22 June 2001 16:34

CHAPTER TWO

BUILDING AND
RUNNING MODULES

It's high time now to begin programming. This chapter introduces all the essential
concepts about modules and kernel programming. In these few pages, we build
and run a complete module. Developing such expertise is an essential foundation
for any kind of modularized driver. To avoid throwing in too many concepts at
once, this chapter talks only about modules, without referring to any specific
device class.

All the kernel items (functions, variables, header files, and macros) that are intro-
duced here are described in a reference section at the end of the chapter.

For the impatient reader, the following code is a complete “Hello, World” module
(which does nothing in particular). This code will compile and run under Linux
kernel versions 2.0 through 2.4.*

#define MODULE
#include <linux/module.h>

int init_module(void) { printk("<1l>Hello, world\n"); return 0; }
void cleanup_module(void) { printk("<l1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behaves similarly to the
standard C library function printf. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The module can call
printk because, after insmod has loaded it, the module is linked to the kernel and
can access the kernel’s public symbols (functions and variables, as detailed in the
next section). The string <1> is the priority of the message. We've specified a high
priority (low cardinal number) in this module because a message with the default
priority might not show on the console, depending on the kernel version you are

* This example, and all the others presented in this book, is available on the O'Reilly FTP
site, as explained in Chapter 1.

15

22 June 2001 16:34

Chapter 2: Building and Running Modules

running, the version of the klogd daemon, and your configuration. You can ignore
this issue for now; we’ll explain it in the section “printk” in Chapter 4.

You can test the module by calling insmod and rmmod, as shown in the screen
dump in the following paragraph. Note that only the superuser can load and
unload a module.

The source file shown earlier can be loaded and unloaded as shown only if the
running kernel has module version support disabled; however, most distributions
preinstall versioned kernels (versioning is discussed in “Version Control in Mod-
ules” in Chapter 11). Although older modutils allowed loading nonversioned mod-
ules to versioned kernels, this is no longer possible. To solve the problem with
bello.c, the source in the misc-modules directory of the sample code includes a
few more lines to be able to run both under versioned and nonversioned kernels.
However, we strongly suggest you compile and run your own kernel (without ver-
sion support) before you run the sample code.*

root# gecc -c hello.c
root# insmod ./hello.o
Hello, world

root# rmmod hello
Goodbye cruel world
root#

According to the mechanism your system uses to deliver the message lines, your
output may be different. In particular, the previous screen dump was taken from a
text console; if you are running insmod and rmmod from an xterm, you won’t see
anything on your TTY. Instead, it may go to one of the system log files, such as
/var/log/messages (the name of the actual file varies between Linux distributions).
The mechanism used to deliver kernel messages is described in “How Messages
Get Logged” in Chapter 4.

As you can see, writing a module is not as difficult as you might expect. The hard
part is understanding your device and how to maximize performance. We'll go
deeper into modularization throughout this chapter and leave device-specific
issues to later chapters.

Kernel Modules Versus Applications

Before we go further, it's worth underlining the various differences between a ker-
nel module and an application.

Whereas an application performs a single task from beginning to end, a module
registers itself in order to serve future requests, and its “main” function terminates
immediately. In other words, the task of the function init_module (the module’s

*If you are new to building kernels, Alessandro has posted an article at
bttp.//www.linux.it/kerneldocs/kconf that should help you get started.

16

22 June 2001 16:34

Kernel Modules Versus Applications

entry point) is to prepare for later invocation of the module’s functions; it’s as
though the module were saying, “Here I am, and this is what I can do.” The sec-
ond entry point of a module, cleanup_module, gets invoked just before the mod-
ule is unloaded. It should tell the kernel, “I'm not there anymore; don’t ask me to
do anything else.” The ability to unload a module is one of the features of modu-
larization that you’ll most appreciate, because it helps cut down development
time; you can test successive versions of your new driver without going through
the lengthy shutdown/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn’t
define: the linking stage resolves external references using the appropriate library
of functions. printfis one of those callable functions and is defined in /ibc. A mod-
ule, on the other hand, is linked only to the kernel, and the only functions it can
call are the ones exported by the kernel; there are no libraries to link to. The
printk function used in hello.c earlier, for example, is the version of printf defined
within the kernel and exported to modules. It behaves similarly to the original
function, with a few minor differences, the main one being lack of floating-point
support.”

Figure 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.

Because no library is linked to modules, source files should never include the
usual header files. Only functions that are actually part of the kernel itself may be
used in kernel modules. Anything related to the kernel is declared in headers
found in include/linux and include/asm inside the kernel sources (usually found
in /usr/src/linux). Older distributions (based on /ibc version 5 or earlier) used to
carry symbolic links from /usw/include/linux and /usr/include/asm to the actual
kernel sources, so your /ibc include tree could refer to the headers of the actual
kernel source you had installed. These symbolic links made it convenient for user-
space applications to include kernel header files, which they occasionally need to
do.

Even though user-space headers are now separate from kernel-space headers,
sometimes applications still include kernel headers, either before an old library is
used or before new information is needed that is not available in the user-space
headers. However, many of the declarations in the kernel header files are relevant
only to the kernel itself and should not be seen by user-space applications. These
declarations are therefore protected by #ifdef _ _KERNEL_ _ blocks. That's why
your driver, like other kernel code, will need to be compiled with the
_ _KERNEL_ _ preprocessor symbol defined.

The role of individual kernel headers will be introduced throughout the book as
each of them is needed.

* The implementation found in Linux 2.0 and 2.2 has no support for the L and Z qualifiers.
They have been introduced in 2.4, though.

17

22 June 2001 16:34

Chapter 2: Building and Running Modules

Module Kernel Proper

insmod ===~~~ 4 | init_module() Jr===s==tereccceen >| register_capability () I

L [[[T

printk()

>
> I
>
>

cleanup_module () 4 unregister_capability ()

: One function EEmEN, Data Function call = Data pointer
| Multiple functions Function pointer === > Assignment to data

Figure 2-1. Linking a module to the kernel

Developers working on any large software system (such as the kernel) must be
aware of and avoid namespace pollution. Namespace pollution is what happens
when there are many functions and global variables whose names aren’t meaning-
ful enough to be easily distinguished. The programmer who is forced to deal with
such an application expends much mental energy just to remember the “reserved”
names and to find unique names for new symbols. Namespace collisions can cre-
ate problems ranging from module loading failures to bizarre failures—which, per-
haps, only happen to a remote user of your code who builds a kernel with a
different set of configuration options.

Developers can’t afford to fall into such an error when writing kernel code
because even the smallest module will be linked to the whole kernel. The best
approach for preventing namespace pollution is to declare all your symbols as
static and to use a prefix that is unique within the kernel for the symbols you

18

22 June 2001 16:34

Kernel Modules Versus Applications

leave global. Also note that you, as a module writer, can control the external visi-
bility of your symbols, as described in “The Kernel Symbol Table” later in this
chapter.*

Using the chosen prefix for private symbols within the module may be a good
practice as well, as it may simplify debugging. While testing your driver, you could
export all the symbols without polluting your namespace. Prefixes used in the ker-
nel are, by convention, all lowercase, and we’ll stick to the same convention.

The last difference between kernel programming and application programming is
in how each environment handles faults: whereas a segmentation fault is harmless
during application development and a debugger can always be used to trace the
error to the problem in the source code, a kernel fault is fatal at least for the cur-
rent process, if not for the whole system. We’ll see how to trace kernel errors in
Chapter 4, in the section “Debugging System Faults.”

User Space and Kernel Space

A module runs in the so-called kernel space, whereas applications run in user
space. This concept is at the base of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis-
tent view of the computer’s hardware. In addition, the operating system must
account for independent operation of programs and protection against unautho-
rized access to resources. This nontrivial task is only possible if the CPU enforces
protection of system software from the applications.

Every modern processor is able to enforce this behavior. The chosen approach is
to implement different operating modalities (or levels) in the CPU itself. The levels
have different roles, and some operations are disallowed at the lower levels; pro-
gram code can switch from one level to another only through a limited number of
gates. Unix systems are designed to take advantage of this hardware feature, using
two such levels. All current processors have at least two protection levels, and
some, like the x86 family, have more levels; when several levels exist, the highest
and lowest levels are used. Under Unix, the kernel executes in the highest level
(also called supervisor mode), where everything is allowed, whereas applications
execute in the lowest level (the so-called wuser mode), where the processor regu-
lates direct access to hardware and unauthorized access to memory.

We usually refer to the execution modes as kernel space and user space. These
terms encompass not only the different privilege levels inherent in the two modes,
but also the fact that each mode has its own memory mapping—its own address
space—as well.

* Most versions of insmod (but not all of them) export all non-static symbols if they find
no specific instruction in the module; that’'s why it's wise to declare as static all the
symbols you are not willing to export.

19

22 June 2001 16:34

Chapter 2: Building and Running Modules

Unix transfers execution from user space to kernel space whenever an application
issues a system call or is suspended by a hardware interrupt. Kernel code execut-
ing a system call is working in the context of a process—it operates on behalf of
the calling process and is able to access data in the process’s address space. Code
that handles interrupts, on the other hand, is asynchronous with respect to pro-
cesses and is not related to any particular process.

The role of a module is to extend kernel functionality; modularized code runs in
kernel space. Usually a driver performs both the tasks outlined previously: some
functions in the module are executed as part of system calls, and some are in
charge of interrupt handling.

Concurrency in the Kernel

One way in which device driver programming differs greatly from (most) applica-
tion programming is the issue of concurrency. An application typically runs
sequentially, from the beginning to the end, without any need to worry about
what else might be happening to change its environment. Kernel code does not
run in such a simple world and must be written with the idea that many things can
be happening at once.

There are a few sources of concurrency in kernel programming. Naturally, Linux
systems run multiple processes, more than one of which can be trying to use your
driver at the same time. Most devices are capable of interrupting the processor;
interrupt handlers run asynchronously and can be invoked at the same time that
your driver is trying to do something else. Several software abstractions (such as
kernel timers, introduced in Chapter 6) run asynchronously as well. Moreover, of
course, Linux can run on symmetric multiprocessor (SMP) systems, with the result
that your driver could be executing concurrently on more than one CPU.

As a result, Linux kernel code, including driver code, must be reentrant—it must
be capable of running in more than one context at the same time. Data structures
must be carefully designed to keep multiple threads of execution separate, and the
code must take care to access shared data in ways that prevent corruption of the
data. Writing code that handles concurrency and avoids race conditions (situations
in which an unfortunate order of execution causes undesirable behavior) requires
thought and can be tricky. Every sample driver in this book has been written with
concurrency in mind, and we will explain the techniques we use as we come to
them.

A common mistake made by driver programmers is to assume that concurrency is
not a problem as long as a particular segment of code does not go to sleep (or
“block™. It is true that the Linux kernel is nonpreemptive; with the important
exception of servicing interrupts, it will not take the processor away from kernel

20

22 June 2001 16:34

Kernel Modules Versus Applications

code that does not yield willingly. In past times, this nonpreemptive behavior was
enough to prevent unwanted concurrency most of the time. On SMP systems,
however, preemption is not required to cause concurrent execution.

If your code assumes that it will not be preempted, it will not run properly on
SMP systems. Even if you do not have such a system, others who run your code
may have one. In the future, it is also possible that the kernel will move to a pre-
emptive mode of operation, at which point even uniprocessor systems will have to
deal with concurrency everywhere (some variants of the kernel already implement
it). Thus, a prudent programmer will always program as if he or she were working
on an SMP system.

The Current Process

Although kernel modules don’t execute sequentially as applications do, most
actions performed by the kernel are related to a specific process. Kernel code can
know the current process driving it by accessing the global item current, a
pointer to struct task_struct, which as of version 2.4 of the kernel is
declared in <asm/current.h>, included by <linux/sched.h>. The current
pointer refers to the user process currently executing. During the execution of a
system call, such as open or read, the current process is the one that invoked the
call. Kernel code can use process-specific information by using current, if it
needs to do so. An example of this technique is presented in “Access Control on a
Device File,” in Chapter 5.

Actually, current is not properly a global variable any more, like it was in the
first Linux kernels. The developers optimized access to the structure describing the
current process by hiding it in the stack page. You can look at the details of cur-
rent in <asm/current.h>. While the code you’ll look at might seem hairy, we
must keep in mind that Linux is an SMP-compliant system, and a global variable
simply won’t work when you are dealing with multiple CPUs. The details of the
implementation remain hidden to other kernel subsystems though, and a device
driver can just include <linux/sched.h> and refer to the current process.

From a module’s point of view, current is just like the external reference printk.
A module can refer to current wherever it sees fit. For example, the following
statement prints the process ID and the command name of the current process by
accessing certain fields in struct task_struct:

printk ("The process is \"%s\" (pid %i)\n",
current->comm, current->pid);

The command name stored in current->commn is the base name of the program
file that is being executed by the current process.

21

22 June 2001 16:34

Chapter 2: Building and Running Modules

Compiling and Loading

The rest of this chapter is devoted to writing a complete, though typeless, module.
That is, the module will not belong to any of the classes listed in “Classes of
Devices and Modules” in Chapter 1. The sample driver shown in this chapter is
called skull, short for Simple Kernel Utility for Loading Localities. You can reuse
the skull source to load your own local code to the kernel, after removing the
sample functionality it offers.”

Before we deal with the roles of init_module and cleanup_module, however, we’ll
write a makefile that builds object code that the kernel can load.

First, we need to define the _ _KERNEL_ _ symbol in the preprocessor before we
include any headers. As mentioned earlier, much of the kernel-specific content in
the kernel headers is unavailable without this symbol.

Another important symbol is MODULE, which must be defined before including
<linux/module.h> (except for drivers that are linked directly into the kerneD.
This book does not cover directly linked modules; thus, the MODULE symbol is
always defined in our examples.

If you are compiling for an SMP machine, you also need to define __SMP_ _
before including the kernel headers. In version 2.2, the “multiprocessor or unipro-
cessor” choice was promoted to a proper configuration item, so using these lines
as the very first lines of your modules will do the task:

#include <linux/config.h>
#ifdef CONFIG_SMP

define _ _SMP_
#endif

A module writer must also specify the —O flag to the compiler, because many func-
tions are declared as inline in the header files. gcc doesn’t expand inline func-
tions unless optimization is enabled, but it can accept both the —g and —O options,
allowing you to debug code that uses inline functions.t Because the kernel makes
extensive use of inline functions, it is important that they be expanded properly.

You may also need to check that the compiler you are running matches the kernel
you are compiling against, referring to the file Documentation/Changes in the ker-
nel source tree. The kernel and the compiler are developed at the same time,
though by different groups, so sometimes changes in one tool reveal bugs in the

* We use the word local here to denote personal changes to the system, in the good old
Unix tradition of /us#/local.

t Note, however, that using any optimization greater than —O2 is risky, because the com-
piler might inline functions that are not declared as inline in the source. This may be a
problem with kernel code, because some functions expect to find a standard stack layout
when they are called.

22

22 June 2001 16:34

Compiling and Loading

other. Some distributions ship a version of the compiler that is too new to reliably
build the kernel. In this case, they will usually provide a separate package (often
called kgco) with a compiler intended for kernel compilation.

Finally, in order to prevent unpleasant errors, we suggest that you use the —Wall
(all warnings) compiler flag, and also that you fix all features in your code that
cause compiler warnings, even if this requires changing your usual programming
style. When writing kernel code, the preferred coding style is undoubtedly Linus’s
own style. Documentation/CodingStyle is amusing reading and a mandatory lesson
for anyone interested in kernel hacking.

All the definitions and flags we have introduced so far are best located within the
CFLAGS variable used by make.

In addition to a suitable CFLAGS, the makefile being built needs a rule for joining
different object files. The rule is needed only if the module is split into different
source files, but that is not uncommon with modules. The object files are joined
by the /d -r command, which is not really a linking operation, even though it uses
the linker. The output of /d -r is another object file, which incorporates all the
code from the input files. The —r option means “relocatable;” the output file is
relocatable in that it doesn’t yet embed absolute addresses.

The following makefile is a minimal example showing how to build a module
made up of two source files. If your module is made up of a single source file, just
skip the entry containing /d -r.

Change it here or specify it on the "make" command line
KERNELDIR = /usr/src/linux

include $ (KERNELDIR)/.config

CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \
-0 -Wall

ifdef CONFIG_SMP
CFLAGS += -D__SMP__ -DSMP
endif

all: skull.o

skull.o: skull_init.o skull_clean.o
$(LD) -r $° -o se

clean:
rm -f *.o0 *7 core

If you are not familiar with make, you may wonder why no .c file and no compila-
tion rule appear in the makefile shown. These declarations are unnecessary
because make is smart enough to turn .c into .o without being instructed to, using
the current (or default) choice for the compiler, $ (CC), and its flags, $ (CFLAGS) .

23

22 June 2001 16:34

Chapter 2: Building and Running Modules

After the module is built, the next step is loading it into the kernel. As we've
already suggested, insmod does the job for you. The program is like /d, in that it
links any unresolved symbol in the module to the symbol table of the running ker-
nel. Unlike the linker, however, it doesn’t modify the disk file, but rather an in-
memory copy. insmod accepts a number of command-line options (for details, see
the manpage), and it can assign values to integer and string variables in your mod-
ule before linking it to the current kernel. Thus, if a module is correctly designed,
it can be configured at load time; load-time configuration gives the user more flex-
ibility than compile-time configuration, which is still used sometimes. Load-time
configuration is explained in “Automatic and Manual Configuration” later in this
chapter.

Interested readers may want to look at how the kernel supports insmod: it relies
on a few system calls defined in kernel/module.c. The function sys_create_module
allocates kernel memory to hold a module (this memory is allocated with vmalloc;
see “vmalloc and Friends” in Chapter 7). The system call get _kernel_syms returns
the kernel symbol table so that kernel references in the module can be resolved,
and sys_init_module copies the relocated object code to kernel space and calls the
module’s initialization function.

If you actually look in the kernel source, you'll find that the names of the system
calls are prefixed with sys_. This is true for all system calls and no other func-
tions; it'’s useful to keep this in mind when grepping for the system calls in the
sources.

Version Dependency

Bear in mind that your module’s code has to be recompiled for each version of
the kernel that it will be linked to. Each module defines a symbol called __mod-
ule_kernel_version, which insmod matches against the version number of
the current kernel. This symbol is placed in the .modinfo Executable Linking
and Format (ELF) section, as explained in detail in Chapter 11. Please note that
this description of the internals applies only to versions 2.2 and 2.4 of the kernel;
Linux 2.0 did the same job in a different way.

The compiler will define the symbol for you whenever you include
<linux/module.h> (that's why hello.c earlier didn’t need to declare it). This
also means that if your module is made up of multiple source files, you have to
include <linux/module.h> from only one of your source files (unless you use
_ _NO_VERSION which we’ll introduce in a while).

—

In case of version mismatch, you can still try to load a module against a different
kernel version by specifying the —f (“force”) switch to insmod, but this operation
isn’'t safe and can fail. It’s also difficult to tell in advance what will happen. Load-
ing can fail because of mismatching symbols, in which case you’ll get an error

24

22 June 2001 16:34

Compiling and Loading

message, or it can fail because of an internal change in the kernel. If that happens,
you'll get serious errors at runtime and possibly a system panic—a good reason to
be wary of version mismatches. Version mismatches can be handled more grace-
fully by using versioning in the kernel (a topic that is more advanced and is intro-
duced in “Version Control in Modules” in Chapter 11).

If you want to compile your module for a particular kernel version, you have to
include the specific header files for that kernel (for example, by declaring a differ-
ent KERNELDIR) in the makefile given previously. This situation is not uncommon
when playing with the kernel sources, as most of the time you’ll end up with sev-
eral versions of the source tree. All of the sample modules accompanying this
book use the KERNELDIR variable to point to the correct kernel sources; it can be
set in your environment or passed on the command line of make.

When asked to load a module, insmod follows its own search path to look for the
object file, looking in version-dependent directories under //ib/modules. Although
older versions of the program looked in the current directory, first, that behavior is
now disabled for security reasons (it's the same problem of the PATH environment
variable). Thus, if you need to load a module from the current directory you
should use ./module.o, which works with all known versions of the tool.

Sometimes, you'll encounter kernel interfaces that behave differently between ver-
sions 2.0.x and 2.4.x of Linux. In this case you'll need to resort to the macros
defining the version number of the current source tree, which are defined in the
header <linux/version.h>. We will point out cases where interfaces have
changed as we come to them, either within the chapter or in a specific section
about version dependencies at the end, to avoid complicating a 2.4-specific discus-
sion.

The header, automatically included by /linux/module.h, defines the following
macros:

UTS_RELEASE
The macro expands to a string describing the version of this kernel tree. For
example, "2.3.48".

LINUX_VERSION_CODE
The macro expands to the binary representation of the kernel version, one
byte for each part of the version release number. For example, the code for
2.3.48 is 131888 (i.e., 0x020330).* With this information, you can (almost) eas-
ily determine what version of the kernel you are dealing with.

KERNEL_VERSION (major,minor, release)
This is the macro used to build a “kernel_version_code” from the individual
numbers that build up a version number. For example, KERNEL_VER-
SION(2,3,48) expands to 131888. This macro is very useful when you

* This allows up to 256 development versions between stable versions.

25

22 June 2001 16:34

Chapter 2: Building and Running Modules

need to compare the current version and a known checkpoint. We'll use this
macro several times throughout the book.

The file version.b is included by module.h, so you won’t usually need to include
version.h explicitly. On the other hand, you can prevent module.h from including
version.h by declaring __NO_VERSION__ in advance. Youll use
__NO_VERSION__ if you need to include <linux/module.h> in several
source files that will be linked together to form a single module—for example, if
you need preprocessor macros declared in module.h. Declaring
_ _NO_VERSION_ _ before including module.h prevents automatic declaration of
the string __module_kernel_version or its equivalent in source files where
you don’t want it (/d -r would complain about the multiple definition of the sym-
bolD). Sample modules in this book use __NO_VERSION_ _ to this end.

Most dependencies based on the kernel version can be worked around with pre-
processor conditionals by exploiting KERNEL_VERSION and LINUX_VER-
SION_CODE. Version dependency should, however, not clutter driver code with
hairy #ifdef conditionals; the best way to deal with incompatibilities is by con-
fining them to a specific header file. That’'s why our sample code includes a sys-
dep.h header, used to hide all incompatibilities in suitable macro definitions.

The first version dependency we are going to face is in the definition of a “make
install” rule for our drivers. As you may expect, the installation directory,
which varies according to the kernel version being used, is chosen by looking in
version.h. The following fragment comes from the file Rules.make, which is
included by all makefiles:

VERSIONFILE = $(INCLUDEDIR)/linux/version.h
VERSION = $(shell awk -F\" ’/REL/ {print $$2}’ $(VERSIONFILE))
INSTALLDIR = /lib/modules/$ (VERSION) /misc

We chose to install all of our drivers in the misc directory; this is both the right
choice for miscellaneous add-ons and a good way to avoid dealing with the
change in the directory structure under /lib/modules that was introduced right
before version 2.4 of the kernel was released. Even though the new directory
structure is more complicated, the misc directory is used by both old and new ver-
sions of the modutils package.

With the definition of INSTALLDIR just given, the install rule of each makefile,
then, is laid out like this:

install:

install -d $(INSTALLDIR)
install -c $(OBJS) $(INSTALLDIR)

26

22 June 2001 16:34

The Kernel Symbol Table

Platform Dependency

Each computer platform has its peculiarities, and kernel designers are free to
exploit all the peculiarities to achieve better performance in the target object file.

Unlike application developers, who must link their code with precompiled
libraries and stick to conventions on parameter passing, kernel developers can
dedicate some processor registers to specific roles, and they have done so. More-
over, kernel code can be optimized for a specific processor in a CPU family to get
the best from the target platform: unlike applications that are often distributed in
binary format, a custom compilation of the kernel can be optimized for a specific
computer set.

Modularized code, in order to be interoperable with the kernel, needs to be com-
piled using the same options used in compiling the kernel (i.e., reserving the same
registers for special use and performing the same optimizations). For this reason,
our top-level Rules.make includes a platform-specific file that complements the
makefiles with extra definitions. All of those files are called Makefile.plat-
form and assign suitable values to make variables according to the current kernel
configuration.

Another interesting feature of this layout of makefiles is that cross compilation is
supported for the whole tree of sample files. Whenever you need to cross compile
for your target platform, you’ll need to replace all of your tools (gcc, Id, etc.) with
another set of tools (for example, m68k-linux-gcc, mo8k-linux-Id). The prefix to
be used is defined as $ (CROSS_COMPILE), either in the make command line or
in your environment.

The SPARC architecture is a special case that must be handled by the makefiles.
User-space programs running on the SPARC64 (SPARC V9) platform are the same
binaries you run on SPARC32 (SPARC V8). Therefore, the default compiler running
on SPARC64 (gco) generates SPARC32 object code. The kernel, on the other hand,
must run SPARC V9 object code, so a cross compiler is needed. All GNU/Linux dis-
tributions for SPARC64 include a suitable cross compiler, which the makefiles
select.

Although the complete list of version and platform dependencies is slightly more
complicated than shown here, the previous description and the set of makefiles
we provide is enough to get things going. The set of makefiles and the kernel
sources can be browsed if you are looking for more detailed information.

The Kernel Symbol Table

We've seen how insmod resolves undefined symbols against the table of public
kernel symbols. The table contains the addresses of global kernel items—

27

22 June 2001 16:34

Chapter 2: Building and Running Modules

functions and variables—that are needed to implement modularized drivers. The
public symbol table can be read in text form from the file /proc/ksyms (assuming,
of course, that your kernel has support for the /proc filesystem—which it really
should).

When a module is loaded, any symbol exported by the module becomes part of
the kernel symbol table, and you can see it appear in /proc/ksyms or in the output
of the ksyms command.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main-
stream kernel sources as well: the msdos filesystem relies on symbols exported by
the fat module, and each input USB device module stacks on the wusbcore and
input modules.

Module stacking is useful in complex projects. If a new abstraction is implemented
in the form of a device driver, it might offer a plug for hardware-specific imple-
mentations. For example, the video-for-linux set of drivers is split into a generic
module that exports symbols used by lower-level device drivers for specific hard-
ware. According to your setup, you load the generic video module and the spe-
cific module for your installed hardware. Support for parallel ports and the wide
variety of attachable devices is handled in the same way, as is the USB kernel sub-
system. Stacking in the parallel port subsystem is shown in Figure 2-2; the arrows
show the communications between the modules (with some example functions
and data structures) and with the kernel programming interface.

Low-level
device
Port sharing operations | .ot e bp Kernel API
and device —
i i (Message
registration | parport printing, driver
 — i registration,
1p port allocation,
> etc.)

Figure 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modprobe utility.
modprobe functions in much the same way as insmod, but it also loads any other
modules that are required by the module you want to load. Thus, one modprobe
command can sometimes replace several invocations of insmod (although you’ll
still need insmod when loading your own modules from the current directory,
because modprobe only looks in the tree of installed modules).

28

22 June 2001 16:34

Initialization and Shutdown

Layered modularization can help reduce development time by simplifying each
layer. This is similar to the separation between mechanism and policy that we dis-
cussed in Chapter 1.

In the usual case, a module implements its own functionality without the need to
export any symbols at all. You will need to export symbols, however, whenever
other modules may benefit from using them. You may also need to include spe-
cific instructions to avoid exporting all non-static symbols, as most versions
(but not alD) of modutils export all of them by default.

The Linux kernel header files provide a convenient way to manage the visibility of
your symbols, thus reducing namespace pollution and promoting proper informa-
tion hiding. The mechanism described in this section works with kernels 2.1.18
and later; the 2.0 kernel had a completely different mechanism, which is described
at the end of the chapter.

If your module exports no symbols at all, you might want to make that explicit by
placing a line with this macro call in your source file:

EXPORT_NO_SYMBOLS;

The macro expands to an assembler directive and may appear anywhere within
the module. Portable code, however, should place it within the module initializa-
tion function (init_module), because the version of this macro defined in sysdep.h
for older kernels will work only there.

If, on the other hand, you need to export a subset of symbols from your module,
the first step is defining the preprocessor macro EXPORT_SYMTAB. This macro
must be defined before including module.b. 1t is common to define it at compile
time with the —D compiler flag in Makefile.

If EXPORT_SYMTAB is defined, individual symbols are exported with a couple of
macros:

EXPORT_SYMBOL (name) ;
EXPORT_SYMBOL_NOVERS (name) ;

Either version of the macro will make the given symbol available outside the mod-
ule; the second version (EXPORT_SYMBOL_NOVERS) exports the symbol with no
versioning information (described in Chapter 11). Symbols must be exported out-
side of any function because the macros expand to the declaration of a variable.
(Interested readers can look at <linux/module.h> for the details, even though
the details are not needed to make things work.)

Initialization and Shutdown

As already mentioned, init_module registers any facility offered by the module. By
Sfacility, we mean a new functionality, be it a whole driver or a new software
abstraction, that can be accessed by an application.

29

22 June 2001 16:34

Chapter 2: Building and Running Modules

Modules can register many different types of facilities; for each facility, there is a
specific kernel function that accomplishes this registration. The arguments passed
to the kernel registration functions are usually a pointer to a data structure describ-
ing the new facility and the name of the facility being registered. The data struc-
ture usually embeds pointers to module functions, which is how functions in the
module body get called.

The items that can be registered exceed the list of device types mentioned in
Chapter 1. They include serial ports, miscellaneous devices, /proc files, executable
domains, and line disciplines. Many of those registrable items support functions
that aren’t directly related to hardware but remain in the “software abstractions”
field. Those items can be registered because they are integrated into the driver’s
functionality anyway (like /proc files and line disciplines for example).

There are other facilities that can be registered as add-ons for certain drivers, but
their use is so specific that it's not worth talking about them; they use the stacking
technique, as described earlier in “The Kernel Symbol Table.” If you want to probe
further, you can grep for EXPORT_SYMBOL in the kernel sources and find the
entry points offered by different drivers. Most registration functions are prefixed
with register_, so another possible way to find them is to grep for register_
in /proc/ksyms.

Error Handling in init_module

If any errors occur when you register utilities, you must undo any registration
activities performed before the failure. An error can happen, for example, if there
isn’t enough memory in the system to allocate a new data structure or because a
resource being requested is already being used by other drivers. Though unlikely,
it might happen, and good program code must be prepared to handle this event.

Linux doesn’t keep a per-module registry of facilities that have been registered, so
the module must back out of everything itself if init_module fails at some point. If
you ever fail to unregister what you obtained, the kernel is left in an unstable
state: you can't register your facilities again by reloading the module because they
will appear to be busy, and you can’t unregister them because you’d need the
same pointer you used to register and you’re not likely to be able to figure out the
address. Recovery from such situations is tricky, and you’ll be often forced to
reboot in order to be able to load a newer revision of your module.

Error recovery is sometimes best handled with the goto statement. We normally
hate to use goto, but in our opinion this is one situation (well, the only situation)
where it is useful. In the kernel, goto is often used as shown here to deal with
errors.

The following sample code (using fictitious registration and unregistration func-
tions) behaves correctly if initialization fails at any point.

30

22 June 2001 16:34

Initialization and Shutdown

int init_module (void)
{

int err;

/* registration takes a pointer and a name */
err = register_this(ptrl, "skull");

if (err) goto fail_this;

err = register_that (ptr2, "skull");

if (err) goto fail_that;

err = register_those(ptr3, "skull");

if (err) goto fail_those;

return 0; /* success */

fail those: unregister_that (ptr2, "skull");
fail_that: unregister_this(ptrl, "skull");
fail_this: return err; /* propagate the error */

}

This code attempts to register three (fictitious) facilities. The goto statement is
used in case of failure to cause the unregistration of only the facilities that had
been successfully registered before things went bad.

Another option, requiring no hairy goto statements, is keeping track of what has
been successfully registered and calling cleanup_module in case of any error. The
cleanup function will only unroll the steps that have been successfully accom-
plished. This alternative, however, requires more code and more CPU time, so in
fast paths you’ll still resort to goto as the best error-recovery tool. The return
value of init_module, err, is an error code. In the Linux kernel, error codes are
negative numbers belonging to the set defined in <linux/errno.h>. If you
want to generate your own error codes instead of returning what you get from
other functions, you should include <linux/errno.h> in order to use symbolic
values such as -ENODEV, -ENOMEM, and so on. It is always good practice to
return appropriate error codes, because user programs can turn them to meaning-
ful strings using perror or similar means. (However, it's interesting to note that sev-
eral versions of modutils returned a “Device busy” message for any error returned
by init_module; the problem has only been fixed in recent releases.)

Obviously, cleanup_module must undo any registration performed by init_mod-
ule, and it is customary (but not mandatory) to unregister facilities in the reverse
order used to register them:

void cleanup_module (void)

{

unregister_those(ptr3, "skull");
unregister_that (ptr2, "skull");
unregister_this(ptrl, "skull");
return;

}

31

22 June 2001 16:34

Chapter 2: Building and Running Modules

If your initialization and cleanup are more complex than dealing with a few items,
the goto approach may become difficult to manage, because all the cleanup code
must be repeated within init_module, with several labels intermixed. Sometimes,
therefore, a different layout of the code proves more successful.

What you’d do to minimize code duplication and keep everything streamlined is to
call cleanup_module from within init_module whenever an error occurs. The
cleanup function, then, must check the status of each item before undoing its reg-
istration. In its simplest form, the code looks like the following:

struct something *iteml;
struct somethingelse *item2;
int stuff_ok;

void cleanup_module (void)

{

if (iteml)

release_thing(iteml) ;

if (item2)
release_thing2 (item2) ;

if (stuff_ok)
unregister_stuff () ;
return;

}

int init_module (void)
{
int err = -ENOMEM;

iteml = allocate_thing(arguments) ;
item2 = allocate_thing2 (arguments2) ;
if (litem2 || !item2)

goto fail;

err = register_stuff(iteml, item2);
if (lerr)

stuff_ok = 1;
else

goto fail;
return 0; /* success */

fail:
cleanup_module() ;
return err;

}

As shown in this code, you may or may not need external flags to mark success of
the initialization step, depending on the semantics of the registration/allocation
function you call. Whether or not flags are needed, this kind of initialization scales
well to a large number of items and is often better than the technique shown
earlier.

32

22 June 2001 16:34

Initialization and Shutdown

The Usage Count

The system keeps a usage count for every module in order to determine whether
the module can be safely removed. The system needs this information because a
module can’t be unloaded if it is busy: you can’t remove a filesystem type while
the filesystem is mounted, and you can’t drop a char device while a process is
using it, or you’'ll experience some sort of segmentation fault or kernel panic when
wild pointers get dereferenced.

In modern kernels, the system can automatically track the usage count for you,
using a mechanism that we will see in the next chapter. There are still times, how-
ever, when you will need to adjust the usage count manually. Code that must be
portable to older kernels must still use manual usage count maintenance as well.
To work with the usage count, use these three macros:

MOD_INC_USE_COUNT
Increments the count for the current module

MOD_DEC_USE_COUNT
Decrements the count

MOD_IN_USE
Evaluates to true if the count is not zero

The macros are defined in <linux/module.h>, and they act on internal data
structures that shouldn’t be accessed directly by the programmer. The internals of
module management changed a lot during 2.1 development and were completely
rewritten in 2.1.18, but the use of these macros did not change.

Note that there’s no need to check for MOD_IN_USE from within cleanup_module,
because the check is performed by the system call sys_delete_module (defined in
kernel/module.c) in advance.

Proper management of the module usage count is critical for system stability.
Remember that the kernel can decide to try to unload your module at absolutely
any time. A common module programming error is to start a series of operations
(in response, say, to an open request) and increment the usage count at the end. If
the kernel unloads the module halfway through those operations, chaos is
ensured. To avoid this kind of problem, you should call MOD_INC_USE_COUNT
before doing almost anything else in a module.

You won’t be able to unload a module if you lose track of the usage count. This
situation may very well happen during development, so you should keep it in
mind. For example, if a process gets destroyed because your driver dereferenced a
NULL pointer, the driver won’t be able to close the device, and the usage count
won't fall back to zero. One possible solution is to completely disable the usage
count during the debugging cycle by redefining both MOD_INC_USE_COUNT and

33

22 June 2001 16:34

Chapter 2: Building and Running Modules

MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method
to force the counter to zero (you'll see this done in the section “Using the ioctl
Argument” in Chapter 5). Sanity checks should never be circumvented in a pro-
duction module. For debugging, however, sometimes a brute-force attitude helps
save development time and is therefore acceptable.

The current value of the usage count is found in the third field of each entry in
/proc/modules. This file shows the modules currently loaded in the system, with
one entry for each module. The fields are the name of the module, the number of
bytes of memory it uses, and the current usage count. This is a typical /proc/mod-
ules file:

parport_pc 7604 1 (autoclean)

1p 4800 0 (unused)

parport 8084 1 [parport_probe parport_pc 1lp]
lockd 33256 1 (autoclean)

sunrpc 56612 1 (autoclean) [lockd]

ds 6252 1

182365 22304 1

pcmcia_core 41280 0 [ds 182365]

Here we see several modules in the system. Among other things, the parallel port
modules have been loaded in a stacked manner, as we saw in Figure 2-2. The
(autoclean) marker identifies modules managed by kmod or kerneld (see
Chapter 11); the (unused) marker means exactly that. Other flags exist as well.
In Linux 2.0, the second (size) field was expressed in pages (4 KB each on most
platforms) rather than bytes.

Unloading

To unload a module, use the rmmod command. Its task is much simpler than
loading, since no linking has to be performed. The command invokes the
delete_module system call, which calls cleanup_module in the module itself if the
usage count is zero or returns an error otherwise.

The cleanup_module implementation is in charge of unregistering every item that
was registered by the module. Only the exported symbols are removed automati-
cally.

Explicit Initialization and Cleanup Functions

As we have seen, the kernel calls init_module to initialize a newly loaded module,
and calls cleanup_module just before module removal. In modern kernels, how-
ever, these functions often have different names. As of kernel 2.3.13, a facility
exists for explicitly naming the module initialization and cleanup routines; using
this facility is the preferred programming style.

34

22 June 2001 16:34

Using Resources

Consider an example. If your module names its initialization routine my_init
(instead of init_module) and its cleanup routine my_cleanup, you would mark
them with the following two lines (usually at the end of the source file):

module_init(my_init);
module_exit (my_cleanup) ;

Note that your code must include <linux/init.h> to use module_init and
module_exit.

The advantage of doing things this way is that each initialization and cleanup func-
tion in the kernel can have a unique name, which helps with debugging. These
functions also make life easier for those writing drivers that work either as a mod-
ule or built directly into the kernel. However, use of module_init and module_exit
is not required if your initialization and cleanup functions use the old names. In
fact, for modules, the only thing they do is define init_module and cleanup_mod-
ule as new names for the given functions.

If you dig through the kernel source (in versions 2.2 and later), you will likely see
a slightly different form of declaration for module initialization and cleanup func-
tions, which looks like the following:

static int _ _init my init(void)

{
}

static void _ _exit my_ cleanup (void)
{

}

The attribute __init, when used in this way, will cause the initialization function
to be discarded, and its memory reclaimed, after initialization is complete. It only
works, however, for built-in drivers; it has no effect on modules. _ _exit, instead,
causes the omission of the marked function when the driver is not built as a mod-
ule; again, in modules, it has no effect.

The use of __init (and _ _initdata for data items) can reduce the amount of
memory used by the kernel. There is no harm in marking module initialization
functions with __init, even though currently there is no benefit either. Manage-
ment of initialization sections has not been implemented yet for modules, but it’s a
possible enhancement for the future.

Using Resources

A module can’'t accomplish its task without using system resources such as

35

22 June 2001 16:34

Chapter 2: Building and Running Modules

memory, I/O ports, I/O memory, and interrupt lines, as well as DMA channels if
you use old-fashioned DMA controllers like the Industry Standard Architecture
(ISA) one.

As a programmer, you are already accustomed to managing memory allocation;
writing kernel code is no different in this regard. Your program obtains a memory
area using kmalloc and releases it using kfree. These functions behave like malloc
and free, except that kmalloc takes an additional argument, the priority. Usually, a
priority of GFP_KERNEL or GFP_USER will do. The GFP acronym stands for “get
free page.” (Memory allocation is covered in detail in Chapter 7.)

Beginning driver programmers may initially be surprised at the need to allocate
I/O ports, I/O memory,” and interrupt lines explicitly. After all, it is possible for a
kernel module to simply access these resources without telling the operating sys-
tem about it. Although system memory is anonymous and may be allocated from
anywhere, I/O memory, ports, and interrupts have very specific roles. For
instance, a driver needs to be able to allocate the exact ports it needs, not just
some ports. But drivers cannot just go about making use of these system resources
without first ensuring that they are not already in use elsewhere.

1/0 Ports and 1/0O Memory

The job of a typical driver is, for the most part, writing and reading I/O ports and
I/O memory. Access to I/O ports and I/O memory (collectively called /O regions)
happens both at initialization time and during normal operations.

Unfortunately, not all bus architectures offer a clean way to identify I/O regions
belonging to each device, and sometimes the driver must guess where its I/O
regions live, or even probe for the devices by reading and writing to “possible”
address ranges. This problem is especially true of the ISA bus, which is still in use
for simple devices to plug in a personal computer and is very popular in the
industrial world in its PC/104 implementation (see PC/104 and PC/104+ in Chapter
15).

Despite the features (or lack of features) of the bus being used by a hardware
device, the device driver should be guaranteed exclusive access to its I/O regions
in order to prevent interference from other drivers. For example, if a module prob-
ing for its hardware should happen to write to ports owned by another device,
weird things would undoubtedly happen.

The developers of Linux chose to implement a request/free mechanism for I/O
regions, mainly as a way to prevent collisions between different devices. The
mechanism has long been in use for I/O ports and was recently generalized to
manage resource allocation at large. Note that this mechanism is just a software

* The memory areas that reside on the peripheral device are commonly called /O memory
to differentiate them from system RAM, which is customarily called memory).

36

22 June 2001 16:34

Using Resources

abstraction that helps system housekeeping, and may or may not be enforced by
hardware features. For example, unauthorized access to I/O ports doesn’t produce
any error condition equivalent to “segmentation fault”—the hardware can’t enforce
port registration.

Information about registered resources is available in text form in the files
/proc/ioports and /proc/iomem, although the latter was only introduced during 2.3
development. We'll discuss version 2.4 now, introducing portability issues at the
end of the chapter.

Ports

A typical /proc/ioports file on a recent PC that is running version 2.4 of the kernel
will look like the following:

0000-001f : dmal
0020-003f : picl
0040-005f : timer
0060-006f : keyboard
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : idel
01£0-01£f7 : ide0
02f8-02ff : serial(set)
0300-031f : NE2000
0376-0376 : idel
03c0-03df : vga+
03f6-03f6 : ide0l
03£f8-03ff : serial(set)
1000-103f : Intel Corporation 82371AB PIIX4 ACPI
1000-1003 : acpi
1004-1005 : acpi
1008-100b : acpi
100c-100f : acpi
1100-110f : Intel Corporation 82371AB PIIX4 IDE
1300-131f : pcnet_cs
1400-141f : Intel Corporation 82371AB PIIX4 ACPI
1800-18ff : PCI CardBus #02
1c00-1cff : PCI CardBus #04
5800-581f : Intel Corporation 82371AB PIIX4 USB
d000-dfff : PCI Bus #01
d000-d0ff : ATI Technologies Inc 3D Rage LT Pro AGP-133

Each entry in the file specifies (in hexadecimal) a range of ports locked by a driver
or owned by a hardware device. In earlier versions of the kernel the file had the
same format, but without the “layered” structure that is shown through indenta-
tion.

37

22 June 2001 16:34

Chapter 2: Building and Running Modules

The file can be used to avoid port collisions when a new device is added to the
system and an I/O range must be selected by moving jumpers: the user can check
what ports are already in use and set up the new device to use an available I/O
range. Although you might object that most modern hardware doesn’t use jumpers
any more, the issue is still relevant for custom devices and industrial components.

But what is more important than the ioports file itself is the data structure behind
it. When the software driver for a device initializes itself, it can know what port
ranges are already in use; if the driver needs to probe I/O ports to detect the new
device, it will be able to avoid probing those ports that are already in use by other
drivers.

ISA probing is in fact a risky task, and several drivers distributed with the official
Linux kernel refuse to perform probing when loaded as modules, to avoid the risk
of destroying a running system by poking around in ports where some yet-
unknown hardware may live. Fortunately, modern (as well as old-but-well-
thought-out) bus architectures are immune to all these problems.

The programming interface used to access the I/O registry is made up of three
functions:

int check_region(unsigned long start, unsigned long len);
struct resource *request_region(unsigned long start,
unsigned long len, char *name) ;

void release_region(unsigned long start, unsigned long len);

check_region may be called to see if a range of ports is available for allocation; it
returns a negative error code (such as ~EBUSY or -~EINVAL) if the answer is no.
request_region will actually allocate the port range, returning a non-NULL pointer
value if the allocation succeeds. Drivers don’t need to use or save the actual
pointer returned—checking against NULL is all you need to do.* Code that needs
to work only with 2.4 kernels need not call check_region at all; in fact, it’s better
not to, since things can change between the calls to check _region and
request_region. If you want to be portable to older kernels, however, you must
use check_region because request_region used to return void before 2.4. Your
driver should call release_region, of course, to release the ports when it is done
with them.

The three functions are actually macros, and they are declared in
<linux/ioport.h>.

The typical sequence for registering ports is the following, as it appears in the
skull sample driver. (The function skull_probe_hw is not shown here because it
contains device-specific code.)

* The actual pointer is used only when the function is called internally by the resource
management subsystem of the kernel.

38

22 June 2001 16:34

Using Resources

#include <linux/ioport.h>

#include <linux/errno.h>

static int skull_detect (unsigned int port, unsigned int range)
{

int err;

if ((err = check_region(port,range)) < 0) return err; /* busy */

if (skull_probe_hw(port,range) != 0) return -ENODEV; /* not found */
request_region (port, range, "skull") ; /* "Can’'t fail" */

return 0;

}

This code first looks to see if the required range of ports is available; if the ports
cannot be allocated, there is no point in looking for the hardware. The actual allo-
cation of the ports is deferred until after the device is known to exist. The
request_region call should never fail; the kernel only loads a single module at a
time, so there should not be a problem with other modules slipping in and steal-
ing the ports during the detection phase. Paranoid code can check, but bear in
mind that kernels prior to 2.4 define request_region as returning void.

Any 1/O ports allocated by the driver must eventually be released; skull does it
from within cleanup_module:

static void skull_release(unsigned int port, unsigned int range)

{
release_region(port, range) ;
}

The request/free approach to resources is similar to the register/unregister
sequence described earlier for facilities and fits well in the goto-based implemen-
tation scheme already outlined.

Memory

Similar to what happens for I/O ports, I/O memory information is available in the
/proc/iomem file. This is a fraction of the file as it appears on a personal computer:

00000000-0009fbff System RAM
0009£fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7£f£ff : video ROM
000£f0000-000f£ff£ff System ROM

00100000-03feffff

00100000-0022¢c557 :
0022c558-0024455f :

20000000-2fffffff
68000000-68000££f£f
68001000-68001£fff
e0000000-e3f££f££fE
e4000000-e7£f££££E

e4000000-e4ffffff :

System RAM

Kernel code
Kernel data
Intel Corporation
Texas Instruments
Texas Instruments
PCI Bus #01

PCI Bus #01

ATI Technologies

440BX/ZX - 82443BX/ZX Host bridge
PCI1225
PCI1225 (#2)

Inc 3D Rage LT Pro AGP-133

39

22 June 2001 16:34

Chapter 2: Building and Running Modules

e6000000-e6000fff : ATI Technologies Inc 3D Rage LT Pro AGP-133
f££c0000-f£f£££ff£ff : reserved

Once again, the values shown are hexadecimal ranges, and the string after the
colon is the name of the “owner” of the I/O region.

As far as driver writing is concerned, the registry for I/O memory is accessed in
the same way as for I/O ports, since they are actually based on the same internal
mechanism.

To obtain and relinquish access to a certain I/O memory region, the driver should
use the following calls:

int check_mem_ region(unsigned long start, unsigned long len);

int request_mem_region (unsigned long start, unsigned long len,
char *name) ;

int release_mem_region(unsigned long start, unsigned long len);

A typical driver will already know its own I/O memory range, and the sequence
shown previously for I/O ports will reduce to the following:

if (check_mem_ region(mem_addr, mem_size)) { printk("drivername:
memory already in use\n"); return -EBUSY; }
request_mem_region (mem_addr, mem_size, "drivername") ;

Resource Allocation in Linux 2.4

The current resource allocation mechanism was introduced in Linux 2.3.11 and
provides a flexible way of controlling system resources. This section briefly
describes the mechanism. However, the basic resource allocation functions
(request_region and the rest) are still implemented (via macros) and are still uni-
versally used because they are backward compatible with earlier kernel versions.
Most module programmers will not need to know about what is really happening
under the hood, but those working on more complex drivers may be interested.

Linux resource management is able to control arbitrary resources, and it can do so
in a hierarchical manner. Globally known resources (the range of I/O ports, say)
can be subdivided into smaller subsets—for example, the resources associated
with a particular bus slot. Individual drivers can then further subdivide their range
if need be.

Resource ranges are described via a resource structure, declared in
<linux/ioport.h>:

struct resource {

const char *name;

unsigned long start, end;

unsigned long flags;

struct resource *parent, *sibling, *child;
};

40

22 June 2001 16:34

Using Resources

Top-level (root) resources are created at boot time. For example, the resource
structure describing the I/O port range is created as follows:

struct resource ioport_resource =
{ "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

Thus, the name of the resource is PCI IO, and it covers a range from zero
through TO_SPACE_LIMIT, which, according to the hardware platform being run,
can be OxEfE£££f (16 bits of address space, as happens on the x86, IA-64, Alpha,
M68k, and MIPS), Oxffffffff (32 bitss SPARC, PPC, SH) or
OxXfEEffEEEEEEELEEE (64 bits: SPARCO4).

Subranges of a given resource may be created with allocate_resource. For exam-
ple, during PCI initialization a new resource is created for a region that is actually
assigned to a physical device. When the PCI code reads those port or memory
assignments, it creates a new resource for just those regions, and allocates them
under ioport_resource or iomem_resource.

A driver can then request a subset of a particular resource (actually a subrange of
a global resource) and mark it as busy by calling _ _request_region, which returns
a pointer to a new struct resource data structure that describes the resource
being requested (or returns NULL in case of error). The structure is already part of
the global resource tree, and the driver is not allowed to use it at will.

An interested reader may enjoy looking at the details by browsing the source in
kernel/resource.c and looking at the use of the resource management scheme in
the rest of the kernel. Most driver writers, however, will be more than adequately
served by request_region and the other functions introduced in the previous sec-
tion.

This layered mechanism brings a couple of benefits. One is that it makes the I/O
structure of the system apparent within the data structures of the kernel. The result
shows up in /proc/ioports, for example:

e800-e8ff : Adaptec AHA-2940U2/W / 7890
e800-e8be : aic7xxx

The range e800-e8ff is allocated to an Adaptec card, which has identified itself
to the PCI bus driver. The aic 7xxx driver has then requested most of that range—
in this case, the part corresponding to real ports on the card.

The other advantage to controlling resources in this way is that it partitions the
port space into distinct subranges that reflect the hardware of the underlying sys-
tem. Since the resource allocator will not allow an allocation to cross subranges, it
can block a buggy driver (or one looking for hardware that does not exist on the
system) from allocating ports that belong to more than range—even if some of
those ports are unallocated at the time.

41

22 June 2001 16:34

Chapter 2: Building and Running Modules

Automatic and Manual Configuration

Several parameters that a driver needs to know can change from system to system.
For instance, the driver must know the hardware’s actual I/O addresses, or mem-
ory range (this is not a problem with well-designed bus interfaces and only applies
to ISA devices). Sometimes you’'ll need to pass parameters to a driver to help it in
finding its own device or to enable/disable specific features.

Depending on the device, there may be other parameters in addition to the I/O
address that affect the driver’s behavior, such as device brand and release number.
It's essential for the driver to know the value of these parameters in order to work
correctly. Setting up the driver with the correct values (i.e., configuring it) is one
of the tricky tasks that need to be performed during driver initialization.

Basically, there are two ways to obtain the correct values: either the user specifies
them explicitly or the driver autodetects them. Although autodetection is undoubt-
edly the best approach to driver configuration, user configuration is much easier to
implement. A suitable trade-off for a driver writer is to implement automatic con-
figuration whenever possible, while allowing user configuration as an option to
override autodetection. An additional advantage of this approach to configuration
is that the initial development can be done without autodetection, by specifying
the parameters at load time, and autodetection can be implemented later.

Many drivers also have configuration options that control other aspects of their
operation. For example, drivers for SCSI adapters often have options controlling
the use of tagged command queuing, and the Integrated Device Electronics (IDE)
drivers allow user control of DMA operations. Thus, even if your driver relies
entirely on autodetection to locate hardware, you may want to make other config-
uration options available to the user.

Parameter values can be assigned at load time by insmod or modprobe; the latter
can also read parameter assignment from a configuration file (typically
/etc/modules.conf). The commands accept the specification of integer and string
values on the command line. Thus, if your module were to provide an integer
parameter called skull_ival and a string parameter skull_sval, the parameters could
be set at module load time with an insmod command like:

insmod skull skull_ival=666 skull_sval="the beast"

However, before insmod can change module parameters, the module must make
them available. Parameters are declared with the MODULE_PARM macro, which is
defined in module.h. MODULE_PARM takes two parameters: the name of the vari-
able, and a string describing its type. The macro should be placed outside of any
function and is typically found near the head of the source file. The two parame-
ters mentioned earlier could be declared with the following lines:

42

22 June 2001 16:34

Automatic and Manual Configuration

int skull_ival=0;
char *skull_sval;

MODULE_PARM (skull_ival, "i");
MODULE_PARM (skull_sval, "s");

Five types are currently supported for module parameters: b, one byte; h, a short
(two bytes); i, an integer; 1, a long; and s, a string. In the case of string values, a
pointer variable should be declared; insmod will allocate the memory for the user-
supplied parameter and set the variable accordingly. An integer value preceding
the type indicates an array of a given length; two numbers, separated by a
hyphen, give a minimum and maximum number of values. If you want to find the
author’s description of this feature, you should refer to the header file
<linux/module.h>.

As an example, an array that must have at least two and no more than four values
could be declared as:

int skull_arrayl[4];
MODULE_PARM (skull_array, "2-4i");

There is also a macro MODULE_PARM DESC, which allows the programmer to
provide a description for a module parameter. This description is stored in the
object file; it can be viewed with a tool like objdump, and can also be displayed
by automated system administration tools. An example might be as follows:

int base_port = 0x300;
MODULE_PARM (base_port, "i");
MODULE_PARM_DESC (base_port, "The base I/0 port (default 0x300)");

All module parameters should be given a default value; insmod will change the
value only if explicitly told to by the user. The module can check for explicit
parameters by testing parameters against their default values. Automatic configura-
tion, then, can be designed to work this way: if the configuration variables have
the default value, perform autodetection; otherwise, keep the current value. In
order for this technique to work, the “default” value should be one that the user
would never actually want to specify at load time.

The following code shows how sku/l autodetects the port address of a device. In
this example, autodetection is used to look for multiple devices, while manual
configuration is restricted to a single device. The function skull_detect occurred
earlier, in “Ports,” while skull_init_board is in charge of device-specific initializa-
tion and thus is not shown.

/*

* port ranges: the device can reside between

* 0x280 and 0x300, in steps of 0x10. It uses 0x10 ports.
*/

#define SKULL_PORT_FLOOR 0x280

#define SKULL_PORT_ CEIL 0x300

#define SKULL_PORT_RANGE 0x010

43

22 June 2001 16:34

Chapter 2: Building and Running Modules

/*

* the following function performs autodetection, unless a specific
* value was assigned by insmod to "skull_port_base"

*/

static int skull_port_base=0; /* 0 forces autodetection */
MODULE_PARM (skull_port_base, "i");
MODULE_PARM_DESC (skull_port_base, "Base I/O port for skull");

static int skull_find _hw(void) /* returns the # of devices */
{
/* base is either the load-time value or the first trial */
int base = skull_port_base ? skull_port_base
SKULL_PORT_FLOOR;
int result = 0;

/* loop one time if value assigned; try them all if autodetecting */

do {

if (skull_detect (base, SKULL_PORT RANGE) == 0) {

skull_init_board (base) ;

result++;

}

base += SKULL_PORT RANGE; /* prepare for next trial */
}
while (skull_port_base == 0 && base < SKULL_PORT CEIL) ;

return result;

}

If the configuration variables are used only within the driver (they are not pub-
lished in the kernel’s symbol table), the driver writer can make life a little easier
for the user by leaving off the prefix on the variable names (in this case,
skull_). Prefixes usually mean little to users except extra typing.

For completeness, there are three other macros that place documentation into the
object file. They are as follows:

MODULE_AUTHOR (name)
Puts the author’s name into the object file.

MODULE_DESCRIPTION (desc)
Puts a description of the module into the object file.

MODULE_SUPPORTED_DEVICE (dev)
Places an entry describing what device is supported by this module. Com-
ments in the kernel source suggest that this parameter may eventually be used
to help with automated module loading, but no such use is made at this time.

44

22 June 2001 16:34

Doing It in User Space

Doing It in User Space

A Unix programmer who’s addressing kernel issues for the first time might well be
nervous about writing a module. Writing a user program that reads and writes
directly to the device ports is much easier.

Indeed, there are some arguments in favor of user-space programming, and some-
times writing a so-called user-space device driver is a wise alternative to kernel
hacking.

The advantages of user-space drivers can be summarized as follows:

e The full C library can be linked in. The driver can perform many exotic tasks
without resorting to external programs (the utility programs implementing
usage policies that are usually distributed along with the driver itself).

e The programmer can run a conventional debugger on the driver code without
having to go through contortions to debug a running kernel.

e If a user-space driver hangs, you can simply kill it. Problems with the driver
are unlikely to hang the entire system, unless the hardware being controlled is
really misbehaving.

e User memory is swappable, unlike kernel memory. An infrequently used
device with a huge driver won’t occupy RAM that other programs could be
using, except when it is actually in use.

e A well-designed driver program can still allow concurrent access to a device.

An example of a user-space driver is the X server: it knows exactly what the hard-
ware can do and what it can’t, and it offers the graphic resources to all X clients.
Note, however, that there is a slow but steady drift toward frame-buffer-based
graphics environments, where the X server acts only as a server based on a real
kernel-space device driver for actual graphic manipulation.

Usually, the writer of a user-space driver implements a server process, taking over
from the kernel the task of being the single agent in charge of hardware control.
Client applications can then connect to the server to perform actual communica-
tion with the device; a smart driver process can thus allow concurrent access to
the device. This is exactly how the X server works.

Another example of a user-space driver is the ghm mouse server: it performs arbi-
tration of the mouse device between clients, so that several mouse-sensitive appli-
cations can run on different virtual consoles.

Sometimes, though, the user-space driver grants device access to a single program.
This is how /libsuga works. The library, which turns a TTY into a graphics display,
gets linked to the application, thus supplementing the application’s capabilities

45

22 June 2001 16:34

Chapter 2: Building and Running Modules

without resorting to a central authority (e.g., a server). This approach usually gives
you better performance because it skips the communication overhead, but it
requires the application to run as a privileged user (this is one of the problems
being solved by the frame buffer device driver running in kernel space).

But the user-space approach to device driving has a number of drawbacks. The
most important are as follows:

e Interrupts are not available in user space. The only way around this (on the
x806) is to use the vm86 system call, which imposes a performance penalty.*

e Direct access to memory is possible only by mmapping /dev/mem, and only a
privileged user can do that.

e Access to I/O ports is available only after calling ioperm or iopl. Moreover, not
all platforms support these system calls, and access to /dev/port can be too
slow to be effective. Both the system calls and the device file are reserved to a
privileged user.

e Response time is slower, because a context switch is required to transfer infor-
mation or actions between the client and the hardware.

e Worse yet, if the driver has been swapped to disk, response time is unaccept-
ably long. Using the mlock system call might help, but usually you'll need to
lock several memory pages, because a user-space program depends on a lot
of library code. mlock, too, is limited to privileged users.

e The most important devices can’t be handled in user space, including, but not
limited to, network interfaces and block devices.

As you see, user-space drivers can’t do that much after all. Interesting applications
nonetheless exist: for example, support for SCSI scanner devices (implemented by
the SANE package) and CD writers (implemented by cdrecord and other tools). In
both cases, user-level device drivers rely on the “SCSI generic” kernel driver,
which exports low-level SCSI functionality to user-space programs so they can
drive their own hardware.

In order to write a user-space driver, some hardware knowledge is sufficient, and
there’s no need to understand the subtleties of kernel software. We won'’t discuss
user-space drivers any further in this book, but will concentrate on kernel code
instead.

One case in which working in user space might make sense is when you are
beginning to deal with new and unusual hardware. This way you can learn to
manage your hardware without the risk of hanging the whole system. Once you've

* The system call is not discussed in this book because the subject matter of the text is ker-
nel drivers; moreover, vm806 is too platform specific to be really interesting.

46

22 June 2001 16:34

Backward Compatibility

done that, encapsulating the software in a kernel module should be a painless
operation.

Backward Compatibility

The Linux kernel is a moving target—many things change over time as new fea-
tures are developed. The interface that we have described in this chapter is that
provided by the 2.4 kernel; if your code needs to work on older releases, you will
need to take various steps to make that happen.

This is the first of many “backward compatibility” sections in this book. At the end
of each chapter we’ll cover the things that have changed since version 2.0 of the
kernel, and what needs to be done to make your code portable.

For starters, the KERNEL_VERSION macro was introduced in kernel 2.1.90. The
sysdep.bh header file contains a replacement for kernels that need it.

Changes in Resource Management

The new resource management scheme brings in a few portability problems if you
want to write a driver that can run with kernel versions older than 2.4. This section
discusses the portability problems you’ll encounter and how the sysdep.h header
tries to hide them.

The most apparent change brought about by the new resource management code
is the addition of request_mem_region and related functions. Their role is limited
to accessing the I/O memory database, without performing specific operations on
any hardware. What you can do with earlier kernels, thus, is to simply not call the
functions. The sysdep.h header easily accomplishes that by defining the functions
as macros that return 0 for kernels earlier than 2.4.

Another difference between 2.4 and earlier kernel versions is in the actual proto-
types of request_region and related functions.

Kernels earlier than 2.4 declared both request_region and release_region as func-
tions returning void (thus forcing the use of check_region beforehand). The new
implementation, more correctly, has functions that return a pointer value so that
an error condition can be signaled (thus making check_region pretty useless). The
actual pointer value will not generally be useful to driver code for anything other
than a test for NULL, which means that the request failed.

If you want to save a few lines of code in your drivers and are not concerned
about backward portability, you could exploit the new function calls and avoid
using check_region in your code. Actually, check_region is now implemented on
top of request_region, releasing the 1I/O region and returning success if the request
is fulfilled; the overhead is negligible because none of these functions is ever
called from a time-critical code section.

47

22 June 2001 16:34

Chapter 2: Building and Running Modules

If you prefer to be portable, you can stick to the call sequence we suggested ear-
lier in this chapter and ignore the return values of request_region and
release_region. Anyway, sysdep.h declares both functions as macros returning 0
(success), so you can both be portable and check the return value of every func-
tion you call.

The last difference in the I/O registry between version 2.4 and earlier versions of
the kernel is in the data types used for the start and len arguments. Whereas
new kernels always use unsigned long, older kernels used shorter types. This
change has no effect on driver portability, though.

Compiling for Multiprocessor Systems

Version 2.0 of the kernel didn’t use the CONFIG_SMP configuration option to build
for SMP systems; instead, choice was made a global assignment in the main kernel
makefile. Note that modules compiled for an SMP machine will not work in a
uniprocessor kernel, and vice versa, so it is important to get this one right.

The sample code accompanying this book automatically deals with SMP in the
makefiles, so the code shown earlier need not be copied in each module. How-
ever, we do not support SMP under version 2.0 of the kernel. This should not be a
problem because multiprocessor support was not very robust in Linux 2.0, and
everyone running SMP systems should be using 2.2 or 2.4. Version 2.0 is covered
by this book because it's still the platform of choice for small embedded systems
(especially in its no-MMU implementation), but no such system has multiple pro-
CEeSSOrs.

Exporting Symbols in Linux 2.0

The Linux 2.0 symbol export mechanism was built around a function called regis-
ter_symitab. A Linux 2.0 module would build a table describing all of the symbols
to be exported, then would call register_symitab from its initialization function.
Only symbols that were listed in the explicit symbol table were exported to the
kernel. If, instead, the function was not called at all, all global symbols were
exported.

If your module doesn’t need to export any symbols, and you don’t want to declare
everything as static, just hide global symbols by adding the following line to
init_module. This call to register_symtab simply overwrites the module’s default
symbol table with an empty one:

register_ symtab (NULL) ;

This is exactly how sysdep.h defines EXPORT_NO_SYMBOLS when compiling for
version 2.0. This is also why EXPORT_NO_SYMBOLS must appear within init_mod-
ule to work properly under Linux 2.0.

48

22 June 2001 16:34

Backward Compatibility

If you do need to export symbols from your module, you will need to create a
symbol table structure describing these symbols. Filling a Linux 2.0 symbol table
structure is a tricky task, but kernel developers have provided header files to sim-
plify things. The following lines of code show how a symbol table is declared and
exported using the facilities offered by the headers of Linux 2.0:

static struct symbol_table skull_syms = {

#include <linux/symtab_begin.h>
X(skull_£fnl),
X(skull_fn2),
X (skull_variable),
#include <linux/symtab_end.h>
}i

register_symtab (&skull_syms) ;

Writing portable code that controls symbol visibility takes an explicit effort from
the device driver programmer. This is a case where it is not sufficient to define a
few compatibility macros; instead, portability requires a fair amount of conditional
preprocessor code, but the concepts are simple. The first step is to identify the
kernel version in use and to define some symbols accordingly. What we chose to
do in sysdep.h is define a macro REGISTER_SYMTAB () that expands to nothing
on version 2.2 and later and expands to register_symtab on version 2.0. Also,
__USE_OLD_SYMTAB_ _ is defined if the old code must be used.

By making use of this code, a module that exports symbols may now do so
portably. In the sample code is a module, called misc-modules/export.c, that does
nothing except export one symbol. The module, covered in more detail in “Ver-
sion Control in Modules” in Chapter 11, includes the following lines to export the
symbol portably:

#ifdef __USE_OLD_SYMTAB_ _
static struct symbol_table export_syms = {
#include <linux/symtab_begin.h>
X (export_function),
#include <linux/symtab_end.h>
Y
#else
EXPORT_SYMBOL (export_function) ;
#endif

int export_init(void)

{

REGISTER_SYMTAB (&export_syms) ;
return 0;

}

49

22 June 2001 16:34

Chapter 2: Building and Running Modules

If __USE_OLD_SYMTAB_ _ is set (meaning that you are dealing with a 2.0 ker-
neD), the symbol_table structure is defined as needed; otherwise, EXPORT_SYMBOL
is used to export the symbol directly. Then, in init_module, REGISTER_SYMTAB
is called; on anything but a 2.0 kernel, it will expand to nothing.

Module Configuration Parameters

MODULE_PARM was introduced in kernel version 2.1.18. With the 2.0 kernel, no
parameters were declared explicitly; instead, insmod was able to change the value
of any variable within the module. This method had the disadvantage of providing
user access to variables for which this mode of access had not been intended;
there was also no type checking of parameters. MODULE_PARM makes module
parameters much cleaner and safer, but also makes Linux 2.2 modules incompati-
ble with 2.0 kernels.

If 2.0 compatibility is a concern, a simple preprocessor test can be used to define
the various MODULE_ macros to do nothing. The header file sysdep.h in the sam-
ple code defines these macros when needed.

Quick Reference

This section summarizes the kernel functions, variables, macros, and /proc files
that we’ve touched on in this chapter. It is meant to act as a reference. Each item
is listed after the relevant header file, if any. A similar section appears at the end
of every chapter from here on, summarizing the new symbols introduced in the
chapter.

__KERNEL_ _

MODULE
Preprocessor symbols, which must both be defined to compile modularized
kernel code.

__SMP_ _

A preprocessor symbol that must be defined when compiling modules for
symmetric multiprocessor systems.

int init_module(void) ;
void cleanup_module (void) ;
Module entry points, which must be defined in the module object file.

#include <linux/init.h>

module_init (init_function);

module_exit (cleanup_function) ;
The modern mechanism for marking a module’s initialization and cleanup
functions.

50

Quick Reference

#include <linux/module.h>
Required header. It must be included by a module source.

MOD_INC_USE_COUNT;
MOD_DEC_USE_COUNT;
MOD_IN_USE;

Macros that act on the usage count.

/proc/modules
The list of currently loaded modules. Entries contain the module name, the
amount of memory each module occupies, and the usage count. Extra strings
are appended to each line to specify flags that are currently active for the
module.

EXPORT_SYMTAB;
Preprocessor macro, required for modules that export symbols.

EXPORT_NO_SYMBOLS;
Macro used to specify that the module exports no symbols to the kernel.

EXPORT_SYMBOL (symbol) ;

EXPORT_SYMBOL_NOVERS (symbol) ;
Macro used to export a symbol to the kernel. The second form exports with-
out using versioning information.

int register_symtab(struct symbol_table *);
Function used to specify the set of public symbols in the module. Used in 2.0
kernels only.

#include <linux/symtab_begin.h>

X (symbol) ,

#include <linux/symtab_end.h>
Headers and preprocessor macro used to declare a symbol table in the 2.0
kernel.

MODULE_PARM (variable, type);

MODULE_PARM_DESC (variable, description);
Macros that make a module variable available as a parameter that may be
adjusted by the user at module load time.

MODULE_AUTHOR (author) ;
MODULE_DESCRIPTION (description) ;
MODULE_SUPPORTED_DEVICE (device) ;

Place documentation on the module in the object file.

51

22 June 2001 16:34

22 June 2001 16:34

Chapter 2: Building and Running Modules

#include <linux/version.h>
Required header. It is included by <linux/module.h>, unless
_ _NO_VERSION_ _ is defined (see later in this list).

LINUX_VERSION_CODE
Integer macro, useful to #ifdef version dependencies.

char kernel_version[] = UTS_RELEASE;
Required variable in every module. <linux/module.h> defines it, unless
_ _NO_VERSION_ _ is defined (see the following entry).

__NO_VERSTION_ _
Preprocessor symbol. Prevents declaration of kernel_version in
<linux/module.h>.

#include <linux/sched.h>
One of the most important header files. This file contains definitions of much
of the kernel API used by the driver, including functions for sleeping and
numerous variable declarations.

struct task_struct *current;
The current process.

current->pid
current->comm
The process ID and command name for the current process.

#include <linux/kernel.h>
int printk(const char * fmt, ...);
The analogue of printffor kernel code.

#include <linux/malloc.h>

void *kmalloc (unsigned int size, int priority);

void kfree(void *obj);
Analogue of malloc and free for kernel code. Use the value of GFP_KERNEL
as the priority.

#include <linux/ioport.h>
int check_region(unsigned long from, unsigned long extent);
struct resource *request_region(unsigned long from, unsigned
long extent, const char *name) ;
void release_region(unsigned long from, unsigned long
extent) ;
Functions used to register and release 1/O ports.

52

22 June 2001 16:34

Quick Reference

int check_mem region (unsigned long start, unsigned long
extent) ;
struct resource *request_mem_region (unsigned long start,
unsigned long extent, const char *name);
void release_mem region (unsigned long start, unsigned long
extent) ;
Macros used to register and release I/O memory regions.

/proc/ksyms
The public kernel symbol table.

/proc/ioports
The list of ports used by installed devices.

/proc/iomem
The list of allocated memory regions.

53

