Convolution Representation of FIR Filters Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Convolution Representation of FIR Filters

Note that the output of the $ k$th delay element in Fig.5.5 is $ x(n-k)$, $ k=0,1,2,\ldots,M$, where $ x(n)$ is the input signal amplitude at time $ n$. The output signal $ y(n)$ is therefore

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + \cdots + b_M x(n-M)$  
  $\displaystyle =$ $\displaystyle \sum_{m=0}^M b_m x(n-m)$  
  $\displaystyle =$ $\displaystyle \sum_{m=-\infty}^{\infty} h(m) x(n-m)$  
  $\displaystyle \isdef$ $\displaystyle (h\ast x)(n)$ (6.7)

where we have used the convolution operator ``$ \ast $'' to denote the convolution of $ h$ and $ x$, as defined in Eq. (5.4). An FIR filter thus operates by convolving the input signal $ x(n)$ with the filter's impulse response $ h(n)$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]