
CHAPTER SEVEN

GETTING HOLD OF
MEMORY

Thus far, we have used kmalloc and kfr ee for the allocation and freeing of mem-
ory. The Linux kernel offers a richer set of memory allocation primitives, however.
In this chapter we look at other ways of making use of memory in device drivers
and at how to make the best use of your system’s memory resources. We will not
get into how the differ ent architectur es actually administer memory. Modules are
not involved in issues of segmentation, paging, and so on, since the kernel offers
a unified memory management interface to the drivers. In addition, we won’t
describe the internal details of memory management in this chapter, but will defer
it to ‘‘Memory Management in Linux’’ in Chapter 13.

The Real Story of kmalloc
The kmalloc allocation engine is a powerful tool, and easily learned because of its
similarity to malloc. The function is fast—unless it blocks—and it doesn’t clear the
memory it obtains; the allocated region still holds its previous content. The allo-
cated region is also contiguous in physical memory. In the next few sections, we
talk in detail about kmalloc, so you can compare it with the memory allocation
techniques that we discuss later.

The Flags Argument
The first argument to kmalloc is the size of the block to be allocated. The second
argument, the allocation flags, is much more inter esting, because it controls the
behavior of kmalloc in a number of ways.

The most-used flag, GFP_KERNEL, means that the allocation (internally perfor med
by calling, eventually, get_fr ee_pages, which is the source of the GFP_ pr efix) is
per formed on behalf of a process running in kernel space. In other words, this

208

22 June 2001 16:38



means that the calling function is executing a system call on behalf of a process.
Using GFP_KERNEL means that kmalloc can put the current process to sleep wait-
ing for a page when called in low-memory situations. A function that allocates
memory using GFP_KERNEL must therefor e be reentrant. While the current pro-
cess sleeps, the kernel takes proper action to retrieve a memory page, either by
flushing buffers to disk or by swapping out memory from a user process.

GFP_KERNEL isn’t always the right allocation flag to use; sometimes kmalloc is
called from outside a process’s context. This type of call can happen, for instance,
in interrupt handlers, task queues, and kernel timers. In this case, the current
pr ocess should not be put to sleep, and the driver should use a flag of
GFP_ATOMIC instead. The kernel normally tries to keep some free pages around
in order to fulfill atomic allocation. When GFP_ATOMIC is used, kmalloc can use
even the last free page. If that last page does not exist, however, the allocation will
fail.

Other flags can be used in place of or in addition to GFP_KERNEL and
GFP_ATOMIC, although those two cover most of the needs of device drivers. All
the flags are defined in <linux/mm.h>: individual flags are prefixed with a dou-
ble underscore, like __GFP_DMA; collections of flags lack the prefix and are
sometimes called allocation priorities.

GFP_KERNEL
Nor mal allocation of kernel memory. May sleep.

GFP_BUFFER
Used in managing the buffer cache, this priority allows the allocator to sleep.
It differs from GFP_KERNEL in that fewer attempts will be made to free mem-
ory by flushing dirty pages to disk; the purpose here is to avoid deadlocks
when the I/O subsystems themselves need memory.

GFP_ATOMIC
Used to allocate memory from interrupt handlers and other code outside of a
pr ocess context. Never sleeps.

GFP_USER
Used to allocate memory on behalf of the user. It may sleep, and is a low-pri-
ority request.

GFP_HIGHUSER
Like GFP_USER, but allocates from high memory, if any. High memory is
described in the next subsection.

__GFP_DMA
This flag requests memory usable in DMA data transfers to/from devices. Its
exact meaning is platform dependent, and the flag can be OR’d to either
GFP_KERNEL or GFP_ATOMIC.

The Real Story of kmalloc

209

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

__GFP_HIGHMEM
The flag requests high memory, a platform-dependent feature that has no
ef fect on platforms that don’t support it. It is part of the GFP_HIGHUSER mask
and has little use elsewhere.

Memor y zones

Both __GFP_DMA and __GFP_HIGHMEM have a platform-dependent role,
although their use is valid for all platforms.

Version 2.4 of the kernel knows about three memory zones: DMA-capable mem-
ory, normal memory, and high memory. While allocation normally happens in the
nor mal zone, setting either of the bits just mentioned requir es memory to be allo-
cated from a differ ent zone. The idea is that every computer platform that must
know about special memory ranges (instead of considering all RAM equivalent)
will fall into this abstraction.

DMA-capable memory is the only memory that can be involved in DMA data trans-
fers with peripheral devices. This restriction arises when the address bus used to
connect peripheral devices to the processor is limited with respect to the address
bus used to access RAM. For example, on the x86, devices that plug into the ISA
bus can only address memory from 0 to 16 MB. Other platforms have similar
needs, although usually less stringent than the ISA one.*

High memory is memory that requir es special handling to be accessed. It made its
appearance in kernel memory management when support for the Pentium II Vir-
tual Memory Extension was implemented during 2.3 development to access up to
64 GB of physical memory. High memory is a concept that only applies to the x86
and SPARC platforms, and the two implementations are dif ferent.

Whenever a new page is allocated to fulfill the kmalloc request, the kernel builds
a list of zones that can be used in the search. If __GFP_DMA is specified, only the
DMA zone is searched: if no memory is available at low addresses, allocation fails.
If no special flag is present, both normal and DMA memory is searched; if
__GFP_HIGHMEM is set, then all three zones are used to search a free page.

If the platform has no concept of high memory or it has been disabled in the ker-
nel configuration, __GFP_HIGHMEM is defined as 0 and has no effect.

The mechanism behind memory zones is implemented in mm/page_alloc.c, while
initialization of the zone resides in platform-specific files, usually in mm/init.c
within the ar ch tr ee. We’ll revisit these topics in Chapter 13.

* It’s interesting to note that the limit is only in force for the ISA bus; an x86 device that
plugs into the PCI bus can perfor m DMA with all nor mal memory.

210

22 June 2001 16:38



The Size Argument
The kernel manages the system’s physical memory, which is available only in
page-sized chunks. As a result, kmalloc looks rather differ ent than a typical user-
space malloc implementation. A simple, heap-oriented allocation technique would
quickly run into trouble; it would have a hard time working around the page
boundaries. Thus, the kernel uses a special page-oriented allocation technique to
get the best use from the system’s RAM.

Linux handles memory allocation by creating a set of pools of memory objects of
fixed sizes. Allocation requests are handled by going to a pool that holds suffi-
ciently large objects, and handing an entire memory chunk back to the requester.
The memory management scheme is quite complex, and the details of it are not
nor mally all that interesting to device driver writers. After all, the implementation
can change—as it did in the 2.1.38 kernel — without af fecting the interface seen by
the rest of the kernel.

The one thing driver developers should keep in mind, though, is that the kernel
can allocate only certain predefined fixed-size byte arrays. If you ask for an arbi-
trary amount of memory, you’re likely to get slightly more than you asked for, up
to twice as much. Also, programmers should remember that the minimum memory
that kmalloc handles is as big as 32 or 64, depending on the page size used by the
curr ent architectur e.

The data sizes available are generally powers of two. In the 2.0 kernel, the avail-
able sizes were actually slightly less than a power of two, due to control flags
added by the management system. If you keep this fact in mind, you’ll use mem-
ory more efficiently. For example, if you need a buffer of about 2000 bytes and
run Linux 2.0, you’re better off asking for 2000 bytes, rather than 2048. Requesting
exactly a power of two is the worst possible case with any kernel older than
2.1.38 — the ker nel will allocate twice as much as you requested. This is why scull
used 4000 bytes per quantum instead of 4096.

You can find the exact values used for the allocation blocks in mm/kmalloc.c (with
the 2.0 kernel) or mm/slab.c (in current kernels), but remember that they can
change again without notice. The trick of allocating less than 4 KB works well for
scull with all 2.x ker nels, but it’s not guaranteed to be optimal in the future.

In any case, the maximum size that can be allocated by kmalloc is 128 KB—
slightly less with 2.0 kernels. If you need more than a few kilobytes, however,
ther e ar e better ways than kmalloc to obtain memory, as outlined next.

Lookaside Caches
A device driver often ends up allocating many objects of the same size, over and
over. Given that the kernel already maintains a set of memory pools of objects that
ar e all the same size, why not add some special pools for these high-volume

Lookaside Caches

211

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

objects? In fact, the kernel does implement this sort of lookaside cache. Device
drivers normally do not exhibit the sort of memory behavior that justifies using a
lookaside cache, but there can be exceptions; the USB and ISDN drivers in Linux
2.4 use caches.

Linux memory caches have a type of kmem_cache_t and are created with a call
to kmem_cache_cr eate:

kmem_cache_t * kmem_cache_create(const char *name, size_t size,
size_t offset, unsigned long flags,
void (*constructor)(void *, kmem_cache_t *,

unsigned long flags),
void (*destructor)(void *, kmem_cache_t *,

unsigned long flags) );

The function creates a new cache object that can host any number of memory
ar eas all of the same size, specified by the size argument. The name argument is
associated with this cache and functions as housekeeping information usable in
tracking problems; usually, it is set to the name of the type of structure that will be
cached. The maximum length for the name is 20 characters, including the trailing
ter minator.

The offset is the offset of the first object in the page; it can be used to ensure a
particular alignment for the allocated objects, but you most likely will use 0 to
request the default value. flags contr ols how allocation is done, and is a bit
mask of the following flags:

SLAB_NO_REAP
Setting this flag protects the cache from being reduced when the system is
looking for memory. You would not usually need to set this flag.

SLAB_HWCACHE_ALIGN
This flag requir es each data object to be aligned to a cache line; actual align-
ment depends on the cache layout of the host platform. This is usually a good
choice.

SLAB_CACHE_DMA
This flag requir es each data object to be allocated in DMA-capable memory.

The constructor and destructor arguments to the function are optional
functions (but there can be no destructor without a constructor); the former can be
used to initialize newly allocated objects and the latter can be used to “clean up”
objects prior to their memory being released back to the system as a whole.

Constructors and destructors can be useful, but there are a few constraints that you
should keep in mind. A constructor is called when the memory for a set of objects
is allocated; because that memory may hold several objects, the constructor may
be called multiple times. You cannot assume that the constructor will be called as

212

22 June 2001 16:38



an immediate effect of allocating an object. Similarly, destructors can be called at
some unknown future time, not immediately after an object has been freed. Con-
structors and destructors may or may not be allowed to sleep, according to
whether they are passed the SLAB_CTOR_ATOMIC flag (where CTOR is short for
constructor).

For convenience, a programmer can use the same function for both the construc-
tor and destructor; the slab allocator always passes the SLAB_CTOR_CONSTRUC-
TOR flag when the callee is a constructor.

Once a cache of objects is created, you can allocate objects from it by calling
kmem_cache_alloc:

void *kmem_cache_alloc(kmem_cache_t *cache, int flags);

Her e, the cache argument is the cache you have created previously; the flags are
the same as you would pass to kmalloc, and are consulted if kmem_cache_alloc
needs to go out and allocate more memory itself.

To free an object, use kmem_cache_fr ee:

void kmem_cache_free(kmem_cache_t *cache, const void *obj);

When driver code is finished with the cache, typically when the module is
unloaded, it should free its cache as follows:

int kmem_cache_destroy(kmem_cache_t *cache);

The destroy option will succeed only if all objects allocated from the cache have
been retur ned to it. A module should thus check the retur n status from
kmem_cache_destr oy; a failur e indicates some sort of memory leak within the
module (since some of the objects have been dropped).

One side benefit to using lookaside caches is that the kernel maintains statistics on
cache usage. There is even a kernel configuration option that enables the collec-
tion of extra statistical information, but at a noticeable runtime cost. Cache statis-
tics may be obtained from /pr oc/slabinfo.

A scull Based on the Slab Caches: scullc
Time for an example. scullc is a cut-down version of the scull module that imple-
ments only the bare device — the persistent memory region. Unlike scull, which
uses kmalloc, scullc uses memory caches. The size of the quantum can be modi-
fied at compile time and at load time, but not at runtime—that would requir e cr e-
ating a new memory cache, and we didn’t want to deal with these unneeded
details. The sample module refuses to compile with version 2.0 of the kernel
because memory caches were not there, as explained in “Backward Compatibility”
later in the chapter.

Lookaside Caches

213

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

scullc is a complete example that can be used to make tests. It differs from scull
only in a few lines of code. This is how it allocates memory quanta:

/* Allocate a quantum using the memory cache */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
kmem_cache_alloc(scullc_cache, GFP_KERNEL);

if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, scullc_quantum);
}

And these lines release memory:

for (i = 0; i < qset; i++)
if (dptr->data[i])

kmem_cache_free(scullc_cache, dptr->data[i]);
kfree(dptr->data);

To support use of scullc_cache, these few lines are included in the file at
pr oper places:

/* declare one cache pointer: use it for all devices */
kmem_cache_t *scullc_cache;

/* init_module: create a cache for our quanta */
scullc_cache =

kmem_cache_create("scullc", scullc_quantum,
0, SLAB_HWCACHE_ALIGN,
NULL, NULL); /* no ctor/dtor */

if (!scullc_cache) {
result = -ENOMEM;
goto fail_malloc2;

}

/* cleanup_module: release the cache of our quanta */
kmem_cache_destroy(scullc_cache);

The main differ ences in passing from scull to scullc ar e a slight speed improve-
ment and better memory use. Since quanta are allocated from a pool of memory
fragments of exactly the right size, their placement in memory is as dense as possi-
ble, as opposed to scull quanta, which bring in an unpredictable memory frag-
mentation.

get_free_page and Friends
If a module needs to allocate big chunks of memory, it is usually better to use a
page-oriented technique. Requesting whole pages also has other advantages,
which will be introduced later, in “The mmap Device Operation” in Chapter 13.

214

22 June 2001 16:38



To allocate pages, the following functions are available:

get_zer oed_page
Retur ns a pointer to a new page and fills the page with zeros.

_ _get_fr ee_page
Similar to get_zer oed_page, but doesn’t clear the page.

_ _get_fr ee_pages
Allocates and retur ns a pointer to the first byte of a memory area that is sev-
eral (physically contiguous) pages long, but doesn’t zero the area.

_ _get_dma_ pages
Similar to get_fr ee_pages, but guarantees that the allocated memory is DMA
capable. If you use version 2.2 or later of the kernel, you can simply use
_ _get_fr ee_pages and pass the __GFP_DMA flag; if you want backward com-
patibility with 2.0, you need to call this function instead.

The prototypes for the functions follow:

unsigned long get_zeroed_page(int flags);
unsigned long __get_free_page(int flags);
unsigned long __get_free_pages(int flags, unsigned long order);
unsigned long __get_dma_pages(int flags, unsigned long order);

The flags argument works in the same way as with kmalloc; usually either
GFP_KERNEL or GFP_ATOMIC is used, perhaps with the addition of the
__GFP_DMA flag (for memory that can be used for direct memory access opera-
tions) or __GFP_HIGHMEM when high memory can be used. order is the base-
two logarithm of the number of pages you are requesting or freeing (i.e., log2N).
For example, order is 0 if you want one page and 3 if you request eight pages.
If order is too big (no contiguous area of that size is available), the page alloca-
tion will fail. The maximum value of order was 5 in Linux 2.0 (corresponding to
32 pages) and 9 with later versions (corresponding to 512 pages: 2 MB on most
platfor ms). Anyway, the bigger order is, the more likely it is that the allocation
will fail.

When a program is done with the pages, it can free them with one of the follow-
ing functions. The first function is a macro that falls back on the second:

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

If you try to free a differ ent number of pages than you allocated, the memory map
will become corrupted and the system will get in trouble at a later time.

It’s worth stressing that get_fr ee_pages and the other functions can be called at any
time, subject to the same rules we saw for kmalloc. The functions can fail to allo-
cate memory in certain circumstances, particularly when GFP_ATOMIC is used.
Ther efor e, the program calling these allocation functions must be prepar ed to han-
dle an allocation failure.

get_free_page and Friends

215

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

It has been said that if you want to live dangerously, you can assume that neither
kmalloc nor the underlying get_fr ee_pages will ever fail when called with a priority
of GFP_KERNEL. This is almost true, but not completely: small, memory-limited
systems can still run into trouble. A driver writer ignores the possibility of alloca-
tion failures at his or her peril (or that of his or her users).

Although kmalloc(GFP_KERNEL) sometimes fails when there is no available
memory, the kernel does its best to fulfill allocation requests. Therefor e, it’s easy
to degrade system responsiveness by allocating too much memory. For example,
you can bring the computer down by pushing too much data into a scull device;
the system will start crawling while it tries to swap out as much as possible in
order to fulfill the kmalloc request. Since every resource is being sucked up by the
gr owing device, the computer is soon render ed unusable; at that point you can no
longer even start a new process to try to deal with the problem. We don’t address
this issue in scull, since it is just a sample module and not a real tool to put into a
multiuser system. As a programmer, you must nonetheless be careful, because a
module is privileged code and can open new security holes in the system (the
most likely is a denial-of-service hole like the one just outlined).

A scull Using Whole Pages: scullp
In order to test page allocation for real, the scullp module is released together with
other sample code. It is a reduced scull, just like scullc intr oduced earlier.

Memory quanta allocated by scullp ar e whole pages or page sets: the
scullp_order variable defaults to 0 and can be specified at either compile time
or load time.

The following lines show how it allocates memory:

/* Here’s the allocation of a single quantum */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
(void *)__get_free_pages(GFP_KERNEL, dptr->order);

if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

The code to deallocate memory in scullp, instead, looks like this:

/* This code frees a whole quantum set */
for (i = 0; i < qset; i++)

if (dptr->data[i])
free_pages((unsigned long)(dptr->data[i]),

dptr->order);

216

22 June 2001 16:38



At the user level, the perceived differ ence is primarily a speed improvement and
better memory use because there is no inter nal fragmentation of memory. We ran
some tests copying four megabytes from scull0 to scull1 and then from scullp0 to
scullp1; the results showed a slight improvement in kernel-space processor usage.

The perfor mance impr ovement is not dramatic, because kmalloc is designed to be
fast. The main advantage of page-level allocation isn’t actually speed, but rather
mor e ef ficient memory usage. Allocating by pages wastes no memory, whereas
using kmalloc wastes an unpredictable amount of memory because of allocation
granularity.

But the biggest advantage of _ _get_fr ee_page is that the page is completely yours,
and you could, in theory, assemble the pages into a linear area by appropriate
tweaking of the page tables. For example, you can allow a user process to mmap
memory areas obtained as single unrelated pages. We’ll discuss this kind of opera-
tion in ‘‘The mmap Device Operation’’ in Chapter 13, where we show how scullp
of fers memory mapping, something that scull cannot offer.

vmalloc and Friends
The next memory allocation function that we’ll show you is vmalloc, which allo-
cates a contiguous memory region in the virtual addr ess space. Although the
pages are not necessarily consecutive in physical memory (each page is retrieved
with a separate call to _ _get_fr ee_page), the kernel sees them as a contiguous
range of addresses. vmalloc retur ns 0 (the NULL addr ess) if an error occurs, other-
wise, it retur ns a pointer to a linear memory area of size at least size.

The prototypes of the function and its relatives (ior emap, which is not strictly an
allocation function, will be discussed shortly) are as follows:

#include <linux/vmalloc.h>

void * vmalloc(unsigned long size);
void vfree(void * addr);
void *ioremap(unsigned long offset, unsigned long size);
void iounmap(void * addr);

It’s worth stressing that memory addresses retur ned by kmalloc and get_fr ee_pages
ar e also virtual addresses. Their actual value is still massaged by the MMU (mem-
ory management unit, usually part of the CPU) before it is used to address physi-
cal memory.* vmalloc is not differ ent in how it uses the hardware, but rather in
how the kernel perfor ms the allocation task.

* Actually, some architectur es define ranges of ‘‘virtual’’ addresses as reserved to address
physical memory. When this happens, the Linux kernel takes advantage of the feature,
and both the kernel and get_fr ee_pages addr esses lie in one of those memory ranges. The
dif ference is transparent to device drivers and other code that is not directly involved
with the memory-management kernel subsystem.

vmalloc and Friends

217

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

The (virtual) address range used by kmalloc and get_fr ee_pages featur es a one-to-
one mapping to physical memory, possibly shifted by a constant PAGE_OFFSET
value; the functions don’t need to modify the page tables for that address range.
The address range used by vmalloc and ior emap, on the other hand, is completely
synthetic, and each allocation builds the (virtual) memory area by suitably setting
up the page tables.

This differ ence can be perceived by comparing the pointers retur ned by the allo-
cation functions. On some platforms (for example, the x86), addresses retur ned by
vmalloc ar e just greater than addresses that kmalloc addr esses. On other platforms
(for example, MIPS and IA-64), they belong to a completely differ ent addr ess
range. Addresses available for vmalloc ar e in the range from VMALLOC_START to
VMALLOC_END. Both symbols are defined in <asm/pgtable.h>.

Addr esses allocated by vmalloc can’t be used outside of the micropr ocessor,
because they make sense only on top of the processor’s MMU. When a driver
needs a real physical address (such as a DMA address, used by peripheral hard-
war e to drive the system’s bus), you can’t easily use vmalloc. The right time to call
vmalloc is when you are allocating memory for a large sequential buffer that exists
only in software. It’s important to note that vmalloc has more overhead than
_ _get_fr ee_pages because it must both retrieve the memory and build the page
tables. Therefor e, it doesn’t make sense to call vmalloc to allocate just one page.

An example of a function that uses vmalloc is the cr eate_module system call,
which uses vmalloc to get space for the module being created. Code and data of
the module are later copied to the allocated space using copy_fr om_user, after ins-
mod has relocated the code. In this way, the module appears to be loaded into
contiguous memory. You can verify, by looking in /pr oc/ksyms, that kernel sym-
bols exported by modules lie in a differ ent memory range than symbols exported
by the kernel proper.

Memory allocated with vmalloc is released by vfr ee, in the same way that kfr ee
releases memory allocated by kmalloc.

Like vmalloc, ior emap builds new page tables; unlike vmalloc, however, it doesn’t
actually allocate any memory. The retur n value of ior emap is a special virtual
addr ess that can be used to access the specified physical address range; the virtual
addr ess obtained is eventually released by calling iounmap. Note that the retur n
value from ior emap cannot be safely derefer enced on all platforms; instead, func-
tions like readb should be used. See “Directly Mapped Memory” in Chapter 8for
the details.

ior emap is most useful for mapping the (physical) address of a PCI buffer to (vir-
tual) kernel space. For example, it can be used to access the frame buffer of a PCI
video device; such buffers are usually mapped at high physical addresses, outside
of the address range for which the kernel builds page tables at boot time. PCI
issues are explained in more detail in “The PCI Interface” in Chapter 15.

218

22 June 2001 16:38



It’s worth noting that for the sake of portability, you should not directly access
addr esses retur ned by ior emap as if they were pointers to memory. Rather, you
should always use readb and the other I/O functions introduced in Using I/O
Memory, in Chapter 8. This requir ement applies because some platforms, such as
the Alpha, are unable to directly map PCI memory regions to the processor
addr ess space because of differ ences between PCI specs and Alpha processors in
how data is transferred.

Ther e is almost no limit to how much memory vmalloc can allocate and ior emap
can make accessible, although vmalloc refuses to allocate more memory than the
amount of physical RAM, in order to detect common errors or typos made by pro-
grammers. You should remember, however, that requesting too much memory
with vmalloc leads to the same problems as it does with kmalloc.

Both ior emap and vmalloc ar e page oriented (they work by modifying the page
tables); thus the relocated or allocated size is rounded up to the nearest page
boundary. In addition, the implementation of ior emap found in Linux 2.0 won’t
even consider remapping a physical address that doesn’t start at a page boundary.
Newer kernels allow that by ‘‘rounding down’’ the address to be remapped and by
retur ning an offset into the first remapped page.

One minor drawback of vmalloc is that it can’t be used at interrupt time because
inter nally it uses kmalloc(GFP_KERNEL) to acquire storage for the page tables,
and thus could sleep. This shouldn’t be a problem — if the use of _ _get_fr ee_page
isn’t good enough for an interrupt handler, then the software design needs some
cleaning up.

A scull Using Vir tual Addresses: scullv
Sample code using vmalloc is provided in the scullv module. Like scullp, this mod-
ule is a stripped-down version of scull that uses a differ ent allocation function to
obtain space for the device to store data.

The module allocates memory 16 pages at a time. The allocation is done in large
chunks to achieve better perfor mance than scullp and to show something that
takes too long with other allocation techniques to be feasible. Allocating more
than one page with _ _get_fr ee_pages is failure prone, and even when it succeeds,
it can be slow. As we saw earlier, vmalloc is faster than other functions in allocat-
ing several pages, but somewhat slower when retrieving a single page, because of
the overhead of page-table building. scullv is designed like scullp. order specifies
the ‘‘order’’ of each allocation and defaults to 4. The only differ ence between
scullv and scullp is in allocation management. These lines use vmalloc to obtain
new memory:

/* Allocate a quantum using virtual addresses */
if (!dptr->data[s_pos]) {

dptr->data[s_pos] =
(void *)vmalloc(PAGE_SIZE << dptr->order);

vmalloc and Friends

219

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

if (!dptr->data[s_pos])
goto nomem;

memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

And these lines release memory:

/* Release the quantum set */
for (i = 0; i < qset; i++)

if (dptr->data[i])
vfree(dptr->data[i]);

If you compile both modules with debugging enabled, you can look at their data
allocation by reading the files they create in /pr oc. The following snapshots were
taken on two differ ent systems:

salma% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1048576
item at e00000003e641b40, qset at e000000025c60000

0:e00000003007c000
1:e000000024778000

salma% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1048576
item at e0000000303699c0, qset at e000000025c87000

0:a000000000034000
1:a000000000078000

salma% uname -m
ia64

rudo% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1048576
item at c4184780, qset at c71c4800

0:c262b000
1:c2193000

rudo% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1048576
item at c4184b80, qset at c71c4000

0:c881a000
1:c882b000

rudo% uname -m
i686

The values show two differ ent behaviors. On IA-64, physical addresses and virtual
addr esses ar e mapped to completely differ ent addr ess ranges (0xE and 0xA),
wher eas on x86 computers vmalloc retur ns virtual addresses just above the map-
ping used for physical memory.

220

22 June 2001 16:38



Boot-Time Allocation
If you really need a huge buffer of physically contiguous memory, you need to
allocate it by requesting memory at boot time. This technique is inelegant and
inflexible, but it is also the least prone to failure. Needless to say, a module can’t
allocate memory at boot time; only drivers directly linked to the kernel can do
that.

Allocation at boot time is the only way to retrieve consecutive memory pages
while bypassing the limits imposed by get_fr ee_pages on the buffer size, both in
ter ms of maximum allowed size and limited choice of sizes. Allocating memory at
boot time is a ‘‘dirty’’ technique, because it bypasses all memory management poli-
cies by reserving a private memory pool.

One noticeable problem with boot-time allocation is that it is not a feasible option
for the average user: being only available for code linked in the kernel image, a
device driver using this kind of allocation can only be installed or replaced by
rebuilding the kernel and rebooting the computer. Fortunately, there are a pair of
workar ounds to this problem, which we introduce soon.

Even though we won’t suggest allocating memory at boot time, it’s something
worth mentioning because it used to be the only way to allocate a DMA-capable
buf fer in the first Linux versions, before __GFP_DMA was introduced.

Acquir ing a Dedicated Buffer at Boot Time
When the kernel is booted, it gains access to all the physical memory available in
the system. It then initializes each of its subsystems by calling that subsystem’s ini-
tialization function, allowing initialization code to allocate a memory buffer for pri-
vate use by reducing the amount of RAM left for normal system operation.

With version 2.4 of the kernel, this kind of allocation is perfor med by calling one
of these functions:

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

The functions allocate either whole pages (if they end with _pages) or non-page-
aligned memory areas. They allocate either low or normal memory (see the discus-
sion of memory zones earlier in this chapter). Normal allocation retur ns memory
addr esses that are above MAX_DMA_ADDRESS; low memory is at addresses lower
than that value.

Boot-Time Allocation

221

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

This interface was introduced in version 2.3.23 of the kernel. Earlier versions used
a less refined interface, similar to the one described in Unix books. Basically, the
initialization functions of several kernel subsystems received two unsigned
long arguments, which repr esented the current bounds of the free memory area.
Each such function could steal part of this area, retur ning the new lower bound. A
driver allocating memory at boot time, therefor e, was able to steal consecutive
memory from the linear array of available RAM.

The main problem with this older mechanism of managing boot-time allocation
requests was that not all initialization functions could modify the lower memory
bound, so writing a driver needing such allocation usually implied providing users
with a kernel patch. On the other hand, alloc_bootmem can be called by the ini-
tialization function of any kernel subsystem, provided it is perfor med at boot time.

This way of allocating memory has several disadvantages, not the least being the
inability to ever free the buffer. After a driver has taken some memory, it has no
way of retur ning it to the pool of free pages; the pool is created after all the physi-
cal allocation has taken place, and we don’t recommend hacking the data struc-
tur es inter nal to memory management. On the other hand, the advantage of this
technique is that it makes available an area of consecutive physical memory that is
suitable for DMA. This is currently the only safe way in the standard kernel to allo-
cate a buffer of more than 32 consecutive pages, because the maximum value of
order that is accepted by get_fr ee_pages is 5. If, however, you need many pages
and they don’t have to be physically contiguous, vmalloc is by far the best func-
tion to use.

If you are going to resort to grabbing memory at boot time, you must modify
init/main.c in the kernel sources. You’ll find more about main.c in Chapter 16.

Note that this ‘‘allocation’’ can be perfor med only in multiples of the page size,
though the number of pages doesn’t have to be a power of two.

The bigphysarea Patch
Another approach that can be used to make large, contiguous memory regions
available to drivers is to apply the bigphysar ea patch. This unofficial patch has
been floating around the Net for years; it is so renowned and useful that some dis-
tributions apply it to the kernel images they install by default. The patch basically
allocates memory at boot time and makes it available to device drivers at runtime.
You’ll need to pass a command-line option to the kernel to specify the amount of
memory that must be reserved at boot time.

The patch is currently maintained at http://www.polywar e.nl/˜middelink/En/hob-
v4l.html. It includes its own documentation that describes the allocation interface
it offers to device drivers. The Zoran 36120 frame grabber driver, part of the 2.4
ker nel (in drivers/char/zr36120.c) uses the bigphysar ea extension if it is available,
and is thus a good example of how the interface is used.

222

22 June 2001 16:38



Reser ving High RAM Addresses
The last option for allocating contiguous memory areas, and possibly the easiest, is
reserving a memory area at the end of physical memory (whereas bigphysar ea
reserves it at the beginning of physical memory). To this aim, you need to pass a
command-line option to the kernel to limit the amount of memory being managed.
For example, one of your authors uses mem=126M to reserve 2 megabytes in a
system that actually has 128 megabytes of RAM. Later, at runtime, this memory can
be allocated and used by device drivers.

The allocator module, part of the sample code released on the O’Reilly FTP site,
of fers an allocation interface to manage any high memory not used by the Linux
ker nel. The module is described in more detail in “Do-it-yourself allocation” in
Chapter 13.

The advantage of allocator over the bigphysar ea patch is that there’s no need to
modify official kernel sources. The disadvantage is that you must change the com-
mand-line option to the kernel whenever you change the amount of RAM in the
system. Another disadvantage, which makes allocator unsuitable in some situa-
tions is that high memory cannot be used for some tasks, such as DMA buffers for
ISA devices.

Backward Compatibility
The Linux memory management subsystem has changed dramatically since the 2.0
ker nel came out. Happily, however, the changes to its programming interface have
been much smaller and easier to deal with.

kmalloc and kfr ee have remained essentially constant between Linux 2.0 and 2.4.
Access to high memory, and thus the __GFP_HIGHMEM flag, was added starting
with kernel 2.3.23; sysdep.h fills the gaps and allows for 2.4 semantics to be used
in 2.2 and 2.0.

The lookaside cache functions were intr oduced in Linux 2.1.23, and were simply
not available in the 2.0 kernel. Code that must be portable back to Linux 2.0
should stick with kmalloc and kfr ee. Mor eover, kmem_destr oy_cache was intro-
duced during 2.3 development and has only been backported to 2.2 as of 2.2.18.
For this reason scullc refuses to compile with a 2.2 kernel older than that.

_ _get_fr ee_pages in Linux 2.0 had a third, integer argument called dma; it served
the same function that the __GFP_DMA flag serves in modern ker nels but it was
not merged in the flags argument. To addr ess the problem, sysdep.h passes 0 as
the third argument to the 2.0 function. If you want to request DMA pages and be
backward compatible with 2.0, you need to call get_dma_ pages instead of using
__GFP_DMA.

Backward Compatibility

223

22 June 2001 16:38



Chapter 7: Getting Hold of Memory

vmalloc and vfr ee ar e unchanged across all 2.x ker nels. However, the ior emap
function was called vr emap in the 2.0 days, and there was no iounmap. Instead,
an I/O mapping obtained with vr emap would be freed with vfr ee. Also, the header
<linux/vmalloc.h> didn’t exist in 2.0; the functions were declar ed by
<linux/mm.h> instead. As usual, sysdep.h makes 2.4 code work with earlier ker-
nels; it also includes <linux/vmalloc.h> if <linux/mm.h> is included, thus
hiding this differ ence as well.

Quick Reference
The functions and symbols related to memory allocation follow.

#include <linux/malloc.h>
void *kmalloc(size_t size, int flags);
void kfree(void *obj);

The most frequently used interface to memory allocation.

#include <linux/mm.h>
GFP_KERNEL
GFP_ATOMIC
__GFP_DMA
__GFP_HIGHMEM

kmalloc flags. __GFP_DMA and __GFP_HIGHMEM ar e flags that can be OR’d
to either GFP_KERNEL or GFP_ATOMIC.

#include <linux/malloc.h>
kmem_cache_t *kmem_cache_create(char *name, size_t size,

size_t offset, unsigned long flags, constructor(),
destructor());

int kmem_cache_destroy(kmem_cache_t *cache);
Cr eate and destroy a slab cache. The cache can be used to allocate several
objects of the same size.

SLAB_NO_REAP
SLAB_HWCACHE_ALIGN
SLAB_CACHE_DMA

Flags that can be specified while creating a cache.

SLAB_CTOR_ATOMIC
SLAB_CTOR_CONSTRUCTOR

Flags that the allocator can pass to the constructor and the destructor func-
tions.

224

22 June 2001 16:38



void *kmem_cache_alloc(kmem_cache_t *cache, int flags);
void kmem_cache_free(kmem_cache_t *cache, const void *obj);

Allocate and release a single object from the cache.

unsigned long get_zeroed_page(int flags);
unsigned long __get_free_page(int flags);
unsigned long __get_free_pages(int flags, unsigned long

order);
unsigned long __get_dma_pages(int flags, unsigned long

order);
The page-oriented allocation functions. get_zer oed_page retur ns a single,
zer o-filled page. All the other versions of the call do not initialize the contents
of the retur ned page(s). _ _get_dma_ pages is only a compatibility macro in
Linux 2.2 and later (you can use __GFP_DMA instead).

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

These functions release page-oriented allocations.

#include <linux/vmalloc.h>
void * vmalloc(unsigned long size);
void vfree(void * addr);
#include <asm/io.h>
void * ioremap(unsigned long offset, unsigned long size);
void iounmap(void *addr);

These functions allocate or free a contiguous virtual addr ess space. ior emap
accesses physical memory through virtual addresses, while vmalloc allocates
fr ee pages. Regions mapped with ior emap ar e fr eed with iounmap, while
pages obtained from vmalloc ar e released with vfr ee.

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

Only with version 2.4 of the kernel, memory can be allocated at boot time
using these functions. The facility can only be used by drivers directly linked
in the kernel image.

Quick Reference

225

22 June 2001 16:38


