Norm of the DFT Sinusoids Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Norm of the DFT Sinusoids

For $ k=l$, we follow the previous derivation to the next-to-last step to get

$\displaystyle \left<s_k,s_k\right> = \sum_{n=0}^{N-1}e^{j2\pi (k-k) n /N} = N
$

which proves

$\displaystyle \zbox {\left\Vert\,s_k\,\right\Vert = \sqrt{N}.}
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]