Vector Cosine Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Vector Cosine

The Cauchy-Schwarz Inequality can be written

$\displaystyle \frac{\left\vert\left<\underline{u},\underline{v}\right>\right\vert}{\Vert\underline{u}\Vert\cdot\Vert\underline{v}\Vert} \leq 1.
$

In the case of real vectors $ \underline{u},\underline{v}$, we can always find a real number $ \theta\in[0,\pi]$ which satisfies

$\displaystyle \zbox {\cos(\theta) \isdef \frac{\left<\underline{u},\underline{v}\right>}{\Vert\underline{u}\Vert\cdot\Vert\underline{v}\Vert}.}
$

We thus interpret $ \theta$ as the angle between two vectors in $ {\bf R}^N$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]