
Vinto &

Soto

Natale Vinto &
Alex Soto Bueno

 GitOps
Cookbook
Kubernetes Automation in Practice

Compliments of

GITOP S / KUBERNETES

“For any IT professional,
it can be challenging
to stay on top of the
newest technologies
and best practices in the
ever-changing space
of software delivery.
In this book, Alex and
Natale share practical
hands-on examples from
working across many
different organizations
on implementing GitOps
and CI/CD in a cloud
native environment. Pick
your favorite recipe and
get cooking!”

—Sasha Rosenbaum
Principal at Ergonautic

GitOps Cookbook

US $79.99	 CAN $99.99
ISBN: 978-1-492-109747-1

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Why are so many companies adopting GitOps for their
DevOps and cloud native strategy? This reliable framework
is quickly becoming the standard method for deploying apps
to Kubernetes. With this practical, developer-oriented book,
DevOps engineers, developers, IT architects, and SREs will
learn the most useful recipes and examples for following
GitOps practices.

Through their years of experience in application modernization,
CI/CD, and automation, authors Alex Soto Bueno and Natale
Vinto from Red Hat take you through all the steps necessary for
successful hands-on application development and deployment
with GitOps. Once you start using the recipes in this book,
you’ll have a head start in development cycles on Kubernetes
following the GitOps approach.

You’ll learn how to:

•	 Develop and deploy applications on Kubernetes

•	 Understand the basics of CI/CD and automation on
Kubernetes and apply GitOps practices to implement
development cycles on the platform

•	 Prepare the app for deployment in multiple environments
or multiple Kubernetes clusters

•	 Deploy apps for Kubernetes clusters or for multiple
environments using GitOps and Argo CD

•	 Create Kubernetes-native pipelines with Tekton

•	 Provide and extend DevOps skills for the team working
on Kubernetes

Natale Vinto is a developer advocate at
Red Hat, helping customers with their
Kubernetes and cloud native strategy.

Alex Soto Bueno is director of
developer experience at Red Hat and
coauthor of Quarkus Cookbook.

Vinto &

Soto

ISBN: 978-1-098-13517-1

Launch your Developer Sandbox
for Red Hat OpenShift today

red.ht/sandb0x

https://developers.redhat.com
https://developers.redhat.com/developer-sandbox?sc_cid=7013a0000034kXyAAI

Natale Vinto and Alex Soto Bueno

GitOps Cookbook
Kubernetes Automation in Practice

GitOps Cookbook
by Natale Vinto and Alex Soto Bueno

Copyright © 2023 Natale Vinto and Alex Soto Bueno. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Shira Evans
Production Editor: Kate Galloway
Copyeditor: Kim Cofer
Proofreader: Liz Wheeler

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2023: First Edition

Revision History for the First Edition
2023-01-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492097471 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. GitOps Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our statement of
editorial independence.

978-1-098-14809-6

[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492097471
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To Alessia and Sofia, the most beautiful chapters of my life.
—Natale

[Ada i Alexandra] Sabeu que sou flipants, encara que sortiu del fang.
—Alex

Table of Contents

Foreword. xi

Preface. xiii

1. Introduction. 1
1.1 What Is GitOps? 1
1.2 Why GitOps? 2
1.3 Kubernetes CI/CD 3
1.4 App Deployment with GitOps on Kubernetes 4
1.5 DevOps and Agility 5

2. Requirements. 7
2.1 Registering for a Container Registry 7
2.2 Registering for a Git Repository 9
2.3 Creating a Local Kubernetes Cluster 12

3. Containers. 17
3.1 Building a Container Using Docker 18
3.2 Building a Container Using Dockerless Jib 23
3.3 Building a Container Using Buildah 27
3.4 Building a Container with Buildpacks 32
3.5 Building a Container Using Shipwright and kaniko in Kubernetes 35
3.6 Final Thoughts 42

4. Kustomize. 43
4.1 Using Kustomize to Deploy Kubernetes Resources 44
4.2 Updating the Container Image in Kustomize 50

vii

4.3 Updating Any Kubernetes Field in Kustomize 52
4.4 Deploying to Multiple Environments 57
4.5 Generating ConfigMaps in Kustomize 60
4.6 Final Thoughts 66

5. Helm. 67
5.1 Creating a Helm Project 68
5.2 Reusing Statements Between Templates 75
5.3 Updating a Container Image in Helm 79
5.4 Packaging and Distributing a Helm Chart 82
5.5 Deploying a Chart from a Repository 84
5.6 Deploying a Chart with a Dependency 88
5.7 Triggering a Rolling Update Automatically 93
5.8 Final Thoughts 98

6. Cloud Native CI/CD. 99
6.1 Install Tekton 100
6.2 Create a Hello World Task 107
6.3 Create a Task to Compile and Package an App from Git 108
6.4 Create a Task to Compile and Package an App from Private Git 114
6.5 Containerize an Application Using a Tekton Task and Buildah 117
6.6 Deploy an Application to Kubernetes Using a Tekton Task 122
6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes 125
6.8 Using Tekton Triggers to Compile and Package an Application

Automatically When a Change Occurs on Git 135
6.9 Update a Kubernetes Resource Using Kustomize and Push the Change to

Git 139
6.10 Update a Kubernetes Resource Using Helm and Create a Pull Request 144
6.11 Use Drone to Create a Pipeline for Kubernetes 148
6.12 Use GitHub Actions for CI 150

7. Argo CD. 155
7.1 Deploy an Application Using Argo CD 156
7.2 Automatic Synchronization 162
7.3 Kustomize Integration 166
7.4 Helm Integration 168
7.5 Image Updater 171
7.6 Deploy from a Private Git Repository 178
7.7 Order Kubernetes Manifests 182
7.8 Define Synchronization Windows 187

viii | Table of Contents

8. Advanced Topics. 191
8.1 Encrypt Sensitive Data (Sealed Secrets) 192
8.2 Encrypt Secrets with ArgoCD (ArgoCD + HashiCorp Vault + External

Secret) 195
8.3 Trigger the Deployment of an Application Automatically (Argo CD

Webhooks) 198
8.4 Deploy to Multiple Clusters 200
8.5 Deploy a Pull Request to a Cluster 206
8.6 Use Advanced Deployment Techniques 208

Index. 217

Table of Contents | ix

Foreword

A few years ago, during a trip to Milan for a Red Hat event, I ran into a passionate
colleague at the Red Hat office. We spoke at length about how customers in Italy
adopt containers to speed up application development on OpenShift. While his name
slipped my mind at the time, his enthusiasm about the subject didn’t, especially since
he was also hospitable enough to take me to an espresso bar near the office to show
me what real coffee tastes like. A while later, I was introduced to a developer advocate
in a meeting who would speak at a conference about CI/CD using products like
OpenShift Pipelines and OpenShift GitOps that my teams delivered at the time. At
that moment, I instantly recognized Natale. Many who attended that talk thought
it was insightful, given his firsthand grasp of challenges that customers experience
when delivering applications and his hands-on approach to technology.

Application delivery is a complex process involving many systems and teams with
numerous handoffs between these parties, often synonymous with delays and back-
and-forth talks at each point. Automation has long been a key enabler for improving
this process and has become particularly popular within the DevOps movement.
Continuous integration, infrastructure as code, and numerous other practices became
common in many organizations as they navigated their journey toward adopting
DevOps.

More recently, and coinciding with the increased adoption of Kubernetes, GitOps as
a blueprint for implementing a subset of DevOps practices has become an area I fre‐
quently get asked about. While neither the term nor the practices GitOps advocates
are new, it does combine. It presents the existing knowledge in a workflow that is
simple, easy to understand, and can be implemented in a standard way across many
teams.

xi

Although the path to adopting the GitOps workflow is simple and concrete, many
technical choices need to be made to fit within each organization’s security, compli‐
ance, operational, and other requirements. Therefore, I am particularly thrilled about
the existence of this book and the practical guides it provides to assist these teams in
making choices that are right for their applications, teams, and organizations.

—Siamak Sadeghianfar
Product Management, Red Hat

xii | Foreword

Preface

We wrote this book for builders. Whether you are a developer, DevOps engineer,
site reliability engineer (SRE), or platform engineer dealing with Kubernetes, you are
building some good stuff. We would like to share our experience from what we have
learned in the field and in the community about the latest Kubernetes automation
insights for pipelines and CI/CD workloads. The book contains a comprehensive list
of the most popular available software and tools in the Kubernetes and cloud native
ecosystem for this purpose. We aim to provide a list of practical recipes that might
help your daily job or are worth exploring further. We are not sticking to a particular
technology or project for implementing Kubernetes automation. However, we are
opinionated on some of our choices to deliver a concise GitOps pathway.

The book is organized in sequential chapters, from the basics to advanced topics in
the Kubernetes ecosystem, following the GitOps principles. We hope you’ll find these
recipes valuable and inspiring for your projects!

• Chapter 1 is an introduction to GitOps principles and why they are continuously•
becoming more common and essential for any new IT project.

• Chapter 2 covers the installation requirements to run these recipes in a Kuber‐•
netes cluster. Concepts and tools like Git, Container Registry, Container Run‐
time, and Kubernetes are necessary for this journey.

• Chapter 3 walks you through a complete overview of containers and why they•
are essential for application development and deployment today. Kubernetes is a
container-orchestration platform; however, it doesn’t build containers out of the
box. Therefore, we’ll provide a list of practical recipes for making container apps
with the most popular tools available in the cloud native community.

• Chapter 4 gives you an overview of Kustomize, a popular tool for managing•
Kubernetes resources. Kustomize is interoperable, and you find it often used
within CI/CD pipelines.

xiii

• Chapter 5 explores Helm, a trendy tool to package applications in Kubernetes.•
Helm is also a templating system that you can use to deploy apps in CI/CD
workloads.

• Chapter 6 walks you through cloud native CI/CD systems for Kubernetes. It gives•
a comprehensive list of recipes for the continuous integration part with Tekton,
the Kubernetes-native CI/CD system. Additionally, it also covers other tools such
as Drone and GitHub Actions.

• Chapter 7 kicks off the pure GitOps part of the book as it sticks to the Continu‐•
ous Deployment phase with Argo CD, a popular GitOps tool for Kubernetes.

• Chapter 8 goes into the advanced topics for GitOps with Argo CD, such as•
secrets management, progressive application delivery, and multicluster deploy‐
ments. This concludes the most common use cases and architectures you will
likely work with today and tomorrow following the GitOps approach.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xiv | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/gitops-cookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “GitOps Cookbook by
Natale Vinto and Alex Soto Bueno (O’Reilly). Copyright 2023 Natale Vinto and Alex
Soto Bueno, 978-1-492-09747-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xv

https://github.com/gitops-cookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/gitops-cookbook.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
We both want to thank our tech reviewers Peter Miron and Andy Block for their
accurate review that helped us improve the reading experience with this book.
Thanks also to the people at O’Reilly who helped us during the whole writing cycle.
Many thanks to our colleagues Aubrey Muhlac and Colleen Lobner for the great
support with publishing this book. Thanks to Kamesh Sampath and all the people
who helped us during the early release phases with comments and suggestions that
we added to the book—your input is much appreciated!

Alex Soto
During these challenging times, I’d like to acknowledge Santa (aquest any sí), Uri
(don’t stop the music), Guiri (un ciclista), Gavina, Gabi (thanks for the support),
and Edgar and Ester (life is good especially on Friday); my friends Edson, Sebi (the
best fellow traveler), Burr (I learned a lot from you), Kamesh, and all the Red Hat
developers team, we are the best.

Jonathan Vila, Abel Salgado, and Jordi Sola for the fantastic conversations about Java
and Kubernetes.

xvi | Preface

https://oreil.ly/gitops-cookbook
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Last but certainly not least, I’d like to acknowledge Anna for being here; my parents
Mili and Ramon for buying my first computer; my daughters Ada and Alexandra,
“sou les ninetes dels meus ulls.”

Natale Vinto
Special thanks to Alessia for the patience and motivation that helped me while writ‐
ing this book. And to my parents for everything they made for me, grazie mamma e
papà, you are the best!

Preface | xvii

CHAPTER 1

Introduction

With the advent of practices such as infrastructure as code (IaC), software develop‐
ment has pushed the boundaries of platforms where you can run applications. This
becomes more frequent with programmable, API-driven platforms such as public
clouds and open source infrastructure solutions. While some years ago developers
were only focusing on application source code, today they also have the opportunity
to code the infrastructure where their application will run. This gives control and
enables automation, which significantly reduces lead time.

A good example is with Kubernetes, a popular open source container workload
orchestration platform and the de facto standard for running production applica‐
tions, either on public or private clouds. The openness and extensibility of the
platform enables automation, which reduces risks of delivery and increases service
quality. Furthermore, this powerful paradigm is extended by another increasingly
popular approach called GitOps.

1.1 What Is GitOps?
GitOps is a methodology and practice that uses Git repositories as a single source
of truth to deliver infrastructure as code. It takes the pillars and approaches from
DevOps culture and provides a framework to start realizing the results. The relation‐
ship between DevOps and GitOps is close, as GitOps has become the popular choice
to implement and enhance DevOps, platform engineering, and SRE.

GitOps is an agnostic approach, and a GitOps framework can be built with tools such
as Git, Kubernetes, and CI/CD solutions. The three main pillars of GitOps are:

• Git is the single source of truth•
• Treat everything as code•

1

• Operations are performed through Git workflows•

There is an active community around GitOps, and the GitOps Working Group
defines a set of GitOps Principles (currently in version 1.0.0) available at
OpenGitOps:

Declarative
A system managed by GitOps must have its desired state expressed declaratively.

Versioned and immutable
The desired state is stored in a way that enforces immutability and versioning
and retains a complete version history.

Pulled automatically
Software agents automatically pull the desired state declarations from the source.

Continuously reconciled
Software agents continuously observe the actual system state and attempt to
apply the desired state.

1.2 Why GitOps?
Using the common Git-based workflows that developers are familiar with, GitOps
expands upon existing processes from application development to deployment, app
lifecycle management, and infrastructure configuration.

Every change throughout the application lifecycle is traced in the Git repository and
is auditable. This approach is beneficial for both developers and operations teams
as it enhances the ability to trace and reproduce issues quickly, improving overall
security. One key point is to reduce the risk of unwanted changes (drift) and correct
them before they go into production.

Here is a summary of the benefits of the GitOps adoption in four key aspects:

Standard workflow
Use familiar tools and Git workflows from application development teams

Enhanced security
Review changes beforehand, detect configuration drifts, and take action

Visibility and audit
Capture and trace any change to clusters through Git history

Multicluster consistency
Reliably and consistently configure multiple environments and multiple Kuber‐
netes clusters and deployment

2 | Chapter 1: Introduction

https://oreil.ly/FUbBy
https://opengitops.dev

1.3 Kubernetes CI/CD
Continuous integration (CI) and continuous delivery (CD) are methods used to fre‐
quently deliver apps by introducing automation into the stages of app development.
CI/CD pipelines are one of the most common use cases for GitOps.

In a typical CI/CD pipeline, submitted code checks the CI process while the CD
process checks and applies requirements for things like security, infrastructure as
code, or any other boundaries set for the application framework. All code changes are
tracked, making updates easy while also providing version control should a rollback
be needed. CD is the GitOps domain and it works together with the CI part to deploy
apps in multiple environments, as you can see in Figure 1-1.

Figure 1-1. Continuous integration and continuous delivery

With Kubernetes, it’s easy to implement an in-cluster CI/CD pipeline. You can have
CI software create the container image representing your application and store it in a
container image registry. Afterward, a Git workflow such as a pull request can change
the Kubernetes manifests illustrating the deployment of your apps and start a CD
sync loop, as shown in Figure 1-2.

Figure 1-2. Application deployment model

This cookbook will show practical recipes for implementing this model on Kuber‐
netes acting as a CI/CD and GitOps platform.

1.3 Kubernetes CI/CD | 3

1.4 App Deployment with GitOps on Kubernetes
As GitOps is an agnostic, platform-independent approach, the application deploy‐
ment model on Kubernetes can be either in-cluster or multicluster. An external
GitOps tool can use Kubernetes just as a target platform for deploying apps. At the
same time, in-cluster approaches run a GitOps engine inside Kubernetes to deploy
apps and sync manifests in one or more Kubernetes clusters.

The GitOps engine takes care of the CD part of the CI/CD pipeline and accomplishes
a GitOps loop, which is composed of four main actions as shown in Figure 1-3:

Deploy
Deploy the manifests from Git.

Monitor
Monitor either the Git repo or the cluster state.

Detect drift
Detect any change from what is described in Git and what is present in the
cluster.

Take action
Perform an action that reflects what is on Git (rollback or three-way diff). Git is
the source of truth, and any change is performed via a Git workflow.

Figure 1-3. GitOps loop

In Kubernetes, application deployment using the GitOps approach makes use of at
least two Git repositories: one for the app source code, and one for the Kubernetes
manifests describing the app’s deployment (Deployment, Service, etc.).

Figure 1-4 illustrates the structure of a GitOps project on Kubernetes.

4 | Chapter 1: Introduction

Figure 1-4. Kubernetes GitOps loop

The following list outlines the items in the workflow:

1. App source code repository1.
2. CI pipeline creating a container image2.
3. Container image registry3.
4. Kubernetes manifests repository4.
5. GitOps engine syncing manifests to one or more clusters and detecting drifts5.

1.5 DevOps and Agility
GitOps is a developer-centric approach to continuous delivery and infrastructure
operations, and a developer workflow through Git for automating processes. As
DevOps is complementary to Agile software development, GitOps is complementary
to DevOps for infrastructure automation and application lifecycle management. As
you can see in Figure 1-5, it’s a developer workflow for automating operations.

One of the most critical aspects of the Agile methodology is to reduce the lead
time, which is described more abstractly as the time elapsed between identifying a
requirement and its fulfillment.

1.5 DevOps and Agility | 5

https://oreil.ly/r52pg
https://oreil.ly/r52pg

Figure 1-5. GitOps development cycle

Reducing this time is fundamental and requires a cultural change in IT organizations.
Seeing applications live provides developers with a feedback loop to redesign and
improve their code and make their projects thrive. Similarly to DevOps, GitOps also
requires a cultural adoption in business processes. Every operation, such as applica‐
tion deployment or infrastructure change, is only possible through Git workflows.
And sometimes, this means a cultural shift.

The “Teaching Elephants to Dance (and Fly!)” speech from Burr Sutter gives a clear
idea of the context. The elephant is where your organization is today. There are
phases of change between traditional and modern environments powered by GitOps
tools. Some organizations have the luxury of starting from scratch, but for many
businesses, the challenge is teaching their lumbering elephant to dance like a graceful
ballerina.

6 | Chapter 1: Introduction

https://oreil.ly/gPja9

CHAPTER 2

Requirements

This book is about GitOps and Kubernetes, and as such, you’ll need a container
registry to publish the containers built throughout the book (see Recipe 2.1).

Also, a Git service is required to implement GitOps methodologies; you’ll learn how
to register to public Git services like GitHub or GitLab (see Recipe 2.2).

Finally, it would be best to have a Kubernetes cluster to run the book examples.
Although we’ll show you how to install Minikube as a Kubernetes cluster (see Recipe
2.3), and the book is tested with Minikube, any Kubernetes installation should work
as well.

Let’s prepare your laptop to execute the recipes provided in this book.

2.1 Registering for a Container Registry
Problem
You want to create an account for a container registry service so you can store
generated containers.

Solution
You may need to publish some containers into a public container registry as you work
through this book. Use Docker Hub (docker.io) to publish containers.

If you already have an account with docker.io, you can skip the following steps.
Otherwise, keep reading to learn how to sign up for an account.

7

Discussion
Visit DockerHub to sign up for an account. The page should be similar to Figure 2-1.

Figure 2-1. DockerHub registration page

When the page is loaded, fill in the form by setting a Docker ID, Email, and Pass‐
word, and click the Sign Up button.

When you are registered and your account confirmed, you’ll be ready to publish
containers under the previous step’s Docker ID.

See Also
Another popular container registry service is quay.io. It can be used on the cloud (like
docker.io) or installed on-premises.

Visit the website to get more information about Quay. The page should be similar to
Figure 2-2.

8 | Chapter 2: Requirements

https://hub.docker.com
https://quay.io

Figure 2-2. Quay registration page

2.2 Registering for a Git Repository
Problem
You want to create an account for a Git service so you can store source code in a
repository.

Solution
You may need to publish some source code into a public Git service in this book. Use
GitHub as a Git service to create and fork Git repositories.

If you already have an account with GitHub, you can skip the following steps,
otherwise keep reading to learn how to sign up for an account.

Discussion
Visit the GitHub web page to sign up for an account. The page should be similar to
Figure 2-3.

2.2 Registering for a Git Repository | 9

https://github.com

Figure 2-3. GitHub welcome page to register

When the page is loaded, click the Sign up for GitHub button (see Figure 2-3) and
follow the instructions. The Sign in page should be similar to Figure 2-4.

Figure 2-4. Sign In GitHub page

When you are registered and your account confirmed, you’ll be ready to start creating
or forking Git repositories into your GitHub account.

10 | Chapter 2: Requirements

Also, you’ll need to fork the book source code repository into your account. Click the
Fork button shown in Figure 2-5.

Figure 2-5. Fork button

Then select your account in the Owner section, if not selected yet, and click the
button “Create fork” button as shown in Figure 2-6.

Figure 2-6. Create fork button

2.2 Registering for a Git Repository | 11

https://oreil.ly/uqjTA

To follow along with the example in the following chapters, you can clone this book’s
repositories locally. When not mentioned explicitly, we will refer to the examples
available in the chapters repo:

git clone https://github.com/gitops-cookbook/chapters

See Also
Another popular Git service is GitLab. It can be used on the cloud or installed
on-premises.

Visit GitLab for more information.

2.3 Creating a Local Kubernetes Cluster
Problem
You want to spin up a Kubernetes cluster locally.

Solution
In this book, you may need a Kubernetes cluster to run most recipes. Use Minikube
to spin up a Kubernetes cluster in your local machine.

Discussion
Minikube uses container/virtualization technology like Docker, Podman, Hyperkit,
Hyper-V, KVM, or VirtualBox to boot up a Linux machine with a Kubernetes cluster
installed inside.

For simplicity and to use an installation that will work in most of the platforms, we
are going to use VirtualBox as a virtualization system.

To install VirtualBox (if you haven’t done it yet), visit the home page and click the
Download link as shown in Figure 2-7.

For those using macOS, the following instructions have been tested
on a Mac AMD64 with macOS Monterey and VirtualBox 6.1. At
the time of writing this book, there were some incompatibilities
when using the ARM version or macOS Ventura.

12 | Chapter 2: Requirements

https://github.com/gitops-cookbook/chapters
https://about.gitlab.com
https://oreil.ly/T93oU

Figure 2-7. VirtualBox home page

Select the package based on the operating system, download it, and install it on your
computer. After installing VirtualBox (we used the 6.1.x version), the next step is to
download and spin up a cluster using Minikube.

Visit the GitHub repo, unfold the Assets section, and download the Minikube file that
matches your platform specification. For example, in the case of an AMD Mac, you
should select minikube-darwin-amd64 as shown in Figure 2-8.

Uncompress the file (if necessary) and copy it with the name minikube in a directory
accessible by the PATH environment variable such as (/usr/local/bin) in Linux or
macOS.

With VirtualBox and Minikube installed, we can spin up a Kubernetes cluster in the
local machine. Let’s install Kubernetes version 1.23.0 as it was the latest version at the
time of writing (although any other previous versions can be used as well).

2.3 Creating a Local Kubernetes Cluster | 13

https://oreil.ly/mmwVP

Figure 2-8. Minikube release page

Run the following command in a terminal window to spin up the Kubernetes cluster
with 8 GB of memory assigned:

minikube start --kubernetes-version='v1.23.0' /
--driver='virtualbox' --memory=8196 -p gitops

Creates a Kubernetes cluster with version 1.23.0

Uses VirtualBox as virtualization tool

Creates a profile name (gitops) to the cluster to refer to it later

14 | Chapter 2: Requirements

The output lines should be similar to:
[gitops] Minikube v1.24.0 on Darwin 12.0.1
 Using the virtualbox driver based on user configuration
Starting control plane node gitops in cluster gitops
Creating virtualbox VM (CPUs=2, Memory=8196MB, Disk=20000MB) ...
 > kubeadm.sha256: 64 B / 64 B [--------------------------] 100.00% ? p/s 0s
 > kubelet.sha256: 64 B / 64 B [--------------------------] 100.00% ? p/s 0s
 > kubectl.sha256: 64 B / 64 B [--------------------------] 100.00% ? p/s 0s
 > kubeadm: 43.11 MiB / 43.11 MiB [---------------] 100.00% 3.46 MiB p/s 13s
 > kubectl: 44.42 MiB / 44.42 MiB [---------------] 100.00% 3.60 MiB p/s 13s
 > kubelet: 118.73 MiB / 118.73 MiB [-------------] 100.00% 6.32 MiB p/s 19s

 ▪ Generating certificates and keys ...
 ▪ Booting up control plane ...
 ▪ Configuring RBAC rules ...
 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
...

 Verifying Kubernetes components...
Enabled addons: storage-provisioner, default-storageclass

 /usr/local/bin/kubectl is version 1.21.0, which
may have incompatibilites with Kubernetes 1.23.0.
 ▪ Want kubectl v1.23.0? Try 'minikube kubectl -- get pods -A'
Done! kubectl is now configured to use "gitops" cluster and
 "default" namespace by default

Starts the gitops cluster

Boots up the Kubernetes cluster control plane

Detects that we have an old kubectl tool

Cluster is up and running

To align the Kubernetes cluster and Kubernetes CLI tool version, you can download
the kubectl 1.23.0 version running from https://dl.k8s.io/release/v1.23.0/bin/darwin/
amd64/kubectl.

You need to change darwin/amd64 to your specific architecture. For
example, in Windows it might be windows/amd64/kubectl.exe.

Copy the kubectl CLI tool in a directory accessible by the PATH environment variable
such as (/usr/local/bin) in Linux or macOS.

2.3 Creating a Local Kubernetes Cluster | 15

See Also
There are other ways to run Kubernetes in a local machine.

One that is very popular is kind.

Although the examples in this book should work in any Kubernetes implementation
as only standard resources are used, we’ve only tested with Minikube.

16 | Chapter 2: Requirements

https://oreil.ly/8B2bH

CHAPTER 3

Containers

Containers are a popular and standard format for packaging applications. The format
is an open standard promoted by the Open Container Initiative (OCI), an open gov‐
ernance structure for the express purpose of creating open industry standards around
container formats and runtimes. The openness of this format ensures portability
and interoperability across different operating systems, vendors, platforms, or clouds.
Kubernetes runs containerized apps, so before going into the GitOps approach to
managing apps on Kubernetes, we provide a list of recipes useful for understanding
how to package your application as a container image.

The first step for creating images is to use a container engine for packaging your
application by building a layered structure containing a base OS and additional layers
on top such as runtimes, libraries, and applications. Docker is a widespread open
source implementation of a container engine and runtime, and it can generate a
container image by specifying a manifest called a Dockerfile (see Recipe 3.1).

Since the format is open, it’s possible to create container images with other tools.
Docker, a popular container engine, requires the installation and the execution of a
daemon that can handle all the operations with the container engine. Developers can
use a software development kit (SDK) to interact with the Docker daemon or use
dockerless solutions such as JiB to create container images (see Recipe 3.2).

If you don’t want to rely on a specific programming language or SDK to build
container images, you can use another daemonless solution like Buildah (see Recipe
3.3) or Buildpacks (see Recipe 3.4). Those are other popular open source tools for
building OCI container images. By avoiding dependencies from the OS, such tools
make automation more manageable and portable (see Chapter 6).

17

https://opencontainers.org
https://www.docker.com

Kubernetes doesn’t provide a native mechanism for building container images. How‐
ever, its highly extensible architecture allows interoperability with external tools and
the platform’s extensibility to create container images. Shipwright is an open source
framework for building container images on Kubernetes, providing an abstraction
that can use tools such as kaniko, Buildpacks, or Buildah (see Recipe 3.5) to create
container images.

At the end of this chapter, you’ll learn how to create OCI-compliant container images
from a Dockerfile, either from a host with Docker installed, or using tools such as
Buildah and Buildpacks.

3.1 Building a Container Using Docker
Problem
You want to create a container image for your application with Docker.

Solution
The first thing you need to do is install Docker.

Docker is available for Mac, Windows, and Linux. Download the
installer for your operating system and refer to the documentation
to start the Docker service.

Developers can create a container image by defining a Dockerfile. The best definition
for a Dockerfile comes from the Docker documentation itself: “A Dockerfile is a text
document that contains all the commands a user could call on the command line to
assemble an image.”

Container images present a layered structure, as you can see in Figure 3-1. Each
container image provides the foundation layer for a container, and any update is just
an additional layer that can be committed on the foundation.

18 | Chapter 3: Containers

https://oreil.ly/jd0kH
https://oreil.ly/7vGmZ
https://oreil.ly/RMm2y

Figure 3-1. Container image layers

You can create a Dockerfile like the one shown here, which will generate a container
image for Python apps. You can also find this example in this book’s repository.

FROM registry.access.redhat.com/ubi8/python-39
ENV PORT 8080
EXPOSE 8080
WORKDIR /usr/src/app

COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

ENTRYPOINT ["python"]
CMD ["app.py"]

FROM: always start from a base image as a foundational layer. In this case we start
from a Universal Base Image (UBI), publicly available based on RHEL 8 with
Python 3.9 runtime.

ENV: set an environment variable for the app.

EXPOSE: expose a port to the container network, in this case port TCP 8080.

WORKDIR: set a directory inside the container to work with.

COPY: copy the assets from the source code files on your workstation to the
container image layer, in this case, to the WORKDIR.

RUN: run a command inside the container, using the tools already available within
the base image. In this case, it runs the pip tool to install dependencies.

ENTRYPOINT: define the entry point for your app inside the container. It can be a
binary or a script. In this case, it runs the Python interpreter.

3.1 Building a Container Using Docker | 19

https://oreil.ly/J7cXP

CMD: the command that is used when starting a container. In this case it uses the
name of the Python app app.py.

You can now create your container image with the following command:
docker build -f Dockerfile -t quay.io/gitops-cookbook/pythonapp:latest

Change the container image name with the your registry, user, and
repo. Example: quay.io/youruser/yourrepo:latest. See Chap‐
ter 2 for how to create a new account on registries such as Quay.io.

Your container image is building now. Docker will fetch existing layers from a public
container registry (DockerHub, Quay, Red Hat Registry, etc.) and add a new layer
with the content specified in the Dockerfile. Such layers could also be available locally,
if already downloaded, in special storage called a container cache or Docker cache.

STEP 1: FROM registry.access.redhat.com/ubi8/python-39
Getting image source signatures
Copying blob adffa6963146 done
Copying blob 4125bdfaec5e done
Copying blob 362566a15abb done
Copying blob 0661f10c38cc done
Copying blob 26f1167feaf7 done
Copying config a531ae7675 done
Writing manifest to image destination
Storing signatures
STEP 2: ENV PORT 8080
--> 6dbf4ac027e
STEP 3: EXPOSE 8080
--> f78357fe402
STEP 4: WORKDIR /usr/src/app
--> 547bf8ca5c5
STEP 5: COPY requirements.txt ./
--> 456cab38c97
STEP 6: RUN pip install --no-cache-dir -r requirements.txt
Collecting Flask
 Downloading Flask-2.0.2-py3-none-any.whl (95 kB)
 |████████████████████████████████| 95 kB 10.6 MB/s
Collecting itsdangerous>=2.0
 Downloading itsdangerous-2.0.1-py3-none-any.whl (18 kB)
Collecting Werkzeug>=2.0
 Downloading Werkzeug-2.0.2-py3-none-any.whl (288 kB)
 |████████████████████████████████| 288 kB 1.7 MB/s
Collecting click>=7.1.2
 Downloading click-8.0.3-py3-none-any.whl (97 kB)
 |████████████████████████████████| 97 kB 31.9 MB/s
Collecting Jinja2>=3.0
 Downloading Jinja2-3.0.3-py3-none-any.whl (133 kB)
 |████████████████████████████████| 133 kB 38.8 MB/s
STEP 7: COPY . .

20 | Chapter 3: Containers

--> 3e6b73464eb
STEP 8: ENTRYPOINT ["python"]
--> acabca89260
STEP 9: CMD ["app.py"]
STEP 10: COMMIT quay.io/gitops-cookbook/pythonapp:latest
--> 52e134d39af
52e134d39af013a25f3e44d25133478dc20b46626782762f4e46b1ff6f0243bb

Your container image is now available in your Docker cache and ready to be used.
You can verify its presence with this command:

docker images

You should get the list of available container images from the cache in output. Those
could be images you have built or downloaded with the docker pull command:

REPOSITORY TAG IMAGE ID CREATED↳
 SIZE
quay.io/gitops-cookbook/pythonapp latest 52e134d39af0 6 minutes ago↳
 907 MB

Once your image is created, you can consume it locally or push it to a public
container registry to be consumed elsewhere, like from a CI/CD pipeline.

You need to first log in to your public registry. In this example, we are using Quay:
docker login quay.io

You should get output similar to this:
Login Succeeded!

Then you can push your container image to the registry:
docker push quay.io/gitops-cookbook/pythonapp:latest

As confirmed, you should get output similar to this:
Getting image source signatures
Copying blob e6e8a2c58ac5 done
Copying blob 3ba8c926eef9 done
Copying blob 558b534f4e1b done
Copying blob 25f82e0f4ef5 done
Copying blob 7b17276847a2 done
Copying blob 352ba846236b done
Copying blob 2de82c390049 done
Copying blob 26525e00a8d8 done
Copying config 52e134d39a done
Writing manifest to image destination
Copying config 52e134d39a [--------------------------------------] 0.0b / 5.4KiB
Writing manifest to image destination
Storing signatures

3.1 Building a Container Using Docker | 21

Discussion
You can create container images in this way with Docker from your workstation or
any host where the Docker service/daemon is running.

Additionally, you can use functionalities offered by a public regis‐
try such as Quay.io that can directly create the container image
from a Dockerfile and store it to the registry.

The build requires access to all layers, thus an internet connection to the registries
storing base layers is needed, or at least having them in the container cache. Docker
has a layered structure where any change to your app is committed on top of the
existing layers, so there’s no need to download all the layers each time since it will add
only deltas for each new change.

Container images typically start from a base OS layer such as
Fedora, CentOS, Ubuntu, Alpine, etc. However, they can also start
from scratch, an empty layer for super-minimal images contain‐
ing only the app’s binary. See the scratch documentation for more
info.

If you want to run your previously created container image, you can do so with this
command:

docker run -p 8080:8080 -ti quay.io/gitops-cookbook/pythonapp:latest

docker run has many options to start your container. The most common are:

-p

Binds the port of the container with the port of the host running such container.

-t

Attaches a TTY to the container.

-i

Goes into an interactive mode.

-d

Goes in the background, printing a hash that you can use to interact asynchro‐
nously with the running container.

22 | Chapter 3: Containers

https://quay.io
https://oreil.ly/vj0gs

The preceding command will start your app in the Docker network and bind it to
port 8080 of your workstation:

 * Serving Flask app 'app' (lazy loading)
 * Environment: production
 WARNING: This is a development server. Do not use it in a production deployment.
 Use a production WSGI server instead.
 * Debug mode: on
 * Running on all addresses.
 WARNING: This is a development server. Do not use it in a production deployment.
 * Running on http://10.0.2.100:8080/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 103-809-567

From a new terminal, try accessing your running container:
curl http://localhost:8080

You should get output like this:
Hello, World!

See Also
• Best practices for writing Dockerfiles•
• Manage Docker images•

3.2 Building a Container Using Dockerless Jib
Problem
You are a software developer, and you want to create a container image without
installing Docker or any additional software on your workstation.

Solution
As discussed in Recipe 3.1, you need to install the Docker engine to create container
images. Docker requires permissions to install a service running as a daemon, thus
a privileged process in your operating system. Today, dockerless solutions are also
available for developers; a popular one is Jib.

Jib is an open source framework for Java made by Google to build OCI-compliant
container images, without the need for Docker or any container runtime. Jib comes
as a library that Java developers can import in their Maven or Gradle projects. This
means you can create a container image for your app without writing or maintaining
any Dockerfiles, delegating this complexity to Jib.

3.2 Building a Container Using Dockerless Jib | 23

https://oreil.ly/2hMQD
https://oreil.ly/hUByf
https://oreil.ly/NYCtv

1 For a presentation about Jib, see Appu Goundan and Qingyang Chen’s presentation from Velocity San Jose
2018.

We see the benefits from this approach as the following:1

Pure Java
No Docker or Dockerfile knowledge is required. Simply add Jib as a plug-in, and
it will generate the container image for you.

Speed
The application is divided into multiple layers, splitting dependencies from
classes. There’s no need to rebuild the container image like for Dockerfiles; Jib
takes care of modifying the layers that changed.

Reproducibility
Unnecessary updates are not triggered because the same contents generate the
same image.

The easiest way to kickstart a container image build with Jib on existing Maven is by
adding the plug-in via the command line:

mvn compile com.google.cloud.tools:jib-maven-plugin:3.2.0:build -Dimage=<MY IMAGE>

Alternatively, you can do so by adding Jib as a plug-in into your pom.xml:
<project>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>com.google.cloud.tools</groupId>
 <artifactId>jib-maven-plugin</artifactId>
 <version>3.2.0</version>
 <configuration>
 <to>
 
 </to>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

In this way, you can also manage other settings such as authentication or parameters
for the build.

Let’s now add Jib to an existing Java application, a Hello World application in Spring
Boot that you can find in the book’s repository.

24 | Chapter 3: Containers

https://oreil.ly/W4j49
https://oreil.ly/W4j49
https://oreil.ly/dn1LF

Run the following command to create a container image without using Docker, and
push it directly to a container registry. In this example, we use Quay.io, and we will
store the container image at quay.io/gitops-cookbook/jib-example:latest, so you will
need to provide your credentials for the registry:

mvn compile com.google.cloud.tools:jib-maven-plugin:3.2.0:build \
-Dimage=quay.io/gitops-cookbook/jib-example:latest \
-Djib.to.auth.username=<USERNAME> \
-Djib.to.auth.password=<PASSWORD>

The authentication here is handled with command-line options, but Jib can manage
existing authentication with Docker CLI or read credentials from your settings.xml
file.

The build takes a few moments, and the result is a Java-specific container image,
based on the adoptOpenJDK base image, built locally and pushed directly to a regis‐
try. In this case, to Quay.io:

[INFO] Scanning for projects...
[INFO]
[INFO] --------------------------< com.redhat:hello >--------------------------
[INFO] Building hello 0.0.1-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
...
[INFO] Containerizing application to quay.io/gitops-cookbook/jib-example...
[INFO] Using credentials from <to><auth> for quay.io/gitops-cookbook/jib-example
[INFO] The base image requires auth. Trying again for eclipse-temurin:11-jre...
[INFO] Using base image with digest:↳
 sha256:83d92ee225e443580cc3685ef9574582761cf975abc53850c2bc44ec47d7d943O]
[INFO]
[INFO] Container entrypoint set to [java, -cp, @/app/jib-classpath-file,↳
 com.redhat.hello.HelloApplication]FO]
[INFO]
[INFO] Built and pushed image as quay.io/gitops-cookbook/jib-example
[INFO] Executing tasks:
[INFO] [==============================] 100,0% complete
[INFO]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 41.366 s
[INFO] Finished at: 2022-01-25T19:04:09+01:00
[INFO] --

If you have Docker and run the command docker images, you
won’t see this image in your local cache!

3.2 Building a Container Using Dockerless Jib | 25

Discussion
Your container image is not present in your local cache, as you don’t need any
container runtime to build images with Jib. You won’t see it with the docker images
command, but you can pull it from the public container registry afterward, and it will
store it in your cache.

This approach is suitable for development velocity and automation, where the CI
system doesn’t need to have Docker installed on the nodes where it runs. Jib can
create the container image without any Dockerfiles. Additionally, it can push the
image to a container registry.

If you also want to store it locally from the beginning, Jib can connect to Docker
hosts and do it for you.

You can pull your container image from the registry to try it:
docker run -p 8080:8080 -ti quay.io/gitops-cookbook/jib-example

Trying to pull quay.io/gitops-cookbook/jib-example:latest...
Getting image source signatures
Copying blob ea362f368469 done
Copying blob d5cc550bb6a0 done
Copying blob bcc17963ea24 done
Copying blob 9b46d5d971fa done
Copying blob 51f4f7c353f0 done
Copying blob 43b2cdfa19bb done
Copying blob fd142634d578 done
Copying blob 78c393914c97 done
Copying config 346462b8d3 done
Writing manifest to image destination
Storing signatures

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.6.3)

2022-01-25 18:36:24.762 INFO 1 --- [main] com.redhat.hello.HelloApplication↳
 : Starting HelloApplication using Java 11.0.13 on a719cf76f440 with PID 1↳
 (/app/classes started by root in /)
2022-01-25 18:36:24.765 INFO 1 --- [main] com.redhat.hello.HelloApplication↳
 : No active profile set, falling back to default profiles: default
2022-01-25 18:36:25.700 INFO 1 --- [main] o.s.b.w.embedded.tomcat.TomcatWeb-
Server↳
 : Tomcat initialized with port(s): 8080 (http)
2022-01-25 18:36:25.713 INFO 1 --- [main] o.apache.catalina.core.StandardSer-
vice↳
 : Starting service [Tomcat]
2022-01-25 18:36:25.713 INFO 1 --- [main] org.apache.catalina.core.StandardEn-

26 | Chapter 3: Containers

gine↳
 : Starting Servlet engine: [Apache Tomcat/9.0.56]
2022-01-25 18:36:25.781 INFO 1 --- [main] o.a.c.c.C.[Tomcat].[localhost].[/]↳
 : Initializing Spring embedded WebApplicationContext
2022-01-25 18:36:25.781 INFO 1 --- [main] w.s.c.ServletWebServerApplicationCon-
text↳
 : Root WebApplicationContext: initialization completed in 947 ms
2022-01-25 18:36:26.087 INFO 1 --- [main] o.s.b.w.embedded.tomcat.TomcatWeb-
Server↳
 : Tomcat started on port(s): 8080 (http) with context path ''
2022-01-25 18:36:26.096 INFO 1 --- [main] com.redhat.hello.HelloApplication↳
 : Started HelloApplication in 1.778 seconds (JVM running for 2.177)

Get the hello endpoint:
curl localhost:8080/hello

{"id":1,"content":"Hello, World!"}

See Also
• Using Jib with Quarkus projects•

3.3 Building a Container Using Buildah
Problem
Sometimes installing or managing Docker is not possible. Dockerless solutions for
creating container images are useful in use cases such as local development or CI/CD
systems.

Solution
The OCI specification is an open standard, and this favors multiple open source
implementations for the container engine and the container image building mecha‐
nism. Two growing popular examples today are Podman and Buildah.

While Docker uses a single monolithic application for creating,
running, and shipping container images, the codebase for con‐
tainer management functionalities here has been split between
different projects like Podman, Buildah, and Skopeo. Podman sup‐
port is already available on Mac and Windows, however Buildah
is currently only available on Linux or Linux subsystems such as
WSL2 for Windows. See the documentation to install it on your
workstation.

Those are two complementary open source projects and command-line tools that
work on OCI containers and images; however, they differ in their specialization.

3.3 Building a Container Using Buildah | 27

https://oreil.ly/sTcpJ
https://podman.io
https://buildah.io
https://oreil.ly/W9l1a

While Podman specializes in commands and functions that help you to maintain and
modify container images, such as pulling, tagging, and pushing, Buildah specializes
in building container images. Decoupling functions in different processes is done by
design, as the authors wanted to move from the single privileged process Docker
model to a lightweight, rootless, daemonless, and decoupled set of tools to improve
agility and security.

Following the same approach, you find Skopeo, a tool used to
move container images; and CRI-O, a container engine complaint
with the Kubernetes container runtime interface for running appli‐
cations.

Buildah supports the Dockerfile format, but its goal is to provide a lower-level
interface to build container images without requiring a Dockerfile. Buildah is a
daemonless solution that can create images inside a container without mounting the
Docker socket. This functionality improves security and portability since it’s easy to
add Buildah builds on the fly to a CI/CD pipeline where the Linux or Kubernetes
nodes do not require a Docker installation.

As we discussed, you can create a container image with or without a Dockerfile. Let’s
now create a simple HTTPD container image without a Dockerfile.

You can start from any base image such as CentOS:
buildah from centos

You should get output similar to this:
Resolved short name "centos" to a recorded short-name alias↳
 (origin: /etc/containers/registries.conf.d/shortnames.conf)
Getting image source signatures
Copying blob 926a85fb4806 done
Copying config 2f3766df23 done
Writing manifest to image destination
Storing signatures
centos-working-container

Similarly to Docker and docker images, you can run the com‐
mand buildah containers to get the list of available images from
the container cache. If you also have installed Podman, this is
similar to podman images.

In this case, the container image ID is centos-working-container, and you can refer
to it for creating the other layers.

Now let’s install the httpd package inside a new layer:

28 | Chapter 3: Containers

https://oreil.ly/oJnAK
https://cri-o.io

buildah run centos-working-container yum install httpd -y

You should get output similar to this:
CentOS Linux 8 - AppStream 9.0 MB/s | 8.4 MB 00:00
CentOS Linux 8 - BaseOS 436 kB/s | 4.6 MB 00:10
CentOS Linux 8 - Extras 23 kB/s | 10 kB 00:00
Dependencies resolved.
===
 Package Arch Version Repository Size
===
Installing:
 httpd x86_64 2.4.37-43.module_el8.5.0+1022+b541f3b1
Installing dependencies:
 apr x86_64 1.6.3-12.el8
 apr-util x86_64 1.6.1-6.el8
 brotli x86_64 1.0.6-3.el8
 centos-logos-httpd noarch 85.8-2.el8
 httpd-filesystem noarch 2.4.37-43.module_el8.5.0+1022+b541f3b1
 httpd-tools x86_64 2.4.37-43.module_el8.5.0+1022+b541f3b1
 mailcap noarch 2.1.48-3.el8
 mod_http2 x86_64 1.15.7-3.module_el8.4.0+778+c970deab
Installing weak dependencies:
 apr-util-bdb x86_64 1.6.1-6.el8
 apr-util-openssl x86_64 1.6.1-6.el8
Enabling module streams:
...
Complete!

Now let’s copy a welcome HTML page inside the container running HTTPD. You can
find the source code in this book’s repo:

<html>
 <head>
 <title>GitOps CookBook example</title>
 </head>
 <body>
 <h1>Hello, World!</h1>
 </body>
</html>

buildah copy centos-working-container index.html /var/www/html/index.html

For each new layer added, you should get output with the new container image hash,
similar to the following:

78c6e1dcd6f819581b54094fd38a3fd8f170a2cb768101e533c964e04aacab2e

buildah config --entrypoint "/usr/sbin/httpd -DFOREGROUND" centos-working-container

buildah commit centos-working-container quay.io/gitops-cookbook/gitops-website

3.3 Building a Container Using Buildah | 29

https://oreil.ly/azx91

You should get output similar to this:
Getting image source signatures
Copying blob 618ce6bf40a6 skipped: already exists
Copying blob eb8c13ba832f done
Copying config b825e91208 done
Writing manifest to image destination
Storing signatures
b825e91208c33371e209cc327abe4f53ee501d5679c127cd71c4d10cd03e5370

Your container image is now in the container cache, ready to run or push to another
registry.

As mentioned before, Buildah can also create container images from a Dockerfile.
Let’s make the same container image from the Dockerfile listed here:

FROM centos:latest
RUN yum -y install httpd
COPY index.html /var/www/html/index.html
EXPOSE 80
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

buildah bud -f Dockerfile -t quay.io/gitops-cookbook/gitops-website

STEP 1: FROM centos:latest
Resolved short name "centos" to a recorded short-name alias↳
 (origin: /etc/containers/registries.conf.d/shortnames.conf)
Getting image source signatures
Copying blob 926a85fb4806 done
Copying config 2f3766df23 done
Writing manifest to image destination
Storing signatures
STEP 2: RUN yum -y install httpd
CentOS Linux 8 - AppStream 9.6 MB/s | 8.4 MB 00:00
CentOS Linux 8 - BaseOS 7.5 MB/s | 4.6 MB 00:00
CentOS Linux 8 - Extras 63 kB/s | 10 kB 00:00
Dependencies resolved.
...
Complete!
STEP 3: COPY index.html /var/www/html/index.html
STEP 4: EXPOSE 80
STEP 5: CMD ["/usr/sbin/httpd", "-DFOREGROUND"]
STEP 6: COMMIT quay.io/gitops-cookbook/gitops-website
Getting image source signatures
Copying blob 618ce6bf40a6 skipped: already exists
Copying blob 1be523a47735 done
Copying config 3128caf147 done
Writing manifest to image destination
Storing signatures
--> 3128caf1475
3128caf147547e43b84c13c241585d23a32601f2c2db80b966185b03cb6a8025

If you have also installed Podman, you can run it this way:
podman run -p 8080:80 -ti quay.io/gitops-cookbook/gitops-website

30 | Chapter 3: Containers

Then you can test it by opening the browser on http://localhost:8080.

Discussion
With Buildah, you have the opportunity to create container images from scratch
or starting from a Dockerfile. You don’t need to install Docker, and everything
is designed around security: rootless mechanism, daemonless utilities, and more
refined control of creating image layers.

Buildah can also build images from scratch, thus it creates an empty layer similar
to the FROM scratch Dockerfile statement. This aspect is useful for creating very
lightweight images containing only the packages needed to run your application, as
you can see in Figure 3-2.

Figure 3-2. Buildah image shrink

A good example use case for a scratch build is considering the development images
versus staging or production images. During development, container images may
require a compiler and other tools. However, in production, you may only need the
runtime or your packages.

See Also
• Running Buildah inside a container•

3.3 Building a Container Using Buildah | 31

http://localhost:8080
https://oreil.ly/GUfss

3.4 Building a Container with Buildpacks
Problem
Creating container image by using Dockerfiles can be challenging at scale. You want
a tool complementing Docker that can inspect your application source code to create
container images without writing a Dockerfile.

Solution
Cloud Native Buildpacks is an open source project that provides a set of executables
to inspect your app source code and to create a plan to build and run your applica‐
tion.

Buildpacks can create OCI-compliant container images without a Dockerfile, starting
from the app source code, as you can see in Figure 3-3.

Figure 3-3. Buildpacks builds

This mechanism consists of two phases:

Detection
Buildpacks tooling will navigate your source code to discover which program‐
ming language or framework is used (e.g., POM, NPM files, Python require‐
ments, etc.) and assign a suitable buildpack for the build.

Building
Once a buildpack is found, the source is compiled and Buildpacks creates a
container image with the appropriate entry point and startup scripts.

To use Buildpacks, you have to download the pack CLI for your operating system
(Mac, Windows, Linux), and also have Docker installed.

On macOS, pack is available through Homebrew as follows:
brew install buildpacks/tap/pack

32 | Chapter 3: Containers

https://oreil.ly/psc6h
https://oreil.ly/K0gGM
https://brew.sh

Now let’s start creating our container image with Buildpacks from a sample Node.js
app. You can find the app source code in this book’s repository:

cd chapters/ch03/nodejs-app

The app directory structure contains a package.json file, a manifest listing Node.js
packages required for this build, which helps Buildpacks understand which buildpack
to use.

You can verify it with this command:
pack builder suggest

You should get output similar to this:
Suggested builders:
 Google: gcr.io/buildpacks/builder:v1↳
 Ubuntu 18 base image with buildpacks for .NET, Go, Java, Node.js,↳
 and Python
 Heroku: heroku/buildpacks:18↳
 Base builder for Heroku-18 stack, based on ubuntu:18.04 base↳
 image
 Heroku: heroku/buildpacks:20↳
 Base builder for Heroku-20 stack, based on ubuntu:20.04 base↳
 image
 Paketo Buildpacks: paketobuildpacks/builder:base↳
 Ubuntu bionic base image with buildpacks for Java, .NET Core,↳
 Node.js, Go, Python, Ruby, NGINX and Procfile
 Paketo Buildpacks: paketobuildpacks/builder:full↳
 Ubuntu bionic base image with buildpacks for Java, .NET Core,↳
 Node.js, Go, Python, PHP, Ruby, Apache HTTPD, NGINX and Procfile
 Paketo Buildpacks: paketobuildpacks/builder:tiny↳
 Tiny base image (bionic build image, distroless-like run image)↳
 with buildpacks for Java, Java Native Image and Go

Now you can decide to pick one of the suggested buildpacks. Let’s try the paketo
buildpacks/builder:base, which also contains the Node.js runtime:

pack build nodejs-app --builder paketobuildpacks/builder:base

Run pack builder inspect paketobuildpacks/builder:base to
know the exact content of libraries and frameworks available in this
buildpack.

The building process should start accordingly, and after a while, it should finish, and
you should get output similar to this:

base: Pulling from paketobuildpacks/builder
bf99a8b93828: Pulling fs layer
...
Digest: sha256:7034e52388c11c5f7ee7ae8f2d7d794ba427cc2802f687dd9650d96a70ac0772

3.4 Building a Container with Buildpacks | 33

https://oreil.ly/eViRN

Status: Downloaded newer image for paketobuildpacks/builder:base
base-cnb: Pulling from paketobuildpacks/run
bf99a8b93828: Already exists
9d58a4841c3f: Pull complete
77a4f59032ac: Pull complete
24e58505e5e0: Pull complete
Digest: sha256:59aa1da9db6d979e21721e306b9ce99a7c4e3d1663c4c20f74f9b3876cce5192
Status: Downloaded newer image for paketobuildpacks/run:base-cnb
===> ANALYZING
Previous image with name "nodejs-app" not found
===> DETECTING
5 of 10 buildpacks participating
paketo-buildpacks/ca-certificates 3.0.1
paketo-buildpacks/node-engine 0.11.2
paketo-buildpacks/npm-install 0.6.2
paketo-buildpacks/node-module-bom 0.2.0
paketo-buildpacks/npm-start 0.6.1
===> RESTORING
===> BUILDING
...
Paketo NPM Start Buildpack 0.6.1
 Assigning launch processes
 web: node server.js

===> EXPORTING
Adding layer 'paketo-buildpacks/ca-certificates:helper'
Adding layer 'paketo-buildpacks/node-engine:node'
Adding layer 'paketo-buildpacks/npm-install:modules'
Adding layer 'launch.sbom'
Adding 1/1 app layer(s)
Adding layer 'launcher'
Adding layer 'config'
Adding layer 'process-types'
Adding label 'io.buildpacks.lifecycle.metadata'
Adding label 'io.buildpacks.build.metadata'
Adding label 'io.buildpacks.project.metadata'
Setting default process type 'web'
Saving nodejs-app...
*** Images (82b805699d6b):
 nodejs-app
Adding cache layer 'paketo-buildpacks/node-engine:node'
Adding cache layer 'paketo-buildpacks/npm-install:modules'
Adding cache layer 'paketo-buildpacks/node-module-bom:cyclonedx-node-module'
Successfully built image nodejs-app

Now let’s run it with Docker:
docker run --rm -p 3000:3000 nodejs-app

You should get output similar to this:
Server running at http://0.0.0.0:3000/

34 | Chapter 3: Containers

View the running application:
curl http://localhost:3000/

You should get output similar to this:
Hello Buildpacks!

Discussion
Cloud Native Buildpacks is an incubating project in the Cloud Native Computing
Foundation (CNCF), and it supports both Docker and Kubernetes. On Kubernetes, it
can be used with Tekton, a Kubernetes-native CI/CD system that can run Buildpacks
as a Tekton Task to create container images. It recently adopted the Boson Project
to provide a functions-as-a-service (FaaS) experience on Kubernetes with Knative, by
enabling the build of functions via buildpacks.

See Also
• Using Buildpacks with Tekton Pipelines•
• FaaS Knative Boson project’s buildpacks•

3.5 Building a Container Using Shipwright and kaniko
in Kubernetes
Problem
You need to create a container image, and you want to do it with Kubernetes.

Solution
Kubernetes is well known as a container orchestration platform to deploy and
manage apps. However, it doesn’t include support for building container images
out-of-the-box. Indeed, according to Kubernetes documentation: “(Kubernetes) Does
not deploy source code and does not build your application. Continuous Integration,
Delivery, and Deployment (CI/CD) workflows are determined by organization cul‐
tures and preferences as well as technical requirements.”

As mentioned, one standard option is to rely on CI/CD systems for this purpose, like
Tekton (see Chapter 6). Another option is to use a framework to manage builds with
many underlying tools, such as the one we discussed in the previous recipes. One
example is Shipwright.

3.5 Building a Container Using Shipwright and kaniko in Kubernetes | 35

https://tekton.dev
https://oreil.ly/F0OTs
https://oreil.ly/wFIHd
https://oreil.ly/p1U6n
https://oreil.ly/qgpKi

Shipwright is an extensible framework for building container images on Kubernetes.
It supports popular tools such as Buildah, Cloud Native Buildpacks, and kaniko. It
uses Kubernetes-style APIs, and it runs workloads using Tekton.

The benefit for developers is a simplified approach for building container images,
by defining a minimal YAML file that does not require any previous knowledge of
containers or container engines. This approach makes this solution agnostic and
highly integrated with the Kubernetes API ecosystem.

The first thing to do is to install Shipwright to your Kubernetes cluster, say kind or
Minikube (see Chapter 2), following the documentation or from OperatorHub.io.

Using Operators and Operator Lifecycle Manager (OLM) gives
consistency for installing/uninstalling software on Kubernetes,
along with dependency management and lifecycle control. For
instance, the Tekton Operator dependency is automatically
resolved and installed if you install Shipwright via the Operator.
Check the OLM documentation for details with this approach.

Let’s follow the standard procedure from the documentation. First you need to install
the Tekton dependency. At the time of writing this book, it is version 0.30.0:

kubectl apply -f \
 https://storage.googleapis.com/tekton-releases/pipeline/previous/v0.30.0/
release.yaml

Then you install Shipwright. At the time of writing this book, it is version 0.7.0:
kubectl apply -f \
 https://github.com/shipwright-io/build/releases/download/v0.7.0/release.yaml

Finally, you install Shipwright build strategies:
kubectl apply -f \
 https://github.com/shipwright-io/build/releases/download/v0.7.0/sample-
strategies.yaml

Once you have installed Shipwright, you can start creating your container image
build using one of these tools:

• kaniko•
• Cloud Native Buildpacks•
• BuildKit•
• Buildah•

Let’s explore kaniko.

36 | Chapter 3: Containers

https://shipwright.io
https://oreil.ly/FWvXv
https://oreil.ly/6Ds5R
https://oreil.ly/V3k2p

kaniko is another dockerless solution to build container images from a Dockerfile
inside a container or Kubernetes cluster. Shipwright brings additional APIs to Kuber‐
netes to use tools such as kaniko to create container images, acting as an abstract
layer that can be considered an extensible building system for Kubernetes.

Let’s explore the APIs that are defined from Cluster Resource Definitions (CRDs):

ClusterBuildStrategy

Represents the type of build to execute.

Build

Represents the build. It includes the specification of one ClusterBuildStrategy
object.

BuildRun

Represents a running build. The build starts when this object is created.

Run the following command to check all available ClusterBuildStrategy (CBS)
objects:

kubectl get cbs

You should get a list of available CBSs to consume:
NAME AGE
buildah 26s
buildkit 26s
buildpacks-v3 26s
buildpacks-v3-heroku 26s
kaniko 26s
kaniko-trivy 26s
ko 26s
source-to-image 26s
source-to-image-redhat 26s

This CRD is cluster-wide, available for all namespaces. If you don’t
see any items, please install the Shipwright build strategies as dis‐
cussed previously.

Shipwright will generate a container image on the Kubernetes nodes container cache,
and then it can push it to a container registry.

You need to provide the credentials to push the image to the registry in the form
of a Kubernetes Secret. For example, if you use Quay you can create one like the
following:

REGISTRY_SERVER=quay.io
REGISTRY_USER=<your_registry_user>
REGISTRY_PASSWORD=<your_registry_password>

3.5 Building a Container Using Shipwright and kaniko in Kubernetes | 37

https://oreil.ly/ncdWg

EMAIL=<your_email>
kubectl create secret docker-registry push-secret \
 --docker-server=$REGISTRY_SERVER \
 --docker-username=$REGISTRY_USER \
 --docker-password=$REGISTRY_PASSWORD \
 --docker-email=$EMAIL

With Quay, you can use an encrypted password instead of using
your account password. See the documentation for more details.

Now let’s create a build-kaniko.yaml file containing the Build object that will use
kaniko to containerize a Node.js sample app. You can find the source code in this
book’s repository:

apiVersion: shipwright.io/v1alpha1
kind: Build
metadata:
 name: buildpack-nodejs-build
spec:
 source:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: docker-build
 strategy:
 name: kaniko
 kind: ClusterBuildStrategy
 output:
 image: quay.io/gitops-cookbook/sample-nodejs:latest
 credentials:
 name: push-secret

Repository to grab the source code from.

The directory where the source code is present.

The ClusterBuildStrategy to use.

The destination of the resulting container image. Change this with your con‐
tainer registry repo.

The secret to use to authenticate to the container registry and push the image.

38 | Chapter 3: Containers

https://oreil.ly/S84zu

Now, let’s create the Build object:
kubectl create -f build-kaniko.yaml

You should get output similar to this:
build.shipwright.io/kaniko-nodejs-build created

Let’s list the available builds:
kubectl get builds

You should get output similar to the following:
NAME REGISTERED REASON BUILDSTRATEGYKIND↳
 BUILDSTRATEGYNAME CREATIONTIME
kaniko-nodejs-build True Succeeded ClusterBuildStrategy↳
 kaniko 13s

At this point, your Build is REGISTERED, but it’s not started yet. Let’s create the
following object in order to start it:

apiVersion: shipwright.io/v1alpha1
kind: BuildRun
metadata:
 generateName: kaniko-nodejs-buildrun-
spec:
 buildRef:
 name: kaniko-nodejs-build

kubectl create -f buildrun.yaml

If you check the list of running pods, you should see one being created:
kubectl get pods

NAME READY STATUS RESTARTS↳
 AGE
kaniko-nodejs-buildrun-b9mmb-qbrgl-pod-dk7xt 0/3 PodInitializing 0↳
 19s

When the STATUS changes, the build will start, and you can track the progress by
checking the logs from the containers used by this pod to run the build in multiple
steps:

step-source-default
The first step, used to get the source code

step-build-and-push
The step to run the build, either from source code or from a Dockerfile like in
this case with kaniko

step-results
The result of the build

3.5 Building a Container Using Shipwright and kaniko in Kubernetes | 39

Let’s check the logs of the building phase:
kubectl logs -f kaniko-nodejs-buildrun-b9mmb-qbrgl-pod-dk7xt -c step-build-and-push

INFO[0001] Retrieving image manifest ghcr.io/shipwright-io/shipwright-samples/
node:12
INFO[0001] Retrieving image ghcr.io/shipwright-io/shipwright-samples/node:12↳
 from registry ghcr.io
INFO[0002] Built cross stage deps: map[]
INFO[0002] Retrieving image manifest ghcr.io/shipwright-io/shipwright-samples/
node:12
INFO[0002] Returning cached image manifest
INFO[0002] Executing 0 build triggers
INFO[0002] Unpacking rootfs as cmd COPY . /app requires it.
INFO[0042] COPY . /app
INFO[0042] Taking snapshot of files...
INFO[0042] WORKDIR /app
INFO[0042] cmd: workdir
INFO[0042] Changed working directory to /app
INFO[0042] No files changed in this command, skipping snapshotting.
INFO[0042] RUN pwd && ls -l && npm install &&↳
 npm run print-http-server-version
INFO[0042] Taking snapshot of full filesystem...
INFO[0052] cmd: /bin/sh
INFO[0052] args: [-c pwd && ls -l && npm install &&↳
 npm run print-http-server-version]
INFO[0052] Running: [/bin/sh -c pwd && ls -l && npm install &&↳
 npm run print-http-server-version]
/app
total 44
-rw-r--r-- 1 node node 261 Jan 27 14:29 Dockerfile
-rw-r--r-- 1 node node 30000 Jan 27 14:29 package-lock.json
-rw-r--r-- 1 node node 267 Jan 27 14:29 package.json
drwxr-xr-x 2 node node 4096 Jan 27 14:29 public
npm WARN npm-simple-renamed@0.0.1 No repository field.
npm WARN npm-simple-renamed@0.0.1 No license field.

added 90 packages from 40 contributors and audited 90 packages in 6.405s

10 packages are looking for funding
 run `npm fund` for details

found 0 vulnerabilities

> npm-simple-renamed@0.0.1 print-http-server-version /app
> serve -v

13.0.2
INFO[0060] Taking snapshot of full filesystem...
INFO[0062] EXPOSE 8080
INFO[0062] cmd: EXPOSE
INFO[0062] Adding exposed port: 8080/tcp
INFO[0062] CMD ["npm", "start"]

40 | Chapter 3: Containers

INFO[0070] Pushing image to quay.io/gitops-cookbook/sample-nodejs:latest
INFO[0393] Pushed image to 1 destinations

The image is built and pushed to the registry, and you can check the result from this
command as well:

kubectl get buildruns

And on your registry, as shown in Figure 3-4.

Figure 3-4. Image pushed to Quay

Discussion
Shipwright provides a convenient way to create container images on Kubernetes, and
its agnostic approach makes it robust and interoperable. The project aims at being
the Build API for Kubernetes, providing an easier path for developers to automate on
Kubernetes. As Tekton runs under the hood creating builds, Shipwright also makes
transitioning from micropipeline to extended pipeline workflows on Kubernetes
easier.

As a reference, if you would like to create a build with Buildah instead of kaniko, it’s
just a ClusterBuildStrategy change in your Build object:

apiVersion: shipwright.io/v1alpha1
kind: Build
metadata:
 name: buildpack-nodejs-build
spec:
 source:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build
 strategy:
 name: buildah
 kind: ClusterBuildStrategy

3.5 Building a Container Using Shipwright and kaniko in Kubernetes | 41

 output:
 image: quay.io/gitops-cookbook/sample-nodejs:latest
 credentials:
 name: push-secret

As we discussed previously in Recipe 3.3, Buildah can create the container image
from the source code. It doesn’t need a Dockerfile.

Selecting Buildah as the ClusterBuildStrategy.

3.6 Final Thoughts
The container format is the de facto standard for packaging applications, and today
many tools help create container images. Developers can create images with Docker
or with other tools and frameworks and then use the same with any CI/CD system to
deploy their apps to Kubernetes.

While Kubernetes per se doesn’t build container images, some tools interact with
the Kubernetes API ecosystem to add this functionality. This aspect improves devel‐
opment velocity and consistency across environments, delegating this complexity to
the platform.

In the following chapters, you will see how to control the deployment of your con‐
tainers running on Kubernetes with tools such as Kustomize or Helm, and then how
to add automation to support highly scalable workloads with CI/CD and GitOps.

42 | Chapter 3: Containers

CHAPTER 4

Kustomize

Deploying to a Kubernetes cluster is, in summary, applying some YAML files and
checking the result.

The hard part is developing the initial YAML files version; after that, usually, they
suffer only small changes such as updating the container image tag version, the num‐
ber of replicas, or a new configuration value. One option is to make these changes
directly in the YAML files—it works, but any error in this version (modification of
the wrong line, deleting something by mistake, putting in the wrong whitespace)
might be catastrophic.

For this reason, some tools let you define base Kubernetes manifests (which change
infrequently) and specific files (maybe one for each environment) for setting the
parameters that change more frequently. One of these tools is Kustomize.

In this chapter, you’ll learn how to use Kustomize to manage Kubernetes resource
files in a template-free way without using any DSL.

The first step is to create a Kustomize project and deploy it to a Kubernetes cluster
(see Recipe 4.1).

After the first deployment, the application is automatically updated with a new
container image, a new configuration value, or any other field, such as the replica
number (see Recipes 4.2 and 4.3).

If you’ve got several running environments (i.e., staging, production, etc.), you need
to manage them similarly. Still, with its particularities, Kustomize lets you define a set
of custom values per environment (see Recipe 4.4).

Application configuration values are properties usually mapped as a Kubernetes
ConfigMap. Any change (and its consequent update on the cluster) on a ConfigMap

43

doesn’t trigger a rolling update of the application, which means that the application
will run with the previous version until you manually restart it.

Kustomize provides some functions to automatically execute a rolling update when
the ConfigMap of an application changes (see Recipe 4.5).

4.1 Using Kustomize to Deploy Kubernetes Resources
Problem
You want to deploy several Kubernetes resources at once.

Solution
Use Kustomize to configure which resources to deploy.

Deploying an application to a Kubernetes cluster isn’t as trivial as just applying one
YAML/JSON file containing a Kubernetes Deployment object. Usually, other Kuber‐
netes objects must be defined like Service, Ingress, ConfigMaps, etc., which makes
things a bit more complicated in terms of managing and updating these resources
(the more resources to maintain, the more chance to update the wrong one) as well as
applying them to a cluster (should we run multiple kubectl commands?).

Kustomize is a CLI tool, integrated within the kubectl tool to manage, customize,
and apply Kubernetes resources in a template-less way.

With Kustomize, you need to set a base directory with standard Kubernetes resource
files (no placeholders are required) and create a kustomization.yaml file where
resources and customizations are declared, as you can see in Figure 4-1.

Figure 4-1. Kustomize layout

Let’s deploy a simple web page with HTML, JavaScript, and CSS files.

First, open a terminal window and create a directory named pacman, then create
three Kubernetes resource files to create a Namespace, a Deployment, and a Service
with the following content.

44 | Chapter 4: Kustomize

https://kustomize.io

The namespace at pacman/namespace.yaml:
apiVersion: v1
kind: Namespace
metadata:
 name: pacman

The deployment file at pacman/deployment.yaml:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman-kikd
 namespace: pacman
 labels:
 app.kubernetes.io/name: pacman-kikd
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

The service file at pacman/service.yaml:
apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080
 selector:
 app.kubernetes.io/name: pacman-kikd

Notice that these files are Kubernetes files that you could apply to a Kubernetes
cluster without any problem as no special characters or placeholders are used.

4.1 Using Kustomize to Deploy Kubernetes Resources | 45

The second thing is to create the kustomization.yaml file in the pacman directory
containing the list of resources that belongs to the application and are applied when
running Kustomize:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./namespace.yaml
- ./deployment.yaml
- ./service.yaml

Kustomization file

Resources belonging to the application processed in depth-first order

At this point, we can apply the kustomization file into a running cluster by running
the following command:

kubectl apply --dry-run=client -o yaml \
 -k ./

Prints the result of the kustomization run, without sending the result to the
cluster

With -k option sets kubectl to use the kustomization file

Directory with parent kustomization.yaml file

We assume you’ve already started a Minikube cluster as shown in
Recipe 2.3.

The output is the YAML file that would be sent to the server if the dry-run option
was not used:

apiVersion: v1
items:
- apiVersion: v1
 kind: Namespace
 metadata:
 name: pacman
- apiVersion: v1
 kind: Service
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman

46 | Chapter 4: Kustomize

 spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080
 selector:
 app.kubernetes.io/name: pacman-kikd
- apiVersion: apps/v1
 kind: Deployment
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
 spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
kind: List
metadata: {}

List of all Kubernetes objects defined in kustomization.yaml to apply

The namespace document

The service document

The deployment document

Discussion
The resources section supports different inputs in addition to directly setting the
YAML files.

For example, you can set a base directory with its own kustomization.yaml and
Kubernetes resources files and refer it from another kustomization.yaml file placed in
another directory.

4.1 Using Kustomize to Deploy Kubernetes Resources | 47

Given the following directory layout:
.
├── base
│ ├── kustomization.yaml
│ └── deployment.yaml
├── kustomization.yaml
├── configmap.yaml

And the Kustomization definitions in the base directory:
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml

You’ll see that the root directory has a link to the base directory and a ConfigMap
definition:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./base
- ./configmap.yaml

So, applying the root kustomization file will automatically apply the resources defined
in the base kustomization file.

Also, resources can reference external assets from a URL following the HashiCorp
URL format. For example, we refer to a GitHub repository by setting the URL:

resources:
- github.com/lordofthejars/mysql
- github.com/lordofthejars/mysql?ref=test

Repository with a root-level kustomization.yaml file

Repository with a root-level kustomization.yaml file on branch test

You’ve seen the application of a Kustomize file using kubectl, but Kustomize also
comes with its own CLI tool offering a set of commands to interact with Kustomize
resources.

The equivalent command to build Kustomize resources using kustomize instead of
kubectl is:

kustomize build

48 | Chapter 4: Kustomize

https://oreil.ly/lbeQC
https://oreil.ly/lbeQC

And the output is:
apiVersion: v1
kind: Namespace
metadata:
 name: pacman

apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080
 selector:
 app.kubernetes.io/name: pacman-kikd

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

If you want to apply this output generated by kustomize to the cluster, run the
following command:

kustomize build . | kubectl apply -f -

4.1 Using Kustomize to Deploy Kubernetes Resources | 49

See Also
• Kustomize•
• kustomize/v4.4.1 on GitHub•
• HashiCorp URL format•

4.2 Updating the Container Image in Kustomize
Problem
You want to update the container image from a deployment file using Kustomize.

Solution
Use the images section to update the container image.

One of the most important and most-used operations in software development
is updating the application to a newer version either with a bug fix or with a
new feature. In Kubernetes, this means that you need to create a new container
image, and name it accordingly using the tag section (<registry>/<username>/
<project>:<tag>).

Given the following partial deployment file:
spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd

Service 1.0.0 is deployed

We can update the version tag to 1.0.1 by using the images section in the kustomiza‐
tion.yaml file:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./namespace.yaml
- ./deployment.yaml
- ./service.yaml
images:
- name: lordofthejars/pacman-kikd
 newTag: 1.0.1

50 | Chapter 4: Kustomize

https://kustomize.io
https://oreil.ly/h2yNd
https://oreil.ly/n7jwr

images section

Sets the name of the image to update

Sets the new tag value for the image

Finally, use kubectl in dry-run or kustomize to validate that the output of the
deployment file contains the new tag version. In a terminal window, run the follow‐
ing command:

kustomize build

The output of the preceding command is:
...
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.1
 imagePullPolicy: Always
 name: pacman-kikd
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Version set in the kustomize.yaml file

Kustomize is not intrusive, which means that the original deploy‐
ment.yaml file still contains the original tag (1.0.0).

4.2 Updating the Container Image in Kustomize | 51

Discussion
One way to update the newTag field is by editing the kustomization.yaml file, but you
can also use the kustomize tool for this purpose.

Run the following command in the same directory as the kustomization.yaml file:
kustomize edit set image lordofthejars/pacman-kikd:1.0.2

Check the content of the kustomization.yaml file to see that the newTag field has been
updated:

...
images:
- name: lordofthejars/pacman-kikd
 newTag: 1.0.2

4.3 Updating Any Kubernetes Field in Kustomize
Problem
You want to update a field (i.e., number of replicas) using Kustomize.

Solution
Use the patches section to specify a change using the JSON Patch specification.

In the previous recipe, you saw how to update the container image tag, but sometimes
you might change other parameters like the number of replicas or add annotations,
labels, limits, etc.

To cover these scenarios, Kustomize supports the use of JSON Patch to modify any
Kubernetes resource defined as a Kustomize resource. To use it, you need to specify
the JSON Patch expression to apply and which resource to apply the patch to.

For example, we can modify the number of replicas in the following partial deploy‐
ment file from one to three:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman-kikd
 namespace: pacman
 labels:
 app.kubernetes.io/name: pacman-kikd
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:

52 | Chapter 4: Kustomize

 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
...

First, let’s update the kustomization.yaml file to modify the number of replicas defined
in the deployment file:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml
patches:
 - target:
 version: v1
 group: apps
 kind: Deployment
 name: pacman-kikd
 namespace: pacman
 patch: |-
 - op: replace
 path: /spec/replicas
 value: 3

Patch resource.

target section sets which Kubernetes object needs to be changed. These values
match the deployment file created previously.

Patch expression.

Modification of a value.

Path to the field to modify.

New value.

Finally, use kubectl in dry-run or kustomize to validate that the output of the
deployment file contains the new tag version. In a terminal window, run the follow‐
ing command:

kustomize build

The output of the preceding command is:
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd

4.3 Updating Any Kubernetes Field in Kustomize | 53

 name: pacman-kikd
 namespace: pacman
spec:
 replicas: 3
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
...

The replicas value can also be updated using the replicas field in
the kustomization.yaml file.
The equivalent Kustomize file using the replicas field is shown in
the following snippet:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
replicas:
- name: pacman-kikd
 count: 3
resources:
- deployment.yaml

Deployment to update the replicas

New replicas value

Kustomize lets you add (or delete) values, in addition to modifying a value. Let’s see
how to add a new label:

...
patches:
 - target:
 version: v1
 group: apps
 kind: Deployment
 name: pacman-kikd
 namespace: pacman
 patch: |-
 - op: replace
 path: /spec/replicas
 value: 3
 - op: add
 path: /metadata/labels/testkey
 value: testvalue

Adds a new field with value

Path with the field to add

The value to set

54 | Chapter 4: Kustomize

The result of applying the file is:
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 testkey: testvalue
 name: pacman-kikd
 namespace: pacman
spec:
 replicas: 3
 selector:
...

Added label

Discussion
Instead of embedding a JSON Patch expression, you can create a YAML file with a
Patch expression and refer to it using the path field instead of patch.

Create an external patch file named external_patch containing the JSON Patch
expression:

- op: replace
 path: /spec/replicas
 value: 3
- op: add
 path: /metadata/labels/testkey
 value: testvalue

And change the patch field to path pointing to the patch file:
...
patches:
 - target:
 version: v1
 group: apps
 kind: Deployment
 name: pacman-kikd
 namespace: pacman
 path: external_patch.yaml

Path to external patch file

In addition to the JSON Patch expression, Kustomize also supports Strategic Merge
Patch to modify Kubernetes resources. In summary, a Strategic Merge Patch (or SMP)
is an incomplete YAML file that is merged against a completed YAML file.

Only a minimal deployment file with container name information is required to
update a container image:

4.3 Updating Any Kubernetes Field in Kustomize | 55

https://oreil.ly/vr3e3
https://oreil.ly/vr3e3

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml
patches:
 - target:
 labelSelector: "app.kubernetes.io/name=pacman-kikd"
 patch: |-
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: pacman-kikd
 spec:
 template:
 spec:
 containers:
 - name: pacman-kikd
 image: lordofthejars/pacman-kikd:1.2.0

Target is selected using label

Patch is smart enough to detect if it is an SMP or JSON Patch

This is a minimal deployment file

Sets only the field to change, the rest is left as is

The generated output is the original deployment.yaml file but with the new container
image:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: pacman
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.2.0
 imagePullPolicy: Always
...

56 | Chapter 4: Kustomize

path is supported as well.

See Also
• RFC 6902: JavaScript Object Notation (JSON) Patch•
• Strategic Merge Patch•

4.4 Deploying to Multiple Environments
Problem
You want to deploy the same application in different namespaces using Kustomize.

Solution
Use the namespace field to set the target namespace.

In some circumstances, it’s good to have the application deployed in different name‐
spaces; for example, one namespace can be used as a staging environment, and
another one as the production namespace. In both cases, the base Kubernetes files are
the same, with minimal changes like the namespace deployed, some configuration
parameters, or container version, to mention a few. Figure 4-2 shows an example.

Figure 4-2. Kustomize layout

kustomize lets you define multiple changes with a different namespace, as overlays
on a common base using the namespace field. For this example, all base Kubernetes
resources are put in the base directory and a new directory is created for customiza‐
tions of each environment:

.
├── base
│ ├── deployment.yaml

4.4 Deploying to Multiple Environments | 57

https://oreil.ly/gDn1A
https://oreil.ly/vr3e3

│ └── kustomization.yaml
├── production
│ └── kustomization.yaml
└── staging
 └── kustomization.yaml

Base files

Changes specific to production environment

Changes specific to staging environment

The base kustomization file contains a reference to its resources:
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml

There is a kustomization file with some parameters set for each environment direc‐
tory. These reference the base directory, the namespace to inject into Kubernetes
resources, and finally, the image to deploy, which in production is 1.1.0 but in staging
is 1.2.0-beta.

For the staging environment, kustomization.yaml content is shown in the following
listing:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ../base
namespace: staging
images:
- name: lordofthejars/pacman-kikd
 newTag: 1.2.0-beta

References to base directory

Sets namespace to staging

Sets the container tag for the staging environment

The kustomization file for production is similar to the staging one, but changes the
namespace and the tag:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ../base
namespace: prod
images:

58 | Chapter 4: Kustomize

- name: lordofthejars/pacman-kikd
 newTag: 1.1.0

Sets namespace for production

Sets the container tag for the production environment

Running kustomize produces different output depending on the directory where it is
run; for example, running kustomize build in the staging directory produces:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: staging
spec:
 replicas: 1
...
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.2.0-beta
...

Namespace value is injected

Container tag for the staging environment is injected

But if you run it in the production directory, the output is adapted to the production
configuration:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
 namespace: prod
spec:
 replicas: 1
...
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.1.0
...

Injects the production namespace

4.4 Deploying to Multiple Environments | 59

Container tag for the production environment

Discussion
Kustomize can preappend/append a value to the names of all resources and refer‐
ences. This is useful when a different name in the resource is required depending on
the environment, or to set the version deployed in the name:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ../base
namespace: staging
namePrefix: staging-
nameSuffix: -v1-2-0
images:
- name: lordofthejars/pacman-kikd
 newTag: 1.2.0-beta

Prefix to preappend

Suffix to append

And the resulting output is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: staging-pacman-kikd-v1-2-0
 namespace: staging
spec:
...

New name of the deployment file

4.5 Generating ConfigMaps in Kustomize
Problem
You want to generate Kubernetes ConfigMaps using Kustomize.

Solution
Use the ConfigMapGenerator feature field to generate a Kubernetes ConfigMap
resource on the fly.

60 | Chapter 4: Kustomize

Kustomize provides two ways of adding a ConfigMap as a Kustomize resource: either
by declaring a ConfigMap as any other resource or declaring a ConfigMap from a
ConfigMapGenerator.

While using ConfigMap as a resource offers no other advantage than populating
Kubernetes resources as any other resource, ConfigMapGenerator automatically
appends a hash to the ConfigMap metadata name and also modifies the deployment
file with the new hash. This minimal change has a deep impact on the application’s
lifecycle, as we’ll see soon in the example.

Let’s consider an application running in Kubernetes and configured using a Config
Map—for example, a database timeout connection parameter. We decided to increase
this number at some point, so the ConfigMap file is changed to this new value, and we
deploy the application again. Since the ConfigMap is the only changed file, no rolling
update of the application is done. A manual rolling update of the application needs
to be triggered to propagate the change to the application. Figure 4-3 shows what is
changed when a ConfigMap object is updated.

Figure 4-3. Change of a ConfigMap

But, if ConfigMapGenerator manages the ConfigMap, any change on the configura‐
tion file also changes the deployment Kubernetes resource. Since the deployment file
has changed too, an automatic rolling update is triggered when the resources are
applied, as shown in Figure 4-4.

Moreover, when using ConfigMapGenerator, multiple configuration datafiles can be
combined into a single ConfigMap, making a perfect use case when every environ‐
ment has different configuration files.

4.5 Generating ConfigMaps in Kustomize | 61

Figure 4-4. Change of a ConfigMap using ConfigMapGenerator

Let’s start with a simple example, adding the ConfigMapGenerator section in the
kustomization.yaml file.

The deployment file is similar to the one used in previous sections of this chapter but
includes the volumes section:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman-kikd
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd
 volumeMounts:
 - name: config
 mountPath: /config
 volumes:
 - name: config
 configMap:
 name: pacman-configmap

ConfigMap name is used in the kustomization.yaml file

62 | Chapter 4: Kustomize

The configuration properties are embedded within the kustomization.yaml file.
Notice that the ConfigMap object is created on the fly when the kustomization file
is built:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml
configMapGenerator:
- name: pacman-configmap
 literals:
 - db-timeout=2000
 - db-username=Ada

Name of the ConfigMap set in the deployment file

Embeds configuration values in the file

Sets a key/value pair for the properties

Finally, use kubectl in dry-run or kustomize to validate that the output of the
deployment file contains the new tag version. In a terminal window, run the follow‐
ing command:

kustomize build

The output of the preceding command is a new ConfigMap with the configuration
values set in kustomization.yaml. Moreover, the name of the ConfigMap is updated by
appending a hash in both the generated ConfigMap and deployment:

apiVersion: v1
data:
 db-timeout: "2000"
 db-username: Ada
kind: ConfigMap
metadata:
 name: pacman-configmap-96kb69b6t4

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman-kikd
 template:
 metadata:
 labels:

4.5 Generating ConfigMaps in Kustomize | 63

 app.kubernetes.io/name: pacman-kikd
 spec:
 containers:
 - image: lordofthejars/pacman-kikd:1.0.0
 imagePullPolicy: Always
 name: pacman-kikd
 volumeMounts:
 - mountPath: /config
 name: config
 volumes:
 - configMap:
 name: pacman-configmap-96kb69b6t4
 name: config

ConfigMap with properties

Name with hash

Name field is updated to the one with the hash triggering a rolling update

Since the hash is calculated for any change in the configuration properties, a change
on them provokes a change on the output triggering a rolling update of the applica‐
tion. Open the kustomization.yaml file and update the db-timeout literal from 2000
to 1000 and run kustomize build again. Notice the change in the ConfigMap name
using a new hashed value:

apiVersion: v1
data:
 db-timeout: "1000"
 db-username: Ada
kind: ConfigMap
metadata:
 name: pacman-configmap-6952t58tb4

apiVersion: apps/v1
kind: Deployment
...
 volumes:
 - configMap:
 name: pacman-configmap-6952t58tb4
 name: config

New hashed value

Discussion
ConfigMapGenerator also supports merging configuration properties from different
sources.

64 | Chapter 4: Kustomize

Create a new kustomization.yaml file in the dev_literals directory, setting it as the
previous directory and overriding the db-username value:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ../literals
configMapGenerator:
- name: pacman-configmap
 behavior: merge
 literals:
 - db-username=Alexandra

Base directory

Merge properties (can be create or replace too)

Overridden value

Running the kustomize build command produces a ConfigMap containing a merge
of both configuration properties:

apiVersion: v1
data:
 db-timeout: "1000"
 db-username: Alexandra
kind: ConfigMap
metadata:
 name: pacman-configmap-ttfdfdk5t8

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
...

Inherits from base

Overrides value

In addition to setting configuration properties as literals, Kustomize supports defin‐
ing them as .properties files.

Create a connection.properties file with two properties inside:
db-url=prod:4321/db
db-username=ada

The kustomization.yaml file uses the files field instead of literals:

4.5 Generating ConfigMaps in Kustomize | 65

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./deployment.yaml
configMapGenerator:
- name: pacman-configmap
 files:
 - ./connection.properties

Sets a list of files to read

Path to the properties file

Running the kustomize build command produces a ConfigMap containing the name
of the file as a key, and the value as the content of the file:

apiVersion: v1
data:
 connection.properties: |-
 db-url=prod:4321/db
 db-username=ada
kind: ConfigMap
metadata:
 name: pacman-configmap-g9dm2gtt77

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/name: pacman-kikd
 name: pacman-kikd
...

See Also
Kustomize offers a similar way to deal with Kubernetes Secrets. But as we’ll see in
Chapter 8, the best way to deal with Kubernetes Secrets is using Sealed Secrets.

4.6 Final Thoughts
Kustomize is a simple tool, using template-less technology that allows you to define
plain YAML files and override values either using a merge strategy or using JSON
Patch expressions. The structure of a project is free as you define the directory
layout you feel most comfortable with; the only requirement is the presence of a
kustomization.yaml file.

But there is another well-known tool to manage Kubernetes resources files, that in
our opinion, is a bit more complicated but more powerful, especially when the appli‐
cation/service to deploy has several dependencies such as databases, mail servers,
caches, etc. This tool is Helm, and we’ll cover it in Chapter 5.

66 | Chapter 4: Kustomize

CHAPTER 5

Helm

In Chapter 4, you learned about Kustomize, a simple yet powerful tool to manage
Kubernetes resources. But another popular tool aims to simplify the Kubernetes
resources management too: Helm.

Helm works similarly to Kustomize, but it’s a template solution and acts more like a
package manager, producing artifacts that are versionable, sharable, or deployable.

In this chapter, we’ll introduce Helm, a package manager for Kubernetes that helps
install and manage Kubernetes applications using the Go template language in YAML
files.

The first step is to create a Helm project and deploy it to a Kubernetes cluster (see
Recipes 5.1 and 5.2). After the first deployment, the application is updated with a new
container image, a new configuration value, or any other field, such as the replica
number (see Recipe 5.3).

One of the differences between Kustomize and Helm is the concept of a Chart. A
Chart is a packaged artifact that can be shared and contains multiple elements like
dependencies on other Charts (see Recipes 5.4, 5.5, and 5.6).

Application configuration values are properties usually mapped as a Kubernetes
ConfigMap. Any change (and its consequent update on the cluster) on a ConfigMap
doesn’t trigger a rolling update of the application, which means that the application
will run with the previous version until you manually restart it.

Helm provides some functions to automatically execute a rolling update when the
ConfigMap of an application changes (see Recipe 5.7).

67

5.1 Creating a Helm Project
Problem
You want to create a simple Helm project.

Solution
Use the Helm CLI tool to create a new project.

In contrast to Kustomize, which can be used either within the kubectl command or
as a standalone CLI tool, Helm needs to be downloaded and installed in your local
machine.

Helm is a packager for Kubernetes that bundles related manifest files and packages
them into a single logical deployment unit: a Chart. Thus simplified, for many
engineers, Helm makes it easy to start using Kubernetes with real applications.

Helm Charts are useful for addressing the installation complexities and simple
upgrades of applications.

For this book, we use Helm 3.7.2, which you can download from GitHub and install
in your PATH directory.

Open a terminal and run the following commands to create a Helm Chart directory
layout:

mkdir pacman
mkdir pacman/templates

cd pacman

Then create three files: one that defines the Chart, another representing the deploy‐
ment template using the Go template language and template functions from the Sprig
library, and finally a file containing the default values for the Chart.

A Chart.yaml file declares the Chart with information such as version or name.
Create the file in the root directory:

apiVersion: v2
name: pacman
description: A Helm chart for Pacman

type: application

version: 0.1.0

appVersion: "1.0.0"

68 | Chapter 5: Helm

https://helm.sh
https://oreil.ly/AWfiO

Version of the Chart. This is updated when something in the Chart definition is
changed.

Version of the application.

Let’s create a deployment.yaml and a service.yaml template file to deploy the
application.

The deployment.yaml file templatizes the deployment’s name, the application version,
the replica count, the container image and tag, the pull policy, the security context,
and the port:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ .Chart.Name}}
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 {{- if .Chart.AppVersion }}
 app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
 {{- end }}
spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 template:
 metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 spec:
 containers:
 - image: "{{ .Values.image.repository }}:
 {{ .Values.image.tag | default .Chart.AppVersion}}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 securityContext:
 {{- toYaml .Values.securityContext | nindent 14 }}
 name: {{ .Chart.Name}}
 ports:
 - containerPort: {{ .Values.image.containerPort }}
 name: http
 protocol: TCP

Sets the name from the Chart.yaml file

Conditionally sets the version based on the presence of the appVersion in the
Chart.yaml file

Sets the appVersion value but quoting the property

5.1 Creating a Helm Project | 69

Placeholder for the replicaCount property

Placeholder for the container image

Placeholder for the image tag if present and if not, defaults to the Chart.yaml
property

Sets the securityContext value as a YAML object and not as a string, indenting
it 14 spaces

The service.yaml file templatizes the service name and the container port:
apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name }}
 name: {{ .Chart.Name }}
spec:
 ports:
 - name: http
 port: {{ .Values.image.containerPort }}
 targetPort: {{ .Values.image.containerPort }}
 selector:
 app.kubernetes.io/name: {{ .Chart.Name }}

The values.yaml file contains the default values for the Chart. These values can be
overridden at runtime, but they provide good initial values.

Create the file in the root directory with some default values:

image:
 repository: quay.io/gitops-cookbook/pacman-kikd
 tag: "1.0.0"
 pullPolicy: Always
 containerPort: 8080

replicaCount: 1
securityContext: {}

Defines the image section

Sets the repository property

Empty securityContext

Built-in properties are capitalized; for this reason, properties defined in the
Chart.yaml file start with an uppercase letter.

70 | Chapter 5: Helm

Since the toYaml function is used for the securityContext value, the expected value
for the securityContext property in values.yaml should be a YAML object. For
example:

securityContext:
 capabilities:
 drop:
 - ALL
 readOnlyRootFilesystem: true
 runAsNonRoot: true
 runAsUser: 1000

The relationship between all elements is shown in Figure 5-1.

Figure 5-1. Relationship between Helm elements

5.1 Creating a Helm Project | 71

At this point the Helm directory layout is created and should be similar to this:
pacman
 ├── Chart.yaml
 ├── templates
 │ ├── deployment.yaml
 │ ├── service.yaml
 └── values.yaml

The Chart.yaml file is the Chart descriptor and contains metadata related to the
Chart.

The templates directory contains all template files used for installing a Chart.

These files are Helm template files used to deploy the application.

The values.yaml file contains the default values for a Chart.

To render the Helm Chart locally to YAML, run the following command in a terminal
window:

helm template .

The output is:

apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: pacman
 name: pacman
spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080
 selector:
 app.kubernetes.io/name: pacman

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman
 labels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: "1.0.0"
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman
 template:

72 | Chapter 5: Helm

 metadata:
 labels:
 app.kubernetes.io/name: pacman
 spec:
 containers:
 - image: "quay.io/gitops-cookbook/pacman-kikd:1.0.0"
 imagePullPolicy: Always
 securityContext:
 {}
 name: pacman
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Name is injected from Chart.yaml

Port is set in values.yaml

Version is taken from Chart version

Concatenates content from two attributes

Empty security context

You can override any default value by using the --set parameter in Helm. Let’s
override the replicaCount value from one (defined in values.yaml) to three:

helm template --set replicaCount=3 .

And the replicas value is updated:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman
 labels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: "1.0.0"
spec:
 replicas: 3
...

Discussion
Helm is a package manager for Kubernetes, and as such, it helps you with the task of
versioning, sharing, and upgrading Kubernetes applications.

Let’s see how to install the Helm Chart to a Kubernetes cluster and upgrade the
application.

5.1 Creating a Helm Project | 73

With Minikube up and running, execute the following command in a terminal
window, and run the install command to deploy the application to the cluster:

helm install pacman .

The Chart is installed in the running Kubernetes instance:
LAST DEPLOYED: Sat Jan 22 15:13:50 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Get the list of current deployed pods, Deployments, and Services to validate that the
Helm Chart is deployed in the Kubernetes cluster:

kubectl get pods

NAME READY STATUS RESTARTS AGE
pacman-7947b988-kzjbc 1/1 Running 0 60s

kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE
pacman 1/1 1 1 4m50s

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
pacman ClusterIP 172.30.129.123 <none> 8080/TCP 9m55s

Also, it’s possible to get history information about the deployed Helm Chart using the
history command:

helm history pacman

REVISION UPDATED STATUS CHART ↳
 APP VERSION DESCRIPTION
1 Sat Jan 22 15:23:22 2022 deployed pacman-0.1.0↳
 1.0.0 Install complete

To uninstall a Chart from the cluster, run uninstall command:
helm uninstall pacman

release "pacman" uninstalled

Helm is a package manager that lets you share the Chart (package) to other Charts
as a dependency. For example, you can have a Chart defining the deployment of
the application and another Chart as a dependency setting a database deployment.
In this way, the installation process installs the application and the database Chart
automatically.

We’ll learn about the packaging process and adding dependencies in a later section.

74 | Chapter 5: Helm

You can use the helm create <name> command to let the Helm
tool skaffold the project.

See Also
• Helm•
• Go template package•
• Sprig Function Documentation•

5.2 Reusing Statements Between Templates
Problem
You want to reuse template statements across several files.

Solution
Use _helpers.tpl to define reusable statements.

We deployed a simple application to Kubernetes using Helm in the previous recipe.
This simple application was composed of a Kubernetes Deployment file and a Kuber‐
netes Service file where the selector field was defined with the same value.

As a reminder:
...
spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 template:
 metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
...

service.yaml

...
selector:
 app.kubernetes.io/name: {{ .Chart.Name }}

If you need to update this field—for example, adding a new label as a selector—you
would need to update in three places, as shown in the previous snippets.

5.2 Reusing Statements Between Templates | 75

https://helm.sh
https://oreil.ly/vYI40
https://oreil.ly/ngC2v

Helm lets you create a _helpers.tpl file in the templates directory defining statements
that can be called in templates to avoid this problem.

Let’s refactor the previous example to use the _helpers.tpl file to define the selector
Labels.

Create the _helpers.tpl file in the templates directory with the following content:

{{- define "pacman.selectorLabels" -}}
app.kubernetes.io/name: {{ .Chart.Name}}
{{- end }}

Defines the statement name

Defines the logic of the statement

Then replace the template placeholders shown in previous snippets with a call to the
podman.selectorLabels helper statement using the include keyword:

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 {{- include "pacman.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 labels:
 {{- include "pacman.selectorLabels" . | nindent 8 }}
 spec:
 containers:

Calls pacman.selectorLabels with indentation

Calls pacman.selectorLabels with indentation

To render the Helm Chart locally to YAML, run the following command in a terminal
window:

helm template .

The output is:
apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: pacman
 name: pacman
spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080

76 | Chapter 5: Helm

 selector:
 app.kubernetes.io/name: pacman

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman
 labels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: "1.0.0"
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman
 spec:
 containers:
 - image: "quay.io/gitops-cookbook/pacman-kikd:1.0.0"
 imagePullPolicy: Always
 securityContext:
 {}
 name: pacman
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP

Selector is updated with value set in _helpers.tpl

Selector is updated with value set in _helpers.tpl

Selector is updated with value set in _helpers.tpl

Discussion
If you want to update the selector labels, the only change you need to do is an update
to the _helpers.tpl file:

{{- define "pacman.selectorLabels" -}}
app.kubernetes.io/name: {{ .Chart.Name}}
app.kubernetes.io/version: {{ .Chart.AppVersion}}
{{- end }}

Adds a new attribute

5.2 Reusing Statements Between Templates | 77

To render the Helm Chart locally to YAML, run the following command in a terminal
window:

helm template .

The output is:

Source: pacman/templates/service.yaml
apiVersion: v1
kind: Service
metadata:
...
 selector:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: 1.0.0

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman
 labels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: "1.0.0"
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: 1.0.0
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman
 app.kubernetes.io/version: 1.0.0
 spec:
...

Label is added

Label is added

Label is added

Although it’s common to use __helpers.tpl as the filename to define
functions, you can name any file starting with __, and Helm will
read the functions too.

78 | Chapter 5: Helm

5.3 Updating a Container Image in Helm
Problem
You want to update the container image from a deployment file using Helm and
upgrade the running instance.

Solution
Use the upgrade command.

With Minikube up and running, deploy version 1.0.0 of the pacman application:
helm install pacman .

With the first revision deployed, let’s update the container image to a new version and
deploy it.

You can check revision number by running the following command:
helm history pacman

REVISION UPDATED STATUS CHART APP VERSION↳
 DESCRIPTION
1 Sun Jan 23 16:00:09 2022 deployed pacman-0.1.0 1.0.0↳
 Install complete

To update the version, open values.yaml and update the image.tag field to the newer
container image tag:

image:
 repository: quay.io/gitops-cookbook/pacman-kikd
 tag: "1.1.0"
 pullPolicy: Always
 containerPort: 8080

replicaCount: 1
securityContext: {}

Updates to container tag to 1.1.0

Then update the appVersion field of the Chart.yaml file:
apiVersion: v2
name: pacman
description: A Helm chart for Pacman

type: application
version: 0.1.0
appVersion: "1.1.0"

Version is updated accordingly

5.3 Updating a Container Image in Helm | 79

You can use appVersion as the tag instead of having two separate
fields. Using two fields or one might depend on your use case,
versioning strategy, and lifecycle of your software.

After these changes, upgrade the deployment by running the following command:
helm upgrade pacman .

The output reflects that a new revision has been deployed:
Release "pacman" has been upgraded. Happy Helming!
NAME: pacman
LAST DEPLOYED: Mon Jan 24 11:39:28 2022
NAMESPACE: asotobue-dev
STATUS: deployed
REVISION: 2
TEST SUITE: None

New revision

The history command shows all changes between all versions:
helm history pacman

REVISION UPDATED STATUS CHART APP VERSION↳
DESCRIPTION
1 Mon Jan 24 10:22:06 2022 superseded pacman-0.1.0 1.0.0↳
Install complete
2 Mon Jan 24 11:39:28 2022 deployed pacman-0.1.0 1.1.0↳
Upgrade complete

appVersion is the application version, so every time you change
the application version, you should update that field too. On the
other side, version is the Chart version and should be updated
when the definition of the Chart (i.e., templates) changes, so both
fields are independent.

Discussion
Not only you can install or upgrade a version with Helm, but you can also roll back to
a previous revision.

In the terminal window, run the following command:
helm rollback pacman 1

Rollback was a success! Happy Helming!

80 | Chapter 5: Helm

Running the history command reflects this change too:
helm history pacman

REVISION UPDATED STATUS CHART APP VERSION↳
DESCRIPTION
1 Mon Jan 24 10:22:06 2022 superseded pacman-0.1.0 1.0.0↳
Install complete
2 Mon Jan 24 11:39:28 2022 superseded pacman-0.1.0 1.1.0↳
Upgrade complete
3 Mon Jan 24 12:31:58 2022 deployed pacman-0.1.0 1.0.0↳
Rollback to

Finally, Helm offers a way to override values, not only using the --set argument as
shown in Recipe 5.1, but by providing a YAML file.

Create a new YAML file named newvalues.yaml in the root directory with the follow‐
ing content:

image:
 tag: "1.2.0"

Then run the template command, setting the new file as an override of values.yaml:
helm template pacman -f newvalues.yaml .

The resulting YAML document is using the values set in values.yaml but overriding
the images.tag set in newvalues.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pacman
...
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: pacman
 template:
 metadata:
 labels:
 app.kubernetes.io/name: pacman
 spec:
 containers:
 - image: "quay.io/gitops-cookbook/pacman-kikd:1.2.0"
 imagePullPolicy: Always
...

5.3 Updating a Container Image in Helm | 81

5.4 Packaging and Distributing a Helm Chart
Problem
You want to package and distribute a Helm Chart so it can be reused by others.

Solution
Use the package command.

Helm is a package manager for Kubernetes. As we’ve seen in this chapter, the basic
unit in Helm is a Chart containing the Kubernetes files required to deploy the
application, the default values for the templates, etc.

But we’ve not yet seen how to package Helm Charts and distribute them to be
available to other Charts as dependencies or deployed by other users.

Let’s package the pacman Chart into a .tgz file. In the pacman directory, run the
following command:

helm package .

And you’ll get a message informing you where the archive is stored:
Successfully packaged chart and saved it to:↳
gitops-cookbook/code/05_helm/04_package/pacman/pacman-0.1.0.tgz

A Chart then needs to be published into a Chart repository. A Chart repository is
an HTTP server with an index.yaml file containing metadata information regarding
Charts and .tgz Charts.

To publish them, update the index.yaml file with the new metadata information, and
upload the artifact.

The directory layout of a repository might look like this:
repo
├── index.yaml
├── pacman-0.1.0.tgz

The index.yaml file with information about each Chart present in the repository looks
like:

apiVersion: v1
entries:
 pacman:
 - apiVersion: v2
 appVersion: 1.0.0
 created: "2022-01-24T16:42:54.080959+01:00"
 description: A Helm chart for Pacman
 digest: aa3cce809ffcca86172fc793d7804d1c61f157b9b247680a67d5b16b18a0798d
 name: pacman

82 | Chapter 5: Helm

 type: application
 urls:
 - pacman-0.1.0.tgz
 version: 0.1.0
generated: "2022-01-24T16:42:54.080485+01:00"

You can run helm repo index in the root directory, where pack‐
aged Charts are stored, to generate the index file automatically.

Discussion
In addition to packaging a Helm Chart, Helm can generate a signature file for the
packaged Chart to verify its correctness later.

In this way, you can be sure it has not been modified, and it’s the correct Chart.

To sign/verify the package, you need a pair of GPG keys in the machine; we’re
assuming you already have one pair created.

Now you need to call the package command but set the -sign argument with the
required parameters to generate a signature file:

helm package --sign --key 'me@example.com' \
 --keyring /home/me/.gnupg/secring.gpg .

Now, two files are created—the packaged Helm Chart (.tgz) and the signature file
(.tgz.prov):

.
├── Chart.yaml
├── pacman-0.1.0.tgz
├── pacman-0.1.0.tgz.prov
├── templates
│ ├── deployment.yaml
│ └── service.yaml
└── values.yaml

Chart package

Signature file

Remember to upload both files in the Chart repository.

5.4 Packaging and Distributing a Helm Chart | 83

To verify that a Chart is valid and has not been manipulated, use the verify
command:

helm verify pacman-0.1.0.tgz

Signed by: alexs (book) <asotobu@example.com>
Using Key With Fingerprint: 57C4511D738BC0B288FAF9D69B40EB787040F3CF
Chart Hash Verified:↳
sha256:d8b2e0c5e12a8425df2ea3a903807b93aabe4a6ff8277511a7865c847de3c0bf

It’s valid

See Also
• The Chart Repository Guide•
• Helm Provenance and Integrity•

5.5 Deploying a Chart from a Repository
Problem
You want to deploy a Helm Chart stored in Chart repository.

Solution
Use the repo add command to add the remote repository and the install command
to deploy it.

Public Helm Chart repositories like Bitnami are available for this purpose.

To install Charts from a repository (either public or private), you need to register it
using its URL:

helm repo add bitnami https://charts.bitnami.com/bitnami

URL of Helm Chart repository where index.yaml is placed

List the registered repositories:
helm repo list

NAME URL
stable https://charts.helm.sh/stable
bitnami https://charts.bitnami.com/bitnami

Bitnami repo is registered

84 | Chapter 5: Helm

https://oreil.ly/pQ2Ab
https://oreil.ly/1Hql0
https://oreil.ly/QJzWZ

Run helm repo update to get the latest list of Charts for each repo.

After registering a repository, you might want to find which Charts are available.

If you want to deploy a PostgreSQL instance in the cluster, use the search command
to search all repositories for a Chart that matches the name:

helm search repo postgresql

The outputs are the list of Charts that matches the name, the version of the Chart
and PostgreSQL, and a description. Notice the name of the Chart is composed of the
repository name and the Chart name, i.e., bitnami/postgresql:

NAME CHART VERSION APP VERSION↳
DESCRIPTION

bitnami/postgresql 10.16.2 11.14.0↳
 Chart for PostgreSQL, an object-relational data...
bitnami/postgresql-ha 8.2.6 11.14.0↳
 Chart for PostgreSQL with HA architecture (usin...
stable/postgresql 8.6.4 11.7.0↳
 DEPRECATED Chart for PostgreSQL, an object-rela...
stable/pgadmin 1.2.2 4.18.0↳
 pgAdmin is a web based administration tool for ...
stable/stolon 1.6.5 0.16.0↳
 DEPRECATED - Stolon - PostgreSQL cloud native H...
stable/gcloud-sqlproxy 0.6.1 1.11↳
 DEPRECATED Google Cloud SQL Proxy
stable/prometheus-postgres-exporter 1.3.1 0.8.0↳
 DEPRECATED A Helm chart for prometheus postgres...

To deploy the PostgreSQL Chart, run the install command but change the location
of the Helm Chart from a local directory to the full name of the Chart (<repo>/
<chart>):

helm install my-db \
--set postgresql.postgresqlUsername=my-default,postgresql.↳
postgresqlPassword=postgres,postgresql.postgresqlDatabase=mydb,↳
postgresql.persistence.enabled=false \
bitnami/postgresql

Sets the name of the deployment

Overrides default values to the ones set in the command line

Sets the PostgreSQL Chart stored in the Bitnami repo

5.5 Deploying a Chart from a Repository | 85

And a detailed output is shown in the console:
NAME: my-db
LAST DEPLOYED: Mon Jan 24 22:33:56 2022
NAMESPACE: asotobue-dev
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
CHART NAME: postgresql
CHART VERSION: 10.16.2
APP VERSION: 11.14.0

** Please be patient while the chart is being deployed **

PostgreSQL can be accessed via port 5432 on the following DNS names↳
from within your cluster:

 my-db-postgresql.asotobue-dev.svc.cluster.local - Read/Write connection

To get the((("passwords", "Helm Charts")))((("Helm", "Charts", "pass-
words")))((("Charts", "passwords"))) password for "postgres" run:

 export POSTGRES_ADMIN_PASSWORD=$(kubectl get secret↳
 --namespace asotobue-dev my-db-postgresql -o↳
 jsonpath="{.data.postgresql-postgres-password}" | base64 --decode)

To get the password for "my-default" run:

 export POSTGRES_PASSWORD=$(kubectl get secret↳
 --namespace asotobue-dev my-db-postgresql -o↳
 jsonpath="{.data.postgresql-password}" | base64 --decode)

To connect to your database run the following command:

 kubectl run my-db-postgresql-client --rm --tty -i --restart='Never'↳
 --namespace asotobue-dev↳
 --image docker.io/bitnami/postgresql:11.14.0-debian-10-r28↳
 --env="PGPASSWORD=$POSTGRES_PASSWORD"↳
 --command -- psql --host my-db-postgresql -U my-default -d mydb↳
 -p 5432

To connect to your ((("Helm", "Charts", "connecting to databases")))((("Charts",
"databases", "connecting to")))((("databases", "connecting to", "Helm
Charts")))database from outside the cluster execute the following commands:

 kubectl port-forward --namespace asotobue-dev svc/my-db-postgresql 5432:5432 &
 PGPASSWORD="$POSTGRES_PASSWORD" psql --host 127.0.0.1 -U my-default -d mydb -p
5432

Inspect the installation by listing pods, Services, StatefulSets, or Secrets:

86 | Chapter 5: Helm

kubectl get pods

NAME READY STATUS RESTARTS AGE
my-db-postgresql-0 1/1 Running 0 23s

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
my-db-postgresql ClusterIP 172.30.35.1 <none> 5432/TCP
3m33s
my-db-postgresql-headless ClusterIP None <none> 5432/TCP
3m33s

kubectl get statefulset

NAME READY AGE
my-db-postgresql 1/1 4m24s

kubectl get secrets

NAME TYPE DATA AGE
my-db-postgresql Opaque 2 5m23s
sh.helm.release.v1.my-db.v1 helm.sh/release.v1 1 5m24s

Discussion
When a third party creates a Chart, there is no direct access to default values or the
list of parameters to override. Helm provides a show command to check these values:

helm show values bitnami/postgresql

And shows all the possible values:
@section Global parameters
Global Docker image parameters
Please, note that this will override the image parameters, including dependen
cies
configured to use the global value
Current available global Docker image parameters: imageRegistry, imagePullSe
crets
and storageClass
##

@param global.imageRegistry Global Docker image registry
@param global.imagePullSecrets Global Docker registry secret names as an array
@param global.storageClass Global StorageClass for Persistent Volume(s)
##
global:
 imageRegistry: ""
 ## E.g.
 ## imagePullSecrets:
 ## - myRegistryKeySecretName
 ##
 imagePullSecrets: []
...

5.5 Deploying a Chart from a Repository | 87

5.6 Deploying a Chart with a Dependency
Problem
You want to deploy a Helm Chart that is a dependency of another Chart.

Solution
Use the dependencies section in the Chart.yaml file to register other Charts. So far,
we’ve seen how to deploy simple services to the cluster, but usually a service might
have other dependencies like a database, mail server, distributed cache, etc.

In the previous section, we saw how to deploy a PostgreSQL server in a Kubernetes
cluster. In this section, we’ll see how to deploy a service composed of a Java service
returning a list of songs stored in a PostgreSQL database. The application is summar‐
ized in Figure 5-2.

Figure 5-2. Music application overview

Let’s start creating the Chart layout shown in Recipe 5.1:
mkdir music
mkdir music/templates

cd music

Then create two template files to deploy the music service.

88 | Chapter 5: Helm

The templates/deployment.yaml file contains the Kubernetes Deployment definition:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ .Chart.Name}}
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 {{- if .Chart.AppVersion }}
 app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
 {{- end }}
spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 template:
 metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 spec:
 containers:
 - image: "{{ .Values.image.repository }}:↳
 {{ .Values.image.tag | default .Chart.AppVersion}}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 name: {{ .Chart.Name}}
 ports:
 - containerPort: {{ .Values.image.containerPort }}
 name: http
 protocol: TCP
 env:
 - name: QUARKUS_DATASOURCE_JDBC_URL
 value: {{ .Values.postgresql.server | ↳
 default (printf "%s-postgresql" (.Release.Name)) | quote }}
 - name: QUARKUS_DATASOURCE_USERNAME
 value: {{ .Values.postgresql.postgresqlUsername | ↳
 default (printf "postgres") | quote }}
 - name: QUARKUS_DATASOURCE_PASSWORD
 valueFrom:
 secretKeyRef:
 name: {{ .Values.postgresql.secretName | ↳
 default (printf "%s-postgresql" (.Release.Name)) | quote }}
 key: {{ .Values.postgresql.secretKey }}

The templates/service.yaml file contains the Kubernetes Service definition:
apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name }}
 name: {{ .Chart.Name }}
spec:
 ports:
 - name: http

5.6 Deploying a Chart with a Dependency | 89

 port: {{ .Values.image.containerPort }}
 targetPort: {{ .Values.image.containerPort }}
 selector:
 app.kubernetes.io/name: {{ .Chart.Name }}

After the creation of the templates, it’s time for the Chart metadata Chart.yaml file.
In this case, we need to define the dependencies of this Chart too. Since the music
service uses a PostgreSQL database, we can add the Chart used in Recipe 5.5 as a
dependency:

apiVersion: v2
name: music
description: A Helm chart for Music service

type: application
version: 0.1.0
appVersion: "1.0.0"

dependencies:
 - name: postgresql
 version: 10.16.2
 repository: "https://charts.bitnami.com/bitnami"

Dependencies section

Name of the Chart to add as dependency

Chart version

Repository

The final file is Values.yaml with default configuration values. In this case, a new sec‐
tion is added to configure music deployment with PostgreSQL instance parameters:

image:
 repository: quay.io/gitops-cookbook/music
 tag: "1.0.0"
 pullPolicy: Always
 containerPort: 8080

replicaCount: 1

postgresql:
 server: jdbc:postgresql://music-db-postgresql:5432/mydb
 postgresqlUsername: my-default
 secretName: music-db-postgresql
 secretKey: postgresql-password

PostgreSQL section

90 | Chapter 5: Helm

With the Chart in place, the next thing to do is download the dependency Chart and
store it in the charts directory. This process is automatically done by running the
dependency update command:

helm dependency update

The command output shows that one Chart has been downloaded and saved:
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "bitnami" chart repository
Update Complete. ⎈Happy Helming!⎈
Saving 1 charts
Downloading postgresql from repo https://charts.bitnami.com/bitnami
Deleting outdated charts

The directory layout looks like this:
music
├── Chart.lock
├── Chart.yaml
├── charts
│ └── postgresql-10.16.2.tgz
├── templates
│ ├── deployment.yaml
│ └── service.yaml
└── values.yaml

PostgreSQL Chart is placed in the correct directory

Finally, we deploy the Chart, setting configuration PostgreSQL deployment values
from the command line:

helm install music-db --set postgresql.postgresqlPassword=postgres postgresql.post-
gresqlDatabase=mydb,postgresql.persistence.enabled=false .

The installation process shows information about the deployment:
NAME: music-db
LAST DEPLOYED: Tue Jan 25 17:53:17 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Inspect the installation by listing pods, Services, StatefulSets, or Secrets:
kubectl get pods

NAME READY STATUS RESTARTS AGE
music-67dbf986b7-5xkqm 1/1 Running 1 (32s ago) 39s
music-db-postgresql-0 1/1 Running 0 39s

kubectl get statefulset

5.6 Deploying a Chart with a Dependency | 91

NAME READY AGE
music-db-postgresql 1/1 53s

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 40d
music ClusterIP 10.104.110.34 <none> 8080/TCP 82s
music-db-postgresql ClusterIP 10.110.71.13 <none> 5432/TCP 82s
music-db-postgresql-headless ClusterIP None <none> 5432/TCP 82s

We can validate the access to the music service by using port forwarding to the
Kubernetes Service.

Open a new terminal window and run the following command:
kubectl port-forward service/music 8080:8080

Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

The terminal is blocked and it’s normal until you stop the kubectl port-forward
process. Thanks to port forwarding, we can access the music service using the local
host address and port 8080.

In another terminal, curl the service:
curl localhost:8080/song

The request is sent to the music service deployed in Kubernetes and returns a list of
songs:

[
 {
 "id": 1,
 "artist": "DT",
 "name": "Quiero Munchies"
 },
 {
 "id": 2,
 "artist": "Lin-Manuel Miranda",
 "name": "We Don't Talk About Bruno"
 },
 {
 "id": 3,
 "artist": "Imagination",
 "name": "Just An Illusion"
 },
 {
 "id": 4,
 "artist": "Txarango",
 "name": "Tanca Els Ulls"
 },
 {
 "id": 5,

92 | Chapter 5: Helm

 "artist": "Halsey",
 "name": "Could Have Been Me"
 }
]

5.7 Triggering a Rolling Update Automatically
Problem
You want to trigger a rolling update of deployment when a ConfigMap object is
changed.

Solution
Use the sha256sum template function to generate a change on the deployment file.

In Recipe 4.5, we saw that Kustomize has a ConfigMapGenerator that automatically
appends a hash to the ConfigMap metadata name and modifies the deployment file
with the new hash when used. Any change on the ConfigMap triggers a rolling update
of the deployment.

Helm doesn’t provide a direct way like Kustomize does to update a deployment file
when the ConfigMap changes, but there is a template function to calculate a SHA-256
hash of any file and embed the result in the template.

Suppose we’ve got a Node.js application that returns a greeting message. An environ‐
ment variable configures this greeting message, and in the Kubernetes Deployment,
this variable is injected from a Kubernetes ConfigMap.

Figure 5-3 shows an overview of the application.

Figure 5-3. Greetings application overview

Let’s create the Helm Chart for the Greetings application; note that we’re not covering
the entire process of creating a Chart, but just the essential parts. You can refer to
Recipe 5.1 to get started.

5.7 Triggering a Rolling Update Automatically | 93

Create a deployment template that injects a ConfigMap as an environment variable.
The following listing shows the file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ .Chart.Name}}
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 {{- if .Chart.AppVersion }}
 app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
 {{- end }}
spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 template:
 metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 spec:
 containers:
 - image: "{{ .Values.image.repository }}:↳
 {{ .Values.image.tag | default .Chart.AppVersion}}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 name: {{ .Chart.Name}}
 ports:
 - containerPort: {{ .Values.image.containerPort }}
 name: http
 protocol: TCP
 env:
 - name: GREETING
 valueFrom:
 configMapKeyRef:
 name: {{ .Values.configmap.name}}
 key: greeting

ConfigMap name

Property key of the ConfigMap

The initial ConfigMap file is shown in the following listing:
apiVersion: v1
kind: ConfigMap
metadata:
 name: greeting-config
data:
 greeting: Aloha

94 | Chapter 5: Helm

Sets ConfigMap name

Key/value

Create a Kubernetes Service template to access the service:
apiVersion: v1
kind: Service
metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name }}
 name: {{ .Chart.Name }}
spec:
 ports:
 - name: http
 port: {{ .Values.image.containerPort }}
 targetPort: {{ .Values.image.containerPort }}
 selector:
 app.kubernetes.io/name: {{ .Chart.Name }}

Update the values.yaml file with the template configmap parameters:
image:
 repository: quay.io/gitops-cookbook/greetings
 tag: "1.0.0"
 pullPolicy: Always
 containerPort: 8080

replicaCount: 1

configmap:
 name: greeting-config

Refers to ConfigMap name

Finally, install the Chart using the install command:
helm install greetings .

When the Chart is deployed, use the kubectl port-forward command in one
terminal to get access to the service:

kubectl port-forward service/greetings 8080:8080

And curl the service in another terminal window:
curl localhost:8080
Aloha Ada

Configured greeting is used

5.7 Triggering a Rolling Update Automatically | 95

Now, let’s update the ConfigMap file to a new greeting message:
apiVersion: v1
kind: ConfigMap
metadata:
 name: greeting-config
data:
 greeting: Hola

New greeting message

Update the appVersion field from the Chart.yaml file to 1.0.1 and upgrade the Chart
by running the following command:

helm upgrade greetings .

Restart the kubectl port-forward process and curl the service again:
curl localhost:8080
Aloha Alexandra

Greeting message isn’t updated

The ConfigMap object is updated during the upgrade, but since there are no changes
in the Deployment object, there is no restart of the pod; hence the environment
variable is not set to the new value. Listing the pods shows no execution of the rolling
update:

kubectl get pods

NAME READY STATUS RESTARTS AGE
greetings-64ddfcb649-m5pml 1/1 Running 0 2m21s

Age value shows no rolling update

Figure 5-4 summarizes the change.

Figure 5-4. Greetings application with new configuration value

Let’s use the sha256sum function to calculate an SHA-256 value of the configmap.yaml
file content and set it as a pod annotation, which effectively triggers a rolling update
as the pod definition has changed:

96 | Chapter 5: Helm

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 template:
 metadata:
 labels:
 app.kubernetes.io/name: {{ .Chart.Name}}
 annotations:
 checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml")↳
 . | sha256sum }}

Includes the configmap.yaml file, calculates the SHA-256 value, and sets it as an
annotation

Update the ConfigMap again with a new value:
apiVersion: v1
kind: ConfigMap
metadata:
 name: greeting-config
data:
 greeting: Namaste

New greeting message

Update the appVersion field from Chart.yaml to 1.0.1 and upgrade the Chart by
running the following command:

helm upgrade greetings .

Restart the kubectl port-forward process and curl the service again:
curl localhost:8080
Namaste Alexandra

Greeting message is the new one

List the pods deployed in the cluster again, and you’ll notice that a rolling update is
happening:

kubectl get pods

NAME READY STATUS RESTARTS AGE
greetings-5c6b86dbbd-2p9bd 0/1 ContainerCreating 0 3s
greetings-64ddfcb649-m5pml 1/1 Running 0 2m21s

A rolling update is happening

Describe the pod to validate that the annotation with the SHA-256 value is present:
kubectl describe pod greetings-5c6b86dbbd-s4n7b

5.7 Triggering a Rolling Update Automatically | 97

The output shows all pod parameters. The important one is the annotations placed
at the top of the output showing the checksum/config annotation containing the
calculated SHA-256 value:

Name: greetings-5c6b86dbbd-s4n7b
Namespace: asotobue-dev
Priority: -3
Priority Class Name: sandbox-users-pods
Node: ip-10-0-186-34.ec2.internal/10.0.186.34
Start Time: Thu, 27 Jan 2022 11:55:02 +0100
Labels: app.kubernetes.io/name=greetings
 pod-template-hash=5c6b86dbbd
Annotations: checksum/config:↳
59e9100616a11d65b691a914cd429dc6011a34e02465173f5f53584b4aa7cba8

Calculated value

Figure 5-5 summarizes the elements that changed when the application was updated.

Figure 5-5. Final overview of the Greetings application

5.8 Final Thoughts
In the previous chapter, we saw Kustomize; in this chapter, we’ve seen another tool to
help deploy Kubernetes applications.

When you need to choose between Kustomize or Helm, you might have questions on
which one to use.

In our experience, the best way to proceed is with Kustomize for simple projects,
where only simple changes might be required between new deployments.

If the project is complex with external dependencies, and several deployment param‐
eters, then Helm is a better option.

98 | Chapter 5: Helm

1 See the Tekton documentation.

CHAPTER 6

Cloud Native CI/CD

In the previous chapter you learned about Helm, a popular templating system for
Kubernetes. All the recipes from previous chapters represent a common tooling for
creating and managing containers for Kubernetes, and now it’s time to think about
the automation on Kubernetes using such tools. Let’s move our focus to the cloud
native continuous integration/continuous deployment (CI/CD).

Continuous integration is an automated process that takes new code created by a
developer and builds, tests, and runs that code. The cloud native CI refers to the
model where cloud computing and cloud services are involved in this process. The
benefits from this model are many, such as portable and reproducible workloads
across clouds for highly scalable and on-demand use cases. And it also represents
the building blocks for GitOps workflows as it enables automation through actions
performed via Git.

Tekton is a popular open source implementation of a cloud native CI/CD system on
top of Kubernetes. In fact, Tekton installs and runs as an extension on a Kubernetes
cluster and comprises a set of Kubernetes Custom Resources that define the building
blocks you can create and reuse for your pipelines.1 (See Recipe 6.1.)

The Tekton engine lives inside a Kubernetes cluster and through its API objects
represents a declarative way to define the actions to perform. The core components
such as Tasks and Pipelines can be used to create a pipeline to generate artifacts
and/or containers from a Git repository (see Recipes 6.2, 6.3, and 6.4).

Tekton also supports a mechanism for automating the start of a Pipeline with Trig‐
gers. These allow you to detect and extract information from events from a variety of

99

https://oreil.ly/NxpqN
https://tekton.dev

sources, such as a webhook, and to start Tasks or Pipelines accordingly (see Recipe
6.8).

Working with private Git repositories is a common use case that Tekton supports
nicely (see Recipe 6.4), and building artifacts and creating containers can be done in
many ways such as with Buildah (see Recipe 6.5) or Shipwright, which we discussed
in Chapter 3. It is also possible to integrate Kustomize (see Recipe 6.9) and Helm
(see Recipe 6.10) in order to make the CI part dynamic and take benefit of the rich
ecosystem of Kubernetes tools.

Tekton is Kubernetes-native solution, thus it’s universal; however, it’s not the only
cloud native CI/CD citizen in the market. Other good examples for GitOps-ready
workloads are Drone (Recipe 6.11) and GitHub Actions (Recipe 6.12).

6.1 Install Tekton
Problem
You want to install Tekton in order to have cloud native CI/CD on your Kubernetes
cluster.

Solution
Tekton is a Kubernetes-native CI/CD solution that can be installed on top of any
Kubernetes cluster. The installation brings you a set of Kubernetes Custom Resources
(CRDs) that you can use to compose your Pipelines, as shown in Figure 6-1:

Task
A reusable, loosely coupled number of steps that perform a specific function (e.g.,
building a container image). Tasks get executed as Kubernetes pods, while steps
in a Task map onto containers.

Pipeline
A list Tasks needed to build and/or deploy your apps.

TaskRun
The execution and result of running an instance of a Task.

PipelineRun
The execution and result of running an instance of a Pipeline, which includes a
number of TaskRuns.

Trigger
Detects an event and connects to other CRDs to specify what happens when such
an event occurs.

100 | Chapter 6: Cloud Native CI/CD

https://tekton.dev
https://oreil.ly/mv0cl
https://oreil.ly/mv0cl

Figure 6-1. Tekton Pipelines

To install Tekton, you just need kubectl CLI and a Kubernetes cluster such as
Minikube (see Chapter 2).

Tekton has a modular structure. You can install all components separately or all at
once (e.g., with an Operator):

Tekton Pipelines
Contains Tasks and Pipelines

Tekton Triggers
Contains Triggers and EventListeners

Tekton Dashboard
A convenient dashboard to visualize Pipelines and logs

Tekton CLI
A CLI to manage Tekton objects (start/stop Pipelines and Tasks, check logs)

6.1 Install Tekton | 101

You can also use a Kubernetes Operator to install and manage
Tekton components on your cluster. See more details on how from
OperatorHub.

First you need to install the Tekton Pipelines component. At the time of writing this
book, we are using version 0.37.0:

kubectl apply \
-f https://storage.googleapis.com/tekton-releases/pipeline/previous/v0.37.0/
release.yaml

The installation will create a new Kubernetes namespace called tekton-pipelines
and you should see output similar to the following:

namespace/tekton-pipelines created
podsecuritypolicy.policy/tekton-pipelines created
clusterrole.rbac.authorization.k8s.io/tekton-pipelines-controller-cluster-access
created
clusterrole.rbac.authorization.k8s.io/tekton-pipelines-controller-tenant-access
created
clusterrole.rbac.authorization.k8s.io/tekton-pipelines-webhook-cluster-access cre-
ated
role.rbac.authorization.k8s.io/tekton-pipelines-controller created
role.rbac.authorization.k8s.io/tekton-pipelines-webhook created
role.rbac.authorization.k8s.io/tekton-pipelines-leader-election created
role.rbac.authorization.k8s.io/tekton-pipelines-info created
serviceaccount/tekton-pipelines-controller created
serviceaccount/tekton-pipelines-webhook created
clusterrolebinding.rbac.authorization.k8s.io/tekton-pipelines-controller-cluster-
access created
clusterrolebinding.rbac.authorization.k8s.io/tekton-pipelines-controller-tenant-
access created
clusterrolebinding.rbac.authorization.k8s.io/tekton-pipelines-webhook-cluster-
access created
rolebinding.rbac.authorization.k8s.io/tekton-pipelines-controller created
rolebinding.rbac.authorization.k8s.io/tekton-pipelines-webhook created
rolebinding.rbac.authorization.k8s.io/tekton-pipelines-controller-leaderelection
created
rolebinding.rbac.authorization.k8s.io/tekton-pipelines-webhook-leaderelection cre-
ated
rolebinding.rbac.authorization.k8s.io/tekton-pipelines-info created
customresourcedefinition.apiextensions.k8s.io/clustertasks.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/pipelines.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/pipelineruns.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/resolutionrequests.resolution.tek-
ton.dev created
customresourcedefinition.apiextensions.k8s.io/pipelineresources.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/runs.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/tasks.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/taskruns.tekton.dev created
secret/webhook-certs created

102 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/6UoU3
https://oreil.ly/o0L2V

validatingwebhookconfiguration.admissionregistration.k8s.io/validation.web-
hook.pipeline.tekton.dev created
mutatingwebhookconfiguration.admissionregistration.k8s.io/webhook.pipeline.tek-
ton.dev created
validatingwebhookconfiguration.admissionregistration.k8s.io/config.webhook.pipe-
line.tekton.dev created
clusterrole.rbac.authorization.k8s.io/tekton-aggregate-edit created
clusterrole.rbac.authorization.k8s.io/tekton-aggregate-view created
configmap/config-artifact-bucket created
configmap/config-artifact-pvc created
configmap/config-defaults created
configmap/feature-flags created
configmap/pipelines-info created
configmap/config-leader-election created
configmap/config-logging created
configmap/config-observability created
configmap/config-registry-cert created
deployment.apps/tekton-pipelines-controller created
service/tekton-pipelines-controller created
horizontalpodautoscaler.autoscaling/tekton-pipelines-webhook created
deployment.apps/tekton-pipelines-webhook created
service/tekton-pipelines-webhook created

You can monitor and verify the installation with the following command:
kubectl get pods -w -n tekton-pipelines

You should see output like this:
NAME READY STATUS RESTARTS AGE
tekton-pipelines-controller-5fd68749f5-tz8dv 1/1 Running 0 3m4s
tekton-pipelines-webhook-58dcdbfd9b-hswpk 1/1 Running 0 3m4s

The preceding command goes in watch mode, thus it remains
appended. Press Ctrl+C in order to stop it when you see the con‐
troller and webhook pods in Running status.

Then you can install Tekton Triggers. At the time of writing this book, we are using
version 0.20.1:

kubectl apply \
-f https://storage.googleapis.com/tekton-releases/triggers/previous/v0.20.1/
release.yaml

You should see the following output:
podsecuritypolicy.policy/tekton-triggers created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-admin created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-core-interceptors created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-core-interceptors-secrets
created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-eventlistener-roles created

6.1 Install Tekton | 103

https://oreil.ly/Vq32h

clusterrole.rbac.authorization.k8s.io/tekton-triggers-eventlistener-clusterroles
created
role.rbac.authorization.k8s.io/tekton-triggers-admin created
role.rbac.authorization.k8s.io/tekton-triggers-admin-webhook created
role.rbac.authorization.k8s.io/tekton-triggers-core-interceptors created
role.rbac.authorization.k8s.io/tekton-triggers-info created
serviceaccount/tekton-triggers-controller created
serviceaccount/tekton-triggers-webhook created
serviceaccount/tekton-triggers-core-interceptors created
clusterrolebinding.rbac.authorization.k8s.io/tekton-triggers-controller-admin cre-
ated
clusterrolebinding.rbac.authorization.k8s.io/tekton-triggers-webhook-admin created
clusterrolebinding.rbac.authorization.k8s.io/tekton-triggers-core-interceptors cre-
ated
clusterrolebinding.rbac.authorization.k8s.io/tekton-triggers-core-interceptors-
secrets created
rolebinding.rbac.authorization.k8s.io/tekton-triggers-controller-admin created
rolebinding.rbac.authorization.k8s.io/tekton-triggers-webhook-admin created
rolebinding.rbac.authorization.k8s.io/tekton-triggers-core-interceptors created
rolebinding.rbac.authorization.k8s.io/tekton-triggers-info created
customresourcedefinition.apiextensions.k8s.io/clusterinterceptors.triggers.tek-
ton.dev created
customresourcedefinition.apiextensions.k8s.io/clustertriggerbindings.triggers.tek-
ton.dev created
customresourcedefinition.apiextensions.k8s.io/eventlisteners.triggers.tekton.dev
created
customresourcedefinition.apiextensions.k8s.io/triggers.triggers.tekton.dev created
customresourcedefinition.apiextensions.k8s.io/triggerbindings.triggers.tekton.dev
created
customresourcedefinition.apiextensions.k8s.io/triggertemplates.triggers.tekton.dev
created
secret/triggers-webhook-certs created
validatingwebhookconfiguration.admissionregistration.k8s.io/validation.web-
hook.triggers.tekton.dev created
mutatingwebhookconfiguration.admissionregistration.k8s.io/webhook.triggers.tek-
ton.dev created
validatingwebhookconfiguration.admissionregistration.k8s.io/config.webhook.trig-
gers.tekton.dev created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-aggregate-edit created
clusterrole.rbac.authorization.k8s.io/tekton-triggers-aggregate-view created
configmap/config-defaults-triggers created
configmap/feature-flags-triggers created
configmap/triggers-info created
configmap/config-logging-triggers created
configmap/config-observability-triggers created
service/tekton-triggers-controller created
deployment.apps/tekton-triggers-controller created
service/tekton-triggers-webhook created
deployment.apps/tekton-triggers-webhook created
deployment.apps/tekton-triggers-core-interceptors created
service/tekton-triggers-core-interceptors created
clusterinterceptor.triggers.tekton.dev/cel created
clusterinterceptor.triggers.tekton.dev/bitbucket created
clusterinterceptor.triggers.tekton.dev/github created

104 | Chapter 6: Cloud Native CI/CD

clusterinterceptor.triggers.tekton.dev/gitlab created
secret/tekton-triggers-core-interceptors-certs created

You can monitor and verify the installation with the following command:
kubectl get pods -w -n tekton-pipelines

You should see three new pods created and running—tekton-triggers-controller,
tekton-triggers-core-interceptors, and tekton-triggers-webhook:

NAME READY STATUS RESTARTS
AGE
tekton-pipelines-controller-5fd68749f5-tz8dv 1/1 Running 0
27m
tekton-pipelines-webhook-58dcdbfd9b-hswpk 1/1 Running 0
27m
tekton-triggers-controller-854d44fd5d-8jf9q 1/1 Running 0
105s
tekton-triggers-core-interceptors-5454f8785f-dhsrb 1/1 Running 0
104s
tekton-triggers-webhook-86d75f875-zmjf4 1/1 Running 0
105s

After this you have a fully working Tekton installation on top of your Kubernetes
cluster, supporting Pipelines and automation via event Triggers. In addition to that,
you could install the Tekton Dashboard in order to visualize Tasks, Pipelines, and
logs via a nice UI. At the time of writing this book, we are using version 0.28.0:

kubectl apply \
-f https://storage.googleapis.com/tekton-releases/dashboard/previous/v0.28.0/
tekton-dashboard-release.yaml

You should have output similar to the following:
customresourcedefinition.apiextensions.k8s.io/extensions.dashboard.tekton.dev cre-
ated
serviceaccount/tekton-dashboard created
role.rbac.authorization.k8s.io/tekton-dashboard-info created
clusterrole.rbac.authorization.k8s.io/tekton-dashboard-backend created
clusterrole.rbac.authorization.k8s.io/tekton-dashboard-tenant created
rolebinding.rbac.authorization.k8s.io/tekton-dashboard-info created
clusterrolebinding.rbac.authorization.k8s.io/tekton-dashboard-backend created
configmap/dashboard-info created
service/tekton-dashboard created
deployment.apps/tekton-dashboard created
clusterrolebinding.rbac.authorization.k8s.io/tekton-dashboard-tenant created

You can monitor and verify the installation with the following command:
kubectl get pods -w -n tekton-pipelines

You should see a new pod created and running—tekton-dashboard:
NAME READY STATUS RESTARTS
AGE
tekton-dashboard-786b6b5579-sscgz 1/1 Running 0

6.1 Install Tekton | 105

https://oreil.ly/Db56q

2m25s
tekton-pipelines-controller-5fd68749f5-tz8dv 1/1 Running 1 (7m16s ago)
5d7h
tekton-pipelines-webhook-58dcdbfd9b-hswpk 1/1 Running 1 (7m6s ago)
5d7h
tekton-triggers-controller-854d44fd5d-8jf9q 1/1 Running 2 (7m9s ago)
5d7h
tekton-triggers-core-interceptors-5454f8785f-dhsrb 1/1 Running 1 (7m7s ago)
5d7h
tekton-triggers-webhook-86d75f875-zmjf4 1/1 Running 2 (7m9s ago)
5d7h

By default, the Dashboard is not exposed outside the Kubernetes cluster. You can
access it by using the following command:

kubectl port-forward svc/tekton-dashboard 9097:9097 -n tekton-pipelines

There are several ways to expose internal services in Kubernetes;
you could also create an Ingress for that as shown in the Tekton
Dashboard documentation.

You can now browse to http://localhost:9097 to access your Dashboard, as shown in
Figure 6-2.

You can download and install the Tekton CLI for your OS to start creating Tasks
and Pipelines from the command line. At the time of writing this book, we are using
version 0.25.0.

Figure 6-2. Tekton Dashboard

Finally, verify that tkn and Tekton are configured correctly:

106 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/wwWcX
https://oreil.ly/BeOlq
https://oreil.ly/U7FSt

tkn version

You should get the following output:
Client version: 0.25.0
Pipeline version: v0.37.0
Triggers version: v0.20.1
Dashboard version: v0.28.0

See Also
• Tekton Getting Started•

6.2 Create a Hello World Task
Problem
You want to start using Tekton by exploring Tasks and creating a sample one.

Solution
In Tekton, a Task defines a series of steps that run sequentially to perform logic that
the Task requires. Every Task runs as a pod on your Kubernetes cluster, with each
step running in its own container. While steps within a Task are sequential, Tasks can
be executed inside a Pipeline in parallel. Therefore, Tasks are the building blocks for
running Pipelines with Tekton.

Let’s create a Hello World Task:
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: hello
spec:
 steps:
 - name: say-hello
 image: registry.access.redhat.com/ubi8/ubi
 command:
 - /bin/bash
 args: ['-c', 'echo Hello GitOps Cookbook reader!']

The API as an object of kind Task

The name of the Task

The list of steps contained within this Task, in this case just one

The name of the step

6.2 Create a Hello World Task | 107

https://oreil.ly/7I7ev
https://oreil.ly/5ldpn

The container image where the step starts

First you need to create this resource in Kubernetes:
kubectl create -f helloworld-task.yaml

You should get the following output:
task.tekton.dev/hello created

You can verify that the object has been created in your current Kubernetes
namespace:

kubectl get tasks

You should get output similar to the following:
NAME AGE
hello 90s

Now you can start your Tekton Task with tkn CLI:
tkn task start --showlog hello

You should get output similar to the following:
TaskRun started: hello-run-8bmzz
Waiting for logs to be available...
[say-hello] Hello World

A TaskRun is the API representation of a running Task. See Recipe
6.3 for more details.

See Also
• Tekton Task documentation•

6.3 Create a Task to Compile and Package an App from Git
Problem
You want to automate compiling and packaging an app from Git on Kubernetes with
Tekton.

Solution
As seen in Recipe 6.2, Tekton Tasks have a flexible mechanism to add a list of
sequential steps to automate actions. The idea is to create a list of Tasks with a chain

108 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/5ldpn

of input/output that can be used to compose Pipelines. Therefore a Task can contain a
series of optional fields for a better control over the resource:

inputs

The resources ingested by the Task.

outputs

The resources produced by the Task.

params

The parameters that will be used in the Task steps. Each parameter has:

name

The name of the parameter.

description

The description of the parameter.

default

The default value of the parameter.

results

The names under which Tasks write execution results.

workspaces

The paths to volumes needed by the Task.

volumes

The Task can also mount external volumes using the volumes attribute.

The following example, as illustrated in Figure 6-3, shows a Task named build-app
that clones the sources using the git command and lists the source code in output.

Figure 6-3. build-app Task

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: build-app
spec:
 workspaces:
 - name: source
 description: The git repo will be cloned onto the volume backing this work

6.3 Create a Task to Compile and Package an App from Git | 109

space
 params:
 - name: contextDir
 description: the context dir within source
 default: quarkus
 - name: tlsVerify
 description: tls verify
 type: string
 default: "false"
 - name: url
 default: https://github.com/gitops-cookbook/tekton-tutorial-greeter.git
 - name: revision
 default: master
 - name: subdirectory
 default: ""
 - name: sslVerify
 description: defines if http.sslVerify should be set to true or false in the
global git config
 type: string
 default: "false"
 steps:
 - image: 'gcr.io/tekton-releases/github.com/tektoncd/pipeline/cmd/git-
init:v0.21.0'
 name: clone
 resources: {}
 script: |
 CHECKOUT_DIR="$(workspaces.source.path)/$(params.subdirectory)"
 cleandir() {
 # Delete any existing contents of the repo directory if it exists.
 #
 # We don't just "rm -rf $CHECKOUT_DIR" because $CHECKOUT_DIR might be "/"
 # or the root of a mounted volume.
 if [[-d "$CHECKOUT_DIR"]] ; then
 # Delete non-hidden files and directories
 rm -rf "$CHECKOUT_DIR"/*
 # Delete files and directories starting with . but excluding ..
 rm -rf "$CHECKOUT_DIR"/.[!.]*
 # Delete files and directories starting with .. plus any other charac
ter
 rm -rf "$CHECKOUT_DIR"/..?*
 fi
 }
 /ko-app/git-init \
 -url "$(params.url)" \
 -revision "$(params.revision)" \
 -path "$CHECKOUT_DIR" \
 -sslVerify="$(params.sslVerify)"
 cd "$CHECKOUT_DIR"
 RESULT_SHA="$(git rev-parse HEAD)"
 - name: build-sources
 image: gcr.io/cloud-builders/mvn
 command:
 - mvn
 args:

110 | Chapter 6: Cloud Native CI/CD

 - -DskipTests
 - clean
 - install
 env:
 - name: user.home
 value: /home/tekton
 workingDir: "/workspace/source/$(params.contextDir)"

A Task step and Pipeline Task can share a common filesystem via a Tekton
workspace. The workspace could be either backed by something like Persistent‐
VolumeClaim (PVC) and a ConfigMap, or just ephemeral (emptyDir).

A Task can have parameters; this feature makes the execution dynamic.

Let’s create the Task with the following command:
kubectl create -f build-app-task.yaml

You should get output similar to the following:
task.tekton.dev/build-app created

You can verify that the object has been created in your current Kubernetes
namespace:

kubectl get tasks

You should get output similar to the following:
NAME AGE
build-app 3s

You can also list the Task with the tkn CLI:
tkn task ls

You should get output similar to the following:
NAME DESCRIPTION AGE
build-app 10 seconds ago

When you start a Task, a new TaskRun object is created. TaskRuns are the API
representation of a running Task; thus you can create it with the tkn CLI using the
following command:

tkn task start build-app \
 --param contextDir='quarkus' \
 --workspace name=source,emptyDir="" \
 --showlog

6.3 Create a Task to Compile and Package an App from Git | 111

https://oreil.ly/MZ5DY

When parameters are used inside a Task or Pipeline, you will be
prompted to add new values or confirm default ones, if any. In
order to use the default values from the Task defintion without
prompting for values, you can use the --use-param-defaults
option.

You should get output similar to the following:
? Value for param `tlsVerify` of type `string`? (Default is `false`) false
? Value for param `url` of type `string`? (Default is `https://
github.com/gitops-cookbook/tekton-tutorial-greeter.git`) https://github.com/gitops-
cookbook/tekton-tutorial-greeter.git
? Value for param `revision` of type `string`? (Default is `master`) master
? Value for param `subdirectory` of type `string`? (Default is ``)
? Value for param `sslVerify` of type `string`? (Default is `false`) false
TaskRun started: build-app-run-rzcd8
Waiting for logs to be available...
[clone] {"level":"info","ts":1659278019.0018234,"caller":"git/
git.go:169","msg":"Successfully cloned https://github.com/gitops-cookbook/tekton-
tutorial-greeter.git @ d9291c456db1ce29177b77ffeaa9b71ad80a50e6 (grafted, HEAD, ori
gin/master) in path /workspace/source/"}
[clone] {"level":"info","ts":1659278019.0227938,"caller":"git/
git.go:207","msg":"Successfully initialized and updated submodules in path /work
space/source/"}

[build-sources] [INFO] Scanning for projects...
[build-sources] Downloading from central: https://repo.maven.apache.org/maven2/io/
quarkus/quarkus-universe-bom/1.6.1.Final/quarkus-universe-bom-1.6.1.Final.pom
Downloaded from central: https://repo.maven.apache.org/maven2/io/quarkus/quarkus-
universe-bom/1.6.1.Final/quarkus-universe-bom-1.6.1.Final.pom (412 kB at 118 kB/s)
[build-sources] [INFO]
...
[build-sources] [INFO] Installing /workspace/source/quarkus/target/tekton-quarkus-
greeter.jar to /root/.m2/repository/com/redhat/developers/tekton-quarkus-greeter/
1.0.0-SNAPSHOT/tekton-quarkus-greeter-1.0.0-SNAPSHOT.jar
[build-sources] [INFO] Installing /workspace/source/quar-
kus/pom.xml to /root/.m2/repository/com/redhat/developers/tekton-quarkus-greeter/
1.0.0-SNAPSHOT/tekton-quarkus-greeter-1.0.0-SNAPSHOT.pom
[build-sources] [INFO]
--
[build-sources] [INFO] BUILD SUCCESS
[build-sources] [INFO]
--
[build-sources] [INFO] Total time: 04:41 min
[build-sources] [INFO] Finished at: 2022-07-31T14:38:22Z
[build-sources] [INFO]
--

Or, you can create a TaskRun object manually like this:
apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:

112 | Chapter 6: Cloud Native CI/CD

 generateName: build-app-run-
 labels:
 app.kubernetes.io/managed-by: tekton-pipelines
 tekton.dev/task: build-app
spec:
 params:
 - name: contextDir
 value: quarkus
 - name: revision
 value: master
 - name: sslVerify
 value: "false"
 - name: subdirectory
 value: ""
 - name: tlsVerify
 value: "false"
 - name: url
 value: https://github.com/gitops-cookbook/tekton-tutorial-greeter.git
 taskRef:
 kind: Task
 name: build-app
 workspaces:
 - emptyDir: {}
 name: source

If you don’t want to specify a name for each TaskRun, you can use the generate
Name attribute to let Tekton pick a random one from the string you defined.

Here you list the Task that the TaskRun is referring to.

And start it in this way:
kubectl create -f build-app-taskrun.yaml

You should get output similar to the following:
taskrun.tekton.dev/build-app-run-65vmh created

You can also verify it with the tkn CLI:
tkn taskrun ls

You should get output similar to the following:
NAME STARTED DURATION STATUS
build-app-run-65vmh 1 minutes ago 2m37s Succeeded
build-app-run-rzcd8 2 minutes ago 3m58s Succeeded

You can get the logs from the TaskRun by specifying the name of the TaskRun:
tkn taskrun logs build-app-run-65vmh -f

6.3 Create a Task to Compile and Package an App from Git | 113

See Also
Debugging a TaskRun

6.4 Create a Task to Compile and Package an App from
Private Git
Problem
You want to use a private Git repository to automate compiling and packaging of an
app on Kubernetes with Tekton.

Solution
In Recipe 6.3 you saw how to compile and package a sample Java application using
a public Git repository, but most of the time people deal with private repos at work,
so how do you integrate them? Tekton supports the following authentication schemes
for use with Git:

• Basic-auth•
• SSH•

With both options you can use a Kubernetes Secret to store your credentials and
attach them to the ServiceAccount running your Tekton Tasks or Pipelines.

Tekton uses a default service account, however you can override it
following the documentation here.

Let’s start with a common example of basic authentication and a popular Git service
such as GitHub.

GitHub uses personal access tokens (PATs) as an alternative to
using passwords for authentication. You can use a PAT instead of a
clear-text password to enhance security.

114 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/PxRNG
https://oreil.ly/Oxj6W
https://oreil.ly/6UC3O
https://oreil.ly/ID6m0

First you need to create a Secret. You can do this by creating the following YAML file:
apiVersion: v1
kind: Secret
metadata:
 name: github-secret
 annotations:
 tekton.dev/git-0: https://github.com
type: kubernetes.io/basic-auth
stringData:
 username: YOUR_USERNAME
 password: YOUR_PASSWORD

Here you specify the URL for which Tekton will use this Secret, in this case
GitHub

This is the type of Secret, in this case a basic authentication one

Your Git user, in this case your GitHub user

You Git password, in this case your GitHub personal access token

You can now create the Secret with the following command:
kubectl create -f git-secret.yaml

You should get the following output:
secret/git-secret created

You can also avoid writing YAML and do everything with kubectl as follows:
kubectl create secret generic git-secret \
 --type=kubernetes.io/basic-auth \
 --from-literal=username=YOUR_USERNAME \
 --from-literal=password=YOUR_PASSWORD

And then you just annotate the Secret as follows:
kubectl annotate secret git-secret "tekton.dev/git-0=https://github.com"

Once you have created and annotated your Secret, you have to attach it to the
ServiceAccount running your Tekton Tasks or Pipelines.

Let’s create a new ServiceAccount for this purpose:
apiVersion: v1
kind: ServiceAccount
metadata:
 name: tekton-bot-sa
secrets:
 - name: git-secret

List of Secrets attached to this ServiceAccount

6.4 Create a Task to Compile and Package an App from Private Git | 115

kubectl create -f tekton-bot-sa.yaml

You should get the following output:
serviceaccount/tekton-bot-sa created

You can create the ServiceAccount directly with kubectl as
follows:

kubectl create serviceaccount tekton-bot-sa

and then patch it to add the secret reference:
kubectl patch serviceaccount tekton-bot-sa -p
'{"secrets": [{"name": "git-secret"}]}'

Once credentials are set up and linked to the ServiceAccount running Tasks or Pipe‐
lines, you can just add the --serviceaccount=<NAME> option to your tkn command,
using the Recipe 6.3 example:

tkn task start build-app \
 --serviceaccount='tekton-bot-sa' \
 --param url='https://github.com/gitops-cookbook/tekton-greeter-private.git' \
 --param contextDir='quarkus' \
 --workspace name=source,emptyDir="" \
 --showlog

Here you specify the ServiceAccount to use; this will override the default one at
runtime.

Here you can override the default repository with one of your choice. In this
example there’s a private repository that you cannot access, but you can create a
private repository on your own and test it like this.

You should get output similar to the following:
...
[clone] {"level":"info","ts":1659354692.1365478,"caller":"git/
git.go:169","msg":"Successfully cloned https://github.com/gitops-cookbook/tekton-
greeter-private.git @ 5250e1fa185805373e620d1c04a0c48129efd2ee (grafted, HEAD, ori
gin/master) in path /workspace/source/"}
[clone] {"level":"info","ts":1659354692.1546066,"caller":"git/
git.go:207","msg":"Successfully initialized and updated submodules in path /work
space/source/"}
...
[build-sources] [INFO]
--
[build-sources] [INFO] BUILD SUCCESS
[build-sources] [INFO]
--
[build-sources] [INFO] Total time: 04:30 min
[build-sources] [INFO] Finished at: 2022-07-31T15:30:01Z

116 | Chapter 6: Cloud Native CI/CD

[build-sources] [INFO]
--

See Also
• Tekton Authentication•

6.5 Containerize an Application Using a Tekton Task
and Buildah
Problem
You want to compile, package, and containerize your app with a Tekton Task on
Kubernetes.

Solution
Automation is essential when adopting the cloud native approach, and if you decide
to use Kubernetes for your CI/CD workloads, you need to provide a way to package
and deploy your applications.

In fact, Kubernetes per se doesn’t have a built-in mechanism to build containers; it
just relies on add-ons such as Tekton or external services for this purpose. That’s
why in Chapter 3 we did an overview on how to create containers for packaging
applications with various open source tools. In Recipe 3.3 we used Buildah to create a
container from a Dockerfile.

Thanks to Tekton’s extensible model, you can reuse the same Task defined in Recipe
6.3 to add a step to create a container using the outcomes from the previous steps, as
shown in Figure 6-4.

Figure 6-4. Build Push app

The container can be pushed to a public container registry such as DockerHub or
Quay.io, or to a private container registry. Similar to what we have seen in Recipe 6.4
for private Git repositories, pushing a container image to a container registry needs
authentication. A Secret needs to be attached to the ServiceAccount running the
Task as follows. See Chapter 2 for how to register and use a public registry.

6.5 Containerize an Application Using a Tekton Task and Buildah | 117

https://oreil.ly/6W9xF

kubectl create secret docker-registry container-registry-secret \
 --docker-server='YOUR_REGISTRY_SERVER' \
 --docker-username='YOUR_REGISTRY_USER' \
 --docker-password='YOUR_REGISTRY_PASS'

secret/container-registry-secret created

Verify it is present and check that the Secret is of type kubernetes.io/dockercon
figjson:

kubectl get secrets

You should get the following output:
NAME TYPE DATA AGE
container-registry-secret kubernetes.io/dockerconfigjson 1 1s

Let’s create a ServiceAccount for this Task:
kubectl create serviceaccount tekton-registry-sa

Then let’s add the previously generated Secret to this ServiceAccount:
kubectl patch serviceaccount tekton-registry-sa \
 -p '{"secrets": [{"name": "container-registry-secret"}]}'

You should get the following output:
serviceaccount/tekton-registry-sa patched

Let’s add a new step to create a container image and push it to a container registry.
In the following example we use the book’s organization repos at Quay.io—quay.io/

gitops-cookbook/tekton-greeter:latest:
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: build-push-app
spec:
 workspaces:
 - name: source
 description: The git repo will be cloned onto the volume backing this work
space
 params:
 - name: contextDir
 description: the context dir within source
 default: quarkus
 - name: tlsVerify
 description: tls verify
 type: string
 default: "false"
 - name: url
 default: https://github.com/gitops-cookbook/tekton-tutorial-greeter.git
 - name: revision
 default: master
 - name: subdirectory

118 | Chapter 6: Cloud Native CI/CD

 default: ""
 - name: sslVerify
 description: defines if http.sslVerify should be set to true or false in the
global git config
 type: string
 default: "false"
 - name: storageDriver
 type: string
 description: Storage driver
 default: vfs
 - name: destinationImage
 description: the fully qualified image name
 default: ""
 steps:
 - image: 'gcr.io/tekton-releases/github.com/tektoncd/pipeline/cmd/git-
init:v0.21.0'
 name: clone
 resources: {}
 script: |
 CHECKOUT_DIR="$(workspaces.source.path)/$(params.subdirectory)"
 cleandir() {
 # Delete any existing contents of the repo directory if it exists.
 #
 # We don't just "rm -rf $CHECKOUT_DIR" because $CHECKOUT_DIR might be "/"
 # or the root of a mounted volume.
 if [[-d "$CHECKOUT_DIR"]] ; then
 # Delete non-hidden files and directories
 rm -rf "$CHECKOUT_DIR"/*
 # Delete files and directories starting with . but excluding ..
 rm -rf "$CHECKOUT_DIR"/.[!.]*
 # Delete files and directories starting with .. plus any other charac
ter
 rm -rf "$CHECKOUT_DIR"/..?*
 fi
 }
 /ko-app/git-init \
 -url "$(params.url)" \
 -revision "$(params.revision)" \
 -path "$CHECKOUT_DIR" \
 -sslVerify="$(params.sslVerify)"
 cd "$CHECKOUT_DIR"
 RESULT_SHA="$(git rev-parse HEAD)"
 - name: build-sources
 image: gcr.io/cloud-builders/mvn
 command:
 - mvn
 args:
 - -DskipTests
 - clean
 - install
 env:
 - name: user.home
 value: /home/tekton
 workingDir: "/workspace/source/$(params.contextDir)"

6.5 Containerize an Application Using a Tekton Task and Buildah | 119

 - name: build-and-push-image
 image: quay.io/buildah/stable
 script: |
 #!/usr/bin/env bash
 buildah --storage-driver=$STORAGE_DRIVER --tls-verify=$(params.tlsVerify)
bud --layers -t $DESTINATION_IMAGE $CONTEXT_DIR
 buildah --storage-driver=$STORAGE_DRIVER --tls-verify=$(params.tlsVerify)
push $DESTINATION_IMAGE docker://$DESTINATION_IMAGE
 env:
 - name: DESTINATION_IMAGE
 value: "$(params.destinationImage)"
 - name: CONTEXT_DIR
 value: "/workspace/source/$(params.contextDir)"
 - name: STORAGE_DRIVER
 value: "$(params.storageDriver)"
 workingDir: "/workspace/source/$(params.contextDir)"
 volumeMounts:
 - name: varlibc
 mountPath: /var/lib/containers
 volumes:
 - name: varlibc
 emptyDir: {}

Let’s create this Task:
kubectl create -f build-push-app.yaml

You should get the following output:
task.tekton.dev/build-push-app created

Now let’s start the Task with the Buildah step creating a container image and with a
new parameter destinationImage to specify where to push the resulting container
image:

tkn task start build-push-app \
 --serviceaccount='tekton-registry-sa' \
 --param url='https://github.com/gitops-cookbook/tekton-tutorial-greeter.git' \
 --param destinationImage='quay.io/gitops-cookbook/tekton-greeter:latest' \
 --param contextDir='quarkus' \
 --workspace name=source,emptyDir="" \
 --use-param-defaults \
 --showlog

Here you can place your registry; in this example we are using the book’s organi‐
zation repos at Quay.io.

You should get output similar to the following:
...
Downloaded from central: https://repo.maven.apache.org/maven2/org/codehaus/plexus/
plexus-utils/3.0.5/plexus-utils-3.0.5.jar (230 kB at 301 kB/s)
[build-sources] [INFO] Installing /workspace/source/quarkus/target/tekton-quarkus-
greeter.jar to /root/.m2/repository/com/redhat/developers/tekton-quarkus-greeter/
1.0.0-SNAPSHOT/tekton-quarkus-greeter-1.0.0-SNAPSHOT.jar

120 | Chapter 6: Cloud Native CI/CD

[build-sources] [INFO] Installing /workspace/source/quar-
kus/pom.xml to /root/.m2/repository/com/redhat/developers/tekton-quarkus-greeter/
1.0.0-SNAPSHOT/tekton-quarkus-greeter-1.0.0-SNAPSHOT.pom
[build-sources] [INFO]
--
[build-sources] [INFO] BUILD SUCCESS
[build-sources] [INFO]
--
[build-sources] [INFO] Total time: 02:59 min
[build-sources] [INFO] Finished at: 2022-08-02T06:18:37Z
[build-sources] [INFO]
--
[build-and-push-image] STEP 1/2: FROM registry.access.redhat.com/ubi8/openjdk-11
[build-and-push-image] Trying to pull registry.access.redhat.com/ubi8/
openjdk-11:latest...
[build-and-push-image] Getting image source signatures
[build-and-push-image] Checking if image destination supports signatures
[build-and-push-image] Copying blob
sha256:1e09a5ee0038fbe06a18e7f355188bbabc387467144abcd435f7544fef395aa1
[build-and-push-image] Copying blob
sha256:0d725b91398ed3db11249808d89e688e62e511bbd4a2e875ed8493ce1febdb2c
[build-and-push-image] Copying blob
sha256:1e09a5ee0038fbe06a18e7f355188bbabc387467144abcd435f7544fef395aa1
[build-and-push-image] Copying blob
sha256:0d725b91398ed3db11249808d89e688e62e511bbd4a2e875ed8493ce1febdb2c
[build-and-push-image] Copying blob
sha256:e441d34134fac91baa79be3e2bb8fb3dba71ba5c1ea012cb5daeb7180a054687
[build-and-push-image] Copying blob
sha256:e441d34134fac91baa79be3e2bb8fb3dba71ba5c1ea012cb5daeb7180a054687
[build-and-push-image] Copying config
sha256:0c308464b19eaa9a01c3fdd6b63a043c160d4eea85e461bbbb7d01d168f6d993
[build-and-push-image] Writing manifest to image destination
[build-and-push-image] Storing signatures
[build-and-push-image] STEP 2/2: COPY target/quarkus-app /deployments/
[build-and-push-image] COMMIT quay.io/gitops-cookbook/tekton-greeter:latest
[build-and-push-image] --> 42fe38b4346
[build-and-push-image] Successfully tagged quay.io/gitops-cookbook/tekton-
greeter:latest
[build-and-push-image]
42fe38b43468c3ca32262dbea6fd78919aba2bd35981cd4f71391e07786c9e21
[build-and-push-image] Getting image source signatures
[build-and-push-image] Copying blob
sha256:647a854c512bad44709221b6b0973e884f29bcb5a380ee32e95bfb0189b620e6
[build-and-push-image] Copying blob
sha256:f2ee6b2834726167d0de06f3bbe65962aef79855c5ede0d2ba93b4408558d9c9
[build-and-push-image] Copying blob
sha256:8e0e04b5c700a86f4a112f41e7e767a9d7c539fe3391611313bf76edb07eeab1
[build-and-push-image] Copying blob
sha256:69c55192bed92cbb669c88eb3c36449b64ac93ae466abfff2a575273ce05a39e
[build-and-push-image] Copying config
sha256:42fe38b43468c3ca32262dbea6fd78919aba2bd35981cd4f71391e07786c9e21
[build-and-push-image] Writing manifest to image destination
[build-and-push-image] Storing signatures

6.5 Containerize an Application Using a Tekton Task and Buildah | 121

See Also
• Buildah•
• Docker Authentication for Tekton•

6.6 Deploy an Application to Kubernetes Using a
Tekton Task
Problem
You want to deploy an application from a container image to Kubernetes with a
Tekton Task.

Solution
While in Recipes 6.3, 6.4, and 6.5 we have listed a Tekton Task that is useful for
continuous integration (CI), in this recipe we’ll start having a look at the Continous
Deployment (CD) part by deploying an existing container image to Kubernetes.

We can reuse the container image we created and pushed in Recipe 6.5, available at
quay.io/gitops-cookbook/tekton-greeter:latest:

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: kubectl
spec:
 params:
 - name: SCRIPT
 description: The kubectl CLI arguments to run
 type: string
 default: "kubectl help"
 steps:
 - name: oc
 image: quay.io/openshift/origin-cli:latest
 script: |
 #!/usr/bin/env bash

 $(params.SCRIPT)

For this example we are using kubectl from this container image, which also
contains OpenShift CLI and it has an smaller size compared to gcr.io/cloud-
builders/kubectl.

Let’s create this Task:
kubectl create -f kubectl-task.yaml

122 | Chapter 6: Cloud Native CI/CD

https://buildah.io
https://oreil.ly/QJlVW

You should get the following output:
task.tekton.dev/kubectl created

As discussed in Recipe 6.5, Tekton uses a default ServiceAccount for running Tasks
and Pipelines, unless a specific one is defined at runtime or overridden at a global
scope. The best practice is always to create a specific ServiceAccount for a particular
action, so let’s create one named tekton-deployer-sa for this use case as follows:

kubectl create serviceaccount tekton-deployer-sa

You should get the following output:
serviceaccount/tekton-deployer-sa created

A ServiceAccount needs permission to deploy an application to Kubernetes. Roles
and RoleBindings are API objects used to map a certain permission to a user or a
ServiceAccount.

You first define a Role named pipeline-role for the ServiceAccount running the
Tekton Task with permissions to deploy apps:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: task-role
rules:
 - apiGroups:
 - ""
 resources:
 - pods
 - services
 - endpoints
 - configmaps
 - secrets
 verbs:
 - "*"
 - apiGroups:
 - apps
 resources:
 - deployments
 - replicasets
 verbs:
 - "*"
 - apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - get
 - apiGroups:
 - apps
 resources:
 - replicasets

6.6 Deploy an Application to Kubernetes Using a Tekton Task | 123

https://oreil.ly/6ov6J
https://oreil.ly/6ov6J

 verbs:
 - get

Now you need to bind the Role to the ServiceAccount:
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: task-role-binding
roleRef:
 kind: Role
 name: task-role
 apiGroup: rbac.authorization.k8s.io
subjects:
 - kind: ServiceAccount
 name: tekton-deployer-sa

Now you can create the two resources as follows:
kubectl create -f task-role.yaml
kubectl create -f task-role-binding.yaml

You should get the following output:
role.rbac.authorization.k8s.io/task-role created
rolebinding.rbac.authorization.k8s.io/task-role-binding created

Finally, you can define a TaskRun as follows:
apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: kubectl-taskrun
spec:
 serviceAccountName: tekton-deployer-sa
 taskRef:
 name: kubectl
 params:
 - name: SCRIPT
 value: |
 kubectl create deploy tekton-greeter --image=quay.io/gitops-cookbook/
tekton-greeter:latest

And run it in this way:
kubectl create -f kubectl-taskrun.yaml

You should get the following output:
taskrun.tekton.dev/kubectl-run created

You can check the logs to see the results:
tkn taskrun logs kubectl-run -f

You should get output similar to the following:

124 | Chapter 6: Cloud Native CI/CD

? Select taskrun: kubectl-run started 9 seconds ago
[oc] deployment.apps/tekton-greeter created

After a few seconds you should see the Deployment in Ready state:
kubectl get deploy

NAME READY UP-TO-DATE AVAILABLE AGE
tekton-greeter 1/1 1 0 30s

The first time might take a while due to the time it takes to pull the
container image.

Check if the app is available, expose the Deployment, and forward Kubernetes traffic
to your workstation to test it:

kubectl expose deploy/tekton-greeter --port 8080
kubectl port-forward svc/tekton-greeter 8080:8080

In another terminal, run this command:
curl localhost:8080

You should see the following output:
Meeow!! from Tekton ----

See Also
• Tekton Task•

6.7 Create a Tekton Pipeline to Build and Deploy an App
to Kubernetes
Problem
You want to create a Pipeline to compile, package, and deploy an app on Kubernetes
with Tekton.

Solution
In the previous recipes we have seen how to create Tasks to execute one or more steps
sequentially to build apps. In this recipe we will discuss Tekton Pipelines, a collection
of Tasks that you can define and compose in a specific order of execution, either
sequentially or in parallel, as you can see in Figure 6-5.

6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes | 125

https://oreil.ly/YlIZI
https://oreil.ly/aN8lv

Figure 6-5. Tekton Pipelines flows

Tekton Pipelines supports parameters and a mechanism to exchange outcomes
between different Tasks. For instance, using the examples shown in Recipes 6.5 and
6.6:

kubectl patch serviceaccount tekton-deployer-sa \
 -p '{"secrets": [{"name": "container-registry-secret"}]}'

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: tekton-greeter-pipeline
spec:
 params:
 - name: GIT_REPO
 type: string
 - name: GIT_REF
 type: string
 - name : DESTINATION_IMAGE
 type: string
 - name : SCRIPT
 type: string
 tasks:
 - name: build-push-app
 taskRef:
 name: build-push-app
 params:
 - name: url
 value: "$(params.GIT_REPO)"
 - name: revision
 value: "$(params.GIT_REF)"
 - name: destinationImage
 value: "$(params.DESTINATION_IMAGE)"

126 | Chapter 6: Cloud Native CI/CD

 workspaces:
 - name: source
 - name: deploy-app
 taskRef:
 name: kubectl
 params:
 - name: SCRIPT
 value: "$(params.SCRIPT)"
 workspaces:
 - name: source
 runAfter:
 - build-push-app
 workspaces:
 - name: source

Pipeline parameters

A list of Tasks for the Pipeline

The exact name of the Task to use

You can decide the order with the runAfter field to indicate that a Task must
execute after one or more other Tasks

One or more common Workspaces used to share data between Tasks

Let’s create the Pipeline as follows:
kubectl create -f tekton-greeter-pipeline.yaml

You should get the following output:
pipeline.tekton.dev/tekton-greeter-pipeline created

Similarly to TaskRuns, you can run this Pipeline by creating a PipelineRun resource
as follows:

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 generateName: tekton-greeter-pipeline-run-
spec:
 params:
 - name: GIT_REPO
 value: https://github.com/gitops-cookbook/tekton-tutorial-greeter.git
 - name: GIT_REF
 value: "master"
 - name: DESTINATION_IMAGE
 value: "quay.io/gitops-cookbook/tekton-greeter:latest"
 - name: SCRIPT
 value: |
 kubectl create deploy tekton-greeter --image=quay.io/gitops-cookbook/
tekton-greeter:latest

6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes | 127

https://oreil.ly/N8K3a

 pipelineRef:
 name: tekton-greeter-pipeline
 workspaces:
 - name: source
 emptyDir: {}

You can run the Pipeline by creating this PipelineRun object as follows:
kubectl create -f tekton-greeter-pipelinerun.yaml

You can check the status:
tkn pipelinerun ls

NAME STARTED DURATION STATUS
tekton-greeter-pipeline-run-ntl5r 7 seconds ago --- Running

Now that you have seen how to reuse existing Tasks within a Pipeline, it’s a good time
to introduce the Tekton Hub, a web-based platform for developers to discover, share,
and contribute Tasks and Pipelines for Tekton (see Figure 6-6).

Figure 6-6. Tekton Hub

You can implement the same Pipeline with Tasks already available in the Hub. In our
case, we have:

git-clone

Task that clones a repo from the provided URL into the output Workspace.

buildah

Task that builds source into a container image and can push it to a container
registry.

128 | Chapter 6: Cloud Native CI/CD

https://hub.tekton.dev
https://oreil.ly/tVLAG
https://oreil.ly/nTUkZ

kubernetes-actions

The generic kubectl CLI task, which can be used to run all kinds of k8s
commands.

First let’s add them to our namespace as follows:
tkn hub install task git-clone
tkn hub install task maven
tkn hub install task buildah
tkn hub install task kubernetes-actions

You should get output similar to the following to confirm they are installed properly
in your namespace:

Task git-clone(0.7) installed in default namespace
Task maven(0.2) installed in default namespace
Task buildah(0.4) installed in default namespace
Task kubernetes-actions(0.2) installed in default namespace

You can cross-check it with the following command:
kubectl get tasks

You should get output similar to the following:
NAME AGE
...
buildah 50s
git-clone 52s
kubernetes-actions 49s
maven 51s
...

Some Tekton installations like the one made with the Operator for
OpenShift Pipelines provide a common list of useful Tasks such as
those just listed, provided as ClusterTasks. ClusterTasks are Tasks
available for all namespaces within the Kubernetes cluster. Check
if your installation already provides some with this command:
kubectl get clustertasks.

Now the Pipeline has four Tasks, as you can see in Figure 6-7.

Figure 6-7. Pipeline

6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes | 129

https://oreil.ly/A3Hui
https://oreil.ly/dAKhL

In this example you’ll see a PersistentVolumeClaim as a Workspace because here the
data is shared among different Tasks so we need to persist it:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: app-source-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

As usual, you can create the resource with kubectl:
kubectl create -f app-source-pvc.yaml

You should see the following output:
persistentvolumeclaim/app-source-pvc created

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
app-source-pvc Bound pvc-e85ade46-aaca-4f3f-b644-d8ff99fd9d5e 1Gi
RWO standard 61s

In Minikube you have a default StorageClass that provides dynamic
storage for the cluster. If you are using another Kubernetes cluster,
please make sure you have a dynamic storage support.

The Pipeline definition now is:
apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: tekton-greeter-pipeline-hub
spec:
 params:
 - default: https://github.com/gitops-cookbook/tekton-tutorial-greeter.git
 name: GIT_REPO
 type: string
 - default: master
 name: GIT_REF
 type: string
 - default: quay.io/gitops-cookbook/tekton-greeter:latest
 name: DESTINATION_IMAGE
 type: string
 - default: kubectl create deploy tekton-greeter --image=quay.io/gitops-cookbook/
tekton-greeter:latest

130 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/Opio5
https://oreil.ly/ZiPnA

 name: SCRIPT
 type: string
 - default: ./Dockerfile
 name: CONTEXT_DIR
 type: string
 - default: .
 name: IMAGE_DOCKERFILE
 type: string
 - default: .
 name: IMAGE_CONTEXT_DIR
 type: string
 tasks:
 - name: fetch-repo
 params:
 - name: url
 value: $(params.GIT_REPO)
 - name: revision
 value: $(params.GIT_REF)
 - name: deleteExisting
 value: "true"
 - name: verbose
 value: "true"
 taskRef:
 kind: Task
 name: git-clone
 workspaces:
 - name: output
 workspace: app-source
 - name: build-app
 params:
 - name: GOALS
 value:
 - -DskipTests
 - clean
 - package
 - name: CONTEXT_DIR
 value: $(params.CONTEXT_DIR)
 runAfter:
 - fetch-repo
 taskRef:
 kind: Task
 name: maven
 workspaces:
 - name: maven-settings
 workspace: maven-settings
 - name: source
 workspace: app-source
 - name: build-push-image
 params:
 - name: IMAGE
 value: $(params.DESTINATION_IMAGE)
 - name: DOCKERFILE
 value: $(params.IMAGE_DOCKERFILE)
 - name: CONTEXT

6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes | 131

 value: $(params.IMAGE_CONTEXT_DIR)
 runAfter:
 - build-app
 taskRef:
 kind: Task
 name: buildah
 workspaces:
 - name: source
 workspace: app-source
 - name: deploy
 params:
 - name: script
 value: $(params.SCRIPT)
 runAfter:
 - build-push-image
 taskRef:
 kind: Task
 name: kubernetes-actions
 workspaces:
 - name: app-source
 - name: maven-settings

Let’s create the resource:
kubectl create -f tekton-greeter-pipeline-hub.yaml

We are using the same Secret and ServiceAccount defined in
Recipe 6.5 to log in against Quay.io in order to push the container
image.

You can now start the Pipeline as follows:
tkn pipeline start tekton-greeter-pipeline-hub \
 --serviceaccount='tekton-deployer-sa' \
 --param GIT_REPO='https://github.com/gitops-cookbook/tekton-tutorial-
greeter.git' \
 --param GIT_REF='master' \
 --param CONTEXT_DIR='quarkus' \
 --param DESTINATION_IMAGE='quay.io/gitops-cookbook/tekton-greeter:latest' \
 --param IMAGE_DOCKERFILE='quarkus/Dockerfile' \
 --param IMAGE_CONTEXT_DIR='quarkus' \
 --param SCRIPT='kubectl create deploy tekton-greeter --image=quay.io/gitops-
cookbook/tekton-greeter:latest' \
 --workspace name=app-source,claimName=app-source-pvc \
 --workspace name=maven-settings,emptyDir="" \
 --use-param-defaults \
 --showlog

[fetch-repo : clone] + CHECKOUT_DIR=/workspace/output/
[fetch-repo : clone] + /ko-app/git-init '-url=https://github.com/gitops-cookbook/
tekton-tutorial-greeter.git' '-revision=master' '-refspec=' '-path=/workspace/out
put/' '-sslVerify=true' '-submodules=true' '-depth=1' '-sparseCheckoutDirectories='

132 | Chapter 6: Cloud Native CI/CD

[fetch-repo : clone] {"level":"info","ts":1660819038.5526028,"caller":"git/
git.go:170","msg":"Successfully cloned https://github.com/gitops-cookbook/tekton-
tutorial-greeter.git @ d9291c456db1ce29177b77ffeaa9b71ad80a50e6 (grafted, HEAD, ori
gin/master) in path /workspace/output/"}
[fetch-repo : clone] {"level":"info","ts":1660819038.5722632,"caller":"git/
git.go:208","msg":"Successfully initialized and updated submodules in path /work
space/output/"}
[fetch-repo : clone] + cd /workspace/output/
[fetch-repo : clone] + git rev-parse HEAD
[fetch-repo : clone] + RESULT_SHA=d9291c456db1ce29177b77ffeaa9b71ad80a50e6
[fetch-repo : clone] + EXIT_CODE=0
[fetch-repo : clone] + '[' 0 '!=' 0]
[fetch-repo : clone] + printf '%s' d9291c456db1ce29177b77ffeaa9b71ad80a50e6
[fetch-repo : clone] + printf '%s' https://github.com/gitops-cookbook/tekton-
tutorial-greeter.git
...
[build-app : mvn-goals] [INFO] [org.jboss.threads] JBoss Threads version
3.1.1.Final
[build-app : mvn-goals] [INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus
augmentation completed in 1296ms
[build-app : mvn-goals] [INFO]
--
[build-app : mvn-goals] [INFO] BUILD SUCCESS
[build-app : mvn-goals] [INFO]
--
[build-app : mvn-goals] [INFO] Total time: 03:18 min
[build-app : mvn-goals] [INFO] Finished at: 2022-08-18T10:31:00Z
[build-app : mvn-goals] [INFO]
--
[build-push-image : build] STEP 1/2: FROM registry.access.redhat.com/ubi8/
openjdk-11
[build-push-image : build] Trying to pull registry.access.redhat.com/ubi8/
openjdk-11:latest...
[build-push-image : build] Getting image source signatures
[build-push-image : build] Checking if image destination supports signatures
[build-push-image : build] Copying blob
sha256:e441d34134fac91baa79be3e2bb8fb3dba71ba5c1ea012cb5daeb7180a054687
[build-push-image : build] Copying blob
sha256:1e09a5ee0038fbe06a18e7f355188bbabc387467144abcd435f7544fef395aa1
[build-push-image : build] Copying blob
sha256:0d725b91398ed3db11249808d89e688e62e511bbd4a2e875ed8493ce1febdb2c
[build-push-image : build] Copying blob
sha256:e441d34134fac91baa79be3e2bb8fb3dba71ba5c1ea012cb5daeb7180a054687
[build-push-image : build] Copying blob
sha256:1e09a5ee0038fbe06a18e7f355188bbabc387467144abcd435f7544fef395aa1
[build-push-image : build] Copying blob
sha256:0d725b91398ed3db11249808d89e688e62e511bbd4a2e875ed8493ce1febdb2c
[build-push-image : build] Copying config
sha256:0c308464b19eaa9a01c3fdd6b63a043c160d4eea85e461bbbb7d01d168f6d993
[build-push-image : build] Writing manifest to image destination
[build-push-image : build] Storing signatures
[build-push-image : build] STEP 2/2: COPY target/quarkus-app /deployments/
[build-push-image : build] COMMIT quay.io/gitops-cookbook/tekton-greeter:latest
[build-push-image : build] --> c07e36a8e61

6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes | 133

[build-push-image : build] Successfully tagged quay.io/gitops-cookbook/tekton-
greeter:latest
[build-push-image : build]
c07e36a8e6104d2e5c7d79a6cd34cd7b44eb093c39ef6c1487a37d7bd2305b8a
[build-push-image : build] Getting image source signatures
[build-push-image : build] Copying blob
sha256:7853a7797845542e3825d4f305e4784ea7bf492cd4364fc93b9afba3ac0c9553
[build-push-image : build] Copying blob
sha256:8e0e04b5c700a86f4a112f41e7e767a9d7c539fe3391611313bf76edb07eeab1
[build-push-image : build] Copying blob
sha256:647a854c512bad44709221b6b0973e884f29bcb5a380ee32e95bfb0189b620e6
[build-push-image : build] Copying blob
sha256:69c55192bed92cbb669c88eb3c36449b64ac93ae466abfff2a575273ce05a39e
[build-push-image : build] Copying config
sha256:c07e36a8e6104d2e5c7d79a6cd34cd7b44eb093c39ef6c1487a37d7bd2305b8a
[build-push-image : build] Writing manifest to image destination
[build-push-image : build] Storing signatures
[build-push-image : build]
sha256:12dd3deb6305b9e125309b68418d0bb81f805e0fe7ac93942dc94764aee9f492quay.io/
gitops-cookbook/tekton-greeter:latest
[deploy : kubectl] deployment.apps/tekton-greeter created

You can use the Tekton Dashboard to create and visualize your
running Tasks and Pipelines as shown in Figure 6-8.

Figure 6-8. Tekton Dashboard TaskRuns

134 | Chapter 6: Cloud Native CI/CD

See Also
• Tekton Catalog•

6.8 Using Tekton Triggers to Compile and Package an
Application Automatically When a Change Occurs on Git
Problem
You want to automate your CI/CD Pipelines when a change on Git occurs.

Solution
Tekton Triggers is the Tekton component that brings automation for Tasks and
Pipelines with Tekton. It is an interesting feature for a GitOps strategy for cloud
native CI/CD as it supports external events from a large set of sources such as Git
events (Git push or pull requests).

Most Git repository servers support the concept of webhooks, calling to an external
source via HTTP(S) when a change in the code repository happens. Tekton provides
an API endpoint that supports receiving hooks from remote systems in order to trig‐
ger builds. By pointing the code repository’s hook at the Tekton resources, automated
code/build/deploy pipelines can be achieved.

The installation of Tekton Triggers, which we discussed in Recipe 6.1, brings a set of
CRDs to manage event handling for Tasks and Pipelines. In this recipe we will use the
following, as illustrated also in Figure 6-9:

Figure 6-9. Tekton Triggers

TriggerTemplate

A template for newly created resources. It supports parameters to create specific
PipelineRuns.

TriggerBinding

Validates events and extracts payload fields.

6.8 Using Tekton Triggers to Compile and Package an Application Automatically When a Change Occurs on Git | 135

https://oreil.ly/bnUiR
https://oreil.ly/zVcfe

EventListener

Connects TriggerBindings and TriggerTemplates into an addressable endpoint
(the event sink). It uses the extracted event parameters from each Trigger
Binding (and any supplied static parameters) to create the resources specified in
the corresponding TriggerTemplate. It also optionally allows an external service
to preprocess the event payload via the interceptor field.

Before creating these resources, you need to set up permissions to let Tekton Triggers
create Pipelines and Tasks. You can use the setup available from the book’s repository
with the following command:

kubectl apply \
-f https://raw.githubusercontent.com/gitops-cookbook/chapters/main/chapters/ch06/
rbac.yaml

This will create a new ServiceAccount named tekton-triggers-sa that has the per‐
missions needed to interact with the Tekton Pipelines component. As confirmation,
from the previous command you should get the following output:

serviceaccount/tekton-triggers-sa created
rolebinding.rbac.authorization.k8s.io/triggers-example-eventlistener-binding con-
figured
clusterrolebinding.rbac.authorization.k8s.io/triggers-example-eventlistener-
clusterbinding configured

You can now add automation to your Pipelines like the one we defined in Recipe 6.7
creating these three resources:

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerTemplate
metadata:
 name: tekton-greeter-triggertemplate
spec:
 params:
 - name: git-revision
 - name: git-commit-message
 - name: git-repo-url
 - name: git-repo-name
 - name: content-type
 - name: pusher-name
 resourcetemplates:
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 labels:
 tekton.dev/pipeline: tekton-greeter-pipeline-hub
 name: tekton-greeter-pipeline-webhook-$(uid)
 spec:
 params:
 - name: GIT_REPO
 value: $(tt.params.git-repo-url)
 - name: GIT_REF

136 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/fPTzU

 value: $(tt.params.git-revision)
 serviceAccountName: tekton-triggers-example-sa
 pipelineRef:
 name: tekton-greeter-pipeline-hub
 workspaces:
 - name: app-source
 persistentVolumeClaim:
 claimName: app-source-pvc
 - name: maven-settings
 emptyDir: {}

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerBinding
metadata:
 name: tekton-greeter-triggerbinding
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.clone_url)
 - name: git-revision
 value: $(body.after)

apiVersion: triggers.tekton.dev/v1alpha1
kind: EventListener
metadata:
 name: tekton-greeter-eventlistener
spec:
 serviceAccountName: tekton-triggers-example-sa
 triggers:
 - bindings:
 - ref: tekton-greeter-triggerbinding
 template:
 ref: tekton-greeter-triggertemplate

You can create the resources just listed as follows:
kubectl create -f tekton-greeter-triggertemplate.yaml
kubectl create -f tekton-greeter-triggerbinding.yaml
kubectl create -f tekton-greeter-eventlistener.yaml

You should get the following output:
triggertemplate.triggers.tekton.dev/tekton-greeter-triggertemplate created
triggerbinding.triggers.tekton.dev/tekton-greeter-triggerbinding created
eventlistener.triggers.tekton.dev/tekton-greeter-eventlistener created

Contextually, a new pod is created representing the EventListener:
kubectl get pods

You should get output similar to the following:
NAME READY STATUS RESTARTS AGE
el-tekton-greeter-eventlistener-5db7b9fcf9-6nrgx 1/1 Running 0 10s

The EventListener pod listens for events at a specified port, and it is bound to a
Kubernetes Service:

6.8 Using Tekton Triggers to Compile and Package an Application Automatically When a Change Occurs on Git | 137

kubectl get svc

You should get output similar to the following:
NAME TYPE CLUSTER-IP EXTERNAL-IP↳
 PORT(S) AGE
el-tekton-greeter-eventlistener ClusterIP 10.100.36.199 <none> ↳
 8080/TCP,9000/TCP 10s
...

If you are running your Git server outside the cluster (e.g., GitHub or GitLab),
you need to expose the Service, for example, with an Ingress. Afterwards you can
configure webhooks on your Git server using the EventListener URL associated to
your Ingress.

With Minikube you can add support for Ingresses with this com‐
mand: minikube addons enable ingress. Then you need to map
a hostname for the Ingress.

For the purpose of this book we can just simulate the webhook as it would come from
the Git server.

First you can map the EventListener Service to your local networking with the
following command:

kubectl port-forward svc/el-tekton-greeter-eventlistener 8080

Then you can invoke the Trigger by making an HTTP request to http://localhost:8080
using curl. The HTTP request must be a POST request containing a JSON payload
and it should contain the fields referenced via a TriggerBinding. In our case we
mapped body.repository.clone_url and body.after.

Check the documentation of your Git server to get the list of
parameters that a webhook can generate. In this example we are
using the GitHub Webhooks reference.

To test Triggers, run this command:
curl -X POST \
 http://localhost:8080 \
 -H 'Content-Type: application/json' \
 -d '{ "after": "d9291c456db1ce29177b77ffeaa9b71ad80a50e6", "repos
itory": { "clone_url" : "https://github.com/gitops-cookbook/tekton-tutorial-
greeter.git" } }'

You should get output similar to the following:

138 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/qAUhw
https://oreil.ly/4AUlu

{"eventListener":"tekton-greeter-eventlistener","namespace":"default","eventListe
nerUID":"c00567eb-d798-4c4a-946d-f1732fdfc313","eventID":"17dd25bb-a1fe-4f84-8422-
c3abc5f10066"}

A new Pipeline now is started and you can check it with the following command:
tkn pipelinerun ls

You should see it in Running status as follows:
tekton-greeter-pipeline-3244b67f-31d3-4597-af1c-3c1aa6693719 4 seconds ago
--- Running

See Also
• Tekton Triggers examples•
• Getting Started with Tekton Triggers•
• Securing webhooks with event listeners•

6.9 Update a Kubernetes Resource Using Kustomize and
Push the Change to Git
Problem
You want to use Kustomize in your Tekton Pipelines in order to automate Kubernetes
manifests updates.

Solution
As we discussed in Chapter 4, Kustomize is a powerful tool to manage Kubernetes
manifests. Kustomize can add, remove, or patch configuration options without fork‐
ing. In Recipe 4.2 you saw how to update a Kubernetes Deployment with a new
container image hash using the kustomize CLI.

In this recipe, you’ll see how to let Tekton update it using Kustomize. This is very
useful for GitOps as it allows an automated update on Git to the manifests describing
an application running on Kubernetes, favoring the interconnection with a GitOps
tool such as Argo CD in order to sync resources (see Chapter 7).

When adopting the GitOps approach, it’s common to have one or more repositories
for the Kubernetes manifests and then one or more repositories for the apps as well.

Thus let’s introduce a Task that accepts the Kubernetes manifests repository as a
parameter and can update the container image reference as seen in Recipe 4.2:

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:

6.9 Update a Kubernetes Resource Using Kustomize and Push the Change to Git | 139

https://oreil.ly/Xr0ne
https://oreil.ly/gqKyz
https://oreil.ly/iIbXc

 annotations:
 tekton.dev/pipelines.minVersion: 0.12.1
 tekton.dev/tags: git
 name: git-update-deployment
 labels:
 app.kubernetes.io/version: '0.2'
 operator.tekton.dev/provider-type: community
spec:
 description: >-
 This Task can be used to update image digest in a Git repo using kustomize.
 It requires a secret with credentials for accessing the git repo.
 params:
 - name: GIT_REPOSITORY
 type: string
 - name: GIT_REF
 type: string
 - name: NEW_IMAGE
 type: string
 - name: NEW_DIGEST
 type: string
 - name: KUSTOMIZATION_PATH
 type: string
 results:
 - description: The commit SHA
 name: commit
 steps:
 - image: 'docker.io/alpine/git:v2.26.2'
 name: git-clone
 resources: {}
 script: >
 rm -rf git-update-digest-workdir

 git clone $(params.GIT_REPOSITORY) -b $(params.GIT_REF)
 git-update-digest-workdir
 workingDir: $(workspaces.workspace.path)
 - image: 'quay.io/wpernath/kustomize-ubi:latest'
 name: update-digest
 resources: {}
 script: >
 cd git-update-digest-workdir/$(params.KUSTOMIZATION_PATH)

 kustomize edit set image $(params.NEW_IMAGE)@$(params.NEW_DIGEST)

 echo "##########################"

 echo "### kustomization.yaml ###"

 echo "##########################"

 cat kustomization.yaml
 workingDir: $(workspaces.workspace.path)
 - image: 'docker.io/alpine/git:v2.26.2'
 name: git-commit

140 | Chapter 6: Cloud Native CI/CD

 resources: {}
 script: |
 cd git-update-digest-workdir

 git config user.email "tektonbot@redhat.com"
 git config user.name "My Tekton Bot"

 git status
 git add $(params.KUSTOMIZATION_PATH)/kustomization.yaml
 git commit -m "[ci] Image digest updated"

 git push

 RESULT_SHA="$(git rev-parse HEAD | tr -d '\n')"
 EXIT_CODE="$?"
 if ["$EXIT_CODE" != 0]
 then
 exit $EXIT_CODE
 fi
 # Make sure we don't add a trailing newline to the result!
 echo -n "$RESULT_SHA" > $(results.commit.path)
 workingDir: $(workspaces.workspace.path)
 workspaces:
 - description: The workspace consisting of maven project.
 name: workspace

This Task is composed of three steps:

git-clone

Clones the Kubernetes manifests repository

update-digest

Runs kustomize to update the Kubernetes Deployment with a container image
hash given as a parameter

git-commit

Updates the Kubernetes manifest repo with the new container image hash

You can create the Task with the following command:
kubectl create -f git-update-deployment-task.yaml

You should get the following output:
task.tekton.dev/git-update-deployment created

You can now add this Task to a Pipeline similar to the one you saw in Recipe 6.7 in
order to automate the update of your manifests with Kustomize:

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: pacman-pipeline
spec:

6.9 Update a Kubernetes Resource Using Kustomize and Push the Change to Git | 141

 params:
 - default: https://github.com/gitops-cookbook/pacman-kikd.git
 name: GIT_REPO
 type: string
 - default: master
 name: GIT_REVISION
 type: string
 - default: quay.io/gitops-cookbook/pacman-kikd
 name: DESTINATION_IMAGE
 type: string
 - default: .
 name: CONTEXT_DIR
 type: string
 - default: 'https://github.com/gitops-cookbook/pacman-kikd-manifests.git'
 name: CONFIG_GIT_REPO
 type: string
 - default: main
 name: CONFIG_GIT_REVISION
 type: string
 tasks:
 - name: fetch-repo
 params:
 - name: url
 value: $(params.GIT_REPO)
 - name: revision
 value: $(params.GIT_REVISION)
 - name: deleteExisting
 value: "true"
 taskRef:
 name: git-clone
 workspaces:
 - name: output
 workspace: app-source
 - name: build-app
 taskRef:
 name: maven
 params:
 - name: GOALS
 value:
 - -DskipTests
 - clean
 - package
 - name: CONTEXT_DIR
 value: "$(params.CONTEXT_DIR)"
 workspaces:
 - name: maven-settings
 workspace: maven-settings
 - name: source
 workspace: app-source
 runAfter:
 - fetch-repo
 - name: build-push-image
 taskRef:
 name: buildah

142 | Chapter 6: Cloud Native CI/CD

 params:
 - name: IMAGE
 value: "$(params.DESTINATION_IMAGE)"
 workspaces:
 - name: source
 workspace: app-source
 runAfter:
 - build-app
 - name: git-update-deployment
 params:
 - name: GIT_REPOSITORY
 value: $(params.CONFIG_GIT_REPO)
 - name: NEW_IMAGE
 value: $(params.DESTINATION_IMAGE)
 - name: NEW_DIGEST
 value: $(tasks.build-push-image.results.IMAGE_DIGEST)
 - name: KUSTOMIZATION_PATH
 value: env/dev
 - name: GIT_REF
 value: $(params.CONFIG_GIT_REVISION)
 runAfter:
 - build-push-image
 taskRef:
 kind: Task
 name: git-update-deployment
 workspaces:
 - name: workspace
 workspace: app-source
 workspaces:
 - name: app-source
 - name: maven-settings

As you can see from this example, you can take a result of a previous Task as
an input for the following one. In this case the hash of the container image
generated by the build-push-image Task is used to update the manifests with
Kustomize.

You can create the Pipeline with the following command:
kubectl create -f pacman-pipeline.yaml

You should get the following output:
pipeline.tekton.dev/pacman-pipeline created

The git-commit step requires authentication to your Git server in order to push the
updates to the repo. Since this example is on GitHub, we are using a GitHub Personal
Access Token (see Recipe 6.4) attached to the ServiceAccount tekton-bot-sa.

6.9 Update a Kubernetes Resource Using Kustomize and Push the Change to Git | 143

Make sure to add the repo and registry’s Kubernetes Secrets as described in Recipes
6.4 and 6.5:

kubectl patch serviceaccount tekton-bot-sa -p '{"secrets": [{"name": "git-
secret"}]}'
kubectl patch serviceaccount tekton-bot-sa \
 -p '{"secrets": [{"name": "containerregistry-
secret"}]}'

Make sure you have created a PVC for the Pipeline as defined in
Recipe 6.7.

Now you can start the Pipeline as follows:
tkn pipeline start pacman-pipeline \
 --serviceaccount='tekton-bot-sa' \
 --param GIT_REPO='https://github.com/gitops-cookbook/pacman-kikd.git' \
 --param GIT_REVISION='main' \
 --param DESTINATION_IMAGE='quay.io/gitops-cookbook/pacman-kikd:latest' \
 --param CONFIG_GIT_REPO='https://github.com/gitops-cookbook/pacman-kikd-
manifests.git' \
 --param CONFIG_GIT_REVISION='main' \
 --workspace name=app-source,claimName=app-source-pvc \
 --workspace name=maven-settings,emptyDir="" \
 --use-param-defaults \
 --showlog

6.10 Update a Kubernetes Resource Using Helm and
Create a Pull Request
Problem
You want to automate the deployment of Helm-packaged apps with a Tekton
Pipeline.

Solution
In Chapter 5 we discussed Helm and how it can be used to manage applications
on Kubernetes in a convenient way. In this recipe you’ll see how to automate Helm-
powered deployments through a Pipeline in order to install or update an application
running on Kubernetes.

As shown in Recipe 6.7, you can use Tekton Hub to find and install Tekton Tasks. In
fact, you can use the helm-upgrade-from-repo Task to have Helm support for your
Pipelines.

144 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/oR6GU

To install it, run this command:
tkn hub install task helm-upgrade-from-repo

This Task can install a Helm Chart from a Helm repository. For this example, we pro‐
vide a Helm repository in this book’s repository that you can add with the following
command:

helm repo add gitops-cookbook https://gitops-cookbook.github.io/helm-charts/

You should get the following output:
"gitops-cookbook" has been added to your repositories

You can install the Helm Chart with the following command:
helm install pacman gitops-cookbook/pacman

You should get output similar to the following:
NAME: pacman
LAST DEPLOYED: Mon Aug 15 17:02:21 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
USER-SUPPLIED VALUES:
{}

The app should be now deployed and running on Kubernetes:
kubectl get pods -l=app.kubernetes.io/name=pacman

You should get the following output:
NAME READY STATUS RESTARTS AGE
pacman-6798d65d84-9mt8p 1/1 Running 0 30s

Now let’s update the Deployment with a Tekton Task running a helm upgrade with
the following TaskRun:

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 generateName: helm-pacman-run-
spec:
 serviceAccountName: tekton-deployer-sa
 taskRef:
 name: helm-upgrade-from-repo
 params:
 - name: helm_repo
 value: https://gitops-cookbook.github.io/helm-charts/
 - name: chart_name
 value: gitops-cookbook/pacman
 - name: release_version
 value: 0.1.0
 - name: release_name

6.10 Update a Kubernetes Resource Using Helm and Create a Pull Request | 145

https://oreil.ly/lroxo

 value: pacman
 - name: overwrite_values
 value: replicaCount=2

The helm-upgrade-from-repo Task needs permission to list objects in the work‐
ing namespace, so you need a ServiceAccount with special permissions as seen
in Recipe 6.6.

You can override values in the Chart’s values.yaml file by adding them in this
param. Here we are setting up two replicas for the Pac-Man game.

Run the Task with the following command:
kubectl create -f helm-pacman-taskrun.yaml

You should get output similar to the following:
taskrun.tekton.dev/helm-pacman-run-qghx8 created

Check logs with tkn CLI and select the running Task:
tkn taskrun logs -f

You should get output similar to the following, where you can see the Helm upgrade
has been successfully performed:

[upgrade-from-repo] current installed helm releases
[upgrade-from-repo] NAME NAMESPACE REVISION UPDA-
TED STATUS CHART APP
VERSION
[upgrade-from-repo] pacman default 1 2022-08-15
17:02:21.633934129 +0200 +0200 deployed pacman-0.1.0 1.0.0
[upgrade-from-repo] parsing helms repo name...
[upgrade-from-repo] adding helm repo...
[upgrade-from-repo] "gitops-cookbook" has been added to your repositories
[upgrade-from-repo] adding updating repo...
[upgrade-from-repo] Hang tight while we grab the latest from your chart reposito-
ries...
[upgrade-from-repo] ...Successfully got an update from the "gitops-cookbook" chart
repository
[upgrade-from-repo] Update Complete. ⎈Happy Helming!⎈
[upgrade-from-repo] installing helm chart...
[upgrade-from-repo] history.go:56: [debug] getting history for release pacman
[upgrade-from-repo] upgrade.go:123: [debug] preparing upgrade for pacman
[upgrade-from-repo] upgrade.go:131: [debug] performing update for pacman
[upgrade-from-repo] upgrade.go:303: [debug] creating upgraded release for pacman
[upgrade-from-repo] client.go:203: [debug] checking 2 resources for changes
[upgrade-from-repo] client.go:466: [debug] Looks like there are no changes for
Service "pacman"
[upgrade-from-repo] wait.go:47: [debug] beginning wait for 2 resources with time-
out of 5m0s
[upgrade-from-repo] ready.go:277: [debug] Deployment is not ready: default/pacman.
1 out of 2 expected pods are ready
[upgrade-from-repo] ready.go:277: [debug] Deployment is not ready: default/pacman.

146 | Chapter 6: Cloud Native CI/CD

1 out of 2 expected pods are ready
[upgrade-from-repo] ready.go:277: [debug] Deployment is not ready: default/pacman.
1 out of 2 expected pods are ready
[upgrade-from-repo] upgrade.go:138: [debug] updating status for upgraded release
for pacman
[upgrade-from-repo] Release "pacman" has been upgraded. Happy Helming!
[upgrade-from-repo] NAME: pacman
[upgrade-from-repo] LAST DEPLOYED: Mon Aug 15 15:23:31 2022
[upgrade-from-repo] NAMESPACE: default
[upgrade-from-repo] STATUS: deployed
[upgrade-from-repo] REVISION: 2
[upgrade-from-repo] TEST SUITE: None
[upgrade-from-repo] USER-SUPPLIED VALUES:
[upgrade-from-repo] replicaCount: 2
[upgrade-from-repo]
[upgrade-from-repo] COMPUTED VALUES:
[upgrade-from-repo] image:
[upgrade-from-repo] containerPort: 8080
[upgrade-from-repo] pullPolicy: Always
[upgrade-from-repo] repository: quay.io/gitops-cookbook/pacman-kikd
[upgrade-from-repo] tag: 1.0.0
[upgrade-from-repo] replicaCount: 2
[upgrade-from-repo] securityContext: {}
[upgrade-from-repo]
[upgrade-from-repo] HOOKS:
[upgrade-from-repo] MANIFEST:
[upgrade-from-repo] ---
[upgrade-from-repo] # Source: pacman/templates/service.yaml
[upgrade-from-repo] apiVersion: v1
[upgrade-from-repo] kind: Service
[upgrade-from-repo] metadata:
[upgrade-from-repo] labels:
[upgrade-from-repo] app.kubernetes.io/name: pacman
[upgrade-from-repo] name: pacman
[upgrade-from-repo] spec:
[upgrade-from-repo] ports:
[upgrade-from-repo] - name: http
[upgrade-from-repo] port: 8080
[upgrade-from-repo] targetPort: 8080
[upgrade-from-repo] selector:
[upgrade-from-repo] app.kubernetes.io/name: pacman
[upgrade-from-repo] ---
[upgrade-from-repo] # Source: pacman/templates/deployment.yaml
[upgrade-from-repo] apiVersion: apps/v1
[upgrade-from-repo] kind: Deployment
[upgrade-from-repo] metadata:
[upgrade-from-repo] name: pacman
[upgrade-from-repo] labels:
[upgrade-from-repo] app.kubernetes.io/name: pacman
[upgrade-from-repo] app.kubernetes.io/version: "1.0.0"
[upgrade-from-repo] spec:
[upgrade-from-repo] replicas: 2
[upgrade-from-repo] selector:
[upgrade-from-repo] matchLabels:

6.10 Update a Kubernetes Resource Using Helm and Create a Pull Request | 147

[upgrade-from-repo] app.kubernetes.io/name: pacman
[upgrade-from-repo] template:
[upgrade-from-repo] metadata:
[upgrade-from-repo] labels:
[upgrade-from-repo] app.kubernetes.io/name: pacman
[upgrade-from-repo] spec:
[upgrade-from-repo] containers:
[upgrade-from-repo] - image: "quay.io/gitops-cookbook/pacman-kikd:1.0.0"
[upgrade-from-repo] imagePullPolicy: Always
[upgrade-from-repo] securityContext:
[upgrade-from-repo] {}
[upgrade-from-repo] name: pacman
[upgrade-from-repo] ports:
[upgrade-from-repo] - containerPort: 8080
[upgrade-from-repo] name: http
[upgrade-from-repo] protocol: TCP
[upgrade-from-repo]

kubectl get deploy -l=app.kubernetes.io/name=pacman

pacman 2/2 2 2 9s

6.11 Use Drone to Create a Pipeline for Kubernetes
Problem
You want to create a CI/CD pipeline for Kubernetes with Drone.

Solution
Drone is an open source project for cloud native continuous integration (CI). It uses
YAML build files to define and execute build pipelines inside containers.

It has two main components:

Server
Integrates with popular SCMs such as GitHub, GitLab, or Gitea

Runner
Acts as an agent running on a certain platform

You can install the Server of your choice following the documentation and install the
Kubernetes Runner.

In this example you will create a Java Maven-based pipeline using the Pac-Man app.
First, install the Drone CLI for your OS; you can get it from the official website here.

148 | Chapter 6: Cloud Native CI/CD

https://www.drone.io
https://oreil.ly/K1ZR2
https://oreil.ly/3vydl
https://oreil.ly/cdI9Y

On macOS, drone is available through Homebrew as follows:
brew tap drone/drone && brew install drone

Then configure Drone, copy the DRONE_TOKEN from your instance under the Drone
Account settings page, then create/update the file called .envrc.local and add the
variables to override:

export DRONE_TOKEN="<YOUR-TOKEN>"

Ensure the token is loaded:
drone info

Now activate the repo in Drone:
drone repo enable https://github.com/gitops-cookbook/pacman-kikd.git

Similarly to Tekton, Drone’s pipeline will compile, test, and build the app. Then it will
create and push the container image to a registry.

Add credentials to your container registry as follows (here, we’re using Quay.io):
drone secret add --name image_registry \
--data quay.io https://github.com/gitops-cookbook/pacman-kikd.git

drone secret add --name image_registry_user \
--data YOUR_REGISTRY_USER https://github.com/gitops-cookbook/pacman-kikd.git

drone secret add --name image_registry_password \
--data YOUR_REGISTRY_PASS https://github.com/gitops-cookbook/pacman-kikd.git

drone secret add --name destination_image \
--data quay.io/YOUR_REGISTRY_USER>/pacman-kikd.git https://github.com/gitops-
cookbook/pacman-kikd.git

Create a file called .drone.yaml as follows:
kind: pipeline
type: docker
name: java-pipeline
platform:
 os: linux
 arch: arm64
trigger:
 branch:
 - main
clone:
 disable: true
steps:
 - name: clone sources
 image: alpine/git
 pull: if-not-exists

6.11 Use Drone to Create a Pipeline for Kubernetes | 149

https://brew.sh

 commands:
 - git clone https://github.com/gitops-cookbook/pacman-kikd.git .
 - git checkout $DRONE_COMMIT
 - name: maven-build
 image: maven:3-jdk-11
 commands:
 - mvn install -DskipTests=true -B
 - mvn test -B
 - name: publish
 image: plugins/docker:20.13
 pull: if-not-exists
 settings:
 tags: "latest"
 dockerfile: Dockerfile
 insecure: true
 mtu: 1400
 username:
 from_secret: image_registry_user
 password:
 from_secret: image_registry_password
 registry:
 from_secret: image_registry
 repo:
 from_secret: destination_image

Start the pipeline:
drone exec --pipeline=java-pipeline

You can also trigger the pipeline to start by pushing to your Git
repo.

See Also
• Example Maven Pipeline from Drone docs•
• Complete Quarkus pipeline example in Drone•

6.12 Use GitHub Actions for CI
Problem
You want to use GitHub Actions for CI in order to compile and package an app as a
container image ready to be deployed in CD.

150 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/YzWcx
https://oreil.ly/eVT1T

Solution
GitHub Actions are event-driven automation tasks available for any GitHub reposi‐
tory. An event automatically triggers the workflow, which contains a job. The job
then uses steps to control the order in which actions are run. These actions are the
commands that automate software building, testing, and deployment.

In this recipe, you will add a GitHub Action for building the Pac-Man game container
image, and pushing it to the GitHub Container Registry.

As GitHub Actions are connected to repositories, you can fork the
Pac-Man repository from this book’s code repositories to add your
GitHub Actions. See the documentation about forking repositories
for more info on this topic.

GitHub Actions workflows run into environments and they can reference an environ‐
ment to use the environment’s protection rules and secrets.

Workflows and jobs are defined with a YAML file containing all the needed
steps. Inside your repository, you can create one with the path .github/workflows/
pacman-ci-action.yml:

This is a basic workflow to help you get started with Actions

name: pacman-ci-action

env:
 IMAGE_REGISTRY: ghcr.io/${{ github.repository_owner }}
 REGISTRY_USER: ${{ github.actor }}
 REGISTRY_PASSWORD: ${{ github.token }}
 APP_NAME: pacman
 IMAGE_TAGS: 1.0.0 ${{ github.sha }}

Controls when the workflow will run
on:
 # Triggers the workflow on push or pull request events but only for the
 # "main" branch
 push:
 branches: ["main"]
 pull_request:
 branches: ["main"]

 # Allows you to run this workflow manually from the Actions tab
 workflow_dispatch:

A workflow run is made up of one or more jobs that can run sequentially or in
parallel
jobs:
 # This workflow contains a single job called "build-and-push"
 build-and-push:

6.12 Use GitHub Actions for CI | 151

https://oreil.ly/hCOUp
https://oreil.ly/Bzq7l
https://oreil.ly/O6HtM
https://oreil.ly/uXOQ7

 # The type of runner that the job will run on
 runs-on: ubuntu-latest

 # Steps represent a sequence of tasks that will be executed as part of the
 # job
 steps:
 # Checks-out your repository under $GITHUB_WORKSPACE, so your job can
 # access it
 - uses: actions/checkout@v3

 - name: Set up JDK 11
 uses: actions/setup-java@v3
 with:
 java-version: '11'
 distribution: 'adopt'
 cache: maven

 - name: Build with Maven
 run: mvn --batch-mode package

 - name: Buildah Action
 id: build-image
 uses: redhat-actions/buildah-build@v2
 with:
 image: ${{ env.IMAGE_REGISTRY }}/${{ env.APP_NAME }}
 tags: ${{ env.IMAGE_TAGS }}
 containerfiles: |
 ./Dockerfile
 - name: Push to Registry
 id: push-to-registry
 uses: redhat-actions/push-to-registry@v2
 with:
 image: ${{ steps.build-image.outputs.image }}
 tags: ${{ steps.build-image.outputs.tags }}
 registry: ${{ env.IMAGE_REGISTRY }}
 username: ${{ env.REGISTRY_USER }}
 password: ${{ env.REGISTRY_PASSWORD }}

Name of the Action.

Environment variables to be used in the workflow. This includes default environ‐
ment variables and the Secret you added to the environment.

Here’s where you define which type of trigger you want for this workflow. In this
case, any change to the repository (Push) to the master branch will trigger the
action to start. Check out the documentation for a full list of triggers that can be
used.

Name of this Job.

List of steps; each step contains an action for the pipeline.

152 | Chapter 6: Cloud Native CI/CD

https://oreil.ly/qNE6p
https://oreil.ly/qNE6p
https://oreil.ly/lGgAE

Buildah Build. This action builds container images using Buildah.

Push to Registry. This action is used to push to the GitHub Registry using
built-in credentials available for GitHub repository owners.

After each Git push or pull request, a new run of the action is performed as shown in
Figure 6-10.

GitHub offers its own container registry available at ghcr.io, and
container images are referenced as part of the GitHub Packages.
By default the images are public. See this book’s repository as a
reference.

Figure 6-10. GitHub Actions Jobs

See Also
• GitHub Actions Jobs•
• Red Hat Actions•
• Deploy to Kubernetes cluster Action•

6.12 Use GitHub Actions for CI | 153

https://oreil.ly/IcyGC
https://oreil.ly/HcSUl
https://oreil.ly/aPNi5
https://oreil.ly/EG1zx
https://oreil.ly/44Qt8
https://oreil.ly/hFcCd
https://oreil.ly/7PaeU

CHAPTER 7

Argo CD

In the previous chapter, you learned about Tekton and other engines such as GitHub
Actions to implement the continuous integration (CI) part of a project.

Although CI is important because it’s where you build the application and check
that nothing has been broken (running unit tests, component tests, etc.), there is
still a missing part: how to deploy this application to an environment (a Kubernetes
cluster) using the GitOps methodology and not creating a script running kubectl/
helm commands.

As Daniel Bryant puts it, “If you weren’t using SSH in the past to deploy your
application in production, don’t use kubectl to do it in Kubernetes.”

In this chapter, we’ll introduce you to Argo CD, a declarative, GitOps continuous
delivery (CD) tool for Kubernetes. In the first part of the section, we’ll see the
deployment of an application using Argo CD (Recipes 7.1 and 7.2).

Argo CD not only supports the deployment of plain Kubernetes manifests, but also
the deployment of Kustomize projects (Recipe 7.3) and Helm projects (Recipe 7.4).

A typical operation done in Kubernetes is a rolling update to a new version of the
container, and Argo CD integrates with another tool to make this process smooth
(Recipe 7.5).

Delivering complex applications might require some orchestration on when and how
the application must be deployed and released (Recipes 7.7 and 7.8).

We’ll see how to:

• Install and deploy the first application.•
• Use automatic deployment and self-healing applications.•

155

• Execute a rolling update when a new container is released.•
• Give an order on the execution.•

In this chapter, we are using the https://github.com/gitops-cookbook/gitops-
cookbook-sc.git GitHub repository as source directory. To run it successfully in this
chapter, you should fork it and use it in the YAML files provided in the examples.

7.1 Deploy an Application Using Argo CD
Problem
You want Argo CD to deploy an application defined in a Git repository.

Solution
Create an Application resource to set up Argo CD to deploy the application.

To install Argo CD, create the argocd namespace and apply the Argo CD installation
manifest:

kubectl apply -n argocd \
-f https://raw.githubusercontent.com/argoproj/argo-cd/v2.3.4/manifests/install.yaml

Optional Steps
It’s not mandatory to install the Argo CD CLI tool, or expose the Argo CD server
service to access the Argo CD Dashboard. Still, in this book, we’ll use them in the
recipes to show you the final result after applying the manifests. So, although not
mandatory, we encourage you to follow the next steps to be aligned with the book.

To install the argocd CLI tool, go to the Argo CD CLI GitHub release page and in the
Assets section, download the tool for your platform.

After installing the argocd tool, the argocd-server Kubernetes Service needs to
be exposed. You can use any technique such as Ingress or set the service as LoadBa
lancer but we’ll use the kubectl port-forwarding to connect to the API server
without exposing the service:

kubectl port-forward svc/argocd-server -n argocd 9090:443

At this point, you can access the Argo CD server using http://localhost:9090.

The initial password for the admin account is generated automatically in a secret
named argocd-initial-admin-secret in the argocd namespace:

argoPass=$(kubectl -n argocd get secret argocd-initial-admin-secret -o json
path="{.data.password}" | base64 -d)

156 | Chapter 7: Argo CD

https://oreil.ly/kU9LS

argoURL=localhost:9090

argocd login --insecure --grpc-web $argoURL --username admin --password $argo
Pass

'admin:login' logged in successfully

You should use the same credentials to access the Argo CD UI.

Let’s make Argo CD deploy a simple web application showing a box with a config‐
ured color. The application is composed of three Kubernetes manifest files, including
a Namespace, a Deployment, and a Service definition.

The files are located in the ch07/bgd folder of the book’s repository.

All these files are known as an Application in Argo CD. Therefore, you must define
it as such to apply these manifests in your cluster.

Let’s check the Argo CD Application resource file used for deploying the
application:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgd-app
 namespace: argocd
spec:
 destination:
 namespace: bgd
 server: https://kubernetes.default.svc
 project: default
 source:
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 path: ch07/bgd
 targetRevision: main

Namespace where Argo CD is installed

Target cluster and namespace

Installing the application in Argo CD’s default project

The manifest repo where the YAML resides

The path to look for manifests

Branch to checkout

7.1 Deploy an Application Using Argo CD | 157

https://oreil.ly/DAH50

In the terminal window, run the following command to register the Argo CD
application:

kubectl apply -f manual-bgd-app.yaml

At this point, the application is registered as an Argo CD application.

You can check the status using either argocd or the UI; run the following command
to list applications using the CLI too:

argocd app list

And the output is something like:
NAME CLUSTER NAMESPACE PROJECT STATUS
bgd-app https://kubernetes.default.svc bgd default OutOfSync

The important field here is STATUS. It’s OutOfSync, which means the application is
registered, and there is a drift between the current status (in this case, no application
deployed) and the content in the Git repository (the application deployment files).

You’ll notice that no pods are running if you get all the pods from the bgd namespace:
kubectl get pods -n bgd

No resources found in bgd namespace.

Argo CD doesn’t synchronize the application automatically by default. It just shows a
divergence, and the user is free to fix it by triggering a synchronized operation.

With the CLI, you synchronize the application by running the following command in
a terminal:

argocd app sync bgd-app

And the ouput of the command shows all the important information regarding the
deployment:

Name: bgd-app
Project: default
Server: https://kubernetes.default.svc
Namespace: bgd
URL: https://openshift-gitops-server-openshift-gitops.apps.open-
shift.sotogcp.com/applications/bgd-app
Repo: https://github.com/lordofthejars/gitops-cookbook-sc.git
Target: main
Path: ch07/bgd
SyncWindow: Sync Allowed
Sync Policy: <none>
Sync Status: Synced to main (384cd3d)
Health Status: Progressing

Operation: Sync
Sync Revision: 384cd3d21c534e75cb6b1a6921a6768925b81244
Phase: Succeeded

158 | Chapter 7: Argo CD

Start: 2022-06-16 14:45:12 +0200 CEST
Finished: 2022-06-16 14:45:13 +0200 CEST
Duration: 1s
Message: successfully synced (all tasks run)

GROUP KIND NAMESPACE NAME STATUS HEALTH HOOK MESSAGE
 Namespace bgd bgd Running Synced namespace/bgd cre-
ated
 Service bgd bgd Synced Healthy service/bgd created
apps Deployment bgd bgd Synced Progressing deploy-
ment.apps/bgd created
 Namespace bgd Synced

You can synchronize the application from the UI as well, by clicking the SYNC button
as shown in Figure 7-1.

Figure 7-1. Argo CD web console

7.1 Deploy an Application Using Argo CD | 159

If you get all the pods from the bgd namespace, you’ll notice one pod running:
kubectl get pods -n bgd

NAME READY STATUS RESTARTS AGE
bgd-788cb756f7-jll9n 1/1 Running 0 60s

And the same for the Service:
kubectl get services -n bgd

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
bgd ClusterIP 172.30.35.199 <none> 8080:32761/TCP

Exposed port is 32761

In the following sections, you’ll need to access the deployed service to validate that
it’s deployed. There are several ways to access services deployed to Minikube; for the
following chapters, we use the Minikube IP and the exposed port of the service.

Run the following command in a terminal window to get the Minikube IP:
minikube ip -p gitops
192.168.59.100

Open a browser window, set the previous IP followed by the exposed port (in this
example 192.168.59.100:32761), and access the service to validate that the color of
the circles in the box is blue, as shown in Figure 7-2.

Figure 7-2. Deployed application

160 | Chapter 7: Argo CD

Discussion
Now it’s time to update the application deployment files. This time we will change the
value of an environment variable defined in the bgd-deployment.yaml file.

Open ch07/bgd/bgd-deployment.yaml in your file editor and change the COLOR envi‐
ronment variable value from blue to green:

spec:
 containers:
 - image: quay.io/redhatworkshops/bgd:latest
 name: bgd
 env:
 - name: COLOR
 value: "green"

In a terminal run the following commands to commit and push the file so the change
is available for Argo CD:

git add .
git commit -m "Updates color"

git push origin main

With the change pushed, check the status of the application again:
argocd app list

NAME CLUSTER NAMESPACE PROJECT STATUS
bgd-app https://kubernetes.default.svc bgd default Sync

We see the application status is Sync. This happens because Argo CD uses a polling
approach to detect divergences between what’s deployed and what’s defined in Git.
After some time (by default, it’s 3 minutes), the application status will be OutOfSync:

argocd app list
NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH
bgd-app https://kubernetes.default.svc bgd default OutOfSync Healthy

To synchronize the changes, run the sync subcommand:
argocd app sync bgd-app

After some seconds, access the service and validate that the circles are green, as
shown in Figure 7-3.

7.1 Deploy an Application Using Argo CD | 161

Figure 7-3. Deployed application

To remove the application, use the CLI tool or the UI:
argocd app delete bgd-app

Also, revert the changes done in the Git repository to get the initial version of the
application and push them:

git revert HEAD

git push origin main

7.2 Automatic Synchronization
Problem
You want Argo CD to automatically update resources when there are changes.

Solution
Use the syncPolicy section with an automated policy.

Argo CD can automatically synchronize an application when it detects differences
between the manifests in Git and the Kubernetes cluster.

A benefit of automatic sync is that there is no need to log in to the Argo CD API,
with the security implications that involves (managing secrets, network, etc.), and the
use of the argocd tool. Instead, when a manifest is changed and pushed to the Git
repository with the changes to the tracking Git repo, the manifests are automatically
applied.

Let’s modify the previous Argo CD manifest file (Application), adding the sync
Policy section, so changes are deployed automatically:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:

162 | Chapter 7: Argo CD

 name: bgd-app
 namespace: argocd
spec:
 destination:
 namespace: bgd
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/bgd
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 syncPolicy:
 automated: {}

Starts the synchronization policy configuration section

Argo CD automatically syncs the repo

At this point, we can apply the Application file into a running cluster by running the
following command:

kubectl apply -f bgd/bgd-app.yaml

Now, Argo CD deploys the application without executing any other command.

Run the kubectl command or check in the Argo CD UI to validate that the deploy‐
ment is happening:

kubectl get pods -n bgd

NAME READY STATUS RESTARTS AGE
bgd-788cb756f7-jll9n 1/1 Running 0 60s

Access the service and validate that the circles are blue, as shown in Figure 7-4.

Figure 7-4. Deployed application

7.2 Automatic Synchronization | 163

To remove the application, use the CLI tool or the UI:
argocd app delete bgd-app

Discussion
Although Argo CD deploys applications automatically, it uses some default conserva‐
tive strategies for safety reasons.

Two of these are the pruning of deleted resources and the self-healing of the applica‐
tion in case a change was made in the Kubernetes cluster directly instead of through
Git.

By default, Argo CD will not delete (prune) any resource when it detects that it is no
longer available in Git, and it will be in an OutOfSync status. If you want Argo CD to
delete these resources, you can do it in two ways.

The first way is by manually invoking a sync with the -prune option:
argocd app sync --prune

The second way is letting Argo CD delete pruned resources automatically by setting
the prune attribute to true in the automated section:

syncPolicy:
 automated:
 prune: true

Enables automatic pruning

Another important concept affecting how the application is automatically updated is
self-healing.

Argo CD is configured not to correct any drift made manually in the cluster. For
example, Argo CD will let the execution of a kubectl patch directly in the cluster
change any configuration parameter of the application.

Let’s see it in action.

The color of the circle is set as an environment variable (COLOR).

Now, let’s change the COLOR environment variable to green using the kubectl patch
command.

Run the following command in the terminal:
kubectl -n bgd patch deploy/bgd \
--type='json' -p='[{"op": "replace", "path": "/
spec/template/spec/containers/0/env/0/value", "value":"green"}]'

Wait for the rollout to happen:
kubectl rollout status deploy/bgd -n bgd

164 | Chapter 7: Argo CD

If you refresh the browser, you should see green circles now, as shown in Figure 7-5.

Figure 7-5. Deployed application

Looking over the Argo CD sync status, you’ll see that it’s OutOfSync as the application
and the definition in the Git repository (COLOR: blue) diverges.

Argo CD will not roll back to correct this drift as the selfHeal property default is set
to false.

Let’s remove the application and deploy a new one, but set selfHeal to true in this
case:

argocd app delete bgd-app

Let’s enable the selfHealing property, and repeat the experiment:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgd-app
 namespace: argocd
spec:
 destination:
 namespace: bgd
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/bgd
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 syncPolicy:
 automated:
 prune: true
 selfHeal: true

selfHeal set to true to correct any drift

And in the terminal apply the resource:
kubectl apply -f bgd/heal-bgd-app.yaml

7.2 Automatic Synchronization | 165

Repeat the previous steps:

1. Open the browser to check that the circles are blue.1.
2. Reexecute the kubectl -n bgd patch deploy/bgd ... command.2.
3. Refresh the browser and check that the circles are still blue.3.

Argo CD corrects the drift introduced by the patch command, synchronizing the
application to the correct state defined in the Git repository.

To remove the application, use the CLI tool or the UI:
argocd app delete bgd-app

See Also
• Argo CD Automated Sync Policy•
• Argo CD Sync Options•

7.3 Kustomize Integration
Problem
You want to use Argo CD to deploy Kustomize manifests.

Solution
Argo CD supports several different ways in which Kubernetes manifests can be
defined:

• Kustomize•
• Helm•
• Ksonnet•
• Jsonnet•

You can also extend the supported ways to custom ones, but this is out of the scope of
this book.

Argo CD detects a Kustomize project if there are any of the following files: kustomiza‐
tion.yaml, kustomization.yml, or Kustomization.

Let’s deploy the same BGD application, but in this case, deployed as Kustomize
manifests.

Moreover, we’ll set kustomize to override the COLOR environment variable to yellow.

166 | Chapter 7: Argo CD

https://oreil.ly/mw4b2
https://oreil.ly/wIleG

The Kustomize file defined in the repository looks like this:
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: bgdk
resources:
- ../base
- bgdk-ns.yaml
patchesJson6902:
 - target:
 version: v1
 group: apps
 kind: Deployment
 name: bgd
 namespace: bgdk
 patch: |-
 - op: replace
 path: /spec/template/spec/containers/0/env/0/value
 value: yellow

Directory with standard deployment files (blue circles)

Specific file for creating a namespace

Patches standard deployment files

Patches the deployment file

Overrides the environment variable value to yellow

You don’t need to create this file as it’s already stored in the Git
repository.

Create the following Application file to deploy the application:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgdk-app
 namespace: argocd
spec:
 destination:
 namespace: bgdk
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/bgdk/bgdk
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git

7.3 Kustomize Integration | 167

 targetRevision: main
 syncPolicy:
 automated: {}

At this point, we can apply the Application file to a running cluster by running the
following command:

kubectl apply -f bgdk/bgdk-app.yaml

Access the service and you’ll notice the circles are yellow instead of blue.

To remove the application, use the CLI tool or the UI:
argocd app delete bgdk-app

Discussion
We can explicitly specify which tool to use, overriding the default algorithm used by
Argo CD in the Application file. For example, we can use a plain directory strategy
regarding the presence of the kustomization.yaml file:

source:
 directory:
 recurse: true

Overrides always use a plain directory strategy

Possible strategies are: directory, chart, helm, kustomize, path, and plugin.

Everything we’ve seen about Kustomize is valid when using Argo
CD.

See Also
• Chapter 4•
• argo-cd/application-crd.yaml on GitHub•
• Argo CD Tool Detection•

7.4 Helm Integration
Problem
You want to use Argo CD to deploy Helm manifests.

168 | Chapter 7: Argo CD

https://oreil.ly/EIxY1
https://oreil.ly/DJbiU

Solution
Argo CD supports installing Helm Charts to the cluster when it detects a Helm
project in the deployment directory (when the Chart.yaml file is present).

Let’s deploy the same BGD application, but in this case, deployed as a Helm manifest.

The layout of the project is a simple Helm layout already created in the GitHub
repository you’ve cloned previously:

├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ns.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

Create a bgdh/bgdh-app.yaml file to define the Argo CD application:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgdh-app
 namespace: argocd
spec:
 destination:
 namespace: bgdh
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/bgdh
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 syncPolicy:
 automated: {}

At this point, we can apply the Application file into a running cluster by running the
following command:

kubectl apply -f bgdh/bgdh-app.yaml

Validate the pod is running in the bgdh namespace:
kubectl get pods -n bgdh

NAME READY STATUS RESTARTS AGE
bgdh-app-556c46fcd6-ctfkf 1/1 Running 0 5m43s

7.4 Helm Integration | 169

To remove the application, use the CLI tool or the UI:
argocd app delete bgdh-app

Discussion
Argo CD populates build environment variables to Helm manifests (actually also
Kustomize, Jsonnet, and custom tools support too).

The following variables are set:

• ARGOCD_APP_NAME•
• ARGOCD_APP_NAMESPACE•
• ARGOCD_APP_REVISION•
• ARGOCD_APP_SOURCE_PATH•
• ARGOCD_APP_SOURCE_REPO_URL•
• ARGOCD_APP_SOURCE_TARGET_REVISION•
• KUBE_VERSION•
• KUBE_API_VERSIONS•

In the following snippet, you can see the usage of the application name:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgdh-app
 namespace: openshift-gitops
spec:
 destination:
 ...
 source:
 path: ch07/bgd
 ...
 helm:
 parameters:
 - name: app
 value: $ARGOCD_APP_NAME

Specific Helm section

Extra parameters to set, same as setting them in values.yaml, but high preference

The name of the parameter

The value of the parameter, in this case from a Build Env var

170 | Chapter 7: Argo CD

Argo CD can use a different values.yaml file or set parameter values to override the
ones defined in values.yaml:

argocd app set bgdh-app --values new-values.yaml

argocd app set bgdh-app -p service.type=LoadBalancer

Note that values files must be in the same Git repository as the Helm Chart.

Argo CD supports Helm hooks too.

See Also
• Chapter 5•
• argo-cd/application-crd.yaml on GitHub•

7.5 Image Updater
Problem
You want Argo CD to automatically deploy a container image when it’s published.

Solution
Use Argo CD Image Updater to detect a change on the container registry and update
the deployment files.

One of the most repetitive tasks during development is deploying a new version of a
container image.

With a pure Argo CD solution, after the container image is published to a container
registry, we need to update the Kubernetes/Kustomize/Helm manifest files pointing
to the new container image and push the result to the Git repository.

This process implies:

1. Clone the repo1.
2. Parse the YAML files and update them accordingly2.
3. Commit and Push the changes3.

These boilerplate tasks should be defined for each repository during the continuous
integration phase. Although this approach works, it could be automated so the cluster

7.5 Image Updater | 171

https://oreil.ly/EIxY1
https://oreil.ly/kztMq

could detect a new image pushed to the container registry and update the current
deployment file pointing to the newer version.

This is exactly what Argo CD Image Updater (ArgoCD IU) does. It’s a Kubernetes
controller monitoring for a new container version and updating the manifests
defined in the Argo CD Application file.

The Argo CD IU lifecycle and its relationship with Argo CD are shown in Figure 7-6.

Figure 7-6. Argo CD Image Updater lifecycle

At this time, Argo CD IU only updates manifests of Kustomize or Helm. In the
case of Helm, it needs to support specifying the image’s tag using a parameter
(image.tag).

Let’s install the controller in the same namespace as Argo CD:
kubectl apply -f \
https://raw.githubusercontent.com/argoproj-labs/argocd-imageupdater/v0.12.0/mani-
fests/install.yaml -n argocd

Validate the installation process, checking that the pod status of the controller is
Running:

kubectl get pods -n argocd

NAME READY STATUS
RESTARTS AGE
argocd-image-updater-59c45cbc5c-kjjtp 1/1 Running
0 40h

172 | Chapter 7: Argo CD

Before using Argo CD IU, we create a Kubernetes Secret representing the Git creden‐
tials, so the updated manifests can be pushed to the repository. The secret must be at
the Argo CD namespace and, in this case, we name it git-creds.

kubectl -n argocd create secret generic git-creds \ --from-literal=user
name=<git_user> \
--from-literal=password=<git_password_or_token>

Finally, let’s annotate the Application manifest with some special annotations so the
controller can start monitoring the registry:

image-list
Specify one or more images (comma-separated-value) considered for updates.

write-back-method
Methods to propagate new versions. There are git and argocd methods imple‐
mented to update to a newer image. The Git method commits the change to
the Git repository. Argo CD uses the Kubernetes/ArgoCD API to update the
resource.

There are more configuration options, but the previous ones are the most important
to get started.

Let’s create an Argo CD Application manifest annotated with Argo CD IU
annotations:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: bgdk-app
 namespace: argocd
 annotations:
 argocd-image-updater.argoproj.io/image-list: myalias=quay.io/rhdevelopers/bgd

 argocd-image-updater.argoproj.io/write-back-method: git:secret:openshift-
gitops/git-creds
 argocd-image-updater.argoproj.io/git-branch: main
spec:
 destination:
 namespace: bgdk
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/bgdui/bgdk
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 syncPolicy:
 automated: {}

Adds annotations section

7.5 Image Updater | 173

Sets the monitored image name

Configures to use Git as write-back-method, setting the location of the creden‐
tials (<namespace>/<secretname>)

Sets the branch to push changes

Now apply the manifest to deploy the application’s first version and enable Argo CD
IU to update the repository when a new image is pushed to the container registry:

kubectl apply -f bgdui/bgdui-app.yaml

At this point, version 1.0.0 is up and running in the bgdk namespace, and you may
access it as we’ve done before. Let’s generate a new container version to validate that
the new image is in the repository.

To simplify the process, we’ll tag the container with version 1.1.0 as it was a new one.

Go to the Quay repository created at the beginning of this chapter, go to the tags
section, push the gear icon, and select Add New Tag to create a new container, as
shown in Figure 7-7.

Figure 7-7. Tag container

Set the tag to 1.1.0 value as shown in the figure Figure 7-8.

Figure 7-8. Tag container

174 | Chapter 7: Argo CD

After this step, you should have a new container created as shown in Figure 7-9.

Wait for around two minutes until the change is detected and the controller triggers
the repo update.

Figure 7-9. Final result

To validate the triggering process check the logs of the controller:
kubectl logs argocd-image-updater-59c45cbc5c-kjjtp -f -n argocd

...
time="2022-06-20T21:19:05Z" level=info msg="Setting new image to quay.io/rhdevel
opers/bgd:1.1.0" alias=myalias application=bgdk-app image_name=rhdevelopers/bgd
image_tag=1.0.0 registry=quay.io
time="2022-06-20T21:19:05Z" level=info msg="Successfully updated image 'quay.io/
rhdevelopers/bgd:1.0.0' to 'quay.io/rhdevelopers/bgd:1.1.0', but pending spec
update (dry run=false)" alias=myalias application=bgdk-app image_name=rhdevelop
ers/bgd image_tag=1.0.0 registry=quay.io
time="2022-06-20T21:19:05Z" level=info msg="Committing 1 parameter update(s) for
application bgdk-app" application=bgdk-app
...

Detects the change and updates the image

After that, if you inspect the repository, you’ll see a new Kustomize file
named .argocd-source-bgdk-app.yaml, updating the image value to the new con‐
tainer, as shown in Figure 7-10.

7.5 Image Updater | 175

Figure 7-10. New Kustomize file updating to the new container

Now Argo CD can detect the change and update the cluster properly with the new
image.

To remove the application, use the CLI tool or the UI:
argocd app delete bgdk-app

Discussion
An update strategy defines how Argo CD IU will find new versions. With no change,
Argo CD IU uses a semantic version to detect the latest version.

An optional version constraint field may be added to restrict which versions are
allowed to be automatically updated. To only update patch versions, we can change
the image-list annotation as shown in the following snippet:

argocd-image-updater.argoproj.io/image-list: myalias=quay.io/rhdevelopers/bgd:1.2.x

Argo CD Image Updater can update to the image that has the most recent build date:
argocd-image-updater.argoproj.io/myalias.update-strategy: latest
argocd-image-updater.argoproj.io/myimage.allow-tags: regexp:^[0-9a-f]{7}$

Restricts the tags considered for the update

The digest update strategy will use image digests to update your applications’ image
tags:

argocd-image-updater.argoproj.io/myalias.update-strategy: digest

So far, the container was stored in a public registry. If the repository is private, Argo
CD Image Updater needs read access to the repo to detect any change.

First of all, create a new secret representing the container registry credentials:
kubectl create -n argocd secret docker-registry quayio --docker-server=quay.io --
docker-username=$QUAY_USERNAME --docker-password=$QUAY_PASSWORD

176 | Chapter 7: Argo CD

Argo CD Image Updater uses a ConfigMap as a configuration source, which is the
place to register the private container registry. Create a new ConfigMap manifest
setting the supported registries:

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-image-updater-config
data:
 registries.conf: |
 registries:
 - name: RedHat Quay
 api_url: https://quay.io
 prefix: quay.io
 insecure: yes
 credentials: pullsecret:argocd/quayio

Name of the Argo CD IU ConfigMap

Place to register all registries

A name to identify it

URL of the service

The prefix used in the container images

Gets the credentials from the quayio secret stored at argocd namespace

Argo CD Image Updater commits the update with a default message:
commit 3caf0af8b7a26de70a641c696446bbe1cd04cea8 (HEAD -> main, origin/main)
Author: argocd-image-updater <noreply@argoproj.io>
Date: Thu Jun 23 09:41:00 2022 +0000

 build: automatic update of bgdk-app

 updates image rhdevelopers/bgd tag '1.0.0' to '1.1.0'

We can update the default commit message to one that fits your requirements.
Configure the git.commit-message-template key in ArgoCD IU argocd-image-
updater-config ConfigMap with the message:

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-image-updater-config
data:
 git.user: alex
 git.email: alex@example.com
 git.commit-message-template: |

7.5 Image Updater | 177

 build: automatic update of {{ .AppName }}

 {{ range .AppChanges -}}
 updates image {{ .Image }} tag '{{ .OldTag }}' to '{{ .NewTag }}'
 {{ end -}}

Argo CD IU ConfigMap

Commit user

Commmit email

Golang text/template content

The name of the application

List of changes performed by the update

Image name

Previous container tag

New container tag

Remember to restart the Argo CD UI controller when the Config
Map is changed:

kubectl rollout restart deployment argocd-image-updater
-n argocd

See Also
• Argo CD Image Updater•

7.6 Deploy from a Private Git Repository
Problem
You want Argo CD to deploy manifests.

Solution
Use Argo CD CLI/UI or YAML files to register the repositories’ credential informa‐
tion (username/password/token/key).

178 | Chapter 7: Argo CD

https://oreil.ly/kztMq

In Argo CD, you have two ways to register a Git repository with its credentials. One
way is using the Argo CD CLI/Argo CD UI tooling. To register a private repository in
Argo CD, set the username and password by running the following command:

argocd repo add https://github.com/argoproj/argocd-example-apps \
--username <username> --password <password>

Alternatively, we can use the Argo CD UI to register it too. Open Argo CD UI in a
browser, and click the Settings/Repositories button (the one with gears) as shown in
Figure 7-11.

Figure 7-11. Settings menu

Then click the “Connect Repo using HTTPS” button and fill the form with the
required data as shown in Figure 7-12.

Figure 7-12. Configuration of repository

7.6 Deploy from a Private Git Repository | 179

Finally, click the Connect button to test that it’s possible to establish a connection and
add the repository into Argo CD.

The other way is to create a Kubernetes Secret manifest file with that repository and
credentials information:

apiVersion: v1
kind: Secret
metadata:
 name: private-repo
 namespace: argocd
 labels:
 argocd.argoproj.io/secret-type: repository
stringData:
 type: git
 url: https://github.com/argoproj/private-repo
 password: my-password
 username: my-username

Create a secret in the Argo CD namespace

Sets secret type as repository

URL of the repository to register

Password to access

Username to access

If you apply this file, it will have the same effect as the manual approach.

At this point, every time we define a repoURL value in the Application resource
with a repository URL registered for authentication, Argo CD will use the registered
credentials to log in.

Discussion
In addition to setting credentials such as username and password for accessing a
private Git repo, Argo CD also supports other methods such as tokens, TLS client
certificates, SSH private keys, or GitHub App credentials.

Let’s see some examples using Argo CD CLI or Kubernetes Secrets.

To configure a TLS client certificate:
argocd repo add https://repo.example.com/repo.git \
--tls-client-cert-path ~/mycert.crt \
--tls-client-cert-key-path ~/mycert.key

180 | Chapter 7: Argo CD

For SSH, you just need to set the location of the SSH private key:
argocd repo add git@github.com:argoproj/argocd-example-apps.git \
--ssh-privatekey-path ~/.ssh/id_rsa

Or using a Kubernetes Secret:
apiVersion: v1
kind: Secret
metadata:
 name: private-repo
 namespace: argocd
 labels:
 argocd.argoproj.io/secret-type: repository
stringData:
 type: git
 url: git@github.com:argoproj/my-private-repository
 sshPrivateKey: |
 -----BEGIN OPENSSH PRIVATE KEY-----
 ...
 -----END OPENSSH PRIVATE KEY-----

Sets the content of the SSH private key

If you are using the GitHub App method, you need to set the App ID, the App
Installation ID, and the private key:

argocd repo add https://github.com/argoproj/argocd-example-apps.git --github-app-
id 1 --github-app-installation-id 2 --github-app-private-key-path test.private-
key.pem

Or using the declarative approach:
apiVersion: v1
kind: Secret
metadata:
 name: github-repo
 namespace: argocd
 labels:
 argocd.argoproj.io/secret-type: repository
stringData:
 type: git
 repo: https://ghe.example.com/argoproj/my-private-repository
 githubAppID: 1
 githubAppInstallationID: 2
 githubAppEnterpriseBaseUrl: https://ghe.example.com/api/v3
 githubAppPrivateKeySecret: |
 -----BEGIN OPENSSH PRIVATE KEY-----
 ...
 -----END OPENSSH PRIVATE KEY-----

Sets GitHub App parameters

Only valid if GitHub App Enterprise is used

7.6 Deploy from a Private Git Repository | 181

For the access token, use the account name as the username and the token in the
password field.

Choosing which strategy to use will depend on your experience managing Kubernetes
Secrets. Remember that a Secret in Kubernetes is not encrypted but encoded in
Base64, so it is not secured by default.

We recommend using only the declarative approach when you’ve got a good strategy
for securing the secrets.

We’ve not discussed the Sealed Secrets project yet (we’ll do so in the
following chapter), but when using Sealed Secrets, the labels will
be removed to avoid the SealedSecret object having a template
section that encodes all the fields you want the controller to put in
the unsealed Secret:

spec:
 ...
 template:
 metadata:
 labels:
 "argocd.argoproj.io/secret-type": repository

7.7 Order Kubernetes Manifests
Problem
You want to use Argo CD to deploy.

Solution
Use sync waves and resource hooks to modify the default order of applying manifests.

Argo CD applies the Kubernetes manifests (plain, Helm, Kustomize) in a particular
order using the following logic:

1. By kind1.
a. Namespacesa.
b. NetworkPolicyb.
c. Limit Rangec.
d. ServiceAccountd.
e. Secrete.
f. ConfigMapf.
g. StorageClassg.

182 | Chapter 7: Argo CD

h. PersistentVolumesh.
i. ClusterRolei.
j. Rolej.

k. Servicek.
l. DaemonSetl.

m. Podm.
n. ReplicaSetn.
o. Deploymento.
p. StatefulSetp.
q. Jobq.
r. Ingressr.

2. In the same kind, then by name (alphabetical order)2.

Argo CD has three phases when applying resources: the first phase is executed
before applying the manifests (PreSync), the second phase is when the manifests are
applied (Sync), and the third phase is executed after all manifests are applied and
synchronized (PostSync).

Figure 7-13 summarizes these phases.

Figure 7-13. Hooks and sync waves

Resource hooks are scripts executed at a given phase, or if the Sync phase failed, you
could run some rollback operations.

7.7 Order Kubernetes Manifests | 183

Table 7-1 lists the available resource hooks.

Table 7-1. Resource hooks
Hook Description Use case

PreSync Executes prior to the application of the manifests Database migrations

Sync Executes at the same time as manifests Complex rolling update strategies like canary releases or
dark launches

PostSync Executes after all Sync hooks have completed and
were successful (healthy)

Run tests to validate deployment was correctly done

SyncFail Executes when the sync operation fails Rollback operations in case of failure

Skip Skip the application of the manifest When manual steps are required to deploy the
application (i.e., releasing public traffic to new version)

Hooks are defined as an annotation named argocd.argoproj.io/hook to a Kuber‐
netes resource. In the following snippet, a PostSync manifest is defined:

apiVersion: batch/v1
kind: Job
metadata:
 name: todo-insert
 annotations:
 argocd.argoproj.io/hook: PostSync

Job’s name

Sets when the manifest is applied

Deletion Policies
A hook is not deleted when finished; for example, if you run a Kubernetes Job, it’ll
remain Completed.

This might be the desired state, but we can specify to automatically delete these
resources if annotated with argocd.argoproj.io/hook-delete-policy and the pol‐
icy value is set.

Supported policies are:

Policy Description

HookSucceeded Deleted after the hook succeeded

HookFailed Deleted after the hook failed

BeforeHookCreation Deleted before the new one is created

184 | Chapter 7: Argo CD

A sync wave is a way to order how Argo CD applies the manifests stored in Git.

All manifests have zero waves by default, and the lower values go first. Use the
argocd.argoproj.io/sync-wave annotation to set the wave number to a resource.

For example, you might want to deploy a database first and then create the database
schema; for this case, you should set a sync-wave lower in the database deployment
file than in the job for creating the database schema, as shown in the following
snippet:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: postgresql
 namespace: todo
 annotations:
 argocd.argoproj.io/sync-wave: "0"
...
apiVersion: batch/v1
kind: Job
metadata:
 name: todo-table
 namespace: todo
 annotations:
 argocd.argoproj.io/sync-wave: "1"

PostgreSQL deployment

Sync wave for PostgreSQL deployment is 0

Name of the Job

Job executed when PostgreSQL is healthy

Discussion
When Argo CD starts applying the manifests, it orders the resources in the following
way:

1. Phase1.
2. Wave (lower precedence first)2.
3. Kind3.
4. Name4.

Let’s deploy a more significant application with deployment files, sync waves, and
hooks.

7.7 Order Kubernetes Manifests | 185

The sample application deployed is a TODO application connected with a database
(PostgreSQL) to store TODOs. To deploy the application, some particular order
needs to be applied; for example, the database server must be running before creating
the database schema. Also, when the whole application is deployed, we insert some
default TODOs into the database to run a post-sync manifest.

The overall process is shown in Figure 7-14.

Figure 7-14. Todo app

186 | Chapter 7: Argo CD

Create an Application resource pointing out to the application:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: todo-app
 namespace: argocd
spec:
 destination:
 namespace: todo
 server: https://kubernetes.default.svc
 project: default
 source:
 path: ch07/todo
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 syncPolicy:
 automated:
 prune: true
 selfHeal: false
 syncOptions:
 - CreateNamespace=true

In the terminal, apply the resource, and Argo CD will deploy all applications in the
specified order.

See Also
• gitops-engine/sync_tasks.go on GitHub•

7.8 Define Synchronization Windows
Problem
You want Argo CD to block or allow application synchronization depending on time.

Solution
Argo CD has the sync windows concept to configure time windows where application
synchronizations (applying new resources that have been pushed to the repository)
will either be blocked or allowed.

To define a sync window, create an AppProject manifest setting the kind (either
allow or deny), a schedule in cron format to define the initial time, a duration
of the window, and which resources the sync window is applied to (Application,
namespaces, or clusters).

7.8 Define Synchronization Windows | 187

https://oreil.ly/NDWru

About Cron Expressions
A cron expression represents a time. It’s composed of the following fields:

┌────────── minute (0 - 59)
│ ┌────────── hour (0 - 23)
│ │ ┌────────── day of the month (1 - 31)
│ │ │ ┌────────── month (1 - 12)
│ │ │ │ ┌────────── day of the week (0 - 6)
* * * * *

The AppProject resource is responsible for defining these windows where synchroni‐
zations are permitted/blocked.

Create a new file to permit synchronizations only from 22:00 to 23:00 (just one hour)
and for Argo CD Applications whose names end in -prod:

apiVersion: argoproj.io/v1alpha1
kind: AppProject
metadata:
 name: default
spec:
 syncWindows:
 - kind: allow
 schedule: '0 22 * * *'
 duration: 1h
 applications:
 - '*-prod'

List of windows

Allow syncs

Only at 22:00

For 1 hour (23:00)

Sets the applications that affect this window

Regular expression matching any application whose name ends with -prod

Discussion
We cannot perform a sync of the application (neither automatic nor manual) when
it’s not the time configured in the time window defined in the AppProject manifest.
However, we can configure a window to allow manual syncs.

188 | Chapter 7: Argo CD

Using the CLI tool:
argocd proj windows enable-manual-sync <PROJECT ID>

Also, manual sync can be set in the YAML file. In the following example, we’re setting
manual synchronization for the namespace default, denying synchronizations at 22:00
for one hour and allowing synchronizations in prod-cluster at 23:00 for one hour:

apiVersion: argoproj.io/v1alpha1
kind: AppProject
metadata:
 name: default
 namespace: argocd
spec:
 syncWindows:
 - kind: deny
 schedule: '0 22 * * *'
 duration: 1h
 manualSync: true
 namespaces:
 - bgd
 - kind: allow
 schedule: '0 23 * * *'
 duration: 1h
 clusters:
 - prod-cluster

Block synchronizations

Enable manual sync to default namespace

Configure namespaces to block

Configure clusters to allow syncs at 23:00

We can inspect the current windows from the UI by going to the Settings → Projects
→ default → windows tab or by using the argocd CLI tool:

argocd proj windows list default

ID STATUS KIND SCHEDULE DURATION APPLICATIONS NAMESPACES CLUSTERS
MANUALSYNC
0 Inactive deny 0 22 * * * 1h - bgd -
Enabled
1 Inactive allow 0 23 * * * 1h - - prod-cluster
Disabled

7.8 Define Synchronization Windows | 189

CHAPTER 8

Advanced Topics

In the previous chapter, you had an overview of implementing GitOps workflows
using Argo CD recipes. Argo CD is a famous and influential open source project that
helps with both simple use cases and more advanced ones. In this chapter, we will
discuss topics needed when you move forward in your GitOps journey, and you need
to manage security, automation, and advanced deployment models for multicluster
scenarios.

Security is a critical aspect of automation and DevOps. DevSecOps is a new definition
of an approach where security is a shared responsibility throughout the entire IT
lifecycle. Furthermore, the DevSecOps Manifesto specifies security as code to operate
and contribute value with less friction. And this goes in the same direction as GitOps
principles, where everything is declarative.

On the other hand, this also poses the question of avoiding storing unencrypted
plain-text credentials in Git. As stated in the book Path to GitOps by Christian
Hernandez, Argo CD luckily currently provides two patterns to manage security in
GitOps workflows:

• Storing encrypted secrets in Git, such as with a Sealed Secret (see Recipe 8.1)•
• Storing secrets in external services or vaults, then storing only the reference to•

such secrets in Git (see Recipe 8.2)

The chapter then moves to advanced deployment techniques, showing how to
manage webhooks with Argo CD (see Recipe 8.3) and with ApplicationSets (see
Recipe 8.4). ApplicationSets is a component of Argo CD that allows management
deployments of many applications, repositories, or clusters from a single Kubernetes
resource. In essence, a templating system for the GitOps application is ready to be
deployed and synced in multiple Kubernetes clusters (see Recipe 8.5).

191

https://www.devsecops.org

Last but not least, the book ends with a recipe on Progressive Delivery for Kuber‐
netes with Argo Rollouts (Recipe 8.6), useful for deploying the application using an
advanced deployment technique such as blue-green or canary.

8.1 Encrypt Sensitive Data (Sealed Secrets)
Problem
You want to manage Kubernetes Secrets and encrypted objects in Git.

Solution
Sealed Secrets is an open source project by Bitnami used to encrypt a Kubernetes
Secrets into a SealedSecret Kubernetes Custom Resource, representing an encrypted
object safe to store in Git.

Sealed Secrets uses public-key cryptography and consists of two main components:

• A Kubernetes controller that has knowledge about the private and public key•
used to decrypt and encrypt encrypted secrets and is responsible for reconcilia‐
tion. The controller also supports automatic secret rotation for the private key
and key expiration management in order to enforce the re-encryption of secrets.

• kubeseal, a CLI used by developers to encrypt their secrets before committing•
them to a Git repository.

The SealedSecret object is encrypted and decrypted only by the SealedSecret
controller running in the target Kubernetes cluster. This operation is exclusive only
to this component, thus nobody else can decrypt the object. The kubeseal CLI
allows the developer to take a normal Kubernetes Secret resource and convert it to a
SealedSecret resource definition as shown in Figure 8-1.

In your Kubernetes cluster with Argo CD, you can install the kubeseal CLI for your
operating system from the GitHub project’s releases. At the time of writing this book,
we are using version 0.18.2.

On macOS, kubeseal is available through Homebrew as follows:
brew install kubeseal

192 | Chapter 8: Advanced Topics

https://oreil.ly/MWTNB
https://oreil.ly/zmEh3
https://brew.sh

Figure 8-1. Sealed Secrets with GitOps

After you install the CLI, you can install the controller as follows:
kubectl create \
-f https://github.com/bitnami-labs/sealed-secrets/releases/download/0.18.2/control-
ler.yaml

You should have output similar to the following:
serviceaccount/sealed-secrets-controller created
deployment.apps/sealed-secrets-controller created
customresourcedefinition.apiextensions.k8s.io/sealedsecrets.bitnami.com created
service/sealed-secrets-controller created
rolebinding.rbac.authorization.k8s.io/sealed-secrets-controller created
rolebinding.rbac.authorization.k8s.io/sealed-secrets-service-proxier created
role.rbac.authorization.k8s.io/sealed-secrets-service-proxier created
role.rbac.authorization.k8s.io/sealed-secrets-key-admin created
clusterrolebinding.rbac.authorization.k8s.io/sealed-secrets-controller created
clusterrole.rbac.authorization.k8s.io/secrets-unsealer created

As an example, let’s create a Secret for the Pac-Man game deployed in Chapter 5:
kubectl create secret generic pacman-secret \
--from-literal=user=pacman \
--from-literal=pass=pacman

You should have the following output:
secret/pacman-secret created

And here you can see the YAML representation:
kubectl get secret pacman-secret -o yaml

8.1 Encrypt Sensitive Data (Sealed Secrets) | 193

apiVersion: v1
data:
 pass: cGFjbWFu
 user: cGFjbWFu
kind: Secret
metadata:
 name: pacman-secret
 namespace: default
type: Opaque

Now, you can convert the Secret into a SealedSecret in this way:
kubectl get secret pacman-secret -o yaml \
| kubeseal -o yaml > pacman-sealedsecret.yaml

apiVersion: bitnami.com/v1alpha1
kind: SealedSecret
metadata:
 creationTimestamp: null
 name: pacman-secret
 namespace: default
spec:
 encryptedData:
 pass: AgBJR1AgZ5Gu5NOVsG1E8SKBcdB3QSDdzZka3RRYuWV7z8g7ccQ0dGc1suVOP8wX/
ZpPmIMp8+urPYG62k4EZRUjuu/Vg2E1nSbsGBh9eKu3NaO6tGSF3eGk6PzN6XtRhDeER4u7MG5pj/
+FXRAKcy8Z6RfzbVEGq/QJQ4z0ecSNdJmG07ERMm1Q+lPNGvph2Svx8aCgFLqRsdLhFyvwb
TyB3XnmFHrPr+2DynxeN8XVMoMkRYXgVc6GAoxUK7CnC3Elpuy7lIdPwc5QBx9kUVfra83LX8/KxeaJ
wyCqvscIGjtcxUtpTpF5jm1t1DSRRNbc4m+7pTwTmnRiUuaMVeujaBco4521yTkh5iEPjnj
vUt+VzK01NVoeNunqIazp15rFwTvmiQ5PAtbiUXpT733zCr60QBgSxPg31vw98+u+RcIHvaMIoDCqaX
xUdcn2JkUF+bZXtxNmIRTAiQVQ1vEPmrZxpvZcUh/PPC4L/RFWrQWnOzKRyqLq9wRoSLPbKyvMX
naxH0v3USGIktmtJlGjlXoW/i+HIoSeMFS0mUAzOF5M5gweOhtxKGh3Y74ZDn5PbVA/
9kbkuWgvPNGDZL924Dm6AyM5goHECr/RRTm1e22K9BfPASARZuGA6paqb9h1XEqyqesZgM0R8PLiy
Luu+tpqydR0SiYLc5VltdjzpIyyy9Xmw6Aa3/4SB+4tSwXSUUrB5yc=
 user: AgBhYDZQzOwinetPceZL897aibTYp4QPGFvP6ZhDyuUAx
OWXBQ7jBA3KPUqLvP8vBcxLAcS7HpKcDSgCdi47D2WhShdBR4jWJufwKmR3j+ayTdw72t3ALpQhTYI0iMY
TiNdR0/o3vf0jeNMt/oWCRsifqBxZaIShE53rAFEjEA6D7CuCDXu8BHk1DpSr79d5Au4puzpH
VODh+v1T+Yef3k7DUoSnbYEh3CvuRweiuq5lY8G0oob28j38wdyxm3GIrexa+M/
ZIdO1hxZ6jz4edv6ejdZfmQNdru3c6lmljWwcO+0Ue0MqFi4ZF/YNUsiojI+781n1m3K/
giKcyPLn0skD7DyeKPoukoN6W5P71OuFSkF+VgIeejDaxuA7bK3PEaUgv79KFC9aEEnBr/
7op7HY7X6aMDahmLUc/+zDhfzQvwnC2wcj4B8M2OBFa2ic2PmGzrIWhlBbs1OgnpehtG
SETq+YRDH0alWOdFBq1U8qn6QA8Iw6ewu8GTele3zlPLaADi5O6LrJbIZNlY0+PutWfjs9ScVVEJy+I9BGd
yT6tiA/4v4cxH6ygG6NzWkqxSaYyNrWWXtLhOlqyCpTZ
tUwHnF+OLB3gCpDZPx+NwTe2Kn0jY0c83LuLh5PJ090AsWWqZaRQyE
LeL6y6mVekQFWHGfK6t57Vb7Z3+5XJCgQn+xFLkj3SIz0ME5D4+DSsUDS1fyL8uI=
 template:
 data: null
 metadata:
 creationTimestamp: null
 name: pacman-secret
 namespace: default
 type: Opaque

Here you find the data encrypted by the Sealed Secrets controller.

194 | Chapter 8: Advanced Topics

Now you can safely push your SealedSecret to your Kubernetes manifests repo and
create the Argo CD application. Here’s an example from this book’s repository:

argocd app create pacman \
--repo https://github.com/gitops-cookbook/pacman-kikd-manifests.git \
--path 'k8s/sealedsecrets' \
--dest-server https://kubernetes.default.svc \
--dest-namespace default \
--sync-policy auto

Check if the app is running and healthy:
argocd app list

You should get output similar to the following:
NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH ↳
 SYNCPOLICY CONDITIONS
REPO PATH TARGET
pacman https://kubernetes.default.svc default default Synced Healthy↳
 <none> <none> https://github.com/gitops-cookbook/pacman-kikd-
manifests.git k8s/sealedsecrets

8.2 Encrypt Secrets with ArgoCD (ArgoCD + HashiCorp
Vault + External Secret)
Problem
You want to avoid storing credentials in Git and you want to manage them in external
services or vaults.

Solution
In Recipe 8.1 you saw how to manage encrypted data in Git following the GitOps
declarative way, but how do you avoid storing even encrypted credentials with
GitOps?

One solution is External Secrets, an open source project initially created by GoDaddy,
which aims at storing secrets in external services or vaults from different vendors,
then storing only the reference to such secrets in Git.

Today, External Secrets supports systems such as AWS Secrets Manager, HashiCorp
Vault, Google Secrets Manager, Azure Key Vault, and more. The idea is to provide a
user-friendly abstraction for the external API that stores and manages the lifecycles of
the secrets.

In depth, ExternalSecrets is a Kubernetes controller that reconciles Secrets into the
cluster from a Custom Resource that includes a reference to a secret in an external
key management system. The Custom Resource SecretStore specifies the backend

8.2 Encrypt Secrets with ArgoCD (ArgoCD + HashiCorp Vault + External Secret) | 195

https://oreil.ly/TXHRa
https://oreil.ly/ytBeU

containing the confidential data, and how it should be transformed into a Secret by
defining a template, as you can see in Figure 8-2. The SecretStore has the configura‐
tion to connect to the external secret manager.

Thus, the ExternalSecrets objects can be safely stored in Git, as they do not contain
any confidential information, but just the references to the external services manag‐
ing credentials.

Figure 8-2. External Secrets with Argo CD

You can install External Secrets with a Helm Chart as follows. At the time of writing
this book, we are using version 0.5.9:

helm repo add external-secrets https://charts.external-secrets.io

helm install external-secrets \
 external-secrets/external-secrets \
 -n external-secrets \
 --create-namespace

You should get output similar to the following:
NAME: external-secrets
LAST DEPLOYED: Fri Sep 2 13:09:53 2022
NAMESPACE: external-secrets
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
external-secrets has been deployed successfully!

196 | Chapter 8: Advanced Topics

In order to begin using ExternalSecrets, you will need to set up a SecretStore or
ClusterSecretStore resource (for example, by creating a vault SecretStore).

More information on the different types of SecretStores and how to configure them
can be found in our GitHub page.

You can also install the External Secrets Operator with OLM from
OperatorHub.io.

As an example with one of the providers supported, such as HashiCorp Vault, you
can do the following.

First download and install HashiCorp Vault for your operating system and get your
Vault Token. Then create a Kubernetes Secret as follows:

export VAULT_TOKEN=<YOUR_TOKEN>
kubectl create secret generic vault-token \
 --from-literal=token=$VAULT_TOKEN \
 -n external-secrets

Then create a SecretStore as a reference to this external system:
apiVersion: external-secrets.io/v1beta1
kind: SecretStore
metadata:
 name: vault-secretstore
 namespace: default
spec:
 provider:
 vault:
 server: "http://vault.local:8200"
 path: "secret"
 version: "v2"
 auth:
 tokenSecretRef:
 name: "vault-token"
 key: "token"
 namespace: external-secrets

Hostname where your Vault is running

Name of the Kubernetes Secret containing the vault token

Key to address the value in the Kubernetes Secret containing the vault token
content:

kubectl create -f vault-secretstore.yaml

8.2 Encrypt Secrets with ArgoCD (ArgoCD + HashiCorp Vault + External Secret) | 197

https://oreil.ly/LQzEh
https://oreil.ly/w3x71
https://oreil.ly/sg7yS
https://oreil.ly/vjGSq
https://oreil.ly/6Y5cS

Now you can create a Secret in your Vault as follows:
vault kv put secret/pacman-secrets pass=pacman

And then reference it from the ExternalSecret as follows:
apiVersion: external-secrets.io/v1beta1
kind: ExternalSecret
metadata:
 name: pacman-externalsecrets
 namespace: default
spec:
 refreshInterval: "15s"
 secretStoreRef:
 name: vault-secretstore
 kind: SecretStore
 target:
 name: pacman-externalsecrets
 data:
 - secretKey: token
 remoteRef:
 key: secret/pacman-secrets
 property: pass

kubectl create -f pacman-externalsecrets.yaml

Now you can deploy the Pac-Man game with Argo CD using External Secrets as
follows:

argocd app create pacman \
--repo https://github.com/gitops-cookbook/pacman-kikd-manifests.git \
--path 'k8s/externalsecrets' \
--dest-server https://kubernetes.default.svc \
--dest-namespace default \
--sync-policy auto

8.3 Trigger the Deployment of an Application
Automatically (Argo CD Webhooks)
Problem
You don’t want to wait for Argo CD syncs and you want to immediately deploy an
application when a change occurs in Git.

Solution
While Argo CD polls Git repositories every three minutes to detect changes to
the monitored Kubernetes manifests, it also supports an event-driven approach
with webhooks notifications from popular Git servers such as GitHub, GitLab, or
Bitbucket.

198 | Chapter 8: Advanced Topics

Argo CD Webhooks are enabled in your Argo CD installation and available at the
endpoint /api/webhooks.

To test webhooks with Argo CD using Minikube you can use Helm to install a local
Git server such as Gitea, an open source lightweight server written in Go, as follows:

helm repo add gitea-charts https://dl.gitea.io/charts/
helm install gitea gitea-charts/gitea

You should have output similar to the following:
helm install gitea gitea-charts/gitea
"gitea-charts" has been added to your repositories
NAME: gitea
LAST DEPLOYED: Fri Sep 2 15:04:04 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
1. Get the application URL by running these commands:
 echo "Visit http://127.0.0.1:3000 to use your application"
 kubectl --namespace default port-forward svc/gitea-http 3000:3000

Log in to the Gitea server with the default credentials you find the
in the values.yaml file from the Helm Chart here or define new
ones via overriding them.

Import the Pac-Man manifests repo into Gitea.

Configure the Argo app:
argocd app create pacman-webhook \
--repo http://gitea-http.default.svc:3000/gitea_admin/pacman-kikd-manifests.git \
--dest-server https://kubernetes.default.svc \
--dest-namespace default \
--path k8s \
--sync-policy auto

To add a webhook to Gitea, navigate to the top-right corner and click Settings. Select
the Webhooks tab and configure it as shown in Figure 8-3:

• Payload URL: http://localhost:9090/api/webhooks•
• Content type: application/json•

8.3 Trigger the Deployment of an Application Automatically (Argo CD Webhooks) | 199

https://oreil.ly/3Ab46
https://docs.gitea.io
https://oreil.ly/Nkaeu
https://oreil.ly/LwTaC

Figure 8-3. Gitea Webhooks

You can omit the Secret for this example; however, it’s best practice
to configure secrets for your webhooks. Read more from the docs.

Save it and push your change to the repo on Gitea. You will see a new sync from Argo
CD immediately after your push.

8.4 Deploy to Multiple Clusters
Problem
You want to deploy an application to different clusters.

Solution
Argo CD supports the ApplicationSet resource to “templetarize” an Argo CD
Application resource. It covers different use cases, but the most important are:

200 | Chapter 8: Advanced Topics

https://oreil.ly/udDkS

• Use a Kubernetes manifest to target multiple Kubernetes clusters.•
• Deploy multiple applications from one or multiple Git repositories.•

Since the ApplicationSet is a template file with placeholders to substitute at run‐
time, we need to feed these with some values. For this purpose, ApplicationSet has
the concept of generators.

A generator is responsible for generating the parameters, which will finally be
replaced in the template placeholders to generate a valid Argo CD Application.

Create the following ApplicationSet:
apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: bgd-app
 namespace: argocd
spec:
 generators:
 - list:
 elements:
 - cluster: staging
 url: https://kubernetes.default.svc
 location: default
 - cluster: prod
 url: https://kubernetes.default.svc
 location: app
 template:
 metadata:
 name: '{{cluster}}-app'
 spec:
 project: default
 source:
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 path: ch08/bgd-gen/{{cluster}}
 destination:
 server: '{{url}}'
 namespace: '{{location}}'
 syncPolicy:
 syncOptions:
 - CreateNamespace=true

Defines a generator

Sets the value of the parameters

Defines the Application resource as a template

cluster placeholder

8.4 Deploy to Multiple Clusters | 201

url placeholder

Apply the previous file by running the following command:
kubectl apply -f bgd-application-set.yaml

When this ApplicationSet is applied to the cluster, Argo CD generates and automat‐
ically registers two Application resources. The first one is:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: staging-app
spec:
 project: default
 source:
 path: ch08/bgd-gen/staging
 repoURL: https://github.com/example/app.git
 targetRevision: HEAD
 destination:
 namespace: default
 server: https://kubernetes.default.svc
 ...

And the second one:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: prod-app
spec:
 project: default
 source:
 path: ch08/bgd-gen/prod
 repoURL: https://github.com/example/app.git
 targetRevision: HEAD
 destination:
 namespace: app
 server: https://kubernetes.default.svc
 ...

Inspect the creation of both Application resources by running the following
command:

Remember to login first
argocd login --insecure --grpc-web $argoURL --username admin --password $argoPass

argocd app list

And the output should be similar to (trunked):
NAME CLUSTER NAMESPACE
prod-app https://kubernetes.default.svc app
staging-app https://kubernetes.default.svc default

202 | Chapter 8: Advanced Topics

Delete both applications by deleting the ApplicationSet file:
kubectl delete -f bgd-application-set.yaml

Discussion
We’ve seen the simplest generator, but there are eight generators in total at the time of
writing this book:

List
Generates Application definitions through a fixed list of clusters. (It’s the one
we’ve seen previously).

Cluster
Similar to List but based on the list of clusters defined in Argo CD.

Git
Generates Application definitions based on a JSON/YAML properties file within
a Git repository or based on the directory layout of the repository.

SCM Provider
Generates Application definitions from repositories within an organization.

Pull Request
Generates Application definitions from open pull requests.

Cluster Decision Resource
Generates Application definitions using duck-typing.

Matrix
Combines values of two separate generators.

Merge
Merges values from two or more generators.

In the previous example, we created the Application objects from a fixed list of
elements. This is fine when the number of configurable environments is small; in
the example, two clusters refer to two Git folders (ch08/bgd-gen/staging and ch08/
bgd-gen/prod). In the case of multiple environments (which means various folders),
we can dynamically use the Git generator to generate one Application per directory.

Let’s migrate the previous example to use the Git generator. As a reminder, the Git
directory layout used was:

bgd-gen
├── staging
│ ├── ...yaml
└── prod
 ├── ...yaml

8.4 Deploy to Multiple Clusters | 203

https://oreil.ly/kpRkV

Create a new file of type ApplicationSet generating an Application for each direc‐
tory of the configured Git repo:

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: cluster-addons
 namespace: openshift-gitops
spec:
 generators:
 - git:
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 revision: main
 directories:
 - path: ch08/bgd-gen/*
 template:
 metadata:
 name: '{{path[0]}}{{path[2]}}'
 spec:
 project: default
 source:
 repoURL: https://github.com/gitops-cookbook/gitops-cookbook-sc.git
 targetRevision: main
 path: '{{path}}'
 destination:
 server: https://kubernetes.default.svc
 namespace: '{{path.basename}}'

Configures the Git repository to read layout

Initial path to start scanning directories

Application definition

The directory paths within the Git repository matching the path wildcard (stag
ing or prod)

Directory path (full path)

The rightmost pathname

Apply the resource:
kubectl apply -f bgd-git-application-set.yaml

Argo CD creates two applications as there are two directories:
argocd app list

NAME CLUSTER NAMESPACE
ch08prod https://kubernetes.default.svc prod
ch08staging https://kubernetes.default.svc staging

204 | Chapter 8: Advanced Topics

Also, this generator is handy when your application is composed of different compo‐
nents (service, database, distributed cache, email server, etc.), and deployment files
for each element are placed in other directories. Or, for example, a repository with all
operators required to be installed in the cluster:

app
├── tekton-operator
│ ├── ...yaml
├── prometheus-operator
│ ├── ...yaml
└── istio-operator
 ├── ...yaml

Instead of reacting to directories, Git generator can create Application objects with
parameters specified in JSON/YAML files.

The following snippet shows an example JSON file:
{
 "cluster": {
 "name": "staging",
 "address": "https://1.2.3.4"
 }
}

This is an excerpt of the ApplicationSet to react to these files:
apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: guestbook
spec:
 generators:
 - git:
 repoURL: https://github.com/example/app.git
 revision: HEAD
 files:
 - path: "app/**/config.json"
 template:
 metadata:
 name: '{{cluster.name}}-app'
....

Finds all config.json files placed in all subdirectories of the app

Injects the value set in config.json

This ApplicationSet will generate one Application for each config.json file in the
folders matching the path expression.

8.4 Deploy to Multiple Clusters | 205

See Also
• Argo CD Generators•
• Duck Types•

8.5 Deploy a Pull Request to a Cluster
Problem
You want to deploy a preview of the application when a pull request is created.

Solution
Use the pull request generator to automatically discover open pull requests within a
repository and create an Application object.

Let’s create an ApplicationSet reacting to any GitHub pull request annotated with
the preview label created on the configured repository.

Create a new file named bgd-pr-application-set.yaml with the following content:
apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: myapps
 namespace: openshift-gitops
spec:
 generators:
 - pullRequest:
 github:
 owner: gitops-cookbook
 repo: gitops-cookbook-sc
 labels:
 - preview
 requeueAfterSeconds: 60
 template:
 metadata:
 name: 'myapp-{{branch}}-{{number}}'
 spec:
 source:
 repoURL: 'https://github.com/gitops-cookbook/gitops-cookbook-sc.git'
 targetRevision: '{{head_sha}}'
 path: ch08/bgd-pr
 project: default
 destination:
 server: https://kubernetes.default.svc
 namespace: '{{branch}}-{{number}}'

GitHub pull request generator

206 | Chapter 8: Advanced Topics

https://oreil.ly/EnOfl
https://oreil.ly/tEFQW

Organization/user

Repository

Select the target PRs

Polling time in seconds to check if there is a new PR (60 seconds)

Sets the name with branch name and number

Sets the Git SHA number

Apply the previous file by running the following command:
kubectl apply -f bgd-pr-application-set.yaml

Now, if you list the Argo CD applications, you’ll see that none are registered. The
reason is there is no pull request yet in the repository labeled with preview:

argocd app list
NAME CLUSTER NAMESPACE PROJECT STATUS

Create a pull request against the repository and label it with preview.

In GitHub, the pull request window should be similar to Figure 8-4.

Figure 8-4. Pull request in GitHub

Wait for one minute until the ApplicationSet detects the change and creates the
Application object.

Run the following command to inspect that the change has been detected and
registered:

8.5 Deploy a Pull Request to a Cluster | 207

kubectl describe applicationset myapps -n argocd

...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal created 23s applicationset-controller created Applica-
tion "myapp-lordofthejars-patch-1-1"
 Normal unchanged 23s (x2 over 23s) applicationset-controller unchanged Appli-
cation "myapp-lordofthejars-patch-1-1"

Check the registration of the Application to the pull request:
argocd app list
NAME CLUSTER NAMESPACE
myapp-lordofthejars-patch-1-1 https://kubernetes.default.svc lordofthejars-
patch-1-1

The Application object is automatically removed when the pull request is closed.

Discussion
At the time of writing this book, the following pull request providers are supported:

• GitHub•
• Bitbucket•
• Gitea•
• GitLab•

The ApplicationSet controller polls every requeueAfterSeconds interval to detect
changes but also supports using webhook events.

To configure it, follow Recipe 8.3, but also enable sending pull requests events too in
the Git provider.

8.6 Use Advanced Deployment Techniques
Problem
You want to deploy the application using an advanced deployment technique such as
blue-green or canary.

Solution
Use the Argo Rollouts project to roll out updates to an application.

208 | Chapter 8: Advanced Topics

https://oreil.ly/g4mlf

Argo Rollouts is a Kubernetes controller providing advanced deployment techniques
such as blue-green, canary, mirroring, dark canaries, traffic analysis, etc. to Kuber‐
netes. It integrates with many Kubernetes projects like Ambassador, Istio, AWS Load
Balancer Controller, NGNI, SMI, or Traefik for traffic management, and projects
like Prometheus, Datadog, and New Relic to perform analysis to drive progressive
delivery.

To install Argo Rollouts to the cluster, run the following command in a terminal
window:

kubectl create namespace argo-rollouts

kubectl apply -n argo-rollouts -f https://github.com/argoproj/argo-rollouts/relea-
ses/download/v1.2.2/install.yaml
...
clusterrolebinding.rbac.authorization.k8s.io/argo-rollouts created
secret/argo-rollouts-notification-secret created
service/argo-rollouts-metrics created
deployment.apps/argo-rollouts created

Although it’s not mandatory, we recommend you install the Argo Rollouts Kubectl
Plugin to visualize rollouts. Follow the instructions to install it. With everything in
place, let’s deploy the initial version of the BGD application.

Argo Rollouts doesn’t use the standard Kubernetes Deployment file, but a specific
new Kubernetes resource named Rollout. It’s like a Deployment object, hence all its
options are supported, but it adds some fields to configure the rolling update.

Let’s deploy the first version of the application. We’ll define the canary release process
when Kubernetes executes a rolling update, which in this case follows these steps:

1. Forward 20% of traffic to the new version.1.
2. Wait until a human decides to proceed with the process.2.
3. Forward 40%, 60%, 80% of the traffic to the new version automatically, waiting3.

30 seconds between every increase.

Create a new file named bgd-rollout.yaml with the following content:
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: bgd-rollouts
spec:
 replicas: 5
 strategy:
 canary:
 steps:
 - setWeight: 20
 - pause: {}

8.6 Use Advanced Deployment Techniques | 209

https://oreil.ly/1GWsz

 - setWeight: 40
 - pause: {duration: 30s}
 - setWeight: 60
 - pause: {duration: 30s}
 - setWeight: 80
 - pause: {duration: 30s}
 revisionHistoryLimit: 2
 selector:
 matchLabels:
 app: bgd-rollouts
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: bgd-rollouts
 spec:
 containers:
 - image: quay.io/rhdevelopers/bgd:1.0.0
 name: bgd
 env:
 - name: COLOR
 value: "blue"
 resources: {}

Canary release

List of steps to execute

Sets the ratio of canary

Rollout is paused

Pauses the rollout for 30 seconds

template Deployment definition

Apply the resource to deploy the application. Since there is no previous deployment,
the canary part is ignored:

kubectl apply -f bgd-rollout.yaml

Currently, there are five pods as specified in the replicas field:
kubectl get pods

NAME READY STATUS RESTARTS AGE
bgd-rollouts-679cdfcfd-6z2zf 1/1 Running 0 12m
bgd-rollouts-679cdfcfd-8c6kl 1/1 Running 0 12m
bgd-rollouts-679cdfcfd-8tb4v 1/1 Running 0 12m
bgd-rollouts-679cdfcfd-f4p7f 1/1 Running 0 12m
bgd-rollouts-679cdfcfd-tljfr 1/1 Running 0 12m

210 | Chapter 8: Advanced Topics

And using the Argo Rollout Kubectl Plugin:
kubectl argo rollouts get rollout bgd-rollouts

Name: bgd-rollouts
Namespace: default
Status: ✔ Healthy
Strategy: Canary
 Step: 8/8
 SetWeight: 100
 ActualWeight: 100
Images: quay.io/rhdevelopers/bgd:1.0.0 (stable)
Replicas:
 Desired: 5
 Current: 5
 Updated: 5
 Ready: 5
 Available: 5

NAME KIND STATUS AGE INFO
⟳ bgd-rollouts Rollout ✔ Healthy 13m
└──# revision:1
 └──⧉ bgd-rollouts-679cdfcfd ReplicaSet ✔ Healthy 13m stable
 ├──□ bgd-rollouts-679cdfcfd-6z2zf Pod ✔ Running 13m ready:1/1
 ├──□ bgd-rollouts-679cdfcfd-8c6kl Pod ✔ Running 13m ready:1/1
 ├──□ bgd-rollouts-679cdfcfd-8tb4v Pod ✔ Running 13m ready:1/1
 ├──□ bgd-rollouts-679cdfcfd-f4p7f Pod ✔ Running 13m ready:1/1
 └──□ bgd-rollouts-679cdfcfd-tljfr Pod ✔ Running 13m ready:1/1

Let’s deploy a new version to trigger a canary rolling update. Create a new file named
bgd-rollout-v2.yaml with exactly the same content as the previous one, but change the
environment variable COLOR value to green:

...
name: bgd
env:
- name: COLOR
 value: "green"
resources: {}

Apply the previous resource and check how Argo Rollouts executes the rolling
update. List the pods again to check that 20% of the pods are new while the other 80%
are the old version:

kubectl get pods

NAME READY STATUS RESTARTS AGE
bgd-rollouts-679cdfcfd-6z2zf 1/1 Running 0 27m
bgd-rollouts-679cdfcfd-8c6kl 1/1 Running 0 27m
bgd-rollouts-679cdfcfd-8tb4v 1/1 Running 0 27m
bgd-rollouts-679cdfcfd-tljfr 1/1 Running 0 27m
bgd-rollouts-c5495c6ff-zfgvn 1/1 Running 0 13s

8.6 Use Advanced Deployment Techniques | 211

New version pod

And do the same using the Argo Rollout Kubectl Plugin:
kubectl argo rollouts get rollout bgd-rollouts

...
NAME KIND STATUS AGE INFO
⟳ bgd-rollouts Rollout ॥ Paused 31m
├──# revision:2
│ └──⧉ bgd-rollouts-c5495c6ff ReplicaSet ✔ Healthy 3m21s canary
│ └──□ bgd-rollouts-c5495c6ff-zfgvn Pod ✔ Running 3m21s ready:1/1
└──# revision:1
 └──⧉ bgd-rollouts-679cdfcfd ReplicaSet ✔ Healthy 31m stable
 ├──□ bgd-rollouts-679cdfcfd-6z2zf Pod ✔ Running 31m ready:1/1
 ├──□ bgd-rollouts-679cdfcfd-8c6kl Pod ✔ Running 31m ready:1/1
 ├──□ bgd-rollouts-679cdfcfd-8tb4v Pod ✔ Running 31m ready:1/1
 └──□ bgd-rollouts-679cdfcfd-tljfr Pod ✔ Running 31m ready:1/1

Remember that the rolling update process is paused until the operator executes a
manual step to let the process continue. In a terminal window, run the following
command:

kubectl argo rollouts promote bgd-rollouts

The rollout is promoted and continues with the following steps, which is substituting
the old version pods with new versions every 30 seconds:

kubectl get pods

NAME READY STATUS RESTARTS AGE
bgd-rollouts-c5495c6ff-2g7r8 1/1 Running 0 89s
bgd-rollouts-c5495c6ff-7mdch 1/1 Running 0 122s
bgd-rollouts-c5495c6ff-d9828 1/1 Running 0 13s
bgd-rollouts-c5495c6ff-h4t6f 1/1 Running 0 56s
bgd-rollouts-c5495c6ff-zfgvn 1/1 Running 0 11m

The rolling update finishes with the new version progressively deployed to the cluster.

Discussion
Kubernetes doesn’t implement advanced deployment techniques natively. For this
reason, Argo Rollouts uses the number of deployed pods to implement the canary
release.

As mentioned before, Argo Rollouts integrates with Kubernetes products that offer
advanced traffic management capabilities like Istio.

Using Istio, the traffic splitting is done correctly at the infrastructure level instead of
playing with replica numbers like in the first example. Argo Rollouts integrates with
Istio to execute a canary release, automatically updating the Istio VirtualService
object.

212 | Chapter 8: Advanced Topics

https://istio.io

Assuming you already know Istio and have a Kubernetes cluster with Istio installed,
you can perform integration between Argo Rollouts and Istio by setting the
trafficRouting from Rollout resource to Istio.

First, create a Rollout file with Istio configured:
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: bgdapp
 labels:
 app: bgdapp
spec:
 strategy:
 canary:
 steps:
 - setWeight: 20
 - pause:
 duration: "1m"
 - setWeight: 50
 - pause:
 duration: "2m"
 canaryService: bgd-canary
 stableService: bgd
 trafficRouting:
 istio:
 virtualService:
 name: bgd
 routes:
 - primary
 replicas: 1
 revisionHistoryLimit: 2
 selector:
 matchLabels:
 app: bgdapp
 version: v1
 template:
 metadata:
 labels:
 app: bgdapp
 version: v1
 annotations:
 sidecar.istio.io/inject: "true"
 spec:
 containers:
 - image: quay.io/rhdevelopers/bgd:1.0.0
 name: bgd
 env:
 - name: COLOR
 value: "blue"
 resources: {}

8.6 Use Advanced Deployment Techniques | 213

Canary section

Reference to a Kubernetes Service pointing to the new service version

Reference to a Kubernetes Service pointing to the old service version

Configures Istio

Reference to the VirtualService where weight is updated

Name of the VirtualService

Route name within VirtualService

Deploys the Istio sidecar container

Then, we create two Kubernetes Services pointing to the same deployment used to
redirect traffic to the old or the new one.

The following Kubernetes Service is used in the stableService field:
apiVersion: v1
kind: Service
metadata:
 name: bgd
 labels:
 app: bgdapp
spec:
 ports:
 - name: http
 port: 8080
 selector:
 app: bgdapp

And the Canary one is the same but with a different name. It’s the one used in the
canaryService field:

apiVersion: v1
kind: Service
metadata:
 name: bgd-canary
 labels:
 app: bgdapp
spec:
 ports:
 - name: http
 port: 8080
 selector:
 app: bgdapp

214 | Chapter 8: Advanced Topics

Finally, create the Istio Virtual Service to be updated by Argo Rollouts to update the
canary traffic for each service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bgd
spec:
 hosts:
 - bgd
 http:
 - route:
 - destination:
 host: bgd
 weight: 100
 - destination:
 host: bgd-canary
 weight: 0
 name: primary

Stable Kubernetes Service

Canary Kubernetes Service

Route name

After applying these resources, we’ll get the first version of the application up and
running:

kubectl apply -f bgd-virtual-service.yaml
kubectl apply -f service.yaml
kubectl apply -f service-canary.yaml
kubectl apply -f bgd-isio-rollout.yaml

When any update occurs on the Rollout object, the canary release will start as
described in the Solution. Now, Argo Rollouts updates the bgd virtual service weights
automatically instead of playing with pod numbers.

See Also
• Argo Rollouts - Kubernetes Progressive Delivery Controller•
• Istio - Argo Rollouts•
• Istio•
• Istio Tutorial from Red Hat•

8.6 Use Advanced Deployment Techniques | 215

https://oreil.ly/XQ64b
https://oreil.ly/lKDYH
https://istio.io
https://oreil.ly/Vzk9G

Index

A
accounts

container registry services, creating, 7-8
GitHub, creating, 9-10

advanced deployment techniques, 209
Agile, 5
application deployment model, 4-5
Application resource file (Argo CD), 157
applications

Argo CD
removing, 164
self-healing, 164-166
updating deployment files, 161

compiling, 108-113
GitHub Actions, 150-153
from private repositories, 114-116
Tekton Triggers, 135-139

configuration values, 43
container images, 17

creating with Docker, 18-23
containerizing using Tekton Tasks, 117-120
deployment, 4-5

Argo CD, 156-162
Argo Rollouts, 208-215
automatic with webhooks, 198-200
to Kubernetes, 122-125
to multiple clusters, 200-205
to multiple namespaces, 57-60
Tekton Pipelines, 125-134

Helm-packaged, updating with Tekton Pipe‐
line, 144-146

Java, adding Jib, 24-25
listing with Argo CD, 158
packaging, 108-113

GitHub Actions, 150-153
from private repositories, 114-116
Tekton Triggers, 135-139

Python, Dockerfile, 19
registering, Argo CD, 158
synchronization (Argo CD), 158-159

defining time windows, 187-189
ApplicationSets, 191, 201-203
appVersion tag, 80
Argo CD, 155

admin account, password, 156
application deployment

automatic with webhooks, 198-200
updating files, 161

application synchronization, defining time
windows, 187-189

applications
deploying, 156-162
deploying to multiple clusters, 200-205
listing, 158
registering, 158
removing, 164
self-healing, 164-166
synchronizing, 158-159, 162-166

ApplicationSet resource, creating, 201-203
ApplicationSets, 191
automated policy, 162
container images, updating automatically,

171-178
cron expressions, 188
Git repositories, registering, 179-182
Helm hooks, 171
Helm manifests, deploying, 168-171
installing, 156-157

217

Kubernetes manifests, setting deployment
order, 182-187

Kustomize manifests, deploying, 166-168
manifests

annotations, 173
deploying, 178-182

resources, pruning, 164
Sealed Secrets, installing, 192
secrets, encrypting, 195-198
security management, GitOps workflows,

191
STATUS field, 158, 161
syncPolicy, 162

Argo CD Image Updater, 172
ConfigMap, 177
configuration options, 173
default commit message, 177
installing, 172
repository read access, 176
version constraint field, 176

Argo Rollouts, 192
applications, deploying, 208-215
Kubectl Plugin, 209

argocd CLI tool, installing, 156
authentication

Jib, 25
Tekton schemes, 114-116

automated policy, Argo CD, 162

B
base directory files, Kustomize, 44
build logs, checking, 39
build-kaniko.yaml file, 38
Buildah, 17

container images
building from scratch, 31
creating, 28-31

Dockerfile, 28
buildah containers command, 28
Buildah, OS support, 27
Buildpacks, 17

container images, creating, 32-35
Homebrew, 32

C
canary release process, 209-215
CD (continuous deployment)

Argo CD, 155
Kubernetes, Tekton Tasks, 122-125

Centos, container images, 28
Chart.yaml file

creating, 68
dependencies section, registering Charts,

88-92
Charts, 67

available, 85
default values, checking, 87
deploying, 84-87

with dependencies, 88-92
External Secrets, installing, 196
Helm repositories, installing from, 145
history command, 74
packaging/distributing, 82-83
public repositories, 84
publishing, 82
registering, 84
repositories, 82
sharing to other Charts, 74
uninstalling, 74
validating, 84

CI (continuous integration), 99, 155
Drone, 148

CI/CD (continuous integration/continuous
delivery)
GitHub Actions

compiling applications, 150-153
packaging applications, 150-153

Kubernetes, 3
CLI tool, 15
Cloud Native Buildpacks (see Buildpacks)
cloud native CI, 99
cluster decision resource generator, 203
cluster generator, 203
Cluster Resource Definitions (CRDs) (see

CRDs (Cluster Resource Definitions))
clusters

Argo Rollouts, installing, 209
local, creating, 12-15

ClusterSecretStore resource, 197-198
ClusterTasks, 129
ConfigMap, 43

Argo CD Image Updater, 177
generating, Kustomize, 60-66
rolling updates, Helm, 67

ConfigMapGenerator, 61-65
configuration properties

hashes, 64
merging, 64

218 | Index

rolling updates, 67
container engines, Docker, 17
container images

Buildah, creating, 28-31
Buildpacks, 32-35
Centos, 28
consuming, 21
creating, 17

commands, 20
pushing to registry, 118-120

Docker
cache, verifying, 21
creating, 18-23

HTTPD, creating, 28
Jib, creating, 23-27
Kubernetes, building with Shipwright, 35-41
layers, 20, 22

internet connections, 22
list of available, 21
naming, 20
OCI, building, 27-31
plugins, adding, 24
pushing to registry, 21
references, updating, 139-141
revision number, checking, 79
running, 22
structure, 18-19
updating

automatically with Argo CD, 171-178
Helm, 79-81
Kustomize, 50-52

version tag, updating, 50-52
container registry

credentials, adding, 149
GitHub, 153

container registry services, creating accounts,
7-8

containers, 17
accessing, 23
publishing, 7

continuous deployment (CD) (see CD (contin‐
uous deployment))

continuous integration (CI) (see CI (continuous
integration))

continuous integration/continuous delivery
(CI/CD) (see CI/CD (continuous integra‐
tion/continuous delivery))

CRDs (Cluster Resource Definitions), event
handling, 135

CRDs (Kubernetes Custom Resources), 100
credentials

container registries, adding, 149
managing in external resources, 195-198

CRI-O, 28
cron expressions, 188

D
daemonless container images, 17
daemons, Docker, 17
default service account, Tekton, 114
dependencies section (Chart.yaml), registering

Charts, 88-92
deployment

applications
Argo CD, 156-162
Argo Rollouts, 208-215
to multiple clusters, 200-205

automatic with webhooks, 198-200
Charts with dependencies, 88-92
Kubernetes, updating with Tekton using

Kustomize, 139-144
rolling updates, triggering automatically,

93-98
updating

container images, 50-51
deployment files, 161
with Tekton TaskRun, 145

deployment.yaml, Helm Charts, 69
development cycle, 5-6
DevOps, 5
DevSecOps, 191
Docker, 17

container images
creating, 18-23
verifying, 21

installing, 18
docker images command, 25
docker pull command, 21
docker run command, 22
Dockerfiles, 17

Buildah, 28
defining, 18-20

DockerHub, accounts, 7-8
dockerless container images, 17, 23

(see also Jib)
creating, 23-27
kaniko, 37

Drone

Index | 219

components, 148
configuring, 149
installing, 148
Kubernetes pipelines, creating, 148-150
repositories, activating, 149

drone.yaml, creating, 149
dynamic storage support, Kubernetes, 130

E
environments, deploying to multiple, 57-60
event handling, CRDs, 135
EventListener, 136, 137
External Secrets, managing credentials, 195-198

F
forks, creating repositories, 11-12

G
generators (ApplicationSet resource), 201-203
Git

managing Kubernetes Secrets, 192-195
repositories registration, 9-12, 179-182

git generator, 203
git-clone, 141
git-commit, 141
GitHub

accounts, creating, 9-10
container registry, 153

GitHub Actions
applications

compiling, 150-153
packaging, 150-153

workflow, 151
GitOps

benefits, 2
development cycle, 5-6
loops, 4
principles, 2
project structure, 4
security, 191
workflow, 5
Working Group, 2

Gradle, 23

H
hashes, configuration properties, 64
Helm, 67

applications, updating with Tekton Pipeline,
144-146

Charts, 67, 68
checking default values, 87
creating directories, 68
deploying, 84-87
deploying with dependencies, 88-92
finding available, 85
history command, 74
installing External Secrets, 196
installing to Kubernetes clusters, 73
packaging/distributing, 82-83
public repositories, 84
publishing, 82
registering, 84
rendering, 72
sharing to other Charts, 74
uninstalling, 74
validating, 84

container images, updating, 79-81
default values, overriding, 73
elements, relationships of, 71
hooks, Argo CD support, 171
installed elements, listing, 74
manifests, deploying with Argo CD,

168-171
projects, creating, 68-74
scaffolding projects, 75
template statements, reusable, 75-78
values, overriding, 81

Helm Chart repositories, 84
helm create <name> command, 75
helm rollback command, 80
helm template command, 72
helm-upgrade-from-repo Task, 144
_helpers.tpl, 75-78
history command, 80
Homebrew, Buildpacks, 32
HTTPD container image, creating, 28
httpd package, installing, 28

I
images, creating, 17
index.yaml, updating, 82
install command, 84, 85

J
Java services, deploying, 88-92
Java, Jib, 24-25

220 | Index

Jib, 17
benefits, 24
container images

creating, 23-27
storing in cache, 26

Dockerfiles, 23
Java applications, 24-25

JSON Patch, updating container image fields,
52-55

K
kaniko, 36-39
kind, 16
kubectl

apply command, 46
Kustomize, 44
Tekton, installing, 101

Kubectl Plugin (Argo Rollouts), 209
Kubernetes, 1

advanced deployment techniques, 209
application deployment model, 4-5
applications

deploying to, 122-125
Tekton Pipelines, 125-134

CI/CD (continuous integration/continuous
delivery), 3

CLI tool, 15
clusters, creating locally, 12-15
ConfigMap, 43
ConfigMap, generating with Kustomize,

60-66
container images, building with Shipwright,

35-41
containerized applications, 17
dynamic storage support, 130
ExternalSecrets, 195
fields

adding with Kustomize, 54
updating with Kustomize, 52-56

GitOps loops, 4
GitOps project structure, 4
Helm Charts

installing, 73
listing installed elements, 74

installing, 13
manifests

automatic updates, 139-144
setting deployment order in Argo CD,

182-187

pipelines, creating with Drone, 148-150
resource files, creating, 44-45
resources, deploying with Kustomize, 44-49

Kubernetes Operators
installing Tekton components, 102

Kubernetes Secrets, 37
creating, 115-115
Git repositories, registering, 181
managing, 192
ServiceAccount, attaching, 117
Tekton, 114

kustomization.yaml, 44
ConfigMapGenerator, 62
container images, updating, 50
creating, 46
referencing external assets, 48-49
referencing from another kustomiza‐

tion.yaml file, 47
Kustomize, 43

base directory files, 44
ConfigMap, generating, 60-66
container images, updating, 50-52
deployment, multiple namespaces, 57-60
Kubernetes adding fields, 54
Kubernetes manifests, automatic updates,

139-144
Kubernetes resources, deploying, 44-49
Kubernetes, updating fields, 52-56
manifests, deploying with Argo CD,

166-168
preappend/append values to resources, 60
web pages, deploying, 44-47

kustomize build command, 51
kustomize command, building resources, 48-49

L
list generator, 203
local clusters, creating, 12-15
loops, GitOps, 4

M
manifests

Argo CD IU annotations, 173
deploying, Argo CD, 178-182
Dockerfiles, 17
Helm, deploying with Argo CD, 168-171
Kustomize, deploying with Argo CD,

166-168
Node.js packages, 33

Index | 221

synchronizing, 4
updating automatically, 139-144

matrix generator, 203
Maven, 23

container images, building, 24
merge generator, 203
Minikube

application deployment, Argo CD web‐
hooks, 199

container/virtualization technologies, 12
installing, 13
IP, accessing, 160
platform-specific files, 13

N
namespace field, deploying applications, 57-60
namespaces

deploying to multiple, 57-60
tekton-pipelines, 102-103

newTag field, updating, 52
Node.js, Buildpacks container images, 33

O
OCI containers, 17

building, 27-31
Open Container Initiative, 17
OpenShift Pipelines, 129

P
pack builder inspect paketobuild‐

packs/builder:base command, 33
pack builder suggest command, 33
package command, 82
passwords, Argo CD admin account, 156
Patch expressions, modifying Kubernetes

resources, 55
patch files, creating, 55
pipeline, creating for Kubernetes with Drone,

148-150
PipelineRun object, 128
Pipelines (Tekton), 100-101

applications, deploying to Kubernetes,
125-134

automating, 135-139
creating, 127
flow, 125
Helm-packaged applications, updating,

144-146

manifests, automatic updates, 139-144
Tasks, adding, 141
Tekton Tasks, 107

plugins, building container images with Jib, 24
Podman, OS support, 27
PostgreSQL servers, deploying, 85-87
projects

Helm
creating, 68-74
scaffolding, 75

structure, 4
.properties files, 65
Public Helm Chart repositories, 84
pull request generator, 203, 206
pull requests

creating, 207
deploying to clusters, 206-208

Q
Quay

Kubernetes Secrets, 37
logging into, 21
registration, 8

R
registries

container images, pushing to, 21
logging into, 21

repo add command, 84
repo index command, 83
repo list command, 84
repo update command, 85
repositories

activating in Drone, 149
directory layout, 82
forks, creating, 11-12
Git

registering, 9-12
registering with Argo CD, 179-182

GitHub Actions, 151
Helm Charts, 82

deploying, 84-87
public, 84

private, compiling/packaging applications
with Tekton, 114-116

resource files (Kubernetes), creating, 44-45
resource hooks

manifest deployment, 183-184
deletion policies, 184

222 | Index

sync waves, 185
modifying manifest order, 182-187

resources
ConfigMapGenerator, 61-65
deploying with Kustomize, 44-49
pruning by Argo CD, 164

Roles, ServiceAccounts, 123
rollback command, 80
Runner (Drone), 148

S
scm provider generator, 203
Sealed Secrets, 192

installing, 192
Secrets, creating, 193-194

search command, 85
secrets

Drone, adding to container registries, 149
encrypting with Argo CD, 195-198

SecretStore resources, 197-198
security, GitOps workflows, 191
selfHeal property (Argo CD), 165
Server (Drone), 148
service.yaml (Helm Charts), 70
ServiceAccounts

creating, 118
Roles, 123
secrets, attaching, 117
Tekton, 115-116
Tekton Tasks, creating, 123
Tekton Triggers, 136

services
GitHub, 9-12
GitLab, 12

sha256sum template function, 93, 96-98
Shipwright, building container images, 35-41
show command, 87
Skopeo, 28
SSH, registering Git repositories, 181
statements, reusable, 75-78
STATUS field (Argo CD), 158, 161
Strategic Merge Patch, 55
Sutter, Burr, "Teaching Elephants to Dance (and

Fly!)", 6
sync waves, modifying manifest order, 182-187
syncPolicy, Argo CD, 162

T
TaskRun objects, 108

creating, 111-113
logs, 113

Tasks (Tekton)
applications

containerizing, 117-120
deploying to Kubernetes, 122-125

build-app, 109-111
creating, 111-111

container image references, updating,
139-141

creating, 107-108
displaying running, 134
Helm Charts, installing from Helm reposi‐

tory, 145
parameters, 112
Pipelines

adding to, 141
deploying applications to Kubernetes,

125-134
results as input for succeeding Tasks, 143
ServiceAccounts, creating, 118, 123
Tekton Hub, 128
workspaces, persisting, 130

"Teaching Elephants to Dance (and Fly!)", 6
Tekton, 36, 99-100

applications
compiling, 108-113
compiling from private repositories,

114-116
deploying to Kubernetes, 122-125
packaging, 108-113
packaging from private repositories,

114-116
authentication schemes, 114-116
configuration, verifying, 106
CRDs (Kubernetes Custom Resources), 100
default service account, 114
fields, 109-109
installing, 100-107
Kubernetes manifests, automatic updates,

139-144
Kubernetes Secrets, 114

creating, 115-115
modules, 101
Pipelines, 100-101

creating, 127
deploying applications to Kubernetes,

125-134
flow, 125

Index | 223

updating Helm-packaged applications,
144-146

pods, 103-105
ServiceAccounts, 115-116
Tasks

build-app, 109-111
containerizing applications, 117-120
creating, 107-108, 111-111
creating ServiceAccounts, 123
parameters, 112

Tekton Dashboard component
accessing, 106
displaying running Tasks, 134
installing, 105-105

Tekton Hub, 128
Tasks, Helm support, 144

Tekton Pipelines component, 102
Tekton Triggers component

applications
compiling automatically, 135-139
packaging automatically, 135-139

installing, 103-105
ServiceAccounts, 136

template command, 81
template statements, reusable, 75-78
TLS client certificate, configuring, 180
TriggerBinding, 135
TriggerTemplate, 135

U
update-digest, 141
upgrade command, 79-80

V
values.yaml (Helm Charts), 70
VirtualBox, installing, 12
virtualization systems, 12

W
web pages, deploying with Kustomize, 44-47
webhooks, 135

application deployment, 198-200
parameters, 138

welcome page, copying to container, 29
workflow, 5

development cycle, 5
Working Group, 2
workspaces, persisting, 130

Y
YAML, 43

kustomization.yaml, 44
Patch expressions, 55

224 | Index

About the Authors
Natale Vinto is a software engineer with more than 10 years of expertise in IT and
ICT technologies and a consolidated background in Telecommunications and Linux
operating systems. As a solution architect with a Java development background, he
spent some years as an EMEA Specialist Solution Architect for OpenShift at Red
Hat. He is coauthor of Modernizing Enterprise Java for O’Reilly. Today Natale is lead
developer advocate at Red Hat, helping people within communities and customers
have success with their Kubernetes and cloud native strategy. You can follow more
frequent updates on his Twitter feed and connect with him on LinkedIn.

Alex Soto Bueno is a director of developer experience at Red Hat. He is passionate
about the Java world, software automation, and he believes in the open source
software model. Alex is the coauthor of Testing Java Microservices (Manning), Quar‐
kus Cookbook (O’Reilly), and the forthcoming Kubernetes Secrets Management (Man‐
ning), and is a contributor to several open source projects. A Java Champion since
2017, he is also an international speaker and teacher at Salle URL University. You can
follow more frequent updates on his Twitter feed and connect with him on LinkedIn.

Colophon
The animal on the cover of GitOps Cookbook is a yellow mongoose (Cynictis penicil‐
lata). These small mammals are found in sub-Saharan Africa, primarily in forests,
woodlands, grasslands, and scrub. They are sometimes referred to as red meerkats.
Yellow mongoose are smaller than most other species, weighing only 16–29 ounces.
There are 12 subspecies that vary in color, body size (9–13 inches), tail (7–10 inches),
and length of coat: the northern subspecies found in Botswana are typically smaller
with grizzled grayish coats while the southern populations in South Africa and
Namibia are larger and tawny yellow. All subspecies have slender bodies with lighter
fur on the chin and underbelly, small ears, pointed noses, and bushy tails.

Yellow mongoose are carnivores that mainly feed on insects, birds, frogs, lizards, eggs
and small rodents. They are social species and live in colonies of up to 20 individuals
in extensive, permanent burrows with many entrances, chambers, and tunnels. Most
of their day is spent foraging or sunbathing outside the burrow. In the wild, they
breed from July to September with most females giving birth to two or three offspring
in October and November. The young are born in an underground chamber and stay
there until they are weaned (about 10 weeks). Yellow mongoose are considered fully
grown at 10 months old.

https://twitter.com/natalevinto
https://www.linkedin.com/in/natalevinto
https://twitter.com/alexsotob
https://www.linkedin.com/in/asotobu

Yellow mongoose are classified as a species of least concern by the IUCN; their
populations are stable and they don’t face any major threats. They do carry of strain
of rabies in the wild and are seen as pests and hunted by farmers in parts of South
Africa. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from The Pictorial Museum of Animated Nature. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Red Hat
	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Alex Soto
	Natale Vinto

	Chapter 1. Introduction
	1.1 What Is GitOps?
	1.2 Why GitOps?
	1.3 Kubernetes CI/CD
	1.4 App Deployment with GitOps on Kubernetes
	1.5 DevOps and Agility

	Chapter 2. Requirements
	2.1 Registering for a Container Registry
	Problem
	Solution
	Discussion
	See Also

	2.2 Registering for a Git Repository
	Problem
	Solution
	Discussion
	See Also

	2.3 Creating a Local Kubernetes Cluster
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Containers
	3.1 Building a Container Using Docker
	Problem
	Solution
	Discussion
	See Also

	3.2 Building a Container Using Dockerless Jib
	Problem
	Solution
	Discussion
	See Also

	3.3 Building a Container Using Buildah
	Problem
	Solution
	Discussion
	See Also

	3.4 Building a Container with Buildpacks
	Problem
	Solution
	Discussion
	See Also

	3.5 Building a Container Using Shipwright and kaniko
in Kubernetes
	Problem
	Solution
	Discussion

	3.6 Final Thoughts

	Chapter 4. Kustomize
	4.1 Using Kustomize to Deploy Kubernetes Resources
	Problem
	Solution
	Discussion
	See Also

	4.2 Updating the Container Image in Kustomize
	Problem
	Solution
	Discussion

	4.3 Updating Any Kubernetes Field in Kustomize
	Problem
	Solution
	Discussion
	See Also

	4.4 Deploying to Multiple Environments
	Problem
	Solution
	Discussion

	4.5 Generating ConfigMaps in Kustomize
	Problem
	Solution
	Discussion
	See Also

	4.6 Final Thoughts

	Chapter 5. Helm
	5.1 Creating a Helm Project
	Problem
	Solution
	Discussion
	See Also

	5.2 Reusing Statements Between Templates
	Problem
	Solution
	Discussion

	5.3 Updating a Container Image in Helm
	Problem
	Solution
	Discussion

	5.4 Packaging and Distributing a Helm Chart
	Problem
	Solution
	Discussion
	See Also

	5.5 Deploying a Chart from a Repository
	Problem
	Solution
	Discussion

	5.6 Deploying a Chart with a Dependency
	Problem
	Solution

	5.7 Triggering a Rolling Update Automatically
	Problem
	Solution

	5.8 Final Thoughts

	Chapter 6. Cloud Native CI/CD
	6.1 Install Tekton
	Problem
	Solution
	See Also

	6.2 Create a Hello World Task
	Problem
	Solution
	See Also

	6.3 Create a Task to Compile and Package an App from Git
	Problem
	Solution
	See Also

	6.4 Create a Task to Compile and Package an App from Private Git
	Problem
	Solution
	See Also

	6.5 Containerize an Application Using a Tekton Task
and Buildah
	Problem
	Solution
	See Also

	6.6 Deploy an Application to Kubernetes Using a
Tekton Task
	Problem
	Solution
	See Also

	6.7 Create a Tekton Pipeline to Build and Deploy an App to Kubernetes
	Problem
	Solution
	See Also

	6.8 Using Tekton Triggers to Compile and Package an Application Automatically When a Change Occurs on Git
	Problem
	Solution
	See Also

	6.9 Update a Kubernetes Resource Using Kustomize and Push the Change to Git
	Problem
	Solution

	6.10 Update a Kubernetes Resource Using Helm and Create a Pull Request
	Problem
	Solution

	6.11 Use Drone to Create a Pipeline for Kubernetes
	Problem
	Solution
	See Also

	6.12 Use GitHub Actions for CI
	Problem
	Solution
	See Also

	Chapter 7. Argo CD
	7.1 Deploy an Application Using Argo CD
	Problem
	Solution
	Discussion

	7.2 Automatic Synchronization
	Problem
	Solution
	Discussion
	See Also

	7.3 Kustomize Integration
	Problem
	Solution
	Discussion
	See Also

	7.4 Helm Integration
	Problem
	Solution
	Discussion
	See Also

	7.5 Image Updater
	Problem
	Solution
	Discussion
	See Also

	7.6 Deploy from a Private Git Repository
	Problem
	Solution
	Discussion

	7.7 Order Kubernetes Manifests
	Problem
	Solution
	Discussion
	See Also

	7.8 Define Synchronization Windows
	Problem
	Solution
	Discussion

	Chapter 8. Advanced Topics
	8.1 Encrypt Sensitive Data (Sealed Secrets)
	Problem
	Solution

	8.2 Encrypt Secrets with ArgoCD (ArgoCD + HashiCorp Vault + External Secret)
	Problem
	Solution

	8.3 Trigger the Deployment of an Application Automatically (Argo CD Webhooks)
	Problem
	Solution

	8.4 Deploy to Multiple Clusters
	Problem
	Solution
	Discussion
	See Also

	8.5 Deploy a Pull Request to a Cluster
	Problem
	Solution
	Discussion

	8.6 Use Advanced Deployment Techniques
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

