Inverse DFT Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Inverse DFT

The inverse DFT (the IDFT) is given by

$\displaystyle x(t_n) = \frac{1}{N}\sum_{k=0}^{N-1}X(\omega_k )e^{j\omega_k t_n}, \qquad n=0,1,2,\ldots,N-1.
$

The inverse DFT is written using `$ =$' instead of ` $ \isdeftext $' because the result follows from the definition of the DFT, as we will show in Chapter 6.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]