
CHAPTER FOUR

DEB UGGING
TECHNIQUES

One of the most compelling problems for anyone writing kernel code is how to
appr oach debugging. Kernel code cannot be easily executed under a debugger,
nor can it be easily traced, because it is a set of functionalities not related to a spe-
cific process. Kernel code errors can also be exceedingly hard to repr oduce and
can bring down the entire system with them, thus destroying much of the evi-
dence that could be used to track them down.

This chapter introduces techniques you can use to monitor kernel code and trace
err ors under such trying circumstances.

Debugg ing by Printing
The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging
ker nel code, you can accomplish the same goal with printk.

pr intk
We used the printk function in earlier chapters with the simplifying assumption
that it works like printf. Now it’s time to introduce some of the differ ences.

One of the differ ences is that printk lets you classify messages according to their
severity by associating differ ent loglevels, or priorities, with the messages. You usu-
ally indicate the loglevel with a macro. For example, KERN_INFO, which we saw
pr epended to some of the earlier print statements, is one of the possible loglevels
of the message. The loglevel macro expands to a string, which is concatenated to
the message text at compile time; that’s why there is no comma between the prior-
ity and the format string in the following examples. Here are two examples of
printk commands, a debug message and a critical message:

97

22 June 2001 16:35

Chapter 4: Debugging Techniques

printk(KERN_DEBUG "Here I am: %s:%i\n", __FILE_ _, __LINE_& _);
printk(KERN_CRIT "I’m trashed; giving up on %p\n", ptr);

Ther e ar e eight possible loglevel strings, defined in the header <linux/ker-
nel.h>:

KERN_EMERG
Used for emergency messages, usually those that precede a crash.

KERN_ALERT
A situation requiring immediate action.

KERN_CRIT
Critical conditions, often related to serious hardware or softwar e failur es.

KERN_ERR
Used to report error conditions; device drivers will often use KERN_ERR to
report hardware dif ficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN_NOTICE
Situations that are nor mal, but still worthy of note. A number of security-
related conditions are reported at this level.

KERN_INFO
Infor mational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

Each string (in the macro expansion) repr esents an integer in angle brackets. Inte-
gers range from 0 to 7, with smaller values repr esenting higher priorities.

A printk statement with no specified priority defaults to DEFAULT_MES-
SAGE_LOGLEVEL, specified in ker nel/printk.c as an integer. The default loglevel
value has changed several times during Linux development, so we suggest that
you always specify an explicit loglevel.

Based on the loglevel, the kernel may print the message to the current console, be
it a text-mode terminal, a serial line printer, or a parallel printer. If the priority is
less than the integer variable console_loglevel, the message is displayed. If
both klogd and syslogd ar e running on the system, kernel messages are appended
to /var/log/messages (or otherwise treated depending on your syslogd configura-
tion), independent of console_loglevel. If klogd is not running, the message
won’t reach user space unless you read /pr oc/kmsg.

98

22 June 2001 16:35

The variable console_loglevel is initialized to DEFAULT_CON-
SOLE_LOGLEVEL and can be modified through the sys_syslog system call. One
way to change it is by specifying the –c switch when invoking klogd, as specified
in the klogd manpage. Note that to change the current value, you must first kill
klogd and then restart it with the –c option. Alternatively, you can write a program
to change the console loglevel. You’ll find a version of such a program in misc-
pr ogs/setlevel.c in the source files provided on the O’Reilly FTP site. The new level
is specified as an integer value between 1 and 8, inclusive. If it is set to 1, only
messages of level 0 (KERN_EMERG) will reach the console; if it is set to 8, all mes-
sages, including debugging ones, will be displayed.

You’ll probably want to lower the loglevel if you work on the console and you
experience a kernel fault (see “Debugging System Faults” later in this chapter),
because the fault-handling code raises the console_loglevel to its maximum
value, causing every subsequent message to appear on the console. You’ll want to
raise the loglevel if you need to see your debugging messages; this is useful if you
ar e developing kernel code remotely and the text console is not being used for an
interactive session.

Fr om version 2.1.31 on it is possible to read and modify the console loglevel using
the text file /pr oc/sys/kernel/printk. The file hosts four integer values. You may be
inter ested in the first two: the current console loglevel and the default level for
messages. With recent kernels, for instance, you can cause all kernel messages to
appear at the console by simply entering

echo 8 > /proc/sys/kernel/printk

If you run 2.0, however, you still need the setlevel tool.

It should now be apparent why the hello.c sample had the <1> markers; they are
ther e to make sure that the messages appear on the console.

Linux allows for some flexibility in console logging policies by letting you send
messages to a specific virtual console (if your console lives on the text screen). By
default, the “console” is the current virtual terminal. To select a differ ent virtual ter-
minal to receive messages, you can issue ioctl(TIOCLINUX) on any console
device. The following program, setconsole, can be used to choose which console
receives kernel messages; it must be run by the superuser and is available in the
misc-pr ogs dir ectory.

This is how the program works:

int main(int argc, char **argv)
{

char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */

if (argc==2) bytes[1] = atoi(argv[1]); /* the chosen console */
else {

fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(1);
}

Debugg ing by Printing

99

22 June 2001 16:35

Chapter 4: Debugging Techniques

if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) { /* use stdin */
fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",

argv[0], strerror(errno));
exit(1);

}
exit(0);

}

setconsole uses the special ioctl command TIOCLINUX, which implements Linux-
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to
a byte array. The first byte of the array is a number that specifies the requested
subcommand, and the following bytes are subcommand specific. In setconsole,
subcommand 11 is used, and the next byte (stored in bytes[1]) identifies the
virtual console. The complete description of TIOCLINUX can be found in
drivers/char/tty_io.c, in the kernel sources.

How Messages Get Logged
The printk function writes messages into a circular buffer that is LOG_BUF_LEN
(defined in ker nel/printk.c) bytes long. It then wakes any process that is waiting
for messages, that is, any process that is sleeping in the syslog system call or that is
reading /pr oc/kmsg. These two interfaces to the logging engine are almost equiva-
lent, but note that reading from /pr oc/kmsg consumes the data from the log buffer,
wher eas the syslog system call can optionally retur n log data while leaving it for
other processes as well. In general, reading the /pr oc file is easier, which is why it
is the default behavior for klogd.

If you happen to read the kernel messages by hand, after stopping klogd you’ll
find that the /pr oc file looks like a FIFO, in that the reader blocks, waiting for
mor e data. Obviously, you can’t read messages this way if klogd or another pro-
cess is already reading the same data because you’ll contend for it.

If the circular buffer fills up, printk wraps around and starts adding new data to
the beginning of the buffer, overwriting the oldest data. The logging process thus
loses the oldest data. This problem is negligible compared with the advantages of
using such a circular buffer. For example, a circular buffer allows the system to
run even without a logging process, while minimizing memory waste by overwrit-
ing old data should nobody read it. Another feature of the Linux approach to mes-
saging is that printk can be invoked from anywhere, even from an interrupt
handler, with no limit on how much data can be printed. The only disadvantage is
the possibility of losing some data.

If the klogd pr ocess is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/syslog.conf to find out how to deal with them.
syslogd dif ferentiates between messages according to a facility and a priority;
allowable values for both the facility and the priority are defined in

100

22 June 2001 16:35

<sys/syslog.h>. Ker nel messages are logged by the LOG_KERN facility, at a
priority corresponding to the one used in printk (for example, LOG_ERR is used
for KERN_ERR messages). If klogd isn’t running, data remains in the circular buffer
until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring messages
fr om your driver, you can either specify the –f (file) option to klogd to instruct it to
save messages to a specific file, or modify /etc/syslog.conf to suit your needs. Yet
another possibility is to take the brute-force approach: kill klogd and verbosely
print messages on an unused virtual terminal,* or issue the command cat
/pr oc/kmsg fr om an unused xter m.

Turning the Messages On and Off
During the early stages of driver development, printk can help considerably in
debugging and testing new code. When you officially release the driver, on the
other hand, you should remove, or at least disable, such print statements. Unfortu-
nately, you’re likely to find that as soon as you think you no longer need the mes-
sages and remove them, you’ll implement a new feature in the driver (or
somebody will find a bug) and you’ll want to turn at least one of the messages
back on. There are several ways to solve both issues, to globally enable or disable
your debug messages and to turn individual messages on or off.

Her e we show one way to code printk calls so you can turn them on and off indi-
vidually or globally; the technique depends on defining a macro that resolves to a
printk (or printf) call when you want it to.

• Each print statement can be enabled or disabled by removing or adding a sin-
gle letter to the macro’s name.

• All the messages can be disabled at once by changing the value of the
CFLAGS variable before compiling.

• The same print statement can be used in kernel code and user-level code, so
that the driver and test programs can be managed in the same way with
regard to extra messages.

The following code fragment implements these features and comes directly from
the header scull.h.

#undef PDEBUG /* undef it, just in case */
#ifdef SCULL_DEBUG
ifdef __KERNEL_ _

/* This one if debugging is on, and kernel space */
define PDEBUG(fmt, args...) printk(KERN_DEBUG "scull: " fmt,

args)

* For example, use setlevel 8; setconsole 10 to set up terminal 10 to display messages.

Debugg ing by Printing

101

22 June 2001 16:35

Chapter 4: Debugging Techniques

else
/* This one for user space */

define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
endif
#else
define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#define PDEBUGG(fmt, args...) /* nothing: it’s a placeholder */

The symbol PDEBUG depends on whether or not SCULL_DEBUG is defined, and it
displays information in whatever manner is appropriate to the environment where
the code is running: it uses the kernel call printk when it’s in the kernel, and the
libc call fprintf to the standard error when run in user space. The PDEBUGG sym-
bol, on the other hand, does nothing; it can be used to easily “comment” print
statements without removing them entirely.

To simplify the process further, add the following lines to your makefile:

Comment/uncomment the following line to disable/enable debugging
DEBUG = y

Add your debugging flag (or not) to CFLAGS
ifeq ($(DEBUG),y)

DEBFLAGS = -O -g -DSCULL_DEBUG # "-O" is needed to expand inlines
else

DEBFLAGS = -O2
endif

CFLAGS += $(DEBFLAGS)

The macros shown in this section depend on a gcc extension to the ANSI C pre-
pr ocessor that supports macros with a variable number of arguments. This gcc
dependency shouldn’t be a problem because the kernel proper depends heavily
on gcc featur es anyway. In addition, the makefile depends on GNU’s version of
make ; once again, the kernel already depends on GNU make, so this dependency
is not a problem.

If you’re familiar with the C prepr ocessor, you can expand on the given definitions
to implement the concept of a “debug level,” defining differ ent levels and assign-
ing an integer (or bit mask) value to each level to determine how verbose it
should be.

But every driver has its own features and monitoring needs. The art of good pro-
gramming is in choosing the best trade-off between flexibility and efficiency, and
we can’t tell what is the best for you. Remember that prepr ocessor conditionals (as
well as constant expressions in the code) are executed at compile time, so you
must recompile to turn messages on or off. A possible alternative is to use C

102

22 June 2001 16:35

conditionals, which are executed at runtime and therefor e per mit you to turn mes-
saging on and off during program execution. This is a nice feature, but it requir es
additional processing every time the code is executed, which can affect perfor-
mance even when the messages are disabled. Sometimes this perfor mance hit is
unacceptable.

The macros shown in this section have proven themselves useful in a number of
situations, with the only disadvantage being the requir ement to recompile a mod-
ule after any changes to its messages.

Debugg ing by Quer ying
The previous section described how printk works and how it can be used. What it
didn’t talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, because syslogd
keeps syncing its output files; thus, every line that is printed causes a disk opera-
tion. This is the right implementation from syslogd ’s perspective. It tries to write
everything to disk in case the system crashes right after printing the message; how-
ever, you don’t want to slow down your system just for the sake of debugging
messages. This problem can be solved by prefixing the name of your log file as it
appears in /etc/syslogd.conf with a minus.* The problem with changing the config-
uration file is that the modification will likely remain there after you are done
debugging, even though during normal system operation you do want messages to
be flushed to disk as soon as possible. An alternative to such a permanent change
is running a program other than klogd (such as cat /proc/kmsg, as suggested ear-
lier), but this may not provide a suitable environment for normal system operation.

Mor e often than not, the best way to get relevant information is to query the sys-
tem when you need the information, instead of continually producing data. In fact,
every Unix system provides many tools for obtaining system information: ps, net-
stat, vmstat, and so on.

Two main techniques are available to driver developers for querying the system:
cr eating a file in the /pr oc filesystem and using the ioctl driver method. You may
use devfs as an alternative to /pr oc, but /pr oc is an easier tool to use for informa-
tion retrieval.

Using the /proc Filesystem
The /pr oc filesystem is a special, software-cr eated filesystem that is used by the
ker nel to export information to the world. Each file under /pr oc is tied to a kernel
function that generates the file’s “contents” on the fly when the file is read. We

* The minus is a “magic” marker to prevent syslogd fr om flushing the file to disk at every
new message, documented in syslog.conf(5), a manual page worth reading.

Debugg ing by Quer ying

103

22 June 2001 16:35

Chapter 4: Debugging Techniques

have already seen some of these files in action; /pr oc/modules, for example,
always retur ns a list of the currently loaded modules.

/pr oc is heavily used in the Linux system. Many utilities on a modern Linux distri-
bution, such as ps, top, and uptime, get their information from /pr oc. Some device
drivers also export information via /pr oc, and yours can do so as well. The /pr oc
filesystem is dynamic, so your module can add or remove entries at any time.

Fully featured /pr oc entries can be complicated beasts; among other things, they
can be written to as well as read from. Most of the time, however, /pr oc entries are
read-only files. This section will concern itself with the simple read-only case.
Those who are inter ested in implementing something more complicated can look
her e for the basics; the kernel source may then be consulted for the full picture.

All modules that work with /pr oc should include <linux/proc_fs.h> to define
the proper functions.

To create a read-only /pr oc file, your driver must implement a function to produce
the data when the file is read. When some process reads the file (using the read
system call), the request will reach your module by means of one of two differ ent
inter faces, according to what you register ed. We’ll leave registration for later in this
section and jump directly to the description of the reading interfaces.

In both cases the kernel allocates a page of memory (i.e., PAGE_SIZE bytes)
wher e the driver can write data to be retur ned to user space.

The recommended interface is read_ proc, but an older interface named get_info
also exists.

int (*read_proc)(char *page, char **start, off_t offset, int
count, int *eof, void *data);

The page pointer is the buffer where you’ll write your data; start is used by
the function to say where the interesting data has been written in page (mor e
on this later); offset and count have the same meaning as in the read
implementation. The eof argument points to an integer that must be set by
the driver to signal that it has no more data to retur n, while data is a driver-
specific data pointer you can use for internal bookkeeping.* The function is
available in version 2.4 of the kernel, and 2.2 as well if you use our sysdep.h
header.

int (*get_info)(char *page, char **start, off_t offset, int
count);

get_info is an older interface used to read from a /pr oc file. The arguments all
have the same meaning as for read_ proc. What it lacks is the pointer to report
end-of-file and the object-oriented flavor brought in by the data pointer. The

* We’ll find several of these pointers throughout the book; they repr esent the “object”
involved in this action and correspond somewhat to this in C++.

104

22 June 2001 16:35

function is available in all the kernel versions we are inter ested in (although it
had an extra unused argument in its 2.0 implementation).

Both functions should retur n the number of bytes of data actually placed in the
page buf fer, just like the read implementation does for other files. Other output
values are *eof and *start. eof is a simple flag, but the use of the start
value is somewhat more complicated.

The main problem with the original implementation of user extensions to the /pr oc
filesystem was use of a single memory page for data transfer. This limited the total
size of a user file to 4 KB (or whatever was appropriate for the host platform). The
start argument is there to implement large data files, but it can be ignored.

If your pr oc_read function does not set the *start pointer (it starts out NULL),
the kernel assumes that the offset parameter has been ignored and that the data
page contains the whole file you want to retur n to user space. If, on the other
hand, you need to build a bigger file from pieces, you can set *start to be equal
to page so that the caller knows your new data is placed at the beginning of the
buf fer. You should then, of course, skip the first offset bytes of data, which will
have already been retur ned in a previous call.

Ther e has long been another major issue with /pr oc files, which start is meant
to solve as well. Sometimes the ASCII repr esentation of kernel data structures
changes between successive calls to read, so the reader process could find incon-
sistent data from one call to the next. If *start is set to a small integer value, the
caller will use it to increment filp->f_pos independently of the amount of data
you retur n, thus making f_pos an internal record number of your read_ proc or
get_info pr ocedure. If, for example, your read_ proc function is retur ning infor ma-
tion from a big array of structures, and five of those structures were retur ned in
the first call, start could be set to 5. The next call will provide that same value
as the offset; the driver then knows to start retur ning data from the sixth structure
in the array. This is defined as a “hack” by its authors and can be seen in
fs/pr oc/generic.c.

Time for an example. Here is a simple read_ proc implementation for the scull
device:

int scull_read_procmem(char *buf, char **start, off_t offset,
int count, int *eof, void *data)

{
int i, j, len = 0;
int limit = count - 80; /* Don’t print more than this */

for (i = 0; i < scull_nr_devs && len <= limit; i++) {
Scull_Dev *d = &scull_devices[i];
if (down_interruptible(&d->sem))

return -ERESTARTSYS;
len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",

i, d->qset, d->quantum, d->size);
for (; d && len <= limit; d = d->next) { /* scan the list */

Debugg ing by Quer ying

105

22 June 2001 16:35

Chapter 4: Debugging Techniques

len += sprintf(buf+len, " item at %p, qset at %p\n", d,
d->data);

if (d->data && !d->next) /* dump only the last item
- save space */

for (j = 0; j < d->qset; j++) {
if (d->data[j])

len += sprintf(buf+len," % 4i: %8p\n",
j,d->data[j]);

}
}
up(&scull_devices[i].sem);

}
*eof = 1;
return len;

}

This is a fairly typical read_ proc implementation. It assumes that there will never
be a need to generate more than one page of data, and so ignores the start and
offset values. It is, however, car eful not to overrun its buffer, just in case.

A /pr oc function using the get_info inter face would look very similar to the one
just shown, with the exception that the last two arguments would be missing. The
end-of-file condition, in this case, is signaled by retur ning less data than the caller
expects (i.e., less than count).

Once you have a read_ proc function defined, you need to connect it to an entry
in the /pr oc hierarchy. There are two ways of setting up this connection, depend-
ing on what versions of the kernel you wish to support. The easiest method, only
available in the 2.4 kernel (and 2.2 too if you use our sysdep.h header), is to sim-
ply call cr eate_pr oc_read_entry. Her e is the call used by scull to make its /pr oc
function available as /pr oc/scullmem:

create_proc_read_entry("scullmem",
0 /* default mode */,
NULL /* parent dir */,
scull_read_procmem,
NULL /* client data */);

The arguments to this function are, as shown, the name of the /pr oc entry, the file
per missions to apply to the entry (the value 0 is treated as a special case and is
tur ned to a default, world-readable mask), the proc_dir_entry pointer to the
par ent dir ectory for this file (we use NULL to make the driver appear directly
under /pr oc), the pointer to the read_ proc function, and the data pointer that will
be passed back to the read_ proc function.

The directory entry pointer can be used to create entire dir ectory hierarchies under
/pr oc. Note, however, that an entry may be more easily placed in a subdirectory of
/pr oc simply by giving the directory name as part of the name of the entry—as
long as the directory itself already exists. For example, an emerging convention

106

22 June 2001 16:35

says that /pr oc entries associated with device drivers should go in the subdirectory
driver/; scull could place its entry there simply by giving its name as
driver/scullmem.

Entries in /pr oc, of course, should be removed when the module is unloaded.
remove_ proc_entry is the function that undoes what cr eate_pr oc_read_entry did:

remove_proc_entry("scullmem", NULL /* parent dir */);

The alternative method for creating a /pr oc entry is to create and initialize a
proc_dir_entry structur e and pass it to pr oc_register_dynamic (version 2.0) or
pr oc_register (version 2.2, which assumes a dynamic file if the inode number in
the structure is 0). As an example, consider the following code that scull uses
when compiled against 2.0 headers:

static int scull_get_info(char *buf, char **start, off_t offset,
int len, int unused)

{
int eof = 0;
return scull_read_procmem (buf, start, offset, len, &eof, NULL);

}

struct proc_dir_entry scull_proc_entry = {
namelen: 8,
name: "scullmem",
mode: S_IFREG | S_IRUGO,
nlink: 1,
get_info: scull_get_info,

};

static void scull_create_proc()
{

proc_register_dynamic(&proc_root, &scull_proc_entry);
}

static void scull_remove_proc()
{

proc_unregister(&proc_root, scull_proc_entry.low_ino);
}

The code declares a function using the get_info inter face and fills in a
proc_dir_entry structur e that is register ed with the filesystem.

This code provides compatibility across the 2.0 and 2.2 kernels, with a little sup-
port from macro definitions in sysdep.h. It uses the get_info inter face because the
2.0 kernel did not support read_ proc. Some more work with #ifdef could have
made it use read_ proc with Linux 2.2, but the benefits would be minor.

Debugg ing by Quer ying

107

22 June 2001 16:35

Chapter 4: Debugging Techniques

The ioctl Method
ioctl, which we show you how to use in the next chapter, is a system call that acts
on a file descriptor; it receives a number that identifies a command to be per-
for med and (optionally) another argument, usually a pointer.

As an alternative to using the /pr oc filesystem, you can implement a few ioctl com-
mands tailored for debugging. These commands can copy relevant data structures
fr om the driver to user space, where you can examine them.

Using ioctl this way to get information is somewhat more dif ficult than using /pr oc,
because you need another program to issue the ioctl and display the results. This
pr ogram must be written, compiled, and kept in sync with the module you’re test-
ing. On the other hand, the driver’s code is easier than what is needed to imple-
ment a /pr oc file

Ther e ar e times when ioctl is the best way to get information, because it runs
faster than reading /pr oc. If some work must be perfor med on the data before it’s
written to the screen, retrieving the data in binary form is mor e ef ficient than read-
ing a text file. In addition, ioctl doesn’t requir e splitting data into fragments smaller
than a page.

Another interesting advantage of the ioctl appr oach is that information-r etrieval
commands can be left in the driver even when debugging would otherwise be dis-
abled. Unlike a /pr oc file, which is visible to anyone who looks in the directory
(and too many people are likely to wonder “what that strange file is”), undocu-
mented ioctl commands are likely to remain unnoticed. In addition, they will still
be there should something weird happen to the driver. The only drawback is that
the module will be slightly bigger.

Debugg ing by Watching
Sometimes minor problems can be tracked down by watching the behavior of an
application in user space. Watching programs can also help in building confidence
that a driver is working correctly. For example, we were able to feel confident
about scull after looking at how its read implementation reacted to read requests
for differ ent amounts of data.

Ther e ar e various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro-
gram under strace. Her e we’ll discuss just the last technique, which is most inter-
esting when the real goal is examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show the calls, but it can also show the argu-
ments to the calls, as well as retur n values in symbolic form. When a system call

108

22 June 2001 16:35

fails, both the symbolic value of the error (e.g., ENOMEM) and the corresponding
string (Out of memory) are displayed. strace has many command-line options;
the most useful of which are –t to display the time when each call is executed, –T
to display the time spent in the call, –e to limit the types of calls traced, and –o to
redir ect the output to a file. By default, strace prints tracing information on
stderr.

strace receives information from the kernel itself. This means that a program can
be traced regardless of whether or not it was compiled with debugging support
(the –g option to gcc) and whether or not it is stripped. You can also attach tracing
to a running process, similar to the way a debugger can connect to a running pro-
cess and control it.

The trace information is often used to support bug reports sent to application
developers, but it’s also invaluable to kernel programmers. We’ve seen how driver
code executes by reacting to system calls; strace allows us to check the consis-
tency of input and output data of each call.

For example,the following screen dump shows the last lines of running the com-
mand strace ls /dev > /dev/scull0 :

[...]
open("/dev", O_RDONLY|O_NONBLOCK) = 4
fcntl(4, F_SETFD, FD_CLOEXEC) = 0
brk(0x8055000) = 0x8055000
lseek(4, 0, SEEK_CUR) = 0
getdents(4, /* 70 entries */, 3933) = 1260
[...]
getdents(4, /* 0 entries */, 3933) = 0
close(4) = 0
fstat(1, {st_mode=S_IFCHR|0664, st_rdev=makedev(253, 0), ...}) = 0
ioctl(1, TCGETS, 0xbffffa5c) = -1 ENOTTY (Inappropriate ioctl

for device)
write(1, "MAKEDEV\natibm\naudio\naudio1\na"..., 4096) = 4000
write(1, "d2\nsdd3\nsdd4\nsdd5\nsdd6\nsdd7"..., 96) = 96
write(1, "4\nsde5\nsde6\nsde7\nsde8\nsde9\n"..., 3325) = 3325
close(1) = 0
_exit(0) = ?

It’s apparent in the first write call that after ls finished looking in the target direc-
tory, it tried to write 4 KB. Strangely (for ls), only four thousand bytes were writ-
ten, and the operation was retried. However, we know that the write
implementation in scull writes a single quantum at a time, so we could have
expected the partial write. After a few steps, everything sweeps through, and the
pr ogram exits successfully.

As another example, let’s read the scull device (using the wc command):

[...]
open("/dev/scull0", O_RDONLY) = 4
fstat(4, {st_mode=S_IFCHR|0664, st_rdev=makedev(253, 0), ...}) = 0

Debugg ing by Watching

109

22 June 2001 16:35

Chapter 4: Debugging Techniques

read(4, "MAKEDEV\natibm\naudio\naudio1\na"..., 16384) = 4000
read(4, "d2\nsdd3\nsdd4\nsdd5\nsdd6\nsdd7"..., 16384) = 3421
read(4, "", 16384) = 0
fstat(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(3, 7), ...}) = 0
ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0
write(1, " 7421 /dev/scull0\n", 20) = 20
close(4) = 0
_exit(0) = ?

As expected, read is able to retrieve only four thousand bytes at a time, but the
total amount of data is the same that was written in the previous example. It’s
inter esting to note how retries are organized in this example, as opposed to the
pr evious trace. wc is optimized for fast reading and thus bypasses the standard
library, trying to read more data with a single system call. You can see from the
read lines in the trace how wc tried to read 16 KB at a time.

Linux experts can find much useful information in the output of strace. If you’r e
put off by all the symbols, you can limit yourself to watching how the file methods
(open, read, and so on) work.

Personally, we find strace most useful for pinpointing runtime errors from system
calls. Often the perr or call in the application or demo program isn’t verbose
enough to be useful for debugging, and being able to tell exactly which arguments
to which system call triggered the error can be a great help.

Debugg ing System Faults
Even if you’ve used all the monitoring and debugging techniques, sometimes bugs
remain in the driver, and the system faults when the driver is executed. When this
happens it’s important to be able to collect as much information as possible to
solve the problem.

Note that “fault” doesn’t mean “panic.” The Linux code is robust enough to
respond gracefully to most errors: a fault usually results in the destruction of the
curr ent pr ocess while the system goes on working. The system can panic, and it
may if a fault happens outside of a process’s context, or if some vital part of the
system is compromised. But when the problem is due to a driver error, it usually
results only in the sudden death of the process unlucky enough to be using the
driver. The only unrecoverable damage when a process is destroyed is that some
memory allocated to the process’s context is lost; for instance, dynamic lists allo-
cated by the driver through kmalloc might be lost. However, since the kernel calls
the close operation for any open device when a process dies, your driver can
release what was allocated by the open method.

We’ve already said that when kernel code misbehaves, an informative message is
printed on the console. The next section explains how to decode and use such

110

22 June 2001 16:35

messages. Even though they appear rather obscure to the novice, processor dumps
ar e full of interesting information, often sufficient to pinpoint a program bug with-
out the need for additional testing.

Oops Messages
Most bugs show themselves in NULL pointer derefer ences or by the use of other
incorr ect pointer values. The usual outcome of such bugs is an oops message.

Any address used by the processor is a virtual address and is mapped to physical
addr esses thr ough a complex structure of so-called page tables (see “Page Tables”
in Chapter 13). When an invalid pointer is derefer enced, the paging mechanism
fails to map the pointer to a physical address and the processor signals a page
fault to the operating system. If the address is not valid, the kernel is not able to
“page in” the missing address; it generates an oops if this happens while the pro-
cessor is in supervisor mode.

It’s worth noting that the first enhancement introduced after version 2.0 was auto-
matic handling of invalid address faults when moving data to and from user space.
Linus chose to let the hardware catch erroneous memory refer ences, so that the
nor mal case (where the addresses are corr ect) is handled more efficiently.

An oops displays the processor status at the time of the fault, including the con-
tents of the CPU registers, the location of page descriptor tables, and other seem-
ingly incomprehensible information. The message is generated by printk
statements in the fault handler (ar ch/*/kernel/traps.c) and is dispatched as
described earlier, in the section “printk.”

Let’s look at one such message. Here’s what results from derefer encing a NULL
pointer on a PC running version 2.4 of the kernel. The most relevant information
her e is the instruction pointer (EIP), the address of the faulty instruction.

Unable to handle kernel NULL pointer dereference at virtual address \
00000000

printing eip:
c48370c3
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[<c48370c3>]
EFLAGS: 00010286
eax: ffffffea ebx: c2281a20 ecx: c48370c0 edx: c2281a40
esi: 4000c000 edi: 4000c000 ebp: c38adf8c esp: c38adf8c
ds: 0018 es: 0018 ss: 0018
Process ls (pid: 23171, stackpage=c38ad000)
Stack: 0000010e c01356e6 c2281a20 4000c000 0000010e c2281a40 c38ac000 \

0000010e
4000c000 bffffc1c 00000000 00000000 c38adfc4 c010b860 00000001 \

4000c000
0000010e 0000010e 4000c000 bffffc1c 00000004 0000002b 0000002b \

Debugg ing System Faults

111

22 June 2001 16:35

Chapter 4: Debugging Techniques

00000004
Call Trace: [<c01356e6>] [<c010b860>]
Code: c7 05 00 00 00 00 00 00 00 00 31 c0 89 ec 5d c3 8d b6 00 00

This message was generated by writing to a device owned by the faulty module, a
module built deliberately to demonstrate failures. The implementation of the write
method of faulty.c is trivial:

ssize_t faulty_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)

{
/* make a simple fault by dereferencing a NULL pointer */
*(int *)0 = 0;
return 0;

}

As you can see, what we do here is der efer ence a NULL pointer. Since 0 is never a
valid pointer value, a fault occurs, which the kernel turns into the oops message
shown earlier. The calling process is then killed.

The faulty module has more inter esting fault conditions in its read implementa-
tion:

char faulty_buf[1024];

ssize_t faulty_read (struct file *filp, char *buf, size_t count,
loff_t *pos)

{
int ret, ret2;
char stack_buf[4];

printk(KERN_DEBUG "read: buf %p, count %li\n", buf, (long)count);
/* the next line oopses with 2.0, but not with 2.2 and later */
ret = copy_to_user(buf, faulty_buf, count);
if (!ret) return count; /* we survived */

printk(KERN_DEBUG "didn’t fail: retry\n");
/* For 2.2 and 2.4, let’s try a buffer overflow */
sprintf(stack_buf, "1234567\n");
if (count > 8) count = 8; /* copy 8 bytes to the user */
ret2 = copy_to_user(buf, stack_buf, count);
if (!ret2) return count;
return ret2;

}

It first reads from a global buffer without checking the size of the data, and then
per forms a buffer overrun by writing to a local buffer. The first situation results in
an oops only in version 2.0 of the kernel, because later versions automatically deal
with user copy functions. The buffer overflow results in an oops with all kernel
versions; however, since the return instruction brings the instruction pointer to
nowher e land, this kind of fault is much harder to trace, and you can get some-
thing like the following:

112

22 June 2001 16:35

EIP: 0010:[<00000000>]
[...]
Call Trace: [<c010b860>]
Code: Bad EIP value.

The main problem with users dealing with oops messages is in the little intrinsic
meaning carried by hexadecimal values; to be meaningful to the programmer they
need to be resolved to symbols. A couple of utilities are available to perfor m this
resolution for developers: klogd and ksymoops. The former tool perfor ms symbol
decoding by itself whenever it is running; the latter needs to be purposely invoked
by the user. In the following discussion we use the data generated in our first oops
example by derefer encing a NULL pointer.

Using klogd

The klogd daemon can decode oops messages before they reach the log files. In
many situations, klogd can provide all the information a developer needs to track
down a problem, though sometimes the developer must give it a little help.

A dump of the oops for faulty, as it reaches the system log, looks like this (note
the decoded symbols on the EIP line and in the stack trace):

Unable to handle kernel NULL pointer dereference at virtual address \
00000000

printing eip:
c48370c3
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[faulty:faulty_write+3/576]
EFLAGS: 00010286
eax: ffffffea ebx: c2c55ae0 ecx: c48370c0 edx: c2c55b00
esi: 0804d038 edi: 0804d038 ebp: c2337f8c esp: c2337f8c
ds: 0018 es: 0018 ss: 0018
Process cat (pid: 23413, stackpage=c2337000)
Stack: 00000001 c01356e6 c2c55ae0 0804d038 00000001 c2c55b00 c2336000 \

00000001
0804d038 bffffbd4 00000000 00000000 bffffbd4 c010b860 00000001 \

0804d038
00000001 00000001 0804d038 bffffbd4 00000004 0000002b 0000002b \

00000004
Call Trace: [sys_write+214/256] [system_call+52/56]
Code: c7 05 00 00 00 00 00 00 00 00 31 c0 89 ec 5d c3 8d b6 00 00

klogd pr ovides most of the necessary information to track down the problem. In
this case we see that the instruction pointer (EIP) was executing in the function
faulty_write, so we know where to start looking. The 3/576 string tells us that the
pr ocessor was at byte 3 of a function that appears to be 576 bytes long. Note that
the values are decimal, not hex.

Debugg ing System Faults

113

22 June 2001 16:35

Chapter 4: Debugging Techniques

The developer must exercise some care, however, to get useful information for
err ors that occur within loadable modules. klogd loads all of the available symbol
infor mation when it starts, and uses those symbols thereafter. If you load a module
after klogd has initialized itself (usually at system boot), klogd will not have your
module’s symbol information. To force klogd to go out and get that information,
send the klogd pr ocess a SIGUSR1 signal after your module has been loaded (or
reloaded), and before you do anything that could cause it to oops.

It is also possible to run klogd with the –p (“paranoid”) option, which will cause it
to rer ead symbol information anytime it sees an oops message. The klogd man-
page recommends against this mode of operation, however, since it makes klogd
query the kernel for information after the problem has occurred. Information
obtained after an error could be plain wrong.

For klogd to work properly, it must have a current copy of the System.map symbol
table file. Normally this file is found in /boot; if you have built and installed a ker-
nel from a nonstandard location you may have to copy System.map into /boot, or
tell klogd to look elsewhere. klogd refuses to decode symbols if the symbol table
doesn’t match the current kernel. If a symbol is decoded on the system log, you
can be reasonably sure it is decoded correctly.

Using ksymoops

At times klogd may not be enough for your tracing purposes. Usually, you need to
get both the hexadecimal address and the associated symbol, and you often need
of fsets printed as hex numbers. You may need more infor mation than address
decoding. Also, it is common for klogd to get killed during the fault. In such situa-
tions, a stronger oops analyzer may be called for; ksymoops is such a tool.

Prior to the 2.3 development series, ksymoops was distributed with the kernel
source, in the scripts dir ectory. It now lives on its own FTP site and is maintained
independently of the kernel. Even if you are working with an older kernel, you
pr obably should go to ftp://ftp.ocs.com.au/pub/ksymoops and get an updated ver-
sion of the tool.

To operate at its best, ksymoops needs a lot of information in addition to the error
message; you can use command-line options to tell it where to find the various
items. The program needs the following items:

A System.map file
This map must correspond to the kernel that was running at the time the oops
occurr ed. The default is /usr/sr c/linux/System.map.

A list of modules
ksymoops needs to know what modules were loaded when the oops occurred,
in order to extract symbolic information from them. If you do not supply this
list, ksymoops will look at /pr oc/modules.

114

22 June 2001 16:35

A list of kernel symbols defined when the oops occurred
The default is to get this list from /pr oc/ksyms.

A copy of the kernel image that was running
Note that ksymoops needs a straight kernel image, not the compressed version
(vmlinuz, zImage, or bzImage) that most systems boot. The default is to use
no kernel image because most people don’t keep it. If you have the exact
image handy, you should tell the program where it is by using the -v option.

The locations of the object files for any kernel modules that were loaded
ksymoops will look in the standard directories for modules, but during devel-
opment you will almost certainly have to tell it where your module lives using
the -o option

Although ksymoops will go to files in /pr oc for some of its needed information, the
results can be unreliable. The system, of course, will almost certainly have been
rebooted between the time the oops occurs and when ksymoops is run, and the
infor mation fr om /pr oc may not match the state of affairs when the failure
occurr ed. When possible, it is better to save copies of /pr oc/modules and
/pr oc/ksyms prior to causing the oops to happen.

We urge driver developers to read the manual page for ksymoops because it is a
very informative document.

The last argument on the tool’s command line is the location of the oops message;
if it is missing, the tool will read stdin in the best Unix tradition. The message
can be recover ed fr om the system logs with luck; in the case of a very bad crash
you may end up writing it down off the screen and typing it back in (unless you
wer e using a serial console, a nice tool for kernel developers).

Note that ksymoops will be confused by an oops message that has already been
pr ocessed by klogd. If you are running klogd, and your system is still running after
an oops occurs, a clean oops message can often be obtained by invoking the
dmesg command.

If you do not provide all of the listed information explicitly, ksymoops will issue
war nings. It will also issue warnings about things like loaded modules that define
no symbols. A warning-fr ee run of ksymoops is rare.

Output from ksymoops tends to look like the following:

>>EIP; c48370c3 <[faulty]faulty_write+3/20> <=====
Trace; c01356e6 <sys_write+d6/100>
Trace; c010b860 <system_call+34/38>
Code; c48370c3 <[faulty]faulty_write+3/20>
00000000 <_EIP>:
Code; c48370c3 <[faulty]faulty_write+3/20> <=====

0: c7 05 00 00 00 movl $0x0,0x0 <=====
Code; c48370c8 <[faulty]faulty_write+8/20>

5: 00 00 00 00 00

Debugg ing System Faults

115

22 June 2001 16:35

Chapter 4: Debugging Techniques

Code; c48370cd <[faulty]faulty_write+d/20>
a: 31 c0 xorl %eax,%eax

Code; c48370cf <[faulty]faulty_write+f/20>
c: 89 ec movl %ebp,%esp

Code; c48370d1 <[faulty]faulty_write+11/20>
e: 5d popl %ebp

Code; c48370d2 <[faulty]faulty_write+12/20>
f: c3 ret

Code; c48370d3 <[faulty]faulty_write+13/20>
10: 8d b6 00 00 00 leal 0x0(%esi),%esi

Code; c48370d8 <[faulty]faulty_write+18/20>
15: 00

As you can see, ksymoops pr ovides EIP and kernel stack information much like
klogd does, but more precisely and in hexadecimal. You’ll note that the
faulty_write function is correctly reported to be 0x20 bytes long. This is because
ksymoops reads the object file of your module and extracts all available informa-
tion.

In this case, moreover, you also get an assembly language dump of the code
wher e the fault occurred. This information can often be used to figure out exactly
what was happening; here it’s clearly an instruction that writes a 0 to address 0.

One interesting feature of ksymoops is that it is ported to nearly all the platforms
wher e Linux runs and exploits the bfd (binary format description) library in order
to support several computer architectur es at the same time. To step outside of the
PC world, let’s see how the same oops message appears on the SPARC64 platfor m
(several lines have been broken for typographical needs):

Unable to handle kernel NULL pointer dereference
tsk->mm->context = 0000000000000734
tsk->mm->pgd = fffff80003499000

\/ ____
"@’/ .. \‘@"
/_| __/ |_\

_ _U_/
ls(16740): Oops
TSTATE: 0000004400009601 TPC: 0000000001000128 TNPC: 0000000000457fbc \
Y: 00800000
g0: 000000007002ea88 g1: 0000000000000004 g2: 0000000070029fb0 \
g3: 0000000000000018
g4: fffff80000000000 g5: 0000000000000001 g6: fffff8000119c000 \
g7: 0000000000000001
o0: 0000000000000000 o1: 000000007001a000 o2: 0000000000000178 \
o3: fffff8001224f168
o4: 0000000001000120 o5: 0000000000000000 sp: fffff8000119f621 \
ret_pc: 0000000000457fb4
l0: fffff800122376c0 l1: ffffffffffffffea l2: 000000000002c400 \
l3: 000000000002c400
l4: 0000000000000000 l5: 0000000000000000 l6: 0000000000019c00 \
l7: 0000000070028cbc
i0: fffff8001224f140 i1: 000000007001a000 i2: 0000000000000178 \

116

22 June 2001 16:35

i3: 000000000002c400
i4: 000000000002c400 i5: 000000000002c000 i6: fffff8000119f6e1 \
i7: 0000000000410114
Caller[0000000000410114]
Caller[000000007007cba4]
Instruction DUMP: 01000000 90102000 81c3e008 <c0202000> \
30680005 01000000 01000000 01000000 01000000

Note how the instruction dump doesn’t start from the instruction that caused the
fault but three instructions earlier: that’s because the RISC platforms execute sev-
eral instructions in parallel and may generate deferred exceptions, so one must be
able to look back at the last few instructions.

This is what ksymoops prints when fed with input data starting at the TSTATE line:

>>TPC; 0000000001000128 <[faulty].text.start+88/a0> <=====
>>O7; 0000000000457fb4 <sys_write+114/160>
>>I7; 0000000000410114 <linux_sparc_syscall+34/40>
Trace; 0000000000410114 <linux_sparc_syscall+34/40>
Trace; 000000007007cba4 <END_OF_CODE+6f07c40d/????>
Code; 000000000100011c <[faulty].text.start+7c/a0>
0000000000000000 <_TPC>:
Code; 000000000100011c <[faulty].text.start+7c/a0>

0: 01 00 00 00 nop
Code; 0000000001000120 <[faulty].text.start+80/a0>

4: 90 10 20 00 clr %o0 ! 0 <_TPC>
Code; 0000000001000124 <[faulty].text.start+84/a0>

8: 81 c3 e0 08 retl
Code; 0000000001000128 <[faulty].text.start+88/a0> <=====

c: c0 20 20 00 clr [%g0] <=====
Code; 000000000100012c <[faulty].text.start+8c/a0>

10: 30 68 00 05 b,a %xcc, 24 <_TPC+0x24> \
0000000001000140 <[faulty]faulty_write+0/20>

Code; 0000000001000130 <[faulty].text.start+90/a0>
14: 01 00 00 00 nop

Code; 0000000001000134 <[faulty].text.start+94/a0>
18: 01 00 00 00 nop

Code; 0000000001000138 <[faulty].text.start+98/a0>
1c: 01 00 00 00 nop

Code; 000000000100013c <[faulty].text.start+9c/a0>
20: 01 00 00 00 nop

To print the disassembled code shown we had to tell ksymoops the target file for-
mat and architectur e (this is needed because the native architectur e for SPARC64
user space is 32 bit). In this case, the options -t elf64-sparc -a spar c:v9 did the job.

You may complain that this call trace doesn’t carry any interesting information;
however, the SPARC pr ocessors don’t save all the call trace on the stack: the O7
and I7 registers hold the instruction pointers of the last two calling functions,
which is why they are shown near the call trace. In this case, the faulty instruction
was in a function invoked by sys_write.

Debugg ing System Faults

117

22 June 2001 16:35

Chapter 4: Debugging Techniques

Note that, whatever the platform/architectur e pair, the format used to show disas-
sembled code is the same as that used by the objdump pr ogram. objdump is a
power ful utility; if you want to look at the whole function that failed, you can
invoke the command objdump –d faulty.o (once again, on SPARC64, you need
special options: —tar get elf64-spar c—architectur e spar c:v9). For more infor ma-
tion on objdump and its command-line options, see the manpage for the com-
mand.

Lear ning to decode an oops message requir es some practice and an understanding
of the target processor you are using, as well as of the conventions used to repr e-
sent assembly language, but it’s worth doing. The time spent learning will be
quickly repaid. Even if you have previous expertise with the PC assembly lan-
guage under non-Unix operating systems, you may need to devote some time to
lear ning, because the Unix syntax is differ ent fr om Intel syntax. (A good descrip-
tion of the differ ences is in the Info documentation file for as, in the chapter called
“i386-specific.”)

System Hangs
Although most bugs in kernel code end up as oops messages, sometimes they can
completely hang the system. If the system hangs, no message is printed. For exam-
ple, if the code enters an endless loop, the kernel stops scheduling, and the sys-
tem doesn’t respond to any action, including the magic CTRL-ALT-DEL
combination. You have two choices for dealing with system hangs—either prevent
them beforehand or be able to debug them after the fact.

You can prevent an endless loop by inserting schedule invocations at strategic
points. The schedule call (as you might guess) invokes the scheduler and thus
allows other processes to steal CPU time from the current process. If a process is
looping in kernel space due to a bug in your driver, the schedule calls enable you
to kill the process, after tracing what is happening.

You should be aware, of course, that any call to schedule may create an additional
source of reentrant calls to your driver, since it allows other processes to run. This
reentrancy should not normally be a problem, assuming that you have used suit-
able locking in your driver. Be sur e, however, not to call schedule any time that
your driver is holding a spinlock.

If your driver really hangs the system, and you don’t know where to insert sched-
ule calls, the best way to go is to add some print messages and write them to the
console (by changing the console_loglevel value).

Sometimes the system may appear to be hung, but it isn’t. This can happen, for
example, if the keyboard remains locked in some strange way. These false hangs
can be detected by looking at the output of a program you keep running for just
this purpose. A clock or system load meter on your display is a good status moni-
tor; as long as it continues to update, the scheduler is working. If you are not
using a graphic display, you can check the scheduler by running a program that

118

22 June 2001 16:35

flashes the keyboard LEDs, turns on the floppy motor every now and then, or ticks
the speaker—conventional beeps are quite annoying and should be avoided; look
for the KDMKTONE ioctl command instead. A sample program (misc-pr ogs/heart-
beat.c) that flashes a keyboard LED in a heartbeat fashion is available in the
sources on the O’Reilly FTP site.

If the keyboard isn’t accepting input, the best thing to do is log into the system
thr ough your network and kill any offending processes, or reset the keyboard
(with kbd_mode –a). However, discovering that the hang is only a keyboard
lockup is of little use if you don’t have a network available to help you recover. If
this is the case, you could set up alternative input devices to be able at least to
reboot the system cleanly. A shutdown and reboot cycle is easier on your com-
puter than hitting the so-called big red button, and it saves you from the lengthy
fsck scanning of your disks.

Such an alternative input device can be, for example, the mouse. Version 1.10 or
newer of the gpm mouse server features a command-line option to enable a simi-
lar capability, but it works only in text mode. If you don’t have a network connec-
tion and run in graphics mode, we suggest running some custom solution, like a
switch connected to the DCD pin of the serial line and a script that polls for status
change.

An indispensable tool for these situations is the “magic SysRq key,” which is avail-
able on more architectur es in 2.2 and later kernels. Magic SysRq is invoked with
the combination of the ALT and SysRq keys on the PC keyboard, or with the ALT
and Stop keys on SPARC keyboards. A third key, pressed along with these two,
per forms one of a number of useful actions, as follows:

r Turns off keyboard raw mode in situations where you cannot run kbd_mode.

k Invokes the “secure attention” (SAK) function. SAK will kill all processes run-
ning on the current console, leaving you with a clean terminal.

s Per forms an emergency synchronization of all disks.

u Attempts to remount all disks in a read-only mode. This operation, usually
invoked immediately after s, can save a lot of filesystem checking time in
cases where the system is in serious trouble.

b Immediately reboots the system. Be sure to synchr onize and remount the disks
first.

p Prints the current register information.

t Prints the current task list.

m Prints memory information.

Other magic SysRq functions exist; see sysr q.txt in the Documentation dir ectory of
the kernel source for the full list. Note that magic SysRq must be explicitly enabled
in the kernel configuration, and that most distributions do not enable it, for

Debugg ing System Faults

119

22 June 2001 16:35

Chapter 4: Debugging Techniques

obvious security reasons. For a system used to develop drivers, however, enabling
magic SysRq is worth the trouble of building a new kernel in itself. Magic SysRq
must be enabled at runtime with a command like the following:

echo 1 > /proc/sys/kernel/sysrq

Another precaution to use when repr oducing system hangs is to mount all your
disks as read-only (or unmount them). If the disks are read-only or unmounted,
ther e’s no risk of damaging the filesystem or leaving it in an inconsistent state.
Another possibility is using a computer that mounts all of its filesystems via NFS,
the network file system. The “NFS-Root” capability must be enabled in the kernel,
and special parameters must be passed at boot time. In this case you’ll avoid any
filesystem corruption without even resorting to SysRq, because filesystem coher-
ence is managed by the NFS server, which is not brought down by your device
driver.

Debugger s and Related Tools
The last resort in debugging modules is using a debugger to step through the
code, watching the value of variables and machine registers. This approach is
time-consuming and should be avoided whenever possible. Nonetheless, the fine-
grained perspective on the code that is achieved through a debugger is sometimes
invaluable.

Using an interactive debugger on the kernel is a challenge. The kernel runs in its
own address space on the behalf of all the processes on the system. As a result, a
number of common capabilities provided by user-space debuggers, such as break-
points and single-stepping, are harder to come by in the kernel. In this section we
look at several ways of debugging the kernel; each of them has advantages and
disadvantages.

Using gdb
gdb can be quite useful for looking at the system internals. Proficient use of the
debugger at this level requir es some confidence with gdb commands, some under-
standing of assembly code for the target platform, and the ability to match source
code and optimized assembly.

The debugger must be invoked as though the kernel were an application. In addi-
tion to specifying the filename for the uncompressed kernel image, you need to
pr ovide the name of a core file on the command line. For a running kernel, that
cor e file is the kernel core image, /pr oc/kcore. A typical invocation of gdb looks
like the following:

gdb /usr/src/linux/vmlinux /proc/kcore

The first argument is the name of the uncompressed kernel executable, not the
zImage or bzImage or anything compressed.

120

22 June 2001 16:35

The second argument on the gdb command line is the name of the core file. Like
any file in /pr oc, /pr oc/kcore is generated when it is read. When the read system
call executes in the /pr oc filesystem, it maps to a data-generation function rather
than a data-retrieval one; we’ve already exploited this feature in “Using the /proc
Filesystem” earlier in this chapter. kcor e is used to repr esent the kernel “exe-
cutable” in the format of a core file; it is a huge file because it repr esents the
whole kernel address space, which corresponds to all physical memory. From
within gdb, you can look at kernel variables by issuing the standard gdb com-
mands. For example, p jif fies prints the number of clock ticks from system boot to
the current time.

When you print data from gdb, the kernel is still running, and the various data
items have differ ent values at differ ent times; gdb, however, optimizes access to
the core file by caching data that has already been read. If you try to look at the
jiffies variable once again, you’ll get the same answer as before. Caching val-
ues to avoid extra disk access is a correct behavior for conventional core files, but
is inconvenient when a “dynamic” core image is used. The solution is to issue the
command cor e-file /pr oc/kcore whenever you want to flush the gdb cache; the
debugger prepar es to use a new core file and discards any old information. You
won’t, however, always need to issue cor e-file when reading a new datum; gdb
reads the core in chunks of a few kilobytes and caches only chunks it has already
refer enced.

Numer ous capabilities normally provided by gdb ar e not available when you are
working with the kernel. For example, gdb is not able to modify kernel data; it
expects to be running a program to be debugged under its own control before
playing with its memory image. It is also not possible to set breakpoints or watch-
points, or to single-step through kernel functions.

If you compile the kernel with debugging support (–g), the resulting vmlinux file
tur ns out to work better with gdb than the same file compiled without –g. Note,
however, that a large amount of disk space is needed to compile the kernel with
the –g option (each object file and the kernel itself are thr ee or more times bigger
than usual).

On non-PC computers, the game is differ ent. On the Alpha, make boot strips the
ker nel befor e cr eating the bootable image, so you end up with both the vmlinux
and the vmlinux.gz files. The former is usable by gdb, and you can boot from the
latter. On the SPARC, the kernel (at least the 2.0 kernel) is not stripped by default.

When you compile the kernel with –g and run the debugger using vmlinux
together with /pr oc/kcore, gdb can retur n a lot of information about the kernel
inter nals. You can, for example, use commands such as p *module_list, p *mod-
ule_list->next, and p *chr devs[4]->fops to dump structures. To get the best out of p,
you’ll need to keep a kernel map and the source code handy.

Debugger s and Related Tools

121

22 June 2001 16:35

Chapter 4: Debugging Techniques

Another useful task that gdb per forms on the running kernel is disassembling func-
tions, via the disassemble command (which can be abbreviated to disass) or the
“examine instructions” (x/i) command. The disassemble command can take as its
argument either a function name or a memory range, whereas x/i takes a single
memory address, also in the form of a symbol name. You can invoke, for example,
x/20i to disassemble 20 instructions. Note that you can’t disassemble a module
function, because the debugger is acting on vmlinux, which doesn’t know about
your module. If you try to disassemble a module by address, gdb is most likely to
reply “Cannot access memory at xxxx.” For the same reason, you can’t look at data
items belonging to a module. They can be read from /dev/mem if you know the
addr ess of your variables, but it’s hard to make sense out of raw data extracted
fr om system RAM.

If you want to disassemble a module function, you’re better off running the obj-
dump utility on the module object file. Unfortunately, the tool runs on the disk
copy of the file, not the running one; therefor e, the addresses as shown by obj-
dump will be the addresses before relocation, unrelated to the module’s execution
envir onment. Another disadvantage of disassembling an unlinked object file is that
function calls are still unresolved, so you can’t easily tell a call to printk fr om a call
to kmalloc.

As you see, gdb is a useful tool when your aim is to peek into the running kernel,
but it lacks some features that are vital to debugging device drivers.

The kdb Ker nel Debugger
Many readers may be wondering why the kernel does not have any more
advanced debugging features built into it. The answer, quite simply, is that Linus
does not believe in interactive debuggers. He fears that they lead to poor fixes,
those which patch up symptoms rather than addressing the real cause of prob-
lems. Thus, no built-in debuggers.

Other kernel developers, however, see an occasional use for interactive debugging
tools. One such tool is the kdb built-in kernel debugger, available as a nonofficial
patch from oss.sgi.com. To use kdb, you must obtain the patch (be sure to get a
version that matches your kernel version), apply it, and rebuild and reinstall the
ker nel. Note that, as of this writing, kdb works only on IA-32 (x86) systems
(though a version for the IA-64 existed for a while in the mainline kernel source
befor e being removed).

Once you are running a kdb-enabled kernel, there are a couple of ways to enter
the debugger. Hitting the Pause (or Break) key on the console will start up the
debugger. kdb also starts up when a kernel oops happens, or when a breakpoint
is hit. In any case, you will see a message that looks something like this:

Entering kdb (0xc1278000) on processor 1 due to Keyboard Entry
[1]kdb>

122

22 June 2001 16:35

Note that just about everything the kernel does stops when kdb is running. Noth-
ing else should be running on a system where you invoke kdb; in particular, you
should not have networking turned on—unless, of course, you are debugging a
network driver. It is generally a good idea to boot the system in single-user mode
if you will be using kdb.

As an example, consider a quick scull debugging session. Assuming that the driver
is already loaded, we can tell kdb to set a breakpoint in scull_r ead as follows:

[1]kdb> bp scull_read
Instruction(i) BP #0 at 0xc8833514 (scull_read)

is enabled on cpu 1
[1]kdb> go

The bp command tells kdb to stop the next time the kernel enters scull_r ead. We
then type go to continue execution. After putting something into one of the scull
devices, we can attempt to read it by running cat under a shell on another termi-
nal, yielding the following:

Entering kdb (0xc3108000) on processor 0 due to Breakpoint @ 0xc8833515
Instruction(i) breakpoint #0 at 0xc8833514
scull_read+0x1: movl %esp,%ebp
[0]kdb>

We are now positioned at the beginning of scull_r ead. To see how we got there,
we can get a stack trace:

[0]kdb> bt
EBP EIP Function(args)

0xc3109c5c 0xc8833515 scull_read+0x1
0xc3109fbc 0xfc458b10 scull_read+0x33c255fc(0x3, 0x803ad78, 0x1000,
0x1000, 0x804ad78)
0xbffffc88 0xc010bec0 system_call
[0]kdb>

kdb attempts to print out the arguments to every function in the call trace. It gets
confused, however, by optimization tricks used by the compiler. Thus it prints five
arguments for scull_r ead, which only has four.

Time to look at some data. The mds command manipulates data; we can query the
value of the scull_devices pointer with a command like:

[0]kdb> mds scull_devices 1
c8836104: c4c125c0

Her e we asked for one (four-byte) word of data starting at the location of
scull_devices; the answer tells us that our device array was allocated starting
at the address c4c125c0. To look at a device structure itself we need to use that
addr ess:

Debugger s and Related Tools

123

22 June 2001 16:35

Chapter 4: Debugging Techniques

[0]kdb> mds c4c125c0
c4c125c0: c3785000
c4c125c4: 00000000
c4c125c8: 00000fa0
c4c125cc: 000003e8
c4c125d0: 0000009a
c4c125d4: 00000000
c4c125d8: 00000000
c4c125dc: 00000001

The eight lines here corr espond to the eight fields in the Scull_Dev structur e.
Thus we see that the memory for the first device is allocated at 0xc3785000, that
ther e is no next item in the list, that the quantum is 4000 (hex fa0) and the array
size is 1000 (hex 3e8), that there are 154 bytes of data in the device (hex 9a), and
so on.

kdb can change data as well. Suppose we wanted to trim some of the data from
the device:

[0]kdb> mm c4c125d0 0x50
0xc4c125d0 = 0x50

A subsequent cat on the device will now retur n less data than before.

kdb has a number of other capabilities, including single-stepping (by instructions,
not lines of C source code), setting breakpoints on data access, disassembling
code, stepping through linked lists, accessing register data, and more. After you
have applied the kdb patch, a full set of manual pages can be found in the Docu-
mentation/kdb dir ectory in your kernel source tree.

The Integ rated Ker nel Debugger Patch
A number of kernel developers have contributed to an unofficial patch called the
integrated kernel debugger, or IKD. IKD provides a number of interesting kernel
debugging facilities. The x86 is the primary platform for this patch, but much of it
works on other architectur es as well. As of this writing, the IKD patch can be
found at ftp://ftp.ker nel.org/pub/linux/ker nel/people/andrea/ikd. It is a patch that
must be applied to the source for your kernel; the patch is version specific, so be
sur e to download the one that matches the kernel you are working with.

One of the features of the IKD patch is a kernel stack debugger. If you turn this
featur e on, the kernel will check the amount of free space on the kernel stack at
every function call, and force an oops if it gets too small. If something in your ker-
nel is causing stack corruption, this tool may help you to find it. There is also a
“stack meter” feature that you can use to see how close to filling up the stack you
get at any particular time.

124

22 June 2001 16:35

The IKD patch also includes some tools for finding kernel lockups. A “soft lockup”
detector forces an oops if a kernel procedur e goes for too long without schedul-
ing. It is implemented by simply counting the number of function calls that are
made and shutting things down if that number exceeds a preconfigur ed thr eshold.
Another feature can continuously print the program counter on a virtual console
for truly last-resort lockup tracking. The semaphore deadlock detector forces an
oops if a process spends too long waiting on a down call.

Other debugging capabilities in IKD include the kernel trace capability, which can
record the paths taken through the kernel code. There are some memory debug-
ging tools, including a leak detector and a couple of “poisoners,” that can be use-
ful in tracking down memory corruption problems.

Finally, IKD also includes a version of the kdb debugger discussed in the previous
section. As of this writing, however, the version of kdb included in the IKD patch
is somewhat old. If you need kdb, we recommend that you go directly to the
source at oss.sgi.com for the current version.

The kgdb Patch
kgdb is a patch that allows the full use of the gdb debugger on the Linux kernel,
but only on x86 systems. It works by hooking into the system to be debugged via
a serial line, with gdb running on the far end. You thus need two systems to use
kgdb—one to run the debugger and one to run the kernel of interest. Like kdb,
kgdb is currently available from oss.sgi.com.

Setting up kgdb involves installing a kernel patch and booting the modified kernel.
You need to connect the two systems with a serial cable (of the null modem vari-
ety) and to install some support files on the gdb side of the connection. The patch
places detailed instructions in the file Documentation/i386/gdb-serial.txt; we won’t
repr oduce them here. Be sure to read the instructions on debugging modules:
toward the end there are some nice gdb macr os that have been written for this
purpose.

Kernel Crash Dump Analyzer s
Crash dump analyzers enable the system to record its state when an oops occurs,
so that it may be examined at leisure afterward. They can be especially useful if
you are supporting a driver for a user at a differ ent site. Users can be somewhat
reluctant to copy down oops messages for you so installing a crash dump system
can let you get the information you need to track down a user’s problem without
requiring work from him. It is thus not surprising that the available crash dump
analyzers have been written by companies in the business of supporting systems
for users.

Debugger s and Related Tools

125

22 June 2001 16:35

Chapter 4: Debugging Techniques

Ther e ar e curr ently two crash dump analyzer patches available for Linux. Both
wer e relatively new when this section was written, and both were in a state of
flux. Rather than provide detailed information that is likely to go out of date, we’ll
restrict ourselves to providing an overview and pointers to where mor e infor ma-
tion can be found.

The first analyzer is LKCD (Linux Kernel Crash Dumps). It’s available, once again,
fr om oss.sgi.com. When a kernel oops occurs, LKCD will write a copy of the cur-
rent system state (memory, primarily) into the dump device you specified in
advance. The dump device must be a system swap area. A utility called LCRASH is
run on the next reboot (before swapping is enabled) to generate a summary of the
crash, and optionally to save a copy of the dump in a conventional file. LCRASH
can be run interactively and provides a number of debugger-like commands for
querying the state of the system.

LKCD is currently supported for the Intel 32-bit architectur e only, and only works
with swap partitions on SCSI disks.

Another crash dump facility is available from www.missioncriticallinux.com. This
crash dump subsystem creates crash dump files directly in /var/dumps and does
not use the swap area. That makes certain things easier, but it also means that the
system will be modifying the file system while in a state where things are known
to have gone wrong. The crash dumps generated are in a standard core file for-
mat, so tools like gdb can be used for post-mortem analysis. This package also
pr ovides a separate analyzer that is able to extract more infor mation than gdb fr om
the crash dump files.

The User-Mode Linux Por t
User-Mode Linux is an interesting concept. It is structured as a separate port of the
Linux kernel, with its own ar ch/um subdir ectory. It does not run on a new type of
hardwar e, however; instead, it runs on a virtual machine implemented on the
Linux system call interface. Thus, User-Mode Linux allows the Linux kernel to run
as a separate, user-mode process on a Linux system.

Having a copy of the kernel running as a user-mode process brings a number of
advantages. Because it is running on a constrained, virtual processor, a buggy ker-
nel cannot damage the “real” system. Differ ent hardwar e and software configura-
tions can be tried easily on the same box. And, perhaps most significantly for
ker nel developers, the user-mode kernel can be easily manipulated with gdb or
another debugger. After all, it is just another process. User-Mode Linux clearly has
the potential to accelerate kernel development.

As of this writing, User-Mode Linux is not distributed with the mainline kernel; it
must be downloaded from its web site (http://user-mode-linux.sour ceforge.net).
The word is that it will be integrated into an early 2.4 release after 2.4.0; it may
well be there by the time this book is published.

126

22 June 2001 16:35

User-Mode Linux also has some significant limitations as of this writing, most of
which will likely be addressed soon. The virtual processor currently works in a
unipr ocessor mode only; the port runs on SMP systems without a problem, but it
can only emulate a uniprocessor host. The biggest problem for driver writers,
though, is that the user-mode kernel has no access to the host system’s hardware.
Thus, while it can be useful for debugging most of the sample drivers in this book,
User-Mode Linux is not yet useful for debugging drivers that have to deal with real
hardwar e. Finally, User-Mode Linux only runs on the IA-32 architectur e.

Because work is under way to fix all of these problems, User-Mode Linux will
likely be an indispensable tool for Linux device driver programmers in the very
near future.

The Linux Trace Toolkit
The Linux Trace Toolkit (LTT) is a kernel patch and a set of related utilities that
allow the tracing of events in the kernel. The trace includes timing information
and can create a reasonably complete picture of what happened over a given
period of time. Thus, it can be used not only for debugging but also for tracking
down perfor mance pr oblems.

LTT, along with extensive documentation, can be found on the Web at www.oper-
sys.com/LTT.

Dynamic Probes
Dynamic Probes (or DProbes) is a debugging tool released (under the GPL) by
IBM for Linux on the IA-32 architectur e. It allows the placement of a “probe” at
almost any place in the system, in both user and kernel space. The probe consists
of some code (written in a specialized, stack-oriented language) that is executed
when control hits the given point. This code can report information back to user
space, change registers, or do a number of other things. The useful feature of
DPr obes is that once the capability has been built into the kernel, probes can be
inserted anywhere within a running system without kernel builds or reboots.
DPr obes can also work with the Linux Trace Toolkit to insert new tracing events at
arbitrary locations.

The DProbes tool can be downloaded from IBM’s open source site: oss.soft-
war e.ibm.com.

Debugger s and Related Tools

127

22 June 2001 16:35

