and location is /u/ldap8001/logs/replicaldap8101.errlog.

As per the requirements, one can edit the configuration parameters such as master and
replica host name, port, replica bind DN, and replica bind password.

2. Create an ldif file on the master server, name it cred.ldif, and copy the following contents
into it:

dn: cn=Replicaldap8101,o=ibm,c=us
objectclass: replicaObject
objectclass: extensibleObject
cn: Replicaldap8101
replicaHost: WTSC81.ITSO.IBM.COM
replicaBindDn: cn=Master
replicaCredentials: secret
replicaPort: 13389
replicaUseSSL: FALSE
description: Replica server
ibm-slapdLog: /u/ldap8001/logs/replicaldap8101.errlog

3. Load the cred.ldif file on master server. Use the ldapadd command to load the file:

ldapadd -h ldaphost -p port -D adminDN -w passwd -f cred.ldif

In our example:

ldapadd -h WTSC80.ITSO.IBM.COM -p 13389 -D cn=root -w root -f cred.ldif

4. Switch to the replica server.

5. Open the configuration file PDS. The following example uses the file
LDAP8101.CNFOUT(DSCONFIG).

Note: Do not to use cn=Master and secret as your replica bind DN and credential.
Instead, change them to meet your requirements.
Chapter 11. Replication 231

6. Edit the masterServer parameter of LDBM configuration stanza to the master server's
IP/host name and port. These values must match with the values defined above, and host
name and port should be separated by a colon (:) as shown in Figure 11-1.

Figure 11-1 Sample DSCONFIG file showing update for masterServer

File Edit Edit_Settings Menu Utilities Compilers Test Help
--
 EDIT LDAP8101.CNFOUT(DSCONFIG) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002649 #--
 002650 # masterServer <ldap-url>
 002651 #
 002652 # Description:
 002653 # The masterServer option specifies the location of this replica's
 002654 # master server, for this back end, for basic replication. The
 002655 # presence of this option indicates that this LDAP server is a basic
 002656 # replication read-only replica for this back end and receives updates
 002657 # from a master LDAP server. Any other update requests for this
 002658 # back end received directly by the this LDAP server is redirected to
 002659 # the master server.
 002660 #
 002661 # Example:
 002662 # masterServer ldap://ldbmMaster.server.com:3389
 002663 #
 002664 # Notes:
 002665 # The masterServerDN option must also be specified in this section of
 002666 # the configuration file. The masterServer option indicates basic
 002667 # replication is configured for this back end section. The
 002668 # masterServer option cannot be specified if the
 002669 # useAdvancedReplication option is set to 'on' in the CDBM back end
 002670 # database section.
 002671 #--
 002672 masterServer ldap://WTSC80.ITSO.IBM.COM:13389
 002673
232 IBM Tivoli Directory Server for z/OS

7. Edit the masterServerDN parameter of LDBM configuration to the value of the
replicaBindDn attribute is used in step 1 (Figure 11-2).

Figure 11-2 Sample DSCONFIG showing update for masterServerDN

Note: Do not use adminDN as masterServerDN. This might cause unforeseen problems.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 EDIT LDAP8101.CNFOUT(DSCONFIG) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002684 # replicating to this read-only replica back end. The DN has
 002685 # unrestricted update, compare, and search access for all entries in
 002686 # the back end on this server, even if the LDAP server is in
 002687 # maintenance mode. When in maintenance mode, only this DN and the
 002688 # LDAP administrator can access and update the entries in this
 002689 # back end. All other update operations for this back end received by
 002690 # the replica server are redirected to the master server. Care must
 002691 # be taken when updating this back end to ensure the replica server
 002692 # remains synchronized with the master server.
 002693 #
 002694 # Example:
 002695 # masterServerDN "cn=Master Server, o=Your Company"
 002696 #
 002697 # Notes:
 002698 # You must also specify the masterServer option in this section of
 002699 # the configuration file. You cannot specify the peerServerDN
 002700 # option.
 002701 #
 002702 # The masterServerDN option indicates basic replication is configured
 002703 # for this back end section. Therefore, the masterServerDN option
 002704 # cannot be specified if the useAdvancedReplication option is set to
 002705 # 'on' in the CDBM back end database section
 002706 #--
 002707 masterServerDN "cn=Master"
 002708
Chapter 11. Replication 233

8. Edit the masterServerPW parameter of LDBM configuration parameter to match the value
of the replicaCredentials attribute used in step 1 (Figure 11-3).

Figure 11-3 Sample of DSCONFIG showing update for masterServerPW

9. Save the configuration file PDS. Our example uses the file LDAP8101.CNFOUT(DSCONFIG).

10.Restart replica server:

P LDAP8001
S LDAP8001

11.Restart master server:

P LDAP8101
S LDAP8101

11.1.2 Peer to peer topology

There can be several servers acting as masters for directory information, with each master
responsible for updating other master servers and replica servers. This is referred to as peer
replication. Peer replication can improve performance, availability, and reliability. Performance
is improved by providing a local server to handle updates in a widely distributed network.
Availability and reliability are improved by providing a backup master server ready to take over
immediately if the primary master fails. Peer master servers replicate all client updates to the

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8101.CNFOUT(DSCONFIG) - 01.01 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002709 #--
 002710 # masterServerPW <password>
 002711 #
 002712 # Description:
 002713 # The masterServerPW option specifies the password for the
 002714 # masterServerDN that is allowed to make updates for this back end.
 002715 # This option is only applicable for a basic replication read-only
 002716 # LDAP server.
 002717 #
 002718 # Example:
 002719 # masterServerPW mPassword
 002720 #
 002721 # Notes:
 002722 # Use of the masterServerPW configuration option is strongly
 002723 # discouraged in production environments. Instead, specify your
 002724 # masterServerDN as the distinguished name of an existing entry in
 002725 # the directory information tree, including a userPassword attribute.
 002726 # This will eliminate passwords from the configuration file.
 002727 #
 002728 # The masterServerPW option indicates basic replication is configured
 002729 # for this back end section. Therefore, the masterServerPW option
 002730 # cannot be specified if the useAdvancedReplication option is set to
 002731 # 'on' in the CDBM back end database section
 002732 #--
 002733 masterServerPW secret

Note: Use secretEncryption to encrypt your replica bind password in the configuration file
and in the back end (if it is configured).
234 IBM Tivoli Directory Server for z/OS

replicas and to the other peer masters, but do not replicate updates received from other
master servers.

Peer to peer replication topology configuration in basic replication.
Configuring a peer to peer scenario involves the following steps:

1. Define the following given replication configuration parameters:

a. Peer1 server’s host name or IP address and the port on which it is listening

b. Peer2 server’s host name or IP address and the port on which it is listening

c. Replicating suffix

d. Secure or non-secure replication communication between peer1 and peer2 server

e. Replication bind DN, which the peer uses as a bind DN while replicating changes to
another peer

f. Replication bind credentials, which is the password of the replication bind DN

g. Replication log file name and location

In the replication configuration example, we have used the following parameters:

a. Peer1 server is listening on WTSC80.ITSO.IBM.COM: 14389.

b. Peer2 is listening on WTSC81.ITSO.IBM.COM: 14389.

c. Replication starting point would be o=ibm,c=us, which is configured as a suffix in the
LDBM back end.

d. Non-SSL based replication is being configured.

e. Replication bind DN is cn=Master.

f. Replication bind credential is secret.

g. Replication log file names and locations are:

/u/ldap8002/logs/replicaldap8102.errlog
/u/ldap8102/logs/replicaldap8002.errlog

As per the requirements, one can edit the configuration parameters such as master and
replica host name, port, replica bind DN, and replica bind password.

2. Create an ldif file on the peer1 server, name it peer1.ldif, and copy the following contents
into it:

dn: cn=Replicaldap8102,o=ibm,c=us
objectclass: replicaObject
objectclass: extensibleObject
cn: Replicaldap8102
replicaHost: WTSC81.ITSO.IBM.COM
replicaBindDn: cn=Master
replicaCredentials: secret
replicaPort: 14389
replicaUseSSL: FALSE
description: Replica server
ibm-slapdLog: /u/ldap8002/logs/replicaldap8102.errlog

Note: Do not use cn=Master and secret as your replica bind DN and credential.
Change them to meet your requirements.
Chapter 11. Replication 235

3. Load the peer1.ldif ldif file on master serve using ldapadd command:

ldapadd -h ldaphost -p port -D adminDN -w passwd -f peer1.ldif

For example:

ldapadd -h WTSC80.ITSO.IBM.COM -p 14389 -D cn=root -w root -f peer1.ldif

4. Stop the peer1 server:

P LDAP8002

5. Open the configuration file PDS. Our example uses the file
LDAP8002.CNFOUT(DSCONFIG).

6. Edit the peerServerDN parameter of LDBM configuration stanza to be the same value as
the replicaBindDn attribute is used in step 1. See Figure 11-4.

Figure 11-4 Sample of DSCONFIG showing update for peerServerDN

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8002.CNFOUT(DSCONFIG) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002809 # The peerServerDN option specifies the distinguished name (DN)
 002810 # always allowed to make changes to this basic replication peer
 002811 # replica back end. The presence of this option indicates that this
 002812 # LDAP server is a peer replica for this back end, and can receive
 002813 # updates from another peer LDAP server using the specified DN as
 002814 # well as processing updates received from clients. The specified DN
 002815 # is a special entry that should only be used when replicating to
 002816 # this peer replica back end. The DN has unrestricted update,
 002817 # compare, and search access for all entries in the back end on this
 002818 # server, even if the LDAP server is in maintenance mode. When in
 002819 # maintenance mode, only this DN and the LDAP administrator can
 002820 # access and update the entries in this back end.
 002821 #
 002822 # Example:
 002823 # peerServerDN "cn=Peer Server, o=Your Company"
 002824 #
 002825 # Notes:
 002826 # You cannot specify the masterServerDN option in this section of the
 002827 # configuration file.
 002828 #
 002829 # The peerServerDN option indicates basic peer-to-peer replication is
 002830 # configured for this back end section. Therefore, the peerServerDN
 002831 # option cannot be specified if the useAdvancedReplication option is
 002832 # set to 'on' in the CDBM back end database section.
 002833 #--
 002834 peerServerDN "cn=Master"
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Note: Do not use adminDN as the peerServerDN. This can cause unforeseen problems.
236 IBM Tivoli Directory Server for z/OS

7. Edit the peerServerPW parameter of LDBM configuration stanza to match the value of
replicaCredentials attribute used in step 1 (Figure 11-5).

Figure 11-5 Sample of showing update for peerServerPW

8. Save the configuration file PDS. Our example uses the file
LDAP8002.CNFOUT(DSCONFIG).

9. Switch to the peer2 server.

10.Create an ldif file on the peer2 server, name it peer2.ldif, and copy the following contents
into it:

dn: cn=Replicaldap8002,o=ibm,c=us
objectclass: replicaObject
objectclass: extensibleObject
cn: Replicaldap8002
replicaHost: WTSC80.ITSO.IBM.COM
replicaBindDn: cn=Master
replicaCredentials: secret
replicaPort: 14389
replicaUseSSL: FALSE
description: Replica server
ibm-slapdLog: /u/ldap8102/logs/replicaldap8002.errlogS

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 EDIT LDAP8002.CNFOUT(DSCONFIG) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002837 # peerServerPW <password>
 002838 #
 002839 # Description:
 002840 # The peerServerPW option specifies the password for the
 002841 # peerServerDN that is allowed to make updates for this back end.
 002842 # This option is only applicable for a basic replication peer
 002843 # replica LDAP server.
 002844 #
 002845 # Example:
 002846 # peerServerPW pPassword
 002847 #
 002848 # Notes:
 002849 # Use of the peerServerPW configuration option is strongly
 002850 # discouraged in production environments. Instead, specify your
 002851 # peerServerDN as the distinguished name of an existing entry in the
 002852 # directory information tree, including a userPassword attribute.
 002853 # This will eliminate passwords from the configuration file.
 002854 #
 002855 # The peerServerPW option indicates basic peer-to-peer replication
 002856 # is configured for this back end section. Therefore, the
 002857 # peerServerPW option cannot be specified if the
 002858 # useAdvancedReplication option is set to 'on' in the CDBM back end
 002859 # database section.
 002860 #--
 002861 peerServerPW secret
 002862
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel
Chapter 11. Replication 237

11.Load the peer2.ldif ldif file on master server using the ldapadd command:

ldapadd -h ldaphost -p port -D adminDN -w passwd -f peer2.ldif

For example:

ldapadd -h WTSC81.ITSO.IBM.COM -p 14389 -D cn=root -w root -f peer2.ldif

12.Stop the peer2 server:

P LDAP8102

13.Open the configuration file PDS. Our example uses the file
LDAP8102.CNFOUT(DSCONFIG).

14.Edit the peerServerDN parameter of LDBM configuration stanza to match the value of
replicaBindDn attribute used in step 10 (Figure 11-6).

Figure 11-6 Sample of DSCONFIG showing update for peerServerDN

Note: Do not use cn=Master and secret as your replica bind DN and credential.
Change them to meet your requirements.

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8102.CNFOUT(DSCONFIG) - 01.02 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002812 # LDAP server is a peer replica for this back end, and can receive
 002813 # updates from another peer LDAP server using the specified DN as
 002814 # well as processing updates received from clients. The specified DN
 002815 # is a special entry that should only be used when replicating to
 002816 # this peer replica back end. The DN has unrestricted update,
 002817 # compare, and search access for all entries in the back end on this
 002818 # server, even if the LDAP server is in maintenance mode. When in
 002819 # maintenance mode, only this DN and the LDAP administrator can
 002820 # access and update the entries in this back end.
 002821 #
 002822 # Example:
 002823 # peerServerDN "cn=Peer Server, o=Your Company"
 002824 #
 002825 # Notes:
 002826 # You cannot specify the masterServerDN option in this section of the
 002827 # configuration file.
 002828 #
 002829 # The peerServerDN option indicates basic peer-to-peer replication is
 002830 # configured for this back end section. Therefore, the peerServerDN
 002831 # option cannot be specified if the useAdvancedReplication option is
 002832 # set to 'on' in the CDBM back end database section.
 002833 #--
 002834 peerServerDN "cn=Master"
 002835
 002836 #--
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel
 . .

Note: Do not use adminDN as the peerServerDN. This might cause unforeseen problems.
238 IBM Tivoli Directory Server for z/OS

15.Edit the peerServerPW parameter of LDBM configuration parameter to match the value of
replicaCredentials attribute used in step 10 (Figure 11-7).

Figure 11-7 Sample of DSCONFIG showing update for peerServerPW

16.Save the configuration file PDS. Our example uses the file
LDAP8102.CNFOUT(DSCONFIG).

17.Restart peer1 server:

P LDAP8002
S LDAP8002

18.Restart peer2 server:

P LDAP8102
S LDAP8102

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8102.CNFOUT(DSCONFIG) - 01.02 Columns 00001 00072
 Command ===> Scroll ===> CSR
 002837 # peerServerPW <password>
 002838 #
 002839 # Description:
 002840 # The peerServerPW option specifies the password for the
 002841 # peerServerDN that is allowed to make updates for this back end.
 002842 # This option is only applicable for a basic replication peer
 002843 # replica LDAP server.
 002844 #
 002845 # Example:
 002846 # peerServerPW pPassword
 002847 #
 002848 # Notes:
 002849 # Use of the peerServerPW configuration option is strongly
 002850 # discouraged in production environments. Instead, specify your
 002851 # peerServerDN as the distinguished name of an existing entry in the
 002852 # directory information tree, including a userPassword attribute.
 002853 # This will eliminate passwords from the configuration file.
 002854 #
 002855 # The peerServerPW option indicates basic peer-to-peer replication
 002856 # is configured for this back end section. Therefore, the
 002857 # peerServerPW option cannot be specified if the
 002858 # useAdvancedReplication option is set to 'on' in the CDBM back end
 002859 # database section.
 002860 #--
 002861 peerServerPW secret
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel
 . .

Note: Use secretEncryption to encrypt your replica bind password in the conf file and in
the back end (if it is configured).
Chapter 11. Replication 239

11.2 Advanced Replication

To overcome the limitations of basic replication, advanced replication was added in the z/OS
IBM Tivoli Directory Server server with the CDBM back end. This advanced replication
feature provides:

� Subtree based replication
� Nested replication
� Separate roles for different subtrees of the single server in the replication
� Additional replication topologies
� External error log management using extended operations
� External replication queue management using extended operations
� New operational attributes to determine the status of replication
� Schema replication
� Partial replication
� Scheduled replication
� Replication conflict resolution

11.2.1 Major replication topologies

In z/OS IBM Tivoli Directory Server using advance replication one can have the following
replication topologies:

Master - replica topology
The basic relationship in advanced replication is that of a master server and its replica server.
The master server can contain a directory or a subtree of a directory. The master is writable,
which means it can receive updates from clients for a given subtree. The replica server
contains a copy of the directory or a copy of part of the directory of the master server. The
replica is read only: it cannot be directly updated by clients. Instead it refers client requests to
the master server, which then performs the updates and replicates them to the replica server.

A master server can have several replicas. Each replica can contain a copy of the master’s
entire directory, or a subtree of the directory.

Peer to peer topology
There can be several servers acting as masters for directory information, with each master
responsible for updating other master servers and replica servers. This is referred to as peer
replication. Peer replication can improve performance, availability, and reliability. Performance
is improved by providing a local server to handle updates in a widely distributed network.
Availability and reliability are improved by providing a backup master server ready to take over
immediately if the primary master fails. Peer master servers replicate all client updates to the
replicas and to the other peer masters, but do not replicate updates received from other
master servers.

Cascading replication topology
Forwarding (cascading) replication is a topology that has multiple tiers of servers. A master
server replicates to a set of read-only (forwarding) servers that in turn replicate to other
servers. Such a topology off-loads replication work from the master server.

Gateway replication topology
Gateway replication is a more complex adaptation of peer-to-peer replication that extends
replication capabilities across networks. Gateway peer servers will replicate updates from
other Gateway peer servers to all servers in their sub-network only. On the other hand, a
240 IBM Tivoli Directory Server for z/OS

Gateway will replicate to other gateway peers any updates received from clients or servers
within its sub-network.

11.2.2 Configuring replication topologies

Before starting configuration of advanced replication, you will need to configure a CDBM back
end. Follow these steps to enable advanced replication:

1. Stop the LDAP server, if it is running. In the following example, the instance name is
LDAP8001.

P LDAP8001

You should receive confirmation like the following:

GLD1006I LDAP server stop command received.
BPXM023I (LDAP8001) GLD1007I LDAP server is stopping.
BPXM023I (LDAP8001) GLD6051I No database changes to commit for GDBM back end
named GDBM-0001.
BPXM023I (LDAP8001) GLD6051I No database changes to commit for LDBM back end
named LDBM-0002.
$HASP395 LDAP8001 ENDED

2. Open the configuration file PDS. Our example uses the file
LDAP8001.CNFOUT(DSCONFIG).

3. Enable CDBM back end by uncommenting the line database CDBM GLDBCD31/GLDBCD64
cdbm as shown in Figure 11-8.

Figure 11-8 Sample of DSCONFIG showing update for database “CDBM GLDBCD31/GLDBCD64 cdbm”

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.06 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003029
 003030 #--
 003031 # database dbtype dblibpath
 003032 #
 003033 # Description:
 003034 # The database option marks the beginning of a new database section.
 003035 #
 003036 # Example:
 003037 # database CDBM GLDBCD31/GLDBCD64
 003038 #
 003039 # Notes:
 003040 # All global options must appear before the first database section.
 003041 # An optional name may be specified to identify this back end.
 003042 #--
 003043 database CDBM GLDBCD31/GLDBCD64 cdbm
 003044
 003045 #--
 003046 # include <filename>
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel
Chapter 11. Replication 241

4. Edit databasedirectory and provide a location where you would like store CDBM
database files (Figure 11-9).

Figure 11-9 Sample of DSCONFIG showing update for databasedirectory

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.07 Member DSCONFIG saved
 Command ===> Scroll ===> CSR
 003134 #--
 003135 # databaseDirectory <name>
 003136 #
 003137 # Default Value: the value of schemaPath
 003138 #
 003139 # Description:
 003140 # The databaseDirectory option specifies the name of the file system
 003141 # directory containing the data files used by this back end, to store
 003142 # the directory data.
 003143 #
 003144 # Example:
 003145 # databaseDirectory /home/myCDBM
 003146 #
 003147 # Notes:
 003148 # A fully-qualified directory path must be specified. It is
 003149 # recommended that this option is set to the same value as
 003150 # schemaPath. The LDAP server will set this value to the value of
 003151 # schemaPath when this value is not explicitly set.
 003152 #--
 003153 databaseDirectory /u/ldap8001/cdbm
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Note: The server will create the directory specified in the databaseDirectory option if
the LDAP server's user ID has read/write permission to the directory and any parent
directories.
242 IBM Tivoli Directory Server for z/OS

5. Edit the useAdvancedReplication parameter and enable it for advanced replication as
shown in Figure 11-10.

Figure 11-10 Sample of DSCONFIG showing update for useAdvancedReplication

6. Save and close the configuration file.

7. Start the LDAP server:

S LDAP8001

The following output should appear:

S LDAP8001
$HASP100 LDAP8001 ON STCINRDR
IEF695I START LDAP8001 WITH JOBNAME LDAP8001 IS ASSIGNED TO USER LDAP8001,
GROUP LDAPGRP
$HASP373 LDAP8001 STARTED
BPXM023I (LDAP8001) GLD1004I LDAP server is ready for requests.
GLD1005I LDAP server start command processed.

 File Edit Edit_Settings Menu Utilities Compilers Test Help
 sss
 EDIT LDAP8001.CNFOUT(DSCONFIG) - 01.11 Columns 00001 00072
 Command ===> Scroll ===> CSR
 003595 # ---
 003596 # useAdvancedReplication <on | off>
 003597 #
 003598 # Default Value: off
 003599 #
 003600 # Description:
 003601 # The useAdvancedReplication option specifies if the LDAP server
 003602 # supports advanced replication. If advanced replication is active,
 003603 # then the masterServer, masterServerDN, masterServerPW, peerServer,
 003604 # peerServerDN, and peerServerPW configuration options cannot be
 003605 # specified in any LDBM, TDBM, or CDBM back ends.
 003606 #
 003607 # Example:
 003608 # useAdvancedReplication on
 003609 #
 003610 # Notes:
 003611 # The LDAP server will not start when useAdvancedReplication on is
 003612 # specified and entries with an objectclass of replicaObject are
 003613 # present in a TDBM, LDBM, or CDBM back end.
 003614 #
 003615 # The LDAP server will not start when useAdvancedReplication off is
 003616 # specified and entries with an auxiliary objectclass of
 003617 # ibm-replicationContext are present in a TDBM, LDBM, or CDBM
 003618 # back end.
 003619 #
 003620 # The server compatibility level must be at least 5.
 003621 # ---
 003622 useAdvancedReplication on
 003623
 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel

Note: If CDBM is already configured, you do not need to modify the database CDBM
GLDBCD31/GLDBCD64 and databasedirectory parameters.
Chapter 11. Replication 243

BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.4.45 port 4389.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.4.46 port 4389.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 9.12.5.26 port 4389.
BPXM023I (LDAP8001) GLD1059I Listening for requests on 127.0.0.1 port 4389.

8. The cn=configuration suffix contains entries that are used to configure advanced
replication support. When the server is first started, the following advanced replication
configuration entries under the cn=configuration suffix are automatically created:

cn=configuration
cn=Replication,cn=configuration
cn=Log Management,cn=Configuration
cn=Replication,cn=Log Management,cn=Configuration

Use the ldapsearch command to retrieve cn=configuration entries:

ldapsearch -h ldaphost -p port -D adminDN -w adminpw -s sub -b
"cn=configuration" objectclass=*

For example:

ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4389 -s sub -b
"cn=configuration" objectclass=*

You should receive the following output:

cn=configuration
objectclass=ibm-tdszTop
objectclass=ibm-slapdConfigEntry
objectclass=top
cn=configuration
ibm-slapdserverid=134CF000-1D9B-1C25-9F09-402817013BD5

cn=Replication,cn=configuration
objectclass=ibm-slapdReplicationConfiguration
objectclass=top
cn=Replication
ibm-slapdmaxpendingchangesdisplayed=200
ibm-slapdreplcontextcachesize=100000
ibm-slapdreplmaxerrors=0
ibm-slapdreplconflictmaxentrysize=0
ibm-replicationonhold=FALSE

cn=Log Management,cn=Configuration
objectclass=container
objectclass=top
cn=Log Management

cn=Replication,cn=Log Management,cn=Configuration
objectclass=ibm-slapdLogConfig
objectclass=ibm-slapdConfigEntry
objectclass=container
objectclass=top
cn=Replication
ibm-slapdlog=/var/ldap/logs/lostandfound.log

Note: The LDAP server will fail to start after enabling CDBM if entries with an
objectclass of replicaObject are present in a TDBM, LDBM, or CDBM back end.
244 IBM Tivoli Directory Server for z/OS

11.2.3 Master-Replica replication configuration in advanced replication.

Configuring a simple master-replica scenario involves the following steps:

1. Define the configuration parameters:

a. Replication context: This entry will be the starting point of the replication, and can be
located anywhere in the tree. It is not necessary for it to be a suffix as in basic
replication. In the following configuration example it is o=ibm,c=us.

b. Supplier(s): The LDAP server on WTSC80.ITSO.IBM.COM:13389 will be the only
supplier. The server ID is ldap8003. It will supply updates to the LDAP server on
WTSC81.ITSO.IBM.COM:13389.

c. Consumer(s): The LDAP server on WTSC81.ITSO.IBM.COM:13389 will be the only
consumer. The server ID is ldap8103. It will consume updates from the LDAP server on
WTSC80.ITSO.IBM.COM:13389.

d. Read-write server(s): The LDAP server on WTSC80.ITSO.IBM.COM:13389 with ID
ldap8003 will be the only read-write server.

e. Read-only server(s): The LDAP server on WTSC81.ITSO.IBM.COM:13389 with ID
ldap8103 will be the only read-only server.

2. The following configuration changes are needed for the master and the replica server for
replication to work correctly.

a. Modify the server-ID of master server to human-readable format. In this example, we
have used server-ID ldap8003, which is the instance name.

i. Create an ldif file on the master server, name srvidmaster.ldif, and paste in the
following content:

dn: cn=configuration
changetype: modify
replace: ibm-slapdserverid
ibm-slapdserverid: ldap8003

ii. Use ldapmodify command to load the srvidmaster.ldif file:

ldapmodify -h masterldaphost -p port -D adminDN -w passwd -k -f
srvidmaster.ldif

For example:

ldapmodify -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f srvidmaster.ldif

You should see the following message:

modifying entry cn=configuration

b. Modify the server-ID of replica to human-readable format. In this example, we have
used server-ID ldap8103, which is the instance name.

i. Create an ldif file on the replica server, name it srvidreplica.ldif, and paste in the
following content:

dn: cn=configuration
changetype: modify
replace: ibm-slapdserverid
ibm-slapdserverid: ldap8103

ii. Use ldapmodify command to load the srvidreplica.ldif file:

ldapmodify -h replicaldaphost -p port -D adminDN -w passwd -k -f
srvidreplica.ldif
Chapter 11. Replication 245

For example:

ldapmodify -h WTSC81.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f srvidreplica.ldif

You should see the following message:

modifying entry cn=configuration

c. Define replica side credentials entry, the user name, and password that will be used to
authenticate bind request from master server:

i. Create an ldif file on the replica server, name it replicacred.ldif, and paste in the
following content:

dn: cn=Master server, cn=configuration
cn: master server
ibm-slapdMasterDN: cn=bindtoconsumer
ibm-slapdMasterPW: iamsupplier
ibm-slapdMasterReferral: ldap://WTSC80.ITSO.IBM.COM:13389
objectclass: ibm-slapdReplication

ii. Use ldapmodify command to load the replicacred.ldif file:

ldapmodify -h replicaldaphost -p port -D adminDN -w passwd -k -f
replicacred.ldif

Example:

ldapmodify -h WTSC81.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f replicacred.ldif

You should see the following message:

adding new entry cn=Master server, cn=configuration

d. Restart the master and replica servers to put into effect the changes detailed above.

3. Create a masterreplica.ldif file. Simply copy each of these entries to
masterreplica.ldif with the necessary changes in the subtree, server IDs, host names,
and ports:

dn: o=ibm, c=us
changetype: add
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm

dn: ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default

dn: ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaSubentry

Note: Be careful with server IDs. If a server ID is being used in another topology,
changing the server ID can lead to unwanted consequences. Generally, use the
instance name as the server ID of the LDAP server.
246 IBM Tivoli Directory Server for z/OS

ibm-replicaServerId: ldap8003
ibm-replicationServerIsMaster: true
cn: Master
description: Master server of the topology.

dn: ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: ldap8103
ibm-replicationServerIsMaster: false
cn: Replica
description: Replica server of the topology.

dn: cn=ReplicaBindCredentials, o=ibm, c=us
changetype: add
objectclass: ibm-replicationCredentialsSimple
cn: ReplicaBindCredentials
replicaBindDN: cn=bindtoconsumer
replicaCredentials: iamsupplier
description: Bind Credentials on master to bind to replica.

dn: cn=Replica,
ibm-replicaServerId=ldap8003,ibm-replicaGroup=default,o=ibm,c=us
changetype: add
objectclass: top
objectclass: ibm-replicationAgreement
cn: Replica
ibm-replicaConsumerId: ldap8103
ibm-replicaUrl: ldap://WTSC81.ITSO.IBM.COM:13389
ibm-replicaCredentialsDN: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from master to replica.

4. The LDIF will be different if the replication context exists. Rather than:

dn: o=ibm,c=us
changetype: add
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm

It should be:

dn: o=ibm,c=us
changetype: modify
add: objectclass
objectclass: ibm-replicationContext

5. Load the masterreplica.ldif file on the master server. Use ldapmodify command to load
the masterreplica.ldif file on the master server. The option -k sends an administrative
control to server, and -L prevents replication.

ldapmodify -h masterldaphost -p port -D adminDN -w passwd -k -L -f
masterreplica.ldif
Chapter 11. Replication 247

For example:

ldapmodify -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm, c=us" -w
sec001ret -k -L -f masterreplica.ldif

You should see output similar to the following:

adding new entry o=ibm, c=us

adding new entry ibm-replicaGroup=default, o=ibm, c=us

adding new entry ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm,
c=us

adding new entry ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm,
c=us

adding new entry cn=ReplicaBindCredentials, o=ibm, c=us

adding new entry cn=Replica, ibm-replicaServerId=ldap8003,
ibm-replicaGroup=default, o=ibm,c=us

6. Add replication topology to replica server using extended operation. One can instead
export the ldif and reimport the same ldif on replica server using the ds2ldif and ldif2ds
commands. Use the ldapexop command to do so:

ldapexop -h masterldaphost -p port -D adminDN -w passwd -op repltopology -rc
o=ibm,c=us

For example:

ldapexop -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm, c=us" -w
sec001ret -op repltopology -rc "o=ibm,c=us"

You should see output similar to the following:

repl_topology_extended_op: Success
repl_topology_extended_op: additional info: R010778 1 servers synchronized
successfully out of 1 attempts (repl_topology_req)

The successful execution of the command listed above indicates replication has been
configured.

7. Restart replica server to start replication:

P LDAP8001
S LDAP8001

8. Restart master server to start replication:

P LDAP8101
S LDAP8101

11.2.4 Peer to peer replication topology configuration in advanced replication

Configuring a peer to peer scenario involves the following steps:

1. Define the configuration parameters:

a. Replication context: This entry will be the starting point of the replication, and it can be
located anywhere in the tree, not necessary to be suffix like basic replication. In the
following configuration example it is considered as o=ibm,c=us.
248 IBM Tivoli Directory Server for z/OS

b. Supplier(s): LDAP server on WTSC80.ITSO.IBM.COM:13389 with server ID Peer1 will
supply updates to the LDAP server with server ID Peer2 on
WTSC81.ITSO.IBM.COM:13389. LDAP server on WTSC81.ITSO.IBM.COM:13389 with server
ID Peer2 will supply updates to the LDAP server with server ID Peer1 on
WTSC80.ITSO.IBM.COM:13389.

c. Consumer(s): LDAP server with server ID Peer2 on WTSC81.ITSO.IBM.COM:13389 will
consume updates from LDAP server with server ID Peer1 on
WTSC80.ITSO.IBM.COM:13389. LDAP server with Server ID Peer1 on
WTSC80.ITSO.IBM.COM:13389 will consume updates from LDAP server with server ID
Peer2 on WTSC81.ITSO.IBM.COM:13389.

d. Read-write server(s): LDAP servers peer1 and peer2 on WTSC80.ITSO.IBM.COM:13389
and WTSC81.ITSO.IBM.COM:13389 will be read-write servers.

e. Read-only server(s): There are no read-only servers in this topology.

2. Below given configuration changes are needed for the peer1 and the peer2 server for
replication to work correctly.

a. Modify the server-ID of peer1 server to human-readable format. In this example, we
have used server-ID ldap8003, which is the instance name.

i. Create an ldif file on the master server, name it srvidpeer1.ldif, and copy the
following contents into it:

dn: cn=configuration
changetype: modify
replace: ibm-slapdserverid
ibm-slapdserverid: ldap8003

ii. Use ldapmodify command to load the srvidpeer1.ldif file:

ldapmodify -h peer1ldaphost -p port -D adminDN -w passwd -k -f
srvidpeer1.ldif

For example:

ldapmodify -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f srvidpeer1.ldif

You should see the following message:

modifying entry cn=configuration

b. Modify the server-ID of peer2 to human-readable format. In this example, we have
used server-ID ldap8103, which is the instance name.

i. Create an ldif file on the peer2 server, name it srvidpeer2.ldif, and copy the
following contents into it:

dn: cn=configuration
changetype: modify
replace: ibm-slapdserverid
ibm-slapdserverid: ldap8103

ii. Use ldapmodify command to load the srvidpeer2.ldif file:

ldapmodify -h replicaldaphost -p port -D adminDN -w passwd -k -f
srvidpeer2.ldif

For example:

ldapmodify -h WTSC81.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f srvidpeer2.ldif
Chapter 11. Replication 249

You should see the following message:

modifying entry cn=configuration

c. Define replica side credentials entry, the user name, and password that will be used to
authenticate bind request from master server:

i. Create an ldif file on the peer1 server, name it cred.ldif, and copy the following
contents into it:

dn: cn=Master server, cn=configuration
cn: master server
ibm-slapdMasterDN: cn=bindtoconsumer
ibm-slapdMasterPW: iamsupplier
ibm-slapdMasterReferral: ldap://WTSC80.ITSO.IBM.COM:13389
objectclass: ibm-slapdReplication

ii. Use ldapmodify command to load the cred.ldif file on the peer1 server:

ldapmodify -h peer1ldaphost -p port -D adminDN -w passwd -k -f cred.ldif

For example:

ldapmodify -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f cred.ldif

You should see the following message:

adding new entry cn=Master server, cn=configuration

iii. Use ldapmodify command to load the cred.ldif file on the peer2 server:

ldapmodify -h peer2ldaphost -p port -D adminDN -w passwd -k -f cred.ldif

For example:

ldapmodify -h WTSC81.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm,
c=us" -w sec001ret -k -f cred.ldif

You should see the following message:

adding new entry cn=Master server, cn=configuration

d. Restart the peer1 and peer2 servers to put into effect the above changes.

3. Create a peer2peer.ldif file. Simply copy each of these entries to peer2peer.ldif with
the necessary changes in the subtree, server IDs, host names, and ports:

dn: o=ibm, c=us
changetype: add
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm

dn: ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default

Note: Be careful with server IDs. If a server ID is being used in another topology,
changing the server ID can lead to unwanted consequences. Generally, use the
instance name as a server ID of the LDAP server.
250 IBM Tivoli Directory Server for z/OS

dn: ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: ldap8003
ibm-replicationServerIsMaster: true
cn: Peer1
description: Subentry for Peer1.

dn: ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm, c=us
changetype: add
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: ldap8103
ibm-replicationServerIsMaster: true
cn: Peer2
description: Subentry for Peer2.

dn: cn=ReplicaBindCredentials, o=ibm, c=us
changetype: add
objectclass: ibm-replicationCredentialsSimple
cn: ReplicaBindCredentials
replicaBindDN: cn=bindtoconsumer
replicaCredentials: iamsupplier
description: Bind Credentials on peer1 and peer2 to bind to each other.

dn: cn=Peer2, ibm-replicaServerId=ldap8003,ibm-replicaGroup=default,o=ibm,c=us
changetype: add
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer2
ibm-replicaConsumerId: ldap8103
ibm-replicaUrl: ldap://WTSC81.ITSO.IBM.COM:13389
ibm-replicaCredentialsDN: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer1 to peer2.

dn: cn=Peer1, ibm-replicaServerId=ldap8103,ibm-replicaGroup=default,o=ibm,c=us
changetype: add
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer1
ibm-replicaConsumerId: ldap8003
ibm-replicaUrl: ldap://WTSC80.ITSO.IBM.COM:13389
ibm-replicaCredentialsDN: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer2 to peer1.

4. The LDIF will be different if the replication context exists. Rather than:

dn: o=ibm,c=us
changetype: add
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm
Chapter 11. Replication 251

It should be:

dn: o=ibm,c=us
changetype: modify
add: objectclass
objectclass: ibm-replicationContext

5. Load the peer2peer.ldif file on the peer1 server Use the ldapmodify command to load
the peer2pper.ldif file on the peer1 server. The option -k sends an administrative control
to server, and -L prevents replication.

ldapmodify -h peer1ldaphost -p port -D adminDN -w passwd -k -L -f
masterreplica.ldif

For example:

ldapmodify -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm, c=us" -w
sec001ret -k -L -f peer2peer.ldif

You should see output similar to the following:

adding new entry o=ibm, c=us

adding new entry ibm-replicaGroup=default, o=ibm, c=us

adding new entry ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm,
c=us

adding new entry ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm,
c=us

adding new entry cn=ReplicaBindCredentials, o=ibm, c=us

adding new entry cn=Peer2,
ibm-replicaServerId=ldap8003,ibm-replicaGroup=default,o=ibm,c=us

adding new entry cn=Peer1,
ibm-replicaServerId=ldap8103,ibm-replicaGroup=default,o=ibm,c=us

6. Add the replication topology to the peer2 server using extended operation. You can export
the data in an ldif file and reimport the same ldif file on peer2 server using the ds2ldif and
ldif2ds commands. Use the ldapexop command to do so:

ldapexop -h peer1ldaphost -p port -D adminDN -w passwd -op repltopology -rc
o=ibm,c=us

For example:

ldapexop -h WTSC80.ITSO.IBM.COM -p 13389 -D "cn=LDAP Admin, o=ibm, c=us" -w
sec001ret -op repltopology -rc "o=ibm,c=us"

You should see output similar to the following:

repl_topology_extended_op: Success
repl_topology_extended_op: additional info: R010778 1 servers synchronized
successfully out of 1 attempts (repl_topology_req)

If the above command executes successfully, it means replication has been configured.

7. Restart the peer1 server to start replication:

P LDAP8001
252 IBM Tivoli Directory Server for z/OS

S LDAP8001

8. Restart the peer2 server to start replication:

P LDAP8101
S LDAP8101
Chapter 11. Replication 253

254 IBM Tivoli Directory Server for z/OS

Chapter 12. Using LDAP and HCD

This chapter provides a simple configuration to enable LDAP support for HCD, and basic
examples to demonstrate its use.

For more information, refer to the Hardware Configuration Definition User’s Guide,
SC33-7988 and I/O Configuration Using z/OS HCD and HCM, SG24-7804.

12
© Copyright IBM Corp. 2011. All rights reserved. 255

12.1 Hardware Configuration Definition (HCD) and LDAP

HCD LDAP plug-in, along with IBM Tivoli Directory Server for z/OS (TDS) and the RACF back
end SDBM, can be used to access and update existing IODFs through the standardized
Lightweight Directory Access Protocol (LDAP), which is based on TCP/IP.

The HCD LDAP plug-in is optional and there are no limits in HCD functionality if the plug-in is
not used.

LDAP is a protocol that makes directory information available (like the yellow pages). New
entries can be added, existing entries altered or deleted, and you can search for matching
entries using wildcards.

The HCD LDAP plug-in is plugged into the IBM Tivoli Directory Server and configured using
the IBM Tivoli Directory Server for z/OS configuration file (usually called ds.conf).

Figure 12-1 HCD LDAP plug-in structure

Similar to the RACF plug-in SDBM, the main function of the HCD LDAP plug-in is to mediate
between the IBM Tivoli Directory Server and an external component, in this case HCD.

HCD maintains control of the IODFs while update requests are validated and processed. The
results are stored in the appropriate IODF. Even though the IBM Tivoli Directory Server
updates the IODF, HCD processes the updates, ensuring the integrity of the IODFs.

Because of this, the HCD portion of the LDAP Directory Information Tree (DIT) must reflect
the data structure of HCD exactly. There are strict rules invoked when requesting an update
of IODF data through the IBM Tivoli Directory Server.

The HCD LDAP plug-in uses only RACF access rights of the user IDs that services are
performed for to determine whether this is a valid request or not. This assumes that the
plug-in runs under a user ID that is entitled to switch to the user ID of the respective bind
request. The plug-in takes its user ID as that of the IBM Tivoli Directory Server. Therefore, the
HCD LDAP plug-in can only be plugged into the IBM Tivoli Directory Server, and the IBM
Tivoli Directory Server must run as a started task under a user ID that is permitted to switch to
another user ID. To perform the switching, the HCD LDAP plug-in uses the
pthread_security_np() service (thread-level security model).

DN:..

LDAP Server
Port 389

Config File

TDBM
Backend

SDBM
Backend

HCD
LDAP
Plug-in

DN:..

*

*
TCP/IP

IODF

IODF

IODFHCD

RACF

DB2

HCD

...
256 IBM Tivoli Directory Server for z/OS

You will need to choose from two options for the security level of IBM Tivoli Directory Server:

� UNIX level security

The IBM Tivoli Directory Server must run under a superuser who is automatically entitled
to assume the identity of any other user.

� z/OS UNIX level security

The right to switch user IDs must be explicitly granted to all, even to the superuser. The
z/OS UNIX level security should be used because it is more secure than the UNIX level.
Be aware that this is a global decision that can affect all the servers on your system. Steps
required are listed for both options, and warnings are issued whenever a step will affect
your system configuration.

The setup should be divided into three parts:

1. Set up the IBM Tivoli Directory Server for z/OS (TDS) so that it can run with the HCD
LDAP plug-in.

2. Set up the HCD LDAP plug-in as plug-in to the IBM Tivoli Directory Server (including
security definitions, APF authority, and so on).

3. Add the HCD schema (schema.hcd.ldif located in /usr/lpp/hcd/etc directory) into IBM
Tivoli Directory Server.

These are all performed outside of HCD, so refer to the z/OS HCD User’s Guide (Version 1
Release 11) Chapter 14, page 351 for setup information.

There is a one-to-one mapping between the IODF data structure and the LDAP directory
information tree (DIT) that makes the HCD IODF information able to be accessed through the
LDAP protocol and makes IODF updates possible.

There are two steps you must always perform to request a service from the HCD LDAP
plug-in:

1. You must authenticate (bind) yourself to the RACF back end SDBM.
2. You must access an IODF.

The HCD LDAP plug-in functions as follows:

� HCD LDAP plug-in does NOT participate in extended group membership searching a
client request.

� It is possible to run several back ends on one IBM Tivoli Directory Server.

� The root of a subtree or back end is denoted with a suffix in the configuration file. There is
only one suffix specified per HCD LDAP plug-in, and it must be unique if you are running
multiple HCD LDAP plug-ins.

� It does NOT support Access Control Lists (ACLs) that are used to protect information
stored in an LDAP directory from unauthorized access because the access control is
performed by RACF.

� It does NOT support LDAP request types such as Bind, ModifyDN and ModifyRDN,
Compare, Abandon, and Extended Request. Requests will be receive the return code
Unwilling to Perform.

� It does support the following LDAP request types but does impose restrictions due to the
fact that the HCD portion of the DIT is rigidly controlled:

– Add
– Delete
– Modify
– Search
Chapter 12. Using LDAP and HCD 257

� HCD LDAP plug-in does NOT support multi-server or replication.

To initiate, extend, and close a transaction using the HCD LDAP plug-in, you must have set up
and run the IBM Tivoli Directory Server and the back end, and you must provide an LDAP V3
client program with the appropriate controls of the HCD LDAP plug-in. You must select the
version of the LDAP client API function that allows the specification of server controls. See
the IBM Tivoli Directory Server Client Programming for z/OS V1R12.0, SA23-2214-04 for
more information about the functions and the parameters to be passed for requests.

12.2 Securing IBM Tivoli Directory Server for z/OS HCD

There are two options for securing IBM Tivoli Directory Server with z/OS:

� UNIX level security
� z/OS UNIX level security

With UNIX level security, IBM Tivoli Directory Server for z/OS must run under the superuser
(uid=0). The superuser on this security level has total authority over the system. In particular,
the user is automatically entitled to assume the identity of any other user.

With z/OS UNIX level security, the right to switch user IDS must be explicitly granted even to
the superuser. This is the preferred level of security.

If your environment is not currently set up for z/OS UNIX level security, be aware that enabling
this level of security is a global change and might impact other areas in your z/OS
environment.

The examples in this chapter assume that you are using z/OS UNIX level security.

12.3 Configuring HCD and LDAP

This section shows the configuration options needed in HCD, and the associated changes
needed in the configuration file for IBM Tivoli Directory Server.

The following prerequisites must be met to use HCD with IBM Tivoli Directory Server:

� IBM Tivoli Directory Server must be set up to run as a started task.
� Establish a separate user ID that runs the IBM Tivoli Directory Server for z/OS.
� Set up the IBM Tivoli Directory Server for z/OS for running in single-server mode without

replication.
� Configure the IBM Tivoli Directory Server for z/OS with the SDBM back end. The HCD

LDAP plug-in requires the IBM Tivoli Directory Server for z/OS to run with this RACF back
end. Therefore, SDBM must be included in the configuration file and all prerequisites for
SDBM must be fulfilled.

In addition, to use z/OS UNIX level security:

� The RACF FACILITY profile BPX.SERVER must be defined. For more information, refer to
z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05 and z/OS UNIX System Services Planning, GA22-7800.

� Certain libraries have to be defined to RACF program control. Work with your RACF
administrator because changes to the RACF class PROGRAM can cause problems in
your z/OS environment if not done correctly.
258 IBM Tivoli Directory Server for z/OS

12.3.1 Setting up the IBM Tivoli Directory Server for z/OS

Divide the setup process into three parts:

� Set up the IBM Tivoli Directory Server for z/OS so that it is able to run with the HCD LDAP
plug-in.

� Set up the HCD LDAP plug-in.
� Integrate the HCD schema into the IBM Tivoli Directory Server for z/OS.

Setting up IBM Tivoli Directory Server with SDBM back end
To set up IBM Tivoli Directory Server, perform the following steps:

1. Copy the following sample files from /usr/lpp/ldap/etc to a new location. You can use
/etc. However, because we are implementing multiple instances of IBM Tivoli Directory
Server on a single system, we chose to create a home directory under /u for each
instance.

– ds.profile
– ds.slapd.profile
– ds.racf.profile
– ds.db2.profile (not changed in this implementation, but ds.profile has a link to this

file)

2. Modify ds.profile with the following changes:

– ADMINDN ="cn=root"
– ADMINPW = root
– SDBM_SUFFIX = "o=ibm,c=us"
– PROG_SUFFIX = HC
– LDAPUSRID = LDAPHCD
– LDAPUSRGRP = LDAPGRP
– SCHEMAPATH = /u/ldaphcd/schema
– OUTPUT_DATASET = LDAPHCD.CNFOUT
– OUTPUT_DATASET_VOLUME = BH8ST4
– Added jobcard statements for APF_JOBCARD, PRGCTRL_JOBCARD,

DB2_JOBCARD, and RACF_JOBCARD
– SLAPD_PROFILE = /u/ldaphcd/ds.slapd.profile
– DB2_PROFILE = /u/ldaphcd/ds.db2.profile
– RACF_PROFILE = /u/ldaphcd/ds.racf.profile

3. Modify ds.slapd.profile with the following changes:

– ARMNAME = LDPHCD
– LISTEN = ldap://:5389 (this port must be unique for each ldap running on a single

system)
– LOGFILE = /u/ldaphcd/logs/gldlog.output

4. Modify ds.racf.profile with the following changes:

– LDAPGID = 22 (group ID must be a unique decimal number. Do not use gid 0.)
– LDAPUID = 330 (user ID must be unique decimal number. Do not use uid 0.)

5. Prior to running dsconfig, the following variables must be exported on the z/OS UNIX
System Services session where dsconfig will be run:

– export STEPLIB=SYS1.SIEALNKE:$STEPLIB

Note: The /logs subdirectory will not be created by IBM Tivoli Directory Server, and
must exist prior to starting IBM Tivoli Directory Server. Also verify that the LDAP
server's user ID has write access to this entire directory.
Chapter 12. Using LDAP and HCD 259

– export PATH=/usr/lpp/ldap/sbin:$PATH
– export NLSPATH=/usr/lpp/ldap/lib/nls/msg/%L/%N:$NLSPATH
– export LANG=En_US.IBM-1047

6. Run dsconfig with the ds.profile file that was customized:

dsconfig -i /u/ldaphcd/ds.profile

You should see the following messages:

100623 14:20:06.502052 GLD2002I Directory Server configuration utility has
started.
100623 14:20:06.873252 GLD2003I Directory Server configuration utility has
ended.

7. Access the PDS in TSO that was created by dsconfig. You should find the following
members were created:

– RACF: Creates the ldaphcd user and ldapgrp group, and grants authority to
RACF-protected resources

– PROGxx: APF-authorizes certain datasets for ldap
– APF: Issues the console command SET PROG=XX, which points to the progxx

member that was created by dsconfig
– LDAPHCD: The proc to run the ldap started task.
– PRGCNTRL: Sets program control for related libraries
– DSCONFIG: Configuration file for ldap
– DSENVVAR: Environment variables that must be used for running ldap

8. Copy PROGxx to a system parmlib.

9. Submit job APF to authorize the datasets, created by dsconfig, listed in PROGxx.

10.Submit job RACF to grant the RACF permissions necessary for the server to run. If using a
security product other than RACF, make the necessary modifications to this job prior to
submitting.

11.Copy the LDAP started task JCL (in our example, LDAPHCD) to a system proclib.

Starting and verifying IBM Tivoli Directory Server operation
To start IBM Tivoli Directory Server, issue a console start command for the started task JCL
that was created by dsconfig and you copied to a system proclib. Refer to the comments
within the started task proc for parameters that can be specified when starting IBM Tivoli
Directory Server. To start IBM Tivoli Directory Server with no parameters, enter S LDAPHCD on
the console, replacing LDAPHCD with the name of your server in proclib.

Verify a successful start by watching for the following messages:

GLD1004I LDAP server is ready for requests.
GLD1059I Listening for requests on 9.12.4.47 port 5389.
GLD1059I Listening for requests on 9.12.4.61 port 5389.
GLD1059I Listening for requests on 127.0.0.1 port 5389.

To verify IBM Tivoli Directory Server functionality, enter the following command from z/OS
UNIX System Services:

ldapsearch -h 127.0.0.1 -p 5389 -s base -b “” "objectclass=*”

Important: The datasets must be added to a the system APF list to make
authorizations persistent across IPLs.
260 IBM Tivoli Directory Server for z/OS

Load the IBM-supplied schema
z/OS IBM Tivoli Directory Server stores schema as an entry in the database. The
distinguished name of the schema entry is cn=schema. Use ldapsearch with cn=schema base
to list all schema entries in the running IBM Tivoli Directory Server instance:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s base -b "cn=schema"
objectclass=*

Replace ldaphost with your host name, port with the correct portnumber, and adminDN and
passwd with the adminstrator distinguished name and password.

For example:

ldapsearch -D cn=root -w root -p 5389 -s base -b "cn=schema" objectclass=*

The value of the schemaPath option in the IBM Tivoli Directory Server configuration file
defines the location where IBM Tivoli Directory Server stores schema entry. The z/OS IBM
Tivoli Directory Server instance owner needs to have read and write permission to the
schema location. The default value is /var/ldap/schema. If multiple instances need to be
configured on the one system, do not to use the default location for all instances. Instead, use
separate locations for all instances.

On first start-up IBM Tivoli Directory Server creates an initial default schema that is sufficient
for usage of the GDBM, CDBM, and SDBM (w/o custom fields), but needs to be updated for
LDBM, TDBM, SDBM with RACF custom fields, and CDBM with user-defined entries.

z/OS IBM Tivoli Directory Server is shipped with predefined schema files, schema.IBM.ldif
and schema.user.ldif. Use the ldapmodify command to load the schema files in running IBM
Tivoli Directory Server instance. The commands to load the schema.user.ldif and
schema.IBM.ldif schema files are:

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f schemafile

Replace ldaphost with your host name, ldapport with the correct portnumber, and adminDN
and password with the adminstrator distinquished name and password.

For example:

ldapmodify -D cn=root -w root -p 5389 -f /usr/lpp/ldap/etc/schema.user.ldif 2>&1 |
tee user.out

ldapmodify -D cn=root -w root -p 5389 -f /usr/lpp/ldap/etc/schema.IBM.ldif 2>&1 |
tee IBM.out

For both these commands, you should see the following message:

modifying entry cn=schema

12.3.2 Setting up the HCD LDAP plug-in

To set up the HCD LDAP plug-in, perform the following steps.

1. Authorize the HCD LDAP plug-in to act on behalf of other user IDs. z/OS UNIX level
requires that all users, including the superuser, be explicitly authorized to switch user IDS.

a. Define a surrogate profile for the prospective client by issuing the following RACF
commands. The second command updates the in-storage copy of the SURROGAT
profiles.

RDEFINE SURROGAT BPX.SRV.userID UACC(NONE)
Chapter 12. Using LDAP and HCD 261

SETROPTS RACLIST(SURROGAT) REFRESH

b. Authorize the user ID of the IBM Tivoli Directory Server for z/OS for this profile using
the following commands. The second command updates the in-storage copy of the
SURROGAT profiles.

PERMIT BPX.SRV.userID CLASS(SURROGAT) ID(LDAPHCD) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

These example commands are based on the following assumptions (which might not
hold for your system):

• The RACF class SURROGAT has been activated.
• There is no profile in that class with the name BPX.SRV.userID, where userID is the

user ID of the prospective client.
• The user ID of the IBM Tivoli Directory Server for z/OS on our system is LDAPHCD.

2. Define libraries to program control. The libraries containing the following load modules
must be defined to RACF program control:

– HCD LDAP plug-in (typically SYS1.LINKLIB on SYSRES)
– HCD (typically SYS1.LINKLIIB on SYSRES)
– UIMs (typically SYS1.NUCLEUS on SYSRES)
– C++ RTL (typically CEE.SCEERUN on SYSRES)
– IBM Tivoli Directory Server (typically SYS1.SIEALNKE and SYS1.LPALIB on

SYSRES)

To define these libraries to program control, issue the following RACF commands:

RDEFINE PROGRAM ** UACC(READ)
RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.LINKLIB'/'******'/NOPADCHK)
RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.NUCLEUS'/'******'/NOPADCHK)
RALTER PROGRAM ** UACC(READ) ADDMEM('CEE.SCEERUN'/'******'/NOPADCHK)
RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.SIEALNKE'/'******'/NOPADCHK)
RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.LPALIB'/'******'/NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH

The first command defines a profile named ** to the class PROGRAM. The other
commands, except the last, define the libraries containing the load modules to program
control. The last command refreshes the in-storage copy of the PROGRAM profiles. The
example commands are based on the following assumptions (which might not hold for
your system):

– The RACF class PROGRAM has been activated.
– GENERIC is enabled for the RACF class PROGRAM.
– There is no profile in that class with the name **.
– The load modules needed reside in their typical libraries as listed above.

3. APF authorize libraries. The libraries containing the following load modules must be APF
authorized:

– HCD LDAP plug-in (typically SYS1.LINKLIB on SYSRES)
– C++ RTL (typically CEE.SCEERUN on SYSRES)
– IBM Tivoli Directory Server (typically SYS1.SIAELNKE and SYS1.LPALIB on

SYSRES)

4. Tailor the started task procedure. This includes:

– The HCD instances that have been started by the HCD LDAP plug-in have the same
region size as the IBM Tivoli Directory Server for z/OS started task. Therefore, you
might need to adjust the region size of the IBM Tivoli Directory Server for z/OS started
task according to the region size suitable for the HCD instances.
262 IBM Tivoli Directory Server for z/OS

– Ensure that the IBM Tivoli Directory Server for z/OS and the HCD LDAP plug-in are
able to find the load modules that were defined to RACF program control by using the
z/OS search order. If the libraries containing these load modules are not searched by
z/OS on your system, you must insert a STEPLIB DD, which contains the missing
libraries, into the started task procedure.

5. Tailor the IBM Tivoli Directory Server for z/OS configuration file.

You must include the definition of the HCD LDAP plug-in in the IBM Tivoli Directory Server
configuration file. A sample of how to define the HCD LDAP plug-in as IBM Tivoli Directory
Server for z/OS plug-in in the server configuration file is delivered with HCD and is
installed in /usr/lpp/hcd/examples/ds.conf. For this purpose you must add into the
GLOBAL section of the configuration file the following option to define the HCD LDAP
plug-in as a plug-in:

plugin clientOperation CBDMLPLG hcd_plginit “<parameters>”

See Figure 12-2.

Figure 12-2 HCD Plug-in added to GLOBAL section of configuration file

6. Run the HCD LDAP plug-in.

To verify that your setup is working, issue an LDAP request against the HCD LDAP
plug-in. You can use the LDAP operation utilities to do this. For this purpose, enter a
command according to the following template:

ldapsearch -h ldaphost -p ldapport -D binddn -w passwd -s base -b
"hcdIodfId=IodfName,suffix" "objectclass=*"

This command performs a search on the specified IODF on behalf of the user ID specified
by binddn. binddn must be a DN from within the SDBM name space representing a user
ID, and passwd the appropriate password. IodfName must be the name of an existing
IODF data set. suffix would be cn=HCD if you have kept the default value specified in the
sample configuration file.

If the request returns a plausible result, the HCD LDAP plug-in is working correctly:

ldapsearch -h 127.0.0.1 -p 5389 -D
"racfid=RGREEN,profiletype=user,cn=racf,o=ibm,c=us" -w “passwd” -s base -b
"hcdIodfId=RGREEN.IODF53.WORK,cn=HCD" "objectclass=*"

EDIT LDAPHCD.CNFOUT(DSCONFIG) - 01.01 Columns 00001 00072
Command ===> Scroll ===> CSR
001146 #--
001147 # HCD Plug-in
001148 #--
001149 plugin clientOperation CBDMLPLG hcd_plginit
001150 "suffix cn=HCD
001151 MinHcdInstances 1
001152 MaxHcdInstances 3
001153 AllowSwitchTime 30
001154 ForceSwitchTime 600
001155 TransactionRollbackTime 3600
001156 Trace off
001157 Profile off
001158 TraceDsnSuffix HCD.TRACE
001159 ProfileDsnSuffix HCD.PROFILE
001160 TransformAttributeValues off"
001161
001162 # ===
Chapter 12. Using LDAP and HCD 263

hcdIodfId=RGREEN.IODF53.WORK,cn=HCD
objectclass=hcdIodf
hcdiodfid=RGREEN.IODF53.WORK
hcdiodftype=W
hcdblocksallocated=2216
hcdblocksused=1960
hcdcreationdate=2010-07-13
hcdlastupdatedate=2010-07-13
hcdlastupdatetime=15:55:41

12.3.3 Integrating the LDAP schema for HCD

HCD is shipped with a predefined schema file containing schema definitions that the IBM
Tivoli Directory Server for z/OS needs to evaluate incoming HCD requests issued through the
LDAP interface. You must integrate this file into the IBM Tivoli Directory Server for z/OS after
this server has been successfully installed and set up. This integration step should be
performed by the person who is responsible for the IBM Tivoli Directory Server for z/OS
(usually the system administrator). The name of the HCD schema file is schema.hcd.ldif and
is located in the /usr/lpp/hcd/etc directory. Use the ldapmodify command to load the
schema:

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f
/usr/lpp/hcd/etc/schema.hcd.ldif

See IBM Tivoli Directory Server Client Programming for z/OS V1R12.0, SA23-2214-04 for
more information about ldapmodify.

12.4 Using HCD and LDAP

IODF updates, such as adding, deleting, or changing devices, control units, or operating
system configs can be performed through LDAP using the standard LDAP commands
ldapadd, ldapsearch, ldapdelete, and ldapmodify. Complex updates can be done using
applications using the client programming interface. The HCD LDAP plug-in supports the
concept of a transaction, which is a series of individual requests that are executed as a
whole. If one of the requests in the transaction fails, then none of the requests are executed.
This provides a mechanism for data consistency.

12.4.1 Authentication

To access an IODF through LDAP, you must authenticate yourself to the RACF back end. This
is done by specifying a bind DN and a password, using the following format:

-D “racfid=user_ID,profileType=user,suffix”

user_ID is a valid RACF user with authority to use HCD, and suffix is the suffix specified in the
IBM Tivoli Directory Server configuration file. For example, in the ldapsearch command
shown earlier to verify operation, this was specified as:

-D "racfid=RGREEN,profiletype=user,cn=racf,o=ibm,c=us"

Also, the correct password for user_ID must be specified with the -w option.
264 IBM Tivoli Directory Server for z/OS

A valid IODF dataset must be specified in the following format:

-b “hcdIodfId=Iodf_dataset_name,suffix”

Iodf_dataset_name is the name of the MVS dataset containing the IODF, and suffix is the
suffix for the HCD LDAP plug-in specified in the IBM Tivoli Directory Server configuration file.
If you took the default, then suffix is cn=HCD.

In our example ldapsearch command, the IODF dataset is specified as:

-b “hcdIodfId=RGREEN.IODF53.WORK,cn=HCD”

12.4.2 Usage examples

The following are basic examples that show using ldap commands to manipulate an IODF.
Appendix F. IODF data model in the Hardware Configuration Definition Users Guide,
SC33-7988 describes the IODF object hierarchy below the HCD plug-in suffix in terms of
object class and attribute definitions. Usage examples can be found in that book.

We provide a single example of adding a control unit.

Example: Adding a control unit to an IODF
In this example, a control unit of type 3990 is added to the IODF. The CU number is 0100. The
definition is in an MVS dataset.

First create a data set member with the following content:

dn:hcdControlUnitNumber=0100,hcdIodfId=RGREEN.IODF53.WORK,cn=HCD
changetype:add
objectclass:hcdControlUnit
hcdControlUnitNumber:0100
hcdUnit:3990
hcdConnPorts:AE.23

Then call the LDAP command line utility ldapadd to add the control unit, with the -f parameter
pointing the file that has the definition for the control unit:

ldapadd -h 127.0.0.1 -p 5389 -D
"racfid=RGREEN,profiletype=user,cn=racf,o=ibm,c=us" -w "passw0rd" -f
//'HCD.WORK(ADDCU100)'

Expect the following output:

adding new entry hcdControlUnitNumber=0100,hcdIodfId=RGREEN.IODF53.WORK,cn=HCD
Chapter 12. Using LDAP and HCD 265

266 IBM Tivoli Directory Server for z/OS

Chapter 13. Monitoring

Every component within an IT environment should have an overall performance objective or
agreement such as a Service Level Objective (SLO) or a Service Level Agreement (SLA).
With IBM Tivoli Directory Server for z/OS, like many applications that are transaction based, it
can be difficult to predict its operation and performance on paper. Until it is configured, the
data is loaded and the actual client transactions applied, only rules of thumb can be used.
The size of the directory objects (fat versus thin), transaction mix (number of clients, adds,
modifies, searches, and so on) and the types and quantities of results that must be returned
to the clients can vary significantly throughout its service life.

In addition, because the Directory Server is normally a data store/back end for user-facing
applications, setting baselines (SLA/Os) and continuously monitoring it to ensure it meets the
required performance level can prevent both finger pointing and lost time in problem
determination.

This chapter discusses server monitoring, and managing and monitoring advanced
replication in z/OS LDAP.

13
© Copyright IBM Corp. 2011. All rights reserved. 267

13.1 Server monitoring

An LDAP administrator can retrieve server statistics from the server by executing a search
request with a search base of cn=monitor and a filter of objectclass=*. No other search
base and filter are accepted, but any of the possible scope values are accepted.

The z/OS LDAP server presents monitor data in multiple distinguished name entries:

1. cn=monitor: This entry returns server-wide statistics.

2. cn=back endXXXX,cn=monitor: This entry returns statistics of configured back end whose
name is XXXX, and XXXX is the back end name specified on the database configuration
option in the server configuration file. If no back end name is specified on the database
configuration option, the LDAP server generates a name.

3. cn=back endMonitor,cn=monitor: This entry returns statistics for the back end handling
cn=monitor searches.

4. cn=back endSchema,cn=monitor: This entry returns statistics for the back end managing
the schema.

5. cn=back endRootDSE,cn=monitor: This entry returns statistics for the back end handling
root DSE searches.

6. cn=operations,cn=monitor: This entry returns statistics of search patterns, but only if the
operations monitor is on (the operationsMonitorSize configuration option is not set to
zero).

With a valid scope of:

� base: Only the cn=monitor entry is returned containing server-wide statistics.

� one: All back end-specific entries are returned and the operations monitor entry is returned
(if configured).

� sub: All entries are returned, including the operations monitor entry (if configured).

13.1.1 Monitor search with scope=sub

The following ldapsearch command returns complete LDAP server statistics:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b cn=monitor
objectclass=*

The monitor search returns some of the following attributes of the server:

� cn: monitor

� version: z/OS Version 1 Release 12 IBM Tivoli Directory Server LDAP Server

� livethreads: The number of worker threads being used by the server

� maxconnections: The maximum number of active connections allowed

� sysmaxconnections: The system-defined maximum number of connections

� totalconnections: The total number of connections since the server was started

� currentconnections: The number of active connections

Note: The statistics reported on the cn=monitor subtree search can also be displayed by
using the LDAP server DISPLAY operator modify command, and operations monitor
statistics cannot be displayed by using the DISPLAY operator command.
268 IBM Tivoli Directory Server for z/OS

� maxreachedconnections: The high water mark for concurrent client connections.

� opsinitiated: The number of operations initiated

� opscompleted: The number of operations completed

� abandonsrequested: The number of abandon operations requested

� abandonscompleted: The number of abandon operations completed

� addsrequested: The number of add operations requested

� addscompleted: The number of add operations completed

� bindsrequested: The number of bind operations requested

� bindscompleted: The number of bind operations completed

� comparesrequested: The number of compare operations requested

� comparescompleted: The number of compare operations completed

� deletesrequested: The number of delete operations requested

� deletescompleted: The number of delete operations completed

� extopsrequested: The number of extended operations requested

� extopscompleted: The number of extended operations completed

� modifiesrequested: The number of modify operations requested

� modifiescompleted: The number of modify operations completed

� modifydnsrequested: The number of modify DN operations requested

� modifydnscompleted: The number of modify DN operations completed

� searchesrequested: The number of search operations requested

� searchescompleted: The number of search operations completed

� unbindsrequested: The number of unbind operations requested

� unbindscompleted: The number of unbind operations completed

� unknownopsrequested: The number of unknown operations requested

� unknownopscompleted: The number of unknown operations completed

� entriessent: The number of search entries sent

� bytessent: The number of bytes sent

� searchreferencessent: The number of search references sent

� currenttime: The current date and time on the server

� starttime: The date and time the server was started

� resettime: The date and time the server were last reset

� resets: The number of times statistics were reset

� namingcontexts: The suffixes managed by this back end

� filter_cache_size: The configured maximum size (in entries) of the Filter cache

� filter_cache_current: The current size (in entries) of the Filter cache

� filter_cache_hit: The number of lookups that have hit the Filter cache

� filter_cache_miss: The percent of lookups that have hit the Filter cache

� filter_cache_percent_hit: The percent of lookups that have hit the Filter cache

� filter_cache_refresh: The number of times the Filter cache was invalidated
Chapter 13. Monitoring 269

� filter_cache_refresh_avgsize: The average number of entries in the Filter cache at
invalidation

� filter_cache_bypass_limit: The configured Filter cache bypass limit

� dn_cache_size: The configured maximum size (in entries) of the DN cache (dnCacheSize)

� dn_cache_current: The current size (in entries) of the DN cache

� dn_cache_hit: The number of lookups that have hit the DN cache

� dn_cache_miss: The number of lookups that have missed the DN cache

� dn_cache_percent_hit: The percent of lookups that have hit the DN cache

� dn_cache_refresh: The number of times the DN cache was invalidated

� dn_cache_refresh_avgsize: The average number of entries in the DN cache at invalidation

� acl_source_cache_size: The configured maximum size (in entries) of the ACL Source
cache (aclSourceCacheSize)

� acl_source_cache_current: The current size (in entries) of the ACL Source cache

� acl_source_cache_hit: The number of lookups that have hit the ACL Source cache

� acl_source_cache_miss: The number of lookups that have missed the ACL Source cache

� acl_source_cache_percent_hit: The percent of lookups that have hit the ACL Source
cache

� acl_source_cache_refresh: The number of times the ACL Source cache was invalidated

� acl_source_cache_refresh_avgsize: The average number of entries in the ACL Source
cache at invalidation

� searchStats: The search statistics for search patterns based on the search parameters
(search base, scope, filter, and attributes to be returned) and status (success or failure)

� numtrimmed: The number of search patterns trimmed from the operations monitor

� entries: The total number of search patterns in the operations monitor entry

� cachesize: The configured maximum number of search patterns in the operations monitor

Example:

ldapsearch -D "cn=LDAP Admin, o=ibm, c=us" -w sec001ret -p 4389 -s sub -b
cn=monitor objectclass=*

You should receive output similar to the following:

cn=monitor
version=z/OS Version 1 Release 12 IBM Tivoli Directory Server LDAP Server
livethreads=10
maxconnections=65517
sysmaxconnections=65535
totalconnections=7
currentconnections=1
maxreachedconnections=1
opsinitiated=16
opscompleted=15
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=7
bindscompleted=7
270 IBM Tivoli Directory Server for z/OS

comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=5
searchescompleted=4
unbindsrequested=4
unbindscompleted=4
unknownopsrequested=0
unknownopscompleted=0
entriessent=19
bytessent=16523
searchreferencessent=0
currenttime=Mon Jul 12 18:22:56.255129 2010
starttime=Mon Jul 12 18:18:13.872139 2010
resettime=Mon Jul 12 18:18:13.872139 2010
resets=0

cn=back endcdbm,cn=monitor
namingcontexts=CN=CONFIGURATION
namingcontexts=CN=IBMPOLICIES
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=0
bytessent=0
searchreferencessent=0
filter_cache_size=5000
Chapter 13. Monitoring 271

filter_cache_current=9
filter_cache_hit=0
filter_cache_miss=9
filter_cache_percent_hit=0.00%
filter_cache_refresh=0
filter_cache_refresh_avgsize=0
filter_cache_bypass_limit=100

cn=back endGDBML,cn=monitor
namingcontexts=CN=CHANGELOG
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=0
bytessent=0
searchreferencessent=0
filter_cache_size=0
filter_cache_current=0
filter_cache_hit=0
filter_cache_miss=0
filter_cache_percent_hit=0.00%
filter_cache_refresh=0
filter_cache_refresh_avgsize=0
filter_cache_bypass_limit=100

cn=back endLDBMDB1,cn=monitor
namingcontexts=O=IBM,C=US
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
272 IBM Tivoli Directory Server for z/OS

bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=0
bytessent=0
searchreferencessent=0
filter_cache_size=5000
filter_cache_current=0
filter_cache_hit=0
filter_cache_miss=0
filter_cache_percent_hit=0.00%
filter_cache_refresh=0
filter_cache_refresh_avgsize=0
filter_cache_bypass_limit=100

cn=back endSDBM-0001,cn=monitor
namingcontexts=CN=RACF,O=IBM,C=IN
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
Chapter 13. Monitoring 273

entriessent=0
bytessent=0
searchreferencessent=0

cn=back endMonitor,cn=monitor
namingcontexts=CN=MONITOR
opsinitiated=5
opscompleted=4
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=5
searchescompleted=4
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=24
bytessent=21361
searchreferencessent=0

cn=back endSchema,cn=monitor
namingcontexts=CN=SCHEMA
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
274 IBM Tivoli Directory Server for z/OS

searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=0
bytessent=0
searchreferencessent=0
dn_cache_size=1000
dn_cache_current=70
dn_cache_hit=40
dn_cache_miss=69
dn_cache_percent_hit=36.70%
dn_cache_refresh=0
dn_cache_refresh_avgsize=0

cn=back endRootDSE,cn=monitor
opsinitiated=0
opscompleted=0
abandonsrequested=0
abandonscompleted=0
addsrequested=0
addscompleted=0
bindsrequested=0
bindscompleted=0
comparesrequested=0
comparescompleted=0
deletesrequested=0
deletescompleted=0
extopsrequested=0
extopscompleted=0
modifiesrequested=0
modifiescompleted=0
modifydnsrequested=0
modifydnscompleted=0
searchesrequested=0
searchescompleted=0
unbindsrequested=0
unbindscompleted=0
unknownopsrequested=0
unknownopscompleted=0
entriessent=0
bytessent=0
searchreferencessent=0

cn=operations,cn=monitor
searchStats=ldap:///CN=_v??sub?(objectclass=*)?success,numOps=1,avg=278,rate=0,max
Rate=0,maxRateTimeStamp=20100712182226.3464
90Z,createTimeStamp=20100712182226.346490Z,ID=2
searchStats=ldap:///CN=_v??base?(objectclass=*)?success,numOps=2,avg=94,rate=0,max
Rate=1,maxRateTimeStamp=20100712182132.3273
66Z,createTimeStamp=20100712181933.177832Z,ID=0
searchStats=ldap:///CN=_v??one?(objectclass=*)?success,numOps=1,avg=243,rate=0,max
Rate=1,maxRateTimeStamp=20100712182002.0694
96Z,createTimeStamp=20100712182002.069496Z,ID=1
Chapter 13. Monitoring 275

currenttimestamp=20100712182256.255319Z
resettimestamp=20100712181814.466217Z
resets=0
numtrimmed=0
entries=3
cachesize=1000

13.2 Monitoring and managing advanced replication

This topic discusses the use of the z/OS IBM Tivoli Directory Server client utilities to check
the current advanced replication status for each of your configured replication agreements.

13.2.1 Showing advanced replication configuration information:

All replication related information is available using ldapsearch command. To retrieve
replication topology information from all configured suffixes, you can do a subtree scope
search with NULL base, and filter as objectclass=ibm-repl*. All replication related data is
stored with objectclass of type ibm-repl* such as ibm-replicationContext,
ibm-replicasubentry, and many more.

ldapsearch -L -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-repl*

The -L option displays data in LDIF format.

Example:

ldapsearch -L -D cn=root -w root -p 13389 -s sub -b "" objectclass=ibm-repl*

You should receive output similar to the following:

dn: o=ibm, c=us
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm

dn: ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicagroup: default

dn: ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaserverid: ldap8103
ibm-replicationserverismaster: true
cn: Peer2
description: Subentry for Peer2.

dn: ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaserverid: ldap8003
ibm-replicationserverismaster: true
276 IBM Tivoli Directory Server for z/OS

cn: Peer1
description: Subentry for Peer1.

dn: cn=Peer1, ibm-replicaServerId=ldap8103,ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer1
ibm-replicaconsumerid: ldap8003
ibm-replicaurl: ldap://WTSC80.ITSO.IBM.COM:13389
ibm-replicacredentialsdn: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer2 to peer1.

dn: cn=Peer2, ibm-replicaServerId=ldap8003,ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer2
ibm-replicaconsumerid: ldap8103
ibm-replicaurl: ldap://WTSC81.ITSO.IBM.COM:13389
ibm-replicacredentialsdn: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer1 to peer2.

dn: cn=ReplicaBindCredentials, o=ibm, c=us
objectclass: ibm-replicationCredentialsSimple
objectclass: ibm-replicationcredentials
objectclass: top
cn: ReplicaBindCredentials
description: Bind Credentials on peer1 and peer2 to bind to each other.

If the ldapsearch command does not return any result with correct input values, then
advanced replication is not configured in the LDAP server.

Similarly, you can retrieve replication topology information from a specific configured suffix or
specific replication context. You just need to change base to the configured suffix or
replication context entry. Use the following ldapsearch command to do so:

ldapsearch -L -h ldaphost -p port -D adminDN -w passwd -s sub -b "configured
suffix or replication context entry" objectclass=ibm-repl*

The -L option displays data in LDIF format.

For example:

ldapsearch -L -D cn=root -w root -p 13389 -s sub -b "o=ibm,c=us"
objectclass=ibm-repl*

You should receive output similar to the following:

dn: o=ibm, c=us
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: ibm

dn: ibm-replicaGroup=default, o=ibm, c=us

Note: Output of the ldapsearch command can vary from one environment to another.
Chapter 13. Monitoring 277

objectclass: top
objectclass: ibm-replicaGroup
ibm-replicagroup: default

dn: ibm-replicaServerId=ldap8103,ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaserverid: ldap8103
ibm-replicationserverismaster: true
cn: Peer2
description: Subentry for Peer2.

dn: ibm-replicaServerId=ldap8003,ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaserverid: ldap8003
ibm-replicationserverismaster: true
cn: Peer1
description: Subentry for Peer1.

dn: cn=Peer1, ibm-replicaServerId=ldap8103,ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer1
ibm-replicaconsumerid: ldap8003
ibm-replicaurl: ldap://WTSC80.ITSO.IBM.COM:13389
ibm-replicacredentialsdn: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer2 to peer1.

dn: cn=Peer2, ibm-replicaServerId=ldap8003,ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Peer2
ibm-replicaconsumerid: ldap8103
ibm-replicaurl: ldap://WTSC81.ITSO.IBM.COM:13389
ibm-replicacredentialsdn: cn=ReplicaBindCredentials, o=ibm, c=us
description: Replication agreement from peer1 to peer2.

dn: cn=ReplicaBindCredentials, o=ibm, c=us
objectclass: ibm-replicationCredentialsSimple
objectclass: ibm-replicationcredentials
objectclass: top
cn: ReplicaBindCredentials
description: Bind Credentials on peer1 and peer2 to bind to each other.

If the ldapsearch command does not return any result with correct input values, then
advanced replication is not configured in the given suffix entry.

The objects returned will include following:

� objectclass: ibm-replicationContext: The entry for the subtree that is replicated to
other replica servers.

Note: Output of the ldapsearch command can vary from one environment to another.
278 IBM Tivoli Directory Server for z/OS

� objectclass: ibm-replicaGroup: The container for replication related configuration data.

� objectclass: ibm-replicaSubentry: These types of entries declare the servers that will
be taking part in the replication topology. Each server participating in the topology can
have one replica subentry, and replica subentries contain a server ID attribute and an
indication of the role the server plays (ibm-replicationServerIsMaster).

� objectclass: ibm-replicationAgreement: These types of entries occur under replica
subentries. When these entries appear under a specific server's replica subentry, they
define a replication agreement from that server to another server in the topology.

Each replication agreement contains the following information:

– ibm-replicaConsumerId: The server ID of the consumer server.

– ibm-replicaURL: The LDAP URL of the consumer server.

– ibm-replicaCredentialsDN: The DN of the entry containing the credentials used to
bind to the consumer.

Agreements can also contain the following:

– ibm-replicaScheduleDN: The DN of a schedule entry that determines when replication
updates are sent to this consumer. If no schedule is specified, replication defaults to
immediate mode.

– ibm-replicationOnHold: A boolean indicating that replication to this consumer is
suspended (or not).

– ibm-replicationExcludedCapability: The values of this attribute list OIDs of features
that the consumer does not support. Operations related to these capabilities are then
excluded from the updates sent to this consumer.

– ibm-replicationMethod: Single threaded or multi-threaded.

– ibm-replicationConsumerConnections: For a replication agreement using the
single-threaded replication method, the number of consumer connections is always
one, so the attribute value is ignored. For an agreement using multi-threaded
replication, the number of connections can be configured from 1 to 32. If no value is
specified on the agreement, the number of consumer connections is set to one.

– ibm-replicationWaitOnDependency: Indicates whether the server will await the
completion of the replication of dependencies prior to sending a replication update to a
consumer.

– ibm-replicationFilterDN: A DN identifying the filter entry.

13.2.2 Extended operations related to advanced replication

A set of extended operations has been added to allow administrators to manage advanced
replication (ldapexop was shipped in z/OS V1R11 for advanced replication). Using extended
operations an administrator can achieve the following:

� Distribute configured replication topology to all consumers.

� Manage the replication queues.

� Manage any replication related errors.

� Manage the quiesce state of the replication context.

� Resume and suspend replication processing.

The ldapexop utility provides advanced replication extended operations. The ldapexop
command line utility require the user to bind with the LDAP server administrator's DN and
password.
Chapter 13. Monitoring 279

The following advanced replication extended operations are available on the ldapexop utility:

� repltopology: This extended operation distributes advanced replication topology-related
entries to all consumers. It then cascades this extended operation to all the consumers.
This results in a cascading of the topology-related entries to all servers that participate in
replication for a given replication context.

� controlqueue: Skips one or all pending changes in the advanced replication queue.

� controlrepl: Suspends or resumes all advanced replication-related activity.

� cascrepl: Allows you to quiesce, unquiesce, or force immediate replication of all pending
changes. When the extended operation is performed on the supplier that this extended
operation was issued against, it proceeds to cascade the extended operation to one or all
of its consumers.

� controlreplerr: Deletes, retries, or shows any of the failed replication operations that
resulted by an unsuccessful return code returned to the supplier from the consumer.

� quiesce: Allows you to quiesce or unquiesce a replication context.

13.2.3 Monitoring advanced replication status

In z/OS IBM Tivoli Directory Server, an LDAP administrator can monitor the advanced
replication processing and troubleshoot problems using LDAP search requests to retrieve
operational attributes available for the roots of the replication contexts and replication
agreements.

Operational attributes of ibm-replicationContext:
Operational attributes for the replication context can be retrieved using the following
ldapsearch command:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationContext attribute

Here attribute needs to be replace with any of the following operational attributes:

� ibm-replicationThisSeverIsMaster: Using this boolean operational attribute one can find
whether the server is the master of the replication context. If set to true, the server is the
master of the replication context. If set to false, the server is a not the master of the
replication context. use the following ldapsearch command to retry
ibm-replicationThisSeverIsMaster attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationContext ibm-replicationThisSeverIsMaster

� ibm-replicationIsQuiesced: Using this boolean operational attribute one can find
whether the replication context is quiesced. If set to true, the replication context is
quiesced. If set to false, the replication context is not quiesced. Use the following
ldapsearch command to retry ibm-replicationIsQuiesced attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationContext ibm-replicationIsQuiesced
280 IBM Tivoli Directory Server for z/OS

Operational attributes of ibm-replicationAgreement:
Operational attributes for the replication agreement can be retrieved using the following
ldapsearch command:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement attribute

Here attribute needs to be replace with any of the following operational attributes:

� ibm-replicationChangeLDIF: Retrieves the LDIF representation of the next pending
change that has not yet been replicated and has resulted in advanced replication being
stalled to the consumer server. If there is not a stalled replication change, the value is N/A.
Use the following ldapsearch command to retry the ibm-replicationChangeLDIF attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationChangeLDIF

� ibm-replicationFailedChangeCount: Displays the number of advanced replication
operations that have failed in this replication agreement. This number is shared among all
replication agreement entries on the back end level by the ibm-slapdReplMaxErrors
attribute in the CDBM back end configuration entry cn=Replication, cn=Configuration.
Use the following ldapsearch command to retry the ibm-replicationFailedChangeCount
attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationFailedChangeCount

� ibm-replicationFailedChanges: Lists all the logged replication operations that have
failed. The number of attribute values is shared among all replication agreement entries on
the back end level by the ibm-slapdReplMaxErrors attribute in the CDBM back end
configuration entry cn=Replication, cn=Configuration. Use the following ldapsearch
command to retry the ibm-replicationFailedChanges attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationFailedChanges

� ibm-replicationLastActivationTime: Retrieves the Zulu format time stamp when
advanced replication actively began replicating queued updates. Use the following
ldapsearch command to retry the ibm-replicationLastActivationTime attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationLastActivationTime

� ibm-replicationLastChangeID: Retrieves the replication change ID of the last successfully
completed advanced replication update. Use the following ldapsearch command to retry
the ibm-replicationLastChangeID attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationLastChangeID

� ibm-replicationLastFinishTime: Retrieves the Zulu format time stamp when advanced
replication updates in the queue were completed and the server began to waits for more
operations to appear in the advanced replication queue. Use the following ldapsearch
command to retry the ibm-replicationLastFinishTime attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationLastFinishTime

� ibm-replicationLastResult: Displays the result from the last advanced replication
operation or connection attempt to a consumer server. Use the following ldapsearch
command to retry the ibm-replicationLastResult attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationLastResult
Chapter 13. Monitoring 281

� ibm-replicationLastResultAdditional: Displays the descriptive message that
supplements the return code message from the last replication attempt. Use the following
ldapsearch command to retry the ibm-replicationLastResultAdditional attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationLastResultAdditional

� ibm-replicationNextTime: Displays the Zulu format time stamp of the next time advanced
replication would begin if pending changes existed. Use the following ldapsearch
command to retry the ibm-replicationNextTime attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationNextTime

� ibm-replicationPendingChangeCount: Displays the number of replication operations that
are waiting to be replicated to a consumer server. Use the following ldapsearch command
to retry the ibm-replicationPendingChangeCount attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationPendingChangeCount

� ibm-replicationPendingChanges: Lists all changes waiting to be replication to a
consumer server. Use the following ldapsearch command to retry the
ibm-replicationPendingChanges attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationPendingChanges

� ibm-replicationState: Displays the current state of the advanced replication queue. It
has one of the following values:

– active: Indicates that advanced replication is occurring from this replication
agreement.

– binding: Indicates that the replication agreement is in the process of authenticating
with the consumer server.

– connecting: Indicates that the replication agreement is attempting to contact the
consumer server.

– on hold: Indicates that the replication agreement is on hold.

– ready: Indicates immediate replication mode, ready to send updates as they occur.

– retrying: Indicates that the server is retrying the current change every 60 seconds
until it succeeds.

– suspended: Indicates that the replication agreement is suspended.

– waiting: Indicates that the replication agreement is currently waiting for the next
scheduled replication to occur.

Use the following ldapsearch command to retry the ibm-replicationState attribute:

ldapsearch -h ldaphost -p port -D adminDN -w passwd -s sub -b ""
objectclass=ibm-replicationAgreement ibm-replicationState

13.3 Using activity logging

The activity log keeps a record of the add, compare, delete, extended operation, modify,
modifydn, and search requests that were attempted and performed in the LDAP server. The
activity log also shows the time stamp of when a client binds and unbinds from the directory,
and all other operations it is configured to log. These measurements allow the administrator
to identify LDAP operations that take a long time to complete.
282 IBM Tivoli Directory Server for z/OS

The system administrator can use the activities stored in the activity log to check for
suspicious patterns of activity that might indicate security violations. If security is violated, the
activity log can be used to determine how and when the problem occurred, and perhaps the
amount of damage done. This information is useful both for recovery from the violation and for
development of better security measures to prevent future problems.

The LDAP server activity logging support has a number of features that allow the LDAP
administrator to customize the client activity to be logged. These features include:

� Logging the start or end of a client operation.

� Logging only client update operations (add, delete, modify, extended operations, and
modifydn).

� Logging all client operations (add, bind, compare, delete, extended operations, modify,
modifydn, search, and unbind).

� Logging messages generated by the server.

� Logging hourly client activity summary statistics.

� Logging only requests from certain client IP addresses.

� Activity log file archiving or rollover that copies the current activity log file to another
location for load analysis.

Activity log configuration
The logfile configuration option in the global section of the LDAP server configuration file
specifies the location of the z/OS UNIX System Services file or dataset where activity log
records are written. If a z/OS UNIX System Services file is specified for the logfile
configuration option, a fully qualified name must be specified.

For example:

logfile /u/npatel/logs/ldap.activity.log

The LDAP server supports automatic activity log file rollover or archiving based on the time of
day or the size of the log file. The activity log archiving is only supported when the log file is a
z/OS UNIX System Services file or a GDG (Generated Data Group) dataset.

� When the logFileRolloverTOD configuration option has a value between 00:00 and
23:59, it indicates the time each day when the current activity log file is archived.

� When the logFileRolloverSize configuration option has a non-zero size, it indicates the
size in bytes, megabytes, kilobytes, or gigabytes that the activity log file is required to have
reached before it is archived or rolled over.

If the logfile is a z/OS UNIX System Services file, and the activity log file reaches one of these
thresholds, the following occur:

� The current activity log file is renamed with the current Zulu time stamp appended to the
end of the file name.

� If the logFileRolloverDirectory configuration option is specified, then the archived log
file is moved to that directory. Otherwise the archived activity log file is left in the same
directory as the current activity log file.

If the logfile and logFileRolloverDirectory configuration options both specify a Generated
Data Group (GDG) dataset, the current activity log file is closed and a new dataset generation

Note: If the location is the z/OS UNIX System Services file, the LDAP instance owner must
have read and write permission to the specified location and file.
Chapter 13. Monitoring 283

is created in the base specified by the logFileRolloverDirectory configuration option. The
new dataset generation is used for the activity log file until the next rollover or archiving
occurs.

By default the z/OS LDAP server records all client operations if activity logging is enabled.
However, there is a way to track specific clients from specific IP addresses by using the
logFileFilter parameter in the configuration file. The default setting for the logFileFilter
parameter allows all client activity to be logged in the activity log file. For example, the server
can be configured to only log client requests from IP address 1.2.3.4 by specifying
logFileFilter (ibm-filterIP=1.2.3.4).

Refer to chapter 9 of z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for
z/OS, SC23-5191-05 for more information about each of these steps.

13.4 Operations monitor

Using operations monitor, you can monitor statistics of search requests with predefined
search patterns.

The global section's operationsMonitor configuration option determines which types of
search patterns are monitored. The operations monitor supports two types of search
patterns:

- searchStats

A searchStats pattern consists of the search parameters like search base, scope, filter, and
attributes to be returned and status (success or failure). Output of this search pattern is useful
in evaluating performance of search patterns. If operationsMonitor is set to ipAny (the
default), then only searchStats patterns are monitored.

- searchIPStats

A searchIPStats pattern consists of client IP address along with the same elements as the
searchStats pattern. Output of this search pattern is useful in tracking clients activity, which
can be used in internal auditing. If operationsMonitor set to ip, then only searchIPStats
patterns are monitored.

If operationsMonitor is set to any, the operations monitor monitors both searchStats and
searchIPStats patterns.

Note: Activity log file rollover or archiving is not supported when the logfile or
logFileRolloverDirectory configuration options specify a partitioned dataset, sequential
dataset, or a DD card.

Note: Multiple LDAP servers writing to the same activity log is not supported. If running in
multi-server mode and the same configuration file is shared among the LDAP servers,
separate logfile and logfileRolloverDirectory configuration options can be specified in a
system specific include file for each LDAP server.
284 IBM Tivoli Directory Server for z/OS

13.5 Audit logging

Audit logging is used to improve the security of the directory server. If security is violated, the
audit log can be used to determine how and when the problem occurred and perhaps the
amount of damage done. IBM Tivoli Directory Server for z/OS server can be configured to
generate SMF type-83 subtype three audit records. The SMF type-83 log records containing
LDAP events can be unloaded by using the RACF SMF data Unload utility for further analysis
using auditing tools. These audit records contain information provided on LDAP client
operation requests. The IBM Tivoli Directory Server for z/OS server can be configured to write
audit records when:

1. The operation successfully completes

2. The operation fails

3. For when an operation successfully completes and when an operation fails

Auditing can be turned ON or OFF by editing the audit parameter. This parameter specifies
which operations are to be audited and the associated audit level. This option can be
specified multiple times, once to turn auditing on or off and one or more times for each audit
level to specify the operations to audit for that level. Multiple operations can be specified for a
level by either putting a + between them on the audit option, or by specifying multiple audit
options with the same level.

Operations can be audited all the time or only when they fail. The following audit levels are
supported:

none An LDAP audit record is not generated for the specified operations

all An LDAP audit record is generated for the specified operations.

error An LDAP audit record is generated for the specified operations when
they fail.

When the LDAP server is running, auditing can be turned on or off and the specifications of
which operations are to be audited and their associated audit level can be changed using the
LDAP server AUDIT operator modify command. The format of the AUDIT operator modify
command is:

f ldap8001,audit on | off | all,operations | error,operations | none,operations

The supported values for operations can be one or more of add, bind, compare, connect,
delete, disconnect, exop, modify, modifydn, search, and unbind. If an operation is specified in
more than one level, the last level is used for the operation. If an operation is not specified in
any level, the level defaults to none for that operation.

The current audit settings can be displayed using the following LDAP server DISPLAY
operator modify command:

f ldap8001,display audit

Refer to appendix E of z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for
z/OS, SC23-5191-05 for more information about SMF records.

Note: SMF type-83 subtype 3 audit records are not created by the LDAP server when a
request is handled by a plug-in.
Chapter 13. Monitoring 285

286 IBM Tivoli Directory Server for z/OS

Chapter 14. Debugging

This chapter discusses the various debugging and tracing methods provided by IBM Tivoli
Directory Server for z/OS.

14
© Copyright IBM Corp. 2011. All rights reserved. 287

14.1 Overview

The process of configuring IBM Tivoli Directory Server using dsconfig command, for various
reasons, is not always error free. The directory administrator can encounter problems with
configuring various back ends, or the server might fail to start for no obvious reason.

Debugging is the process of finding the cause of the problem using various tools and
techniques. z/OS IBM Tivoli Directory Server provides administrators with command line
options, tools, and detailed log files that help find the cause of the problem.

14.2 Debugging problems

The following sections describe how to debug configuration problems, directory server errors,
and directory server debug modes.

14.2.1 Debugging configuration problems

If the configuration fails, you have no choice but to resolve the issue. The basic steps towards
making the IBM Tivoli Directory Server up and running are:

� Edit ds.profile, ds.slapd.profile, ds.db2.profile and ds.racf.profile files.

� Execute dsconfig command.

Editing profile files is fairly straightforward and is less error prone. However, any mistake in
the editing leads error in dsconfig execution. If dsconfig fails, the following sources can be
checked to find the cause of the failure:

1. Output

The dsconfig command is started from a console command line prompt. As the
configuration progresses, status messages (and limited error messages) are displayed in
the associated console window. If a problem occurs, the user should copy these
messages to the system clipboard and then save them in a file for the support teams.

2. Trace file

If the above source is not sufficient for determining the cause of the problem, you can use
dsconfig debugging. In dsconfig debugging, add option -d with the different debug levels.
The best option is to use FULL tracing level (-d 2147483647 or -d ALL). The dsconfig trace
output can be routed to a file to save for later perusal, as shown in the following example.

dsconfig -i ds.profile -d ALL -a yes > /tmp/dsconfig.output 2>&1

14.2.2 Using server debug modes

If the logs do not provide enough information to resolve a problem, you can run IBM Tivoli
Directory Server in a special debug mode that generates detailed information. The LDAP
server writes messages to stdout and stderr. Messages sent to stdout and stderr appear in
DD:DSOUT in the provided JCL when running the LDAP server. Output from the LDAP server
debug facility is directed to the file specified by the LDAP_DEBUG_FILENAME environment
variable. If this environment variable is not set, the output is sent to stdout, which is
redirected to DSOUT as explained above.

A table containing the various debug levels is provided in z/OS V1R12.0 IBM Tivoli Directory
Server Administration and Use for z/OS, SC23-5191-05.
288 IBM Tivoli Directory Server for z/OS

In z/OS IBM Tivoli Directory Server, the debug level for the server can be set at a number of
levels:

1. Using LDAP_DEBUG environment variable:

Before starting LDAP server you can enable trace tracing by exporting the LDAP_DEBUG
variable to different available trace levels.

Example:

export LDAP_DEBUG=2147483647
export LDAP_DEBUG_FILE=/tmp/trace.file

2. The -d parameter while starting the server

The debug level specified on this parameter replaces, adds to, or deletes from the
preceding debug level:

a. Replaces

The following example replaces the current debug level that is off or has been set by
the LDAP_DEBUG environment variable with the new debug level of only ERROR.

s ldap8001,parms='-d ERROR'

b. Adds

The following example adds the ERROR debug level to the current debug level that is
off or has been set by the LDAP_DEBUG environment variable.

s ldap8001,parms='-d +ERROR'

c. Deletes

The following example removes the ERROR debug level from the current debug level
that is off or has been set by the LDAP_DEBUG environment variable.

s ldap8001,parms='-d -ERROR'

3. Dynamic debugging

Use this facility when the LDAP server is running to dynamically turn the debugging facility
on and off. You can also replace the current debug levels, add to the current debug levels,
or remove current debug levels. The following command can be sent to the LDAP server
from the SDSF or the operator’s console.

f ldap8001,debug debug_level

Example:

f ldap8001,debug ALL

The debug_level is a mask that specifies the needed debug level. Debug information is
added to the output associated with the LDAP server.

14.2.3 Using CTRACE in-memory records

CTRACE is a component trace that provides an in-memory tracing interface common with
other z/OS products.

The LDAP CTRACE support captures the following LDAP server output:

� All messages

� All debug message output for the ERROR debug level, regardless of debug level setting

Note: If the command is entered from SDSF, it must be preceded by a slash (/)
Chapter 14. Debugging 289

� All debug message output for active debug levels.

By always capturing ERROR debug output, the CTRACE provides FFDC First Failure Data
Capture to assist in problem debugging without the performance overhead required by
running with the debug facility enabled.

When the debug facility is active, debug output by default goes to both the CTRACE
in-memory table and the output file indicated by the LDAP_DEBUG_FILENAME environment
variable (or stdout if the environment variable is not set). If
LDAP_DEBUG_FILENAME=CTRACE_ONLY is set, the debug output is only sent to
CTRACE. The LDAP server DEBUG operator modify command can be used when the LDAP
server is running to change whether debug output is sent only to CTRACE, or to both
CTRACE and the debug output file.

To direct debug output to both CTRACE and to the debug output file:

f dssrv,debug output=both

To direct debug output to CTRACE only:

f dssrv,debug output=memory

The LDAP CTRACE support is initialized during LDAP server startup. If CTRACE initialization
fails, an error message is issued and server startup continues without CTRACE support. The
LDAP CTRACE support cannot be turned off.

The default size of the storage used for the in-memory trace table is 1,024,000 bytes, which
holds about 8000 CTRACE entries. The table wraps when the end is encountered,
overwriting the oldest CTRACE entries. The trace table size can be increased by setting the
LDAP_CTRACE_BUFFSIZE environment variable before the LDAP server is started.

Note: There is no maximum trace table size except that imposed by the availability of
system storage.
290 IBM Tivoli Directory Server for z/OS

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2011. All rights reserved. 291

292 IBM Tivoli Directory Server for z/OS

Appendix A. Sample plug-in code

This appendix provides the source code for the plugin_sample.c example.

A

Note: The code supplied here has not been subjected to any formal IBM test and is
distributed on an “AS IS” basis without any warranty either express or implied. The
implementation of any of the techniques described or used herein is a customer
responsibility and depends on the customer’s operational environment. Although each item
might have been reviewed for accuracy in a specific situation and run in a specific
environment, there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own environments do
so at their own risk.
© Copyright IBM Corp. 2011. All rights reserved. 293

Source code for plugin_sample.c

The following is the plugin_sample.c code found in the /usr/lpp/ldap/examples directory.

Figure A-1 plugin_sample.c code

??=ifdef __COMPILER_VER__
 2 ??=pragma filetag ("IBM-1047")
 3 ??=endif
 4
 5 /***/
 6 /* THIS FILE CONTAINS SAMPLE CODE. IBM PROVIDES THIS CODE ON AN */
 7 /* 'AS IS' BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS */
 8 /* OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
 9 /* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
 10 /***/
 11
 12 /*
 13 * plugin_sample.c: Post-Operation Sample Plug-in
 14 *
 15 * This sample plug-in will test various SLAPI API routines. The
 16 * following C code creates a post-operation plug-in that logs
 17 * LDAP server BIND requests to a specified file.
 18 *
 19 * The compiled module needs to be located in a library in the load
 20 * list for the LDAP server, APF authorized and activated in the LDAP
 21 * server configuration file by adding the following option:
 22 *
 23 * plugin postOperation PLUGSAMP plugin_init "auditFilename"
 24 *
 25 * where auditFilename is the name of the file you wish to have
 26 * the log records written to; it must be within double
 27 * quotes.
 28 *
 29 * Restart the LDAP server. Use the debug parameter "PLUGIN" to
 30 * write sample plug-in trace messages to the LDAP server job log.
 31 *
 32 * example: START LDAPSRV,PARMS='-d PLUGIN'
 33 * where LDAPSRV is an example name and represents the name
 34 * of your LDAP server start-up procedure.
 35 *
 36 * Once started, browse your LDAP server job log for plug-in
 37 * initialization messages. Also, the plug-in creates an
 38 * empty audit file. Verify is was created.
 39 *
 40 * To test, perform an LDAP operation, binding to the LDAP server.
 41 * The plug-in will log the event in your audit file. The log record
 42 * will include the result code of the bind operation and the bind DN.
 43 *
 44 * example: Result: 0 DN: GoodDN
 45 * or : Result: 49 DN: BadDN
 46 *
 47 */
 48
294 IBM Tivoli Directory Server for z/OS

Figure A-2 plugin_sample.c code

#pragma export(plugin_init)
 50
 51 #include <stdio.h>
 52 #include <errno.h>
 53 #include <iconv.h>
 54 #include <slapi-plugin.h>
 55
 56 /*
 57 * Local plug-in functions
 58 */
 59 static int plugin_bind_fn(Slapi_PBlock * pb);
 60 static void plugin_close_fn(Slapi_PBlock * pb);
 61
 62 /*
 63 * Plug-in private data area
 64 */
 65 typedef struct _plugin_private {
 66 char eyeCatcher[4]; /* "PLUG" */
 67 pthread_mutex_t pluginMutex; /* Plugin mutex */
 68 iconv_t networkToLocal; /* UTF-8 to IBM-1047 */
 69 iconv_t localToNetwork; /* IBM-1047 to UTF-8 */
 70 char * auditFilename; /* Audit filename (EBCDIC) */
 71 FILE * auditFile; /* Audit file handle */
 72 } plugin_private;
 73
 74
 75 /*---*/
 76 /* This routine is called when the LDAP server initializes */
 77 /* plug-in. */
 78 /*---*/
 79 int plugin_init (
 80 Slapi_PBlock * pb)
 81 {
 82 int rc=0;
 83 int argc;
 84 char **argv;
 85 int type;
 86 plugin_private *pdata;
 87 char *instr, *outstr;
 88 size_t inlth, outlth;
 89
 90 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));
 91
Appendix A. Sample plug-in code 295

Figure A-3 plugin_sample.c code

 92 /*
 93 * Get the plug-in type
 94 */
 95 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_TYPE, &type);
 96 if (rc != 0) {
 97 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
 98 "Unable to get plug-in type: Error %d\n",errno);
 99 return -1;
100 }
101
102 if (type != SLAPI_PLUGIN_POSTOPERATION) {
103 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
104 "This sample only accepts a post-opeation type plug-in.\n");
105 return -1;
106 }
107
108 /*
109 * Get the count of plug-in initialization parameters
110 */
111 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_ARGC, &argc);
112 if (rc != 0) {
113 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
114 "Unable to get count of initialization parameters: Error %d\n",errno);
115 return -1;
116 }
117
118 if (argc != 1) {
119 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
120 "Post-operation parameter count %d is incorrect.\n", argc);
121 return -1;
122 }
123
124 /*
125 * Get the plug-in initialization parameters
126 */
127 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_ARGV, &argv);
128 if (rc != 0) {
129 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
130 "Unable to get initialization parameters: Error %d\n",errno);
131 return -1;
132 }
133 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Audit filename is ""%W"".", argv[0]));
296 IBM Tivoli Directory Server for z/OS

Figure A-4 plugin_sample.c code

134
135 /*
136 * Register the server termination function
137 */
138 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_CLOSE_FN, (void *)plugin_close_fn);
139 if (rc != 0) {
140 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
141 "Unable to register CLOSE function: error %d.\n", errno);
142 return -1;
143 }
144
145 /*
146 * Register the BIND function
147 */
148 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_BIND_FN, (void *)plugin_bind_fn);
149 if (rc != 0) {
150 slapi_log_error(LDAP_MSG_HIGH, "PLUGSAMP",
151 "Unable to register BIND function: error %d.\n", errno);
152 return -1;
153 }
154
155 /*
156 * Allocate the plug-in private data area, then initialize
157 */
158 pdata = (plugin_private *)slapi_ch_malloc(sizeof(plugin_private));
159 if (pdata == NULL) {
160 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
161 "Unable to allocate plug-in private data area.\n");
162 return -1;
163 }
164
165 memset(pdata, 0, sizeof(plugin_private));
166 memcpy(pdata->eyeCatcher, "PLUG", 4);
167 pdata->networkToLocal = (iconv_t)(-1);
168 pdata->localToNetwork = (iconv_t)(-1);
169
170 /*
171 * Set up a mutex
172 */
173 rc = pthread_mutex_init(&pdata->pluginMutex, NULL);
174 if (rc != 0) {
175 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
176 "Unable to create plugin mutex: Error %d\n", errno);
177 slapi_ch_free(pdata);
178 return -1;
179 }
180
Appendix A. Sample plug-in code 297

Figure A-5 plugin_sample.c code

181 /*
182 * Set up UTF-8 to IBM-1047 converter
183 */
184 pdata->networkToLocal = iconv_open("IBM-1047", "UTF-8");
185 if (pdata->networkToLocal == (iconv_t)(-1)) {
186 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
187 "Unable to open UTF-8 to IBM-1047 converter: Error %d\n", errno);
188 goto cleanup;
189 }
190
191 /*
192 * Set up IBM-1047 to UTF-8 converter
193 */
194 pdata->localToNetwork = iconv_open("UTF-8", "IBM-1047");
195 if (pdata->localToNetwork == (iconv_t)(-1)) {
196 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
197 "Unable to open IBM-1047 to UTF-8 converter: Error %d\n", errno);
198 goto cleanup;
199 }
200
201 /*
202 * Open the audit file
203 */
204 inlth = strlen(argv[0]);
205 outlth = inlth;
206 pdata->auditFilename = slapi_ch_malloc(outlth+1);
207 if (pdata->auditFilename == NULL) {
208 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
209 "Insufficient storage available");
210 goto cleanup;
211 }
212
213 instr = argv[0];
214 outstr = pdata->auditFilename;
215 iconv(pdata->networkToLocal, &instr, &inlth, &outstr, &outlth);
216 *outstr = 0x00;
217
218 pdata->auditFile = fopen(pdata->auditFilename, "a");
219 if (pdata->auditFile == NULL) {
220 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
221 "Unable to open audit file '%s' for append: %s\n",
222 pdata->auditFilename, strerror(errno));
223 goto cleanup;
224 }
225
298 IBM Tivoli Directory Server for z/OS

Figure A-6 plugin_sample.c code

226 /*
227 * Remember the private area
228 */
229 rc = slapi_pblock_set(pb, SLAPI_PLUGIN_PRIVATE, &pdata);
230 if (rc != 0) {
231 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
232 "Unable to set plugin private data address: Error %d\n", errno);
233 goto cleanup;
234 }
235
236 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Exit rc=%d",rc));
237
238 return rc;
239
240
241 /*
242 * Clean up following an initialization failure
243 */
244 cleanup:
245 if (pdata->auditFile != NULL)
246 fclose(pdata->auditFile);
247
248 if (pdata->auditFilename != NULL)
249 slapi_ch_free(pdata->auditFilename);
250
251 if (pdata->localToNetwork != (iconv_t)(-1))
252 iconv_close(pdata->localToNetwork);
253
254 if (pdata->networkToLocal != (iconv_t)(-1))
255 iconv_close(pdata->networkToLocal);
256
257 pthread_mutex_destroy(&pdata->pluginMutex);
258 memset(pdata, 0, sizeof(plugin_private));
259 slapi_ch_free(pdata);
260 return -1;
261 }
262
263
264 /*---*/
265 /* This routine is called when a BIND request has been processed. */
266 /*---*/
267 static int plugin_bind_fn (
268 Slapi_PBlock * pb)
269 {
270 plugin_private *pdata=NULL;
271 int rc, resultCode, i;
272 char *bindDN, **groupList, **dnList, *cnvName=NULL;
273 char *instr, *outstr;
274 size_t inlth, outlth;
Appendix A. Sample plug-in code 299

Figure A-7 plugin_sample.c code

275
276 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));
277
278 /*
279 * Get the address of our private area
280 */
281 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_PRIVATE, &pdata);
282 if (rc != 0) {
283 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
284 "Unable to get address of private area: Error %d\n", errno);
285 goto cleanup;
286 }
287
288 if (pdata == NULL || memcmp(pdata->eyeCatcher, "PLUG", 4) != 0) {
289 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Private area eyecatcher incorrect");
290 pdata = NULL;
291 goto cleanup;
292 }
293
294 /*
295 * Serialize access to our data structures
296 */
297 pthread_mutex_lock(&pdata->pluginMutex);
298
299 /*
300 * Get the BIND results
301 */
302 rc = slapi_pblock_get(pb, SLAPI_BIND_TARGET, &bindDN);
303 if (rc != 0) {
304 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
305 "Unable to get BIND target: Error %d\n", errno);
306 goto cleanup;
307 }
308
309 rc = slapi_pblock_get(pb, SLAPI_PLUGIN_OPRETURN, &resultCode);
310 if (rc != 0) {
311 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
312 "Unable to get result code: Error %d\n", errno);
313 goto cleanup;
314 }
315
316 rc = slapi_pblock_get(pb, SLAPI_REQUESTOR_GROUPS, &groupList);
317 if (rc != 0) {
318 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
319 "Unable to get group list: Error %d\n", errno);
320 goto cleanup;
321 }
322
300 IBM Tivoli Directory Server for z/OS

Figure A-8 plugin_sample.c code

323 rc = slapi_pblock_get(pb, SLAPI_REQUESTOR_ALT_NAMES, &dnList);
324 if (rc != 0) {
325 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP",
326 "Unable to get alternate name list: Error %d\n", errno);
327 goto cleanup;
328 }
329
330 /*
331 * Log the BIND result
332 */
333 instr = bindDN;
334 inlth = strlen(bindDN);
335 outlth = inlth;
336 outstr = cnvName = slapi_ch_malloc(outlth+1);
337 if (cnvName == NULL) {
338 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Insufficient storage available");
339 goto cleanup;
340 }
341
342 outstr = cnvName;
343 iconv(pdata->networkToLocal, &instr, &inlth, &outstr, &outlth);
344 *outstr = 0x00;
345
346 rc = fprintf(pdata->auditFile, "Result: %d DN: %s\n", resultCode, cnvName);
347 if (rc < 0) {
348 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Unable to write to '%s': %s\n",
349 pdata->auditFilename, strerror(errno));
350 goto cleanup;
351 }
352
353 slapi_ch_free(cnvName);
354 cnvName = NULL;
355
356 if (groupList != NULL) {
357 rc = fprintf(pdata->auditFile, " Groups:\n");
358 if (rc < 0) {
359 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Unable to write to '%s': %s\n",
360 pdata->auditFilename, strerror(errno));
361 goto cleanup;
362 }
363
Appendix A. Sample plug-in code 301

Figure A-9 plugin_sample.c code

364 for (i=0; groupList[i]!=NULL; i++) {
365 instr = groupList[i];
366 inlth = strlen(groupList[i]);
367 outlth = inlth;
368 outstr = cnvName = slapi_ch_malloc(outlth+1);
369 if (cnvName == NULL) {
370 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Insufficient storage
available");
371 goto cleanup;
372 }
373
374 iconv(pdata->networkToLocal, &instr, &inlth, &outstr, &outlth);
375 *outstr = 0x00;
376
377 rc = fprintf(pdata->auditFile, " %s\n", cnvName);
378 if (rc < 0) {
379 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Unable to write to '%s': %s\n",
380 pdata->auditFilename, strerror(errno));
381 goto cleanup;
382 }
383
384 slapi_ch_free(cnvName);
385 cnvName = NULL;
386 }
387 }
388
389 if (dnList != NULL) {
390 rc = fprintf(pdata->auditFile, " Alternate names:\n");
391 if (rc < 0) {
392 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Unable to write to '%s': %s\n",
393 pdata->auditFilename, strerror(errno));
394 goto cleanup;
395 }
396
397 for (i=0; dnList[i]!=NULL; i++) {
398 instr = dnList[i];
399 inlth = strlen(dnList[i]);
400 outlth = inlth;
401 outstr = cnvName = slapi_ch_malloc(outlth+1);
402 if (cnvName == NULL) {
403 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Insufficient storage
available");
404 goto cleanup;
405 }
406
407 iconv(pdata->networkToLocal, &instr, &inlth, &outstr, &outlth);
408 *outstr = 0x00;
409
302 IBM Tivoli Directory Server for z/OS

Figure A-10 plugin_sample.c code

410 rc = fprintf(pdata->auditFile, " %s\n", cnvName);
411 if (rc < 0) {
412 slapi_log_error(LDAP_MSG_HIGH,"PLUGSAMP","Unable to write to '%s': %s\n",
413 pdata->auditFilename, strerror(errno));
414 goto cleanup;
415 }
416
417 slapi_ch_free(cnvName);
418 cnvName = NULL;
419 }
420 }
421
422 fflush(pdata->auditFile);
423
424 /*
425 * Clean up
426 */
427 cleanup:
428 if (pdata != NULL)
429 pthread_mutex_unlock(&pdata->pluginMutex);
430
431 if (cnvName != NULL)
432 slapi_ch_free(cnvName);
433
434 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Exit."));
435
436 return 0;
437 }
438
439 /*---*/
440 /* Plug-in termination function */
441 /*---*/
442 static void plugin_close_fn (
443 Slapi_PBlock * pb)
444 {
445 plugin_private *pdata;
446
447 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Entered."));
448
449 /*
450 * Release our private area
451 */
452 if (slapi_pblock_get(pb, SLAPI_PLUGIN_PRIVATE, &pdata) != 0) {
453 slapi_log_error(LDAP_MSG_HIGH,"TESTPLUG",
454 "Unable to get address of plugin private area: Error %d\n", errno);
Appendix A. Sample plug-in code 303

Figure A-11 plugin_sample.c code

455
456 } else if (pdata == NULL || memcmp(pdata->eyeCatcher, "PLUG", 4) != 0) {
457 slapi_log_error(LDAP_MSG_HIGH,"TESTPLUG", "Plugin private area eyecatcher
incorrect");
458
459 } else {
460
461 if (pdata->auditFile != NULL)
462 fclose(pdata->auditFile);
463
464 if (pdata->auditFilename != NULL)
465 slapi_ch_free(pdata->auditFilename);
466
467 if (pdata->localToNetwork != (iconv_t)(-1))
468 iconv_close(pdata->localToNetwork);
469
470 if (pdata->networkToLocal != (iconv_t)(-1))
471 iconv_close(pdata->networkToLocal);
472
473 pthread_mutex_destroy(&pdata->pluginMutex);
474 memset(pdata, 0, sizeof(plugin_private));
475 slapi_ch_free(pdata);
476 }
477
478 SLAPI_TRACE((LDAP_DEBUG_PLUGIN, "PLUGSAMP", "Exit."));
479 }
304 IBM Tivoli Directory Server for z/OS

Appendix B. Sample C code

This appendix provides a sample code in the C language used to recognize an expired
password on a successful ldap_bind of a native authentication user and to change the
password with an ldap_modify.

B

Note: The code supplied here has not been subjected to any formal IBM test and is
distributed on an “AS IS” basis without any warranty either express or implied. The
implementation of any of the techniques described or used herein is a customer
responsibility and depends on the customer’s operational environment. Although each item
might have been reviewed for accuracy in a specific situation and run in a specific
environment, there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own environments do
so at their own risk.
© Copyright IBM Corp. 2011. All rights reserved. 305

Description of sample code

This Native Authentication and Expired Passwords API sample code is used to recognize an
expired password on a successful ldap_bind of a native authentication user and to change
the password with a ldap_modify.

The usage example assumes the data shown in Figure B-1.

Figure B-1 Existing data

For the existing native authentication user and its associated racf user, the sample code
would produce the following if the racf user's password was expired (Figure B-2).

Figure B-2 Execution

The following is the source code in the C language:

dn:cn=someuser,c=ca
objectclass: person
objectclass: extensibleObject
cn:someuser
sn:lia
uid: SOMUSR
aclEntry: access-id:cn=someuser,c=ca:normal:rwsc:sensitive:rwsc:critical:rwsc

dn: racfid=SOMUSR,profiletype=user,cn=myracf
objectclass: racfuser
racfid: SOMUSR
objectclass: racfUserOmvsSegment
racfOmvsUid: 19
racfpassword: secret

nlogin cn=someuser,c=ca secret

password expired, enter new password
superc
re-enter new password for verification
superc
password successfully changed
login successful for bindDN cn=someuser,c=ca
306 IBM Tivoli Directory Server for z/OS

Figure B-3 Code sample

#include <stdio.h>
#include <ldap.h>

static void usage()
{
 fprintf(stderr, "Native Auth Login.\n");
 fprintf(stderr, "usage:\n");
 fprintf(stderr, " nlogin bindDN currentpw\n");
 fprintf(stderr, "where:\n");
 fprintf(stderr, " bindDN is the distinguished name to login\n");
 fprintf(stderr, " currentpw is the current password\n");
}

void main(int argc, char *argv[]) {

 char * host="9.12.47.80";
 int port=389;
 int rc;
 int parserc;
 LDAP *ld1;
 char * bindDn="cn=someuser,c=ca";
 char pw[9];
 char newPW[9];
 char verPW[9];
 int msg=LDAP_RES_ANY;
 LDAPMessage *result;
 LDAPControl **controls;
 static LDAPControl pwdPolicyCtl = {
 LDAP_PWDPOLICY_CONTROL_OID, /* OID */
 { 0, NULL }, /* no value */
 LDAP_OPT_OFF /* non-critical */
 };
 int ctrlerr;
 int ctrlwarn;
 int ctrlres;
 LDAPControl **servercontrol;
 int msgid = 0;

 char delVals[2][9];
 char addVals[2][9];
 LDAPMod delete_mod;
 LDAPMod add_mod;
 LDAPMod *pmods[3];

 if (argc<3) {
 usage();
 exit(1);
 }

 bindDn = argv[1];
 strcpy(pw,argv[2]);
Appendix B. Sample C code 307

Figure B-4 Code sample

 /* create a connection to the ldap server */
 if ((ld1 = ldap_init(host,port)) == NULL) {
 fprintf(stderr,"ERROR\n");
 fprintf(stderr,"ldap_init failed. Check input parms\n");
 exit(5);
 }

 /* Set the password policy control to be sent on the bind */
 /* indicating that we want password policy responses if present */
 controls = (LDAPControl **)malloc(2, sizeof(LDAPControl *));
 controls[0] = &pwdPolicyCtl;
 controls[1] = NULL;
 rc = ldap_set_option(ld1,
 LDAP_OPT_SERVER_CONTROLS,
 controls);
 if (rc != LDAP_SUCCESS) {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_set_option failed rc=%d\n",rc);
 fprintf(stderr, "%s\n",ldap_err2string(ldap_get_errno(ld1)));
 exit(5);
 }

 rc = ldap_simple_bind(ld1,bindDn,pw);
 if (rc == -1)
 {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_simple_bind failed rc=%d\n",rc);

 fprintf(stderr, "%s\n",ldap_err2string (ldap_get_errno(ld1)));
 exit(5);
 }

 /* check result of the bind */
 rc = ldap_result (ld1, msg, 1, NULL, &result);
 if (rc == -1 || rc == 0)
 {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_result after ldap_simple_bind failed rc=%d\n",rc);
 fprintf(stderr, "%s\n",ldap_err2string (ldap_get_errno(ld1)));
 exit(5);
 }

 /* parse result of the bind pulling out the control responses */ /*TRUE*/
 controls = 0;
 parserc = ldap_parse_result (ld1, result, &rc, 0, 0, 0, &controls, 1);
 if (rc != LDAP_SUCCESS)
 {
 fprintf(stderr, "%s\n",ldap_err2string(rc));
 exit(rc);
 }
308 IBM Tivoli Directory Server for z/OS

Figure B-5 Code sample

 /* check the password policy responses in the control */
 rc = ldap_parse_pwdpolicy_response(controls,
 &ctrlerr,
 &ctrlwarn,
 &ctrlres);
 if (! (rc == LDAP_SUCCESS || rc == LDAP_CONTROL_NOT_FOUND))
 {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_parse_pwdpolicy_response failed rc=%d\n",rc);
 fprintf(stderr, "%s\n",ldap_err2string(rc));
 exit(5);
 }

 /* check the control response, changeAfterReset is 5 */
 if (ctrlerr == LDAP_CHANGE_AFTER_RESET){

 /* tell the user their password has expired and to enter a new password */
 strcpy(newPW, getpass("password expired, enter new password "));
 strcpy(verPW, getpass("re-enter new password for verification "));

 /* if they entered a new password successfully
 then change their password using the modify delete-add format
 (this is the only format allowed at this point) */

 if (strcmp(newPW,verPW) == 0) {

 strcpy(delVals[0],pw);
 strcpy(delVals[1],NULL);
 delete_mod.mod_op = LDAP_MOD_DELETE;
 delete_mod.mod_type = "userpassword";
 delete_mod.mod_vals.modv_strvals = (char **)malloc(18);
 delete_mod.mod_vals.modv_strvals[0] = *delVals;
 delete_mod.mod_vals.modv_strvals[1] = NULL;

 strcpy(addVals[0],newPW);
 strcpy(addVals[1],NULL);
 add_mod.mod_op = LDAP_MOD_ADD;
 add_mod.mod_type = "userpassword";
 add_mod.mod_vals.modv_strvals = (char **)malloc(18);
 add_mod.mod_vals.modv_strvals[0] = *addVals;
 add_mod.mod_vals.modv_strvals[1] = NULL;

 pmods[0]= &delete_mod;
 pmods[1]= &add_mod;
 pmods[2]= NULL;

 servercontrol = (LDAPControl **)malloc(2, sizeof(LDAPControl *));
 servercontrol[0] = &pwdPolicyCtl;
 servercontrol[1] = NULL;
Appendix B. Sample C code 309

Figure B-6 Code sample

 rc=0;
 rc = ldap_modify_ext (ld1,
 bindDn,
 pmods,
 NULL,
 NULL,
 &msgid);

 rc = ldap_result (ld1, msg, 1, NULL, &result);
 if (rc == -1 || rc == 0)
 {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_result after ldap_modify_ext failed rc=%d\n",rc);
 fprintf(stderr, "%s\n",ldap_err2string (ldap_get_errno(ld1)));
 exit(5);
 }

 /* parse result of the modify pulling out the control responses */ /*TRUE*/
 controls = 0;
 parserc = ldap_parse_result (ld1, result, &rc, 0, 0, 0, &controls, 1);
 if (rc != LDAP_SUCCESS)
 {
 fprintf(stderr, "ERROR\n");
 fprintf(stderr, "ldap_parse_result after ldap_modify_ext failed rc=%d\n",rc);
 fprintf(stderr, "%s\n",ldap_err2string(rc));
 exit(5);
 }

 rc = ldap_parse_pwdpolicy_response(controls,
 &ctrlerr,
 &ctrlwarn,
 &ctrlres);
 if (! (rc == LDAP_SUCCESS || rc == LDAP_CONTROL_NOT_FOUND))
 {
 fprintf(stderr, "%s\n",ldap_err2string(rc));
 exit(rc);
 }
310 IBM Tivoli Directory Server for z/OS

Figure B-7 Code sample

 fprintf(stderr, "password successfully changed\n");

 }
 else {
 fprintf(stderr, "new password verification failed, login failed for bindDn %s\n",
bindDn);
 exit(5);

 } /* verify new password*/

 } /* if changeAfterReset */

 fprintf(stderr, "login successful for bindDN %s\n", bindDn);

 /* continue on to do other processing here, including any cleanup */

} /* main */
Appendix B. Sample C code 311

312 IBM Tivoli Directory Server for z/OS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 314.
Note that some of the documents referenced here may be available in softcopy only.

� I/O Configuration Using z/OS HCD and HCM, SG24-7804

� Implementing PKI Services on z/OS, SG24-6968

� Understanding LDAP - Design and Implementation, SG24-4986-01

Other publications

These publications are also relevant as further information sources:

� Hardware Configuration Definition User’s Guide,SC33-7988

� IBM Tivoli Directory Server Client Programming for z/OS V1R12.0, SA23-2214-04

� V1R10.0 IBM Tivoli Directory Server Plug-in Reference for z/OS, SA76-0148-00

� z/OS MVS Planning: Workload Management, SA22-7602

� z/OS UNIX System Services Planning, GA22-7800

� z/OS V1R12.0 IBM Tivoli Directory Server Administration and Use for z/OS,
SC23-5191-05

� z/OS V1R12.0 Network Authentication Service Administration, SC24-5926

� z/OS V1R12.0 Security Server RACF Command Language Reference, SA22-7687

� z/OS V1R12.0 Security Server RACF Security Administrator's Guide, SA22-7683

� z/OS V1R12.0 Security Server RACF System Programmer's Guide, SA22-7861

� z/OS V1R12.0 System SSL Programming, SC24-5901

Online resources

These Web sites are also relevant as further information sources:

� IBM Tivoli Directory Server website

http://www-01.ibm.com/software/tivoli/products/directory-server/
© Copyright IBM Corp. 2011. All rights reserved. 313

http://www-01.ibm.com/software/tivoli/products/directory-server/

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
314 IBM Tivoli Directory Server for z/OS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
Access Control List (ACL) 8
ACL see Access Control List (ACL)
aclEntry 110
aclPropogate 112
activity log 8
Advanced Replication 31
Aliases 31
Attribute Encryption 31
attrOverflowSize configuration value 39
AUDIT operator modify command 285
authentication

anonymous or unauthenticated access 93
example 93

CRAM-MD5 bind
example 95, 97

DIGEST-MD5 bind 96
Kerberos 98
operations 92
SASL EXTERNAL (SSL) 101

certificate mapping 101
certificate mapping example 102
enabling 101

simple bind 93
example 94

supported bind or authentication mechanisms 92

B
backend

CDBM 30
described 30
EXOP 30
features list 30
GDBM 30
LDBM 30
overview 30
Schema 30
SDBM 30
TDBM 30

backend data stores
CDBM 6
GDBM 6
LDBM 6
Plug-in 6
Schema 6
SDBM 6
simple description 6
TDBM 6

Basic Replication 31
Bulk Load 31
Bulk Unload 31
© Copyright IBM Corp. 2011. All rights reserved.
C
CDBM backend 30

Advantages 44
configuration 44, 241

automated configuration using dsconfig utility 45
example 241
manual configuration 45

data store 6
detailed description 44
Sysplex 225
tuning 46
usage examples

display the cn=Replication,cn=configuration en-
try 46
modify the ibm-replicationOnHold attribute in the
cn=Replication,cn=configuration entry 46

change logging 32
configuration

enable SSL authentication 198
GDBM backend 185

enable GDBM for a LDBM based backend 185
enable GDBM for a TDBM backend 187

LDBM backend 176
prerequisite steps 176
setup using dsconfig 176
start and verify server 178

password policy example 210
schema

loading the IBM supplied schema 192
using the sample.ldif file 193

SDBM backend 191
securing the administrator id 194
TDBM backend 178

prerequisites 179
setting up DB2 179
setting up using dsconfig 181
starting and verifying the server 184

using CRAM-MD5 and DIGEST-MD5 binds 196
configuration examples

advanced replication 240
configure a CDBM backend 241
master-replica 245
topologies 240

replication 229–230
master-replica 230
master-replica configuration parameters 230
master-replica configuration steps 230
peer to peer 234
peer to peer configuration parameters 235
peer to peer configuration steps 235

CRAM-MD5 95, 97
binds 196

cross-system coupling facility (XCF) 9
sharing group 219

CTRACE 289
 315

D
DB2 21

buffer pools 38
tuning 37

debugging
CTRACE 289

captured output 289
direct debug output example 290
directing debug output to 290
in-memory trace table 290

debug facility output 288
debug level examples 289
dsconfig 288

trace output 288
dynamic debugging command examples 289
how to debug problems 288

output on the screen 288
trace file 288

overview 288
server debug mode 288

debug level 289
setting 289
setting -d parameter 289
setting dynamic debugging 289
setting LDAP_DEBUG environment variable 289

DIGEST-MD5 96
binds 196

DIR_ENTRY table 38
DIR_SEARCH table 39
directory information tree (DIT) 5

example 5
distinguished name (DN) 93

workload classification by 170
DIT see directory information tree (DIT)
DN see distinguished name (DN)
ds.conf 7, 33
ds.envvars 7
dsconfig utility

debugging 288
trace output 288

description 23
generated files 25
input files 23–24
usage overview 24

E
EXOP

backend 30

F
Forwarding (cascading) replication 12

forwarding topology 12
sample Forwarding topology 12

forwarding replication 6

G
Gateway replication 15

gateway server 15

sample gateway topology 15
GDBM backend 30

Advantages 66
configuration 66, 185

automated configuration
DB2-based GDBM configuration 66
file-based GDBM 66

automated configuration using dsconfig utility 66
change logging

enabling 68

Additional RACF configura-
tion 68

LDBM backend 185
manual configuration 67

DB2-based GDBM 67
file-based GDBM 67

TDBM backend 187
data store 6
detailed description 64
Sysplex 223
tuning 71
usage examples 70

GetEffectiveAcl 117

H
HCD plug-in 256

description 256
function 256
HCD schema file 264
LDAP server configuration requirements 258
loading the HCD schema 264
setup steps 259
structure 256
usage 264

authentication 264
example 265

HCD schema file 264

I
IBM TDS for z/OS LDAP features 31

Advanced Replication 31
Aliases 31
Attribute Encryption 31
Basic Replication 31
Bulk Load 31
Bulk Unload 31
change logging 32
Multi-Server Operational Modes 32
Native Authentication 32
Password Policy 32
Policy Director 32
RACF Administration 32
Referrals 32

IBM Tivoli Directory Server (TDS) for z/OS 256
advanced replication 6
advanced replication topologies 6

forwarding replication 6
gateway replication 6
316 IBM Tivoli Directory Server for z/OS

master-replica replication 6
peer-to-peer replication 6

directory 4
directory architecture 5

attribute value 5
attributes 5
directory information tree (DIT) 5
directory information tree example 5
distinguished name (DN) 5
entries 5
relative distinguished name (RDN) 5
type 5

features 4
operational modes 5

multiple single-server mode 5
multi-server mode 5
single-server mode 5

Planning 20–21
activity and audit logging 23
advanced replication 23
configuring using the dsconfig utility 23
DB2 and ODBC 21
Integrated Cryptographic Security Facility (ICSF)
21
LDAP password policy 23
planning considerations before using the dsconfig
utility 22
Resource Access Control Facility (RACF) 21
storing user passwords for LDBM or TDBM back-
end 22
supported backends 20
where and how to store user passwords 22
Workload Manager (WLM) 21
z/OS Cryptographic Services System SSL 21
z/OS Integrated Security Services Network Au-
thentication Service 21
z/OS UNIX System Services file system 21

Version 3 LDAP client and server 4
ICSF see Integrated Cryptographic Security Facility
(ICSF)
Integrated Cryptographic Security Facility (ICSF) 21

L
LDAP access security 8
LDAP client 7
LDAP HCD support

functions 257
security 256
setup 257

LDAP password policy 23
LDAP server

as daemon 7
configuration requirements 258

HCD plug-in 258
SMF records 8
statistics 268

LDAP_DEBUG environment variable 289
LDBM backend 30

Advantages 39
configuration 40, 176

automated configuration using dsconfig utility 40
manual configuration 40

sample LDBM backend-specific section of the
ds.conf configuration file 40

porting existing LDBM database 41
shipped example for starting LDBM backend 41

data store 6
detailed description 39
storing user passwords 22
Sysplex 218
tuning 41

database commit processing 43
memory considerations 42
sample benchmark data 43
space required 43
startup time 42

M
master-server replication

description 10
read-only replica server 10
replicated data 10
replication context 10
sample Master-Replica topology 11

monitoring
activity log 282

configuration 283
configuration archiving 283
configuration logfile option 283
features 283

advanced replication 276
by use of ldapsearch 276
example 276
extended operations 279
extended operations description 280
monitor the advanced replication processing 280
objects returned 278
retrieve replication topology information 277
retrieving operational attributes for the replication
agreement 281
retrieving operational attributes for the replication
context 280
retrieving operational attributes of ibm-replication-
Context 280
specific configured suffix or specific replication
context 277
subtree scope search 276

audit logging 285
audit levels 285
AUDIT operator modify command 285
audit parameter 285

operations monitor 284
configuration option 284

server monitoring 268
distinguished name entries 268
example 270
LDAP server statistics returned 268
scope 268
scope=sub examples 268
search base 268
 Index 317

multiple single-server mode 5
multiple single-server operational mode 7
multi-server mode 5, 8

intended use 9
shared UNIX System Services based backend files
10
TDBM backend caches 10
use of cross-system coupling facility (XCF) 9

Multi-Server Operational Modes 32

N
Native Authentication 32

O
objectclasses attribute value 82
ODBC 21
Operations Monitor 171
ownerPropogate 112

P
Password Policy 32

example 210
peer-to-peer replication 13

sample Peer-to-Peer topology 14
Persistent Search 136
plug-ins

building 162
client-operation 160

request message types 160
sample plug-in 163

description 156
exploiters 166
extending functions 8
post-operation 158
pre-operation 158
request message types 159
server flow for the request processing illustrated 157
server processing 156

Policy Director 32

R
RACF see Resource Access Control Facility (RACF)
RDN see relative distinguished name (RDN)
Redbooks Web site 314

Contact us xiii
Referrals 32
relative distinguished name (RDN) 5
reliability, availability, and scalability 140
remote security services 16
REORG 37
replication 141

configuration
consumer 146
maintain an active replication topology 150
maintenance mode 145
partially replicate 154
requisite changes 144
scheduled replication 153

server ID 145
SSL 145
supplier 146
synchronization among all the servers 149

Sysplex and replication 143
terminology 141
topology 142

forwarding/cascading 143
gateway 143
master-replica 143
peer-peer 143
Sysplex and replication 144

Resource Access Control Facility (RACF) 21
Administration 32

RUNSTATS 37

S
sample.ldif file 193
SASL EXTERNAL (SSL) 101
schema

attribute type 74–75
attribute syntaxes 75
matching rules 77
matching rules example 78
required attribute values when adding a new attri-
bute 79

attribute values 74
attributes 74
configuration 74

schema.IBM.ldif 75
schema.user.ldif 75

define your own schema 82
example 83

description 74
object class 74, 81

objectclasses attribute value 82
supported object classes 81

RACF custom fields 87
schema.IBM.ldif 75
schema.user.ldif 75
SDBM

backend 30
configuration 191

backend data store 6
SDBM backend

Advantages 47
configuration 47

automated configuration using dsconfig utility 47
manual configuration 48

sample SDBM backend-specific section of the
ds.conf configuration file 48

usage examples 50
add a new resource profile 51
modifying existing RACF user 50
refresh the RACF FACILITY class 52
search 51

detailed description 46
directory hierarchy 49
RACF General Resources 55

usage examples 55
318 IBM Tivoli Directory Server for z/OS

search 52
supported search filters 53

tuning 54
Secure Socket Layer (SSL) 133
security

access control lists 108
access class for the authorization related attri-
butes 109
aclEntry 110
aclPropogate 112
attribute classes 108
attribute level action 108
dynamic group 121
entryOwner 110
filtered access control 116
GetEffectiveAcl 117
groups 121
nested group 123
normalization rules 111
ownerPropogate 112
permissions 113
permissions calculation 115
precedence 114
propagating ACLs and entry ownership 112
querying group membership 123
static group 121
subject seeking authorization 114

authentication 91
authorization and audit 92
encryption and hashing 132

one-way hashing algorithms 132
pwEncryption option 132
secretEncryption option 132
two-way encryption algorithms 132

group gathering 126
native authentication 104

changing or updating a user’s password or pass-
word phrase 107
configuring 107

overview 90
password policy 127

global password policy 127
group password policy 127
individual password policy 128
native authentication and expired passwords 131
password policy attributes 128
password policy operational attributes 130
when is it checked? 130

Secure Socket Layer (SSL) and Transport Layer Se-
curity (TLS) 133
security concepts 90

audit 90
authentication 90
authorization 90
confidentiality 90
mapping of general IT security concepts to IBM
TDS for z/OS features 90

SSL (Secure Socket Layer) and TLS (Transport Layer
Security)

certificate key repositories 134

configuration 135
serverSysplexGroup 218
single-server architecture 6
single-server mode 5
SMF records 8
SSL see Secure Socket Layer (SSL)
Sysplex 140

CDBM 225
GDBM 223
LDBM 218

using the same configuration 218
multiserver 218
serverSysplexGroup 218
TDBM 220

options in the configuration file 220
using the same configuration 220

XCF sharing group 219

T
Tablespace LOCKSIZE 38
TDBM

Sysplex 220
TDBM backend 30

advantages 32
automated configuration using dsconfig 33

generated members 33
configuration 33, 178
data store 6
detailed description 32
manual configuration 33

sample TDBM backend-specific section of the
ds.conf configuration file 33

porting existing databases 33–34
porting ISS TDBM database 34

procedure 34
storing user passwords 22
tuning 37

attrOverflowSize configuration value 39
cache tuning 37
configuration file 39
DB2 buffer pools 38
DB2 tuning 37
maintain database statistics (RUNSTATS) 37
reorganize the database (REORG) 37
Size of DIR_ENTRY table’s DN_TRUNC column
38
Size of DIR_SEARCH table’s VALUE column 39
Tablespace LOCKSIZE 38
TDBM SQL 38

usage examples
add a directory entry 35
delete an entry 36
load all of the entries from an input LDIF file 36
modify a directory entry 35
search for an entry 35
unload all entries 36

when to use 32
TDBM SQL 38
TDS see IBM Tivoli Directory Server (TDS) for z/OS
TLS see Transport Layer Security (TLS)
 Index 319

Transport Layer Security (TLS) 133

W
WLM see Workload Manager (WLM)
Workload Manager (WLM) 21

support 9
load balancing 9

X
XCF see cross-system coupling facility (XCF)

Z
z/OS Cryptographic Services System SSL 21
z/OS Integrated Security Services Network Authentication
Service 21
z/OS UNIX System Services file system 21
z/OS Workload Manager 168

configuration options 169
classification rules 169
incoming requests 169
service classes 169
workload classification by requestor distinguished
name (DN) 170
workload classification by requestor IP address
170

enclave 168
execution velocity goals 168
goal setting 168
health service 171
search pattern 168
service class 168
using with Operations Monitor 171
320 IBM Tivoli Directory Server for z/OS

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 Tivoli Directory Server for z/OS

IBM
 Tivoli Directory Server for z/OS

IBM
 Tivoli Directory Server for z/OS

IBM
 Tivoli Directory Server for z/OS

IBM
 Tivoli Directory Server for z/OS

IBM
 Tivoli Directory Server for z/OS

®

SG24-7849-00 ISBN 0738435724

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM Tivoli Directory
Server for z/OS

Technical overview of
Tivoli Directory Server

Concepts, planning,
and configuration
examples

Basic and advanced
replication

This IBM Redbooks publication examines the IBM Tivoli Directory Server for
z/OS. IBM Tivoli Directory Server is a powerful Lightweight Directory Access
Protocol (LDAP) infrastructure that provides a foundation for deploying
comprehensive identity management applications and advanced software
architectures.
This publication provides an introduction to the IBM Tivoli Directory Server
for z/OS that provides a brief summary of its features and a examination of
the possible deployment topologies. It discusses planning a deployment of
IBM Tivoli Directory Server for z/OS, which includes prerequisites, planning
considerations, and data stores, and provides a brief overview of the
configuration process. Additional chapters provide a detailed discussion of
the IBM Tivoli Directory Server for z/OS architecture that examines the
supported back ends, discusses in what scenarios they are best used, and
provides usage examples for each back end. The discussion of schemas
breaks down the schema and provides guidance on extending it. A broad
discussion of authentication, authorization, and security examines the
various access protections, bind mechanisms, and transport security
available with IBM Tivoli Directory Server for z/OS. This chapter also provides
an examination of the new Password Policy feature. Basic and advanced
replication topologies are also covered. A discussion on plug-ins provides
details on the various types of plug-ins, the plug-in architecture, and
creating a plug-in, and provides an example plug-in. Integration of IBM Tivoli
Directory Server for z/OS into the IBM Workload Manager environment is
also covered.
This publication also provides detailed information about the configuration of
IBM Tivoli Directory Server for z/OS. It discusses deploying IBM Tivoli
Directory Server for z/OS on a single system, with examples of configuring
the available back ends. Configuration examples are also provided for
deploying the server in a Sysplex, and for both basic and advanced
replication topologies. Finally it provides guidance on monitoring and
debugging IBM Tivoli Directory Server for z/OS.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Overview
	Chapter 1. Tivoli Directory Server for z/OS
	1.1 z/OS LDAP - features
	1.2 IBM Tivoli Directory Server for z/OS
	1.3 Directory Architecture
	1.4 Server Architectures
	1.4.1 Single-Server
	1.4.2 Multi-Server (Sysplex)
	1.4.3 Master-Replica Replication
	1.4.4 Forwarding (Cascading) Replication
	1.4.5 Peer-to-Peer Replication
	1.4.6 Gateway Replication
	1.4.7 Remote security services using the z/OS LDAP server
	1.4.8 Further Information

	Chapter 2. Planning
	2.1 Planning and Considerations
	2.2 Where to store your data
	2.3 Required products
	2.3.1 Optional products

	2.4 Configuring IBM Tivoli Directory Server for z/OS
	2.4.1 Where and how to store user passwords?
	2.4.2 Configuring for advanced replication and LDAP password policy
	2.4.3 Activity and audit logging
	2.4.4 Using the dsconfig utility

	Part 2 Concepts
	Chapter 3. Back ends
	3.1 Back end overview
	3.2 TDBM back end
	3.2.1 TDBM configuration
	3.2.2 Porting TDBM data from IBM Tivoli Directory Server for z/OS to IBM Tivoli Directory Server for z/OS
	3.2.3 Porting TDBM data from ISS to IBM Tivoli Directory Server for z/OS
	3.2.4 Using the TDBM back end
	3.2.5 Tuning the TDBM back end

	3.3 LDBM back end
	3.3.1 LDBM configuration
	3.3.2 Porting LDBM data
	3.3.3 Creating a sample server with an LDBM back end
	3.3.4 Using the LDBM back end
	3.3.5 Tuning the LDBM back end
	3.3.6 Sample LDBM benchmark data

	3.4 CDBM back end
	3.4.1 CDBM Configuration
	3.4.2 Using the CDBM back end
	3.4.3 Tuning the CDBM back end

	3.5 SDBM back end
	3.5.1 SDBM Configuration
	3.5.2 Using the SDBM back end
	3.5.3 Searching the SDBM back end
	3.5.4 Tuning the SDBM back end (RACF database)
	3.5.5 RACF resources

	3.6 GDBM back end
	3.6.1 GDBM configuration
	3.6.2 Enabling change logging
	3.6.3 Additional configuration for RACF change logging
	3.6.4 Using the GDBM back end
	3.6.5 Tuning the GDBM back end

	Chapter 4. Schemas
	4.1 Schema
	4.2 Schema configuration in IBM Tivoli Directory Server for z/OS
	4.2.1 Applying schema to IBM Tivoli Directory Server for z/OS

	4.3 Attribute Types
	4.3.1 Attributetypes and ibmattributetypes attribute format

	4.4 Object Classes
	4.4.1 objectclasses attribute value format

	4.5 Defining additional schema in IBM Tivoli Directory Server for z/OS
	4.5.1 Defining additional schema example

	4.6 Defining additional schema for use with RACF custom fields

	Chapter 5. Authentication, authorization, and security
	5.1 Overview
	5.2 Authentication mechanisms supported by IBM Tivoli Directory Server for z/OS
	5.2.1 Anonymous
	5.2.2 Simple
	5.2.3 CRAM-MD5
	5.2.4 DIGEST-MD5
	5.2.5 GSS-API (Kerberos)
	5.2.6 External (SSL)

	5.3 Native authentication
	5.3.1 Setting up native authentication
	5.3.2 Changing a password or password phrase of an entry participating in native authentication

	5.4 Authorization using Tivoli Directory Server Access Control Lists (ACL)
	5.4.1 Setting up IBM Tivoli Directory Server Authorization
	5.4.2 Normalization
	5.4.3 Propagation
	5.4.4 Authorization Permissions
	5.4.5 Precedence
	5.4.6 Determining the Subject
	5.4.7 Calculating Effective Permissions
	5.4.8 Filtered Access Control
	5.4.9 Testing Authorization Configurations
	5.4.10 Closing thoughts on authorization

	5.5 Groups and group gathering in IBM Tivoli Directory Server for z/OS
	5.5.1 Static, dynamic, and nested groups
	5.5.2 Querying group membership
	5.5.3 Static, dynamic, and nested group pros and cons
	5.5.4 Group gathering

	5.6 Password Policy
	5.6.1 Multiple password policies
	5.6.2 Meaning of various attributes in password policy

	5.7 Encryption and Hashing
	5.8 SSL/TLS
	5.8.1 Certificates and key repositories
	5.8.2 Setting up IBM Tivoli Directory Server for z/OS to use SSL/TLS

	5.9 Persistent Search

	Chapter 6. Reliability, availability, and scalability
	6.1 Reliability, Availability and Scalability
	6.1.1 Availability

	6.2 Sysplex
	6.3 Replication
	6.4 Topology
	6.4.1 Master - Replica
	6.4.2 Peer - Peer
	6.4.3 Forwarding/Cascading
	6.4.4 Gateway
	6.4.5 Sysplex and Replication

	6.5 Setting up Replication
	6.5.1 Consumer Configuration
	6.5.2 Supplier Configuration
	6.5.3 Synchronizing the servers
	6.5.4 Maintaining the Topology

	6.6 Additional Advanced Replication Features
	6.6.1 Scheduling
	6.6.2 Filtering

	Chapter 7. Plug-ins
	7.1 IBM Tivoli Directory Server for z/OS Server Plug-ins
	7.2 Pre-operation and post-operation plug-ins
	7.3 Client-operation plug-ins
	7.4 Building an IBM Tivoli Directory Server for z/OS server plug-in
	7.5 Steps for writing a IBM Tivoli Directory Server for z/OS server plug-in
	7.6 IBM Tivoli Directory Server for z/OS Server Plug-in Sample
	7.6.1 Stepping through plugin_sample.c
	7.6.2 Steps for building and running the sample plug-in

	7.7 Exploiters of IBM Tivoli Directory Server for z/OS Plug-in Support

	Chapter 8. Workload Management
	8.1 Workload Management Overview
	8.2 Using Configuration Options
	8.2.1 Configuring WLM to support incoming requests
	8.2.2 Configuring LDAP to exploit WLM

	8.3 Using Workload Manager and Operations Monitor together
	8.4 Workload Manager Health

	Part 3 Installation and configuration examples
	Chapter 9. Implementing IBM Tivoli Directory Server on a single system
	9.1 A basic IBM Tivoli Directory Server server with LDBM
	9.1.1 Prepare the z/OS system
	9.1.2 Implementing IBM Tivoli Directory Server with dsconfig
	9.1.3 Starting and verifying IBM Tivoli Directory Server operation

	9.2 A basic IBM Tivoli Directory Server server with TDBM
	9.2.1 Prepare the z/OS system
	9.2.2 DB2 setup for IBM Tivoli Directory Server
	9.2.3 Implementing IBM Tivoli Directory Server with dsconfig
	9.2.4 Starting and verifying IBM Tivoli Directory Server operation

	9.3 Set up file-based GDBM to track changes
	9.4 Set up DB2-based GDBM to track changes
	9.5 A basic IBM Tivoli Directory Server server with SDBM
	9.6 Loading the IBM-supplied schema
	9.7 Loading the IBM-supplied sample.ldif file
	9.8 Securing the IBM Tivoli Directory Server administration ID
	9.9 Using CRAM-MD5 and DIGEST-MD5 binds
	9.10 Enabling SSL authentication
	9.11 Password policy implementation

	Chapter 10. Using IBM Tivoli Directory Server in a Parallel Sysplex
	10.1 Setting up the LDBM back end for sysplex
	10.1.1 Changes to the configuration file
	10.1.2 Starting and verifying operation

	10.2 Setting up the TDBM server for sysplex
	10.2.1 Changes to the configuration file
	10.2.2 Starting and verifying operation

	10.3 Other shared back ends
	10.4 Setup a shared GDBM to track changes
	10.5 Set up a shared CDBM for advanced replication and password policy

	Chapter 11. Replication
	11.1 Basic Replication
	11.1.1 Master - replica topology
	11.1.2 Peer to peer topology

	11.2 Advanced Replication
	11.2.1 Major replication topologies
	11.2.2 Configuring replication topologies
	11.2.3 Master-Replica replication configuration in advanced replication.
	11.2.4 Peer to peer replication topology configuration in advanced replication

	Chapter 12. Using LDAP and HCD
	12.1 Hardware Configuration Definition (HCD) and LDAP
	12.2 Securing IBM Tivoli Directory Server for z/OS HCD
	12.3 Configuring HCD and LDAP
	12.3.1 Setting up the IBM Tivoli Directory Server for z/OS
	12.3.2 Setting up the HCD LDAP plug-in
	12.3.3 Integrating the LDAP schema for HCD

	12.4 Using HCD and LDAP
	12.4.1 Authentication
	12.4.2 Usage examples

	Chapter 13. Monitoring
	13.1 Server monitoring
	13.1.1 Monitor search with scope=sub

	13.2 Monitoring and managing advanced replication
	13.2.1 Showing advanced replication configuration information:
	13.2.2 Extended operations related to advanced replication
	13.2.3 Monitoring advanced replication status

	13.3 Using activity logging
	13.4 Operations monitor
	13.5 Audit logging

	Chapter 14. Debugging
	14.1 Overview
	14.2 Debugging problems
	14.2.1 Debugging configuration problems
	14.2.2 Using server debug modes
	14.2.3 Using CTRACE in-memory records

	Part 4 Appendixes
	Appendix A. Sample plug-in code
	Source code for plugin_sample.c

	Appendix B. Sample C code
	Description of sample code

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

