|
M:一天,一个由外层空间来的超级生物欧米加在地球着陆。 |
|
M:欧米加搞出一个设备来研究人的大脑。他可以十分准确地预言每一个人在二者择一时会选择哪一个。 |
|
M:欧米加用两个大箱子检验了很多人。箱子A是透明的,总是装着1千美元。箱子B不透明,它要么装着1百万美元,要么空着。 |
|
M:欧米加告诉每一个受试者。 欧米加:你有两种选择,一种是你拿走两个箱子,可以获得其中的东西。可是,当我预计你这样做时,我就让箱子B空着。你就只能得到1千美元。 |
|
欧米加:另一种选择是只拿一个箱子B。如果我预计你这样做时,我就放进箱子B中1百万美元。你能得到全部款子。 |
|
M:这个男人决定只拿箱子B。他的理由是—— 男:我已看见欧米加尝试了几百次,每次他都预计对了。凡是拿两个箱子的人,只能得到l千美元。所以我只拿箱子B,就可变成一个百万富翁。 |
|
M:这个女孩决定要拿两个箱子,她的理由是—— 女:欧米加已经做完了他的预言,并已离开。箱子不会再变了。如果是空的,它还是空的。如果它是有钱的,它还是有钱。所以我要拿两个箱子,就可以得到里面所有的钱。 |
|
M:你认为谁的决定最好?两种看法不可能都对。哪一种错了?它为何错了?这是一个新的悖论,而专家们还不知道如何解决它。 |
这个悖论是哲学家经常争论的很多预言悖论中最新的,也是最棘手的。它是物理学家威廉·纽科姆发明的,称为纽科姆悖论。哈佛大学的哲学家罗伯特·诺吉克首先发表并分析了这个悖论。他分析的依据主要是数学家称之为“博弈论”或“对策论”的法则。
男孩决定只拿B箱是很容易理解的。为了使女孩的论据明显起来,要记住欧米加已经走了。箱子里也许有钱,也许空着,这是不会再改变的。如果有钱,它仍然有钱;如果空着,它仍然空着。让我们思考一下这两种情况。
如果B中有钱,女孩只拿箱子B,她得到1百万美元。如果她两个箱子都要,就会得到1百万加1千元。
如果B箱空着,她只拿B箱,就什么也得不到。但如果她拿两个箱子,她就至少得到1千美元。
因此,每一种情况下,女孩拿两个箱子都多得1千元。
这条悖论,是试验一个人是否相信自由意志论的“石蕊试纸”类型的悖论。对这个悖论的反应公平地区分出,愿意拿两个箱子的是自由意志论信徒,愿意拿B箱者是决定论(宿命论)信徒。而另一些人则争辩道:不管未来是完全决定的,还是不是完全决定的,这个悖论所要求的条件却是矛盾的。
对这些争论观点的讨论可参见马丁·加德勒在1973年《科学美国人》7月号的数学游戏专栏,以及诺吉克教授发表在同一刊物1974年3月号同一专栏的文章。由于这一悖论还未解决,故它是学生讨论的极好课题。你将发现课堂里对这个悖论的反应是活跃的,十分有益的。