
ibm.com/redbooks

Front cover

z/OS Identity
Propagation

Karan Singh
Rogerio Camargo

Simon Dodge
Bob McCormack

Alain Roessle
Martina Schmidt

Ruben Thumbiran
Phil Wakelin

Nigel Williams

Scenarios using CICS TG, DB2, and
CICS Web services

How to use SMF records for
audit reporting

Technical overview of
identity propagation

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

z/OS Identity Propagation

September 2011

SG24-7850-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2011)

This edition applies to Version 1, Release 11, Modification 0 of z/OS (product number 5694-A01).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this book . ix
Now you can become a published author, too! .x
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Introduction. 1
1.1 What z/OS Identity Propagation is . 2
1.2 Why identity propagation is important . 3

1.2.1 Complete end-to-end audit trail. 4
1.2.2 Management of z/OS identity . 4
1.2.3 Elimination of the perception of z/OS identity as a weak link 5
1.2.4 Making the distributed identity available to an application program 5

Chapter 2. RACF and z/OS Identity Propagation . 7
2.1 Conceptual overview. 8

2.1.1 Authentication, distinguished name, and registry . 9
2.1.2 Distributed Identity Data Structure (IDID) . 11
2.1.3 SAF interfaces . 12
2.1.4 R_cacheserv and caching. 13
2.1.5 Recreating a security environment or cleaning up a cache 13

2.2 Internal logic within SAF call . 13
2.3 Impact on distributed identity data cached in RACF by z/OS subsystems 16
2.4 RACF database unload. 17
2.5 RACF messages . 19
2.6 RACF templates . 19
2.7 RACF remove ID utility . 20
2.8 Supplied samples . 21

2.8.1 IKJTSO00 in RACPARM. 21
2.8.2 Sample DB2 members . 22
2.8.3 XML schema document . 23

Chapter 3. z/OS Identity Propagation exploiters . 25
3.1 CICS Transaction Gateway. 26

3.1.1 JCA and security . 26
3.1.2 CICS TG for z/OS security options . 27
3.1.3 z/OS Identity Propagation support with CICS TG . 28
3.1.4 CICS resources used for configuring identity propagation with CICS TG. 29

3.2 CICS Web services . 29
3.2.1 CICS resources used for configuring web services . 30
3.2.2 Securing CICS Web services . 31
3.2.3 WebSphere DataPower . 31
3.2.4 Identity propagation with CICS Web services . 32

3.3 DB2 10 for z/OS . 34
3.3.1 DB2 10 for z/OS Trusted Context . 35
3.3.2 RACMAP. 36
© Copyright IBM Corp. 2011. All rights reserved. iii

3.3.3 DB2 role in RACF . 36
3.3.4 SMF reporting . 37
3.3.5 Distinguished name not matching. 38

Chapter 4. RACMAP function . 39
4.1 Distributed identity filters . 40

4.1.1 What a distributed identify filter is . 40
4.2 RACMAP command overview. 40
4.3 Authorization required to use the RACMAP command . 40
4.4 RACMAP command usage and invocation . 41
4.5 Activating the RACMAP updates . 43
4.6 RACMAP profiles in the IDIDMAP class . 43
4.7 Updating a distributed identity filter . 44

4.7.1 Steps for updating a distributed identity filter . 44
4.8 User profiles and RACMAP command . 45

4.8.1 Deleting a RACF user ID associated with identity filters . 45
4.8.2 Performance consideration when deleting a distributed identity filter 45
4.8.3 RACF remove ID utility IRRRID00 update . 46

4.9 Default RACMAP filter protection . 46
4.10 RRSF consideration for RACMAP use . 46
4.11 Changes required to PARMLIB to support identity filter . 46
4.12 New RACMAP messages . 47

Chapter 5. Filter management . 49
5.1 How RACF matches the filter value . 50
5.2 Details about searching for a filter that matches a user’s DN . 50

5.2.1 One-to-one match . 50
5.2.2 Many-to-one match . 51
5.2.3 Summary details about searching for a filter that matches a user’s DN 52

5.3 Examples . 52

Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 55
6.1 Actions within RACF . 56

6.1.1 An RACF event relating to issuing a RACMAP command 56
6.1.2 RACF events when calling RACF to verify a distributed identity. 56
6.1.3 Settings within RACF to ensure identity propagation is captured 57

6.2 SMF changes to support distributed identities . 57
6.2.1 SMF records . 58
6.2.2 SMF unload utility . 59

6.3 Reporting from SMF data . 60
6.3.1 SMF unload utility . 60
6.3.2 SMF UNLOAD produces XML data . 61
6.3.3 Reporting on SMF audit information from DB2 . 63
6.3.4 Using ICETOOL from DFSORT . 64
6.3.5 Using IBM Security zSecure Audit for RACF . 68

Chapter 7. Internal z/OS data structures impacted by identity propagation 77
7.1 SAF interfaces. 78

7.1.1 RACF communication vector table . 78
7.1.2 RACROUTE . 78
7.1.3 InitACEE . 79
7.1.4 R_cacheserv . 80
7.1.5 R_usermap . 81

7.2 SAF data areas . 81
iv z/OS Identity Propagation

7.2.1 Accessor Environment Element . 81
7.2.2 ICRX: Extended Identity Context Reference. 82
7.2.3 IDID: Distributed Identity Data. 83
7.2.4 ENF2: RACF ENF Event Code 71 . 83

Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 85
8.1 Architectural overview . 86
8.2 Configuring identity propagation on CICS Transaction Gateway 87
8.3 Configuring identity propagation on CICS Transaction Server 89
8.4 Configuring identity propagation on WebSphere Application Server 90

8.4.1 Configuring standalone LDAP registry . 91
8.4.2 Deploying the CICS ECI resource adapter . 94
8.4.3 Creating a J2C Connection Factory . 96
8.4.4 Deploying the ECIDateTime application . 98
8.4.5 Installing the identity propagation login module . 100
8.4.6 Running the ECIDateTime application . 102

8.5 Configuring identity propagation on z/OS . 105
8.6 Configuring identity propagation on RACF . 106
8.7 Testing the scenario . 106

8.7.1 Results for No Distributed Identity Passed . 106
8.7.2 Results for No mapping found . 107
8.7.3 Results for one-to-one mapping . 108
8.7.4 Results for many-to-one mapping. 109
8.7.5 Results of DPL to second CICS showing INQUIRE ASSOCIATION 110
8.7.6 Results after RACF mappings have changed. 112

Chapter 9. Identity propagation with DB2 for z/OS . 113
9.1 JAVA application test scenario . 114
9.2 RACMAP command . 115
9.3 Creating DB2 trusted context . 116
9.4 Creating the DB2 role . 116
9.5 RACF/DB2 exit (optional) . 116
9.6 Executing the sample Java application . 117
9.7 RACF audit trace. 119
9.8 DB2 Audit trail . 121

Chapter 10. Identity propagation using CICS Web services . 123
10.1 Scenario overview. 124
10.2 Architectural overview . 126
10.3 Preparation . 127

10.3.1 Software versions . 127
10.3.2 IP addresses and ports . 127
10.3.3 CICS resource definition checklist . 127
10.3.4 User IDs . 128
10.3.5 Keystore and certificates. 128

10.4 Configuring RDz . 129
10.5 Configuring WebSphere DataPower . 132
10.6 Configuring CICS . 148

10.6.1 SIT parameters . 148
10.6.2 TCPIPSERVICE . 148
10.6.3 URIMAP . 149
10.6.4 PIPELINE . 150
10.6.5 WEBSERVICE . 151
10.6.6 MRO connection . 152
 Contents v

10.7 Configuring RACF . 153
10.7.1 Identity mapping rules. 153
10.7.2 Authorizing the service requester . 153

10.8 Testing the scenario . 155
10.8.1 Successful many-to-one identity mapping . 155
10.8.2 Failure scenarios. 159

Related publications . 161
IBM Redbooks . 161
Other publications . 161
Help from IBM . 161

Index . 163
vi z/OS Identity Propagation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS Explorer™
CICSPlex®
CICS®
DataPower device®
DataPower®
DB2 Connect™
DB2®
DRDA®

IBM®
MVS™
Parallel Sysplex®
RACF®
Rational®
RDN®
Redbooks®
Redbooks (logo) ®

System z®
Tivoli®
VTAM®
WebSphere®
z/OS®
z/VM®
zSeries®

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii z/OS Identity Propagation

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication explores various implementations of z/OS® Identity
Propagation where the distributed identity of an end user is passed to z/OS and used to map
to a RACF® user ID, and any related events in the audit trail from RACF show both RACF
and distributed identities.

This book describes the concept of identity propagation and how it can address the end-to
end accountability issue of many customers. It describes, at a high level, what identity
propagation is, and why it is important to us. It shows a conceptual view of the key elements
necessary to accomplish this.

This book provides details on the RACMAP function, filter management and how to use the
SMF records to provide an audit trail. In depth coverage is provided about the internal
implementation of identity propagation, such as providing information about available
callable services.

This book examines the current exploiters of z/OS Identity Propagation and provide several
detailed examples covering CICS® with CICS Transaction Gateway, DB2®, and CICS Web
services with Datapower.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Karan Singh is a Project Leader at the International Technical Support Organization,
Poughkeepsie Center. He writes extensively and teaches IBM classes worldwide on all areas
of z/OS.

Rogerio Camargo is a z/OS System Support and RACF Security Specialist in IBM Global
Services in Brazil. He has 10+ years of experience in the IT Security Mainframe platform. His
areas of expertise include security assessment, penetration test, security process,
compliance, and health checking. He has performed several security projects, mainly in large
bank institutions in Mexico, Brazil, and Greece. He teaches z/OS Security Server classes in
Brazil, and he was also one of the authors of the IBM Redbooks publication z/OS Version 1
Release 8 RACF Implementation, SG24-7248.

Simon Dodge is a zSeries® Security Architect/Engineer working for WellsFargo Bank in the
USA. He has 20 years of experience working with RACF and 12 years working with CICS for
financial institutions, both as an Application Developer and a Systems Programmer. He has a
degree in electrical engineering (applied science) from the University of Toronto. He speaks
regularly at RACF user groups and SHARE. One of his interests is exploiting the functionality
of the zSecure product suite to satisfy non-trivial reporting needs, both for internal and
regulatory requirements. User identities have been of interest to him ever since he migrated
CICS/MVS™ systems to use RACF back in the late 1980s.

Bob McCormack is an Advisory Software Engineer at the IBM Australian Development
Laboratory and has worked on many z/OS and z/VM® products in a wide variety of
capacities. He has a Bachelor of Applied Science degree from the University of Technology,
© Copyright IBM Corp. 2011. All rights reserved. ix

Sydney and is an IBM Certified IT Specialist. He joined IBM in 2007 after many years with
IBM business partners.

Alain Roessle is a Certified IT Specialist working in the IBM Design Centre, Montpellier,
France. Before joining IBM in 2000, he worked for a large distribution company for 20 years.
His areas of expertise include WebSphere®, CICS, DB2, and Parallel Sysplex®.

Martina Schmidt is a Senior Client Technical Specialist in System z® Software Technical
Sales in Germany. She has five years of experience in mainframes and holds a Bachelor in
Applied Computer Science degree from the University of Cooperative Education in Stuttgart.
Martina’s areas of expertise include z/OS Security, IBM Security zSecure Product Suite,
and RACF.

Ruben Thumbiran has over 20 years of experience on IBM Mainframes, working as a MVS
Systems Programmer, a CICS Systems Programmer, Capacity and Planning, and DB2 on
z/OS. For the past six years he has worked in IBM Global Services in South Africa as an IT
Specialist, DB2 Database Administration. Ruben is a Certified DB2 for z/OS
V8 Administrator.

Phil Wakelin works for IBM UK in Hursley and is a member of the CICS Strategy and
Planning Team. He has worked with many CICS technologies over the last 20 years.
Currently, he is responsible for planning new functionality in the areas of CICS
interconnectivity, CICS Java support, and future releases of the CICS Transaction Gateway.
He has authored many whitepapers, SupportPacs, and IBM Redbooks.

Nigel Williams is a Certified IT Specialist working in the IBM Design Centre, Montpellier,
France. He specializes in enterprise application integration, security, and service-oriented
architectures. He is the author of many papers and IBM Redbooks publications, and he
speaks frequently on CICS and application integration topics.

Thanks to the following people for their contributions to this project:

Richard Conway, Robert Haimowitz
International Technical Support Organization, Poughkeepsie Center

George Markouizos, Russ Hardgrove
IBM RACF

James Pickel, Derek Tempongko
IBM Software Group

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
x z/OS Identity Propagation

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii z/OS Identity Propagation

Chapter 1. Introduction

This publication explores various implementations of z/OS Identity Propagation where the
distributed identity of an end user is passed to z/OS and used to map to a RACF user ID, and
any related events in the audit trail from RACF show both RACF and distributed identities.

This chapter descibes the concept of identity propagation and how it can address the
end-to-end accountability issue of many customers. This chapter describes, at a high level,
what identity propagation is and why it is important. This chapter shows a conceptual view of
the key elements necessary to accomplish this.

Subsequent chapters explore in detail exactly what level of software support is available.
It is expected that there will be a gradual exploitation of z/OS Identity Propagation by
various subsystems.

1

© Copyright IBM Corp. 2011. All rights reserved. 1

1.1 What z/OS Identity Propagation is

In today’s heterogeneous computing environment, often transactions are initiated outside of
the mainframe environment but eventually run within a z/OS subsystem such as CICS or
DB2. In a typical case (Figure 1-1), a user initiates a transaction using her distributed identity.
When this work enters z/OS, the user-distributed identity is lost because in the z/OS
environment only a z/OS security server RACF user ID is relevant. Commonly, transactions
running in a z/OS subsystem (for example, CICS) execute under a single z/OS RACF user
ID, although the users initiating the transactions might be different. There is no association
between the distributed identity of the user who starts the transaction and the z/OS Security
Server RACF user ID under which the transaction runs.

Figure 1-1 Without identity propagation

Identity propagation is the capability whereby a non z/OS identity, a distributed identity, is
propagated into the z/OS environment and is then:

� Used to provide credentials for authorization by being mapped to an existing RACF
user ID

� Available throughout the z/OS Sysplex for auditing and reporting

Distributed
Application

User distributed identity (DN
& Realm) discarded and
RACF user ID selected

Subsystem

RACF user-ID

Audit Record
Audit

SMF

User’s Identity
• RACF user-ID
• No DN & Realm

RACF
z/OS

z/OS Run-time
security context System zUser’s distributed Identity:

DN & Realm
2 z/OS Identity Propagation

The distributed identity of the currently authenticated user is determined by the distributed
application and passed along to the receiving subsystem on z/OS. The subsystem then uses
a new form of RACROUTE VERIFY or RACF Callable Services that passes the distributed
identity to RACF. A search of mappings is done and a runtime security context is built for the
mapped RACF user ID, or the logon is failed if no mapping is found. The distributed identity is
tracked within RACF, so now the user identity is not just a RACF user ID but also includes
their distributed identity. Both the z/OS identity and the distributed identity will now be
included in any subsequent audit records written by RACF. Figure 1-2 shows a conceptual
overview of identity propagation.

Figure 1-2 Identity propagation - Conceptual overview

Note that for the purposes of our discussion we consider the relevant parts of a distributed
identity to consist of two components:

� Distinguished name (DN)

� Realm, or security database, known in RACF as registry

See 2.1.1, “Authentication, distinguished name, and registry” on page 9, for more information
about distinguished name and registry.

1.2 Why identity propagation is important

Currently, in many z/OS environments, there are distributed applications that assert their
identity in the form of a shared or generic RACF user ID that does not represent the true end
user running the application. Consequently, neither the z/OS security server nor the z/OS
audit trail can distinguish between the many users of that application, since we have lost
accountability. However, now with identity propagation, the audit trail is complete and reflects
both the RACF user ID and the distributed identity.

User distributed identity (DN
& Realm) propagated into

z/OS secruity context

 RACF user-ID
 DN & Realm

Audit Record
Audit

SMF

User’s Identity
• RACF user-ID
• DN & Realm

RACF
z/OS

z/OS Run-time
security context System zUser’s distributed Identity:

DN & Realm

• New data
areas to hold
distributed
identity
information

Distributed
Application

Subsystem
Chapter 1. Introduction 3

1.2.1 Complete end-to-end audit trail

It is not uncommon to observe distributed systems whose z/OS workload is run under a
generic or shared user ID representing the application. Individual accountability is lost in this
situation and we do not have full end-to-end security access controls, and the z/OS audit trail
does not reflect the true end user’s identity from the distributed system.

With identity propagation, the SMF audit trail will now contain the distributed identity,
composed of a distinguished name and registry identification, along with the standard RACF
user ID, providing enhanced accountability/auditing.

This distributed identity has been propagated from the distributed environment into the z/OS
subsystem and passed to RACF when initial user identification is required (RACROUTE
TYPE=VERIFY) in that subsystem. Instead of using an authentication mechanism to validate
the assertion of a provided user ID, the distributed identity is mapped to a RACF user ID
based on filters established by the security administrator. Subsequent resource authorization
checks are performed in the usual manner using this user ID, and if auditing is indicated, the
SMF record will contain both RACF user ID and distributed identity.

This allows for full end-to-end accountability because the audit trail now also contains the
distributed identity, even if the RACF user ID is shared in some fashion.

See Chapter 6, “Using SMF audit information to report on z/OS Identity Propagation” on
page 55, for details of SMF-based reporting.

1.2.2 Management of z/OS identity

A key element of identity propagation is the mapping process that determines what RACF
identity should be used for a given distributed identity. This mapping process eliminates the
need to authenticate an asserted user ID. With knowledge of the end user’s true distributed
identity, the security administrator can determine the suitable RACF user ID to be used. This
moves the responsibility and control of user ID assertion from the application administrators
to the z/OS security administrators.

RACF provides a new command, RACMAP, that is used to manage the user ID filters that
map a distributed identity to a RACF user ID. There are no changes necessary to
management of resource access controls. They continue to be managed using user ID or
group permissions to resource profiles.

See Chapter 4, “RACMAP function” on page 39, for details on RACMAP and Chapter 5,
“Filter management” on page 49, for details on management of the mapping filters.

The mappings in RACF are keyed from two elements of the distributed identity:

� The distinguished name (DN)
� The authentication registry or realm

The distinguished name is further broken down into multiple relative distinguished names
(RDNs) that become less specific as you traverse the DN from left to right. The mapping
process attempts a match for the full DN, and if not found it then iteratively strips off the
leftmost RDN® and searches for a match on the remaing portion of the DN. If all RDNs have
been exhausted before a match is found, then a logon failure occurs.

Both the DN and registry can be specified with an asterisk (*), enabling a security
administrator to provide various combinations of mappings.
4 z/OS Identity Propagation

The security administrator could construct various mappings to take advantage of the
iterative mapping process of the RDNs as listed in Table 1-1.

Table 1-1 Simple example of possible mapping scheme

1.2.3 Elimination of the perception of z/OS identity as a weak link

Currently, z/OS can sometimes be perceived as a weak link in a chain, due to the RACF
restriction of 8 bytes maximum for the user ID size. With identity propagation, it no longer
matters, because the distributed identity is also available along with the RACF user ID.
Rather than increasing the size of the RACF identity, it can now be mapped with the
distributed identity. RACF imposes a restriction on the size of the distinguished name of
246 bytes, and for the registry name, 255 bytes.

1.2.4 Making the distributed identity available to an application program

In the CICS environment, a CICS program can retrieve a distributed identity and registry by
using the EXEC CICS INQUIRE ASSOCIATION command. The CICS application can then
perform suitable processing of this identity for its own audit trail purposes or for applying
business logic.

USERDIDFILTER RACF user ID Description

uid=simon,ou=swg,o=ibm ITSO0K02 One-to-one mapping for a specific user

ou=swg,o=ibm ITSO Many-to-one mapping for other users in swg/ibm

‘*’ NORACMAP Default mapping for all others

Note: The default entry pointing to NORACMAP is not a requirement. See 4.9, “Default
RACMAP filter protection” on page 46, for details about how to set up a default mapping.
You only need to do this if you do not want a logon failure distributed identity not
found if an unknown distributed Identity and Realm attempts signon.

RACF is not sensitive to the case of the RDN name, but it is sensitive to the case of the
RDN value. UID= and uid= behave the same way. However, =simon and =SIMON
behave differently.

Note: These fields are in UTF-8 format and might need to be translated to EBCDIC
depending on their intended usage.
Chapter 1. Introduction 5

6 z/OS Identity Propagation

Chapter 2. RACF and z/OS Identity
Propagation

This chapter describes how subsystems within z/OS, such as CICS and other exploiters,
communicate to RACF to exploit identity propagation. This chapter discusses the callable
services and data structures provided by RACF to support the propagation of a distributed
identity. It also describes the information flow and how this identity is treated.

In this chapter reference is made to the enhancements supplied by APARs OA34258
and OA34259.

2

© Copyright IBM Corp. 2011. All rights reserved. 7

2.1 Conceptual overview

Implementing z/OS Identity Propagation requires customizing the z/OS Security Server and
the exploiting applications and requires planning to map the distributed user identities to
RACF user IDs. A conceptual understanding of the technical elements involved in z/OS
Identity Propagation will assist in this process. Figure 2-1 shows how a typical application
exploits z/OS Identity Propagation.

Figure 2-1 z/OS Identity Propagation steps

The steps shown in Figure 2-1 are summarized below, and further details are provided in the
following sections:

1. A user initiates a transaction and provides login credentials to an application. The login
information might be in the form of a DN, or the application might form the DN based on
login credentials provided by the user.

2. The application authenticates the user using a security database. In this example it is an
LDAP server configured for authentication,

3. Once authenticated, the application, if configured for identity propagation, either sends the
required information (DN and registry) to the z/OS subsystem or constructs a Distributed
Identity Data Structure (IDID), which is sent to the z/OS subsystem.

4. If the receiving subsystem on z/OS needs to construct a Distributed Identity Data
Structure (IDID) using the DN and realm passed by the distributed application, it is
done now.

5. The z/OS subsystem or application, in this example CICS, makes an API call to the
security database (in this case RACF) to create the required z/OS runtime security
environment, called an Accessor Environment Entry (ACEE). The IDID previously created
is used in the call.

Application,
such as
WebSphere
Application
Server

LDAP
Server

z/OS
application,
such as CICS

RACF user-ID

DN & Realm

Audit Record
Audit

SMF

RACF z/OS

System z

1. User initiates
transaction:

Provides login
credentials

2. User is
authenticated

3.User DN &
Realm

propagated to
z/OS

4. IDID built
with DN &

Realm

5. SAF call
to create

ACEE

6.Call to
R_cacheserve to

get ICRX

CICS
8.SAF call to recreate

secruity environment or to
R_cacheserve to clean up

cache

7.ICRX can
move with

unit of work
8 z/OS Identity Propagation

6. The application then makes a call to the R_cacheserv service, specifying the store
function to get a Identity Context Reference Extended (ICRX). This data structure contains
the Identity Context Reference (ICR) and the completed Identity Data Structure (IDID).
The ICRX is also cached.

7. The ICRX obtained in step 6 can move with the unit of work through the system or
sysplex. In this example it moves to another CICS region. This ICRX can be used to
retrieve a record from the RACF local identity cache that contains information about the
RACF user ID associated with the ICRX.

8. If the security environment has to be recreated, the application can make another API call
using the ICRX obtained in step 6. If the security environment does not need to be
recreated, the application can clean up the cache using the R_cacheserv service.

2.1.1 Authentication, distinguished name, and registry

Steps 1 and 2 of Figure 2-1 on page 8 illustrate a user initiating a transaction, of which part
will execute on z/OS. In this example the user provides login information and is authenticated
by the distributed application. This information (the DN of the user and the registry used for
authentication (also know as realm or domain)) will be propagated to z/OS. The following
sections provide additional details about the concept of DN and registry.

Distinguished name
The concept of a DN is fully documented in the X.500 series of standards published by the
ITU Telecommunication Standardization Sector (ITU-T). In the context of our discussion, we
simplify the concept to what is relevant for z/OS Identity Propagation.

A DN can be considered a series of delimited attribute type and attribute value pairs that
attempts to uniquely identify an entity (such as a user of an application). Common attribute
types are common name (CN), organizational unit (OU), organization (O), and country name
(C). Example 2-1 is an example of a DN.

Example 2-1 A distinguished name

CN=Martina,C=Germany,OU=SWG,O=IBM

Each pair of attribute type and attribute value is considered a relative distinguished name
(RDN). The distinguished name in Example 2-1 is composed of four RDNs, as listed in
Table 2-1.

Table 2-1 RDNs

RDN attribute type name RDN attribute value

CN Martina

C Germany

OU SWG

O IBM
Chapter 2. RACF and z/OS Identity Propagation 9

The order of attribute types can be organized to reflect an organizational hierarchy, which
results in a tree-like structure. For example, Figure 2-2 shows a simple organizational
structure using RDNs.

Figure 2-2 hierarchal structure

From Figure 2-2 the following four distinguished names are generated:

CN=Ruben,C=South Africa,OU=SWG,O=IBM
CN=Bob,C=Australia,OU=SWG,O=IBM
CN=Karan,C=USA,OU=ITSO,O=IBM
CN=Rich,C=USA,OU=ITSO,O=IBM

Registry or realm
In RACF, the database used for authentication of the distributed user is known as the registry
(although in the distributed world it is commonly referred to as realm or domain). This value is
the second piece of information required for RACF to map the distributed identity to a z/OS
RACF user ID. The value of the registry is typically the security database used to authenticate
the user, such as a Lightweight Directory Access Protocol (LDAP) server configured for
authentication. This data is supplied by the application subsequent to authentication and
provided to the component (which could be the application itself) that is creating the data
structures required for the z/OS resource managers to use for identity propagation.

O=IBM

OU=ITSO

C=USA

OU=SWG

CN=BobCN=Ruben CN=Karan

C=South Africa C=Australia

CN=Rich
10 z/OS Identity Propagation

For example, in Figure 2-3, a user requests a transaction through WebSphere application
server. The transaction will ultimately execute in a CICS region. In Figure 2-3 the user’s login
credentials are authenticated by the WebSphere Application Server via an LDAP database.
Because this transaction has been configured in WebSphere Application Sever for identity
propagation, the user’s distinguished name and the registry (in this case the LDAP server
used for authentication) are passed on to z/OS.

Figure 2-3 Registry

2.1.2 Distributed Identity Data Structure (IDID)

After a user has been authenticated, the distributed application passes the DN and realm to
z/OS when configured for z/OS Identity Propagation. Depending on the software and
hardware components involved in the particular identity propagation topology, the DN and
realm are sent to a z/OS application, which builds a IDID, or the distributed application builds
the IDID and sends the IDID to the z/OS application. This is illustrated as steps 3 and 4 in
Figure 2-1 on page 8.

The IDID data structure contains the information needed by the z/OS Security Server to
create an Accessor Environment Element (ACEE) containing the appropriate z/OS Identity
Propagation references. This ACEE can be considered the z/OS runtime security context for
a user ID. The IDID contains several sections, but from the caller’s view the most important
section is the z/OS section. In its structure it has two important fields:

� Distributed client end user’s identity
� Registry’s name

In addition, there is a section referred to as section 2 in the IDID data structure. That is
reserved for the external security Manager (in our discussion, this is RACF). That section is

WebSphere
Application
Server

1) User enters login
credentials:

CN=karan,OU=ITSO,O=IBM

LDAP Server

2) User is authenticated via
LDAP server

CICS

RACF user-ID
DN & Realm

Audit Record
Audit

SMF

User’s Identity
• RACF user-ID

• DN & Realm

RACF
z/OS

z/OS Run-time
security context System z

• New data areas
to hold
distributed
identity
information

ldaps://us.itso.ibm.com

3) User’s distributed Identity:
DN & Realm passed to z/OS:
•CN=karan,OU=ITSO,O=IBM
•ldaps://us.itso.ibm.com
Chapter 2. RACF and z/OS Identity Propagation 11

completed by RACF and present when a completed ICRX is delivered to the requesting
application through a call to the R_cacheserv service.

2.1.3 SAF interfaces

After an IDID data structure has been created, it can be used in an API call to the security
database to create a z/OS runtime security context. In step 5 of Figure 2-1 on page 8, the
z/OS application has received or created a IDID data structure and now can issue a call to
create the z/OS runtime security context.

Our application will use a SAF callable service (RACROUTE REQUEST=VERIFY or an
initACEE) to create the runtime security context called the Accessor Environment
Element (ACEE).

Variation can exist on the call depending on what is known at the time of the call:

� If the user ID is not to be determined by RACF, the calling application will supply to either
RACROUTE REQUEST=VERIFY or the initACEE with the following input parameters:
user ID and IDID parameters. If successful, an ACEE is supplied.

� If the user ID is to be determined by RACF, the calls using RACROUTE and initACEE are
different. For the RACROUTE REQUEST=VERIFY, the application must construct an
Extended Identity Context Reference (ICRX) data structure with an IDID holding the DN.
In the case of initACEE, the application supplies the IDID data area as a parameter.

We now have an ACEE.

Extended Identity Context Reference (ICRX)
As pointed out above, depending on the call used, an application might have to create an
ICRX data structure when requesting that an ACEE be built.

When specifying an ICRX as a parameter for the RACROUTE REQUEST=VERIFY call to
request creation of an ACEE, the actions that the VERIFY logic will take depend on what
information is present in the ICRX. Specifically, if an Identity Context Reference (ICR) section
exists, then that ICR will be used during processing. This is usually the case when the
security environment has to be recreated (an ACEE has been previously constructed and an
ICRX generated).

Otherwise, if no ICR exists, which we assume is the case in our example for step 5 in
Figure 2-1 on page 8, the following action is taken: If the ICRX does not contain an ICR, and
the IDIDMAP class is active and RACLISTed. RACROUTE REQUEST=VERIFY processing
attempts to map to a RACF user ID using the distributed identity information in the IDID and
mapping filters previously defined using the RACMAP command. If the information in the IDID
does not map to a RACF user ID, the RACROUTE REQUEST=VERIFY fails and returns a
user not defined message.

If an ACEE is successfully created, the ACEE points to a copy of the IDID information from
the ICRX, and it is used in auditing.

Note: For RACF to determine the RACF user ID to be associated with a distributed user
ID, the IDIDMAP class must be active and RACLISTed. In addition, mapping filters must
be defined using the RACMAP command. See Chapter 4, “RACMAP function” on page 39,
for details on RACMAP and filters.
12 z/OS Identity Propagation

2.1.4 R_cacheserv and caching

After an ACEE has been built, the application invokes the R_cacheserv service and requests
a STORE function as an action:

� If the application is in supervisor state and supplied the ACEE as a parameter on the
R_cacheserv call, then this ACEE will be stored in this local identity context cache.

� Otherwise, the ACEE pointed to by the Task Control Block (TCB) or the Address Space
Extension Block (ASXB) is placed in the cache.

Apart from the caching, the R_cacheserv outputs a complete ICRX. A complete
ICRX contains:

� Identity Context Reference (ICR): Information to locate an item in the local identity
context cache

� IDID with its section 2 complete with RACF information

The ICRX can be used by the application to issue further R_cacheserv calls to retrieve or
remove a record from the cache. The record stored in the cache contains pertinent
information about the RACF user ID associated with the ICRX.

This ICRX can now move through the system or sysplex with this unit of work. With the new
enhancements supplied by APARs OA34258 and OA34259, this callable service provides
support for subsystem callers such as CICS to create reusable ICRX objects.

2.1.5 Recreating a security environment or cleaning up a cache

When an application needs to re-establish the security environment, it invokes the
RACROUTE REQUEST=VERIFY and supplies the complete ICRX.

If the application wants to clean up the local identity context cache it invokes the R_cacheserv
service requesting a removal (function code 7, option 3). The complete ICRX is an input to
the R_cacheserv call.

2.2 Internal logic within SAF call

Let us go a little deeper into the SAF calls mentioned in 2.1.3, “SAF interfaces” on page 12.

After an application has an IDID data structure created it has two methods for requesting the
creation of an ACEE:

� RACROUTE REQUEST=VERIFY macro
� initACEE service

Furthermore, the application then has an additional choice to make that will affect what
information it needs to provide to either call:

� Do not have RACF derive the RACF user ID. Instead, provide the RACF user ID. In this
case RACF will not search the IDIDMAP class to find a profile.

� Have RACF derive the RACF user ID. RACF will search the IDIDMAP class for a
matching profile.
Chapter 2. RACF and z/OS Identity Propagation 13

Table 2-2 provides a simplified combination of choices and required data.

Table 2-2 Application choices when requesting ACEE creation

The R_cacheserv service can be used to rebuild, retrieve, or remove a record from the cache.
The following sections provide more details on these calls.

InitACEE decision logic
If the function code parameter indicates that an ACEE is to be created, and no user ID
parameter is specified, and the IDIDMAP class is active and RACLISTed, then information in
the IDID is used to determine a RACF user ID.

If the IDIDMAP class is inactive or the information provided in the IDID does not map to a
RACF user ID, the initACEE service fails.

If a RACF_userid parameter is specified on the initACEE call and the IDID_area parameter
can supply the name of an IDID to be associated with the ACEE, then the IDIDMAP class is
not referred to.

If the IDID_area parameter is specified, the distributed identity information in the IDID should
have been previously authenticated. If an IDID is supplied and an ACEE is successfully
created, the ACEE will point to a copy of the IDID, and it will subsequently be used in
auditing.

If a ACEE is successfully created, then the application should call the R_cacheserv to cache
the ACEE as an ENVR object in the local identity context cache.

RACROUTE REQUEST=VERIFY decision logic
Variation on the call to RACROUTE REQUEST=VERIFY exists depending on whether an
ICR exists.

When the ICRX contains an identity context reference (ICR), on the RACROUTE
REQUEST=VERIFY, ENVIR=CREATE request, VERIFY uses it to determine a RACF
user ID.

Action RACF to derive
user ID

IDID supplied ICRX supplied RACF user ID
provided

RACROUTE
REQUEST=VERIFY

Yes Yes Yes No

RACROUTE
REQUEST=VERIFY

No Yes No Yes

initACEE Yes Yes No No

initACEE No Yes No Yes
14 z/OS Identity Propagation

First, RACF attempts to resolve the ICR from the local identity context cache using the
R_cacheserv callable service. RACF continues according to one of the following cases:

� If the ICR is resolved.

VERIFY retrieves an ENVR object for the user from the local identity context cache. This
is used to create an ACEE for the caller. The IDID within the ICRX is ignored and
reverification of information is not performed.

� The ICR is not resolved.

If section 2 of the IDID, which is reserved for exclusive use by the External Security
Manager, specifies a specific user ID, then VERIFY processing continues with this user ID
and other security-relevant information within section 2 of the IDID.

If section 2 of the IDID does not exist or does not specify a RACF user ID, RACROUTE
REQUEST=VERIFY fails the request and returns ‘user not defined’.

Table 2-3 describes the logic flow when no ICR exists.

Table 2-3 Logic flow when no ICR exists

More information
For more information see the following resources:

� For information about the RACROUTE macro refer to z/OS Security Server RACROUTE
Macro Reference, SA22-7692.

� For information about the initACEE and R_cacheserv callable services refer to z/OS
Security Server RACF callable Services, SA22-7691.

� The ACEE, IDID, and ICRX data areas are covered in z/OS Security Server RACF Data
Areas, SA22-7680.

Note: When creating an ACEE using an ENVR object, the ENVR object might already contain
an IDID.

Note: R_cacheserv attempts to resolve the ICR using the local identity context cache and
also other relevant identity context caches that it can reach through RACF sysplex
communication. Only ICRs that are created by an R_cacheserv store function are
supported. See z/OS Security Server RACF System Programmer's Guide, SA22-7681, for
more information.

When the ICRX does not contain an ICR

If the IDIDMAP class is active and RACLISTed,
RACROUTE REQUEST=VERIFY processing
attempts to map to a RACF user ID using the
distributed identity information in the IDID and
mapping filters previously defined using the
RACMAP command.

If a RACF user ID is not determined (that is, data in the IDID does
not map to a RACF user ID), the RACROUTE REQUEST=VERIFY
fails and returns a user not defined message.

If a RACF user ID is determined, RACROUTE REQUEST=VERIFY
processing continues with this user ID, and PASSCHK=NO is
assumed. All other supplied parameters are used. If an ACEE is
successfully created, the ACEE points to a copy of the IDID
information from the ICRX, and it is used in auditing.
Chapter 2. RACF and z/OS Identity Propagation 15

2.3 Impact on distributed identity data cached in RACF by z/OS
subsystems

The cache referred to in 2.1.4, “R_cacheserv and caching” on page 13, is the local identity
context cache that is communicated with by the R_cacheserv callable service. When an
application invokes R_cacheserv with a store request, a record is stored in this cache
reflecting a current in-force ACEE. A competed ICRX is returned to the caller on a successful
store. The importance for z/OS Identity Propagation is that the returned ICRX contains an
ICR that can be used by RACF to reference the cached ACEE from any system within the
RACF Sysplex communication group, so the cache has a sysplex-scope.

We need to consider how to handle the circumstance in which an administrative action occurs
on RACF user profiles. This might imply an already cached ACEE in the form of a ENVR
object for the affected user to be deemed obsolete because of changes to the user's
permission to access protected resources.

How could this happen? The user RACF profile is changed by one of the following
RACF commands:

� CONNECT
� REMOVE
� ALTUSER with the REVOKE parameter

RACF will make a request to the Event Notification Facility (ENF) to send a signal to all the
subsystems listening to it that an event 71 has occurred. The ENF facility can be considered a
broadcast mechanism that allows an authorized program to listen for the occurrence of a
specific system event. ENF event code 71 indicates that a RACF command has affected a
user’s group connections, which might change the resource authorization of a user. The
commands triggering this event are listed above. This notification in important for z/OS
Identity Propagation because a change in a user’s authorization will affect any relevant
cached records (that is, these records must be flushed and the record rebuilt).

You must remember that not all RACF administrative actions will request an ENF notification
(for example, a password change does not require a cached ENVR object to become
obsolete). Figure 2-4 outlines the process flow from RACF to a subsystem when a change
requires a ACEE replacement.

Figure 2-4 Process flow from RACF to a subsystem when a change requires a ACEE replacement

z/OS
Subsystem e.g.
CICS

Security Server: RACF

RACF Database

User1 Accounts Dataset

User Profile
Dataset Profile

Local Identity Context Cache

User1 Read Permission
removed

Event Notification
 Facility Request contains RACF user ID

Event Code 71

1

2

3

4

5
Get RACF user ID from ICRX data

Refresh

..............ENVR object........ENVR object.......ENVR object...........
16 z/OS Identity Propagation

A change in the status of a RACF user ID is shown in position 1 in Figure 2-4 on page 16.

RACF issues an ENF 71 event code, and the subsystem such as CICS is notified
immediately, overriding any setting that you specified in the USRDELAY system initialization
parameter. This action is depicted at positions 2 and 3 in Figure 2-4 on page 16.

When CICS receives this signal from ENF it scans the local identity context cache for any
ENVR objects. It checks for any RACF user IDs that have been impacted and deletes such
ENVR objects from the cache. This action is depicted in position 4 in Figure 2-4 on page 16. It
uses the R_cacheserv service to perform this action.

Position 5 covers the request to re-establish the application’s security credentials by mapping
the distributed identity to a RACF user ID creating an ACEE and then caching it.

Other systems can also listen for this signal and use it to clean up cached data. Table 2-4
sums up this description.

Table 2-4 Event notification signal 71 information

A scan of the entire cache is needed in the worst possible case. However, this occurrence is
relatively rare, and there should normally not be a significantly large number of entries in the
cache as to cause a performance problem.

Scanning can be done asynchronously to normal transaction processing, so an impact on
transaction processing performance is minimized.

Upon finding a matching ACEE cache entry, deletion of the entry occurs (or is otherwise
marked as obsolete) and SAF-RACF R_cacheserv must be invoked, specifying a modified
ICRX reflecting the ACEE entry, as shown in position 5 within Figure 2-4 on page 16.

The modified ICRX consists of IDID and RACF user ID information, both copied from the
ACEE cache entry that is being deleted. This ICRX will contain no ICR data. SAF-RACF will
use this ICRX to find any corresponding entries in its Sysplex global cache that are also
obsolete and likewise delete them.

2.4 RACF database unload

For full technical details see Security Server RACF Macros and Interfaces, SA22-7682. The
following discussion refers to new and changed records.

Description Qualifier Parameter list
(passed to user exit)

Exit
type

Cross-system
capable

A RACF command has affected a
user's group connections, which
might affect his resource
authorization.
The user affected is in the
parameter list in field
IRR_ENF2USER.

The qualifier (QUAL)
has the following
format:
BYTE1
X'80' CONNECT
command
X'40' REMOVE
command
X'20' ALTUSER
REVOKE command
BYTE2 - 4 Reserved

Mapped by
IRRPENF2

Exit Yes
Chapter 2. RACF and z/OS Identity Propagation 17

The User Associated Distributed Mappings Record (0209)
This defines the IDIDMAP class profile name associated with this user ID. This outlined in
Table 2-5.

Table 2-5 Database Unload Record 0209

* USDMAP_MAP_NAME is stored in the RACF database as UTF-8. The Database Unload Utility
will translate to EBCDIC if possible. This is done to make these output records more readable.
Should the translation not be possible, then it puts out hex values.

It should be noted that the same will apply to field GRBD_NAME in the General Resource
Basic Data Record (0500) when the GRBD_CLASS_NAME is IDIDMAP.

The General Resource Distributed Identity Mapping Data Record (0509)
This output record defines the information used to create the mapping described by this
IDIDMAP class profile and identifies the associated user ID (Table 2-6).

Table 2-6 Database Unload record 0509

* GRDMAP_NAME and GRDMAP_DIDREG are stored in the RACF database as UTF-8. The
Database Unload Utility will translate them to EBCDIC if possible. This is done to make these
output records more readable. Should the translation not be possible, it puts out hex values.

User Associated Distributed Mappings Record
Defines the mappings record associated with this user ID

Field name Type Position Comments

USDMAP_RECORD_TYPE Integer 1 4 Record type of the User Associated Distributed Mappings
Record (0209)

USDMAP_NAME Character 6 13 User ID as taken from the profile name

USDMAP_LABEL Character 15 46 The label associated with this mapping

USDMAP_MAP_NAME * Character 48 293 The name of the IDIDMAP profile associated with
this user

General Resource Distributed Identity Mapping Data Record
Defines the RACF user ID associated with an IDIDMAP profile

Field name Type Position Comments

GRDMAP_RECORD_TYPE Integer 1 4 Record Type of the General Resource Distributed Identity
Mapping Data Record (0509)

GRDMAP_NAME * Character 6 251 General resource name as taken from the profile name

GRDMAP_CLASS_NAME Character 253 260 Name of the class to which the general resource
profile belongs

GRDMAP_LABEL Character 262 293 The label associated with this mapping

GRDMAP_USER Character 295 302 The RACF user ID associated with this mapping

GRDMAP_DIDREG * Character 304 558 The registry name value associated with this mapping
18 z/OS Identity Propagation

2.5 RACF messages

Message ICH408I has additional text available to it to describe an occurrence when a
supplied distributed identity is not found (Figure 2-5).

Figure 2-5 z/OS Console showing ICH408I message

We must also consider the situation in which a RACF user is to be deleted. The user cannot
be delete if there are any distributed identity mapping profiles still in existence for this
particular user.

A new DELUSER message is issued if a related IDIDMAP profile is found when deleting a
use (Figure 2-6).

Figure 2-6 Message showing a failure reason for a delete on a RACF user

2.6 RACF templates

The RACF database contains records, and the format of those records is under the control of
database templates. These templates map how profiles are written to the RACF database.

To refer to documentation of these templates look in z/OS Security Server RACF Macros
and Interfaces, SA22-7682, and z/OS Security Server RACROUTE Macro Reference,
SA22-7692.

Accordingly, support exists for identity propagation in the user template and the general
template. The information in the templates provides details about how IDIDMAP profiles are
mapped to RACF user IDs.

The template additions shown in Table 2-7 show fields to assist with identity propagation in
the user template. The additions occur in the base segment of this template.

Table 2-7 User template additions for identity propagation in base segment

 ICH408I USER(STC) GROUP(TSO) NAME(STARTED TASK)
 DISTRIBUTED IDENTITY IS NOT DEFINED:
 uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
 IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND.

ICH04018I ISTOUSER cannot be deleted. Distributed identity mapping profiles are
associated with this user.

Field name Field
ID

Flag
1

Flag
2

Field
length
(decimal)

Default
value

Type Field description

....

DMAPCT 095 10 00 00000004 00 Number of IDIDMAP mapping profiles
that specify this user ID.

DMAPLABL 096 80 00 00000000 00 Label associated with this mapping.
Chapter 2. RACF and z/OS Identity Propagation 19

The template additions shown in Table 2-8 show fields to assist with identity propagation in
the general template. The additions occur in the base segment of this template.

Table 2-8 General template additions for identity propagation in base segment

These template tables give us a good view of how they interact:

� We see that we keep a count of the number of mapped profiles for that particular user ID.

� A count of the number of names in use, so that we cannot delete an IDIDMAP profile if we
have a non-zero count.

� The association between an IDIDMAP profile and a RACF user ID is made through a
label, the DIDLABL for the IDIDMAP profile and DMAPLABL for the user ID.

2.7 RACF remove ID utility

This utility is designed to remove from the RACF database user IDs and group IDs that are
deemed no longer required. How does this impact identity propagation? As we have seen, we
cannot delete a user ID if there exists one or more IDIDMAP mapping profiles for that user ID.

After unloading the RACF database with the IRRDBU00 utility program, we can run the
IRRRID00 (remove ID utility) program against this unloaded database. That produces an
output file containing RACF commands to delete IDs. In our case we should expect RACMAP
DELMAP commands as well.

DMAPNAME 097 80 00 00000000 00 Name of mapping profile. The names
correspond to profiles in the IDIDMAP
class.

Field name Field
ID

Flag
1

Flag
2

Field
length
(decimal)

Default
value

Type Field description

Field name Field
ID

Flag
1

Flag
2

Field
length
(decimal)

Default
value

Type Field description

....

DIDCT 075 10 00 00000004 00 Number of names that correspond to
this IDID profile

DIDLABL 076 80 00 00000000 00 Label associated with this IDIDMAP
class profile mapping (matches
DMAPLABL for user named by
DIDUSER)

DIDUSER 077 80 00 00000008 00 User ID

DIDRNAME 078 80 00 00000000 00 Registry name (max of 255)
20 z/OS Identity Propagation

The JCL in Figure 2-7 was run to produce commands that would remove IDs relating to the
list of RACF user IDs in the SYSIN file.

Figure 2-7 Sample JCL to produce a list of RACF commands to remove IDs

If we examine the ITSO.RACF.REMOVE.CLIST dataset we see what this utility produces
when there are associated mapping profiles for the selected users (Figure 2-8).

Figure 2-8 Output from IRRRID00 showing RACF commands to delete IDs

2.8 Supplied samples

We have a number of supplied samples in SYS1.SAMPLIB with z/OS that have changes to
meet the requirements of identity propagation, which we discuss in this section.

2.8.1 IKJTSO00 in RACPARM

If you invoke the RACF command RACMAP from with ISPF or TSO, then this command
should exist in the TSO/E APF-AUTHORIZED COMMAND AND PROGRAM TABLES. A

//REMOVE EXEC PGM=IRRRID00,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTOUT DD UNIT=SYSALLDA,SPACE=(CYL,(15,0))
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(15,0))
//INDD DD DISP=SHR,DSN=CKRU.RACF.DBUNLOAD
//OUTDD DD DSN=ITSO.RACF.REMOVE.CLIST,
// SPACE=(CYL,(30,5),RLSE),UNIT=SYSALLDA,
// DCB=(LRECL=259,RECFM=VB,BLKSIZE=0),
// DISP=(NEW,CATLG,KEEP)
//SYSIN DD *
SWGAU
SWGDE
/*

/**/
/* The following commands delete profiles. You must review */
/* these commands, editing them if necessary, and then remove */
/* the EXIT statement to allow the execution of the commands. */
/**/

 EXIT

 RACMAP ID(SWGAU) DELMAP(LABEL('LABEL00000001'))
 RACMAP ID(SWGDE) DELMAP(LABEL('LABEL00000002'))
 DELUSER SWGAU
 DELUSER SWGDE

/**/
/* IRRRID00 has successfully completed */
/**/
Chapter 2. RACF and z/OS Identity Propagation 21

sample is shown in the RACPARM member in the SYS1.SAMPLIB. Refer to the label
IKJTSO00 in this member for an example of the RACMAP definition (Figure 2-9).

Figure 2-9 A portion of the AUTHCMD entries from within RACPARM member in SYS1.SAMPLIB

2.8.2 Sample DB2 members

RACF supplies two sample members to take unloaded SMF data and then load into
DB2 tables.

First, we have member IRRADUTB in SYS1.SAMPLIB, which defines the table space and
tables used to contain the output of the RACF SMF data unload utility (IRRADU00). This is in
the form of sample data definition language (DDL) statements that can be used to create the
tablespace IRRADU00 in the database RACFDB2. For identity propagation a new table is
created and columns defined for distributed identity data:

� Add (CREATE) table USER01.RACMAP.
� Define columns for UTF-8 and EBCDIC versions of IDID data.

In the example in Figure 2-10 we only show the DDL statements for the USER01.RACMAP
table. Similar DDL statements exist for other tables in this sample member to hold
identity data.

Figure 2-10 Portion of DDL statements to define a table and columns relating to a distributed identity

Member IRRADULD within SYS1.SAMPLIB provides statements to load into DB2 all the
record types produced by the SMF unload utility. These are sample DB2 load utility
statements that can be used to load the output of IRRADU00 into these tables.

AUTHCMD NAMES(/* AUTHORIZED COMMANDS */ +
 . . .
 LU LISTUSER /* RACF 5740-XXH */ +
 RACDCERT /* RACF 5645-001 */ +
 RACMAP /* RACF 5740-XXH */ +
 RACPRIV /* RACF 5740-XXH */ +
 RALT RALTER /* RACF 5740-XXH */ +
 RACLINK /* RACF 5695-039 */ +
 RDEF RDEFINE /* RACF 5740-XXH */ +
 RDEL RDELETE /* RACF 5740-XXH */ +

--
-- RACMAP --
--
CREATE TABLE USER01.RACMAP(
 RACM_EVENT_TYPE CHAR(8),
...
 RACM_IDID_USER_UTF8 VARCHAR(246) FOR BIT DATA,
 RACM_IDID_USER_EBCDIC VARCHAR(738),
 RACM_IDID_REG_UTF8 VARCHAR(255) FOR BIT DATA,
 RACM_IDID_REG_EBCDIC VARCHAR(765)
) IN RACFDB2.IRRADU00;
22 z/OS Identity Propagation

The member can be edited to only load the required record types. These load statements
now cater for the distributed identity and also load it in both UTF-8 and EBCDIC format. This
is demostrated in the Figure 2-11, as we show portions of the load statements for JOBINIT
and ACCESS SMF records.

Figure 2-11 Selected load statements relating to identity propagation in IRRADULD

2.8.3 XML schema document

Member IRRSCHEM is provided in SYS1.SAMPLIB. It defines the XML grammar used to
validate the XML instance documents produced by the RACF SMF data unload utility
(IRRADU00).

LOAD DATA
 INDDN IRRADU00
 RESUME YES
 LOG NO
 INTO TABLE USER01.JOBINIT
 WHEN(1:8)='JOBINIT ' (
 INIT_EVENT_TYPE POSITION(1:8) CHAR(8),
...
 INIT_IDID_USER_UTF8 POSITION(2532:2777) CHAR(246),
 INIT_IDID_USER_EBCDIC POSITION(2779:3516) CHAR(738),
 INIT_IDID_REG_UTF8 POSITION(3518:3772) CHAR(255),
 INIT_IDID_REG_EBCDIC POSITION(3774:4538) CHAR(765)
)

 INTO TABLE USER01.ACCESS
 WHEN(1:8)='ACCESS ' (
 ACC_EVENT_TYPE POSITION(1:8) CHAR(8),
...
 ACC_IDID_USER_UTF8 POSITION(3346:3591) CHAR(246),
 ACC_IDID_USER_EBCDIC POSITION(3593:4330) CHAR(738),
 ACC_IDID_REG_UTF8 POSITION(4332:4586) CHAR(255),
 ACC_IDID_REG_EBCDIC POSITION(4588:5352) CHAR(765)
)
Chapter 2. RACF and z/OS Identity Propagation 23

It is an XML schema document that defines the XML tag language, as highlighted in partial
form in Figure 2-12.

Figure 2-12 Potion of the SML schema document

<!-- -->
<!-- Beginning of the security event log element defintions -->
<!-- -->
 <xs:element name="securityEventLog">
 <xs:complexType>
 <xs:sequence>
...
 <xs:element name="ididReg" type="t_string1_1021"/>
 <xs:element name="ididUser" type="t_string1_985" />
...
 </xs:sequence>
 </xs:complexType>
 </xs:element> <!-- securityEventLog element -->
24 z/OS Identity Propagation

Chapter 3. z/OS Identity Propagation
exploiters

This chapter describes the subsystems on z/OS Version 1 Release 11 exploiting identity
propagation. This chapter discusses how to enable identity propagation on each of these
subsystems, including:

� CICS and CICS TG
� CICS Web services
� DB2 10 for z/OS

3

© Copyright IBM Corp. 2011. All rights reserved. 25

3.1 CICS Transaction Gateway

The CICS Transaction Gateway (CICS TG) is a set of client and server software components
that allow a remote client application to invoke services in a CICS region. The client
application can be either a Java application or a non-Java application using either C, C++,
COBOL, or COM interfaces (depending on the platform used).

When a Java application is used, the application can be any type of client (such as a
servlet or an enterprise bean). In the JEE environment, the application is typically a servlet
or enterprise bean that is deployed into a JEE application server such as WebSphere
Application Server.

The CICS TG provides a set of JCA resource adapters that provide a simple and robust
way of connecting a JEE application to a CICS application. Figure 3-1 shows how the
CICS External Call Interface (ECI) resource adapter enables access to a CICS business
logic program.

Figure 3-1 CICS Transaction Gateway

The CICS TG ECI classes are packaged with the ECI resource adapter and are used to pass
the application request to the CICS TG. Rational® Application Developer can be used to
create a Java bean to represent a COMMAREA formatted as COBOL types, with Java
methods for getting and setting fields.

In Figure 3-1, the CICS TG daemon is deployed on z/OS. It can be configured to use either
External CICS Interface (EXCI) or an IP interconnectivity (IPIC) to communicate with CICS.

3.1.1 JCA and security
The JCA defines a standard set of system-level contracts between a JEE application server
and a resource adapter. These system-level contracts define the scope of the managed
environment that the JEE application server provides for JCA components. One of the
standard contracts is the security management contract that enables secure access to an
EIS. Both container-managed sign-on (in which the JEE application server is responsible for
flowing security context to the EIS) and component managed sign-on (in which the
application is responsible for flowing security context to the EIS) are supported.

Container-managed security is suggested because it is good practice to separate the
business logic of an application from qualities of service such as security.

IPIC

z/OS

CICS

CICS TGECI
WebSphere
Application

Server

JCA
Resource
Adapter

JCA
Resource
Adapter

JCA ECI
Resou rce
Adapter EXCI

Business
Logic
26 z/OS Identity Propagation

3.1.2 CICS TG for z/OS security options
In Figure 3-1 on page 26, the Gateway daemon is the entry point to the System z platform in
which the CICS system is running, so it is normal for the Gateway daemon to perform an
authentication check for incoming ECI requests from clients.

The CICS TG for z/OS supports the following options for securing ECI requests:

� Basic authentication

The CICS TG can be configured to validate a user ID and password for each ECI request.

� Identity assertion

After the user has authenticated to WebSphere Application Server, the user’s password is
unlikely to be available to send to the Gateway daemon. In this case, the Gateway daemon
and CICS can be configured to accept a user ID without a password.

This is a form of identity assertion, and therefore you should establish a trust relationship
between the WebSphere application server, the Gateway daemon, and the CICS server.

� z/OS Identity Propagation

This is a unified security solution that provides additional accountability, which is achieved
by passing a distributed identity to CICS instead of a user ID and password.

This is also a form of identity assertion, and therefore you should establish the required
trust relationships (see “Trust” on page 27).

� SSL/TLS

SSL/TLS can be used for confidentiality, data integrity, and optionally for X.509
certificate authentication.

Trust
For identity propagation with CICS TG, we suggest that the connection between the
WebSphere application server and the Gateway daemon be configured as a trusted
connection using one of the following methods:

� Using SSL client authentication to authenticate the application server to the
Gateway daemon.

� Using a Virtual Private Network (VPN) or other network security configuration.

� Using a CICS TG security exit, which allows simple pre-configured rules to be set,
ensuring that only specific application servers with a known key can connect.

A trust relationship should also be configured between the Gateway daemon and the
CICS server. When an IPIC connection is used, trust can be established in one of the
following ways:

� Using a pre-defined CICS IPCONN resource definition, which is a basic form of security
that only allows a Gateway daemon configured with the correct name to connect to CICS.

� Using sysplex sockets, which can ensure that if non-SSL IPIC connections are used with
CICS, then they must come from an IP stack on the same sysplex.

Note: z/OS Identity Propagation is supported with the CICS TG only when using ECI
calls over IPIC connections to CICS.
Chapter 3. z/OS Identity Propagation exploiters 27

� Using NET ACCESS zones, which are RACF-based rules used by the IP stack that can
prevent or allow preselected IP addresses from connecting to a given TCP/IP service in
use by CICS.

� Using a firewall technology.

3.1.3 z/OS Identity Propagation support with CICS TG

Identity propagation provides a new security architecture for controlling identity assertion
when connecting JEE applications to CICS. Identity propagation provides for a variety of
identity assertion configurations when the WebSphere Application Server and CICS
components are connected in a secure topology. Being in a secure topology stipulates that
either the Gateway daemon and CICS region are located on the same sysplex or that they
are connected by a client-authenticated SSL connection.

Figure 3-2 shows an overview of a CICS TG identity propagation scenario.

Figure 3-2 z/OS Identity Propagation with CICS TG

Figure 3-2 shows an employee (Alice) who logs on to the company’s WebSphere Application
Server. After successful authentication, the WebSphere application makes a JCA call to
CICS. The company has a requirement to authorize requests based on Alice’s RACF user ID.

The sequence of processing steps is:

1. Alice logs on to the WebSphere application server and authenticates with her distributed
identity (CN=Alice Jones,OU=SalesDept,O=IBM,C=UK).

2. The JEE application is configured to use a CICS TG provided login module that attaches
Alice’s distributed identity, in the form of DN, onto the outbound request to the CICS TG.

3. The SSL connection from the WebSphere Application Server to the Gateway daemon is
client authenticated, thus establishing a trust between the two servers.

4. The Gateway daemon receives Alice’s DN and flows it as part of an Extended Identity
Context Reference (ICRX) to CICS.

IPIC

z/OS

CICSCICS TGSSL
WebSphere
Application

Server

JCA
Resource
Adapter

JCA
Resource
Adapter

JCA
Resource
Ad ap ter ICRX

RACF
user IDAlice

RACF

SMF

 RACF user ID

 Distinguished Name

Audit Record

RACMAP ID(ALICEJ) MAP USERDIDFILTER(NAME(‘CN=Alice Jones,
OU=SalesDept,O=IBM,C=UK’)) REGISTRY(NAME(‘ldaps://myldap.uk.ibm.com’))
WITHLABEL(‘Alice’)

LDAP

Basic Authentication
CN=Alice Jones,
OU=SalesDept, O=IBM, C=UK

ALICEJ

CN=Alice Jones,OU=SalesDept,O=IBM,C=UK
28 z/OS Identity Propagation

5. CICS receives the request from the Gateway daemon and uses the ICRX to identify
the user.

6. CICS issues a RACROUTE REQUEST=VERIFY to map the ICRX into the RACF user
ID ALICEJ.

7. The CICS task runs under the mapped RACF user ID (ALICEJ) but retains the association
with the original distributed identity (CN=Alice Jones,OU=SalesDept,O=IBM,C=UK).

3.1.4 CICS resources used for configuring identity propagation with CICS TG

This section summarizes the CICS resources that a systems programmer uses to
configure z/OS Identity Propagation with the CICS TG. The main CICS resource definitions
to consider are:

� TCPIPSERVICE

A TCPIPSERVICE definition is required for IPIC connectivity from the Gateway daemon to
CICS. It contains information about the port on which inbound requests are received, and
whether any transport-based security mechanisms, for example, SSL/TLS, will be applied
by CICS.

� IPCONN

An IPCONN resource defines the IPIC connection. To configure a CICS region to use a
distributed identity flowed from the CICS TG requires that the USERAUTH attribute of the
IPCONN resource definition specifies the value IDENTIFY.

For information about configuring identity propagation with the CICS TG, see Chapter 10,
“Identity propagation using CICS Web services” on page 123.

3.2 CICS Web services

Application programs running in CICS TS V3 or later can participate in a heterogeneous web
services environment as service requesters, service providers, or both, using either an HTTP
transport or an MQ transport. Figure 3-3 shows a high-level view of the key components when
CICS acts as a service provider.

Figure 3-3 CICS Web services

A message handler in the pipeline (typically, a CICS-supplied SOAP message handler)
removes the SOAP envelope from the inbound request and passes the SOAP body to the

Client

CICS Web support

WebSphere MQ Trigger Monitor

Pipeline

CICS or custom data mapping

CICS TS

SOAP
Proxy

CICS application
program
Chapter 3. z/OS Identity Propagation exploiters 29

data mapper function. The data mapper uses the CICS WEBSERVICE definition to locate the
mapping information that it needs to map the inbound service request (XML) to a
COMMAREA or a container. The output data from the CICS application program is converted
into a SOAP message and sent back to the service requester.

The data mapping is generated either using the CICS-supplied utilities or Rational Application
Developer for System z (RDz). CICS-supplied or custom-written message handlers are
inserted into the pipeline in order to control processing of the request. For example, a security
message handler can be used to change the security context of a request, that is, to change
the RACF user ID under which the target request runs.

When CICS is a service requester, an application program sends a request, which is passed
through a pipeline, to a target service provider. The response from the service provider is
returned to the application program through the same pipeline.

3.2.1 CICS resources used for configuring web services

This section summarizes the CICS resources that a systems programmer uses to configure
CICS Web services that are accessed over HTTP. For more detailed information about
configuring CICS Web services, refer to the IBM Redbooks publication Implementing CICS
Web Services, SG24-7206.

The main CICS resource definitions to consider when securing CICS Web services are:

� TCPIPSERVICE

A TCPIPSERVICE definition is required in a service provider that uses HTTP or HTTPS
as transport. It contains information about the port on which inbound requests are
received, and whether any transport-based security mechanisms will be applied by CICS.
A TCPIPSERVICE definition is used to configure transport security.

� URIMAP

A URI mapping or URIMAP resource definition matches the URIs of web service
requests. The URIMAP associates a URI for the request with a PIPELINE and
WEBSERVICE resource that specifies the processing to be performed. You can use
a URIMAP to specify:

– The name of the transaction that CICS uses for running the pipeline alias transaction
(The default is CPIH.)

– The user ID under which the pipeline alias transaction runs

� PIPELINE

A PIPELINE resource definition provides information about the message handlers that act
on a service request and on the response. The PIPELINE provides the name of a pipeline
configuration file, and the pipeline configuration file specifies the list of message handlers.

To configure a pipeline to support SOAP message security, you can add the
CICS-supplied security handler DFHWSSE1 to the pipeline configuration file. You can use
the DFHWSSE1 message handler for a range of message security functions including
validating XML signatures, XML encryption, and identity propagation.

� WEBSERVICE

A WEBSERVICE resource defines aspects of the runtime environment for a CICS
application program deployed in a web services setting, where the mapping between
application data structure and SOAP messages has been generated using the CICS Web
services assistant.
30 z/OS Identity Propagation

Chapter 10, “Identity propagation using CICS Web services” on page 123, describes how
we configured these CICS resources for our web services identity propagation scenario.

3.2.2 Securing CICS Web services

Different IT projects will have different security objectives. After the specific objectives
are understood, you can consider two types of security mechanisms in a CICS Web
services environment:

� Transport-based security

Transport-based security mechanisms such as SSL/TLS can be used to secure web
services. SSL/TLS is a mature technology that has been optimized over a long period of
time, and there are ways of optimizing performance such as persistent TCP/IP
connections and the use of hardware acceleration for cryptographic processing.

You might choose to use transport-based security when there are no intermediaries,
transport is only based on HTTP, or performance is your primary concern.

CICS transport security is configured by specifying security options in the TCPIPSERVICE
resource definition.

� SOAP message security

SOAP message security using the WS-Security specifications provides a foundational set
of SOAP message extensions for building secure web services by defining new elements
to be used in the SOAP header. It specifies the use of security tokens, digital signatures,
and XML encryption to protect and authenticate SOAP messages.

You might choose to use WS-Security (possibly in addition to transport-based security)
when intermediaries are used. Security credentials that flow in the SOAP message can
pass through any number of intermediaries. Furthermore, an intermediary might be able to
provide an authentication service to CICS, such that the intermediary server authenticates
the web service client and then flows an asserted identity to CICS.

CICS SOAP message security is configured by specifying the WS-Security security
handler as part of the pipeline configuration file.

3.2.3 WebSphere DataPower

WebSphere DataPower® is a hardware solution that is well known for its security features
and its high throughput in XML processing. It can be integrated in a DMZ and it can detect
and reject XML attacks. The appliance can act as an XSL accelerator and transformation
engine, be used as a Firewall and security device (authentication, authorization, encryption,
and decryption messages), and also function as an Enterprise Service Bus (ESB). It can
perform complex security checks without performance degradation.
Chapter 3. z/OS Identity Propagation exploiters 31

WebSphere DataPower can be used in conjunction with CICS Web services to help secure
the services and to offload expensive operations by processing the complex part of XML
messages (such as an XML digital signature) at wirespeed (Figure 3-4).

Figure 3-4 Using a WebSphere DataPower SOA Appliance with CICS Web services

3.2.4 Identity propagation with CICS Web services

WebSphere DataPower can be used to implement identity propagation with CICS Web
services. Figure 3-5 shows how DataPower can be used to propagate a distributed identity to
CICS so that it can be mapped to a RACF ID.

Figure 3-5 Identity propagation with CICS Web services

In Figure 3-5, the web service requester application connects to WebSphere DataPower
using the SOAP protocol. WebSphere DataPower authenticates the credentials supplied by
the distributed user and maps them to a z/OS ICRX identity token, which contains the
distributed identity of the user.

z/OS

WebSphere
DataPower XI50

SOAP/HTTP
With WS-
Security SOAP/HTTP

CICS
Applications

Service
Requesters

Web services
requester

JAX-WS
Web

Services

Client
application

CICS

RACF

z/OS

R AC F
Userid +

Distrib uted
identity

 RACF Userid
 DN & Realm

Aud it Record

WebSphere
DataPower XI50

Incoming credentials

• LDAP authentication

• Digi tal signature

• SSL client certif icate

• SAML token

• Others

ICRX

SO
A

P/H
TTP

SOAP/H
TTPS
32 z/OS Identity Propagation

WebSphere DataPower supports a wide range of authentication mechanisms, including:

� LDAP authentication

The requester is authenticated by an LDAP server.

� Digital signature

The requester is authenticated via the certificate passed as part of the <X509/> element of
a digitally signed message.

� SSL client certificate

The requester is authenticated via its client SSL credentials.

� SAML token

The requester is authenticated by a SAML server or by a SAML assertion with a
valid signature.

The SOAP message is forwarded to CICS over a trusted SSL connection with the ICRX
identity token in a WS-Security header. Identity propagation is supported for CICS Web
services when using WebSphere DataPower XI50 or XS40 and at a minimum level of
firmware (Version 3.8). Any supported levels of WebSphere Application Server can be used
as the Web services requester because the ICRX is created in DataPower based on the
distributed identity provided by the application server.

CICS receives the SOAP message from DataPower and passes the ICRX to RACF so that
the client's identity can be mapped to a RACF user ID. The CICS task then runs under this
RACF user ID, but retains the association with the original distributed identity. The advantage
of this solution is that the original caller's identity is not lost. It is stored as an extension to the
RACF identity.

Trust
For identity assertion with web services, the intermediate server should establish a trust
relationship with the CICS region by authenticating itself and then by being recognized
as a trusted partner of the CICS region. CICS supports two models for establishing this
trust relationship:

� Trust token

The intermediary server sends a trust token to CICS.

� Blind trust

Trust is established at the transport level, for example, with SSL client authentication.

CICS Web services identity propagation support is normally used with the blind trust model,
which has the advantage that the trust established between the intermediary server and CICS
can be persistent. This can occur, for example, by using SSL persistent connections or a
Virtual Private Network (VPN). It does not need to be re-established for each SOAP
message. When using SSL client authentication to establish the trust relationship, the SSL
certificate that WebSphere DataPower uses to identify itself can be associated with a RACF

Note: CICS Web services identity propagation is supported with CICS Transaction Server
V4.1 with a set of enabling APARs:

� PK83741
� PK95579
� PM01622

APAR PK98426 is also required if you are using CICSPlex® SM.
Chapter 3. z/OS Identity Propagation exploiters 33

user ID, and surrogate user checking can then be used to authorize this user ID to assert the
RACF ID that is mapped from the distributed identity.

For information about configuring identity propagation with CICS Web services and
WebSphere DataPower, see Chapter 10, “Identity propagation using CICS Web services” on
page 123.

3.3 DB2 10 for z/OS

This section describes DB2 for z/OS exploiting identity propagation and what is required to
propagate the distributed identity through DB2. This section explains how distributed
identities can be consistently mapped to a RACF user ID, which is then used for normal
DB2 authentication.

From z/OS Security Server V1R11, the EIM function is fully integrated into the RACF
database. As a result, you no longer have to provide the LDAP server and EIM domain
controller infrastructure that is required for the DB2 EIM implementation. This function
provides a more integrated approach to manage user IDs across the enterprise. DB2 10 for
z/OS is exploiting identity propagation.

To exploit this feature, the application server must be connecting to DB2 10 for z/OS and
z/OS Version 1.11 or later. Exploiters of identity propagation on DB2 for z/OS are remote
systems, connecting using DRDA® and trusted connections within DB2. This chapter
discusses how to enable identity propagation for DB2 for z/OS, including:

� DB2 10 for z/OS Trusted Context
� RACMAP
� SMF reporting
� Distinguished name not matching

A distributed identity filter is a mapping association between a RACF user ID and one or more
distributed user identities. A distributed identity filter consists of one or more components of a
distributed user’s name and the name of the registry where the user is defined. To administer
these distributed identity filters on z/OS, use the RACF RACMAP command to associate (or
map) a distributed user identity to a RACF user ID.

Trusted Context feature on DB2 10 for z/OS enables a trusted connection with a distributed
system. After a trusted context is defined and initial trusted connection to the database server
is made, the application server can use that database connection from a different user
without a full reauthentication.

Note: A surrogate user is a RACF user ID that is authorized to act on behalf of another
user (the original user).
34 z/OS Identity Propagation

Figure 3-6 illustrates the entities involved with identity propagation.

Figure 3-6 Different entities for DB2 10 for z/OS Identity Propagation

Figure 3-6 shows client workstations connecting to DB2 for z/OS using either JDBC or
CLI/ODBC connections. This is using a trusted connection based on the trusted context
created in DB2. Within RACF, mapping of a distributed identity is mapped to a RACF user ID,
which is then associated with a authorization ID, and then linked to a DB2 role based in the
trusted context definition. The distributed identities can be switched on the same connection
without be authenticated.

3.3.1 DB2 10 for z/OS Trusted Context

A trusted connection is a database connection that is established when the connection
attributes match those of a trusted context that is defined at the server. A trusted connection
can be established locally or at a remote location.

DB2 10 for z/OS Identity Propagation works only in a trusted context. The end user’s identity
consists of a distinguished name and registry name. Using a trusted connection, DB2 for
z/OS detects the registry name and allows the distributed identity to be passed onto RACF to
be mapped.

Note: At the time of the writing, the length of the user ID in DB2 was limited to 8 character
bytes. However, this restriction has been lifted by APAR PM31429. Because the
distributed identity is not a defined RACF user ID, DB2 will not impose any length
restrictions on the user ID (which might contain a distinguished name in the x.500 format).

Refer to the “Example of establishing an explicit trusted connection and switching the user”
section in DB2 Version 9. for Linux, UNIX and Window, SC27-2443-01.

z/OS

JDBC/CLI/ODBC

Trusted Connection

End-User Distributed
Identities

Identity Propagation in DB2 10 for z/OS – 2/3 Tier

LDAP

Workstation
Client or
Server

•IP Address
•System
Authorization ID

DB2

•Role
•Trusted Context

RACF
•System
Authorization ID
•RACMAP
Distributed Identity

Note: Refer to chapter 8, “Managing Access through trusted context,” in the DB2 10 for
z/OS Administration Guide, SC19-2968-01.
Chapter 3. z/OS Identity Propagation exploiters 35

Creating a trusted context
A trusted context is a database entity that you can create based on a system authorization
user ID and connection trust attributes.

Using trusted connections provides the ability for an external entity with a distinguished name
and realm to use an established trusted connection to the database server, without being
reauthenticated at the database server. DB2 then passes on the distributed identity to RACF
to be mapped against a RACF user ID.

A trusted connection can be established from a remote application after DB2 matches the
connection attributes setup in the trusted context. Use the CREATE TRUSTED CONTEXT
statement to define the trusted context in DB2. Refer to DB2 DB2 10 for z/OS SQL
Reference, SC19-2983-01, for more information about the create context statement.

3.3.2 RACMAP

RACF Class IDIDMAP must be activated before you issue the RACMAP command.
RACMAP commands are used to map the distributed identity to the RACF user ID. The
distributed identity DN is stored in the USERDIDFILTER and realm is the REGISTRY name.

The registry name is not verified by RACF, however, it must be supplied by the distributed
application, otherwise DB2 will not recognize the distributed identity and will be treated as a
normal RACF user ID, which then abends on the client with:

-4499 An error occurred during a deferred connect reset and the connection has
been terminated

Registry name (realm)
The registry name contents defined in RACMAP are not verified by RACF or DB2. However,
a registry name must be supplied so that DB2 allows the distributed identity to be forwarded
to RACF and mapped. Otherwise, it is treated as a normal user ID and abends with:

-4499 An error occurred during a deferred connect reset and the connection has
been terminated

The registry name on RACMAP must be captured as an asterisk (*), which means that we
allow any registry or realm to connect.

USERDIDFILTER
The Userdidfilter field contains the distinguished name. Currently, DB2 10 for z/OS only
allows for an 8-character distinguished name. The userdidfilter is the single matching
component of the distributed identity. If the matching distinguished name and userdidfilter do
not exist, it is rejected.

Refer to Chapter 6, “Using SMF audit information to report on z/OS Identity Propagation” on
page 55, for a more detailed explanation of the RACMAP command and what each parameter
means. Also, refer to the example used with DB2 in Chapter 9, “Identity propagation with DB2
for z/OS” on page 113.

3.3.3 DB2 role in RACF

A privilege enables the user of an ID to execute certain SQL statements or to access the
objects of another user. A role groups the privileges together so that they can be
simultaneously granted to and revoked from multiple users.
36 z/OS Identity Propagation

A role is a database entity that is created in DB2. It is defined through the SQL CREATE
ROLE statement and is associated with an authorization ID in a trusted context definition. A
role cannot be used outside of a trusted context unless the user in a role grants privileges to
an ID.

DB2 roles are possible when using the RACF/DB2 exit. Although not a defined entity in
RACF, it can be associated with a RACF user ID using the WHEN CRITERIA option in the
RACF PERMIT command. Before using DB2 roles with the RACF access control module, the
security administrator must define DB2 resources profiles.

3.3.4 SMF reporting

The RACF and DB2 SMF reporting combined can provide valuable auditing reports now,
where the distributed identity can be reported on z/OS SMF data.

RACF SMF Type 80
RACF SMF Type 80 records show you the mapping that was performed. Type 80 is now
able to display the distributed identity in the audit trail. This means that we are able to identify
the individual from a remote system, accessing the backend z/OS server.

Using the RACF/DB2 exit provides you with additional information regarding which DB2
object profile access was successful. Not using the RACF/DB2 exit, and reporting on RACF
SMF Type 80, you are still able to see the mapping of the distributed identity. See Chapter 9,
“Identity propagation with DB2 for z/OS” on page 113, for an example of this.

DB2 audit trace
We have used DB2 10 for z/OS Audit Policy to produce the SMF data used in our examples.
Audit policies can be created by adding a record to the new SYSIBM.SYSAUDITPOLICIES
catalog table. After an audit policy has been added, you can use the -START TRACE(AUDIT)
AUDTPLCY(policyname).

command to start the trace for the specified policyname.

Refer to Chapter 11, “Auditing access to DB2,” in the DB2 10 Administration Guide,
SC19-2968-01, for more information about how to create and activate DB2 audit policy.

This audit policy feature simplifies the process, and by using the VERIFY audit category, the
following can be reported on:

� IFCID 55 - set current sqlid
� IFCID 83 - identify request
� IFCID 87 - signon request
� IFCID 169 - distributed authid translation
� IFCID 269 - trusted connection established/reused

Note: For more details about the RACF/DB2 exit and the RACF setup, refer to DB2 10 for
z/OS RACF Access Control Module Guide, SC19-2982-01.

Note: Refer to Chapter 4, “RACMAP function” on page 39.

Note: Refer to Chapter 4, “RACMAP function” on page 39.
Chapter 3. z/OS Identity Propagation exploiters 37

Using SMF reporting tools, the fields within these IFCIDs should be sufficient to produce a
report on the distributed identities, which user ID it was mapped to, the trusted context used,
the role, the objects accessed, and whether the access was successful.

Chapter 9, “Identity propagation with DB2 for z/OS” on page 113, provides a test
with examples.

Dynamic Statement Cache
Having dynamic statement cache activated, and with the AUTHID and SQL statement being
reused, DB2 would not fully authenticate each time. For example, when the RACF/DB2 exit is
active, you will not see a RACF SMF type 80 being produced each time that the same
AUTHID is executing the same SQL.

With identity propagation, we expect different distributed identities, which could get mapped
to the same AUTHID. This can be reported on with each RACINIT produced by RACF SMF
type 80.

If, however, you flush the dynamic statement cache, then RACF performs the authentication
against the table profile, and you get a new RACF SMF type 80 produced, showing the
access READ to the SELECT profile.

The same applies when not using the RACF/DB2 exit. DB2 does not re-authenticate if the
SQL statement and AUTHID are located in the dynamic statement cache.

3.3.5 Distinguished name not matching

If there is no match for a distinguished name in the IDIDMAP class profiles, then the
authorization fails (Figure 3-7).

Figure 3-7 Distributed identity is not defined

In Figure 3-7, we test with distributed identity TestUser, which does not have a RACMAP
definition. RACF then displays DISTRIBUTED IDENTITY NOT DEFINED. Again, it shows the
user ID TESTUSER, not RACF-DEFINED.

Also, at the client end, using our JAVA application test, we get the following error:

-4499 An error occurred during a deferred connect reset and the connection has
been terminated

ICH408I USER(STC) GROUP(TSO) NAME(STARTED TASK)
 DISTRIBUTED IDENTITY IS NOT DEFINED:
 TestUser
IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND.
ICH408I USER(TESTUSER) GROUP() NAME(???)
 LOGON/JOB INITIATION - USER AT TERMINAL NOT RACF-DEFINED
IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND.
DSNL030I -DB0D DSNLTSEC.30 DDF PROCESSING FAILURE 777
FOR
LUWID=G90C0594.H1FD.C747566B6C9D
 REASON=00F30089,THREAD-INFO=ROGERIO:thumbiran:rogerio:db2jcc_applicat
REASON=00F30089,THREAD-INFO=ROGERIO:thumbiran:rogerio:db2jcc_applicat
ion:*:*:DEFREAD
38 z/OS Identity Propagation

Chapter 4. RACMAP function

This chapter discusses the new RACF RACMAP command, which was introduced with z/OS
V1R11, and the association between distributed identity filters and RACMAP.

Significant improvements have been made to RACF to support distributed identity
propagation, and the RACF RACMAP command is one of the important keys in this scenario.
Beginning with z/OS V1R11, RACF accepts information about the identities of distributed
users from authorized applications that issue the RACROUTE REQUEST=VERIFY.

This chapter describes the following updates to the RACMAP and distributed identity filters:

� Brief overview of distributed identity filters and how RACF is related to them
� RACMAP concepts, usage, and invocation
� RACF commands for RACMAP
� RACF updates to support RACMAP

4

© Copyright IBM Corp. 2011. All rights reserved. 39

4.1 Distributed identity filters

Currently, many transactions that execute on z/OS subsystems from the internet are initiated
by users who authenticate their identities on distributed application servers. After such
distributed application servers send a transaction to a z/OS subsystem, this transaction might
be associated with the identity of the distributed application user or associated with a shared
RACF user ID that was assigned by the z/OS subsystem.

The issue addressed by RACMAP is that auditing this user activity on z/OS needs the RACF
user ID associated with a z/OS subsystem transaction and the user identity that was
presented when the user initially accessed the distributed application server.

The RACMAP command addresses this issue by allowing both user identities to be recorded
in the SMF records, providing accurate auditing.

4.1.1 What a distributed identify filter is

A distributed identify filter consists of one or more components of a distributed user’s name
and the name of the registry where the user ID is defined, or we might simply say that
distributed identity filter is the mapping association between a RACF user ID and one or more
distributed user identities.

4.2 RACMAP command overview

The RACMAP command can be used to create, delete, and list a distributed identity filter.
When you use the RACMAP command to define a distributed identity filter, RACF creates a
general resource profile in the IDIDMAP class. RACF exploits the use of the distributed
identity filter to determine the RACF user ID of a user who tries to access the system using a
distributed identity.

The RACMAP command has the following functions:

� MAP: Creates a distributed identity filter
� LISTMAP: Lists information about a distributed identity filter
� DELMAP: Deletes a distributed identity filter
� QUERY: Finds the matching RACF user ID associated with a distributed identity filter

4.3 Authorization required to use the RACMAP command

To issue the RACMAP command, you must have System SPECIAL authority or sufficient
authority to the IRR.IDIDMAP.function resource in the FACILITY class, where function is
MAP, DELMAP, LISTMAP, or QUERY.

Table 4-1 lists the authority required to use the RACMAP command.

Table 4-1 Authority required for the RACMAP command

Access level Purpose

READ Create, delete, or list a distributed identity filter for your own RACF user ID.

UPDATE Create, delete, or list a distributed identity filter for another RACF user ID.
40 z/OS Identity Propagation

4.4 RACMAP command usage and invocation

RACMAP can be entered as the RACF TSO command. The syntax of the RACMAP TSO
command is the same as the general syntax of other TSO commands. For example, a
comma or one or more blanks are valid delimiters for use between operands. You can also
enter commands in the background by using a batch job.

Figure 4-1 RACMAP command syntax

Figure 4-1 shows the syntax of the RACMAP command, where the RACMAP parameters are:

� ID(userid) specifies the RACF user ID mapped by the distributed identity filter. The user ID
must already be defined to the RACF database.

� MAP specifies the MAP function of the RACMAP command. Use the MAP function to
create a distributed identity filter that maps a user’s distributed identity to a RACF user ID.

When using the MAP function, you must specify values for the required USERDIDFILTER
and REGISTRY parameters:

– USERDIDFILTER(NAME(‘distributed-identity-user-name’|’*’))

This specifies the significant portion of the distributed-identity user name.

The maximum length for a user name is 246 bytes.

In general, the user name can contain blank and mixed-case characters, however, the
value cannot be specified as a hexadecimal character string.

Format of the user name value: Specify the user name value in any of the following
three formats:

• As a single asterisk (*) to indicate that any user name matches this filter:

USERDIDFILTER(NAME('*'))

• As a simple character string, such as a user ID defined in a non-LDAP registry:

USERDIDFILTER(NAME('DENICE'))

Note: The MAP function creates a profile in the IDIDMAP class for each filter created.

RACMAP
 [ID(u se rid)]

 MAP
 US ER DIDFILTER(NAME('distributed-ide ntity-user-name' | '*'))
 RE GI STRY(NAME('dist ributed-identity -registry-name' | '*'))
 [WI THLABEL('label- name')]

 | DEL MA P
 [(L ABEL('label-nam e'))]

 | LIS TM AP
 [(L ABEL('label-nam e'))]

 | QUE RY
 US ER DIDFILTER(NAME('distributed-ide ntity-user-name'))
 RE GI STRY(NAME('dist ributed-identity -registry-name'))
Chapter 4. RACMAP function 41

• As a character string that represents an X.500 distinguished name. A distinguished
name (DN) consists of one or more relative distinguished names (RDNs). Each
RDN consists of an attribute type and attribute value, separated by an equals sign
(=). RDNs are separated by a comma (,):

USERDIDFILTER(NAME('UID=GUSKI,OU=Tools,O=IBM,C=US'))

– REGISTRY(NAME(‘distributed-identity-registry-name’|’*’))

This specifies the registry that contains the distributed-identity user name. You can
specify a single asterisk (*) as the registry name to indicate that any distributed-identity
registry name matches this filter.

The maximum length for a registry name is 255 bytes. For example, using the
REGISTRY name:

REGISTRY(NAME('ldaps://us.richradioham.com'))

WITHLABEL(‘label-name’) specifies the label assigned to this distributed identity filter.
This parameter is not required. However, if specified, the label must be unique to the
RACF user ID associated with this filter.

In case where WITHLABEL is not specified, RACF automatically generates a label for
the filter in the form of LABELnnnnnnnn, where nnnnnnnn is the first integer value that
generates a unique label name.

The maximum length for a label-name is 32 characters.

� DELMAP specifies the DELMAP function of the RACMAP command. It must be used to
delete a distributed identity filter for the specified RACF user ID. The DELMAP function
also deletes the profiles from the IDIDMAP class.

If the specified RACF user ID is associated with more than one filter, you must also
specify the label name, For example:

RACMAP ID(userid) DELMAP LABEL(‘label-name’)

� LISTMAP specifies the LISTMAP function of the RACMAP command. Use it to list
information about a distributed identity filter for the specified RACF user ID.

If the specified RACF user ID is associated with more than one filter, you must also
specify the label name, for example:

RACMAP ID(userid) LISTMAP LABEL(‘label-name’)

You can also omit LABEL to list all filters associated with the specified RACF user ID, for
example:

RACMAP ID(userid) LISTMAP

� QUERY specifies the QUERY function of the RACMAP command. Use the QUERY
function to find the matching RACF user ID that is associated with a distributed identity
filter.

Note: If you specify mixed-case characters in the user name as a DN, the
RACMAP command translates the attribute field type to uppercase and
preserves the mixed-case characters of the field value.

Note: When you specify the QUERY function, you must specify both USERDIDFILTER
and REGISTRY.
42 z/OS Identity Propagation

4.5 Activating the RACMAP updates

To activate your changes in the IDIDMAP class, activate and RACLIST the IDIDMAP class.
After a distributed identity filter is created for the first time, issue the command to activate and
RACLIST your IDIDMAP class:

SETROPTS CLASSACT(IDIDMAP) RACLIST(IDIDMAP)

Where:

� CLASSACT specifies that you want the IDIDMAP class to be in effect.

� RACLIST specifies that you want to activate the sharing of in-storage profiles for
this class.

If the IDIDMAP class is already active and RACLISTed, you just need to refresh the class to
validate your changes:

SETROPTS RACLIST(IDIDMAP) REFRESH

4.6 RACMAP profiles in the IDIDMAP class

Each distributed identity filter is stored in a general resource profile in the IDIDMAP class.
Every time that the RACMAP MAP command is issued, RACF creates a general resource
profile in the IDIDMAP class, and when you use the RACMAP DELMAP command, RACF
deletes the IDIDMAP profile.

If you specify multiple filters for a particular user name with each filter specifying a different
registry, your IDIDMAP profile might contain multiple filters.

The name of an IDIDMAP profile is the user name of the filter that you specify in the
USERDIDFILTER value and is encoded as UTF-8 data.

All RACF profiles from the IDIDMAP class have an owner who is the user ID of the RACMAP
MAP command issuer. Although each IDIDMAP profile has an owner, the profile owner has
no authority over the IDIDMAP profile. RACF does not use profile owner information for any
purpose. Also, the profile owner of an IDIDMAP profile cannot be changed.

The profile owner can be found in the output of the RACF database unload (IRRDBU00) utility
and also through the use of RL LIST IDIDMAP * command. However, the RLIST command
must not be used to manage RACMAP information.

Considerations about UTF-8 data values
Most RACF profile data is stored as EBCDIC data. However, the user and registry names that
were specified in the USERDIDFILTER and REGISTRY parameters from the RACMAP
command are not stored in IDIDMAP as EBCDIC data. Instead, they are encoded as UTF-8
data and stored in hexadecimal format. Therefore, they are compatible with the typical
processing of X.500 distinguished names.

Note: Use the RACMAP command to administer distributed identity filters. Do not use
the RDEFINE, RALTER, REDELETE, or RLIST RACF commands to administer the
IDIDMAP profiles.
Chapter 4. RACMAP function 43

Restrictions for UTF-8 data values
Because the IDIDMAP profile name (derived from the user name) and the registry name are
encoded as UTF-8 data, the following restrictions apply to UTF-8:

� When using the RACMAP command to define user and registry names that contain
multibyte characters, if the resulting UTF-8 values exceeds 246 bytes for a user name
or 255 bytes for a registry name, the RACMAP MAP command fails with the
message IRRW2131.

� When using the SEARCH command, you cannot use the FILTER or MASK option to limit
your search results based on the names of the IDIDMAP profiles.

4.7 Updating a distributed identity filter

If changes are needed to a distributed identity filter, you need to delete the current filter and
define a new one using the RACMAP MAP command. A distributed identity filter cannot be
updated or modified without using the RACMAP DELMAP command and then issuing a
RACMAP MAP command.

4.7.1 Steps for updating a distributed identity filter

In the example shown in Figure 4-2, a distributed identity mapping is defined.

Figure 4-2 Mapping information from user Roger

As an example, we want to change the label from REGISTRY01 to REGISTRY02 of the user
identity filter ROGER. Because there is no RACMAP command that can be used to update or
modify a current distributed identity filter, we need to delete the current identity filter and
create a new one specifying the label REGISTRY02:

1. Issue the RACMAP command with the DELMAP function:

RACMAP ID(ROGER) DELMAP

2. Create the new RACMAP identity filter using the MAP function:

RACMAP ID(ROGER) MAP USERDIDFILTER(NAME('IBMUSER001'))
REGISTRY(NAME('ldaps://ibm.com.us')) WITHLABEL('REGISTRY02')

Mapping information for user ROGER:

 Label: REGISTRY01
 Distributed Identity User Name Filter:
 >IBMUSER001<
 Registry Name:
 >ldaps://ibm.com.us<
44 z/OS Identity Propagation

3. Issue the RACF REFRESH command to refresh the IDIDMAP class:

SETROPTS RACLIST(IDIDMAP) REFRESH

4. List the new RACMAP identity filter using the LISTMAP function (Example 4-1).

Example 4-1 RACMAP LISTMAP command

RACMAP ID(ROGER) LISTMAP

Mapping information for user ROGER:

 Label: REGISTRY02
 Distributed Identity User Name Filter:
 >IBMUSER001<
 Registry Name:
 >ldaps://ibm.com.us<

4.8 User profiles and RACMAP command

In addition to creating an IDIDMAP profile, the RACMAP command also updates the RACF
user profile. Therefore, when you delete the filter, RACMAP deletes the IDIDMAP profile
containing the filter and updates the user profile, removing the mapping association.

4.8.1 Deleting a RACF user ID associated with identity filters

If you need to delete a RACF user profile from the RACF database and this same user profile
has a distributed identity filter, you will not be able to delete the RACF user profile while this
association is still valid. That is, you cannot delete a RACF user profile that is associated with
a distributed identity filter.

First, you need to delete the mapping association from the user profile by issuing the
RACMAP DELMAP command to delete the filter. After that you will be able to delete the user
profile with the DELUSER command.

The message in Example 4-2 is issued if you try to delete a user profile with a remaining
distributed identity filter association.

Example 4-2 RACF warning message

ICH04018I userid cannot be deleted. Distributed identity mapping profiles are
associated with this user.

4.8.2 Performance consideration when deleting a distributed identity filter

As stated earlier, if changes are needed to a filter, you should delete it and create a new one
with the new parameters, because modifying a distributed identity filter is not possible.
However, when the RACMAP DELMAP command is issued specifying both filter label and a
user ID for which no user profile exists, RACF searches all profiles in the IDIDMAP class to
locate and delete all matching filters. This search might take an extended period of time.
Chapter 4. RACMAP function 45

4.8.3 RACF remove ID utility IRRRID00 update

The RACF IRRRID00 utility was updated to create RACMAP DELMAP commands to clean
up IDIDMAP profiles and to locate residual user IDs in IDIDMAP profiles. IRRRID00 helps
you keep your RACF database current.

4.9 Default RACMAP filter protection

You can create a default RACMAP filter by specifying an asterisk (*) as the distributed identity
user name and also as the registry name. Example 4-3 shows how you can map all
distributed identity names that are unmapped by more specific filters by defining a default
RACMAP filter, which we called NORACMAP.

Example 4-3 RACF example of defining a default RACMAP protection

RACMAP ID(NORACMAP) MAP USERDIDFILTER(NAME(‘*’)) REGISTRY(NAME(‘*’))

After the default RACMAP is defined, remember to assign the RACF user ID with both
restricted and protected RACF attributes. This way, your default RACMAP user ID cannot be
used to access protected resources because it is not specifically authorized to access these,
nor can it be used to log on to the system.

Example 4-4 shows an example by specifying restricted and protected attributes.

Example 4-4 RACF command specifying restricted and protected attributes

ALU NORACMAP RESTRICTED NOPASSWORD NOPHRASE

Where:

� RESTRICTED specifies that global access checking is bypassed when resource access
checking is performed for the user, and neither ID(*) on the access list nor the UACC will
allow access.

� NOPASSWORD specifies that the user cannot use a password for authentication.

� NOPHRASE specifies that the user cannot use a password phrase for authentication.

4.10 RRSF consideration for RACMAP use

As discussed earlier, the RACMAP command updates profiles in the user and IDIDMAP
classes. Updates to profiles in these classes with the RACMAP command are eligible for
automatic direction of application updates.

To ensure that RACF database updates are propagated in a consistent manner
across the IDIDMAP and user classes, define an RRSFDATA resource called
AUTODIRECT.target-node.IDIDMAP.APPL.

4.11 Changes required to PARMLIB to support identity filter

The following member IKJTSOxx from your PARMLIB must be updated to support the
RACMAP function. This member is used at IPL time to define, among other things, the
46 z/OS Identity Propagation

authorized command list. During the IPL, the IKJTSOxx member is read. You must edit this
member and include the RACMAP command into the AUTHCMD list so that the RACMAP is
automatically activated at each IPL time.

If you do not update your IKJTSOxx at IPL time, you need to edit it and add the RACMAP
command and then issue the dynamic PARMLIB command using the UPDATE operand and
specify the suffix of your member (xx) that you have edited. You must have UPDATE
authority to the proper RACF resource class to issue the dynamic PARMLIB command.

Otherwise, if the IKJTSOxx is not updated with the RACMAP command, you will receive the
abend message shown in Figure 4-3 after you try to execute the RACMAP function.

Figure 4-3 RACMAP abend message

4.12 New RACMAP messages

The new messages related to the RACMAP command are:

IRRW201: You are not authorized to issue the RACMAP command.
Explanation: You do not have the required authority to issue the RACMAP command.

IRRW202: The user ID specified is not defined to RACF.
Explanation: The user ID specified on the ID keyword of the RACMAP command could not
be found in the RACF database.

IRRW203: Unexpected ICHEINTY error encountered during command processing.
ICHEINTY RC = x'retcode', ICHEINTY RSN = x'rsncode'.
Explanation: During command processing RACMAP issued an ICHEINTY and received a
return code and reason code that were not expected.

IRRW204: No information was found for user userid.
Explanation: RACMAP was unable to find distributed identity information for the user ID that
is indicated in the message.

IRRW205: Additional information is required to identify the identity mapping.
Explanation: RACMAP found more than one distributed identity mapping for this user. The
information required to uniquely identify the mapping was not provided.

IRRW206: No matching identity mapping was found for this user.
Explanation: RACMAP could not find a mapping profile for the specified user that matches
the label provided.

IRRW207: Unexpected RACROUTE REQUEST=request-type error encountered during
command processing. SAF RC = x'retcode', RACF RC = x'retcode', RACF RSN = x'rsncode’.
Explanation: During command processing RACMAP issued a RACROUTE request of the
specified type but received an unexpected return code and reason code.

IRRW208: The label label-name is already in use.
Explanation: You attempted to associate a user ID with a mapping profile and assign
label-name to that association. This label is already in use for this user ID.

Abend 684000 hex occurred processing command 'RACMAP '.
ISPD210 CMD abended - 'RACMAP' terminated abnormally.
Chapter 4. RACMAP function 47

IRRW209: This filter already exists. It cannot be added.
Explanation: You attempted to add a filter that already exists in a mapping profile in the
IDIDMAP class. Filters must be unique.

IRRW210: RACLISTed profiles for the IDIDMAP class will not reflect changes until a
SETROPTS RACLIST REFRESH is issued.
Explanation: RACF uses copies of the IDIDMAP profiles that exist in a dataspace. Updates
made to IDIDMAP profiles become effective only when the SETROPTS command is issued
with the REFRESH operand.

IRRW211: Registry information is required.
Explanation: You specified a MAP request, but did not specify the registry name.

IRRW212: Distributed user identity information is required.
Explanation: You specified a MAP request, but did not specify the distributed user
identity information.

IRRW213: An error occurred while converting the data for the keyword-name keyword from
EBCDIC to UTF-8.
Explanation: While converting the value specified for the USERDIDFILTER or REGISTRY
keyword from EBCDIC format to UTF-8 format, the UNICODE services returned an
unexpected return code. The value specified might contain multibyte characters causing the
value to exceed the byte limit.

IRRW214I: The KeyWord-Name keyword is ignored when specified with the Function-Name
function.
Explanation: You specified a keyword that is not needed by the function.

IRRW215I: No user ID found associated with the specified USERDIDFILTER and
REGISTRY name.
Explanation: The information that you provided with the UserDIDFilter and registry names is
not associated with any RACF user ID.

IRRW216I: Unexpected Callable-Service-Name callable service error encountered during
command processing. SAF RC = x'RetCode', RACF RC = x'RetCode', RACF RSN =
x'RsnCode'.
Explanation: During command processing, RACMAP issued a call to this callable service
and received a return code and reason code that were not expected.

ICH04018I: userid cannot be deleted. Distributed identity mapping profiles are associated
with this user.
Explanation: The indicated user ID has not been deleted from the RACF database because
the user profile indicates that distributed identity mapping profiles still exist for the user in the
IDIDMAP class.

ICH408I: DISTRIBUTED IDENTITY IS NOT DEFINED: distributed-identity-information.
Explanation: A user attempted to access a server using a distributed identity that is not
associated with a RACF user ID. RACF cannot determine a user ID for this user.
48 z/OS Identity Propagation

Chapter 5. Filter management

This chapter discusses aspects of filter management and how RACF with the
RACMAP command matches the specified distributed filter, and it provides distributed
identity filter examples.

5

© Copyright IBM Corp. 2011. All rights reserved. 49

5.1 How RACF matches the filter value

When a user authenticates from a distributed application server and takes an action that
causes a supported transaction to be sent to the z/OS system, RACF receives the user’s
distributed identity and registry names as character string of UTF-8 data. When the IDIDMAP
class is active and RACLISTed, RACF uses the UTF-8 data to search IDIDMAP profiles for
the distributed identity filter that contains the name values that best match the data. When the
best matching filter is found, RACF then assigns a RACF user ID.

5.2 Details about searching for a filter that matches a user’s DN

You can specify user and registry name values in the distributed identity filter to map a RACF
user ID using a one-to-one match or a many-to-one match. That is, you can define a filter that
assigns a RACF user ID to only one distributed user, or you can define a filter that assigns the
same RACF user ID to multiple distributed users.

5.2.1 One-to-one match

A one-to-one match is a filter that maps a RACF user ID to only one distributed user that
contains a registry name value and contains a user name value that is specified in one of the
following ways:

� As a user ID or user name defined in a non-LDAP registry

When you specify the user name in this way, both the distributed user’s registry and user
name must exactly match the registry and user name values in the filter.

An example of defining a filter for a non-LDAP user name is when the user DENICE
authenticates her user identity at her distributed application server and takes an action
that causes a transaction to be sent to the z/OS system, and then RACF is passed the
following distributed user and registry names as character strings of UTF-8 data:

– DENICE
– Registry01

When RACF uses these data values to search the IDIDMAP profiles for a matching filter,
RACF finds a match to the filter labeled “Filter for Denice from Registry01” and assigns the
DENICE user ID. The filer has been defined as shown in Example 5-1.

Example 5-1 Filter for Denice

RACMAP ID(DENICE) MAP USERDIDFILTER(NAME(‘DENICE’))
REGISTRY(NAME(‘Registry01’)) WITHLABEL(‘Filter for Denice from Registry01’)

The transaction executes with authority of the DENICE user ID. Any audit records that are
written for this transaction contain both the RACF user ID and the original distributed user
and registry names that were passed to RACF when the transaction was sent.

� As an X.500 DN that includes all RDNs necessary to uniquely identify the distributed user.
Depending on the particular LDAP registry, the DN might include the UID or CN
components to uniquely identify the user.

When you specify the user name in this way, the distributed user’s registry must exactly
match the registry name value in the filter, and the distributed user’s name must exactly
match all RDNs specified in the user name value in the filter.
50 z/OS Identity Propagation

As an example of defining a filter for a full X.500 DN, when Bob Cook authenticates his
LDAP user identity at his distributed application server and takes an action that causes a
transaction to be sent to the z/OS system, RACF is passed the following distributed user
and registry names as character strings of UTF-8:

– UID=BobC,CN=Bob Cook,OU=Accounting,O=BobsMart,C=US
– ldaps://us.bobsmarturl.com

When RACF uses these data values to search the IDIDMAP profiles for a matching filter,
RACF finds an exact match to the filter labeled “Accounting boss” and assigns the
RLCOOK user ID. The filter has been defined as shown in Example 5-2.

Example 5-2 Filter for accounting boss

RACMAP ID(RLCOOK) MAP USERDIDFILTER(NAME(‘UID=BobC,CN=Bob
Cook,OU=Accounting,O=BobsMart,C=US’))
REGISTRY(NAME(‘ldaps://us.bobsmarturl.com’)) WITHLABEL(‘Accounting boss’)

The transaction executes with the authority of the RLCOOK user ID. Any audit records
that are written for this transaction contain both the RACF user ID and the original
distributed user and registry name that were passed to RACF when the transaction
was sent.

5.2.2 Many-to-one match

A many-to-one match is a filter that maps the same RACF user ID to multiple distributed
users that are specified in any of the following ways:

� The registry name value is specified as a single asterisk (*) to indicate that any registry
name matches the registry portion of the filter.

– When you specify the registry name in this way and you specify a user name value, the
distributed user’s name must exactly match the user name value in the user portion of
the filter.

– When you specify each of the user and registry name values as an asterisk, any
distributed user’s name from any registry matches the filter. This type of filter is called a
default RACMAP filter.

� The user name is specified in one of the following ways:

– As an X.500 DN that includes selected RDNs that are common to multiple distributed
users. Depending on the particular LDAP registry, the specified DN would likely omit
the UID or CN components.

When you specify the user name in this way and you also specify a registry name
value, the distributed user’s registry must exactly match the registry name value in the
filter, and the distributed user’s name must match one or more RDNs in the user name
value of the filter.

An example of defining a filter using selected RDNs, is when an accounting office
worker named Lila Jones authenticates her LDAP user identity at the distributed
application server and takes an action that causes a transaction to be sent to the z/OS
system. RACF is passed the following distributed user and registry names as character
strings of UTF-8 data:

• UID=LJones,CN=Lila Jones,OU=Accounting,O=BobsMart,C=US
• ldaps://us.bobsmarturl.com

When RACF uses these data values to search the IDIDMAP profiles for a matching
filter, RACF finds no match. When no match is found, RACF removes the most specific
portion of the user name, the first RDN of the DN (UID=LJones), and performs a
Chapter 5. Filter management 51

second search of the IDIDMAP profiles. When no matching filter is found, RACF
removes the first two RDNs (UID=LJones,CN=Lila Jones) and performs a third search
of the IDIDMAP profiles. This time, RACF finds a match to the filter labeled “Accounting
office workers” and assigns the ACCTUSER user ID.

The transaction that Lila initiated executes with the authority of the ACCTUSER user
ID. Any audit records that are written for this transaction contain the ACCTUSER user
ID and the original distributed user name (including all RDNs) and the registry name for
user Lila Jones, which were first passed to RACF when the transaction was sent.

– As a single asterisk (*) to indicate that any user name matches the user portion of the
filter.

When you specify the user name as an asterisk and specify a registry name value, only
the distributed user’s registry must match the registry name value in the filter. Any
distributed user from the specified registry matches the filter.

When you specify each of the user and registry name values as an asterisk, any
distributed user’s name from any registry matches the filter. This type of filter is called a
default RACMAP filter.

5.2.3 Summary details about searching for a filter that matches a user’s DN

When RACF searches for the distributed identity filter that best matches a user’s DN, RACF
attempts to match the user’s registry name and exactly match all RDNs of the user’s DN.

If a matching filter is found, RACF assigns the user ID specified by the filter.

If no matching filter is found, RACF ignores the most specific or first RDN of the user’s DN, for
example, UID, and performs a second search to locate a less restrictive filter. If a less
restrictive filter is found, RACF assigns the user ID specified by the filter.

If no matching filter is found, RACF ignores the first two RDNs, for example, UID and CN, and
performs a third search. If no matching filter is found, RACF iteratively ignores each
subsequent RDN, searching for a less restrictive filter, until the last RDN is used.

If no matching filter is found, RACF searches for a filter that matches the user’s registry name
and contains an asterisk as the user name. If a matching filter is found, RACF assigns the
user ID specified by the filter.

If no matching filter if found, RACF searches for the default RACMAP filter. If the default filter
is defined, RACF assigns the user ID that it specifies. If no default filter is found, RACF
assigns no user ID.

5.3 Examples

The following examples illustrate possible situations in which the security administrator is
requested to create or manage a distributed identity filter:

� Example 1: The security administrator wants to add a distributed identity filter that
specifies the distributed user’s name using all RDNs of the user’s X.500
distinguished name:

RACMAP ID(RLCOOK) MAP USERDIDFILTER(NAME(‘UID=BobC,CN=Bob
Cook,OU=Accounting,O=BobsMart,C=US’))
REGISTRY(NAME(‘ldaps://us.bobsmarturl.com’)) WITHLABEL(‘Accounting boss’)
52 z/OS Identity Propagation

� Example 2: The security administrator wants to add a distributed identity filter that
specifies the distributed user’s name using selected RDNs of the user’s X.500
distinguished name:

RACMAP ID(ACCTUSER) MAP USERDIDFILTER(NAME(‘OU=Accounting,O=BobsMart,C=US’))
REGISTRY(NAME(‘ldaps://us.bobsmarturl.com’)) WITHLABEL(‘Accounting office
workers’)

� Example 3: The security administrator wants to add a distributed identity filter that
specifies the distributed user’s name as a non-LDAP user name:

RACMAP ID(DENICE) MAP USERDIDFILTER(NAME(‘DENICE’))
REGISTRY(NAME(‘Registry01’)) WITHLABEL(‘Filter for Denice from Registry01’)

� Example 4: The security administrator wants to delete the distributed identity filter labeled
“Filter for Denice from Registry01” for the RACF user ID DENICE:

RACMAP ID(DENICE) DELMAP(LABEL(‘Filter for Denice from Registry01’))
Chapter 5. Filter management 53

54 z/OS Identity Propagation

Chapter 6. Using SMF audit information to
report on z/OS Identity
Propagation

This chapter describes how z/OS System Management Facility (SMF) can be used to provide
audit information obtained about identity propagation. That is, it allows an auditor to map a
z/OS Security Server user ID (more commonly referred to as a RACF user ID) to an entity
who entered the z/OS system from a distributed system.

It explains how RACF reacts when encountering instances of identity propagation, how RACF
communicates audit information to SMF, what products we can use to report from that data,
and examples of those reports.

Data contained in the SMF data records is easily reported upon. A number of products are
available that can do this. This chapter identifies some of these products and gives examples
of their output showcasing the data relevant to identity propagation.

6

© Copyright IBM Corp. 2011. All rights reserved. 55

6.1 Actions within RACF

SMF will contain data records written to it by the z/OS Security Server when it encounters
certain events. What we are interested in is what outcomes occur for these actions relevant
to identity propagation when an event occurs within RACF. So, the following discussion is
not a full explanation of a RACF action, but describes those portions relevant to the topic of
this publication.

6.1.1 An RACF event relating to issuing a RACMAP command

When a RACMAP command, which creates or deletes a IDIDMAP profile, occurs an event
code 87 occurs within RACF that, if permitted, writes a SMF type 80 record. Table 6-3 on
page 58 addresses permissions to write SMF records. The significant information that is
contained in this particular SMF record is:

� RACF user ID
� Value of the user ID filter name from the USDERDIDFILTER keyword of RACMAP
� Value of the registry name from the REGISTRY keyword of RACMAP

This gives us confidence that when we define a mapping of a distributed user to a RACF
user ID, we capture this audit information in a SMF record along with who performed this
RACF command.

6.1.2 RACF events when calling RACF to verify a distributed identity

z/OS subsystems (for example, CICS) can make an enquiry to RACF to provide it with a
RACF user ID based on the supplied distributed identity values. This call is a RACROUTE,
and the request made is VERIFY or VERIFYX. RACF can issue an event code 1 when the
distributed identity cannot be found to map to a RACF user ID.

An event code 67 occurs when authorized applications, such as web servers, invoke a
initACEE callable service (IRRSIA00) to request either to create a security context created or
have the distributed identity queried and the status returned.

Table 6-1 describes event codes upon failure to map a distributed identity.

Table 6-1 Event Codes upon failure to map a distributed identity

Event code Event qualifier Event qualifier
number

Event description

1 DIDNOTDF 39 No RACF user ID
found for distributed
identity

67 DIDNOTDF 10 No RACF user ID
found for distributed
identity

Note: Each unique event code has a corresponding event qualifier. The event qualifier has
a value that indicates whether the event succeeded or failed.
56 z/OS Identity Propagation

6.1.3 Settings within RACF to ensure identity propagation is captured

Having seen what happens with events in RACF in relation to identity propagation, we
need the correct RACF settings in place to permit data records to be written to SMF. If
more than one setting applies to a particular activity within RACF, only one SMF data
record will result, but it will contain information within it to indicate which settings were
active when it was written.

The following points relate to the auditing options of the SETROPTS (set RACF
options) command:

� AUDIT

This specifies the names of the classes for which you want RACF to perform auditing.
When the class specified is USER, RACF logs all password and password phrase
changes made by RACROUTE REQUEST=VERIFY. (RACF will add the classes you that
specify to those already specified for auditing.)

If you specify an asterisk (*), logging occurs for all classes.

You must have the AUDITOR attribute to enter the AUDIT operand.

� CMDVIOL

This specifies that RACF is to log violations detected by RACF commands during RACF
command processing. A violation might occur because a user is not authorized to modify
a particular profile or is not authorized to enter a particular operand on a command.

You must have the AUDITOR attribute to specify these options.

� SAUDIT

This specifies that RACF is to log RACF commands issued by users who either
had the SPECIAL attribute or who gained authority to issue the command through
the group-SPECIAL attribute. You must have the AUDITOR attribute to specify
these operands.

RACF also provides the ability to allow audit information to be captured when an activity
occurs at the profile level for a user. The auditor can selectively audit the actions of a specific
user using the UAUDIT operand on the RACF RALTER command.

6.2 SMF changes to support distributed identities

This chapter shows that through a variety of RACF events, written SMF data records will
contain distributed identity information. SMF Type 80 records hold a range of auditing
information and thus provide a valuable resource for subsequent data analysis and reporting.
This latter function occurs after the SMF data has been unloaded from the active SMF
data set.
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 57

6.2.1 SMF records

IBM Security zSecure can report directly from an active SMF data set. This is shown in
Figure 6-1 as a sequence of Consul Auditing and Reporting Language (CARLa) statements.
CARLa is an IBM Security zSecure programming language to create reports for RACF, SMF,
UNIX System Services (USS) analysis, and RACF command generation. The sample in
Figure 6-1 is to report on only event code39, which has been caused by a z/OS subsystem
(for example, CICS) request failure to map a distributed identity to a RACF user ID.

Figure 6-1 CARLa statements to report direct from active SMF dataset

To capture auditable information concerning identity propagation, SMF has the capability to
store this type of information. For SMF Type 80 records, two relocate sections now exist
(Table 6-2).

Table 6-2 Additions to RACF SMF Type 80 relocates

With the advent of the RACMAP command, event code 87 X’57’ occurs to audit the use of
this command. The audit occurs with the following usage:

� UAUDIT
� SETROPTS SAUDIT
� SETROPTS AUDIT(USER)
� SETROPTS CMDVIOL

The two relocate sections listed in Table 6-3 exist and, like the above SMF changes, they are
used to hold the long values specified for the user and registry information (Table 6-3).

Table 6-3 Additions to SMF Type 80 relocates for event 87

alloc smf
newlist type=smf
select event=RACINIT(39)
sortlist date(9) time(8) type userid,
 event eventqual class intent resource,
 / " "(22) auth_user_name, /* 424 */
 / " "(22) auth_user_regname /* 425 */

Data type
(SMF80TP2)

Data length
(SMF80DL2)

Format Audited by
event code

Description (SMF80DA2)

424 X’1A8’ 1-246 UTF-8 All, except
68,71,79,81, and 82

Authenticated distributed identity user name

425 (x’1A9’) 1-256 UTF-8 All, except
68,71,79,81, and 82

Authenticated distributed identity user
registry

Data type
(SMF80TP2)

Data length
(SMF80DL2)

Format Audited by
event code

Description (SMF80DA2)

415 X’19F’ 1-246 EBCDIC 87 Value of the user ID filter name from the
USERDIDFILTER keyword of RACMAP

416 (x’1A0’) 1-256 EBCDIC 87 Value of the registry name from the REGISTRY
keyword of RACMAP
58 z/OS Identity Propagation

For SMF Type 83 we have similar relocate sections existing. SMF Type 83 is another record
that records auditing events. These relocate sections will apply to subtype 2 and above.
Table 6-4 lists the relocate sections.

Table 6-4 Additions to RACF SMF Type 83 relocates

6.2.2 SMF unload utility

This utility is to extract data from the live SMF datasets and produce an unloaded copy of
SMF data for data analysis and reporting. We now have a new record extension mapping.
This is to support the RACMAP command (Table 6-5). This shows that after a RACMAP
command has been issued, the auditable information from that command can be extracted
into a SMF unload file.

Table 6-5 Record extension support for RACMAP command

Data type
(SMF83TP2)

Data length
(SMF83DL2)

Format Audited by event
code

Description (SMF80DA2)

14 X’E’ 1-246 UTF-8 All, except
68,71,79,81, and 82

Authenticated distributed identity user name

15 X’F’ 1-256 UTF-8 All, except
68,71,79,81, and 82

Authenticated distributed identity user
registry

Format of the RACMAP command extension

Field name Type Length Start
position

End
position

Comments

RACM_USER_NAME Character 20 282 301 Name associated with the user ID.

RACM_UTK_ENCR Yes/No 4 303 306 Is the UTOKEN associated with
this user encrypted?

RACM_CTX_MECH Character 16 2975 2990 Authenticated user authentication
mechanism object identifier (OID).

RACM_IDID_USER Character 985 2992 3976 Authenticated distributed user
name.

RACM_IDID_REG Character 1021 3978 4998 Authenticated distributed user
registry name.
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 59

Apart from RACMAP, consideration is to be given to the normal operation of RACF and its
interaction with distributed identities as requests come in for access. Table 6-6 lists names
and positions for SMF data unload to support distributed identity as RACF event code 01.

Table 6-6 Record extension support for job initiation

6.3 Reporting from SMF data

A variety of software products are able to read this data and provide audit information. We
show a few here with examples of their reports.

6.3.1 SMF unload utility

This utility creates records that show audit information for each type of auditable event.

A sequential file is produced by the RACF SMF unload utility (IRRADU00). The contents of
this file can be restricted to audit information relating to security events from within RACF.
This file can then be processed in a variety of ways:

� View the file directly.

� Sort it.

� Merge it with other data.

� As an input to other software products that can perform analysis and reporting functions.

� It can be handled by a Database Manager and stored there. For example, DB2 can
provide queries and reports containing this audit information.

The SMF data unload utility has the ability to unload SMF data in the following formats:

� Extracted data in a sequential file for subsequent processing.

� Tabular format, which is used to import into a relational database manager.

� Produces an eXtensible Markup Language (XML) document. This formatted data is then
available for rendering onto web pages or processing by other applications sensitive to
this XML layout.

Note: Events 01 to 89 all have the same record format and information.

Format of the job initiation record extension (event code 01)

Field name Type Length Start
position

End
position

Comments

Existing last entry 2530

INIT_IDID_USER Character 985 2532 3516 Authenticated distributed user
name

INIT_IDID_REG Character 1021 3518 4538 Authenticated distributed user
registry name
60 z/OS Identity Propagation

Figure 6-2 shows an example of the Job Control Language (JCL) used to perform such an
unload. It is designed to show that only SMF Type 80 records are to be unloaded, as they
contain RACF auditing information relevant to identity propagation. This example in
Figure 6-2 will produce a sequential file suitable for input to other programs to perform
analysis and reporting.

Figure 6-2 JCL to use the SMF unload utility for SMF type 80 records

6.3.2 SMF UNLOAD produces XML data

This SMF utility can produce an XML file containing unloaded SMF data in an XML format.

It can be produced in a compressed format or a normal layout, depending on which DD is
used in the JCL. In our sample (Figure 6-3), we are producing an XML file in a normal format.
This file can be analyzed and reported upon by processes provided by the user.

Figure 6-3 Sample JCL to produce XML from SMF

 //AUDIT JOB ,'ACQUIRE AUDIT DATA',MSGLEVEL=(1,1)
 //SMFDUMP EXEC PGM=IFASMFDP
 //SYSPRINT DD SYSOUT=A
 //ADUPRINT DD SYSOUT=A
 //OUTDD DD DISP=SHR,DSN=ITSO.AUDIT80.DATA
 //SMFDATA DD DISP=SHR,DSN=SYS1.ITSO.MAN1
 //SMFOUT DD DUMMY
 //SYSIN DD *
 INDD(SMFDATA,OPTIONS(DUMP))
 OUTDD(SMFOUT,TYPE(000:255))
 ABEND(NORETRY)
 USER2(IRRADU00)
 USER3(IRRADU86)
 /*

//SMFPROP EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=*
//ADUPRINT DD SYSOUT=*
//XMLFORM DD DISP=(NEW,CATLG,KEEP),
// DSN=<name of file to XML data in uncompressed form>
// SPACE=(CYL,(20,5),RLSE),UNIT=SYSDA,
// DCB=(LRECL=12288,RECFM=VB,BLKSIZE=0)
//SMFDATA DD DISP=SHR,DSN=<insert name of current active SMF DSN>
//SMFOUT DD DUMMY
//SYSIN DD *
 INDD(SMFDATA,OPTIONS(DUMP))
 OUTDD(SMFOUT,TYPE(30(1,5),80:83))
 ABEND(NORETRY)
 USER2(IRRADU00)
 USER3(IRRADU86)
/*
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 61

In Figure 6-3 on page 61, if the XMLFORM DD name is replaced by a XMLOUT DD name,
then the XML output will be in compressed form. Figure 6-4 shows an example of
uncompressed out.

Figure 6-4 Snippets from an uncompressed XMLFORM dataset

The following points relate to the numbers in Figure 6-4:

1. The value DIDNOTDF represents an event qualifier value of 39, indicating that to RACF
user ID was found for the distributed ID entity.

2. The violation tag indicates a positive value to reflect an event qualifier of 39.

3. We have logged this activity from a RACINIT call, which reflects that a CICS system has
issued a RACROUTE REQUEST=VERIFY to validate a distributed identity.

4. This a UTF-8 hex representation of the distributed identity.

5. An EBCDIC representation of the distributed identity.

This XML snippet is designed to show what information is recorded when a distributed
identity fails to map to a RACF user ID.

Member IRRSCHEM in SYS1.SAMPLIB holds the XML schema document.

<event>
 <eventType>JOBINIT</eventType>
 <eventQual>DIDNOTDF</eventQual>
 <systemSmfid>SC58</systemSmfid>
 ...
 <details>
 <violation>Y</violation>
...
 <evtUserId>STC</evtUserId>
...
 <logRacinit>Y</logRacinit>
...
 <jobName>SC58CIC1</jobName>
 <readTime>20:30:18</readTime>
 <readDate>2011-01-18</readDate>
 ...
 <idi1dUser>uid=ma
 rtina,
 ou=swg
 ,o=ibm
 uid=martina,ou=swg,o=ibm</ididUser>
 <ididReg>wtsc58
 .itso.
 ibm.co
 m:389
 wtsc58.itso.ibm.com:389</ididReg>
 </details>
 </event>

1

2

3

4

5

62 z/OS Identity Propagation

6.3.3 Reporting on SMF audit information from DB2

We can extract information from the SMF datasets and load into DB2 and then perform
queries on information in the DB2 tables.

First, we put the SMF data into a format suitable for loading into DB2. We use the SMF unload
utility to create an output file in which all the fields from the SMF records appear in character
format separated by spaces. Figure 6-5 shows a sample JCL deigned to do this.

Figure 6-5 Sample JCL to extract SMF data and store it in character form

The JCL in Figure 6-5 will use the IRRADU00 exit to write SMF data into the OUTDD dataset
in character format (Figure 6-6). As depicted, the column layout lends itself well to loading into
DB2 tables.

Figure 6-6 Portion of the OUTDD dataset created in Figure 6-5

RACF supplies in SYS1.SAMPLIB a member called IRRADUTB, which defines a table
space and tables to contain data as shown in Figure 6-6. Another sample member
IRRADULD has the data definition language (DDL) statements to load this unloaded SMF
data into DB2 tables.

Having done this, how can we utilize this DB2 data? RACF supplies a member called
IRRADUQR in SYS1.SAMPLIB. This member has a number of structured query language
(SQL) statements to run against these tables.

//SMF4DB2 EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=*
//ADUPRINT DD SYSOUT=*
//OUTDD DD DISP=(NEW,CATLG,KEEP),
// DSN=<name of file to hold data in character form>
// SPACE=(CYL,(20,5),RLSE),UNIT=SYSDA,
// DCB=(LRECL=12288,RECFM=VB,BLKSIZE=0)
//SMFDATA DD DISP=SHR,DSN=<insert name of current active SMF DSN>
//SMFOUT DD DUMMY
//SYSIN DD *
 INDD(SMFDATA,OPTIONS(DUMP))
 OUTDD(SMFOUT,TYPE(30(1,5),80:83))
 ABEND(NORETRY)
 USER2(IRRADU00)
 USER3(IRRADU86)
/*

ADDUSER SUCCESS 10:28:14 2011-01-20 SC58 NO NO NO ROGERIO SYS1 NO
RACMAP SUCCESS 10:28:36 2011-01-20 SC58 NO NO NO ROGERIO SYS1 NO
SETROPTS SUCCESS 10:28:41 2011-01-20 SC58 NO NO NO ROGERIO SYS1 NO
JOBINIT RACINITD 10:28:48 2011-01-20 SC58 NO NO NO SWGRES REDB0K02 NO
SETROPTS SUCCESS 10:29:02 2011-01-20 SC58 NO NO NO ROGERIO SYS1 NO
ACCESS SUCCESS 10:29:18 2011-01-20 SC58 NO NO NO STC TSO YES
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 63

In the next example in Figure 6-7, a SQL select occurs against a DB2 table holding RACF
JOBINIT records. These records show a failure to map a distributed identity to a RACF user
ID, hence the value ‘DIDNOTDF’. From the columns we show the EBCDIC values for the
distributed identity. The table also holds their UTF-8 equivalents.

Figure 6-7 SQL report showing distributed identities failing to map

Let us consider making an inquiry where we know for a specific application that a user ID of
SWGDE is used. Can we see what distributed identities used that application? In the example
in Figure 6-8 we see several successful accesses.

Figure 6-8 SQL report showing ACCESS occurrences for user ID SWGDE

6.3.4 Using ICETOOL from DFSORT

ICETOOL is a program that extracts, sorts, and reports from unloaded SMF data. It
requires ICETOOL control and reporting statements along with DFSORT statements in
separate inputs.

A good ICETOOL reference can be found in the DFSORT: ICETOOL Mini-User Guide, which
can be found on the DFSORT home page at:

http://www.ibm.com/storage/dfsort

 ---------+---------+---------+---------+---------+---------+---------+-
 SELECT
 *
 FROM
 BOBMCC.JOBINIT
 WHERE
 INIT_EVENT_QUAL NOT IN ('SUCCESS','TERM','RACINITI','RACINITD')
 ;
 ---------+---------+---------+--//------+---------+------//-----+---------+-----
 INIT_EVENT_TYPE INIT_EVENT_QUAL INIT_IDID_REG_EBCDIC INIT_IDID_REG_EBCDIC
 ---------+---------+---------+--//------+---------+------//-----+---------+-----
JOBINIT DIDNOTDF id=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
JOBINIT DIDNOTDF ID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
JOBINIT DIDNOTDF ID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389

---------+---------+---------+----
SELECT
 *
FROM
 BOBMCC.ACCESS
WHERE
 ACC_EVT_USER_ID = 'SWGDE '
 ;
---------+---------+---------+-//-+---------+---------+----//-+---------+---------+----
ACC_EVENT_TYPE ACC_EVENT_QUAL ACC_IDID_USER_EBCDIC ACC_IDID_REG_EBCDIC
---------+---------+---------+-//-+---------+---------+----//-+---------+---------+----
ACCESS SUCCESS UID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
ACCESS SUCCESS UID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
ACCESS SUCCESS uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
64 z/OS Identity Propagation

http://www.ibm.com/storage/dfsort

Click publications  Papers about DFSORT, ICETOOL and RACF. On this same
page you will also find RACFIC2 - Security Analysis using RACF Unload Utilities and
DFSORT’s ICETOOL.

Let us examine several scenarios and use ICETOOL to provide reports. First, let us
consider a system administrator wanting to see whether any of the distributed identities
failed to map to a RACF user ID. To do this we must convert the unloaded SMF data file to
a file in a more easily digestible form (Table 6-6 on page 60). This file is then supplied as input
to the ICETOOL program. Figure 6-9 shows an example of the JCL to run the ICETOOL
program.

Figure 6-9 Sample JCL to produce a report for failed mappings

The comments from the JCL in Figure 6-9 are explained here:

1. The SMFCHAR DD holds the input data in a character format.

2. TEMP0001 DD is a temporary dataset to hold the sorted and extracted data from the
SMFCHAR DD.

3. The TOOLIN DD holds the ICETOOL statements.

4. This statement tells us that the data in SMFCHAR is to processed as per the SORT
control statements in the IDPRCNTL file. It is implicit that CNTL will be appended to IDPR
to form the location where the SORT CONTROL statements are to be found.

5. A statement continued over several lines, governing the layout and columnar data of
the report.

6. The title of the report.

//MAPPINGS EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//PRINT DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//REPORT DD SYSOUT=*
//SMFCHAR DD DISP=SHR,DSN=ITSO.SMF.CHAR.FORMAT ->1
//TEMP0001 DD DISP=(NEW,DELETE,DELETE),SPACE=(CYL,(30,15,0)),
// UNIT=SYSALLDA,VOL=SER=TARTS5, ->2
// DCB=(LRECL=8000,RECFM=VB,BLKSIZE=0)
//TOOLIN DD * ->3
 SORT FROM(SMFCHAR) TO(TEMP0001) USING(IDPR) ->4
 DISPLAY FROM(TEMP0001) LIST(PRINT) WIDTH(255) - ->5
 PAGE -
 TITLE('Failed Mappings') - ->6
 HEADER('Date') ON(32,10,CH) -
 HEADER('Time') ON(23,8,CH) -
 HEADER('User') ON(63,8,CH) -
 HEADER('Outcome') ON(14,8,CH) -
 HEADER('IDID Name') ON(2783,25,CH) -
 HEADER('REG Name') ON(3778,25,CH)
//IDPRCNTL DD *
 SORT FIELDS=(23,8,CH,A,32,10,CH,A) ->7
 INCLUDE COND=(5,8,CH,EQ,C'JOBINIT ',AND,14,8,CH,NE,C'SUCCESS',AND, ->8
 14,7,CH,NE,C'RACINIT')
 OPTION VLSHRT
/*
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 65

7. Sort the extracted data into time and date order.

8. Extract data where it is JOBINIT event and it was not successful and also not a successful
RACINIT initiation or deletion.

We will explain how we derived the field position values in the HEADER, SORT, and
INCLUDE statements. One approach is to refer to the DDL statements in member
IRRADULD within SYS1.SAMPLIB. We have a portion in Figure 6-10 for the JOBINIT records
and some field layouts. For HEADER, SORT, or INCLUDE statements, increment the field
positions by four to account for the record descriptor word (RDW) at the beginning of the
SMFCHAR records.

Figure 6-10 Portion of DDL statements relating to identity propagation

The purpose of the job as detailed in Figure 6-9 on page 65 is to provide a report for all RACF
user IDs that start with SWG. For the purposes of this report let us assume that any RACF
user ID that begins with SWG is to be used by distributed identities. Figure 6-11 shows a
portion of this report.

Note that this report has been compressed to remove spaces between columns of data
normally placed there by ICETOOL.

Figure 6-11 Distributed identities that failed to map to a RACF user ID

.

.

.
WHEN(1:8)='JOBINIT ' (
 INIT_EVENT_TYPE POSITION(1:8) CHAR(8),
 INIT_EVENT_QUAL POSITION(10:17) CHAR(8),
 INIT_TIME_WRITTEN POSITION(19:26) TIME EXTERNAL(8)
 NULLIF(INIT_TIME_WRITTEN =' '),
 INIT_DATE_WRITTEN POSITION(28:37) DATE EXTERNAL(10)
 NULLIF(INIT_DATE_WRITTEN =' '),
 INIT_SYSTEM_SMFID POSITION(39:42) CHAR(4),
 INIT_VIOLATION POSITION(44:44) CHAR(1),
 INIT_USER_NDFND POSITION(49:49) CHAR(1),
 INIT_USER_WARNING POSITION(54:54) CHAR(1),
 INIT_EVT_USER_ID POSITION(59:66) CHAR(8),
.
.
.

1- Failed Mappings

 Date Time User Outcome IDID Name REG Name
 ---------- -------- ---- ------- ------------------------ -------------------------
 2011-01-27 10:06:16 STC DIDNOTF uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
 2011-01-25 16:29:17 STC DIDNOTF UID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
 2011-01-19 16:42:52 STC DIDNOTF uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
 2011-01-19 16:43:27 STC DIDNOTF uid=bob,ou=swg,o=ibm wtsc58.itso.ibm.com:389
66 z/OS Identity Propagation

Another scenario is to see what distributed identities gained access to a z/OS subsystem and
who were they. In our example, we look for any successful access for RACF user IDs
beginning with SWG. Figure 6-12 depicts the JCL that we used.

Figure 6-12 Sample JCL to produce report of successful accesses

Figure 6-12 is explained further here:

1. The selected records are sorted in time and date order.

2. Records are selected if the outcome field has the value ACCESS and the user responsible
begins with SWG.

In Figure 6-13 we now have a list of distributed entities along with their RACF user IDs. Note
that this report has had blank columns removed in order to fit in the figure. We chose only a
small amount of data to show the nexus between distributed identity and the RACF user ID.
In this example the ratio is 1:1.

Figure 6-13 List of distributed identities along with their RACF user IDs

//ACCESSES EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//PRINT DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//REPORT DD SYSOUT=*
//SMFCHAR DD DISP=SHR,DSN=ITSO.SMF.CHAR.FORMAT
//TEMP0001 DD DISP=(NEW,DELETE,DELETE),SPACE=(CYL,(30,15,0)),
// UNIT=SYSALLDA,VOL=SER=TARTS5,
// DCB=(LRECL=8000,RECFM=VB,BLKSIZE=0)
//TOOLIN DD *
 SORT FROM(SMFCHAR) TO(TEMP0001) USING(IDPR)
 DISPLAY FROM(TEMP0001) LIST(PRINT) WIDTH(255) -
 PAGE -
 TITLE('Distributed Identity Accesses ') -
 HEADER('Date') ON(32,10,CH) -
 HEADER('Time') ON(23,8,CH) -
 HEADER('User') ON(63,8,CH) -
 HEADER('Outcome') ON(14,8,CH) -
 HEADER('IDID Name') ON(3597,25,CH) -
 HEADER('REG Name') ON(4592,25,CH)
//*
//IDPRCNTL DD *
 SORT FIELDS=(23,8,CH,A,32,10,CH,A) ->1
 INCLUDE COND=(5,8,CH,EQ,C'ACCESS ',AND,63,3,CH,EQ,C'SWG') ->2
 OPTION VLSHRT
/*

- 1 - Distributed Identity Accesses

Date Time User Outcome IDID Name REG Name

2011-01-20 10:09:40 SWGRES SUCCESS UID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
2011-01-20 10:23:48 SWGRES SUCCESS UID=MARTINA,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
2011-01-24 11:25:05 SWGDE SUCCESS uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
2011-01-19 16:49:35 SWGAU SUCCESS UID=BOB,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
2011-01-19 16:52:54 SWGAU SUCCESS UID=BOB,OU=SWG,O=IBM wtsc58.itso.ibm.com:389
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 67

In Figure 6-13 on page 67, the two IDID names UID=MARTINA,OU=SWG,O=IBM and
uid=martina,ou=swg,o=ibm are not identical. You will see that they map to different RACF
user IDs.

6.3.5 Using IBM Security zSecure Audit for RACF

IBM Security zSecure Admin provides security personnel with tools to help unleash the
potential of your mainframe system, enabling efficient and effective RACF administration,
while helping use fewer resources.

By automating many recurring system administration functions and by enhancing the native
RACF authorization and delegation capabilities, Security zSecure Admin can help you
maximize IT resources, reduce errors, improve quality of services, and demonstrate
compliance. It provides its own process to extract data from SMF files. A sample is supplied
within the sample library SCKRSAMP. The sample JCL (C2RJFUNL) can extract a range of
SMF records. In Figure 6-14 we observe only SMF Type 80 being extracted. The statements
in this SYSIN are CARLa statements that are used with the zSecure product to
programmatically carry out requested actions.

Figure 6-14 SYSIN statements in CARLa programming language

When this amended sample JCL is run, the SYSPRINT file will show what SMF files were
read and how many records were selected (Figure 6-15).

Figure 6-15 SYSPRINT showing files read and number of records extracted

At this point we have a data file ready for data analysis and reporting. We have a range of
methods to do this.

Examining SMF data using ISPF panels with zSecure
By using the zSecure panel we can:

� See who, when, and where a distributed identity was created.
� Examine audit information showing access violations for a distributed identity.
� Look at access warnings issued for a distributed identity.

After entering the zSecure main menu, you will need to check that there is a current
CKFREEZE file. Then using option SE.1 go into this zSecure panel and add the new SMF
unloaded files to the list of selected files. This process is not explained here, as zSecure
users will be familiar with it.

//SYSIN DD *
 alloc smf
 suppress CKFREEZE
 n type=smf name=smfsel
 s type=(80)
 unload dd=smfunld
 include member=CKALFSUM

CKR0450 00 Started processing SMF file CKR@SM00 TARCAT SYS1.SC58.MAN1
CKR0450 00 Started processing SMF file CKR@SM01 TARCAT SYS1.SC58.MAN2
CKR0450 00 Started processing SMF file CKR@SM02 TARCAT SYS1.SC58.MAN3
CKR0427 00 1,064 SMF records read, 99 SMF records selected (9%)
68 z/OS Identity Propagation

Using some of these displays, let us see what information we can obtain and how it relates to
auditing of distributed identity. We base our discussion on the EVENTS option on the
zSecure main menu.

1. Select EV.1 for SMF Reports ‘predefined analysis reports’.
2. Select Exceptions for ‘RACF exception report’.
3. Enter a value if you want to reduce the volume of SMF data analyzed or press Enter.

CMDSPEC commands issued by SPECIAL users
This section shows RACF commands issued by RACF user IDs with the SPECIAL attribute.
In our example in Figure 6-16 we show user ITSO1 issuing RACMAP commands and then
doing a refresh of the IDIDMAP class. This display shows a number of IDIDMAP profiles
being created and deleted.

Figure 6-16 A zSecure display of commands issued by a SPECIAL user ID

How can this be of use to us? First, we have a list of commands relevant to setting up
mappings for a distributed user, so this is an audit trail of who created these mappings (that
is, creating the nexus between a RACF user ID and one or more distributed identities).

Commands issued by SPECIAL users Line 1 of 21
 Command ===> Scroll===> PAGE
 19Jan11 16:31 to 21Jan11 09:21
 User Full Name Count
 ITSO1 ITSO1 SPECUSR 12
 Date/time RACF command
 19Jan11 17:01:55.35 RACMAP ID(NORACMAP) MAP WITHLABEL('LABEL00000001')
 19Jan11 17:02:02.82 SETROPTS RACLIST(IDIDMAP) REFRESH
 19Jan11 17:16:08.18 RACMAP ID(SWGRES) MAP WITHLABEL('LABEL00000001')
 19Jan11 17:16:17.69 SETROPTS RACLIST(IDIDMAP) REFRESH
 19Jan11 17:24:50.19 RACMAP ID(SWGRES) MAP WITHLABEL('LABEL00000002')
 19Jan11 17:24:57.52 SETROPTS RACLIST(IDIDMAP) REFRESH
 19Jan11 17:27:20.97 RACMAP ID(SWGRES) DELMAP LABEL('LABEL00000002')
 19Jan11 17:27:24.53 SETROPTS RACLIST(IDIDMAP) REFRESH
 19Jan11 17:27:37.73 RACMAP ID(SWGRES) DELMAP LABEL('LABEL00000001')
 19Jan11 17:27:40.50 SETROPTS RACLIST(IDIDMAP) REFRESH
 19Jan11 17:27:50.73 RACMAP ID(SWGRES) MAP WITHLABEL('LABEL00000001')
 19Jan11 17:27:55.05 SETROPTS RACLIST(IDIDMAP) REFRESH
 ******************************* Bottom of Data *******************************
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 69

We can issue a select against any of these commands to obtain more information about a
particular command and the distributed identity used. Select the RACMAP command for
SWGRES and a snippet of the subsequent screen is shown. Figure 6-17 shows a RACF ID of
SWGRES mapped to a distributed identity. Also, it tells us that the command was successful.

Figure 6-17 A display of SMF data relating to a RACMAP command

GRESVIOL general resource access violations by class, profile, and user
In the example in Figure 6-18 it is observed that an access violation has occurred. In this case
a distributed identity is being checked by CICS after its credentials have been supplied by the
CICS Transaction Gateway (CICS TG) program. At this point there is no difference whether
the user is a normal user or has a distributed identity.

Figure 6-18 CICS mirror transaction experiences an access violation

Commands issued by SPECIAL users Line 1 of 41
Command ===> Scroll===> PAGE
 19Jan11 16:31 to 21Jan11 09:21
 RACF command
 RACMAP ID(SWGRES) MAP WITHLABEL('LABEL00000002')
 USERDIDFILTER(NAME('UID=MARTina,OU=SWG,O=IBM'))
 REGISTRY(NAME('*'))

 Record identification
 Job name + id ITSO1
 SMF date/time Wednesday 19 Jan 2011 17:24:50.19
 System ID SC58 record no: CKR1SM01 1180

 Event identification
 RACF event description Distributed ID map (Success:Successful RACMAP)
 RACF event qualifier 0
 RACF descriptor for event Success
 RACF reason for logging Special
 SAF authority used Special

 Subject identification
 User: ITSO1 Group: SYS1 Terminal: SC38TC6B Appl:
 Name: SPECUSR Security label:
 Token: User:ITSO1; Group:SYS1; Flags:(Pre 1.9,Special); Session:TSO;
 Port:TERMINAL(SC38TC6B)

General Resource Access Violations by Class, Profile and User Line 1 of 7
Command ===> Scroll===> PAGE
 19Jan11 16:31 to 21Jan11 09:21
Class Prof# Users Count
TCICSTRN 1 1 1
Profile Users Count
CSMI 1 1
User Full Name Count
RACMAP01 DEFAULT RACMAP 1
Date/time Description
19Jan11 17:11:33.22 RACF ACCESS violation for RACMAP01: (READ,NONE) on TCICSTRN
CSMI
70 z/OS Identity Propagation

By issuing a select command against this ACCESS violation we have a more detailed view of
this occurrence. Figure 6-19 is only a portion of the display designed to show only the most
important information.

Figure 6-19 Detailed information about an ACCESS violation

We can tell that RACF user ID RACMAP01 has a distributed identity. With this knowledge,
the security administrator can make the determination of what action to follow. In this case, it
would be to grant access to this CICS transaction.

Description
 RACF ACCESS violation for RACMAP01: (READ,NONE) on TCICSTRN CSMI

 Record identification
 Job name + id SC58CIC1
 SMF date/time Wednesday 19 Jan 2011 17:11:33.22
 System ID SC58 record no: CKR1SM01 1140

 Event identification
 RACF event description Resource access (Failure:Insufficient
 RACF event description authority)
 RACF event qualifier 1
 RACF descriptor for event Violation
 RACF reason for logging Resource
 SAF authority used Normal
 Access intent READ
 Access allowed NONE
 Audit/message logstring

 Object identification
 SAF profile class TCICSTRN
 SAF profile key CSMI
 SAF resource name CSMI
 Volume serial

 Subject identification
 User: RACMAP01 Group: REDB0K02 Terminal: Appl: SC58CIC1
 Name: DEFAULT RACMAP Security label:
 Token: User:RACMAP01; Group:REDB0K02

 Authenticated user identity mapping
 Authenticated user name UID=MARTINA,OU=SWG,O=IBM
 Authenticated user regname wtsc58.itso.ibm.com:389
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 71

GRESWARN general resource access warnings by class, profile, and user
If we continue on from the previous example, the security administrator grants access to the
CSMI transaction for our distributed identity but sets a warning for this access. So when our
distributed identity enters CICS, RACF will write data to SMF about this access to CSMI. This
SMF data is displayed in the portion of the screen shown in Figure 6-20.

Figure 6-20 A distributed identity shows an access warning to a CICS transaction

RACF events: RACF logging for specific events
Another probable scenario involves locating successful initiations by distributed identities.
This provides an auditor and the security administrator with information about remote users
who perform work on their system.

To examine such data we take the following steps from the zSecure main menu:

1. Select EV.2 RACF Events’.
2. Select ‘All events’.
3. Enter * user id.
4. Press Enter to bypass SMF criteria if not required.
5. Press Enter to bypass maximum SMF records criteria if required.
6. Look for successful racinit initiation messages.

 Description
 RACF ACCESS warning for RACMAP01: (READ,NONE) on TCICSTRN CSMI

 Record identification
 Job name + id SC58CIC1
 SMF date/time Wednesday 19 Jan 2011 17:09:11.54
 System ID SC58 record no: CKR1SM01 1128

 Event identification
 RACF event description Resource access (Warning:Access permitted due
 RACF event description to warning)
 RACF event qualifier 3
 RACF descriptor for event Warning
 RACF reason for logging Resource
 SAF authority used Normal
 Access intent READ
 Access allowed NONE
 Audit/message logstring

 Object identification
 SAF profile class TCICSTRN
 SAF profile key CSMI
 SAF resource name CSMI
 Volume serial

 Subject identification
 User: RACMAP01 Group: REDB0K02 Terminal: Appl: SC58CIC1
 Name: DEFAULT RACMAP Security label:
 Token: User:RACMAP01; Group:REDB0K02

 Authenticated user identity mapping
 Authenticated user name UID=MARTINA,OU=SWG,O=IBM
 Authenticated user regname wtsc58.itso.ibm.com:389
72 z/OS Identity Propagation

Having followed these instructions, we are presented with a screen similar to Figure 6-21.
This shows a distributed identity preparing to enter CICS and then about 3 minutes later
being validated prior to entering CICS again.

Figure 6-21 Distributed identities prior to entering CICS

Figure 6-22 is an example of a successful mapping of a distributed identity to a RACF user ID.

Figure 6-22 A distributed identity succesfully authenticated prior to entering CICS

Using batch or online CARLa statements
Our previous discussion centred on screen-based enquiries where several screens were
required to drill down to a specific SMF record with data relevant to a distributed identity.

SMF record RACF processing and audit records Line 1 of 17
Command ===> Scroll===> PAGE
 17Jan11 05:30 to 21Jan11 09:21
 Event Q Count Event description
 RACINIT 12 17 Racinit (Success:Successful racinit initiation)
 Date/time Description
 19Jan11 16:49:35.72 RACF RACINIT success for SWGAU: Job Start / Logon,
APPL=SC58CIC1
 19Jan11 16:52:54.98 RACF RACINIT success for SWGAU: Job Start / Logon,
APPL=SC58CIC1

 Description
 RACF RACINIT success for SWGAU: Job Start / Logon, APPL=SC58CIC1

 Record identification
 Jobname + id: SC58CIC1
 SMF date/time: Wed 19 Jan 2011 16:49:35.72
 SMF system: SC58 record type: 80 record no: CKR1SM01 804

 Event identification
 RACF event description Racinit (Success:Successful racinit initiation)
 RACF event qualifier 12
 RACF descriptor for event Success

 SAF profile class USER
 SAF profile key SWGAU
 SAF resource name SWGAU

 Subject identification
 User: SWGAU Group: REDB0K02 Terminal: Appl: SC58CIC1
 Name: SWGAU Security label:
 Token: User:SWGAU; Group:REDB0K02

 Authenticated user identity mapping
 Authenticated user name UID=BOB,OU=SWG,O=IBM
 Authenticated user regname wtsc58.itso.ibm.com:389
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 73

By way of background CARLa programs can be deployed in the following ways:

� From batch JCL with CARLa statements being supplied as SYSIN or called via a
IMBED statement.

� Selecting the COMMANDS “Run commands from library” option from the main zSecure
menu, where CARLA program can be selected from a library to be run.

� By entering CARLa at the command prompt on most zSecure panels, a CARLa statement
can be entered and run in an iterative manner.

From an administrative and audit viewpoint it is useful to establish a library of CARLa
programs to be used for specific purposes.

In this discussion about using CARLa to display auditing information, we start from a
summary of audited events and then produce a detailed analysis upon the audit data. Our
summary would be produced by the CARLa statements in Figure 6-23. This program needs a
SMF001 DD pointing at one or more unloaded SMF datasets.

Figure 6-23 CARLa statements to produce a summary of events

Looking at our event summary (that is, what events RACF wrote to SMF), we see a simple
scenario with most users being validated and then performing actions against a variety of
protected resources that record their access (Figure 6-24).

Figure 6-24 A summary of RACF events

 suppress msg=1400
 suppress racf ioconfig
 alloc type=smf DD=SMF001
 newlist type=smf title='1 All Events Comands'
 select type=80
 summary event count

S M F R E C O R D L I S T I N G 17Jan11 05:30 to 21Jan11 09:21
1 All Events Comands

Event Count
RACINIT 23
ACCESS 804
DEFINE 2
CONNECT 1
PERMIT 1
RALTER 3
RDEFINE 1
SETROPTS 9
RACMAP 6
74 z/OS Identity Propagation

Let us now produce a report showing validation of a distributed identity and accesses to a
CICS system using a CARLa script (Figure 6-25). This contains exclude CARLa statements
to remove data not relevant to our purpose.

Figure 6-25 CARLa script to extract and report on distributed identities

The report output shown in Figure 6-26 shows:

1. A distributed identity entering z/OS.
2. Being validated and mapped (RACINIT 12) to a RACF user ID MARTINA.
3. Being given access into CICS.
4. Being timed out at 12:27 because CICS user delay is 5 minutes.

Figure 6-26 Report on distributed identity entering a CICS system called SC58CICS

 suppress msg=1400
 suppress racf ioconfig
 alloc type=smf dd=smf001
 newlist type=smf TITLE='Distributed Identities in CICS'
 select jobname=sc58cic*
 exclude userid=stc
 exclude resource=(cemt,ceda,ec01,ec02,ec03,ec04,cedf,cedx)
 sortlist datetime(19) jobname userid,
 event eventqual class intent resource(8),
 / auth_user_name(23),
 auth_user_regname(23)

S M F R E C O R D L I S T I N G 19Jan11 11:43 to 28Jan11 12:42
Distributed Identities in CICS

Date/time Jobname User Event Eq Class Intent Resource
28Jan11 12:22:53.35 SC58CIC1 MARTINA RACINIT 12 USER MARTINA
UID=MARTINA,OU=SWG,O=IB wtsc58.itso.ibm.com:389
28Jan11 12:22:53.35 SC58CIC1 MARTINA ACCESS 1 TCICSTRN READ CSMI
UID=MARTINA,OU=SWG,O=IB wtsc58.itso.ibm.com:389
28Jan11 12:27:53.37 SC58CIC1 MARTINA RACINIT 13 USER MARTINA
UID=MARTINA,OU=SWG,O=IB wtsc58.itso.ibm.com:389
Chapter 6. Using SMF audit information to report on z/OS Identity Propagation 75

In our next report (Figure 6-27) we see a distributed identity moving from one CICS to another
CICS system (for example, from a terminal owning region (TOR) to an application owning
region (AOR)):

1. A distributed identity entering z/OS.
2. Being validated and mapped (RACINIT 12) to a RACF user ID SWGDE.
3. Being given access into CICS (TOR).
4. Being given access into the second CICS (AOR).
5. Being timed out at 12:42 because the first CICS user delay is 5 minutes.
6. Being timed out at 12:42 because the second CICS user delay is 5 minutes.

Figure 6-27 Report on a distributed identity traversing several CICS systems

S M F R E C O R D L I S T I N G 28Jan11 12:30 to 28Jan11 12:42
Distributed Identities in CICS

Date/time Jobname User Event Eq Class Intent Resource
28Jan11 12:37:46.16 SC58CIC1 SWGDE RACINIT 12 USER SWGDE
uid=martina,ou=swg,o=ib wtsc58.itso.ibm.com:389
28Jan11 12:37:46.16 SC58CIC1 SWGDE ACCESS 0 TCICSTRN READ CSMI
uid=martina,ou=swg,o=ib wtsc58.itso.ibm.com:389
28Jan11 12:37:46.34 SC58CIC2 SWGDE ACCESS 0 TCICSTRN READ CSMI
uid=martina,ou=swg,o=ib wtsc58.itso.ibm.com:389
28Jan11 12:42:46.50 SC58CIC1 SWGDE RACINIT 13 USER SWGDE
uid=martina,ou=swg,o=ib wtsc58.itso.ibm.com:389
28Jan11 12:42:47.02 SC58CIC2 SWGDE RACINIT 13 USER SWGDE
 uid=martina,ou=swg,o=ib wtsc58.itso.ibm.com:389
76 z/OS Identity Propagation

Chapter 7. Internal z/OS data structures
impacted by identity propagation

This chapter shows what SAF interfaces and data structures have support for
identity propagation.

7

© Copyright IBM Corp. 2011. All rights reserved. 77

7.1 SAF interfaces

In this section we discuss relevant data areas impacted by identity propagation.

7.1.1 RACF communication vector table

The RACF communication vector table is a communication area for information global to
RACF functions. This is fully defined in z/OS Security Server RACF Data Areas, GA22-7680.
To cater for identity propagation, two fields exist within this programming interface. They hold
information that defines the current acceptable maximum length of:

� User’s distinguished name
� Registry name

This is outlined in the snippet from the data area structure ICHPRCVT shown in Table 7-1.

Table 7-1 Additional fields added to CVT

7.1.2 RACROUTE

This SAF callable service is invoked in the following manner:

RACROUTE REQUEST=VERIFY/VERIFYX

The following additional parameters are placed on this call:

� ICRX = icrx address
� IDID = idid address

It is the caller’s responsibility to create a data area for ICRX and Distributed Identity Data
(IDID) unless it has been passed by a calling application. In the later case, it could well be
that the Identity Context Reference (ICR) field might contain a value.

Offset Data
type

Data
length

Field
name

Field description

372 X’174’ Unsigned
Integer

2 RCVTDNL Maximum length of distributed user ID - 246
UTF-8 characters.

374 X’176’ Unsigned
Integer

2 RCVTRL Maximum length of registry name - 255 UTF-8
characters.

376 X’178’ Unsigned 1 RCTIDPV Indicates enhancements provided by APARs
OA34258 and OA34259 are available on the
system.
78 z/OS Identity Propagation

One additional parameter that is required is ENVIR=CREATE. This call, if successful, is to
create an ACEE. Information about this macro can be obtained from the Security Server
RACROUTE Macro Reference, SA22-7692. Along with these changes, we provide additional
reason codes in Table 7-2.

Table 7-2 Reason codes from RACROUTE when using ICRX

7.1.3 InitACEE

An application calls an initACEE callable service to create an ACEE. As previously
mentioned, the ACEE is a control block that defines the runtime security environment. When
we make a call to this SAF interface we now also supply a pointer to a IDID data structure.
IDID_Area is the name of a fullword containing the address to this data structure.

Some operational hints are:

� If the Function_Code requests an ACEE to be built and no RACF_UserID parameter is
supplied, plus the IDIDMAP class is active and RACLISTed, then information in the IDID is
used to determine a RACF user ID.

� If the IDIDMAP class is inactive or the information in the IDID does not map to a RACF
user ID, the InitACEE will fail.

� If a RACF_UserID parameter is specified on the InitACEE, the IDID_Area parameter
can supply the name of an IDID to be associated with the ACEE. The IDIDMAP class is
not used.

� When the IDID_Area parameter is specified, the distributed identity information in the IDID
should have been previously authenticated.

� If an IDID is supplied and an ACEE is successfully created, the ACEE will point to a copy
of the IDID, and it will subsequently be used in auditing.

Abend 283 (RACROUTE REQUEST=VERIFY parameter list error)

Reason
code

Short description Full description

6C ICRX block is not valid. Either the ID value or length values were not valid, or the
ICRX parameter was specified with the IDID, ICTX,
NESTED=COPY, or NESTED=YES parameter.

70 IDID block is not valid. Either the ID value, subpool, or length values were not valid,
or the IDID parameter was specified with the ICTX,
NESTED=COPY, or NESTED=YES parameter.
Chapter 7. Internal z/OS data structures impacted by identity propagation 79

Figure 7-1shows a sample layout of such a call with the IDID_Area holding the address of the
IDID data structure as the last parameter.

Figure 7-1 Sample CALL layout for InitACEE

This service is documented in z/OS Security Server RACF Callable Services, SA22-7691.

7.1.4 R_cacheserv

To support identity propagation we use a number of functions through R_cacheserv to store
entities into the RACF local identity context cache, retrieve them, and delete them. These
entities are called ENVR objects, which might or might not contain an IDID.

This cache is local to the Sysplex, and by its nature it is read/write. Here is example of calling
this service:

CALL IRRSCH00 (Work_Area, ..., ICRX_Area, ICRX_Length)

Management of extended read/write cache is handled by function code 7. With the advent of
enhanced functions with OA34258 and OA34259, function code 7 now has five option
parameters (Table 7-3). The life for of a cached entity is 60 minutes.

Table 7-3 Options available to function code 7 in R_cacheserv

CALL IRRSIA00 (Work_Area,
 ALET, SAF_Return_Code,
 ALET, RACF_Return_Code,
 ALET, RACF_Reason_Code,
 Function_Code, Attributes, RACF_UserID,
 ACEE_Ptr, APPL_ID, Password,
 Logstring, Certificate, ENVR_In, ENVR_Out,
 Output_Area, X500 name, Variable_List,
 Security_Label, SERVAUTH_Name,
 Password_Phrase,
 IDID_Area)

Option Purpose Description

1 Store data and return ICRX. Returns an extended reference using a new ICRX parameter. It will use
the ACEE as the source record and create a record name from the IDID
pointed to by the ACEE. A cache reference will be created for the new
record, and its ICR will be returned in an ICRX along with the IDID and
RACF user ID.

2 Retrieve application data. Behaves in a similar way to function code 6 option 4 (retrieve
application data).

3 Remove record. Behaves in a similar way to function code 6 option 5 (remove record) if an
ICR is set in the ICRX. It will mark a data record as no longer valid if an
IDID is provided in the ICRX with a non-set ICR.

4 Store and return reusable
ICRX.

Similar processing to option 1, but the ICRX will be marked as reusable.
It might called by option 2 multiple times and will time out after an hour
of inactivity.

5 Validate input ICRX. This is a validation function to validate a user-built ICRX that has been
provided to a subsystem, for example, CICS. Note that it is not to done on
a completed ICRX as returned by RACF as with option 1.
80 z/OS Identity Propagation

This service is documented in z/OS Security Server RACF Callable Services, SA22-7691.

7.1.5 R_usermap

With respect to identity propagation, this function uses a user's distinguished name and a
registry/realm name to determine a mapped RACF user ID. This association should already
exist following RACMAP commands. Table 7-4 describes function code X’0008’.

Table 7-4 R_usermap

7.2 SAF data areas

The information mentioned here is covered in more depth in Security Server RACF Data
Areas, GA22-7680.

7.2.1 Accessor Environment Element

This is an z/OS control block that exists at a z/OS address space level and optionally at the
z/OS task level. The Accessor Environment Element (ACEE) is the run-time security context
that anchors the identity (in RACF terms; that is, the RACF user ID) for whom the address
space or task is performing work. It represents the authorities of a single accessor in the
address space.

An ACEE is built by SAF-RACF when a server-hosting environment such as CICS asks
SAF-RACF to do so via invocation of the RACROUTE Request=Verify SAF callable service.

Function
code

Purpose Description

X’0008’ Return RACF user ID that has been
associated with the user's
distinguished name and
registry/realm name.

Provide a query service invoked via a callable service to take the
user's distinguished name and registry/realm name and return the
matching RACF user ID.

Note: For function x'0008' to use this service, the subsystem can be authorized by the
resource IRR.IDIDMAP.QUERY in the FACILITY Class if not running in system key or
supervisor state.

This is a new function of R_usermap provided by OA34258 and OA34259.
Chapter 7. Internal z/OS data structures impacted by identity propagation 81

Two fields have been added at the end of this structure in the ACEE to support the
identity propagation:

� ACEEIDID points to the IDID data area holding the distributed identity data.
� ACEETIME captures the creation time.

Table 7-5 new ACEE fields

Look in z/OS Security Server RACF Data Areas, GA22-7680, for the mapping of the data
structure IHAACEE. A point worth noting here is that the 4-character ACEE is changed to
acee prior to freeing the ACEE storage. Figure 7-2 shows how the ACEE is connected to the
IDID.

Figure 7-2 ACEE structure and pointer to IDID

7.2.2 ICRX: Extended Identity Context Reference

This holds information needed to retrieve or rebuild an authenticated distributed user's z/OS
security environment. It can be found as:

� Output from R_cacheserv
� Input into R_cacheserv
� Input for RACROUTE REQUEST=VERIFY

When passed as an input parameter, it is in the form ICRX=icrx addr. This specifies an
address that points to a caller-provided ICRX area.

If creating an ICRX, the caller is responsible for:

� Setting the ICRX ID, version, subpool, and length.

� All applicable field length and offset values, unless the ICRX was previously obtained from
R_cacheserv. RACF checks the ID and validates that the specified length values in the
RACF sections do not exceed the allowed maximum values.

� Freeing the ICRX structure.

It is mapped by the IRRPICRX data area structure and contains a 4-byte eyecatcher ‘ICRX’
and has a variable size. It can be created by RACF or a caller to RACF. This ICRX now has a

Offset Data type Data
length

Field name Field description

184 X’B8’ Address 4 ACEEIDID Address of distributed data (IDID)

188 X’BC’ Character 4 ACEETIME ACEE creation time

A C E E ID ID

A p p lic a t io n d a ta

R e s e rv e d fo r R A C F

R e g is t r y N a m e

(a k a R e a lm N a m e)

D is t in g u is h e d N a m e
(a u th e n t ic a te d)

A C E E ID ID
82 z/OS Identity Propagation

flag to indicate that it is a multi-use ICRX. This enhancement is supplied by APARs OA34258
and OA34259.

7.2.3 IDID: Distributed Identity Data

It is mapped by the IRRPIDID data area structure and contains a 4-byte eyecatcher ‘IDID’ and
has a variable size. It can be created by RACF or a caller to RACF and its address is held in
the ACEEIDID field in the ACEE.

It also holds information pointing to a number of optional sections. They are:

� z/OS section
� Reserved for additional RACF security information
� Reserved for alternative security information
� Reserved for customer use
� Reserved for use by Websphere Application Server

From the view of identity propagation, the most important section is the z/OS section. In its
structure it has two important fields:

� User's distinguished name

Distributed client end-user's identity, within registry designated by IDID1REG, in UTF8
form, represented as one of the following:

– LDAP string form of the user's X.500 distinguished name as defined within the LDAP
registry, in canonical form as in RFC2253, and with LDAP special characters escaped
with a '\' (UTF-8'92'x). Note that this is identical to what is the result of a
WASwscredential.getUniqueSecurityName()method invocation run on a WebSphere
Application Server having authenticated the user by way of the LDAP registry.

– A simple character string such as a user ID as defined within a registry.

� Registry's name

The name of the original registry in UTF8 format. Note that this is identical to what would
be the result of a WebSphere Application Server wscredential.getRealmName() method
invocation run on a WebSphere Application Server having authenticated the user by way
of the LDAP registry.

7.2.4 ENF2: RACF ENF Event Code 71

This maps the input parameter list for ENF event code 71 listen exits. It is mapped by the
IRRPENF2 data area structure and contains a 6-byte eyecatcher ‘IRREN2’ and has a fixed
size of 24 bytes. It is created by RACF.
Chapter 7. Internal z/OS data structures impacted by identity propagation 83

84 z/OS Identity Propagation

Chapter 8. Identity propagation with CICS
and CICS Transaction Gateway

This chapter describes a scenario for identity propagation in a remote topology.

8

© Copyright IBM Corp. 2011. All rights reserved. 85

8.1 Architectural overview

Figure 8-1 shows the topology that was used for this scenario. CICS Transaction Server
Version 4.1 and CICS Transaction Gateway Version 8 are both on z/OS. The distributed
identity is held in IBM Tivoli® Directory Server and mapped to a user ID in RACF when it is
passed to CICS Transaction Server. This scenario uses WebSphere Application Server
Version 7 and the CICS Transaction Gateway (CICS TG) resource adapter on Windows. The
distributed authentication was performed using an LDAP server.

Figure 8-1 CICS identity propagation topology used in this scenario

Figure 8-2 shows a diagram of CICS identity propagation using multiple CICS regions.

Figure 8-2 CICS identity propagation using multiple CICS regions

z/OS

LDAP Distributed
Identity

CICS
Transaction
Gateway

CICS
Transaction
ServerTCP/IP IPIC

SMF
RACF ID
DN & Realm

RACF Distributed
ID mapped
to RACF ID

ECI
resource
adapterWebSphere

Application
Server

Windows

Login
module

z/OS

LDAP

ECI
resource
adapter

Distributed
Identity

CICS
TGTCP/IP IPIC

WebSphere
Application
Server

Windows

RACF Distributed
ID mapped
to RACF ID

Login
module

CICS

MRO

CICS
86 z/OS Identity Propagation

To test that the scenario works successfully, the sample application ECIDateTime supplied
by CICS Transaction Gateway was used:

� The ECIDateTime sample EJB application must be installed on WebSphere
Application Server.

� The sample CICS Transaction Gateway server program EC01 must be compiled, defined,
and installed in a CICS program library.

� We also added two programs modelled after EC01 (EC03 and EC04) to enable us to
demonstrate the retrieval of DN and realm information within a CICS program, both in the
region that CICS TG connects to and in a downstream CICS-to-CICS connected region.
These programs write diagnostic information to CICS TD queue CSSL.

8.2 Configuring identity propagation on CICS Transaction
Gateway

The connectivity between CICS TG and CICS needs to be via an IPIC connection.

The IPIC protocol was introduced in CICS TS 3.2 and is a TCP/IP-based protocol that offers
advantages over LU6.1/APPC SNA protocol. Identity propagation can occur over IPIC
connections, but not over LU6.2 connections. For a quick introduction to IPIC, see:

http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm
.iea.cicstg/cicstg/7.2z/Overview/IPICIEA/player.html

The steps in this section describe how to configure CICS TG to pass a distributed identity to
CICS. These changes can be made via the TSO ISHELL command to the configuration file
used by CICS TG:

/ctg/ctg800/ctg.idprop.ini

First, you need the following pieces of information:

� Eight-character string to be used as an APPL identifier. Note this is not a VTAM® applid.
� Eight-character string to be used as a APPL qualifier. Note this is not a VTAM network ID.
� Name to use within CICS TG for the CICS connection.
� DNS name or IP address for the CICS region.
� Port number that the CICS region will be listening.

To configure CICS TG to pass a distributed identity to CICS:

1. Add a PRODUCT section, which points to the IPIC SERVER section via the default server
(Figure 8-3).

Figure 8-3 PRODUCT section in CICS TG in file

SECTION PRODUCT

applid=MYAPPL
applidqualifier=MYNETID
defaultserver=ITSOLAB
ENDSECTION
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 87

http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp?topic=/com.ibm.iea.cicstg/cicstg/7.2z/Overview/IPICIEA/player.html

2. Add an IPIC SERVER section, which communicates with our CICS region that is listening
on port 50889 (Figure 8-4).

Figure 8-4 IPIC server section

3. In addition to the above configuration steps, we also installed CICS SupportPac CH51 to
assist in troubleshooting. This allowed us to verify that a distributed identity was being
received by CICS TG from WebSphere Application Server. This would be an optional step
at your installation. The SupportPac includes detailed instructions on how to install. The
CICS SupportPac Ch51 is available at:

http://www-01.ibm.com/support/docview.wss?uid=swg24019170

SECTION IPICSERVER=ITSOLAB

hostname=wtsc58.itso.ibm.com
port=50889
ENDSECTION

Note: You might prefer not to use a default server. In our scenario, we used a default
CICS server.
88 z/OS Identity Propagation

http://www-01.ibm.com/support/docview.wss?uid=swg24019170

8.3 Configuring identity propagation on CICS Transaction
Server

The following steps describe how to configure CICS to accept a distributed identity. See 8.2,
“Configuring identity propagation on CICS Transaction Gateway” on page 87, for information
needed before defining these resources.

1. Configure a TCPIPSERVICE resource to listen on the designated port (Figure 8-5):

– The POrtnumber must match the port number defined in CICS TG for the IPIC server.
– The PROtocol must be IPIC for this to work correctly.

Figure 8-5 CICS TCPIPSERVICE resource definition

2. Configure an IPCONN as shown in Figure 8-6 on page 90:

– The Tcpipservice should refer to the TCpipservice name created above.

– The SENdcount should be zero.

– The APplid and Networkid should match the values specified in the CICS TG
PRODUCT section. (Note that they do not reflect actual VTAM applids or network IDs.)

– Linkauth should specify SECUSER.

CEDA View TCpipservice(IPICCTG)
 TCpipservice : IPICCTG
 GROup : IDPROP
 DEScription :
 Urm : DFHISAIP
 POrtnumber : 50889 1-65535
 STatus : Open Open | Closed
 PROtocol : IPic IIop | Http | Eci | User | IPic
 TRansaction : CISS
 Backlog : 00001 0-32767
 TSqprefix :
 Host : ANY
 (Mixed Case) :
 Ipaddress : ANY
 SOcketclose : No No | 0-240000 (HHMMSS)
 Maxdatalen : 000032 3-524288
SECURITY
 SSl : No Yes | No | Clientauth
 CErtificate :
 (Mixed Case)
 PRIvacy : Notsupported | Required | Supported
 CIphers :
 AUthenticate : No | Basic | Certificate | AUTORegister
 | AUTOMatic | ASserted
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify
DNS CONNECTION BALANCING
 DNsgroup :
 GRPcritical : No No | Yes
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 89

– SECurityname should specify a user ID suitable to represent this link:

• It does not need to be your default user ID.
• It will need READ access to transaction CSMI.

– Userauth should specify IDENTIFY.

– IDprop parameter is not relevant for inbound IPCONN, and so can be left as
the default.

– Xlnaction is not required.

Figure 8-6 CICS IPCONN resource definition

8.4 Configuring identity propagation on WebSphere
Application Server

WebSphere application server can be used to pass a distributed identity to a z/OS subsystem
such as CICS using CICS Transaction Gateway. See 3.1, “CICS Transaction Gateway” on
page 26, for additional details.

CEDA View Ipconn(CTG)
 Ipconn : CTG
 Group : IDPROP
 DEScription : RESIDENCY 0Z02 IDENTITY PROPOGATION FOR CTG
IPIC CONNECTION IDENTIFIERS
 APplid : MYAPPL
 Networkid : MYNETID
 Host :
 (Mixed Case) :
 Port : No No | 1-65535
 Tcpipservice : IPICCTG
IPIC CONNECTION PROPERTIES
 Receivecount : 100 1-999
 SENdcount : 000 0-999
 Queuelimit : No No | 0-9999
 Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
 AUtoconnect : No No | Yes
 INservice : Yes Yes | No
 SECURITY
 SSl : No No | Yes
 CErtificate : (Mixed Case)
 CIphers :
 Linkauth : Secuser Secuser | Certuser
 SECurityname : CICSUSER
 Userauth : Identify Local | Identify | Verify | Defaultuser
 IDprop : Optional Notallowed | Optional | Required
 RECOVERY
 Xlnaction : Keep Keep | Force
90 z/OS Identity Propagation

To enable support for identity propagation in WebSphere:

1. WebSphere application server must be configured to specify a user registry entry to
enable user ID and password verification for applications.

2. All J2EE applications that call the CICS Transaction Gateway ECI resource adapter must
be configured for container-managed security.

3. The CICS Transaction Gateway login module (a JAAS module found in the ECI resource
adapter RARs - cicseci.rar and cicseciXA.rar) must be installed.

4. One of the following must be configured to use the CICS Transaction Gateway identity
propagation login module:

– The J2EE application must be configured to use a custom login configuration that
refers to the CICS Transaction Gateway identity propagation login module. This is
accessed via the connection factory resource references on the application's
configuration panel.

– The connection factory that is used by the application must have a mapping
configuration alias that refers to the CICS Transaction Gateway identity propagation
login module. This is accessed by the connection factory's configuration panel.

5. To propagate the identity of the user who invokes the application, set the propIdentity
custom property on the CICS Transaction Gateway identity propagation module to
propIdentity=Caller.

The following sections steps describe how to:

� Configure a standalone LDAP registry.
� Configure the CICS ECI resource adapter for use with CICS Transaction Gateway.
� Create a J2C connection factory.
� Deploy the sample ECIDateTime application.
� Install the identity propagation login module.
� Run the ECIDateTime application.

8.4.1 Configuring standalone LDAP registry

This section provides the steps to configure a standalone LDAP registry for administrative
and application security for the identity propagation scenario. For additional information about
how to set up administrative and application security, see WebSphere Application Server
V7.0 Security Guide, SG24-7660:

http://www.redbooks.ibm.com/abstracts/sg247660.html?Open
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 91

http://www.redbooks.ibm.com/abstracts/sg247660.html?Open

From the WebSphere Application Server administrative console menu go to Security 
Global security and enable administrative security. Do this by checking the Enable
administrative security check box (Figure 8-7).

Figure 8-7 Enabling administrative security

Click Security Configuration Wizard to perform the configuration for the standalone
LDAP registry.

Figure 8-8 shows the first step of the Security Configuration Wizard. Enable application
security by checking the box.

Figure 8-8 Security Configuration Wizard - Step 1
92 z/OS Identity Propagation

In the next step choose the kind of user repository that you want to use. In this scenario a
standalone LDAP registry is used (Figure 8-9).

Figure 8-9 Security Configuration Wizard - Step 2

In the third step of the configuration wizard (Figure 8-10) provide a valid primary
administrative user name for the LDAP server that you are using. The primary administrative
user is a member of the chosen repository, but it also has the same privileges that are
associated with the administrative role ID in WebSphere Application Server, and it can
access all of the protected administrative methods.

Select the directory type from the Type of LDAP server drop-down menu and provide a host
and the port number.

Figure 8-10 Security Configuration Wizard - Step 3

Validate the completed security configuration by clicking OK or Apply. If there are no
validation problems, click Save to save the settings to a file that the server uses when
it restarts.

The type of LDAP server chosen from the drop-down list in the previous step changes the
default object classes that are populated. In this example, IBM Tivoli Directory Server is
selected. By selecting this directory type, the default object classes for this directory are
populated into the LDAP query strings.
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 93

From the Global Security panel select Configure on the User account repository section
(Figure 8-11).

Figure 8-11 Configure user account repository

In the Additional Properties section of the next window, click Advanced Lightweight
Directory Access Protocol (LDAP) user registry settings. This navigation takes you to the
panel shown in Figure 8-12.

Typically, you will be required to modify the object classes specified for the user and group
filters. Subsequently, changes to the user ID and group ID mappings might also be needed
depending on your directory configuration. These filters and ID mappings change how the
application server queries the LDAP directory.

Figure 8-12 Advanced LDAP user registry settings

In this scenario the LDAP directory is using an object class of inetOrgPerson for the users.
So, the default object class of ePerson needs to be modified. Change the user filter as shown
in Figure 8-12. Click OK and save the configuration

8.4.2 Deploying the CICS ECI resource adapter

The CICS ECI resource adapter is shipped with the CICS Transaction Gateway. It is located
under:

<install_path>/deployable/cicseci.rar

For example, for the test installation:

/usr/lpp/cicstg/ctg800/deployable/cicseci.rar

From the WebSphere Application Server administrative console menu go to Resources 
Resource Adapters  Resource Adapters and click Install RAR.

Note: You must restart the server for these changes to take effect.
94 z/OS Identity Propagation

Point to the cicseci.rar file (Figure 8-13).

Figure 8-13 Installing CICS ECI adapter

Review the properties (Figure 8-14) and click OK.

Figure 8-14 General resource adapter properties
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 95

You should now be able to see the ECIResourceAdapter on the Resource Adapters panel
(Figure 8-15).

Figure 8-15 ECIResourceAdapter

8.4.3 Creating a J2C Connection Factory

From the WebSphere Application Server administrative console menu go to Resources 
Resource Adapters  J2C connection factories and click New.

Provide a suitable name for the connection factory. Select ECIResourceAdapter from the
drop-down menu. The connection factory must have a JNDI name of ECI for the sample
program to work (Figure 8-16).

Figure 8-16 J2C connection factory general properties

For now, leave the security settings as is (that is, none).
96 z/OS Identity Propagation

Return to the J2C Connection factories panel and click the connection factory that you just
created (Figure 8-17).

Figure 8-17 J2C Connection factories

Under Additional properties, click Custom properties and provide a ConnectionURL
matching your CICS environment. This is the URL of the CICS Transaction Gateway with
which the resource adapter will communicate. The URL takes the form protocol://address.
This parameter is required. The protocols supported are:

� TCP
� SSL
� Local

In this scenario the connection URL is tcp://wtsc58.itso.ibm.com (Figure 8-18).

Figure 8-18 Connection URL
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 97

Figure 8-19 shows all custom properties that can be set for the ECIResourceAdapter J2C
connection factory. For further information refer to the CICS Transaction Gateway InfoCenter,
“Deployment parameters for the ECI resource adapters”:

http://publib.boulder.ibm.com/infocenter/cicstgzo/v8r0/index.jsp?topic=/com.ibm.
cics.tg.zos.doc/ctgzos/ccla206.html

Figure 8-19 custom properties

8.4.4 Deploying the ECIDateTime application

The ECIDateTime application is shipped as a sample CICS Transaction Gateway. It is
located under:

<install_path>/deployable/ECIDateTime.ear

For example, for the test installation:

/usr/lpp/cicstg/ctg800/deployable/ECIDateTime.ear
98 z/OS Identity Propagation

http://publib.boulder.ibm.com/infocenter/cicstgzo/v8r0/index.jsp?topic=/com.ibm.cics.tg.zos.doc/ctgzos/ccla206.html

From the WebSphere Application Server administrative console select Applications  New
Application  New Enterprise Application.

Point to the ECIDateTime.ear file (Figure 8-20).

Figure 8-20 Deploy ECIDateTime application

Select Detailed installation from the next panel. Use the default values for steps 1 to 4. In
step 5, “Provide JNDI names for beans,” validate that the Target Resource JNDI name is set
to ECIDateTimeBean1. The ECIDateTimeClient requires this name to be set.
ECIDateTimeClient is used for testing in this scenario (Figure 8-21).

Figure 8-21 Deploy ECIDateTime application - Step 5

In step 6, “Map resource references to resources,” select ECIDateTimeEJB and click
Browse for Target Resource JNDI Name. Select the J2C Connection Factory that you
created earlier (Figure 8-22) and click Apply.

Figure 8-22 Map resource references to resources
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 99

As a result, the JNDI name ECI is set under the Target Resource JNDI Name column
(Figure 8-23).

Figure 8-23 Deploy ECIDateTime application - Step 6

8.4.5 Installing the identity propagation login module

Ensure that application security is enabled from the Global Security panel, then select Java
Authentication and Authorization Service  Application logins and click New.

Enter CTG_idprop as the alias for the new login module (Figure 8-24) and click OK.

Figure 8-24 New JAAS application login
100 z/OS Identity Propagation

Return to the previous panel and click the CTG_idprop login module. Click New and set the
module class name to com.ibm.ctg.security.idprop.LoginModule. Select REQUIRED from
the Authentication strategy drop-down menu, create the name-value pair
propIdentity-RunAs (Figure 8-25), and click OK.

Figure 8-25 CTG_idprop properties

To associate the identity propagation login module with the client application go to
Applications  Application types  WebSphere enterprise applications and select the
ECIDateTime application from the list.

Select Resource references.

Select the ECI resource reference using the check box, and then select Modify Resource
Authentication Method (Figure 8-26).

Figure 8-26 Modify Resource Authentication Method
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 101

Select Use custom login configuration and then select the identity propagation login
module CTG_idprop that you installed in the previous step from the drop-down menu and
click Apply (Figure 8-27).

Figure 8-27 Custom login configuration

Save the configuration changes.

From the administrative console select Applications  Application Types  WebSphere
enterprise applications.

Select ECIDateTime and click Start (Figure 8-28).

Figure 8-28 Start ECIDateTime

8.4.6 Running the ECIDateTime application

From the Windows command prompt navigate to <path>\profiles\<appserver_name>\bin
and start the launchClient utility by issuing the following command:

launchClient <filepath>\ECIDateTime.ear

Where filepath is the path to the ECIDateTime.ear file. The command prompt for the installed
scenario would be:

launchClient ..\installedApps\ibm-itsoNode01Cell\ECIDateTime.ear
102 z/OS Identity Propagation

When application security is enabled, a dialog asks for the credentials (username and
password). Because the application is being authenticated against an LDAP registry, you
have to supply the distinguished name that has been defined in the LDAP registry
(uid=martina,ou=swg,o=ibm). The password is also required (Figure 8-29).

Figure 8-29 ECIDateTime login credentials

You now see the return code ECI_ERR_SECURITY_ERROR and a Java stack trace in the console.
The exception starts as shown in Example 8-1.

Example 8-1 ECIDateTime application output

javax.resource.spi.SecurityException: CTG9631E Error occurred during interaction
with CICS:
ECI_ERR_SECURITY_ERROR, error code: -27

See CICS user message log and the JES message log for the CICS job. If there is an error in
your configuration you will not see the distributed user ID in the logs.

You can confirm connectivity between CICS TG and CICS by observing the messages shown
in Example 8-2 in CICS and Example 8-3 in CICS TG.

Example 8-2 CICS indicating IPCONN successful communication with CICS TG

DFHIS2001 02/01/2011 11:18:36 SC58CIC1 Client web session 1 from applid MYAPPL
accepted for IPCONN CTG.
DFHIS2001 02/01/2011 11:18:36 SC58CIC1 Client web session 2 from applid MYAPPL
accepted for IPCONN CTG.

Example 8-3 CICS TG indicating IPIC server successful communication with CICS TG

02/01/11 11:18:36:884 Ý0¨ CTG6506I Client connected: ÝConnectionManager-99¨ -
tcp@SocketÝaddr=/9.12.5.202,port=4659,localport=2006¨
02/01/11 11:18:36:907 Ý0¨ CTG8429I Established new IPIC connection to CICS server
ITSOLAB with: negotiated session limit=100, CICSAP
PLID=SC58CIC1 CICSAPPLIDQUALIFIER=USIBMSC , HOSTNAME=wtsc58.itso.ibm.com,
PORT=50889, sockets=2

For your initial test, the CICS user message log will contain the message shown in
Example 8-4.

Example 8-4 CICS MSGUSR: Configuration error

DFHIS1027 01/27/2011 09:49:19 SC58CIC1 Security violation has been detected using
IPCONN CTG and transaction id CSMI by userid ????????
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 103

Consider installing the CICS SupportPac CH51, which allows for more detailed monitoring by
providing output to a JES DD log, //TXNLOG, that allows you to verify receipt of a distributed
identity in CICS TG from WebSphere Application Server.

In the CICS TG TXNLOG in Example 8-5 there is no distributed identity received in CICS TG
from WebSphere Application Server, which confirms a WebSphere Application Server
setup error.

Example 8-5 CTG TXNLOG: Configuration error

01/27/11 09:49:19:119 CH51 -> Rqst(371) Flow(ExtendedModeEci) Pgm(EC01)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(131)bytes LuwToken(0)
01/27/11 09:49:19:142 CH51 <- Rqst(371) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes
RespTime(23)ms CICScall(0)ms ctg_rc(-27)
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C73E556A8DCA9E00) LuwToken(0)

After you have WebSphere Application Server configured to provide application security, you
can then see the distributed identity flow through CICS TG. At this point no mappings have
been defined to RACF, so a security failure is expected, as you can see in Example 8-6,
Example 8-7, and Example 8-8.

Example 8-6 CICS TG TXNLOG showing DistId flowing

01/27/11 10:06:16:416 CH51 -> Rqst(382) Flow(ExtendedModeEci) Pgm(EC01)
DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm) ClientIP(9.12.5.202)
commarea(20)bytes SocketData(183)bytes LuwToken(0)
01/27/11 10:06:16:420 CH51 <- Rqst(382) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes RespTime(4)ms
CICScall(2)ms ctg_rc(-27)
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C73E5934B46F2000) LuwToken(0)

Example 8-7 CICS MSGUSR: No mapping

DFHIS1027 01/27/2011 10:06:16 SC58CIC1 Security violation has been detected using
IPCONN CTG and transaction id CSMI by userid ????????

The JES message log for the CICS job contains the message shown in Example 8-8.

Example 8-8 CICS JESMSGLG: No mapping

10.06.16 STC03863 ICH408I USER(STC) GROUP(TSO) NAME(STARTED TASK)
 646 DISTRIBUTED IDENTITY IS NOT DEFINED:
 646 uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
10.06.16 STC03863 IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND.

In addition, you might want to see the transaction log of the CICS Transaction Gateway. This
confirms the flowing of the distributed identity (Example 8-9).

Example 8-9 CICS TG TXNLOG: No mapping

01/27/11 10:06:16:416 CH51 -> Rqst(382) Flow(ExtendedModeEci) Pgm(EC01)
DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm) ClientIP(9.12.5.202)
commarea(20)bytes SocketData(183)bytes LuwToken(0)
01/27/11 10:06:16:420 CH51 <- Rqst(382) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm)
104 z/OS Identity Propagation

ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes Resp Time(4)ms
CICScall(2)ms ctg_rc(-27)
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C73E5934B46F2000) LuwToken(0)

The SMF records related to this contain the information given in Example 8-10.

Example 8-10 SMF output: No mapping

S M F R E C O R D L I S T I N G 19Jan11 11:43 to 19Jan11 18:02

Date Time Typ User Event Eq
19Jan2011 16:42:52 80 STC RACINIT 39
 uid=martina,ou=swg,o=ibm
 wtsc58.itso.ibm.com:389

This example is formatted using a zSecure Consul Auditing and Reporting Language
(CARLa) script. CARLa is the main reporting engine used within zSecure Admin, zSecure
Audit, zSecure Alert, zSecure Visual, and zSecure Manager for RACF z/VM. The event
qualifier (Eq) of 39 describes a logon violation due to no mapping.

If these messages appear, this is not an indication of a problem at this stage. The messages
are expected because, although the connection to CICS was established, the application
failed because the LDAP identity was not mapped to a RACF user ID. In the next step in 8.5,
“Configuring identity propagation on z/OS” on page 105, the propagation will be configured.

8.5 Configuring identity propagation on z/OS

This work might have already been performed by your z/OS systems programmer. However,
we found that the z/OS 1.11 installation documentation did not indicate that it is a required
action, so it may have been omitted.

1. Update the IKJTSOxx member of SYS1.PARMLIB to add the new RACMAP command to
the AUTHCMD section.

2. Update z/OS either by using the PARMLIB command or IPL.

Note: We did find the DFHIS1027 message to be confusing. It can be generated both for
“No distributed Identity provided” and also for “No mapping from RACF” situations. It also
suggests a RACF access failure using terminology security violation when, in fact, no
RACF access check has occurred. You are unable to distinguish between these two
situations from the message alone.

� With PTF UK63945 applied, the message does show a user ID of eight question marks
(that is, ????????). It has no identity available. Previously, CICS was reporting the
SECURITYNAME value from the IPCONN definition.

� In the “No mapping found from RACF” situation, you will see a ICH408I message in the
JES log indicating an unmapped distributed identity, and an SMF record for RACF
event 1, EventQualifier 39.
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 105

8.6 Configuring identity propagation on RACF

To configure identity propagation on RACF:

1. Activate IDIDMAP class.

2. Issue suitable RACMAP commands that will map a distributed identity to a RACF user ID.
See Chapter 4, “RACMAP function” on page 39, for details on RACMAP. See Chapter 5,
“Filter management” on page 49, for more details on establishing a mapping philosophy
regarding one-to-one” and many-to-one mappings.

In this example we use two mappings, one for ‘uid=martina,ou=swg,o=ibm’ and a generic
one for anyone else in ‘ou=swg, o=ibm’.

– ADDUSER SWGDE

– ADDUSER SWGRES

– RACMAP ID(SWGDE) USERDIDFILTER(name(‘uid=martina,ou=swg,o=ibm’))
REGISTRY(name('wtsc58.itso.ibm.com:389'))

– RACMAP ID(SWGRES) USERDIDFILTER(name(‘ou=swg,o=ibm’))
REGISTRY(name('wtsc58.itso.ibm.com:389'))

– SETROPTS RACLIST(IDIDMAP) REFRESH

3. For the purpose of this testing, we wanted to ensure that we would see the RACF audit
records in SMF, so we audited all uses of transaction CSMI.

– RALTER TCICSTRN CSMI AUDIT(ALL(READ))
– SETROPTS RACLIST(TCICSTRN) REFRESH

.

8.7 Testing the scenario

The following tests were performed:

� No distributed identity passed.

� Distributed identity passed, but no mapping exists for that identity.

� Mapping exists via a one-to-one mapping.

� Mapping exists via a many-to-one mapping.

� Testing of DPL call across an MRO link to a second CICS region showing a program using
CICS API INQUIRE ASSOCIATION.

Repeat testing after RACF mappings have changed. Each test consists of running a simple
DateTime WebSphere Application Server application that drives a DPL to a connected region
and that in turn drives a DPL link to a second CICS region.

Information from the JES log, CICS TG monitor log, CICS TD queue CSSL (//MSGUSR),
SMF reporting, and program reporting (also to CSSL) are shown below.

8.7.1 Results for No Distributed Identity Passed

This section shows the results of various logs when no distributed identity has been passed.

Warning: We do not expect you to audit all uses of CSMI in a production
environment. That could degrade system performance. Audit activity based on your
own requirements.
106 z/OS Identity Propagation

JES log
Nothing is recorded.

CICS TG/TXNLOG log (with CICS SupportPac CH51 applied)
Example 8-11 shows the results from the CICS TG TXNLOG show no DistID information.

Example 8-11 CICS TG TXNLOG: No distributed identity flowed from WebSphere Application Server
into CICS TG

01/27/11 09:49:19:119 CH51 -> Rqst(371) Flow(ExtendedModeEci) Pgm(EC01)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(131)bytes LuwToken(0)
01/27/11 09:49:19:142 CH51 <- Rqst(371) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes
RespTime(23)ms CICScall(0)ms ctg_rc(-27)
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C73E556A8DCA9E00) LuwToken(0)

CICS CSSL/MSGUSR log
The CICS CSSL MSGUSR log records a security violation when distributed identity is passed
(Example 8-12).

Example 8-12 CICS MSGUSR: No distributed identity flowed into CICS

DFHIS1027 01/27/2011 09:49:19 SC58CIC1 Security violation has been detected using
IPCONN CTG and transaction id CSMI by userid ????????

RACF auditing to SMF
Nothing is recorded.

8.7.2 Results for No mapping found

This section shows the results of various logs when no matching filter has been found for a
distributed identity in RACF.

JES log
The CICS JESMSGLG records the ICH408I message indicating that no matching filter has
been found for the distributed identity (Example 8-13).

Example 8-13 CICS JESMSGLG: CICS passed distributed identity to RACF, but no mappings existed

10.06.16 STC03863 ICH408I USER(STC) GROUP(TSO) NAME(STARTED TASK)
 646 DISTRIBUTED IDENTITY IS NOT DEFINED:
 646 uid=martina,ou=swg,o=ibm wtsc58.itso.ibm.com:389
10.06.16 STC03863 IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND.
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 107

CICS TG/TXNLOG log (with CICS SupportPac CH51 applied)
The CICS TG TXNLOG shows that a distributed identity has been passed, as indicated by the
DistID information (Example 8-14).

Example 8-14 CICS TG TXNLOG showing DistId flowing

01/27/11 10:06:16:416 CH51 -> Rqst(382) Flow(ExtendedModeEci) Pgm(EC01)
DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm) ClientIP(9.12.5.202)
commarea(20)bytes SocketData(183)bytes LuwToken(0)
01/27/11 10:06:16:420 CH51 <- Rqst(382) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) DistID(wtsc58.itso.ibm.com:389/uid=martina,ou=swg,o=ibm)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes RespTime(4)ms
CICScall(2)ms ctg_rc(-27)
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C73E5934B46F2000) LuwToken(0)

CICS CSSL/MSGUSR log
The CICS CSSL MSGUSR log records a security violation when no match is found in RACF
for a distributed identity (Example 8-15).

Example 8-15 CICS MSGUSR: Distributed identity flowed into CICS, but RACF had no mapping

DFHIS1027 01/27/2011 10:06:16 SC58CIC1 Security violation has been detected using
IPCONN CTG and transaction id CSMI by userid ????????

RACF auditing to SMF
The SMF record shows a RACINIT event for the attempted mapping of the distributed identity
(Example 8-16).

Example 8-16 SMF report of no mapping, RACF Event 1, Qualifier 39, showing distributed identity

S M F R E C O R D L I S T I N G 27Jan11 09:30:43 to 27Jan11 11:32

Date Time Typ User Event Eq
27Jan2011 10:06:16 80 STC RACINIT 39
 uid=martina,ou=swg,o=ibm
 wtsc58.itso.ibm.com:389

8.7.3 Results for one-to-one mapping

This test shows that a one-to-one mapping occurs and that the SMF audit trail shows the
distributed identity.

The mapping that was in effect at this time was
USERDIDFILTER(name(‘UID=MARTINA,OU=SWG,O=IBM’)), which mapped to user
ID SWGDE.

JES log
Nothing is recorded.
108 z/OS Identity Propagation

CICS TG/TXNLOG log (with CICS SupportPac CH51 applied)
The CICS TG TXNLOG shows that a distributed identity has been passed, as indicated by the
DistID information (Example 8-17).

Example 8-17 Sample CICS TG log for one-to-one mapping

02/01/11 12:25:04:208 CH51 -> Rqst(508) Flow(ExtendedModeEci) Pgm(EC01)
DistID(wtsc58.itso.ibm.com:389/UID=MARTINA,OU=SWG,O=IBM) ClientIP(9.12.5.202)
commarea(20)bytes SocketData(183)bytes LuwToken(0)

02/01/11 12:25:04:875 CH51 <- Rqst(508) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) DistID(wtsc58.itso.ibm.com:389/UID=MARTINA,OU=SWG,O=IBM)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes RespTime(667)ms
CICScall(637)ms TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C744C18E09DBC400)
LuwToken(81)

02/01/11 12:25:04:877 CH51 -> Rqst(509) Flow(ExtendedModeCommit)
ClientIP(9.12.5.202) SocketData(123)bytes LuwToken(81)

02/01/11 12:25:04:879 CH51 <- Rqst(509) Flow(ExtendedModeCommit) Srv(null/ITSOLAB)
ClientIP(9.12.5.202) SocketData(58)bytes RespTime(2)ms CICScall(1)ms
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C744C18E09DBC400)

CICS CSSL/MSGUSR log
Nothing is recorded.

RACF auditing to SMF
When a distributed identity has been successfully mapped to a RACF user ID, the SMF
records will contain both the RACF user ID and the distributed identity for resource access
(Example 8-18).

Example 8-18 Sample SMF report showing audited access from both regions

S M F R E C O R D L I S T I N G 1Feb11 11:18 to 1Feb11 12:58

Date Time Jobname UserId Event Eq Class Intent Resource

01Feb2011 12:25:04 SC58CIC1 SWGDE ACCESS 0 TCICSTRN READ CSMI
 UID=MARTINA,OU=SWG,O=IBM
 wtsc58.itso.ibm.com:389

8.7.4 Results for many-to-one mapping

This test shows that when RACF does not find a one-to-one mapping, it strips off the leading
RDN, and then searches again.

The mapping that was in effect at this time was
USERDIDFILTER(name(‘OU=SWG,O=IBM’)), which mapped to user ID SWGRES. The key
difference between this test and the previous test is that even with the identical DN and realm
coming in, we set up the mapping filters in RACF to map to a different user ID. User ID
SWGRES is mapped via a many-to-one filter consisting of just the OU and O RDNs.

JES log
Nothing is recorded.
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 109

CICS TG/TXNLOG log (with CICS SupportPac CH51 applied)
The CICS TG TXNLOG shows that a distributed identity has been passed, as indicated by the
DistID information (Example 8-19).

Example 8-19 CICS TG TXNLOG showing DistId flowing

01/19/11 17:32:20:916 CH51 -> Rqst(74) Flow(ExtendedModeEci) Pgm(EC01)
DistID(wtsc58.itso.ibm.com:389/UID=MARTINA,OU=SWG,O=IBM) ClientIP(9.12.5.202)
commarea(20)bytes SocketData(183)bytes LuwToken(0)
01/19/11 17:32:20:987 CH51 <- Rqst(74) Flow(ExtendedModeEci) Srv(null/ITSOLAB)
Pgm(EC01) DistID(wtsc58.itso.ibm.com:389/UID=MARTINA,OU=SWG,O=IBM)
ClientIP(9.12.5.202) commarea(20)bytes SocketData(83)bytes RespTime(71)ms
CICScall(44)ms TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C734ADFDA84B2700)
LuwToken(17)
01/19/11 17:32:20:992 CH51 -> Rqst(75) Flow(ExtendedModeCommit)
ClientIP(9.12.5.202) SocketData(123)bytes LuwToken(17)
01/19/11 17:32:20:995 CH51 <- Rqst(75) Flow(ExtendedModeCommit) Srv(null/ITSOLAB)
ClientIP(9.12.5.202) SocketData(58)bytes RespTime(3)ms CICScall(1)ms
TrnGrpId(180ED4E8D5C5E3C9C42ED4E8C1D7D7D3C734ADFDA84B2700) LuwToken(17)

CICS CSSL/MSGUSR log
The CICS CSSL MSGUSR log indicates session activity (Example 8-20).

Example 8-20 CICS log showing session establishment

DFHIS2001 01/19/2011 17:32:20 SC58CIC1 Client web session 1 from applid MYAPPL
accepted for IPCONN CTGIDPRO.
DFHIS2001 01/19/2011 17:32:20 SC58CIC1 Client web session 2 from applid MYAPPL
accepted for IPCONN CTGIDPRO

RACF auditing to SMF
We had AUDIT(ALL(READ)) for transaction CSMI to force auditing for this SMF report
(Example 8-21).

Example 8-21 SMF output: Resource access audited after successful mapping

S M F R E C O R D L I S T I N G 19Jan11 11:43 to 19Jan11 18:02

Date Time Typ User Event Eq Class Intent Resource
19Jan2011 17:32:20 80 SWGRES ACCESS 0 TCICSTRN READ CSMI
 UID=MARTINA,OU=SWG,O=IBM
 wtsc58.itso.ibm.com:389

8.7.5 Results of DPL to second CICS showing INQUIRE ASSOCIATION

For this test we adjusted WebSphere Application Server to drive program EC03. EC03 was
functionally similar to EC01, and had additional code added to retrieve the DN and realm and
print these in the MSGUSR log via CSSL. It also drove a link to program EC04 in another
CICS region to demonstrate that the distributed identity is propagated between CICS regions,
and similarly retrieve the DN and realm and print it.

In this case we used a lowercase signon to LDAP and a lowercase mapping in RACF.
110 z/OS Identity Propagation

Snippets of COBOL program to retrieve distributed identity
CICS applications can determine the RACF user ID running a transaction by using EXEC
CICS ASSIGN USERID(WS-FIELD). With identity propagation, an application can now
retrieve the DN and realm via the CICS API call EXEC CICS INQUIRE ASSOCIATION
(Example 8-22).

Example 8-22 Sample COBOL code to retrieve user ID and distributed identity

05 WS-TASK-NBR PIC S9(7) COMP-3.
05 WS-USERID PIC X(8) VALUE SPACES.
05 WS-DISTID PIC X(246) VALUE SPACES.
05 WS-DISTREG PIC X(252) VALUE SPACES.

EXEC CICS ASSIGN USERID(WS-USERID) END-EXEC.
MOVE EIBTASKN TO WS-TASK-NBR.
EXEC CICS INQUIRE ASSOCIATION(WS-TASK-NBR)
 DNAME(WS-DISTID)
 REALM(WS-DISTREG)
END-EXEC

These fields are returned to you in UTF-8 format, so you might want to translate to EBCDIC.
We chose to use a CICS container to perform such translation. You might prefer to use
alternative methods. We wrote those working storage fields to TD queue CSSL to show in
Example 8-23.

Example 8-23 Sample COBOL code to translate UTF8 to EBCDIC

05 EBCDIC PIC S9(8) BINARY VALUE +37.
05 UTF8 PIC S9(8) BINARY VALUE +1208.
05 WS-LEN246 PIC S9(7) BINARY VALUE +246.
05 WS-DISTID PIC X(246) VALUE SPACES.

EXEC CICS PUT CONTAINER('TEMP') CHANNEL('TEMP')
 FROM(WS-DISTID) FLENGTH(WS-LEN246)
 DATATYPE(DFHVALUE(CHAR)) FROMCCSID(UTF8)
END-EXEC
EXEC CICS GET CONTAINER('TEMP') CHANNEL('TEMP')
 INTO(WS-DISTID) FLENGTH(WS-LEN246)
 INTOCCSID(EBCDIC)
END-EXEC

With this information now available within the CICS application, it can be used for business
purposes within that application, such as an internal audit trail, or to drive business logic
(Example 8-24).

Example 8-24 Sample display of translated DNAME and REALM from CICS application

01/02/11 12:53:34 Program EC03 invoked by userid SWGDE
01/02/11 12:53:34 Remote Identity: uid=martina,ou=swg,o=ibm
01/02/11 12:53:34 Remote Registry: wtsc58.itso.ibm.com:389

Note: Programs EC03 and EC04 mentioned here are not the CICS samples but our own
programs modeled after EC01.
Chapter 8. Identity propagation with CICS and CICS Transaction Gateway 111

01/02/11 12:53:34 Linking to EC04, CommArea=
01/02/11 12:53:34 Resp: Normal , CommArea=01/02/11 12:53:34 SC58CIC2

To confirm that the distributed identity is propagated to connected CICS regions, we
performed a DPL call to program EC04, which repeated the API calls to retrieve the user ID
and DN (Example 8-25).

Example 8-25 Sample display of translated DNAME & REALM from connected CICS region

01/02/11 12:53:34 SC58CIC2 Program EC04 invoked by userid SWGDE
01/02/11 12:53:34 SC58CIC2 Remote Identity: uid=martina,ou=swg,o=ibm
01/02/11 12:53:34 SC58CIC2 Remote Registry: wtsc58.itso.ibm.com:389

SMF report showing distributed identity available from both regions
Example 8-26 shows that the distributed identity is logged in the audit trail from both regions.

Example 8-26 Sample SMF report showing audited access from both regions

S M F R E C O R D L I S T I N G 1Feb11 11:18 to 1Feb11 12:58

Date Time Jobname UserId Event Eq Class Intent Resource

01Feb2011 12:53:34 SC58CIC1 SWGDE ACCESS 0 TCICSTRN READ CSMI
 uid=martina,ou=swg,o=ibm
 wtsc58.itso.ibm.com:389
01Feb2011 12:53:34 SC58CIC2 SWGDE ACCESS 0 TCICSTRN READ CSMI
 uid=martina,ou=swg,o=ibm
 wtsc58.itso.ibm.com:389

8.7.6 Results after RACF mappings have changed

What happens to the cached identity data if RACF mappings change? In our testing of the
CICS TG configuration, we observed that new RACMAP rules only took effect after the
interval specified in the CICS USRDELAY SIT option had expired.

After the USRDELAY interval had expired, we observed a RACROUTE VERIFY DELETE
and a subsequent inbound request from the CICS TG caused a new RACROUTE VERIFY
CREATE that used the new mappings. The reason for this behavior is that RACF does not
invoke the ENF mechanism when mappings are changed, and so CICS uses the USRDELAY
interval to control the amount of time used to store RACF mappings within a CICS region.
See 2.3, “Impact on distributed identity data cached in RACF by z/OS subsystems” on
page 16, for a discussion of the ENF mechanism.

Note: identity propagation will work on either an MRO connection or an IPCONN
connection. It will not work on an APPC connection. Our testing used an IPCONN from
CICS TG to CICS, and MRO from CICS to CICS.
112 z/OS Identity Propagation

Chapter 9. Identity propagation with DB2 for
z/OS

This chapter demonstrates how a distributed identity is passed to DB2 for z/OS using
JDBC/DB2 Connect™. We produce audit reports to show details of the distributed user.

The supported configurations are:

� DB2 10 for z/OS
� z/OS Version 1 Release 11
� DB2 Connect V9.7

This example does not configure an LDAP registry. Instead, the distinguished name (DN) and
registry name are coded in the program. The expectation is the JAVA developers would
interrogate the LDAP server, and not code the distributed identity in the program.

9

© Copyright IBM Corp. 2011. All rights reserved. 113

9.1 JAVA application test scenario

A sample JAVA application running on Windows accesses DB2 for z/OS using a distributed
identity, which is normally found in a LDAP directory, but in this example is coded in the
sample JAVA application. The main purpose for this test is to show the distributed identity
association with the DB2 thread.

Figure 9-1 shows the steps taken by the application, such as connecting to DB2 for z/OS and
ultimately executing SQL.

Figure 9-1 Sample JAVA app accessing DB2 for z/OS on a trusted connection

Figure 9-1 displays the process flow, starting with establishing the connection from the JAVA
application running on Windows, then having RACF verify the user ID. Using the method
getTrustedPooledConnection, DB2 establishes the trusted connection based on the system
authid and IP address. Using the getDB2Connect method, the distributed user ID and registry
name is passed to DB2. Because this link is trusted, DB2 accepts the distributed identity and
tells RACF to search for the RACMAP to match the distributed user. Once verified, RACF
passes back user ID SIMOND to DB2. SIMOND inherits the access from the DB2 role and is
able to access the table.

ROGERIO is used to establish the connection only, and might not necessarily have
access to any DB2 objects. It needs access to the DIST profile (for remote connectivity) if
defined. ROGERIO can be known as the network ID. Its main function is to enable the
trusted connection.

z/OS

Identity Propagation in DB2 10 for z/OS – Test scenario

T
R
U
S
T
E
D

(1) Initiate connection to DB2
Using getTrustedPooledConnection
and User ROGERIO

T
R
U
S
T
E
D

DB2 RACF

Sample JAVA App

(2) Verify user ROGERIO
with RACF

(3) ROGERIO verified

(4) Establish trusted
connection based on
System authid and IP
address(5) Switch user ID

using the distributed ID
‘JoesData’ and registry,
using getDB2Connect
method

(6) Recognizes this is a
distributed identity based on
the registry supplied (7) Using RACMAP

definition, map the
distributed identity
‘JoesData’ to user ID
SIMOND

(10) Select count(*) from
dsn81010.emp ;

SIMOND

SIMOND

(8) Match SIMOND to
authorization ID in the trusted
context.

(9) SIMOND inherits
authorization from role
EMPREAD.

Result

ROGERIO

(11) Executes SQL under
SIMOND authid, sends
back the result
114 z/OS Identity Propagation

With the RACF RACMAP definition, the distributed identity is mapped to an authorized user
ID, in this example, SIMOND, which can be known as a system or application user ID.

Using trusted context on a distributed thread tells DB2 to trust this link and allow the
distributed user to access DB2. After DB2 receives the incoming request on a trusted
connection, it passes control to RACF to verify that the mapping exists in the IDIDMAP class.

EMPREAD, the DB2 role, might not be required. If so, SIMOND needs to have the explicit
authority to DB2 objects. In this example, SIMOND does not have access to table EMP. But,
because of the association to DB2 role, EMPREAD, it is able to access table EMP.

This clearly shows you how a distributed identity, which is unknown to the database server, is
able to make a connection. In most systems today, the distributed user is unknown to z/OS,
where all threads access DB2 via a common application ID. Although this is still the case
within a trusted context, we are now able to associate a distributed user ID and the DB2 for
z/OS threads. What is most significant is that the mapping occurs in RACF, and therefore the
association is managed within a secure environment.

We show the steps taken to map the distributed identity to RACF and to verify the results
in an audit report. The following steps were performed to achieve identity propagation in
this example:

1. RACFMAP - required for RACF mapping.
2. Create the DB2 trusted context.
3. Create the DB2 role (optional).
4. Enable RACF/DB2 exit (optional).
5. Execute the application, display thread output, and produce audit reports.

9.2 RACMAP command

Before issuing the RACMAP command, ensure that you have RACF class IDIDMAP
activated. In Figure 9-2, distributed user ‘JoesData’, known only to the distributed world, is
mapped to RACF user ID, SIMOND.

Figure 9-2 RACMAP command

The RACMAP command can be used to map many distributed users to a single z/OS user ID.

The registry name, in this example, is set up as wildcard to allow any registry to connect. The
actual registry name is not verified, but it is used for mapping the distributed identity within
RACF. However, the distributed application must send the registry name, wildcard or not, or

Note: Refer to Section 10.6.1, “Identity propagation,” of the IBM Redbooks publication
DB2 10 for z/OS Technical Overview, SG24-7892, which displays the coding of the sample
application.

Note: At the time of writing, the length of the user ID in DB2 was limited to 8-character
bytes. However, this restriction has been lifted by APAR PM31429. Because the
distributed identity is not a defined RACF user ID, DB2 will not impose any length
restrictions on the user ID (which might contain a distinguished name in the x.500 format).

RACMAP ID(SIMOND) MAP USERDIDFILTER(NAME(‘JoesData’)) REGISTRY(NAME(‘*’))
Chapter 9. Identity propagation with DB2 for z/OS 115

else DB2 will not recognize the distributed identity, and pass the user information to RACF as
a normal user ID, and in this case would cause an abend.

9.3 Creating DB2 trusted context

In Figure 9-3 we create the trusted context CTXIDID, with ROGERIO being the system authid,
and also supply the connection attribute, IP address, that is the client’s IP address in this
example. The combination of system authid and IP address enables the trusted connection in
DB2.

Figure 9-3 Create trusted context command

SIMOND is the authorization ID to which the distributed identity gets mapped.
SIMOND might not be known to the remote system and can be controlled by the DB2
and RACF administrators.

9.4 Creating the DB2 role

In this example, DB2 roles are used to test how it can be associated in a trusted context. We
mention that this is optional because SIMOND can have access to required DB2 objects. In
our test scenario, SIMOND does not have authority in DB2. Example 9-1 shows the
commands issued to create the ROLE and grant access to the ROLE.

Example 9-1 Create role

CREATE ROLE EMPREAD;
GRANT SELECT ON TABLE DSN81010.EMP TO ROLE EMPREAD ;

9.5 RACF/DB2 exit (optional)

In our example, we show usage with and without the RACF/DB2 exit, RACF/DB2 exit, and
DB2 roles.

Roles in RACF
If you are not using the RACF/DB2 exit, RACF would not have any reference to the role
ID. DB2 would associate the role in the trusted context, and there is no need for RACF to
be involved.

Using RACF/DB2 exit, the authority to DB2 objects is verified in RACF. Therefore, the role
must be associated in RACF, and therefore must exist in RACF.

CREATE TRUSTED CONTEXT CTXIDID
BASED UPON CONNECTION USING SYSTEM AUTHID ROGERIO
ATTRIBUTES (ADDRESS(‘9.12.5.148’)
DEFAULT FOLE DEFREAD
WITHOUT ROLE AS OBJECT OWNER
ENABLE
WITH USE FOR SIMOND ROLE EMPREAD ;
116 z/OS Identity Propagation

The association of the role to a DB2 object resource profile is done using the RACF PERMIT.
Example 9-2 displays the command used.

Example 9-2 DB2 roles association in RACF

RDEFINE MDSNTB DB0D.DSN81010.EMP.SELECT UACC(NONE)
PERMIT DB0D.DSN81010.EMP CLASS(MDSNTB) ID(SIMOND) ACCESS(READ)
 WHEN(CRITERIA(SQLROLE(EMPREAD)))

In Example 9-2, SIMOND is permitted READ access to the profile only when SIMOND has
been associated with role EMPREAD. If SIMOND is not working through a trusted context
that has this role associated, SIMOND gets a -551, access denied.

9.6 Executing the sample Java application

The sample Java application performs a connection to DB2 for z/OS, establishes a trusted
connection, and returns to the application when prompting the user to press the Enter key
before the application continues. When you press Enter to continue, the application switches
the user ID to the distributed identity, accesses DB2, and returns the result.

Example 9-3 is an example of the first section of the application.

Example 9-3 Initial connect to DB2 to establish trusted connection

String user = new String("ROGERIO");
String password = new String("rogerpsw");
com.ibm.db2.jcc.DB2ConnectionPoolDataSource ds1 =
new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();
ds1.setServerName("wtsc58.itso.ibm.com");
ds1.setPortNumber(38390);
ds1.setDatabaseName("DB0D");
ds1.setDriverType (4);
java.util.Properties properties = new java.util.Properties();
try
{objects = ds1.getDB2TrustedPooledConnection(
user,password, properties);}
catch(Exception ex)
Chapter 9. Identity propagation with DB2 for z/OS 117

In Example 9-3 on page 117, the program performs a connect using
getDB2TrustedPooledConnection, and DB2 verifies the user and password in RACF, then
based on the trusted context definition, returns with a trusted connection. Figure 9-4 is the
output from the DISPLAY THREAD command. It shows that ROGERIO is the authid, using
trusted context CTXIDID. Further down in the report, notice the IP address, which was used
in the connection attribute in the trusted context definition. This confirms that a trusted context
has been selected, and therefore this thread is a trusted connection.

Figure 9-4 DISPLAY THREAD - First section

DEFREAD is the default DB2 role, set up from the CREATE TRUSTED command. Refer to
9.3, “Creating DB2 trusted context” on page 116. DEFREAD can have little or no DB2
authorization, depending on rules set up within each organization.

The second part in the application switches the user ID after we press Enter. Figure 9-5 is the
code to perform this switch.

In Figure 9-5, which is the second part of the application, we switch the user IDs by
populating user1 with the distributed identity ‘JoesData’ and registry with ‘Registry01’.

Figure 9-5 Switch of user ID in a trusted connection

By using the getDB2Connect method we attempt the logon to DB2 for z/OS. DB2 would pass
on the distributed identity to RACF to get mapped. Once mapped, the user ID is switched in
DB2 to the mapped user ID, SIMOND.

DSNV401I -DB0D DISPLAY THREAD REPORT FOLLOWS -
DSNV424I -DB0D INACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER R2 0 db2jcc_appli ROGERIO DISTSERV 0076 235
V485-TRUSTED CONTEXT=CTXIDID,
 SYSTEM AUTHID=ROGERIO,
 ROLE=DEFREAD
 V437-WORKSTATION=thumbiran, user ID=rogerio,
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC04070thumbiran
 V445-G90C0594.GBC0.C7450E61D3FC=227 ACCESSING DATA FOR
 (1)::9.12.5.148
 V447--INDEX SESSID A ST TIME
 V448--(1) 38390:3008 W R2 1103218084741
DISPLAY INACTIVE REPORT COMPLETE
DSN9022I -DB0D DSNVDT '-DIS THREAD' NORMAL COMPLETION

String user1 = new String("JoesData");
String user1_pwd = new String(" ");
String registry = new String("Registry01");
String countr = new String(" ");
try{
con = pooledCon.getDB2Connection(
cookie,user1, user1_pwd, registry,
userSecTkn, originalUser, properties);
stmt = con.createStatement();
ResultSet rs1 = stmt.execute("select count(*) from dsn81010.emp;");}
// retrieve and display
118 z/OS Identity Propagation

Figure 9-6 shows a display thread after we execute the second part of the application.

Figure 9-6 Display thread displays switch user ID

In Figure 9-6 the AUTHID is now changed from ROGERIO to SIMOND, which was mapped in
RACF. Notice that the trusted context is still used, with system authid ROGERIO, trusted
context CTXIDID, and the role has changed to EMPREAD.

The application completes successfully, and this clearly displays the user ID having changed
to SIMOND. We would reaffirm this later in the audit report.

Audit trace
The audit trace is done using RACF and DB2 for z/OS SMF data. This audit trail will show the
distributed identity, through DB2 for z/OS, being recorded under RACF SMF, and also DB2
SMF data. In our example, we use IBM Security zSecure and IBM Omegamon for DB2.

9.7 RACF audit trace

In this section we list zSecure reports on RACF SMF Type 80 records using Consul Auditing
and Reporting Language (CARLa) scripts to show an audit trail.

DSNV401I -DB0D DISPLAY THREAD REPORT FOLLOWS -
DSNV424I -DB0D INACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
SERVER R2 0 db2jcc_appli SIMOND DISTSERV 0076 235
V485-TRUSTED CONTEXT=CTXIDID,
 SYSTEM AUTHID=ROGERIO,
 ROLE=EMPREAD
 V437-WORKSTATION=thumbiran, user ID=rogerio,
 APPLICATION NAME=db2jcc_application
 V441-ACCOUNTING=JCC04070thumbiran
 V445-G90C0594.GBC2.C74511EBA293=235 ACCESSING DATA FOR
 (1)::9.12.5.148
 V447--INDEX SESSID A ST TIME
 V448--(1) 38390:3010 W R2 1103218260975
DISPLAY INACTIVE REPORT COMPLETE
DSN9022I -DB0D DSNVDT '-DIS THREAD' NORMAL COMPLETION
Chapter 9. Identity propagation with DB2 for z/OS 119

Figure 9-7 is an JCL example for a job that executes a CARLa script (contained in the SYSIN
DD statement). Filters are set for class, event, and jobname.

Figure 9-7 zSecure CARLa script

Figure 9-8 shows a report generated from the zSecure script.

Figure 9-8 zSecure report

There are four records displayed in this report to indicate that distributed identity was used.
The first record shows ROGERIO accessing DB2 through RACF Class DSNR and read
access to profile DB0D.DIST. At this point, the trusted connection has been established.

The second record is a RACINIT. The user ID SIMOND, which is the new AUTHID, and the
distributed identity JoesData are displayed, with the distributed identity being associated
with SIMOND.

The third record shows SIMOND having read access to the DB0D.DIST profile. Again, you
can see JoesData attached to SIMOND.

//REPORT EXEC PGM=CKRCARLA
//STEPLIB DD DISP=SHR,DSN=CKR.SCKRLOAD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 suppress msg=1400
 suppress racf ioconfig

 alloc smf

 newlist type=smf
 select event=allcmds class=(dsnr,dsnadm,mdsntb)
 select event=(racmap,setropts)
 select class=(dsnr,dsnadm,mdsntb) event=access
 select jobname=db0d*
 sortlist date(9) time(8) type user ID,
 event eventqual class intent resource,
 / " "(22) auth_user_name, /* 424 */
 / " "(22) auth_user_regname /* 425 */
//*

Typ User Event Eq Class Intent Resource

80 ROGERIO ACCESS 0 DSNR READ DB0D.DIST

80 SIMOND RACINIT 12 USER SIMOND
 JoesData

80 SIMOND ACCESS 0 DSNR READ DB0D.DIST
 JoesData

80 SIMOND ACCESS 0 MDSNTB READ DB0D.DSN81010.EMP
 JoesData
120 z/OS Identity Propagation

The fourth record shows SIMOND getting access to the table resource profile in RACF. This
would only be displayed when the RACF/DB2 exit is used, and also if the dynamic statement
cache does not have this statement cached. Once again, you see the distributed identity,
JoesData, attached to SIMOND.

Remember that with the RACF/DB2 exit, the SIMOND is also associated with SQLROLE
EMPREAD, which allows him to get access to the table profile (Example 9-2 on page 117).

9.8 DB2 Audit trail

Using Omegamon for DB2 and AUDIT POLICY, we display the events that occur in
DB2, relating to the distributed identity. Figure 9-9 shows the AUDIT policy created for
this example.

Figure 9-9 DB2 Audit policy

Figure 9-10 shows the output from the Omegamon report.

Figure 9-10 Establish trusted context

In Figure 9-10, we executed the application to establish the trusted connection. The context
name is CTXIDID and Sysauthid is ROGERIO.

INSERT INTO SYSIBM.SYSAUDITPOLICIES
 (AUDITPOLICYNAME,OBJECTSCHEMA,OBJECTNAME,OBJECTTYPE,VALIDATE)
 VALUES('VALIDTE','DSN81010','EMP','T','A') ;

-START TRACE(AUDIT) AUDTPLCY(VALIDTE) DEST(SMF)

ROGERIO db2jcc_a DRDA 16:38:54.35 AUTHCHG TYPE: ESTABLISH TRUSTED CONTEXT
ROGERIO ppli C7473AF762CE OBJECT OWNER: AUTHID
DISTSERV SERVER SECURITY LABEL:
REQLOC :::9.12.5.148 CONTEXT NAME: CTXIDID
ENDUSER :rogerio CONTEXT ROLE: DEFREAD
WSNAME :thumbiran USER ROLE:
TRANSACT:db2jcc_application PREV. SYSAUTHID: ROGERIO
 REUSE AUTHID:
 SERVAUTH NAME:
 JOB NAME:
 ENCRYPTION: NONE
 TCP/IP USED:9.12.5.148
Chapter 9. Identity propagation with DB2 for z/OS 121

In Figure 9-11, the audit trail shows the distributed identity as derived local UID, JoesData.
This is the first account of the distributed identity, which was propagated over the thread
initiated by user ROGERIO.

Figure 9-11 Distributed identity

In Figure 9-12, DB2 issues an end of identity event, because new sqlid SIMOND has been
assigned to this thread. Notice that distributed identity JoesData is associated with SIMOND.

Figure 9-12 End of identity event

In Figure 9-13, DB2 reuses the thread after the application executes the SQL statement. The
user role is EMPREAD and the reuse authid is SIMOND.

Figure 9-13 Reuse trusted context

ROGERIO db2jcc_a DRDA 16:38:56.58 AUTHCHG TYPE: N/P
ROGERIO ppli C7473AF762CE IP ADDR: 90C0594
DISTSERV SERVER DERIVED LOCAL UID: JoesData
REQLOC :::9.12.5.148
ENDUSER :rogerio
WSNAME :thumbiran
TRANSACT:db2jcc_application

SIMOND db2jcc_a DRDA 16:38:56.58 AUTHCHG TYPE: END OF IDENTIFY
JoesData ppli C7473AF762CE PREVIOUS AUTHID: JoesData
DISTSERV SERVER SECONDARY AUTHID: SYS1
REQLOC :::9.12.5.148 STATUS: SUCCESS
ENDUSER :rogerio CURRENT SQLID: SIMOND
WSNAME :thumbiran
TRANSACT:db2jcc_application

SIMOND db2jcc_a DRDA 16:38:56.58 AUTHCHG TYPE: REUSE TRUSTED CONTEXT
IBMUSER ppli C7473AF762CE OBJECT OWNER: AUTHID
DISTSERV SERVER SECURITY LABEL:
REQLOC :::9.12.5.148 CONTEXT NAME: CTXIDID
ENDUSER :rogerio CONTEXT ROLE: DEFREAD
WSNAME :thumbiran USER ROLE: EMPREAD
TRANSACT:db2jcc_application PREV. SYSAUTHID:ROGERIO
 REUSE AUTHID: SIMOND
 SERVAUTH NAME:
 JOB NAME:
 ENCRYPTION:
 TCP/IP USED:
122 z/OS Identity Propagation

Chapter 10. Identity propagation using CICS
Web services

This chapter describes a scenario for identity propagation using CICS Web services and
WebSphere DataPower.

10
© Copyright IBM Corp. 2011. All rights reserved. 123

10.1 Scenario overview

This chapter describes a scenario involving a web service call between two companies. The
service provider application is a CICS core banking application. The service requester is an
application running on a system of one of the bank’s business partners. The trusted partner is
authorized to access services such as the posting inquiry service, which returns the most
recent account transactions for a banking customer, and the account transfer service, which
transfers money from one account to another.

An employee of the business partner makes a web service call that is authenticated by
WebSphere DataPower. After successful authentication, WebSphere DataPower propagates
the user’s distributed identity (in the form of a DN) to the CICS core banking application. The
bank has a requirement to authorize requests based on a generic RACF user ID that
represents the business partner, but also to keep an audit trail of which business partner
employee invoked the service.

Figure 10-1 shows an overview of the CICS Web services identity propagation scenario.

Figure 10-1 CICS Web services identity propagation scenario

The sequence of steps is:

1. A partner employee Bob uses a partner client application that sends a web service
request to the bank.

2. The service requester application generates a BinarySecurityToken element from Bob’s
X.509 certificate, signs the message with Bob’s private key, and sends the request to the
target endpoint, which is configured to be the DataPower appliance.

3. DataPower verifies the XML digital signature.

Note: XML-Signature Syntax and Processing (XML digital signature) is a specification
that defines XML syntax and processing rules to sign and verify digital signatures for
digital content. The specification was developed jointly by the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force (IETF).

Web services

requester

JAX-WS
Web

Services

Partner Client
Application

CICS

RACF

z/OS
Security
registry
Security
registry

WebSphere
DataPower XI50

SO
AP

/HTTP

SOAP/H
TTP

S

Bank

Bob

CN=Bob Clark, OU=Retail,
O=IBMPartner1, C=UK

RACMAP ID(PARTNER1) MAP
USERDIDFILTER(NAME(O=IBMPartner1,C=UK'))

REGISTRY(NAME(‘*’)) WITHLABEL(‘Partner1')

RACF
User ID

PARTNER1

 RACF Userid
 Distributed

Identity

Audit Record

CN=Bob Clark, OU=Retail, O=IBMPartner1, C=UK

ICRX
124 z/OS Identity Propagation

4. DataPower extracts the identity of the service requester (CN=Bob Clark, OU=Retail,
O=IBMPartner1, C=UK) using the certificate passed as part of the <X509/> element of the
digitally signed message.

5. DataPower authenticates the user by validating the signer certificate of the digitally
signed message.

6. DataPower propagates Bob’s identity (Bob’s DN) to CICS in the form of an ICRX over a
trusted SSL connection.

7. CICS receives the SOAP message from DataPower. The PIPELINE configuration file
includes the CICS-supplied WS-Security handler program, which locates the ICRX in the
WS-Security header and uses the ICRX to identify the user.

8. CICS issues a RACROUTE REQUEST=VERIFY to map the ICRX into the RACF user
ID PARTNER1.

9. The CICS task runs under the mapped RACF user ID (PARTNER1) but retains the
association with the original distributed identity (CN=Bob Clark, OU=Retail,
O=IBMPartner1, C=UK).

Note: We do not provide information about configuring SSL in this chapter. For detailed
information about configuring SSL with CICS, refer to the IBM Redbooks publication
Securing CICS Web Services, SG24-7658.
Chapter 10. Identity propagation using CICS Web services 125

10.2 Architectural overview

Figure 10-2 shows the topology used to test this scenario.

Figure 10-2 CICS Web services topology used in this scenario

The general flow of events is:

1. The Generic Service Client of Rational Developer for System z (RDz) is used to simulate
the partner service requester that makes a web service call to the account transfer
service. RDz is configured to access a keystore that contains the X.509 certificate, which
is used to sign the SOAP message that is sent to WebSphere DataPower.

2. After authenticating the service requester and extracting the user’s identity, DataPower
forwards the request to CICS with the distributed identity contained in an ICRX that is
transported as part of the WS-Security header in the SOAP message.

3. The CICS Terminal Owning Region (TOR) processes the SOAP message, extracts the
ICRX token from the WS-Security header, and calls RACF to map the distributed identity
to a RACF user ID.

4. The CICS Web service wrapper program (CWPEPM01) runs in the TOR under the
mapped RACF user ID.

5. Program CWPEPM01 links to the business logic program that runs in the CICS
Application Owning Region (AOR). Business logic programs in the AOR also run under
the mapped RACF user ID.

6. The original distributed identity (DN and realm) can be audited in both the TOR and AOR,
and is also available as part of the CICS task association data when using the CICS
Explorer™ to monitor running tasks.

z/OS

Keystore Client certificate
containing
Distributed

Identity

CICS AOR

SOAP/HTTPS MRO

SMF
RACF ID
DN & Realm

RACF Distributed
ID mapped
to RACF ID

Generic
Service
Client

Rational
Developer
For
System z

Windows

WebSphere
DataPower

CICS TOR

SOAP/HTTP
(Signed)

CWPEPM01 Business
Logic

Program
126 z/OS Identity Propagation

10.3 Preparation

This section contains reference information about product versions and configuration values
used in the CICS Web services scenario.

10.3.1 Software versions

Table 10-1 lists the software versions used in this scenario.

Table 10-1 Software and firmware used in the CICS Web services scenario

10.3.2 IP addresses and ports

Table 10-2 lists the IP addresses and ports used in this scenario.

Table 10-2 IP addresses and ports used in the CICS Web services scenario

10.3.3 CICS resource definition checklist

Table 10-3 lists the CICS TOR definitions used in this scenario.

Table 10-3 CICS TOR resource definitions used in the CICS Web services scenarios

Windows DataPower z/OS

Rational Developer for System z V7.6.2.1 Firmware version
XI50.3.8.0.3 /
Build:182012

z/OS V1.12 with RACF
APAR OA34258 and SAF
APAR OA34259

Windows Server 2003 Enterprise Edition SP2 CICS Transaction Server
V4.1with identity
propagation enabling
APARs PK83741,
PK95579, PM01622, and
PK98426.

Value CICS TS DataPower

IP address 9.212.128.20 9.212.130.128

TCP/IP port 61001 9080

Resource Value

APPLID CICSRT10

TCPIPSERVICE SSLWEBS

PIPELINE PIPFIS

WEBSERVICE TranExt

URIMAP UR9ZTE

Pipeline configuration file SOAP12provider.xml
Chapter 10. Identity propagation using CICS Web services 127

10.3.4 User IDs

Table 10-4 lists the user IDs that we used in our configuration.

Table 10-4 User IDs used in DataPower scenario

10.3.5 Keystore and certificates

Each distributed user ID has an X.509 certificate that is stored in a Java keystore called
SmarterBankingShowcaseKeystore.jks. Example 10-1 shows a listing of the certificate that is
used for signing the SOAP message in our test scenario.

Example 10-1 Listing of signer certificate

Alias name: cn=bob clark,ou=retail,o=ibmpartner1,c=uk
Creation date: Apr 6, 2011
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=Bob Clark, OU=Retail, O=IBMPartner1, C=UK
Issuer: CN=SmarterBankingShowcaseCA, OU=pssc, O=ibm, C=FR
Serial number: 4d9c204200028919
Valid from: 4/6/11 10:11 AM until: 4/5/12 10:11 AM
Certificate fingerprints:
 MD5: 01:29:CC:63:50:A9:50:91:24:3A:09:51:AD:17:EA:9F
 SHA1: B7:26:31:44:6D:54:D8:CC:3F:C4:C5:B0:9E:08:36:4B:C0:CE:71:7C
Certificate[2]:
Owner: CN=SmarterBankingShowcaseCA, OU=pssc, O=ibm, C=FR
Issuer: CN=SmarterBankingShowcaseCA, OU=pssc, O=ibm, C=FR
Serial number: 4d9c1f1300022e6f
Valid from: 4/6/11 10:06 AM until: 4/5/14 10:06 AM
Certificate fingerprints:
 MD5: 04:7A:23:98:4F:AA:5F:B0:19:A2:AA:4B:A7:CD:6E:96
 SHA1: 1D:01:1A:AF:A7:A1:93:2C:55:3E:7B:6C:10:BD:24:09:16:13:98:20

Note the following information about the bolded information in Example 10-1:

� The alias name for the signer certificate is cn=bob clark,ou=retail,o=ibmpartner1,c=uk.

� The owner of the signer certificate is CN=Bob Clark, OU=Retail, O=IBMPartner1, C=UK.

� The issuer of the signer certificate is CN=SmarterBankingShowcaseCA, OU=pssc,
O=ibm, C=FR.

Distributed identity RACF user ID

CN=Bob Clark, OU=Retail, O=IBMPartner1, C=UK PARTNER1

CN=Nigel Williams, OU=Commercial, O=IBMPartner1, C=UK PARTNER1

CN=Alain Roessle, OU=Banque Internationale,
O=IBMPartner2, C=FR

PARTNER2

CN=Fabrice Jarassat, OU=Banque Internationale,
O=IBMPartner2,C=FR

PARTNER2

CN=Alice Smith, OU=New York Branch, O=IBMPartner3, C=US PARTNER3

CN=Jessica Jones, OU=Miami Branch, O=IBMPartner3, C=US PARTNER3
128 z/OS Identity Propagation

Example 10-2 shows a listing of the issuer certificate.

Example 10-2 Listing of issuer certificate

Alias name: cn=showcaseca,ou=pssc,o=ibm,l=montpellier,c=fr
Creation date: Apr 7, 2011
Entry type: trustedCertEntry

Owner: CN=showcaseCA, OU=PSSC, O=IBM, L=Montpellier, C=FR
Issuer: CN=showcaseCA, OU=PSSC, O=IBM, L=Montpellier, C=FR
Serial number: 4c400d92000b1b25
Valid from: 7/16/10 9:43 AM until: 7/16/11 9:43 AM
Certificate fingerprints:
 MD5: 42:3F:6D:8F:38:FD:7D:40:57:7D:05:46:7A:6C:59:77
 SHA1: D8:AA:6D:2B:D6:75:C8:98:01:5B:CC:58:7F:A8:B6:B4:7C:7B:CB:73

Note the following information about the bolded information in Example 10-2:

� The alias name for the issuer certificate is
cn=showcaseca,ou=pssc,o=ibm,l=montpellier,c=fr.

� The owner of the issuer certificate is CN=showcaseCA, OU=PSSC, O=IBM,
L=Montpellier, C=FR.

� The issuer certificate is self-signed.

10.4 Configuring RDz

In this section we show you how to configure the Generic Service Client of Rational
Developer for System z (RDz) to send a signed SOAP message.

The Generic Service Client is a component that enables users to interact with web services
under test. Users point the Generic Service Client to the service interface definition, such as a
Web Services Description Language (WSDL) file. The Generic Service Client then
automatically and dynamically creates a graphical user interface that exposes the operations
of that service.
Chapter 10. Identity propagation using CICS Web services 129

Figure 10-3 shows an invocation of the account transfer Web service WSDL
(CWPEPM01.wsdl) using the Generic Service Client.

Figure 10-3 Invoke account transfer service using Generic Service Client
130 z/OS Identity Propagation

After invoking the Generic Service Client we are able to fill in values for the different elements
of the SOAP request message (Figure 10-4). The account transfer service, for example,
requires input for elements including posting date, account numbers, and the amount of
money to transfer.

Figure 10-4 Entering data for the account transfer service

The Security for Request tab is then used to edit the SOAP message security algorithms to
be applied to the service request before it is sent. Figure 10-5 shows the XML signature that
is configured for the account transfer service request.

Figure 10-5 XML signature for the account transfer service
Chapter 10. Identity propagation using CICS Web services 131

The XML signature (Figure 10-5 on page 131) was configured as follows:

1. We select BST_DIRECT_REFERENCE (Direct reference) as the identifier type because
we want to send the public key as part of the complete certificate, because we will use the
certificate for identification in DataPower in addition to decrypting the signed message.

2. We chose an X509 Key type and specify the following values for the key:

– cn=bob clark,ou=retail,o=ibmpartner1,c=uk as the name (alias) for the key
– showcase as the key password

3. We accept the default signature algorithm and canonical names.

For further information about testing the account transfer service see 10.8, “Testing the
scenario” on page 155.

10.5 Configuring WebSphere DataPower

In this section we show you how to configure DataPower, in particular:

� How to define the web service proxy for the account transfer web service

� How to verify the signed SOAP message

� How to configure an authentication, authorization, and auditing (AAA) policy for
identity propagation

We document the following procedures:

� Accessing the DataPower control panel

� Creating DataPower objects

� Configuring an HTTP front-side handler

� Adding certificates to DataPower

� Configuring a web service proxy

� Verifying the XML digital signature

� Configuring the AAA policy for identity propagation

Accessing the DataPower control panel
We use the following URL to access the DataPower control panel:

https://9.212.130.128:9090/
132 z/OS Identity Propagation

http://www-306.ibm.com/software/tivoli/products/federated-identity-mgr/

Figure 10-6 shows the control panel.

Figure 10-6 DataPower Control panel
Chapter 10. Identity propagation using CICS Web services 133

DataPower objects
DataPower configuration items are internally represented as objects for reuse. Figure 10-7
outlines the objects that we configured for our scenario.

Figure 10-7 DataPower objects

The steps in Figure 10-7 are explained here:

� An HTTP Front Side Handler (1) object handles HTTP protocol communications with
HTTP clients. We create one to handle all HTTP requests. It listens on port 9080.

� We use the SmarterBankingShowcase_clients_CA.crt (2) file that contains the root
certificate associated with the signer certificate, and we create a Crypto Certificate (3).

� A Crypto Validation Credential (4) includes a collection of certificate objects used for
authenticating presented credentials and verifying XML digital signatures.

� We create a WS Proxy (5) using the TranExt.wsdl (6) that intercepts web service calls to
the CICS account transfer service.

� We associate a verify signature action (7) with the WS Proxy.

� We associate an AAA policy (8) with the WS Proxy.

<<HTTP Front Side Handler>>
HTTPFrontSideHandler

<<Crypto Validation Credentials>>
SmarterBankingShowcaseValidationCred

<<Crypto Certificate>>
SmarterBankingShowcaseCACert

<<WS Proxy>>
TransferExternal_proxy

<<WSDL File>>
TranExt.wsdl

<<AAA Policy>>
IdProp

<<Certificate File>>
SmarterBankingShowcase_clients_CA.crt

2

3

4

6

5

7

1

134 z/OS Identity Propagation

Configuring an HTTP front side handler
An HTTP front side handler object handles HTTP protocol communications. We add a local
endpoint handler using the following steps:

1. On the DataPower control panel, expand Objects, and then click HTTP Front Side
Handler under the Protocol Handlers section.

The list of HTTP front side handlers is displayed. It should be empty at this stage
(Figure 10-8).

Figure 10-8 DataPower - Configure HTTP Front Side Handler

2. Click Add.

3. On the HTTP Front Side Handler page, specify the properties of the local
endpoint handler:

a. Enter HTTPFrontSideHandler in the Name field.
b. Enter port number 9080 in the Port Number field.
c. Leave the other properties as the default.
Chapter 10. Identity propagation using CICS Web services 135

Figure 10-9 shows our configured HTTP Front Side Handler.

Figure 10-9 DataPower HTTP Front Side Handler

4. Click Apply.

Adding certificates to DataPower
Next we create a Crypto Certificate by importing the issuer certificate to DataPower, and we
create the Crypto Validation Credentials.

Configuring a Crypto Certificate
A Crypto Certificate defines a certificate object that specifies a public key and key alias. When
DataPower receives a signed SOAP request, it validates the signature and also the validity of
the certificate, particularly the trust associated with this certificate.

Note: In Figure 10-9 we show an HTTP front side handler. When configuring an SSL
connection from DataPower to CICS, create an HTTPS (SSL) front side handler.
136 z/OS Identity Propagation

Using the following steps, we load the issuer certificate in DataPower:

1. On the DataPower control panel, expand Objects, and then click Crypto Certificate
under the Crypto section.

The list of Crypto Certificates is displayed. It should be empty at this stage (Figure 10-10).

Figure 10-10 DataPower Crypto Certificates

2. Click Add.

3. On the Configure Crypto Certificate page:

a. Enter SmarterBankingShowcaseCACert in the Name field.

b. Use the Upload tab to navigate to the location of the issuer certificate and upload
the file.

c. Enter the password to open the file.

d. Click Apply to configure the certificate.

Figure 10-10 shows our configured Crypto Certificate.

Figure 10-11 DataPower Crypto Certificate

Configuring the Crypto Validation Credentials
A Crypto Validation Credential defines a validation credentials list object that includes a
collection of certificate objects used for authenticating presented credentials and validating
XML digital signatures.
Chapter 10. Identity propagation using CICS Web services 137

We create the Crypto Validation Credentials using the following steps:

1. On the DataPower control panel, expand Objects, and then click Crypto Validation
Credentials under the Crypto section.

The list of Crypto Validation Credentials is displayed. It should be empty at this stage
(Figure 10-12).

Figure 10-12 DataPower Crypto Validation Credentials

2. Click Add.

3. On the Configure Crypto Validation Credentials page, specify the properties of
the credentials:

a. Enter SmarterBankingShowcaseValidationCred in the Name field.

b. Select SmarterBankingShowcaseCACert in the Certificates drop-down menu and
click Add to add the certificate to the credentials list.

c. Leave the other properties as the default.

d. Click Apply to configure the new Crypto Validation Credentials.

Figure 10-13 shows our configured Crypto Validation Credentials.

Figure 10-13 DataPower Crypto Validation Credentials
138 z/OS Identity Propagation

Configuring a web service proxy
In this section, we create a simple web service proxy service that intercepts web service calls
to the CICS account transfer service. A web service proxy provides:

� A facade for arbitrary back-end services.

� Quick service virtualization by simply uploading WSDL into the DataPower device®.

� A “living” virtual service that passes messages between the client and the real service so
that the client connects to the proxy and not to the back-end service.

In doing this, the service consumer and the service provider do not need to be tightly
coupled and bound to each other. The DataPower appliance can hide the details of
accessing the service from the consumer.

We create the web service proxy using the following steps:

1. On the DataPower control panel, expand Services, and then click New Web Service
Proxy under the Web Service Proxy section.

2. On the Configure Web Service Proxy panel, enter TransferExternal_proxy for the name
of the Web Service Proxy (Figure 10-14).

Figure 10-14 DataPower Web Service Proxy 1

3. Click Create Web Service Proxy.
Chapter 10. Identity propagation using CICS Web services 139

4. To create the WS proxy, we need to upload the WSDL file associated with this WS proxy.
On the Configure Web Service Proxy page use the Upload tab to navigate to the location
of the WSDL file and upload the file (Figure 10-15). Click Next.

Figure 10-15 DataPower Web Service Proxy 2

5. On the next panel (Figure 10-16) we associate the web service proxy with the HTTP front
side handler that we configured in “Configuring an HTTP front side handler” on page 135
and we specify the endpoint information for the target CICS account transfer service.

Figure 10-16 DataPower Web Service Proxy 3
140 z/OS Identity Propagation

Select HTTPFrontSideHandler and click the +Add link so that it appears in the list of
local endpoint handlers. Click Next and then Apply. Figure 10-17 shows our configured
web service proxy.

Figure 10-17 DataPower Web Service Proxy 4
Chapter 10. Identity propagation using CICS Web services 141

Verifying the XML digital signature
Next we configure the signature verification:

1. On the Configure Web Service Proxy page, we click the Policy tab. We then expand the
port-operation CWPEPM01Operation and click the + Add Rule (Figure 10-18).

Figure 10-18 DataPower Add Policy Rule

2. The Rule Editor page opens and we select the rule direction, in our case Client to Server.
We drag and drop the verify icon to the right of the equals sign (=) (Figure 10-19).

Figure 10-19 DataPower Verify Signature

Note: In the rule editor, when the rule is not configured, there is a bold yellow border
around the icon.
142 z/OS Identity Propagation

3. Double-click the Verify icon. On the Configure Verify Action page, select INPUT and chose
the SmarterBankingShowcaseValidationCred validation credential from the drop-down
menu. Click Done. Figure 10-20 shows the configured verify action.

Figure 10-20 DataPower Verify Signature 2

4. Click Apply (on the top left of the panel) to apply the configuration.

Configuring AAA policy
In this section we create an AAA policy to secure the account transfer web service. A
DataPower AAA policy identifies a set of resources and procedures that can be used to
determine whether a requesting client is granted access to a specific service. AAA policies
can be considered a type of filter in that they accept or deny a specific client request.

AAA policies are powerful and flexible, as they support a range of authentication and
authorization mechanisms that can be “mixed and matched” in a single policy. For example,
our AAA policy authenticates the user by validating the signer certificate of the digitally signed
message and propagates the requester’s identity to CICS in the form of an ICRX so that it can
be mapped to a RACF user ID and used for CICS authorization checking.

The AAA policy editor guides you through the following activities:

� Defining methods to extract a user's identity from an incoming request
� Defining the method to authenticate the user
� Defining the method to map credentials
� Defining methods to extract and map resources
� Defining the method to authorize a request
� Defining counters for authorized and rejected messages
� Defining logging for authorizations and rejections
� Defining post-processing activities
Chapter 10. Identity propagation using CICS Web services 143

We create the AAA policy using the following steps:

1. Drag and drop the AAA icon to the right of the Verify action on the policy rule
(Figure 10-21).

Figure 10-21 DataPower AAA Policy

Double-click the AAA icon.

2. On the Configure AAA Action page, click the plus sign (+) to create a new AAA policy.

On the next page (Figure 10-22) specify IdProp as the name of the AAA policy, and then
click Create.

Figure 10-22 DataPower AAA policy 2
144 z/OS Identity Propagation

3. On the next page (Figure 10-23) check the box Subject DN from Certificate in the
Message's signature as the method to be used to extract the user’s identity from the
incoming request, and then click Next.

Figure 10-23 DataPower AAA Policy 3
Chapter 10. Identity propagation using CICS Web services 145

4. On the next page (Figure 10-24) check the box Validate the Signer Certificate for a
Digitally Signed Message as the method to be used to authenticate the user. Chose
SmarterBankingShowcaseValidationCred for validating credential and then click Next.

Figure 10-24 DataPower AAA Policy 4

5. On the next page check the box URL Sent by Client as the method to be used to extract
the resources, and then click Next.

6. On the next page check the box Allow Any Authenticated Client as the method to be
used to authorize a request, and then click Next.
146 z/OS Identity Propagation

7. On the next page (Figure 10-25) check the box Generate an ICRX token for z/OS
Identity Propagation as a post-processing action. Specify DPDev as the ICRX Realm and
then click Commit.

Figure 10-25 DataPower AAA Policy 5

8. Click Done twice and then Apply to finalize the creation of the AAA policy.

Figure 10-26 shows the final DataPower policy for the account transfer service.

Figure 10-26 DataPower Policy for Account Transfer service
Chapter 10. Identity propagation using CICS Web services 147

10.6 Configuring CICS

In this section we review the CICS resource definitions that are required to enable the web
services identity propagation scenario.

We document the following TOR resource definitions:

� SIT parameters
� TCPIPSERVICE
� WEBSERVICE
� URIMAP
� PIPELINE and pipeline configuration file

We document the MRO connection Application Owning Region (AOR) resource definition.

10.6.1 SIT parameters

We configured our CICS TOR region with security prefixing, transaction security, and
surrogate user security active using the following SIT parameters:

� SEC=YES to indicate that we want RACF services to control access to CICS resources.

� XTRAN=YES so that CICS calls RACF to verify that the user ID associated with the
transaction is permitted to run the transaction.

� XUSER=YES to specify that CICS is to perform surrogate user checks.

10.6.2 TCPIPSERVICE

A TCPIPSERVICE definition contains information about the port on which inbound requests
are received and whether any transport-based security mechanisms will be applied by CICS.

Example 10-3 shows the TCPIPSERVICE definition that we used in our scenario.

Example 10-3 SSLWEBS TCPIPSERVICE

CEDA View TCpipservice(SSLWEBS)
 TCpipservice : SSLWEBS
 GROup : TCPRT11
 DEScription : CICS WEB SERVICES
 Urm : DFHWBADX
 POrtnumber : 61001
 STatus : Open
 PROtocol : Http
 TRansaction : CWXN
 Backlog : 00005
 TSqprefix :
 Host : ANY
 (Mixed Case) :
 Ipaddress :
 SOcketclose : No
 Maxdatalen : 050000
SECURITY
 SSl : Clientauth
CErtificate : CICSRT10
(Mixed Case)
 PRIvacy : Supported
148 z/OS Identity Propagation

 CIphers : 0A1613100D05042F30313223
 AUthenticate : No

 Realm :
 (Mixed Case)
 ATtachsec :

The TCPIPSERVICE listens on ortnumber 61001.

� SSL is set to Clientauth so that CICS requires connections to this port to provide a client
certificate. That is, the DataPower appliance must send its certificate to CICS.

� Ciphers is set to 0A1613100D05042F30313233. This attribute specifies a string of up to
56 hexadecimal digits that is interpreted as a list of up to 28 2-digit cipher suites that CICS
will support for connections to this port.

� Authenticate is set to No. We are not using the DataPower client certificate to authenticate
the request.

10.6.3 URIMAP

A URI mapping or URIMAP resource definition matches the URIs of web service requests.
URIMAP definitions for inbound web service requests have a USAGE attribute of PIPELINE.
The URIMAP associates a URI for the request with a PIPELINE and WEBSERVICE resource
that specifies the processing to be performed.

Importantly, you can use a URIMAP to specify the name of the transaction that CICS uses for
running the pipeline alias transaction (the default is CPIH). RACF authorizations can then be
set for this transaction.

Example 10-4 shows the URIMAP definition that we used in our scenario.

Example 10-4 UR9ZTE URIMAP

CEDA View Urimap(UR9ZTE)
 Urimap : UR9ZTE
 Group : CORPWS2
 DEScription : TRANSFER TO EXTERNAL ACCOUNT
 STatus : Enabled Enabled ! Disabl
 USAge : Pipeline Server ! Client
UNIVERSAL RESOURCE IDENTIFIER
 SCheme : HTTP HTTP ! HTTPS
 POrt : No No ! 1-65535
 HOST : *
 (Mixed Case) :
 PAth : /Showcase/Accounts/TransferExternal
 (Mixed Case) :
ASSOCIATED CICS RESOURCES

Important: We use SSL client authentication to establish the trust relationship between
DataPower and CICS.

Note: We do not document the configuration of SSL between DataPower and CICS in this
book. For detailed information about configuring SSL with CICS, see the IBM Redbooks
publication Securing CICS Web Services, SG24-7658.
Chapter 10. Identity propagation using CICS Web services 149

 TCpipservice :
 ANalyzer : No
 COnverter :
 TRansaction : ZTE
 PRogram :
 PIpeline : PIPFIS
 Webservice : TranExt
 ATomservice :
SECURITY ATTRIBUTES
 USErid :
 CIphers :
 CErtificate :
 AUthenticate :

Note the following information about Example 10-4 on page 149:

� This URIMAP will match requests for any host and any TCPIPSERVICE, with a path of
/Showcase/Accounts/TransferExternal.

� The pipeline task will run under transaction ZTE within pipeline PIPFIS.

� The request is for Webservice TranExt.

10.6.4 PIPELINE

A PIPELINE resource definition provides information about the message handlers that act on
a service request and on the response. The information about the message handlers is
supplied indirectly. The CONFIGFILE attribute of the PIPELINE definition specifies the name
of an HFS file, called the pipeline configuration file, which contains an XML description of the
message handlers and their configuration.

Example 10-5 shows the PIPELINE definition that we used in our scenario.

Example 10-5 PIPFIS PIPELINE

CEDA View PIpeline(PIPFIS)
 PIpeline : PIPFIS
 Group : CORPWS2
 DEScription :
 STatus : Enabled
 Respwait : Deft
 COnfigfile : /u/cicsuser/services/config/SOAP12provider.xml
 (Mixed Case) :

The path to the pipeline configuration file is:

/u/cicsuser/services/config/SOAP12provider.xml

Pipeline configuration file
The CICS-supplied message handler that provides support for WS-Security is specified in
the web services pipeline configuration file and is configured to allow the pipeline to receive
an ICRX.
150 z/OS Identity Propagation

Example 10-6 shows the pipeline configuration file that we used in our scenario.

Example 10-6 Pipeline configuration file

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd ">
<service>

<service_handler_list>
<wsse_handler>
<dfhwsse_configuration version="1">
<authentication trust="blind" mode="basic-ICRX">
</authentication>

</dfhwsse_configuration>
</wsse_handler>

</service_handler_list>
</terminal_handler>
<cics_soap_1.2_handler/>

 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler> element shown in Example 10-6 contains a <dfhwsse_configuration>
element that specifies configuration information for the CICS-supplied security handler.

In the <authentication> element:

� The trust="blind" attribute specifies that asserted identity is used.

� The mode="basic-ICRX" attribute specifies that inbound messages must contain an ICRX
identity token. CICS resolves the identity, puts the user ID in the DFHWS-USERID
container, and puts the ICRX in container DFHWS-ICRX.

10.6.5 WEBSERVICE

A WEBSERVICE resource defines the aspects of the runtime environment for a CICS
application program deployed as a web service. Three objects define the execution
environment that allows a CICS application program to operate as a web service provider:

� The web service description
� The web service binding file
� The pipeline

These three objects are defined to CICS on the following attributes of the WEBSERVICE
resource definition:

� WSDLFILE
� WSBIND
� PIPELINE

Note: The WEBSERVICE definition does not have a direct impact on the security context
used for processing the request.
Chapter 10. Identity propagation using CICS Web services 151

Example 10-7 shows the WEBSERVICE definition that we used in our scenario.

Example 10-7 TranExt WEBSERVICE

CEDA View Webservice(TranExt)
 Webservice : TranExt
 Group : CORPWS2
 DEScription :
 Pipeline : PIPFIS
 Validation : No
 WSBind : /u/cicsuser/services/wsbind/CWPEPM01.wsbind
 (Mixed Case) :
WSDlfile : /u/cicsuser/services/wsdl/CWPEPM01.wsdl
 (Mixed Case) :

Note the following information about Example 10-7:

� The path to the WSBind file is /u/cicsuser/services/wsbind/CWPEPM01.wsbind.
� The path to the WSDlfile file is /u/cicsuser/services/wsdl/CWPEPM01.wsdl.

10.6.6 MRO connection

After a distributed identity has been mapped to the desired RACF user ID, the distributed
identity remains attached to the CICS security context and is automatically transmitted by a
distributed program link (DPL) or function shipping requests that flow between interconnected
CICS TS 4.1 regions within the same sysplex.

The transmission of distributed identities between CICS regions is dynamic, and all that is
necessary is to ensure that the systems are connected via MRO or IPIC connections that
specify the propagation of security credentials (this is controlled by the ATTACHSEC or
USERAUTH connection parameters, respectively). In addition, the security context can also
be transferred between CICS systems in different Sysplexes providing that the systems are
connected by a client-authenticated SSL IPIC connection.

In our tested scenario, we used an MRO connection between the TOR and AOR.

Example 10-7 shows the security properties of the MRO connection that we defined for
the AOR.

Example 10-8 RT10 CONNECTION

CEDA View CONnection(RT10)
 CONnection : RT10
 Group : AORTOR
 ...
SECURITY
 SEcurityname :
 ATtachsec : Identify
 BINDPassword :
 BINDSecurity : No
 Usedfltuser : No

ATtachsec is set to Identify so that the CICS TOR propagates the RACF user ID and
distributed identity to the CICS AOR.
152 z/OS Identity Propagation

10.7 Configuring RACF

This section reviews the RACF definitions that are required to enable the web services
identity propagation scenario. We document the following definitions:

� Identity mapping rules
� CICS transaction authorizations

10.7.1 Identity mapping rules

RACMAP commands are used to map the distributed identity to the RACF user ID.
The distributed identity DN is stored in the USERDIDFILTER and the realm is the
REGISTRY name.

The RACMAP command in our scenario is used to map all distributed identities belonging to
business partner 1 to RACF ID PARTNER1, all those belonging to business partner 2 to
PARTNER2, and so on. The following sequence of commands is used to define the mapping
for business partner 1:

1. Create the new RACMAP identity filter using the MAP function:

RACMAP ID(PARTNER1) MAP USERDIDFILTER(NAME('O=IBMPartner1,C=UK'))
REGISTRY(NAME('DPDev')) WITHLABEL('IBMPartner1')

2. Issue the RACF REFRESH command to refresh the IDIDMAP class:

SETROPTS RACLIST(IDIDMAP) REFRESH
3. List the new RACMAP identity filter using the LISTMAP function (Example 10-9).

Example 10-9 RACMAP LISTMAP command

RACMAP ID(PARTNER1) LISTMAP

Mapping information for user PARTNER1:

 Label: IBMPartner1
 Distributed Identity User Name Filter:
 >O=IBMPartner1,C=UK<
 Registry Name:
 >DPDev<

10.7.2 Authorizing the service requester

This section provides the RACF commands that are used to authorize the service requester
to run the CICS account transfer web service.

Note: The RACF Class IDIDMAP must be activated before you can issue the
RACMAP command.
Chapter 10. Identity propagation using CICS Web services 153

Permitting access
Example 10-11 shows the RACF commands that are used to permit the caller’s user ID
(PARTNER1) to start the CICS pipeline alias transaction ZTE.

Example 10-10 RACF command to allow PARTNER1 to run ZTE transaction

PERMIT ZTE CLASS(TCICSTRN) ID(PARTNER1) ACCESS(READ)
SETROPTS RACLIST(TCICSTRN) REFRESH

Permitting surrogate access
If you use identity propagation, it requires that the service provider trusts the requester to
make the assertion that the propagated user identity is valid. Normally, this means that the
original user has already been authenticated.

CICS uses surrogate security checking to enable the definition of trust relationships. A
surrogate user is a RACF user ID, which is authorized to act on behalf of another user (the
original user). CICS uses surrogate user security in a number of different situations, including
in the case of web services identity propagation with DataPower.

To enable CICS surrogate user checking, you define the appropriate SURROGAT class
profiles for CICS in the RACF database and you authorize CICS surrogate users to the
appropriate SURROGAT profiles.

It is important to configure a trust relationship between the DataPower appliance and CICS,
for example, using SSL client certification between DataPower and CICS. The digital
certificate that DataPower uses to identify itself can be associated with a RACF user ID, and
that user ID must be granted surrogate authority to assert the RACF user IDs that are
mapped from the propagated distributed identities.

Example 10-11 shows the RACF command that would be used to permit a DataPower user
ID (DP1) to start pipeline alias transactions with the user ID PARTNER1.

Example 10-11 RACF commands to allow XXXXXX to act as surrogate for PARTNER1

RDEFINE SURROGAT PARTNER1.DFHSTART UACC(NONE) OWNER(NIGEL)
PERMIT PARTNER1.DFHSTART CLASS(SURROGAT) ID(DP1) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

For more information regarding surrogate user security, see CICS Transaction Server for
z/OS RACF Security Guide, SC34-6454.

Note: In normal circumstances, we recommend that user groups are granted access to
transaction groups. However, for the sake of simplicity, in our example we use a single
user and single transaction.

Important: When using identity propagation between DataPower and CICS, you should
establish a trust relationship by using RACF SURROGAT class profiles.

Note: We did not enable authentication of the DataPower appliance in our tests.
154 z/OS Identity Propagation

10.8 Testing the scenario

In this section we show the results of testing the scenario. We show the following:

� Using the Generic Service Client of RDz to invoke the account transfer web service

� Using the CICS Explorer to view task association data that contains the original distributed
identity and the CICS task running under the correct mapped RACF user ID

� Using the probe facility of DataPower to monitor how DataPower implements
identity propagation

We also show the results of the following failure scenarios:

� No distributed identity (ICRX) is passed by DataPower.

� A distributed identity (ICRX) is passed by DataPower but no mapping exists for
that identity.

� A mapping exists but the mapped RACF user ID does not have authorization to run the
CICS transaction.

10.8.1 Successful many-to-one identity mapping

This section shows the transaction flow of a normal successful request to run the CICS
account transfer service.

Invoking the web service
In 10.4, “Configuring RDz” on page 129 we show how the Generic Service Client of RDz can
be used to test web service invocations.
Chapter 10. Identity propagation using CICS Web services 155

Figure 10-3 on page 130 shows the successful invocation of the account transfer service.

Figure 10-27 Successful invocation of the account transfer service

The return code for the request is 0, which indicates that the transaction was successful.

Task association data
CICS association data is a set of information that describes the environment in which CICS
tasks run and the way that tasks are attached in a CICS region. Some association data is
specific to the task itself, for example, the task ID and the user ID relating to the task.

You can use the CICS Explorer to view task association data. Figure 10-28 shows a ZTE task
running with the user ID PARTNER1 (the user ID that has been mapped from the distributed
identity in the ICRX). It also shows the distributed identity (DN) CN=Bob Clark, OU=Retail,
O=IBMPartner1, C=UK.

Figure 10-28 CICS task association data
156 z/OS Identity Propagation

Using the probe facility of DataPower
The DataPower multi-step probe provides a very powerful feature to perform debugging and
effective problem determination. We use the probe to view the message as it passes through
the appliance.

On the Configure Web Service Proxy page (Figure 10-7 on page 134), we click the Show
Probe action for the TransferExternal_proxy web service proxy. We then click Enable Probe
(Figure 10-29).

Figure 10-29 DataPower probe

After enabling the probe, we invoke the web service and refresh the list of transactions that
have been captured by the probe (Figure 10-30).

Figure 10-30 DataPower Probe 2
Chapter 10. Identity propagation using CICS Web services 157

The probe shows the request and response messages for the account transfer web service.
We click the eyeglass of the request to view the details of the message. Figure 10-31 shows
the signed message received by DataPower. We see the BinarySecurityToken that contains
Bob’s X.509 certificate and signature parts of the Security SOAP header.

Figure 10-31 DataPower Probe 3
158 z/OS Identity Propagation

Using the DataPower probe we can view the message as it is processed by the actions that
we have configured in DataPower for the account transfer service. For example, Figure 10-32
shows the message after running the AAA policy IdProp.

Figure 10-32 DataPower Probe 4

After the AAA policy has executed, we see that the request message still contains a
BinarySecurityToken, but now it is in the form of an ICRX token. This ICRX token contains the
distinguished name of Bob. The signature part of the message has been removed.

10.8.2 Failure scenarios

This sections discusses SOAP faults and error messages that you might see when testing
identity propagation with CICS Web services.

No distributed Identity (ICRX) is passed by DataPower
CICS expects to receive an ICRX in the SOAP request message, but DataPower does not
send an ICRX.

Note: For more information about ICRX identity tokens, see z/OS Security Server RACF
Data Areas, SA22-7680.
Chapter 10. Identity propagation using CICS Web services 159

The SOAP fault for this message (Example 10-12) highlights that CICS cannot authenticate
the service requester.

Example 10-12 SOAP fault - ICRX not sent

<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedAuthentication</faultcode>
<faultstring>A security token could not be authenticated</faultstring>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>

No mapping exists for distributed identity
CICS receives an ICRX in the SOAP request message, but no mapping has been defined to
map the distributed identity to a RACF user ID.

The SOAP fault for this message is the same as the one shown in Example 10-12. In addition,
a RACF message is issued as shown in Example 10-13.

Example 10-13 RACF message - no mapping

ICH408I USER(CICSUSER) GROUP(SYS1) NAME(CICSUSER)
 DISTRIBUTED IDENTITY IS NOT DEFINED:
 CN=Jessica Jones, OU=Miami Branch, O=IBMPartner3, C=US DPDev

No authorization to run the CICS transaction
CICS receives an ICRX in the SOAP request message, and a mapping has been defined to
map the distributed identity to a RACF user ID, but the mapped RACF user ID is not
authorized to run the CICS transaction.

Example 10-14 shows the RACF error message that is written to the system log if the user is
not authorized to run the CICS service provider application.

Example 10-14 RACF message - unauthorized access to CICS transaction

ICH408I USER(PARTNER2) GROUP(SYS1) NAME(PARTNER2)
ZTE CL(TCICSTRN)

 INSUFFICIENT ACCESS AUTHORITY
ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
160 z/OS Identity Propagation

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Implementing CICS Web Services, SG24-7206

� DB2 10 for z/OS Technical Overview, SG24-7892

� Securing CICS Web Services, SG24-7658

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� z/OS Security Server RACROUTE Macro Reference, SA22-7692

� z/OS Security Server RACF callable Services, SA22-7691

� z/OS Security Server RACF Data Areas, SA22-7680

� z/OS Security Server RACF macros and Interfaces, SA22-7682

� CICS Transaction Gateway z/OS Administration, SC34-7058-02

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2011. All rights reserved. 161

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

162 z/OS Identity Propagation

Index

A
Accessor Environment Element 81
ACEE 81
Authenticate 149
authentication registry or Realm 4

C
CICS ECI (External Call Interface) resource adapter 26
CICS resources that a systems programmer uses to con-
figure CICS Web services which are accessed over HTTP
30
CICS resources that a systems programmer uses to con-
figure z/OS identity propagation with the CICS TG 29
CICS Transaction Gateway (CICS TG) 26
CICS Web Services 29
Ciphers 149
communication vector table (CVT) 78

D
data areas impacted by Identity Propagation 78
DB2 10 for z/OS Audit Policy 37
DB2 for z/OS exploitation of Identity Propagation 34
DB2 restrictions on distinguished name 36
DB2 role 36
default RACMAP filter 46
distinguished name explanation 9
Distinguished Name, 4
distributed identify filter 40
Distributed Identity 3

components of 4
Distributed Identity Data (IDID) 83
Distributed Identity Data Structure (IDID) 11
Dynamic Statement Cache 38

E
ENF event code 71 83
ENVR object 16
Event Notification Facility (ENF) event 71 16
Extended Identity Context Reference (ICRX) 12, 82

F
filter management 50
filter management examples 52

G
General Resource Distributed Identity Mapping Data Re-
cord 18

H
HFS

file 150
© Copyright IBM Corp. 2011. All rights reserved.
how changes to a user RACF profile is handled when
there exists a cached identity context for a user 16
how DataPower can be used to propagate a distributed
identity to CICS so that it can be mapped to a RACF id 32
how RACF matches the filter value 50

I
ICH04018I message when attempting to delete a RACF
user when an identity mapping profile exists for user 19
ICH408I message when distributed identity not found 19
ICHPRCVT 78
ICRX 13, 82
Identity Propagation

enhanced audit trail 3
mapping process 4

RACMAP 4
user ID Filters 4

overview 2
IDID 83
IDIDMAP class 43
IDIDMAP profile name (derived from the user name) and
the registry name are encoded as UTF-8 data 44
IKJTSO00 updates 22
initACEE 79
IPCONN 29
IRRRID00 (Remove ID Utility) 20

L
local identity context cache 16

M
Many-to-one filter management 51

N
new messages related to the RACMAP command 47

O
One-to-one filter management 50
overview of a CICS TG identity propagation scenario 28

P
PIPELINE 30, 150
pipeline alias transaction 149
Portnumber 149

R
R_cacheserv 16, 80
R_usermap 81
RACF General template updates for identity propagation
20
 163

RACF settings to permit data records to be written to SMF
for identity propagation 57

AUDIT 57
CMDVIOL 57
SAUDIT 57

RACF user profile can not be deleted when an identity
mapping exists for user profile 19
RACF User template updates for identity propagation 19
RACMAP command 40
RACMAP command are eligible for automatic direction of
application updates 46
RACMAP command authorization 40
RACMAP command parameters 41

ID(userid) 41
MAP 41
REGISTRY 41
USERDIDFILTER 41

RACMAP command syntax 41
RACMAP DELMAP commands are generated by RACF
Remove ID Utility 20
RACMAP implications for RACF user profiles 45
RACROUTE REQUEST=VERIFY/VERIFYX 78
Redbooks Web site 161

Contact us xi
Registry name required by DB2 36
Registry value 10
Relative Distinguished Names 4

mapping process is sensitive to value of 5
parsing during mapping process 4
value is case sensitive 4

reporting audit information from SMF data 60
from DB2 tables 63
SMF UNLOAD producing XML data 61
SMF Unload Utility 60
using DFSORT 64
using IBM Security zSecure Admin 68

retrieve a Distributed Identity and Registry by CICS pro-
gram 5
RRSF 46

S
SAF calls 13

initACEE 14
RACROUTE REQUEST=VERIFY 15

SAF Interfaces and Identity Propagation
initACEE 12
R_cacheserv 13
RACROUTE REQUEST=VERIFY 12

sample members to take unloaded SMF data and then
load into DB2 tables 22
SIT parameters

XTRAN=YES 148
SMF data captured by RACMAP create or delete 56
SMF data captured for RACMAP command which creates
or deletes a IDIDMAP profile 56
SMF data captured for RACROUTE with VERIFY or VER-
IFYX 56
SMF records and Identity Propagation 57

Type 80 record 58
Type 83 record 59

SMF reporting for DB2 37
SMF Unload Utility 59
SOAP message security 31
SPTGK00715 48
SPTJJ00026 45
SPTOB39953 47
SPTOB39954 47
SPTOB39955 47
SPTOB39957 47
SPTOB39958 47
SPTOB39960 47
SPTOB39961 48
SPTOB39962 48
SPTOB39963 48
SPTOB39964 48
SPTOB39965 48
summary of z/OS Identity Propagation steps 8
surrogate access 154

T
TCPIPSERVICE 29–30
Transport based security 31
trusted connection 35
types of security mechanisms in a CICS Web services en-
vironment 31

U
updating a distributed identity filter 44
URIMAP 30, 149
User Assocaited Distributed Mapping Record 18
UTF-8 data 43

W
Web service 151
WEBSERVICE 30, 149, 151

attributes
WSBIND 151
WSDLFILE 151

WebSphere Application Server 90
WebSphere DataPower 31

Configure Crypto Certificate 136
Configure the Crypto Validation Credentials 137

WebSphere DataPower in conjunction with CICS Web
services 32

Z
z/OS Identity Propagation conceptual overview 8
z/OS Identity Propagation steps 8
z/OS Security Server events captured by SMF related to
Identity Propagation 56
z/OS System Management Facility (SMF) 55
164 z/OS Identity Propagation

z/OS Identity Propagation

z/OS Identity Propagation

z/OS Identity Propagation

z/OS Identity Propagation

z/OS Identity Propagation

z/OS Identity Propagation

®

SG24-7850-00 ISBN 0738436062

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

z/OS Identity
Propagation

Scenarios using CICS
TG, DB2, and CICS
Web services

How to use SMF
records for audit
reporting

Technical overview of
identity propagation

This IBM Redbooks publication explores various implementations of
z/OS Identity Propagation where the distributed identity of an end user
is passed to z/OS and used to map to a RACF user ID, and any related
events in the audit trail from RACF show both RACF and distributed
identities.

This book describes the concept of identity propagation and how it can
address the end-to-end accountability issue of many customers. This
book describes, at a high level, what identity propagation is, and why it
is important to us. This book shows a conceptual view of the key
elements necessary to accomplish this.

This book provides details on the RACMAP function, filter
management, and how to use the SMF records to provide an audit trail.
In-depth coverage is provided about the internal implementation of
identity propagation, such as information about available callable
services.

This book examines the current exploiters of z/OS Identity Propagation
and provide detailed examples covering CICS with CICS Transaction
Gateway, DB2, and CICS Web services with Datapower.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 What z/OS Identity Propagation is
	1.2 Why identity propagation is important
	1.2.1 Complete end-to-end audit trail
	1.2.2 Management of z/OS identity
	1.2.3 Elimination of the perception of z/OS identity as a weak link
	1.2.4 Making the distributed identity available to an application program

	Chapter 2. RACF and z/OS Identity Propagation
	2.1 Conceptual overview
	2.1.1 Authentication, distinguished name, and registry
	2.1.2 Distributed Identity Data Structure (IDID)
	2.1.3 SAF interfaces
	2.1.4 R_cacheserv and caching
	2.1.5 Recreating a security environment or cleaning up a cache

	2.2 Internal logic within SAF call
	2.3 Impact on distributed identity data cached in RACF by z/OS subsystems
	2.4 RACF database unload
	2.5 RACF messages
	2.6 RACF templates
	2.7 RACF remove ID utility
	2.8 Supplied samples
	2.8.1 IKJTSO00 in RACPARM
	2.8.2 Sample DB2 members
	2.8.3 XML schema document

	Chapter 3. z/OS Identity Propagation exploiters
	3.1 CICS Transaction Gateway
	3.1.1 JCA and security
	3.1.2 CICS TG for z/OS security options
	3.1.3 z/OS Identity Propagation support with CICS TG
	3.1.4 CICS resources used for configuring identity propagation with CICS TG

	3.2 CICS Web services
	3.2.1 CICS resources used for configuring web services
	3.2.2 Securing CICS Web services
	3.2.3 WebSphere DataPower
	3.2.4 Identity propagation with CICS Web services

	3.3 DB2 10 for z/OS
	3.3.1 DB2 10 for z/OS Trusted Context
	3.3.2 RACMAP
	3.3.3 DB2 role in RACF
	3.3.4 SMF reporting
	3.3.5 Distinguished name not matching

	Chapter 4. RACMAP function
	4.1 Distributed identity filters
	4.1.1 What a distributed identify filter is

	4.2 RACMAP command overview
	4.3 Authorization required to use the RACMAP command
	4.4 RACMAP command usage and invocation
	4.5 Activating the RACMAP updates
	4.6 RACMAP profiles in the IDIDMAP class
	4.7 Updating a distributed identity filter
	4.7.1 Steps for updating a distributed identity filter

	4.8 User profiles and RACMAP command
	4.8.1 Deleting a RACF user ID associated with identity filters
	4.8.2 Performance consideration when deleting a distributed identity filter
	4.8.3 RACF remove ID utility IRRRID00 update

	4.9 Default RACMAP filter protection
	4.10 RRSF consideration for RACMAP use
	4.11 Changes required to PARMLIB to support identity filter
	4.12 New RACMAP messages

	Chapter 5. Filter management
	5.1 How RACF matches the filter value
	5.2 Details about searching for a filter that matches a user’s DN
	5.2.1 One-to-one match
	5.2.2 Many-to-one match
	5.2.3 Summary details about searching for a filter that matches a user’s DN

	5.3 Examples

	Chapter 6. Using SMF audit information to report on z/OS Identity Propagation
	6.1 Actions within RACF
	6.1.1 An RACF event relating to issuing a RACMAP command
	6.1.2 RACF events when calling RACF to verify a distributed identity
	6.1.3 Settings within RACF to ensure identity propagation is captured

	6.2 SMF changes to support distributed identities
	6.2.1 SMF records
	6.2.2 SMF unload utility

	6.3 Reporting from SMF data
	6.3.1 SMF unload utility
	6.3.2 SMF UNLOAD produces XML data
	6.3.3 Reporting on SMF audit information from DB2
	6.3.4 Using ICETOOL from DFSORT
	6.3.5 Using IBM Security zSecure Audit for RACF

	Chapter 7. Internal z/OS data structures impacted by identity propagation
	7.1 SAF interfaces
	7.1.1 RACF communication vector table
	7.1.2 RACROUTE
	7.1.3 InitACEE
	7.1.4 R_cacheserv
	7.1.5 R_usermap

	7.2 SAF data areas
	7.2.1 Accessor Environment Element
	7.2.2 ICRX: Extended Identity Context Reference
	7.2.3 IDID: Distributed Identity Data
	7.2.4 ENF2: RACF ENF Event Code 71

	Chapter 8. Identity propagation with CICS and CICS Transaction Gateway
	8.1 Architectural overview
	8.2 Configuring identity propagation on CICS Transaction Gateway
	8.3 Configuring identity propagation on CICS Transaction Server
	8.4 Configuring identity propagation on WebSphere Application Server
	8.4.1 Configuring standalone LDAP registry
	8.4.2 Deploying the CICS ECI resource adapter
	8.4.3 Creating a J2C Connection Factory
	8.4.4 Deploying the ECIDateTime application
	8.4.5 Installing the identity propagation login module
	8.4.6 Running the ECIDateTime application

	8.5 Configuring identity propagation on z/OS
	8.6 Configuring identity propagation on RACF
	8.7 Testing the scenario
	8.7.1 Results for No Distributed Identity Passed
	8.7.2 Results for No mapping found
	8.7.3 Results for one-to-one mapping
	8.7.4 Results for many-to-one mapping
	8.7.5 Results of DPL to second CICS showing INQUIRE ASSOCIATION
	8.7.6 Results after RACF mappings have changed

	Chapter 9. Identity propagation with DB2 for z/OS
	9.1 JAVA application test scenario
	9.2 RACMAP command
	9.3 Creating DB2 trusted context
	9.4 Creating the DB2 role
	9.5 RACF/DB2 exit (optional)
	9.6 Executing the sample Java application
	9.7 RACF audit trace
	9.8 DB2 Audit trail

	Chapter 10. Identity propagation using CICS Web services
	10.1 Scenario overview
	10.2 Architectural overview
	10.3 Preparation
	10.3.1 Software versions
	10.3.2 IP addresses and ports
	10.3.3 CICS resource definition checklist
	10.3.4 User IDs
	10.3.5 Keystore and certificates

	10.4 Configuring RDz
	10.5 Configuring WebSphere DataPower
	10.6 Configuring CICS
	10.6.1 SIT parameters
	10.6.2 TCPIPSERVICE
	10.6.3 URIMAP
	10.6.4 PIPELINE
	10.6.5 WEBSERVICE
	10.6.6 MRO connection

	10.7 Configuring RACF
	10.7.1 Identity mapping rules
	10.7.2 Authorizing the service requester

	10.8 Testing the scenario
	10.8.1 Successful many-to-one identity mapping
	10.8.2 Failure scenarios

	Related publications
	IBM Redbooks
	Other publications
	Help from IBM

	Index
	Back cover

