
Domain-Specific Languages of Mathematics

Patrik Jansson Cezar Ionescu Jean-Philippe Bernardy

WORK IN PROGRESS: DRAFT OF December 14, 2021

i

Abstract The main idea behind this book is to encourage readers to approach
mathematical domains from a functional programming perspective: to iden-
tify the main functions and types involved and, when necessary, to introduce
new abstractions; to give calculational proofs; to pay attention to the syntax of
the mathematical expressions; and, finally, to organize the resulting functions
and types in domain-specific languages.

The book is recommended for developers who are learning mathematics and
would like to use Haskell to make sense of definitions and theorems. It is also
a book for the mathematically interested who wants to explore functional pro-
gramming and domain-specific languages. The book helps put into perspec-
tive the domains of Mathematics and Functional Programming and shows
how Computer Science and Mathematics are usefully taught together.

License

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 In-
ternational” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Contents

0 About this book 1

0.1 Origins . 2

0.2 Who should read this book? . 4

0.3 Notation and code convention . 5

0.4 Common pitfalls with traditional mathematical notation 6

0.4.1 A function or the value at a point? 6

0.4.2 Scoping . 6

1 Types, Functions, and DSLs for Expressions 8

1.1 Types of data and functions . 9

1.1.1 What is a type? . 9

1.1.2 Functions and their types 10

1.1.3 Partial and total functions 12

1.1.4 Variable names as type hints 14

1.2 Types in Haskell: type, newtype, and data 15

1.3 Notation and abstract syntax for sequences 18

1.4 A DSL of complex numbers . 20

1.5 A syntax for (complex) arithmetical expressions 26

1.6 Laws, properties and testing . 28

1.6.1 Generalising laws . 30

1.7 Types of functions, expressions and operators 31

ii

CONTENTS iii

1.7.1 Expressions and functions of one variable 32

1.7.2 Scoping and typing big operators 34

1.7.3 Detour: expressions of several variables 36

1.8 Exercises: Haskell, DSLs and expressions 38

2 DSLs for logic and proofs 44

2.1 Propositional Calculus . 44

2.1.1 An Evaluator for Prop . 45

2.1.2 Truth tables and tautologies 46

2.1.3 Proofs for Propositional Logic 48

2.1.4 Implication, hypothetical derivations, contexts 50

2.1.5 The Haskell type-checker as a proof checker 52

2.1.6 Intuitionistic Propositional Logic 53

2.1.7 Type-Driven Development of Proofs as Programs 55

2.2 First Order Logic . 57

2.2.1 Evaluator for Formulas and ∗Undecidability 59

2.2.2 Universal quantification 60

2.2.3 Existential quantification 62

2.2.4 Typed quantification . 62

2.2.5 Curry-Howard for quantification over individuals 63

2.3 An aside: Pure set theory . 64

2.3.1 Assignment 1: DSLs, sets and von Neumann 65

2.4 Examples . 67

2.4.1 Proof by contradiction . 67

2.4.2 Proof by cases . 67

2.4.3 There is always another prime 68

2.5 Basic concepts of calculus . 69

2.5.1 The limit of a sequence . 72

2.5.2 Case study: The limit of a function 73

CONTENTS iv

2.6 Exercises . 75

2.6.1 Representations of propositions 75

2.6.2 Proofs . 75

2.6.3 Continuity and limits . 78

3 Types in Mathematics 81

3.1 Typing Mathematics: derivative of a function 81

3.2 Typing Mathematics: partial derivative 82

3.3 Type inference and understanding: Lagrangian case study . . . 84

3.4 Incremental analysis with types 88

3.5 Type classes . 90

3.5.1 Numeric operations . 91

3.5.2 Overloaded integer literals 92

3.5.3 Structuring DSLs around type classes 92

3.6 Computing derivatives . 94

3.7 Exercises . 98

4 Compositionality and Algebras 101

4.1 Algebraic Structures . 102

4.1.1 Groups and rings . 103

4.2 Homomorphisms . 105

4.2.1 (Homo)morphism on one operation 105

4.2.2 Homomorphism on structures 106

4.2.3 ∗Isomorphisms . 109

4.3 Compositional semantics . 109

4.3.1 Compositional functions are homomorphisms 109

4.3.2 An example of a non-compositional function 111

4.4 Folds . 111

4.4.1 Even folds can be wrong! 113

4.5 Initial and Free Structures . 115

CONTENTS v

4.5.1 A general initial structure 116

4.5.2 Free Structures . 117

4.5.3 ∗A generic Free construction 120

4.6 Computing derivatives, reprise 122

4.6.1 Automatic differentiation 124

4.7 Summary . 126

4.7.1 Homomorphism as roadmaps 126

4.7.2 Structures and representations 127

4.8 Beyond Algebras: Co-algebra and the Stream calculus 128

4.9 A solved exercise . 129

4.10 Exercises . 134

5 Polynomials and Power Series 139

5.1 Polynomials . 139

5.2 Division and the degree of the zero polynomial 145

5.3 Polynomial degree as a homomorphism 146

5.4 Power Series . 148

5.5 Operations on power series . 150

5.6 Formal derivative . 152

5.7 Exercises . 154

6 Higher-order Derivatives and their Applications 157

6.1 Taylor series . 160

6.2 Derivatives and Integrals for Maclaurin series 163

6.3 Integral for Formal Power series 163

6.4 Simple differential equations . 164

6.5 Exponentials and trigonometric functions for PowerSeries 167

6.6 Associated code . 168

6.6.1 Not included to avoid overlapping instances 169

6.6.2 This is included instead 170

6.7 Exercises . 171

CONTENTS vi

7 Elements of Linear Algebra 174

7.1 Representing vectors as functions 177

7.2 Linear transformations . 179

7.3 Inner products . 182

7.4 Examples of matrix algebra . 184

7.4.1 Functions . 184

7.4.2 Polynomials and their derivatives 184

7.4.3 ∗Inner product for functions and Fourier series 186

7.4.4 Simple deterministic systems (transition systems) 188

7.4.5 Non-deterministic systems 191

7.4.6 Stochastic systems . 193

7.4.7 ∗Quantum Systems . 195

7.5 ∗Monadic dynamical systems . 196

7.5.1 ∗The monad of linear algebra 198

7.6 Associated code . 199

7.6.1 One-dimensional space 200

7.7 Exercises . 201

7.7.1 Exercises from old exams 202

8 Exponentials and Laplace 203

8.1 The Exponential Function . 203

8.2 The Laplace transform . 206

8.3 Laplace and other transforms . 212

8.4 Exercises . 213

8.4.1 Exercises from old exams 213

9 Probability Theory 216

9.1 Sample spaces . 217

9.2 ∗Monad Interface . 220

9.3 Distributions . 220

CONTENTS vii

9.4 Semantics of spaces . 222

9.5 Random Variables . 225

9.6 Events and probability . 226

9.7 Conditional probability . 228

9.8 Examples . 229

9.8.1 Dice problem . 230

9.8.2 Drug test . 230

9.8.3 Monty Hall . 231

9.8.4 Solving an advanced problem with equational reasoning 233

9.9 Independent events . 237

A The course “DSL of Mathematics” 239

B Parameterised Complex Numbers 242

Chapter 0

About this book

Software engineering involves modelling very different domains (e.g., busi-
ness processes, typesetting, natural language, etc.) as software systems. The
main idea of this book is that this kind of modelling is also important when
tackling classical mathematics. In particular, it is useful to introduce abstract
datatypes to represent mathematical objects, to specify the mathematical oper-
ations performed on these objects, to pay attention to the ambiguities of math-
ematical notation and understand when they express overloading, overrid-
ing, or other forms of generic programming. We shall emphasise the dividing
line between syntax (what mathematical expressions look like) and semantics
(what they mean). This emphasis leads us to naturally organise the software
abstractions that we develop in the form of domain-specific languages, and
we will see how each mathematical theory gives rise to one or more such lan-
guages, and appreciate that many important theorems establish “translations”
between them.

Mathematical objects are immutable, and, as such, functional programming
languages are a very good fit for describing them. We shall use Haskell as our
main vehicle, but only at a basic level, and we shall introduce the elements of
the language as they are needed. The mathematical topics treated have been
chosen either because we expect all students to be familiar with them (for ex-
ample, limits of sequences, continuous functions, derivatives) or because they
can be useful in many applications (e.g., Laplace transforms, linear algebra).

1

CHAPTER 0. ABOUT THIS BOOK 2

0.1 Origins

This book started out as lecture notes aimed at covering the lectures and ex-
ercises of the BSc-level course “Domain-Specific Languages of Mathematics”
(at Chalmers University of Technology and University of Gothenburg). The
immediate aim of the book is to improve the mathematical education of com-
puter scientists and the computer science education of mathematicians. We
believe the book can be the starting point for far-reaching changes, leading
to a restructuring of the mathematical training of engineers in particular, but
perhaps also for mathematicians themselves.

Computer science, viewed as a mathematical discipline, has certain features
that set it apart from mainstream mathematics. It places much more emphasis
on syntax, tends to prefer formal proofs to informal ones, and views logic as a
tool rather than (just) as an object of study. It has long been advocated, both by
mathematicians [Wells, 1995, Kraft, 2004] and computer scientists [Gries and
Schneider, 1995, Boute, 2009], that the computer science perspective could be
valuable in general mathematical education. Until today, as far as we can
judge, this perspective has been convincingly demonstrated (at least since the
classical textbook of Gries and Schneider [1993]) only in the field of discrete
mathematics. In fact, this demonstration has been so successful, that we see
discrete mathematics courses being taken over by computer science depart-
ments. This is a quite unsatisfactory state of affairs, for at least two reasons.

First, any benefits of the computer science perspective remain within the com-
puter science department and the synergy with the wider mathematical land-
scape is lost. The mathematics department also misses the opportunity to see
more in computer science than just a provider of tools for numerical compu-
tations. Considering the increasing dependence of mathematics on software,
this can be a considerable loss.

Second, computer science (and other) students are exposed to two quite dif-
ferent approaches to teaching mathematics. For many of them, the formal,
tool-oriented style of the discrete mathematics course is easier to follow than
the traditional mathematical style. Moreover, because discrete mathematics
tends to be immediately useful to them, the added difficulty of continuous
mathematics makes it even less palatable. As a result, their mathematical com-
petence tends to suffer in areas such as real and complex analysis, or linear
algebra.

This is a serious problem, because this lack of competence tends to infect the
design of the entire curriculum.

We propose that a focus on domain-specific languages (DSLs) can be used to re-
pair this unsatisfactory state of affairs. In computer science, a DSL “is a com-

CHAPTER 0. ABOUT THIS BOOK 3

puter language specialized to a particular application domain” (Wikipedia),
and building DSLs is increasingly becoming a standard industry practice. Em-
pirical studies show that DSLs lead to fundamental increases in productivity,
above alternative modelling approaches such as UML [Tolvanen, 2011]. More-
over, building DSLs also offers the opportunity for interdisciplinary activity
and can assist in reaching a shared understanding of intuitive or vague no-
tions. This is supported by our experience: an example is the work done at
Chalmers in cooperation with the Potsdam Institute for Climate Impact Re-
search in the context of Global Systems Science, Lincke et al. [2009], Ionescu
and Jansson [2013a], Jaeger et al. [2013], Ionescu and Jansson [2013b], Botta
et al. [2017b,a].

Thus, a course on designing and implementing DSLs can be an important
addition to an engineering curriculum. Our key idea is to apply the DSL ap-
proach to a rich source of domains and applications: mathematics. Indeed,
mathematics offers countless examples of DSLs: in this book we cover com-
plex arithmetics (Chapter 1), sets and logic (Chapter 2), functions and deriva-
tives (Chapter 3), algebras and morphisms (Chapter 4), power series (Chap-
ter 5), differential equations (Chapter 6), linear algebra (Chapter 7), Laplace
transforms (Chapter 8), probability theory (Chapter 9). The idea that the vari-
ous branches of mathematics are in fact DSLs embedded in the “general pur-
pose language” of set theory was (even if not expressed in these words) the
driving idea of the Bourbaki project1 which exerted an enormous influence on
present day mathematics.

Hence, the topic of this book is DSLs of Mathematics (DSLM). It presents clas-
sical mathematical topics in a way which builds on the experience of discrete
mathematics: giving specifications of the concepts introduced, paying atten-
tion to syntax and types, and so on. For the mathematics students, the style
of this book will be more formal than usual, as least from a linguistic perspec-
tive. The increased formality is justified by the need to implement (parts of)
the languages. We provide a wide range of applications of the DSLs intro-
duced, so that the new concepts can be seen “in action” as soon as possible.
For the computer science students, one aspect is to bring the “computer aided
learning” present in feedback from the compiler from programming to also
help in mathematics.

In our view a course based on this textbook should have two major learning
outcomes. First, the students should be able to design and implement a DSL in
a new domain. Second, they should be able to handle new mathematical areas
using the computer science perspective. (For the detailed learning outcomes,
see Figure A.1 in Section A.)

1The Bourbaki group is the pseudonym of a group of mathematicians publishing a series of
textbooks in modern pure mathematics, starting in the 1930:s. See wikipedia.

http://www.chalmers.se/en/departments/cse/news/Pages/Global-Systems-Science.aspx
https://en.wikipedia.org/wiki/Nicolas_Bourbaki

CHAPTER 0. ABOUT THIS BOOK 4

To achieve these objectives, the book consists of a sequence of case studies in
which a mathematical area is first presented, followed by a careful analysis
that reveals the domain elements needed to build a language for that domain.
The DSL is first used informally, in order to ensure that it is sufficient to ac-
count for intended applications (for example, solving equations, or specifying
a certain kind of mathematical object). It is in this step that the computer sci-
ence perspective proves valuable for improving the reader’s understanding of
the mathematical area. The DSL is then implemented in Haskell. Finally, lim-
itations of the DSL are assessed and the possibility for further improvements
discussed. More about the course is presented in Appendix A.

We expect the reader to have knowledge corresponding to a few first-year
mathematics and computer science courses, preferrably including functional
programming. But we aim to keep to a restricted subset of Haskell (no “ad-
vanced” features are required).

0.2 Who should read this book?

The book is recommended for Haskell developers who are learning Math and
would like to use Haskell to create concrete models out of abstract Math con-
cepts to improve their understanding.

The book explores the connection between mathematical structures and Type-
Driven Development [Brady, 2016] of Haskell programs. If you enjoyed “The
Haskell Road to Logic, Maths and Programming” [Doets and van Eijck, 2004],
you will also enjoy this book.

It is also a book for the mathematically interested who wants to explore func-
tional programming and domain-specific languages. The book helps put into
perspective the domains of Mathematics and Functional Programming and
shows how Computer Science and Mathematics can be usefully studied to-
gether.

Informal prerequisites: one full time year of university level study consisting
of a mix of mathematics and computer science. But feel free to keep going and
fill in missing concepts as you go along.

Working knowledge of functional programming is helpful, but it should be
possible to pick up quite a bit of Haskell along the way.

The book is not primarily a collection of ready-made code-snippets, like the
“Numerical recipes in ...” series, but rather uses Haskell as a “tool for learn-
ing”. Even code which cannot actually run can still be useful in the quest

CHAPTER 0. ABOUT THIS BOOK 5

to “debug the mathematical understanding” of the reader (through scope-
checking and type-checking) when trying to encode different concepts in Haskell.

0.3 Notation and code convention

The book is a collection of literate programs: that is, it consist of text inter-
spersed with code fragments (in Haskell). The source code of the book (in-
cluding in particular all the Haskell code) is available on GitHub in the repos-
itory https://github.com/DSLsofMath/DSLsofMath.

Our code snippets are typeset using lhs2tex [Hinze and Löh, 2020], to hit a
compromise between fidelity to the Haskell source and maximize readability
from the point of view of someone used to conventional mathematical nota-
tion. For example, function composition is typically represented as a circle in
mathematics texts. When typesetting, a suitable circle glyph can be obtained
in various ways, depending on the typesetting system: ∘ in HTML,
\circ in TEX, or by the RING OPERATOR unicode codepoint (U+2218), which
appears ideal for the purpose. This codepoint can also be used in Haskell
(recent implementations allow any sequence of codepoints from the unicode
SYMBOL class). However, the Haskell Prelude uses instead the infix operator .
(period), as a crude ASCII approximation, possibly chosen for its availability
and the ease with which it can be typed. In this book, as a compromise, we
use the period in our source code, but our typesetting tool renders it as a circle
glyph. If, when looking at typset pages, any doubt should remain regarding
to the form of the Haskell source, we urge the reader to consult the github
repository.

The reader is encouraged to experiment with the examples to get a feeling for
how they work. But instead of cutting and pasting code from the PDF, please
use the source code in the repository to avoid confusion from indentation and
symbols. A more radical, but perhaps more instructive alternative would be
to recreate all the Haskell examples from scratch.

Each chapter ends with exercises to help the reader practice the concepts just
taught. Sometimes the chapter text contains short, inlined questions, like “Ex-
ercice 1.8: what does function composition do to a sequence?”. In such cases
there is some more explanation in the exercises section at the end of the chap-
ter, and the exercise number is a link to the correct place in the document.

In several places the book contains an indented quote of a definition or para-
graph from a mathematical textbook, followed by detailed analysis of that
quote. The aim is to improve the reader’s skills in understanding, modelling,
and implementing mathematical text.

https://github.com/DSLsofMath/DSLsofMath

CHAPTER 0. ABOUT THIS BOOK 6

0.4 Common pitfalls with traditional mathematical
notation

0.4.1 A function or the value at a point?

Mathematical texts often talk about “the function f (x)” when “the function
f ” would be more clear. Otherwise there is a risk of confusion between f (x)
as a function and f (x) as the value you get from applying the function f to
the value bound to the name x.

Examples: let f (x) = x + 1 and let t = 5 ∗ f (2). Then it is clear that the value
of t is the constant 15. But if we let s = 5 ∗ f (x) it is not clear if s should be
seen as a constant (for some fixed value x) or as a function of x.

Paying attention to types and variable scope often helps to sort out these am-
biguities.

0.4.2 Scoping

The syntax and scoping rules for the integral sign are rarely explicitly men-
tioned, but looking at it from a software perspective can help. If we start from
a simple example, like

∫ 2
1 x2dx, it is relatively clear: the integral sign takes two

real numbers as limits and then a certain notation for a function, or expression,
to be integrated. Comparing the part after the integral sign to the syntax of
a function definition f (x) = x2 reveals a rather odd rule: instead of starting
with declaring the variable x, the integral syntax ends with the variable name,
and also uses the letter “d”. (There are historical explanations for this nota-
tion, and it is motivated by computation rules in the differential calculus, but
we will not go there now. We are also aware that the notation

∫
dx f (x), which

emphasises the bound variable, is sometimes used, especially by physicists,
but it remains the exception rather than the rule at the time of writing.) It
seems like the scope of the variable “bound” by d is from the integral sign to
the final dx, but does it also extend to the limits of the domain of integration?
The answer is no, as we can see from a slightly extended example:

f (x) = x2

g(x) =
∫ 2x

x
f (x)dx =

∫ 2x

x
f (y)dy

The variable x bound on the left is independent of the variable x “bound under
the integral sign”. We address this issue in detail in Section 1.7. Mathematics
text books usually avoid the risk of confusion by (silently) renaming variables

CHAPTER 0. ABOUT THIS BOOK 7

when needed, but we believe that this renaming is a sufficiently important
operation to be more explicitly mentioned.

Acknowledgments

The support from Chalmers Quality Funding 2015 (Dnr C 2014-1712, based
on Swedish Higher Education Authority evaluation results) is gratefully ac-
knowledged. Thanks also to Roger Johansson (as Head of Programme in CSE)
and Peter Ljunglöf (as Vice Head of the CSE Department for BSc and MSc edu-
cation) who provided continued financial support when the national political
winds changed.

Thanks to Daniel Heurlin who provided many helpful comments during his
work as a student research assistant in 2017.

This work was partially supported by the projects GRACeFUL (grant agree-
ment No 640954) and CoeGSS (grant agreement No 676547), which have re-
ceived funding from the European Union’s Horizon 2020 research and inno-
vation programme.

The authors also wish to thank several anonymous reviewers and students
who have contributed with many suggestions for improvements.

Chapter 1

Types, Functions, and DSLs
for Expressions

In this chapter we exemplify our method by applying it to the domain of arith-
metic first, and complex numbers second, which we assume most readers will
already be familiar with. However, before doing so, we introduce several cen-
tral concepts in the book, as well as laying out methodological assumptions.

We will implement certain concepts in Haskell and the code for this chapter
is placed in a module called DSLsofMath.W01 that starts here. As mentioned
earlier, the code is available on GitHub.

module DSLsofMath.W01 where
import Numeric.Natural (Natural)
import Data.Ratio (Ratio, (%))

These lines constitute the module header which usually starts a Haskell file.
We will not go into details of the module header syntax here but the purpose is
to “name” the module itself (here DSLsofMath.W01) and to import (bring into
scope) definitions from other modules. As an example, the last line imports
types for rational numbers and the infix operator (%) used to construct ratios
(1 % 7 is Haskell notation for 1

7 , etc.).

8

https://github.com/DSLsofMath/DSLsofMath

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 9

1.1 Types of data and functions

Dividing up the world (or problem domain) into values of different types is
one of the guiding principles of this book. We will see that keeping track of
types can guide the development of theories, languages, programs and proofs.
We follow a Type-Driven Development style of programming.

1.1.1 What is a type?

As mentioned in the introduction, we emphasise the dividing line between
syntax (what mathematical expressions look like) and semantics (what they
mean).

As an example of DSL we start with type expressions — first in mathematics
and then in Haskell. To a first approximation one can think of types as sets.
The type of truth values, False and True, is often called Bool or just B. Thus
the name (syntax) is B and the semantics (meaning) is the two-element set
{False, True}. Similarly, we have the type N whose semantics is the infinite
set of natural numbers {0, 1, 2, ...}. Other common mathematical types are Z

of integers, Q of rationals, and R of real numbers. The judgment e : t states
that the expression e has type t. For example False : Bool, 2 : N, and

√
2 : R. In

Haskell, double colon (::) is used for the typing judgment, but we often use
just single colon (:) in the mathematical text.

So far the syntax for types is trivial — just names. Every time, the semantic is
a set. But we can also combine these names to form more complex types.

Pairs and tuple types For a pair, like (False, 2), the type is written (Bool, N)
in Haskell. In general, for any types A and B we write (A, B) for the type
of pairs. In mathematics, the type (or set) of pairs is usually called the carte-
sian product and is written using an infix cross: A × B. We will sometimes
use this notation as well. The semantics of Bool× Bool = (Bool, Bool) is the set
{(F, F), (F, T), (T, F), (T, T)}where we shorten False to F and True to T for read-
bility. We can also form expressions and types for triples, four-tuples, etc. and
nest them freely: ((17, True), (

√
2, "hi", 38)) has type ((N, B), (R, String, N)).

List types If we have a collection of values of the same type we can collect
them in a list. Examples include [1, 2, 3] of type [N] and [("x", 17), ("y", 38)]
of type [(String, N)]. The semantics of the type [Bool] is the infinite set

{ [], [F], [T], [F, F], [F, T], [T, F], [T, T], ...}

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 10

1.1.2 Functions and their types

For our purposes the most important construction is the function type. For
any two type expressions A and B we can form the function type A → B. Its
semantics is the set of “functions from A to B” (formally: functions from the
semantics of A to the semantics of B). As an example, the semantics of B→ B

is a set of four functions: {const False, id,¬, const True} where ¬ : B → B is
boolean negation. The function type construction is very powerful, and can be
used to model a wide range of concepts in mathematics (and the real world).
But to clarify the notion it is also important to note what is not a function.

Pure and impure functions Many programming languages provide so called
“functions” which are actually not functions at all, but rather procedures:
computations depending on some hidden state or exhibiting some other ef-
fect. A typical example is rand(N) which returns a random number in the
range 1 . . N. Treating such an “impure function” as a mathematical “pure”
function quickly leads to confusing results. For example, we know that any
pure function f will satisfy ‘x y implies f (x) f (y)’. As a special case we
certainly want f (x) f (x) for every x. But with rand(·) this does not hold:
rand(6) rand(6) will only be true occasionally (if we happen to draw the
same random number twice). Fortunately, in mathematics and in Haskell all
functions are pure.

Because function types are really important, we immediately introduce a few
basic building blocks to construct functions. They are as useful for functions
as zero and one are for numbers.

Identity function For each type A there is an identity function idA : A→ A. In
Haskell all of these functions are defined once and for all as follows:

id :: a→ a
id x = x

In Haskell, a type name starting with a lowercase letter is a type variable. When
a type variable (here a) is used in a type signature it is implicitly quantified
(bound) as if preceded by “for any type a”. This use of type variables is called
“parametric polymorphism” and the compiler gives more help when imple-
menting functions with such types. We have seen one example use of the
identity function already, as one of the four functions from Bool to Bool. That
instance of id has type Bool→ Bool.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 11

Constant functions Another building block for functions is const. Its type
mentions two type variables, and it is a function of two arguments:

const :: a→ b→ a
const x = x

The underscore () is here used instead of a variable name (like y) which is not
needed on the right hand side (RHS) of the equality sign. Above we saw the
instance const False : Bool→ Bool where a and b are both Bool. Note that this is
an example of partially applied function: const by itself expects two arguments,
thus const False still expects one argument.

The term “arity” is used to describe how many arguments a function has. An
n-argument function has arity n. For small n special names are often used:
binary means arity 2 (like (+)), unary means arity 1 (like negate) and nullary
means arity 0 (like "hi!").

Higher-order functions We can also construct functions which manipulate
functions. They are called higher-order functions and as a first example we
present flip which flips the order the two arguments of a binary operator.

flip :: (a→ b→ c)→ (b→ a→ c)
flip op x y = op y x

As an example flip (−) 4 10 10− 4 6 and flip const x y const y x y.

Lambda expressions It is possible to create values of a function type without
naming them, so called “anonymous functions”. The syntax is λx→ b, where
b is any expression. For example, the identity function can be written λx→ x,
and the constant function could also be defined as const = λx → x. The
ASCII syntax uses backslash to start the lambda expression, but we render it
as a greek lower case lambda.

Function composition The composition of two functions f and g, written
f ◦ g and sometimes pronounced “f after g” can be defined as follows:

f ◦ g = λx→ f (g x)

As an exercise it is good to experiment a bit with these building blocks to see
how they fit together and what types their combinations have.

The type of function composition is perhaps best illustrated by a diagram (see
Fig. 1.1) with types as nodes and functions (arrows) as directed edges. In

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 12

a

b c

g f◦g

f

R

Z Bool

round
even◦round

even

Z

Q Maybe Q

(%1)
inv◦(%1)

inv

Figure 1.1: Function composition diagrams: in general, and two examples

Haskell we get the following type:

(◦) :: (b→ c)→ (a→ b)→ (a→ c)

which may take a while to get used to.

In the figure we use “operator sections”: (%1) :: Z → Q is the function that
embeds an integer n as the ratio n

1 . Other convenient examples include (+1) ::
Z→ Z for the “add one” function, and (2∗) for the “double” function.

1.1.3 Partial and total functions

There are some differences between functions in the usual mathematical sense,
and Haskell functions. Some Haskell “functions” are not defined for all inputs
— they are partial functions. Simple examples include head :: [a] → a which
is not defined for the empty list and (1/) :: R → R which is not defined for
zero. A proper mathematical function is said to be total: it is defined for all its
inputs. In Haskell totality can be compromised by omitting cases (like head),
by raising exceptions (like division) or by non termination (like inf = 1 + inf).

There are two ways of turning a partial function into a total function. One can
limit the type of the inputs (the domain) to avoid the inputs where the function
is undefined (or non-terminating, etc.), or extend the type of the output (the
range) to represent “default” or “exceptional” values explicitly.

As an example,
√
·, the square root function, is partial if considered as a func-

tion from R to R. It can be made total if the domain is restricted to R≥0, or if
the range is extended to complex numbers. In most programming languages
the range is extended in another way. The type is Double → Double and

√
−1

returns the value NaN : Double (Not a Number). Similarly, (1/) :: Double →
Double returns Infinity :: Double when given zero as an input. Thus Double is a
mix of (many, but not all) rational numbers and some special quantities like
NaN and Infinity.

Often the type Maybe a with values Nothing and Just a (for all x :: a) is used as
the target of functions which would otherwise be partial: any undefined input
is mapped to Nothing. The definition of Maybe is given in full in Section 1.2.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 13

There are also mathematical functions which cannot be implemented at all
(uncomputable functions). We will only briefly encounter such a case in Sec-
tion 2.2.1.

Partial functions with finite domain Later on (in Section 1.7.3), we will use
partial functions for looking up values in an environment. Here we prepare
this by presenting a DSL for partial functions with a finite domain. The type
Env v s will be the syntax for the type of partial functions from v to s, and
defined as follows:

type Env v s = [(v, s)]

As an example value of this type we can take:

env1 :: Env String Int
env1 = [("x", 17), ("y", 38)]

The intended meaning is that "x" is mapped to 17, etc. The semantic domain
is the set of partial functions, and, as discussed above, we represent those as
the Haskell type v→ Maybe s.

Our evaluation function, evalEnv, maps the syntax to the semantics, and as
such has the following type:

evalEnv :: Eq v⇒ Env v s→ (v→ Maybe s)

This type signature deserves some more explanation. The first part (Eq v ⇒)
is a constraint which says that the function works, not for all types v, but only
for those who support a boolean equality check (() :: v → v → Bool). The
rest of the type signature (Env v s → (v → Maybe s)) can be interpreted in
two ways: either as the type of a one-argument function taking an Env v s
and returning a function, or as the type of a two-argument function taking an
Env v s and a v and maybe returning an s.

The implementation proceeds by searching for the first occurence of x in the
list of pairs (v, s) such that x v, and return Just s if one is found, and Nothing
otherwise.

evalEnv vss x = findFst vss
where findFst ((v, s) : vss)

| x v = Just s
| otherwise = findFst vss

findFst [] = Nothing

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 14

Another equivalent definition is evalEnv = flip lookup, where lookup is defined
in the Haskell Prelude with the following type:

lookup :: Eq a⇒ a→ [(a, b)]→ Maybe b

1.1.4 Variable names as type hints

In mathematical texts there are often conventions about the names used for
variables of certain types. Typical examples include f , g for functions, i, j, k for
natural numbers, x, y for real numbers and z, w for complex numbers.

The absence of explicit types in mathematical texts can sometimes lead to con-
fusing formulations. For example, a standard text on differential equations by
Edwards, Penney, and Calvis [2008] contains at page 266 the following re-
mark:

The differentiation operator D can be viewed as a transformation
which, when applied to the function f (t), yields the new function
D{ f (t)} = f ′(t). The Laplace transformation L involves the oper-
ation of integration and yields the new function L{ f (t)} = F(s) of
a new independent variable s.

This is meant to introduce a distinction between “operators”, such as differen-
tiation, which take functions to functions of the same type, and “transforms”,
such as the Laplace transform, which take functions to functions of a new
type. To the logician or the computer scientist, the way of phrasing this dif-
ference in the quoted text sounds strange: surely the name of the independent
variable does not matter; the Laplace transformation could very well return
a function of the “old” variable t. We can understand that the name of the
variable is used to carry semantic meaning about its type (this is also common
in functional programming, for example with the conventional use of a plural
"s" suffix, as in the name xs, to denote a list of values.).

Rather than relying on lexical or syntactical conventions in the variable names,
we prefer to explicitly use different types. When there are several interpreta-
tions of the same type, we can define a type synonym for each interpretation.
In the example of the Laplace transform, this leads to

L : (T → C)→ (S→ C)

where the types T = R and S = C. Note that the function type constructor
(→) is used three times here: once in T → C, once in S → C and finally at

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 15

the top level to indicate that the transform maps functions to functions. This
means that L is an example of a higher-order function, and we will see many
uses of this idea in this book.

Now we move to introducing some of the ways types are defined in Haskell,
our language of choice for the implementation (and often also specification)
of mathematical concepts.

1.2 Types in Haskell: type, newtype, and data

There are three keywords in Haskell involved in naming and creating types:
type, newtype, and data.

type – abbreviating type expressions The type keyword is used to create
a type synonym – just another name for a type expression. The new name is
written on the left-hand side (LHS) of an equal sign, and the type expression
on the right-hand side (RHS). The semantics is unchanged: the set of values
of type Number is exactly the same as the set of values of type Integer, etc.

type Number = Integer
type Foo = (Maybe [String], [[Number]])
type BinOp = Number→ Number→ Number
type Env v s = [(v, s)]

A type declaration does not add type safety, just readability (if used wisely).
The Env example shows that a type synonym can have type parameters. Note
that Env v s is a type (for any types v and s), but Env on its own is not a type
but a type constructor — a function at the type level.

newtype – more protection A simple example of the use of newtype in
Haskell is to distinguish values which should be kept apart. A fun example of
not keeping values apart is shown in Figure 1.2. To avoid this class of problems
Haskell provides the newtype construct as a stronger version of type.

newtype Count = Cou Int -- Population count
newtype DistFeet = DisFt Int -- Elevation in feet above sea level
newtype Year = Yea Int -- Year of establishment

-- Example values of the new types
pop :: Count; pop = Cou 562;

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 16

Figure 1.2: Humorously inappropriate type mismatch on a sign in New
Cuyama, California. By I, MikeGogulski, CC BY 2.5, Wikipedia.

hei :: DistFeet; hei = DisFt 2150;
est :: Year; est = Yea 1951;

This example introduces three new types, Count, DistFeet, and Year, which all
are internally represented by an Int but which are good to keep apart. The
syntax also introduces constructor functions Cou :: Int → Count, DisFt and Yea
which can be used to translate from plain integers to the new types, and for
pattern matching. The semantics of Count is the set of values of the form Cou i
for every value i :: Int. It is not the same as the semantics of Int but the sets
are bijective. The function Cou is an invertible function, a bijection, also called
a set-isomorphism. (We talk about isomorphisms between richer algebraic
structures in Chapter 4.)

Later in this chapter we use a newtype for the semantics of complex numbers
as a pair of numbers in the Cartesian representation but it may also be use-
ful to have another newtype for complex as a pair of numbers in the polar
representation.

The keyword data for syntax trees The simplest form of a recursive datatype
is the unary notation for natural numbers:

data N = Z | S N

This declaration introduces

• a new type N for unary natural numbers,

• a constructor Z :: N to represent zero, and

https://commons.wikimedia.org/w/index.php?curid=2513523

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 17

• a constructor S :: N → N to represent the successor function.

The semantics of N is the set of natural numbers (N), with the semantics of Z
being 0, S Z being 1, etc. A way to be complete about the semantics is to state
that the semantics of S is “add one”.

Examples values: zero = Z, one = S Z, three = S (S one).

The data keyword will be used throughout the book to define (inductive)
datatypes of syntax trees for different kinds of expressions: simple arithmetic
expressions, complex number expressions, etc. But it can also be used for non-
inductive datatypes, like data Bool = False | True, or data TwoDice = TD Z Z.
The Bool type is the simplest example of a sum type, where each value uses
either of the two variants False and True as the constructor. The TwoDice type
is an example of a product type, where each value uses the same constructor
TD and records values for the values of two rolled dice. (See Exercise 1.3 for
the intuition behind the terms “sum” and “product” used here.)

Maybe and parameterised types It is very often possible to describe a family
of types using a type parameter. One simple example is the type constructor
Maybe:

data Maybe a = Nothing | Just a

This declaration introduces

• a new type Maybe a for every type a,

• a constructor Nothing :: Maybe a to represent “no value”, and

• a constructor Just :: a→ Maybe a to represent “just a value”.

A maybe type is often used when an operation may, or may not, return a
value:

inv :: Q→ Maybe Q

inv 0 = Nothing
inv r = Just (1 / r)

Two other examples of, often used, parameterised types are (a, b) for the type
of pairs (a product type) and Either a b for either an a or a b (a sum type). For
reference, the either type is defined as follows in Haskell:

data Either p q = Left p | Right q

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 18

1.3 Notation and abstract syntax for sequences

As preparation for the language of sequences and limits later (Sections 2.5.1
and 5.4), we spend a few lines on the notation and abstract syntax of se-
quences.

In math textbooks, the following notation is commonly in use: {ai}∞
i=0 or just

{ai} and (not always) an indication of the type X of the ai. Note that the a at
the center of this notation actually carries all of the information: an infinite
family of values ai each of type X. If we interpret the subscript notation ai as
function application (a(i)) we can see that a : N → X is a useful typing of an
infinite sequence. Some examples:

type N = Natural -- imported from Numeric.Natural
type Q+ = Ratio N -- imported from Data.Ratio
type Seq a = N→ a
idSeq :: Seq N

idSeq i = i -- {0, 1, 2, 3, ...}
invSeq :: Seq Q+

invSeq i = 1 % (1 + i) -- { 1
1 , 1

2 , 1
3 , 1

4 , ...}
pow2 :: Num r⇒ Seq r
pow2 = (2ˆ) -- {1, 2, 4, 8, ...}
conSeq :: a→ Seq a
conSeq c i = c -- {c, c, c, c, ...}

What operations can be performed on sequences? We have seen the first one:
given a value c we can generate a constant sequence with conSeq c. We can
also add sequences componentwise (also called “pointwise”):

addSeq :: Num a⇒ Seq a→ Seq a→ Seq a
addSeq f g i = f i + g i

and in general we can lift any binary operation op :: a → b → c to the corre-
sponding, pointwise, operation of sequences:

liftSeq2 :: (a→ b→ c)→ Seq a→ Seq b→ Seq c
liftSeq2 op f g i = op (f i) (g i) -- {op (f 0) (g 0), op (f 1) (g 1), ...}

Similarly we can lift unary operations, and “nullary” operations:

liftSeq1 :: (a→ b)→ Seq a→ Seq b
liftSeq1 h f i = h (f i) -- {h (f 0), h (f 1), h (f 2), ...}

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 19

liftSeq0 :: a→ Seq a
liftSeq0 c i = c

Exercise 1.8: what does function composition do to a sequence? For a se-
quence a what is a ◦ (1+)? What is (1+) ◦ a?

Another common mathematical operator on sequences is the limit (of a se-
quence). We will get back to limits later (in Sections 2.5 and 2.5.2), but for now
we just analyse the notation and typing. This definition is slightly adapted
from Wikipedia (2017-11-08):

We call L the limit of the sequence {xn} if the following condition
holds: For each real number ε > 0, there exists a natural number N
such that, for every natural number n > N, we have |xn − L|< ε.

If so, we say that the sequence converges to L and write

L = lim
i→∞

xi

There are (at least) two things to note here. First, with this syntax, the limi→∞ xi
expression form binds i in the expression xi. We could just as well say that lim
takes a function x :: N → X as its only argument (this is further explained in
Section 1.7). Second, an arbitrary sequence x, may or may not have a limit.
Thus the customary use of L = is a bit of an abuse of notation, because the
right hand side may not be well defined. One way to capture that idea is to
let lim return the type Maybe X, with Nothing corresponding to divergence.
Then its complete type is (N → X) → Maybe X and L = limi→∞ xi means
Just L = lim x We will return to limits and their proofs in Section 2.5.1 after we
have reviewed some logic.

Here we just define one more common operation: the sum of a sequence (like
σ = ∑∞

i=0 1/i!1). Just as not all sequences have a limit, not all have a sum
either. But for every sequence we can define a new sequence of partial sums:

sums :: Num a⇒ Seq a→ Seq a
sums a 0 = 0
sums a i = sums a (i− 1) + a i

The function sums is perhaps best illustrated by examples:

sums (conSeq c) {0, c, 2 ∗ c, 3 ∗ c, ...}
sums (idSeq) {0, 0, 1, 3, 6, 10, ...}

1Here n! = 1 ∗ 2 ∗ ... ∗ n is the factorial .

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 20

The general pattern is to start at zero and accumulate the sum of initial prefixes
of the input sequence.

By combining sums with limits we can state formally that the sum of an infinite
sequence a exists and is S iff the limit of sums a exists and is S. We can write
the above as a formula: Just S = lim (sums a). For our example it turns out
that the sum converges and that σ = ∑∞

i=0 1/i! = e but we will not get to that
until Section 8.1.

We will also return to (another type of) limits in Section 3.2 about derivatives
where we explore variants of the classical definition

f ′(x) = lim
h→0

f (x + h)− f (x)
h

To sum up this subsection, we have defined a small Domain-Specific Lan-
guage (DSL) for infinite sequences by defining a type (Seq a), some operations
(conSeq, addSeq, liftSeq1, sums, . . .) and some evaluation functions or predicates
(like lim and sum).

1.4 A DSL of complex numbers

This section is partly based on material by Ionescu and Jansson [2016]. and we
collect our definitions in a Haskell module which is available in the GitHub
repository of the book.

module DSLsofMath.ComplexSem where

These definitions together form a DSL for complex numbers.

We now turn to our first study of mathematics as found “in the wild”: we will
do an analytic reading of a piece of the introduction of complex numbers by
Adams and Essex [2010]. We choose a simple domain to allow the reader to
concentrate on the essential elements of our approach without the distraction
of potentially unfamiliar mathematical concepts. In fact, for this section, we
temporarily pretend to forget any previous knowledge of complex numbers,
and study the textbook of Adams and Essex as we would approach a com-
pletely new domain, even if that leads to a somewhat exaggerated attention
to detail.

Adams and Essex introduce complex numbers in Appendix A of their book.
The section Definition of Complex Numbers starts with:

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 21

We begin by defining the symbol i, called the imaginary unit, to
have the property

i2 = −1

Thus, we could also call i the square root of−1 and denote it
√
−1.

Of course, i is not a real number; no real number has a negative
square.

At this stage, it is not clear what the type of i is meant to be, we only know
that i is not a real number. Moreover, we do not know what operations are
possible on i, only that i2 is another name for −1 (but it is not obvious that,
say i ∗ i is related in way with i2, since the operations of multiplication and
squaring have only been introduced so far for numerical types such as N or
R, and not for “symbols”).

For the moment, we introduce a type for the symbol i, and, since we know
nothing about other symbols, we make i the only member of this type. We
use a capital I in the data declaration because a lowercase constructor name
would cause a syntax error in Haskell. For convenience we add a synonym
i = I.

data ImagUnits = I
i :: ImagUnits
i = I

We can give the translation from the abstract syntax to the concrete syntax as
a function showIU:

showIU :: ImagUnits→ String
showIU I = "i"

Next, in the book, we find the following definition:

Definition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

This definition clearly points to the introduction of a syntax (notice the key-
word “form”). This is underlined by the presentation of two forms, which can
suggest that the operation of juxtaposing i (multiplication?) is not commuta-
tive.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 22

A profitable way of dealing with such concrete syntax in functional program-
ming is to introduce an abstract representation of it in the form of a datatype:

data ComplexA = CPlus1 R R ImagUnits -- the form a + bi
| CPlus2 R ImagUnits R -- the form a + ib

We can give the translation from the (abstract) syntax to its concrete represen-
tation as a string of characters, as the function showCA:

showCA :: ComplexA→ String
showCA (CPlus1 x y i) = show x ++ " + "++ show y ++ showIU i
showCA (CPlus2 x i y) = show x ++ " + "++ showIU i ++ show y

Notice that the type R is not implemented yet (and it is not even clear how
to implement it with fidelity to mathematical convention at this stage) but
we want to focus on complex numbers so we will simply approximate R by
double precision floating point numbers for now.

type R = Double

Adams and Essex continue with examples:

For example, 3 + 2i, 7
2 −

2
3 i, iπ = 0 + iπ and −3 = −3 + 0i are

all complex numbers. The last of these examples shows that every
real number can be regarded as a complex number.

The second example is somewhat problematic: it does not seem to be of the
form a + bi. Given that the last two examples seem to introduce shorthand
for various complex numbers, let us assume that this one does as well, and
that a− bi can be understood as an abbreviation of a + (−b) i. With this pro-
vision, in our Haskell encoding the examples are written as in Table 1.1. We

Mathematics Haskell
3 + 2i CPlus1 3 2 I
7
2 −

2
3 i = 7

2 + −2
3 i CPlus1 (7 / 2) (−2 / 3) I

iπ = 0 + iπ CPlus2 0 I π
−3 = −3 + 0i CPlus1 (−3) 0 I

Table 1.1: Examples of notation and abstract syntax for some complex num-
bers.

interpret the sentence “The last of these examples . . . ” to mean that there is an
embedding of the real numbers in ComplexA, which we introduce explicitly:

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 23

toComplex :: R→ ComplexA
toComplex x = CPlus1 x 0 I

Again, at this stage there are many open questions. For example, we can
assume that the mathematical expression i1 stands for the complex number
CPlus2 0 I 1, but what about the expression i by itself? If juxtaposition is
meant to denote some sort of multiplication, then perhaps 1 can be consid-
ered as a unit, in which case we would have that i abbreviates i1 and therefore
CPlus2 0 I 1. But what about, say, 2i? Abbreviations with i have only been
introduced for the ib form, and not for the bi one!

The text then continues with a parenthetical remark which helps us dispel
these doubts:

(We will normally use a+ bi unless b is a complicated expression, in
which case we will write a + ib instead. Either form is acceptable.)

This remark suggests strongly that the two syntactic forms are meant to de-
note the same elements, since otherwise it would be strange to say “either
form is acceptable”. After all, they are acceptable according to the definition
provided earlier.

Given that a + ib is only “syntactic sugar” for a + bi, we can simplify our rep-
resentation for the abstract syntax, merging the two constructors:

data ComplexB = CPlusB R R ImagUnits

In fact, since it doesn’t look as though the type ImagUnits will receive more
elements, we can dispense with it altogether:

data ComplexC = CPlusC R R

(The renaming of the constructor to CPlusC serves as a guard against the case
that we have suppressed potentially semantically relevant syntax.)

We read further:

It is often convenient to represent a complex number by a single
letter; w and z are frequently used for this purpose. If a, b, x, and y
are real numbers, and w = a + bi and z = x + yi, then we can refer
to the complex numbers w and z. Note that w = z if and only if
a = x and b = y.

First, let us notice that we are given an important semantic information: to
check equality for complex numbers, it is enough to check equality of the com-
ponents (the arguments to the constructor CPlusC). Another way of saying
this is that CPlusC is injective. In Haskell we could define this equality as:

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 24

instance Eq ComplexC where
CPlusC a b CPlusC x y = a x∧ b y

The line instance Eq ComplexC is there to explain to Haskell that ComplexC
supports the () operator. (The cognoscenti would prefer to obtain an equiv-
alent definition using the shorter deriving Eq clause upon defining the type.)

This shows that the set of complex numbers is, in fact, isomorphic with the set
of pairs of real numbers, a point which we can make explicit by re-formulating
the definition in terms of a newtype:

newtype ComplexD = CD (R, R) deriving Eq

As we see it, the somewhat confusing discussion of using “letters” to stand
for complex numbers serves several purposes. First, it hints at the implicit
typing rule that the symbols z and w should be complex numbers. Second, it
shows that, in mathematical arguments, one needs not abstract over two real
variables: one can instead abstract over a single complex variable. We already
know that we have an isomorphism between pair of reals and complex num-
bers. But additionally, we have a notion of pattern matching, as in the following
definition:

Definition: If z = x + yi is a complex number (where x and y are
real), we call x the real part of z and denote it Re (z). We call y the
imaginary part of z and denote it Im (z):

Re (z) = Re (x + yi) = x
Im (z) = Im (x + yi) = y

This is rather similar to Haskell’s as-patterns:

re :: ComplexD → R

re z@(CD (x, y)) = x
im :: ComplexD → R

im z@(CD (x, y)) = y

a potential source of confusion being that the symbol z introduced by the as-
pattern is not actually used on the right-hand side of the equations (although
it could be).

The use of as-patterns such as “z = x+ yi” is repeated throughout the text, for
example in the definition of the algebraic operations on complex numbers:

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 25

The sum and difference of complex numbers

If w = a + bi and z = x + yi, where a, b, x, and y are real numbers,
then

w + z = (a + x) + (b + y) i
w− z = (a− x) + (b− y) i

With the introduction of algebraic operations, the domain-specific language of
complex numbers becomes much richer. We can describe these operations in
a shallow embedding in terms of the concrete datatype ComplexD, for example:

addD :: ComplexD→ ComplexD→ ComplexD
addD (CD (a, b)) (CD (x, y)) = CD ((a + x), (b + y))

or we can build a datatype of “syntactic” complex numbers from the algebraic
operations to arrive at a deep embedding as seen in the next section. Both shal-
low and deep embeddings will be further explained in Sections 1.7.1 and 4.6
(and in several other places: this is a recurrent idea of the book).

At this point we can sum up the “evolution” of the datatypes introduced so
far. Starting from ComplexA, the type has evolved by successive refinements
through ComplexB, ComplexC, ending up in ComplexD (see Fig. 1.3). We can
also make a parameterised version of ComplexD, by noting that the definitions
for complex number operations work fine for a range of underlying numeric
types. The operations for ComplexSem are defined in module CSem, available
in Appendix B.

data ImagUnits = I
data ComplexA = CPlus1 R R ImagUnits

| CPlus2 R ImagUnits R

data ComplexB = CPlusB R R ImagUnits
data ComplexC = CPlusC R R

newtype ComplexD = CD (R, R) deriving Eq
newtype ComplexSem r = CS (r, r) deriving Eq

Figure 1.3: Complex number datatype refinement (semantics).

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 26

1.5 A syntax for (complex) arithmetical expressions

By following Adams and Essex [2010], we have arrived at representation which
captures the semantics of complex numbers. This kind of representation is of-
ten called a “shallow embedding”. Now we turn to the study of the syntax
instead (“deep embedding”). We collect these syntactic definitions in a sepa-
rate module which imports the earlier semantic definitions.

module DSLsofMath.ComplexSyn where
import DSLsofMath.CSem (Complex (C), addC, mulC, Ring)
import DSLsofMath.ComplexSem

We want a datatype ComplexE for the abstract syntax tree (AST) of expressions
(a DSL for complex arithmetical expressions). The syntactic expressions can
later be evaluated to semantic values. The concept of “an evaluator”, a func-
tion from the syntax to the semantics, is something we will return to many
times in this book.

evalE :: ComplexE→ ComplexD

The datatype ComplexE should collect ways of building syntactic expressions
representing complex numbers and we have so far seen the symbol i, an em-
bedding from R, addition and multiplication. We make these four constructors
in one recursive datatype as follows:

data ComplexE = I
| ToComplex R

| Add ComplexE ComplexE
| Mul ComplexE ComplexE

deriving (Eq, Show)

Note that, in ComplexA above, we also had a constructor for addition (CPlus1),
but it was playing a different role. They are distinguished by type: CPlus1
took two real numbers as arguments, while Add here takes two complex ex-
pressions as arguments.

Here are two examples of type ComplexE as Haskell code and as ASTs:

testE1 = Mul I I
testE2 = Add (ToComplex 3) (Mul (ToComplex 2) I)

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 27

Mul

I I

Add

ToComplex

3

Mul

ToComplex

2

I

We can implement the evaluator evalE by pattern matching on the construc-
tors of the syntax tree and by recursion. To write a recursive function requires
a small leap of faith. It can be difficult to get started implementing a func-
tion (like evalE) that should handle all the cases and all the levels of a recur-
sive datatype (like ComplexE). One way to overcome this difficulty is through
what may seem at first glance “wishful thinking”: assume that all but one
case have been implemented already. All you need to do is to focus on that
one remaining case, and you can freely call the function (that you are imple-
menting) recursively, as long as you do it for subexpressions (subtrees of the
abstract syntax tree datatype). This pattern is called structural induction.

For example, when implementing the evalE (Add c1 c2) case, you can as-
sume that you already know the values s1, s2 :: ComplexD corresponding to
the subtrees c1 and c2 of type ComplexE. The only thing left is to add them up
componentwise and we can assume there is a function addD :: ComplexD →
ComplexD → ComplexD taking care of this step (in fact, we implemented it
earlier in Section 1.4). Continuing in this direction (by structural induction; or
“wishful thinking”) we arrive at the following implementation.

evalE I = iD
evalE (ToComplex r) = toComplexD r
evalE (Add c1 c2) = addD (evalE c1) (evalE c2)
evalE (Mul c1 c2) = mulD (evalE c1) (evalE c2)

Note the pattern here: for each constructor of the syntax datatype we assume
that there exists a corresponding semantic function. The next step is to imple-
ment these functions, but let us first list their types and compare them with
the types of the syntactic constructors:

I :: ComplexE
iD :: ComplexD
ToComplex :: R→ ComplexE

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 28

toComplexD :: R→ ComplexD
Mul :: ComplexE → ComplexE → ComplexE
mulD :: ComplexD→ ComplexD→ ComplexD

As we can see, each use of ComplexE has been replaced be a use of ComplexD.
Finally, we can start filling in the implementations:

iD = CD (0, 1)
toComplexD r = CD (r, 0)

The function addD was defined earlier and mulD is left as an exercise for the
reader. To sum up we have now implemented a recursive datatype for mathe-
matical expressions describing complex numbers, and an evaluator that com-
putes the underlying number. Note that many different syntactic expressions
will evaluate to the same number (evalE is not injective).

Generalising from the example of testE2 we also define a function to embed a
semantic complex number in the syntax:

fromCD :: ComplexD→ ComplexE
fromCD (CD (x, y)) = Add (ToComplex x) (Mul (ToComplex y) I)

This function is injective: different complex numbers map to different syntac-
tic expressions.

1.6 Laws, properties and testing

There are certain laws that we would like to hold for operations on com-
plex numbers. To specify these laws, in a way which can be easily testable
in Haskell, we use functions to Bool (also called predicates or properties). The
intended meaning of such a boolean function (representing a law) is “forall
inputs, this should return True”. This idea is at the core of property based testing
(pioneered by Claessen and Hughes [2000]) and conveniently available in the
Haskell library QuickCheck.

Note that a predicate p : A → Bool can also be used to specify the subset of A
for which p returns True. QuickCheck is very good at finding counterexamples
to candidate laws: values for which p returns False. With the subset interpreta-
tion this means that QuickCheck helps finding elements in the set specified by
the opposite predicate ¬ ◦ p : A → Bool. When it fails, we hope that the set of
counterexamples is actually empty, but we cannot know that for sure without
a proof (or by exhaustive testing of all cases).

The simplest law is perhaps i2 = −1 from the start of Section 1.4,

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 29

propI2 :: Bool
propI2 = Mul I I ToComplex (−1)

Note the we use a new operator here, (). Indeed, we reserve the usual
equality () for syntactic equality (and here the left hand side (LHS) is clearly
not syntactically equal to the right hand side). The new operator () corre-
sponds to semantic equality, that is, equality after evaluation:

() :: ComplexE→ ComplexE→ Bool
z w = evalE z evalE w

Another law is that fromCD is an embedding: if we start from a semantic value,
embed it back into syntax, and evaluate that syntax we get back to the value
we started from.

propFromCD :: ComplexD→ Bool
propFromCD s = evalE (fromCD s) s

Other desirable laws are that + and ∗ should be associative and commutative
and ∗ should distribute over +:

propCommAdd x y = x + y y + x
propCommMul x y = x ∗ y y ∗ x
propAssocAdd x y z = (x + y) + z x + (y + z)
propAssocMul x y z = (x ∗ y) ∗ z x ∗ (y ∗ z)
propDistMulAdd x y z = x ∗ (y + z) (x ∗ y) + (x ∗ z)

These laws actually fail, but not due to any mistake in the implementation of
evalE in itself. To see this, let us consider associativity at different types:

propAssocInt = propAssocAdd :: Int → Int → Int → Bool
propAssocDouble = propAssocAdd :: Double→ Double→ Double→ Bool

The first property is fine, but the second fails. Why? QuickCheck can be used
to find small examples — this one is perhaps the best one:

notAssocEvidence :: (Double, Double, Double, Bool)
notAssocEvidence = (lhs, rhs, lhs− rhs, lhs rhs)

where lhs = (1 + 1) + 1 / 3
rhs = 1 + (1 + 1 / 3)

For completeness: these are the values:

(2.3333333333333335 -- Notice the five at the end
, 2.333333333333333, -- which is not present here.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 30

, 4.440892098500626e−16 -- The (very small) difference
, False)

We can now see the underlying reason why some of the laws failed for com-
plex numbers: the approximative nature of Double. Therefore, to ascertain that
there is no other bug hiding, we need to move away from the implementation
of R as Double. We do this by abstraction: we make one more version of the
complex number type, which is parameterised on the underlying representa-
tion type for R. At the same time, to reduce the number of constructors, we
combine I and ToComplex to ToComplexCart, which corresponds to the primi-
tive form a + bi discussed above:

data ComplexSyn r = ToComplexCart r r
| ComplexSyn r :+: ComplexSyn r
| ComplexSyn r :∗: ComplexSyn r

toComplexSyn :: Num a⇒ a→ ComplexSyn a
toComplexSyn x = ToComplexCart x 0

From Appendix B we import newtype Complex r = C (r, r) deriving Eq and
the semantic operations addC and mulC corresponding to addD and mulD.

evalCSyn :: Ring r⇒ ComplexSyn r→ Complex r
evalCSyn (ToComplexCart x y) = C (x, y)
evalCSyn (l :+: r) = addC (evalCSyn l) (evalCSyn r)
evalCSyn (l :∗: r) = mulC (evalCSyn l) (evalCSyn r)

With this parameterised type we can test the code for “complex rationals”
to avoid rounding errors. (The reason why math textbooks rarely talk about
complex rationals is because complex numbers are used to handle roots of all
numbers uniformly, and roots are in general irrational.)

1.6.1 Generalising laws

Some laws appear over and over again in different mathematical contexts. For
example, binary operators are often associative or commutative, and some-
times one operator distributes over another. We will work more formally with
logic in Chapter 2 but we introduce a few definitions already here:

Associative (~) = ∀ a, b, c. (a ~ b)~ c = a ~ (b ~ c)

Commutative (~) = ∀ a, b. a ~ b = b ~ a

Distributive (⊗) (⊕) = ∀ a, b, c. (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 31

The above laws are parameterised over some operators ((~), (⊗), (⊕)). These
laws will hold for some operators, but not for others. For example, division is
not commutative; taking the average of two quantities is commutative but not
associative. (See also Item 4, on page 106 for further analysis of distributivity.)
Such generalisations can be reflected in QuickCheck properties as well.

propAssoc :: SemEq a⇒ (a→ a→ a)→ a→ a→ a→ Bool
propAssoc (~) x y z = (x ~ y)~ z x ~ (y ~ z)

Note that propAssocA is a higher order function: it takes a function (~) (de-
clared as a binary operator) as its first parameter, and tests if it is associative.
The property is also polymorphic: it works for many different types a (all
types which have an operator).

Thus we can specialise it to Add, Mul and any other binary operator, and ob-
tain some of the earlier laws (propAssocAdd, propAssocMul). The same can be
done with distributivity. Doing so we learnt that the underlying set matters:
(+) for R has some properties, but (+) for Double has others. When formalis-
ing math as DSLs, approximation is sometimes convenient, but makes many
laws false. Thus, we should attempt to do it late, and if possible, leave a
parameter to make the degree of approximation tunable (Int, Integer, Float,
Double, Q, syntax trees, etc.).

It is a good exercise to find other pairs of operators satisfying distributive laws.

1.7 Types of functions, expressions and operators

Examples of types in mathematics Simple types are sometimes mentioned
explicitly in mathematical texts:

• x ∈ R

•
√

: R≥0 → R≥0

• (_)2 : R→ R or, alternatively but not equivalently

• (_)2 : R→ R≥0

However the types of big operators (sums, limits, integrals, etc.) are usually
not given explicitly. In fact, it may not be clear at first sight that the summing
operator (∑) should be assigned a type at all! Yet this is exactly what we
will set out to do, dealing with a dangerous pitfall of mathematical notation
(Section 0.4.2). However, to be able to do so convincingly we shall first clarify
the relationship between functions and expressions.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 32

1.7.1 Expressions and functions of one variable

Consider the following examples of function definitions:

• f (x) = x− 1

• g(x) = 2 ∗ x2 + 3

• h(y) = 2 ∗ y2 + 3

As the reader may guess by now, we can assign to f , g, h the type R → R.
Other choices could work, such as Z → Z, etc., but for sure, they are func-
tions. Additionally, the name of the variable appears to play no role in the
meaning of the functions, and we can say, for example, g = h.

Consider now the three expressions:

• e1 = x− 1

• e2 = 2 ∗ x2 + 3

• e3 = 2 ∗ y2 + 3

These are all expressions of one (free) variable. We could say that their type
is R — assuming that the free variable also has type R. Furthermore, it is less

clear now if e2 = 2 ∗ x + 3 ?
= 2 ∗ y + 3 = e3. In general one cannot simply

change a variable name to another without making sure that: 1. the renaming
is applied everywhere uniformly and 2. the new variable name is not used for
another purpose in the same scope (otherwise one informally says that there
is a “name clash”).

To clarify this situation, we will now formalise expressions of one variables as
a DSL. For simplicity we will focus on arithmetic expressions only. Therefore
we have constructors for addition, multiplication and constants, as in Sec-
tion 1.5. Additionally, we have the all-important constructor for variables,
which we will call X here. We can implement all this in a datatype as follows:

Deep embedding

data FunExp = Const R

| X
| FunExp :+: FunExp
| FunExp :∗: FunExp

We could encode our examples as follows:

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 33

• e1 = X :+: Const (−1)

• e2 = Const 2 :∗: (X :∗: X) :+: Const 3

We no longer have a third example: in this type we can only ever represent
one variable, as X, and thus we skip the last example, equal to the second.

We can now evaluate the values of these expressions. The meaning of op-
erators and constants is as in Section 1.5. But, to be able to evaluate X, the
variable, we need its value — and we simply take it as a parameter.

eval :: FunExp→ R→ R

eval (Const α) x = α
eval X x = x
eval (e1 :+: e2) x = eval e1 x + eval e2 x
eval (e1 :∗: e2) x = eval e1 x ∗ eval e2 x

However, we can make an equivalent interpretation of the above type as

eval :: FunExp→ (R→ R)

That is, FunExp can be interpreted as a function! This is perhaps surprising,
but the reason is that we used a fixed Haskell symbol (constructor) for the
variable. There is only a single variable available in the syntax of FunExp, and
thus such expressions are really equivalent to functions of a single argument.

Shallow embedding

Thus the above was a deep embedding for functions of a single variable. A
shallow embedding would be using functions as the representation, say:

type FunExpS = R→ R

Then we can define the operators directly on functions, as follows:

funConst α = λx→ α -- thus funConst = const
funX = λx→ x -- and funX = id
funAdd f g = λx→ f x + g x
funMul f g = λx→ f x ∗ g x

Again, we have two possible intuitive readings of the above equations. The
first reading, as expressions of a single variable, is that a constant α is inter-
preted as a constant function; the variable (X) is interpreted as the identity

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 34

function; the sum of two expressions is interpreted as the sum of the evalua-
tion of the operands, etc.

The second reading is that we can define an arithmetic structure (∗,+, etc.) on
functions, by lifting the operators to work pointwise (as we did in Section 1.3).

To wrap it up, if we’re so inclined, we can re-define the evaluator of the deep-
embedding using the operators of the shallow embedding:

eval :: FunExp → (R→ R)
eval (Const α) = funConst α
eval X = funX
eval (e1 :+: e2) = funAdd (eval e1) (eval e2)
eval (e1 :∗: e2) = funMul (eval e1) (eval e2)

Representing expressions of one variable as functions (of one argument) is a
recurring technique in this book. To start off, we can use it to assign types to
big operators.

1.7.2 Scoping and typing big operators

Consider the mathematical expression

n

∑
i=1

i2

To be able to see which type is appropriate for ∑, we have to consider the type
of the summand (i2 in the example) first. As you may have guessed, it is an
expression of one variable (i). You may object: but surely the body of the sum-
mation operator can use other variables! You’d be entirely correct. However,
from the point of view of the summation, it is as if such other variables were con-
stant. Accepting this assertion as a fact until we can show a more complicated
example, we can now assign a type to the summation operator. For simplicity,
we will be using the shallow embedding; thus the operand can be typed as,
say, Z → R. The other arguments will be the lower and upper limits of the
sum (1 and n in our example). The variable name, i shall not be represented as
an argument: indeed, the variable name is fixed by the representation of functions.
There is no choice to make at the point of summation. Thus, we write:

summation :: Z→ Z→ (Z→ R)→ R

Conveniently, we can even provide a simple implementation:

summation low high f = sum [f i | i← [low . . high]]

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 35

and use it for our example as follows:

sumOfSquares n = summation 1 n (ˆ2)

Equivalently, we can use a lambda expression for the summand, to give a
name to the summation variable:

sumOfSquares n = summation 1 n (λi→ i ‘powTo‘ 2)

(Recall the syntax for lambda expressions from Section 1.1.2.)

As another example, let us represent the following nested sum

m

∑
i=1

n

∑
j=1

i2 + j2

using the shallow embedding of summation. This representation can be writ-
ten simply as follows:

exampleSum m n = summation 1 m (λi→ summation 1 n (λj→ iˆ2 + jˆ2))

Aren’t we cheating though? Surely we said that only one variable could occur
in the summand, but we see both i and j? Well, we are not cheating as long
as we use the shallow embedding for functions of one variable. Doing so allows
us to: 1. use lambda notation to bind (and name) the variable name of the
summation however we wish (in this case i and j) and 2. freely use any Haskell
function of type Z→R as the summand. In particular, this function can be any
lambda-expression returning R, and this expression can include summation
itself. This freedom is an advantage of shallow embeddings: if we were to use
the deep embedding, then we would need much more machinery to ensure
that we can represent summation within the deep embedding. In particular
we need a way to embed variable binding itself. And we shall not be opening
this can of worms just yet, even though we take a glimpse in Section 1.7.3.

Sticking conveniently to the shallow embedding, we can apply the same kind
of reasoning to other big operators, and obtain the following typings:

• lim : (N→R)→R for the mathematical expression limn→∞{an} .

• d
dt : (R→ R)→ (R→ R)

Note that there are many notations for derivatives. Instead of d
dt f one

sees also d f /dt, or f ′ or even ḟ if the varable is time (t). Below we’ll use
preferrably the D f notation.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 36

In sum, the chief difficulty to overcome when assigning types for mathemat-
ical operators is that they often introduce (bind) variable names. To take an-
other example from the above, limn→∞ binds n in an. In this book our stance is
to make this binding clear by letting the body of the limit (an in the example)
be a function. Thus we use the type N → R for the body. Therefore the limit
operator is a higher-order function. A similar line of reasoning justifies the
types of derivatives. We return to derivatives in Chapter 3.

1.7.3 Detour: expressions of several variables

In first reading this section can be skipped, however it is natural to to extend
the study of expressions from single variables to multiple variables.

The data type of expressions of multiple variables Let us define the fol-
lowing type, describing a deep embedding for simple arithmetic expressions.
Compared to single variable expressions, we add one argument for variables,
giving the name of the variable. Here we use a string, so we have an infinite
supply of variables.

data MVExp = Va String | Ad MVExp MVExp | Di MVExp MVExp

where the last constructor Di is intended for division (for a change).

Example expressions include v = Va "v", e1 = Ad v v, and e2 = Di e1 e1.

Together with a datatype for the syntax of arithmetic expressions we want to
define an evaluator of the expressions.

In the evaluator for MVExp we take this idea one step further: given an en-
vironment env and the syntax of an arithmetic expression e we compute the
value of that expression. Because the semantics of env is a partial function
(modelled as a total function of type String → Maybe Q), the semantics of
MVExp is a partial function too, of type Env String Q→ Maybe Q.

type Q = Rational
evalMVExp :: MVExp→ Env String Q→ Maybe Q

evalMVExp e env = eval e
where

eval (Va x) = evalEnv env x
eval (Ad e1 e2) = mayAdd (eval e1) (eval e2)
eval (Di e1 e2) = mayDiv (eval e1) (eval e2)

mayAdd :: Maybe Q→ Maybe Q→ Maybe Q

mayAdd (Just a) (Just b) = Just (a + b)

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 37

mayAdd = Nothing
mayDiv :: Maybe Q→ Maybe Q→ Maybe Q

mayDiv (Just a) (Just 0) = Nothing
mayDiv (Just a) (Just b) = Just (a / b)
mayDiv = Nothing

Note that there are two sources of Nothing in the evaluator: undefined vari-
ables, and (avoiding) division by zero.

The approach taken above is to use a String to name each variable: indeed,
Env String Q is like a table of several variables and their values.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 38

1.8 Exercises: Haskell, DSLs and expressions

Exercise 1.1. Consider the following data type for arithmetic expressions:

data Exp = Con Integer
| Plus Exp Exp
| Minus Exp Exp
| Times Exp Exp

deriving (Eq, Show)

1. Write the following expressions in Haskell, using the Exp data type:

(a) a1 = 2 + 2

(b) a2 = a1 + 7 ∗ 9

(c) a3 = 8 ∗ (2 + 11)− (3 + 7) ∗ (a1 + a2)

2. Create a function eval :: Exp → Integer that takes a value of the Exp data
type and returns the corresponding number (for instance, eval a2 4).
Try it on the expressions from the first part, and verify that it works as
expected.

3. Consider the following mathematical expression with variables:

c1 = (x− 15) ∗ (y + 12) ∗ z
where x = 5; y = 8; z = 13

In order to represent this with our Exp data type, we are going to have
to make some modifications:

(a) Update the Exp data type with a new constructor Var String that
allows variables with strings as names to be represented. Use the
updated Exp to write an expression for c1 in Haskell.

(b) Create a function varVal :: String → Integer that takes a variable
name, and returns the value of that variable. For now, the function
just needs to be defined for the variables in the expression above,
i.e. varVal "x" should return 5, varVal "y" should return 8, and
varVal "z" should return 13.

(c) Update the eval function so that it supports the new Var constructor,
and use it get a numeric value of the expression c1.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 39

Exercise 1.2. We will now look at a more general version of the Exp type from
the previous exercise:

data E2 a = Con a
| Var String
| Plus (E2 a) (E2 a)
| Minus (E2 a) (E2 a)
| Times (E2 a) (E2 a)

deriving (Eq, Show)

The type has now been parametrized, so that it is no longer limited to repre-
senting expressions with integers, but can instead represent expressions with
any type. For instance, we could have an E2 Double to represent expression
trees with doubles at the leaves, or an E2 ComplexD to represent expression
trees with complex numbers at the leaves.

1. Write the following expressions in Haskell, using the new E2 data type.

(a) a1 = 2.0 + a

(b) a2 = 5.3 + b ∗ c

(c) a3 = a ∗ (b + c)− (d + e) ∗ (f + a)

2. In order to evaluate these expressions, we will need a way of translating
a variable name into the value. The following table shows the value of
each variable in the expressions above:

Name a b c d e f
Value 1.5 4.8 2.4 7.4 5.8 1.7

In Haskell, we can represent this table using a value of type Table a =
Env String a = [(String, a)], which is a list of pairs of variable names and
values, where each entry in the list corresponds to a column in the table.

(a) Express the table above in Haskell by creating vars :: Table Double.

(b) Create a function varVal :: Table a → String → a that returns the
value of a variable, given a table and a variable name. For instance,
varVal vars "d" should return 7.4

(c) Create a function eval :: Num a ⇒ Table a → E2 a → a that takes a
value of the new E2 data type and returns the corresponding num-
ber. For instance, eval vars (Plus (Con 2) (Var "a")) 3.5. Try it
on the expressions from the first part, and verify that it works as
expected.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 40

Exercise 1.3. [Important] Counting values. Assume we have three finite types
a, b, c with cardinalites A, B, and C. (For example, the cardinality of Bool is 2,
the cardinality of Weekday is 7, etc.) Then what is the cardinality of the types
Either a b? (a, b)? a → b? etc. These rules for computing the cardinality
suggests that Either is similar to sum, (,) is similar to product and (→) to
(flipped) power. These rules show that we can use many intuitions from high-
school algebra when working with types.

Exercise 1.4. Counting Maybes. For each of the following types, enumerate
and count the values:

1. Bool→ Maybe Bool

2. Maybe Bool→ Bool

3. Maybe (Bool, Maybe (Bool, Maybe Bool))

This is an opportunity to practice the learning outcome “develop adequate
notation for mathematical concepts”: what is a suitable notation for values of
type Bool, Maybe a, a→ b, (a, b), etc.?

Exercise 1.5. Functions as tuples. For any type t the type Bool → t is basi-
cally “the same” as the type (t, t). Implement the two functions isoR and isoL
forming an isomorphism:

isoR :: (Bool→ t)→ (t, t)
isoL :: (t, t)→ (Bool→ t)

and show that isoL ◦ isoR = id and isoR ◦ isoL = id.

Exercise 1.6. [Important] Functions and pairs (the “tupling transform”). From
one function f :: a→ (b, c) returning a pair, you can always make a pair of two
functions pf :: (a→ b, a→ c). Implement this transform:

f2p :: (a→ (b, c))→ (a→ b, a→ c)

Also implement the opposite transform:

p2f :: (a→ b, a→ c)→ (a→ (b, c))

This kind of transformation if often useful, and it works also for n-tuples.

Exercise 1.7. There is also a “dual” to the tupling transform: to show this,
implement these functions:

s2p :: (Either b c→ a)→ (b→ a, c→ a)
p2s :: (b→ a, c→ a)→ (Either b c→ a)

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 41

Exercise 1.8. From Section 1.3:

• What does function composition do to a sequence? More concretely: for
a sequence a what is a ◦ (1+)? What is (1+) ◦ a?

• How is liftSeq1 related to fmap? liftSeq0 to conSeq?

Exercise 1.9. Operator sections. Please fill out the remaining parts of this table
with simplified expressions:

(1+) = λx→ 1 + x
(∗2) = λx→ x ∗ 2

(1+) ◦ (∗2) =
(∗2) ◦ (1+) =

= λx→ xˆ2 + 1
= λx→ (x + 1)ˆ2

(a+) ◦ (b+) =

Exercise 1.10. Read the full chapter and complete the definition of the instance
for Num for the datatype ComplexSyn. Also add a constructor for variables to
enable writing expressions like (Var "z") :∗: toComplex 1.

Exercise 1.11. We can embed semantic complex numbers in the syntax:

embed :: ComplexSem r→ ComplexSyn r
embed (CS (x, y)) = ToComplexCart x y

The embedding should satisfy a round-trip property: eval (embed s) s for all
semantic complex numbers s. Here is a diagram showing how the types and
the functions fit together

ComplexSyn r

ComplexSem r

eval

embed◦eval

embed

eval◦embed

What about the opposite direction: when is embed (eval e) e?

Step 0: type the quantification: what is the type of e?

Step 1: what equality is suitable for this type?

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 42

Step 2: if you use “equality up to eval” — how is the resulting property related
to the first round-trip property?

Exercise 1.12. Read the next few pages of Appendix I (in [Adams and Essex,
2010]) defining the polar view of Complex Numbers and try to implement
complex numbers again, this time based on magnitude and phase for the se-
mantics.

Exercise 1.13. Implement a simplifier simp :: ComplexSyn r → ComplexSyn r
that handles a few cases like 0 ∗ x = 0, 1 ∗ x = x, (a + b) ∗ c = a ∗ c + b ∗ c,
. . . What class context do you need to add to the type of simp?

Exercise 1.14. A semiring is a set R equipped with two binary operations +
and ·, called addition and multiplication, such that:

• (R,+, 0) is a commutative monoid with identity element 0:

(a + b) + c = a + (b + c)
a + b = b + a
0 + a = a + 0 = a

• (R, ·, 1) is a monoid with identity element 1:

(a · b) · c = a · (b · c)
1 · a = a · 1 = a

• Multiplication left and right distributes over (R,+, 0):

a · (b + c) = (a · b) + (a · c)
(a + b) · c = (a · c) + (b · c)
0 · a = a · 0 = 0

1. Define a datatype SR v for the language of semiring expressions (with
variables of type v). These are expressions formed from applying the
semiring operations to the appropriate number of arguments, e.g., all
the left hand sides and right hand sides of the above equations.

2. Implement the expressions from the laws.

3. Give a type signature for, and define, a general evaluator for SR v expres-
sions on the basis of an assignment function. An “assignment function”
is a mapping from variable names to values.

CHAPTER 1. TYPES, FUNCTIONS, AND DSLS FOR EXPRESSIONS 43

Exercise 1.15. A lattice is a set L together with two operations ∨ and ∧ (usually
pronounced “sup” and “inf”) such that

• ∨ and ∧ are associative:

∀ x, y, z∈ L. (x∨ y) ∨ z = x∨ (y∨ z)
∀ x, y, z∈ L. (x∧ y) ∧ z = x∧ (y∧ z)

• ∨ and ∧ are commutative:

∀ x, y∈ L. x∨ y = y∨ x
∀ x, y∈ L. x∧ y = y∧ x

• ∨ and ∧ satisfy the absorption laws:

∀ x, y∈ L. x∨ (x∧ y) = x
∀ x, y∈ L. x∧ (x∨ y) = x

1. Define a datatype for the language of lattice expressions.

2. Define a general evaluator for Lattice expressions on the basis of an as-
signment function.

Exercise 1.16. An abelian monoid is a set M together with a constant (nullary
operation) 0∈M and a binary operation ⊕ : M→M→M such that:

• 0 is a unit of ⊕

∀ x∈M. 0⊕ x = x⊕ 0 = x

• ⊕ is associative

∀ x, y, z∈M. x⊕ (y⊕ z) = (x⊕ y)⊕ z

• ⊕ is commutative

∀ x, y∈M. x⊕ y = y⊕ x

1. Define a datatype AbMonoidExp for the language of abelian monoid ex-
pressions. (These are expressions formed from applying the monoid op-
erations to the appropriate number of arguments, e.g., all the left hand
sides and right hand sides of the above equations.)

2. Define a general evaluator for AbMonoidExp expressions on the basis of
an assignment function.

Chapter 2

DSLs for logic and proofs

In this chapter, we continue to exercise our skill of organizing areas of math-
ematics in DSL terms. We apply our methodology to the languages of logic:
propositions and proofs. Additionally, at the same time, we will develop ad-
equate notions and notations for mathematical foundations and learn to per-
form calculational proofs. There will be a fair bit of theory: introducing propo-
sitional and first order logic, but also applications to mathematics: prime num-
bers, (ir)rationals, limit points, limits, etc. and some Haskell concepts.

2.1 Propositional Calculus

Our first DSL for this chapter is the language of propositional calculus (or propo-
sitional logic), modelling simple propositions with the usual combinators for
and, or, implies, etc. When reading a logic book, one will encounter several
concrete syntactic constructs related to propositional logic, which are collected
in Table 2.1. Each row lists common synonyms and their arity.

False ⊥ F nullary
True > T nullary
Not ¬ ∼ unary
And ∧ & binary
Or ∨ | binary
Implies ⊃ ⇒ binary

Table 2.1: Syntactic constructors for propositions.

44

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 45

Some example propositions are p1 = a ∧ (¬ a), p2 = a ∨ (¬ a), p3 = a ⇒ b,
p4 = (a ∧ b) ⇒ (b ∧ a). The names a, b, c, . . . are “propositional variables”:
they can be substituted for any proposition. We could call them “variables”,
but in upcoming sections we will add another kind of variables (and quantifi-
cation over them) to the calculus — so we keep calling them “names” to avoid
confusing them.

Just as we did with with complex number expressions in Section 1.5, we can
model the abstract syntax of propositions as a datatype:

data Prop = Con Bool
| Not Prop
| And Prop Prop
| Or Prop Prop
| Implies Prop Prop
| Name Name

type Name = String

The example expressions can then be expressed as

p1, p2, p3, p4 :: Prop
p1 = And (Name "a") (Not (Name "a"))
p2 = Or (Name "a") (Not (Name "a"))
p3 = Implies (Name "a") (Name "b")
p4 = Implies (And a b) (And b a)

where a = Name "a"; b = Name "b"

Because “names” stand for propositions, if we assign truth values for the
names, we can compute a truth value of the whole proposition for the as-
signment in question.

2.1.1 An Evaluator for Prop

Let us formalise this idea in general, by writing an evaluator which takes a
Prop to its truth value. (The evaluation function for a DSL describing a logic is
often called check instead of eval but for consistency we stick to eval.)

type Env = Name→ Bool
eval :: Prop→ Env→ Bool
eval (Implies p q) env = eval p env > eval q env
eval (And p q) env = eval p env ∧ eval q env
eval (Or p q) env = eval p env ∨ eval q env
eval (Not p) env = ¬ (eval p env)

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 46

F ⇒ a
F T F
F T T

(a) t = F⇒ a

a ⇒ b
F T F
F T T
T F F
T T T

(b) p3 = a⇒ b.

a ∧ b ⇒ b ∧ a
F F F T F F F
F F T T T F F
T F F T F F T
T T T T T T T

(c) p4 = (a ∧ b)⇒ (b ∧ a).

Figure 2.1: Truth table examples. Darker shades are filled in first, white col-
umn is the final result.

eval (Name n) env = env n
eval (Con t) env = t
(>) :: Bool→ Bool→ Bool
False > = True
True > p = p

The function eval translates from the syntactic domain to the semantic domain,
given an environment (an assignment of names to truth values), which we rep-
resent as a function from each Name to Bool. Here Prop is the (abstract) syntax
of the language of propositional calculus and Bool is the semantic domain, and
env : Env is a necessary extra parameter to write the function. Alternatively,
and perhaps more elegantly, we can view Env→ Bool as the semantic domain.

2.1.2 Truth tables and tautologies

Values of type Name → a are called “assignment functions” because they as-
sign values (of type a) to the variable names. When we have a = Bool, and not
too many variable names, we can enumerate all the combinations in a truth
table.

As a first example of a truth table, consider the proposition F ⇒ a which we
call t here. The truth table semantics of t is usually drawn as in Fig. 2.1a: one
column for each symbol, filled with the truth value of the expression “rooted”
at that symbol. Thus, here we have one column for the name a listing all
combinations of T and F, one (boring) column for F, and one column in the
middle for the result of evaluating the expression. This table shows that no
matter what value assignment we try for the only variable a, the semantic
value is T = True. Thus the whole expression could be simplified to just T
without changing its semantics.

If we continue with the example p4 from above we have two names a and b
which together can have any of four combinations of true and false. After the

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 47

name-columns are filled, we fill in the rest of the table one operation (column)
at a time (see Fig. 2.1c). The & columns become F F F T and finally the ⇒
column (the output) becomes true everywhere. For our other examples, p1 is
always false, p2 is always true, and p3 is mixed.

A proposition whose truth table output is constantly true is called a tautology.
Thus t, p2 and p4 are tautologies. We can formalise this idea as the following
tautology-tester — a predicate which specifies the subset of Properties which
are always true:

isTautology :: Prop→ Bool
isTautology p = and (map (eval p) (envs (freeNames p)))

It uses the helper functions envs to generate all possible environments (func-
tions of type Env = Name → Bool) for a given list of names and freeNames
to find all names in a proposition. As an example, for p4 above, freeNames
would return the list ["a", "b"] and envs would return a four-element [Env],
one for each row in the truth table. The map would then apply eval p4 to each
element in the list to evaluate top-level truth value of the expression for each
row. Finally and combines the results with (∧) to ensure that they are all True.

envs :: [Name]→ [Env]
envs [] = [error "envs: never used"]
envs (n : ns) = [λn′ → if n n′ then b else e n′

| b← [False, True]
, e ← envs ns
]

freeNames :: Prop→ [Name]
freeNames = error "exercise"

Truth table verification is only viable for propositions with few names because
of the exponential growth in the number of cases to check: for n names we get
2n different rows in a truth table.

Exercise 2.1. Define the function freeNames.

There are much better algorithms to evaluate truth values than the naive one
we just showed, but we will not go this route. Rather, we can introduce the
notion of proof. (And in fact, the complexity of the best (known) algorithms for
checking that a proposition is a tautology remain exponential in the number
of variables.)

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 48

2.1.3 Proofs for Propositional Logic

Given a Proposition p and a proof t (represented as an element of another type
Proof), we can write a function that checks that t is a valid proof of p:

checkProof :: Proof → Prop→ Bool

But we still have to figure out what consitutes proofs. We will build up the
“proof DSL” one step at a time by looking at what we need to prove the dif-
ferent propositions.

To prove And P Q, one needs both a proof of P and a proof of Q. In logic texts,
one will often find

P Q
P ∧Q

to represent this fact, which is called the introduction rule for (∧). For the proof
to be complete, one still needs to provide a full proof of P and another for Q
— it is not enough to just invoke this rule.

Therefore, in Haskell, can represent this rule by a proof-term constructor AndIntro
with two Proof arguments:

AndIntro :: Proof → Proof → Proof

and, the corresponding case of the checkProof function will look like this:

checkProof (AndIntro t u) (And p q) = checkProof t p∧ checkProof u q

To prove Or P Q, we need either a proof of P or a proof of Q — but we need to
know which side (Left for p or Right for q) we refer to. Therefore, we introduce
two proof-term constructors:

OrIntroL :: Proof → Proof
OrIntroR :: Proof → Proof

There are a couple of possible approaches to deal with negation. One ap-
proach is to use de Morgan dualisation:

Not (a ‘Or‘ b) = Not a ‘And‘ Not b
Not (a ‘And‘ b) = Not a ‘Or‘ Not b
...

Negation can then be pushed all the way down to names, which can recieve a
special treatment in proof-checking.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 49

However, we will instead apply the same treatment to negation as to other
constructions, and define a suitable introduction rule:

P→ Q P→ ¬Q
¬P

(Intuitively, this rule says that to prove ¬P, one needs to derive a contradic-
tion from P.) We can represent it by the constructor NotIntro :: Prop→ Proof →
Proof → Proof . Because we have inductive proofs (described from the bottom
up), we have the additional difficulty that this rule conjures-up a new propo-
sition, Q. This is why we need an additional Prop argument, which gives the
Q formula.

There is no rule to introduce falsity (⊥) — otherwise we’d have an inconsistent
logic! Thus the last introduction rule deals with Truth, with no premiss:

>

The proof has no information either: TruthIntro :: Proof .

To complete the system, in addition to introduction rules (where the connec-
tive appears as conclusion), we also need elimination rules (where the con-
nective appears as premiss). For conjuction (And), we have two eliminations
rules:

P ∧Q
P

and
P ∧Q

Q

So we represent them by AndElimL :: Prop → Proof → Proof (and AndElimR
symmetrically), where the extra Prop argument corresponds to Q.

For disjunction (Or) the idea is that if we know that P∨Q holds, then we have
two cases: either P holds or Q holds. If only we can find a proposition R which
is a consequence of both P and Q, then, regardless of which case we are facing,
we know that R will hold. So, we get the following elimination rule for P∨Q:

P ∨Q P→ R Q→ R
R

Our elimination for negation is ¬¬P
P . It simply says that two negations cancel.

Finally we can eliminate falsity as follows:

⊥
P

This rule goes sometimes by its descriptive latin name ex falso quodlibet — from
falsehood, anything (follows).

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 50

We can then write our proof checker as follows:

checkProof TruthIntro (Con True) = True
checkProof (AndIntro t u) (And p q) = checkProof t p

∧ checkProof u q
checkProof (OrIntroL t) (Or p q) = checkProof t p
checkProof (OrIntroR u) (Or p q) = checkProof u q
checkProof (NotIntro q t u) (Not p) = checkProof t (p ‘Implies‘ q)

∧ checkProof u (p ‘Implies‘ Not q)
checkProof (AndElimL q t) p = checkProof t (p ‘And‘ q)
checkProof (AndElimR p t) q = checkProof t (p ‘And‘ q)
checkProof (OrElim p q t u v) r = checkProof t (p ‘Implies‘ r)

∧ checkProof u (q ‘Implies‘ r)
∧ checkProof v (Or p q)

checkProof (NotElim t) p = checkProof t (Not (Not p))
checkProof (FalseElim t) p = checkProof t (Con False)

Any other combination of proof/prop is an incorrect combination: the proof
is not valid for the proposition.

checkProof = False -- incorrect proof

Once more, it can be interesting to view checkProof as an evaluator. This can be
made plain by flipping its arguments: flip checkProof :: Prop→ (Proof → Bool).
This way, one can understand Proof → Bool, a subset of proofs, as the semantic
domain of Prop. In other words, a proposition can be interpreted as the subset
of proofs which prove it.

2.1.4 Implication, hypothetical derivations, contexts

We have so far omitted to deal with Implies. One reason is that we can use the
so-called material implication definition which we invoked earlier in truth ta-
bles. It means to define Implies a b = (Not a) ‘Or‘ b — and this equality means
that there is no need to deal specially with Implies. However this approach
does not bring any new insight. In particular, this view is hard to transport to
more complicated logics (such as second-order logic).

Thus we take our usual approach and give rules for it. The introduction rule
is sometimes written in this way in logic texts:

P
...

Q
P→ Q

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 51

Such a notation can, however, be terribly confusing. We were already used to
the fact that proofs above the line had to be continued, so what can the dots
possibly mean? The intended meaning of this notation is that, to prove P →
Q, it suffices to prove Q, but one is also allowed to use P as an assumption in
this (local) proof of Q.

We can use our DSL to formalise this rule as Haskell data, by adding a con-
structor corresponding to implication introduction: ImplyIntro :: (Proof → Proof)→
Proof . The fact that the premiss can depend on the assumption Q is repre-
sented by a function whose parameter is the proof of Q in question. In other
words, to prove the formula P → Q we assume a proof t of P and derive a
proof u of Q. So, a proof of an implication is a function from proofs to proofs.

The eliminator for implication (also known as modus ponens) is

P→ Q P
Q

We formalise it as ImplyElim :: Prop → Proof → Proof → Proof 1. And we can
finally complete our proof checker as follows:

checkProof (Assume p′) p = p p′

checkProof (ImplyIntro f) (p ‘Implies‘ q) = checkProof (f (Assume p)) q
checkProof (ImplyElim p t u) q = checkProof t (p ‘Implies‘ q)

∧ checkProof u p
checkProof = False -- incorrect proof

And, for reference, the complete DSL for proofs is given by the following
datatype:

data Proof = TruthIntro | FalseElim Proof
| AndIntro Proof Proof
| AndElimL Prop Proof | AndElimR Prop Proof
| OrIntroL Proof | OrIntroR Proof
| OrElim Prop Prop Proof Proof Proof
| NotIntro Prop Proof Proof | NotElim Proof
| Assume Prop
| ImplyIntro (Proof → Proof) | ImplyElim Prop Proof Proof

Aside The Assume constructor may make the reader somewhat uneasy: how
come that we can simply assume anything? The intent is that this construc-
tor is private to the checkProof function (or module). No user-defined proof

1The proposition P is not given by the conclusion and thus is provided as part of the proof.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 52

can use it. The most worried readers can also define the following version of
checkProof , which uses an extra context to check that assumption have been
rightfully introduced earlier.2

checkProof ′ :: Context→ Proof → Prop→ Bool
checkProof ′ ctx (ImplyIntro t) (p ‘Implies‘ q) = checkProof ′ (p : ctx) t q
checkProof ′ ctx (Assume) p = p ∈ ctx

Example proof We can put our proof-checker to the test by writing some
proofs and verifying them.

conjunctionComm :: Prop
conjunctionComm = p4

conjunctionCommProof :: Proof
conjunctionCommProof = ImplyIntro step

where step :: Proof → Proof
step evAB = AndIntro (AndElimR (Name "a") evAB)

(AndElimL (Name "b") evAB)

where evAB stands for “evidence for A and B”. We can then run the checker
and verify: checkProof conjunctionCommProof conjunctionComm True

Exercise 2.2. Try to swap AndElimL and AndElimR in the above proof. What
will happen and why?

Or is the dual of And Before moving on to our next topic, we make a final
remark on And and Or. Most of the properties of And have corresponding
properties for Or. This can be explained one way by observing that they are
de Morgan duals. Another explanation is that one can swap the direction of
the arrows in the types of the the role between introduction and elimination.
(Using our presentation, doing so requires applying isomorphisms.)

2.1.5 The Haskell type-checker as a proof checker

Perhaps surprisingly, the proof-checker that we just wrote is already built-in
in the Haskell compiler. Let us clarify what we mean, using the same example,
but adapt it to let the type-checker do the work:

2For the cognoscenti, this kind of presentation of the checker matches well the sequent calculus
presentation of the proof system

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 53

conjunctionCommProof ′ :: Implies (And a b) (And b a)
conjunctionCommProof ′ = implyIntro step

where step :: And a b→ And b a
step evAB = andIntro (andElimR evAB)

(andElimL evAB)

That is, instead of writing propositions, we write types (And, Or, Implies —
which we leave abstract for now). Instead of using Proof constructors, we use
functions whose types capture rules:

truthIntro :: Truth
falseElim :: False→ p
andIntro :: p→ q→ And p q
andElimL :: And p q→ p
andElimR :: And p q→ q
orIntroL :: p→ Or p q
orIntroR :: q→ Or p q
orElim :: Or p q→ (p ‘Implies‘ r)→ (q ‘Implies‘ r)→ r
notIntro :: (p ‘Implies‘ q) ‘And‘ (p ‘Implies‘ Not q)→ Not p
notElim :: Not (Not p)→ p
implyIntro :: (p→ q)→ (p ‘Implies‘ q)
implyElim :: (p ‘Implies‘ q)→ (p→ q)

Instead of running checkProof , we type-check the above program. Because the
proof is correct, we get no type-error.

Exercise 2.3. What would happen if you swap andElimR and andElimL? Why?

This style of propositional logic proof is very economical, because not only the
checker comes for free, but we additionally get all the engineering tools of the
Haskell tool-chain.

One should be careful however that Haskell is not designed with theorem-
proving in mind. For this reason it is easily possible make the compiler accept
invalid proofs. The main two sources of invalid proofs are 1. non-terminating
programs and 2. exception-raising programs. In sum, the issue is that Haskell
allows the programmer to define partial functions (instead of total ones, see
Section 1.1.3).

2.1.6 Intuitionistic Propositional Logic

We can make the link beween Haskell and logic more tight if we restrict our-
selves to intuitionistic logic.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 54

One way to characterize intuitionistic logic is that it lacks native support for
negation. Instead, Not p is represented as p ‘Implies‘ False:

type Not p = p ‘Implies‘ False

The intuition behind this definition is the principle of proof by contradiction:
if assuming p leads to a contradition (False), then p must be false; so Not p
should hold.

When doing this kind of definition, one gives up on notElim: there is no way
to eliminate (double) negation.

notElim = error "not possible as such in intuitionistic logic"

On the other hand the introduction rule for negation becomes a theorem of
the logic. The formulation of the theorem is:

notIntro :: (p ‘Implies‘ q) ‘And‘ (p ‘Implies‘ Not q)→ Not p

where Not p = p ‘Implies‘ False, and its proof is:

notIntro (evPimpQ, evPimpNotQ) =
implyIntro $ λevP→
let evQ = evPimpQ ‘implyElim‘ evP

evNotQ = evPimpNotQ ‘implyElim‘ evP
in evNotQ ‘implyElim‘ evQ

By focusing on intuitionistic logic, we can give a typed representation for each
of the formula constructors. Let us consider implication first. The proof rules
impIntro and impElim seem to be conversion from and to functions, and so it
should be clear that the representation of the implication formula is a function:

type Implies p q = p→ q
implyElim f = f
implyIntro f = f

Conjunction is represented as pairs; that is, if p : P and q : Q then the proof of
And P Q should be a pair of p and q. The elimination rules are projections. In
code:

type And p q = (p, q)
andIntro t u = (t, u)
andElimL = fst
andElimR = snd

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 55

Similarly, disjuction is represented as Either: if p : P then Left p : Or P Q and if
q : Q then Right q : Or P Q.

type Or a b = Either a b
orIntroL = Left
orIntroR = Right
orElim pOrq f g = case pOrq of

Left p→ f p
Right q→ g q

We already had characterized or-elimination as case analysis, and, indeed, this
is how we implement it.

Truth is represented as the unit type:

type Truth = ()
truthIntro = ()

And falsehood is represented as the empty type (with no constructor):

data False
falseElim x = case x of { }

Note that the case-analysis has nothing to take care of here.

In this way we can build proofs (“proof terms”) for all of intuitionistic propo-
sitional logic (IPL). As we have seen, each such proof term is a program in
Haskell. Conversely, every program written in this fragment of Haskell (func-
tions, pairs, Either, no recursion and full coverage of cases) can be turned into a
proof in IPL. This fragment is called the simply-typed lambda calculus (STLC)
with sum and products.

2.1.7 Type-Driven Development of Proofs as Programs

With the logic connectives implemented as type constructors we explore a few
more examples of laws and their proofs.

The law of the excluded middle As an example of how intuitionism af-
fects logic, consider the law of the excluded middle, which states that, for any
proposition P, either P or Not P holds. For example, either it rains or it does
not rain. There is no “middle ground”. If we attempt to prove Or P (Not P)
in intuitionitic logic, we quickly find ourselves in a dead end. Clearly, we can-
not prove P for any P. Likewise Not P, or equivalently P → False cannot be
deduced.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 56

What we have to do is to account for the fact that we cannot use negation
elimination, and so we have to make-do with proving Not (Not Q) instead
of Q. This is exactly what we have to do to (almost) prove the law of excluded
middle. Doing so we can then provide this Haskell-encoded proof:

excludedMiddle :: Not (Not (p ‘Or‘ Not p)) -- to prove this, we can ...
excludedMiddle k = -- ... assume Not (Or p (Not p)) and prove falsity.

k -- So, we can prove falsity if we can prove Or p (Not p).
(Right -- We can prove in particular the right case, Not p
(λevP→ -- ... by assuming that p holds, and prove falsity.

k -- Again, we can prove falsity if we can prove Or p (Not p).
(Left -- This time, we can prove in particular the left case, p ...

evP))) -- because we assumed it earlier!

which can be shortened to a one-liner if we cut out the comments:

excludedMiddle′ :: Not (Not (p ‘Or‘ Not p))
excludedMiddle′ k = k (Right (λevP→ k (Left evP)))

Revisiting the tupling transform In Exercise 1.6, the “tupling transform”
was introduced, relating a pair of functions to a function returning a pair.
(Revisit that exercise if you skipped it before.) There is a logic formula corre-
sponding to the type of the tupling transform:

(a ‘Implies‘ (b ‘And‘ c)) ‘Iff ‘ (a ‘Implies‘ b) ‘And‘ (a ‘Implies‘ c)

(Iff refers to implication in both directions). The proof of this formula closely
follows the implementation of the transform. Therefore we start with the two
directions of the transform as functions:

test1′ :: (a→ (b, c))→ (a→ b, a→ c)
test1′ a2bc = (λa→ fst (a2bc a)

, λa→ snd (a2bc a))
test2′ :: (a→ b, a→ c)→ (a→ (b, c))
test2′ fg = λa→ (fst fg a, snd fg a)

Then we move on to the corresponding logic statements with proofs. Note
how the functions are “hidden inside” the proof.

test1 :: Implies (Implies a (And b c)) (And (Implies a b) (Implies a c))
test1 = implyIntro (λa2bc→

andIntro (implyIntro (λa→ andElimL (implyElim a2bc a)))
(implyIntro (λa→ andElimR (implyElim a2bc a))))

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 57

test2 :: Implies (And (Implies a b) (Implies a c)) (Implies a (And b c))
test2 = implyIntro (λfg→

implyIntro (λa→
andIntro (implyElim (andElimL fg) a)

(implyElim (andElimR fg) a)))

Logic as impoverished typing rules Another view of the same isomorphism
is that the logical rules for IPL can be obtained by erasing programs from the
typing rules for STLC. We will show here only the application rule, leaving
the rest as an exercise. This typing rule for function application can be written
as follows:

f : A→ B x : A
f (x) : B

After erasing the colon (:) sign and what comes before it, we obtain modus
ponens — implication elimination.

The Curry–Howard correspondence is a general principle that says that we can
think of propositions as types, and proofs as programs. This principle goes
beyond propositional logic (and even first order logic): it applies to all sorts
of logics and programming languages, with various levels of expressivity and
features.

2.2 First Order Logic

module DSLsofMath.FOL where

Our next DSL is that of First Order Logic, or FOL for short, and also known as
Predicate Logic.

Compared to propositional logic, the main addition is quantification over indi-
viduals. Additionally, one adds a language of terms — its semantic domain
being the individuals which we quantify over.

Let us study terms first. A term is either a (term) variable (like x, y, z), or the
application of a function symbol (like f , g) to a suitable number of terms. If we
have the function symbols f of arity 2 and g of arity 3 we can form terms like
f (x, x), g(y, z, z), g(x, y, f (x, y)), etc. The individuals are often limited to a sin-
gle domain. For example here we will take individuals to be rationals (to be

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 58

able to express basic mathematical concepts). Consequently, the actual func-
tion symbols are also domain-specific — for rationals we will have addition,
division, etc. In this case we can model the terms as a datatype:

type VarT = String
data RatT = RV VarT | FromI Integer | RPlus RatT RatT | RDiv RatT RatT

deriving Show

The above introduces variables (with the constructor RV) and three function
symbols: FromI of arity 1, RPlus, RDiv of arity 2.

Exercise 2.4. Following the usual pattern, write the evaluator for RatT:

evalRat :: RatT → (VarT → RatSem)→ RatSem
type RatSem = Rational

As mentioned above, the propositions (often referred to as formulas in the con-
text of FOL) are extended so that they can refer to terms. That is, the names
from the propositional calculus are generalised to predicate symbols of differ-
ent arity. The predicate symbols can only be applied to terms, not to other
predicate symbols or formulas. If we have the predicate symbols New of arity
0, N>0 of arity 1 and Less of arity 2 we can form formulas like New, N>0 (x),
Less (f (x, x), y), etc. Note that we have two separate layers, with terms at the
bottom: formulas normally refer to terms, but terms cannot refer to formulas.

The formulas introduced so far are all atomic formulas: generalisations of the
names from Prop. Now we will add two more concepts: first the logical con-
nectives from the propositional calculus: And, Or, Implies, Not, and then two
quantifiers: “forall” (∀) and “exists” (∃).

Thus the following is an example FOL formula:

∀ x. N>0 (x)⇒ (∃ y. Less (f (x, x), y))

The fact that quantification is over individuals is a defining characteristic of
FOL. If one were to, say, quantify over predicates, we’d have a higher-order
logic, with completely different properties.

As another example, we can write a formula stating that the function symbol
plus is commutative:

∀ x. ∀ y. Eq (plus (x, y), plus (y, x))

Here is the same formula with infix operators:

∀ x. ∀ y. (x + y) (y + x)

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 59

Note that is a binary predicate symbol (written Eq above), while + is a
binary function symbol (written plus above).

As before we can model the expression syntax (for FOL, in this case) as a
datatype. We keep on using the logical connectives And, Or, Implies, Not from
the type Prop, add predicates over terms, and quantification. The constructor
Equal could be eliminated in favour of PName "Eq" but it is often included as
a separate constructor.

type PSym = String
data FOL = PName PSym [RatT]

| Equal RatT RatT
| And FOL FOL
| Or FOL FOL
| Implies FOL FOL
| Not FOL
| FORALL VarT FOL
| EXISTS VarT FOL

deriving Show

2.2.1 Evaluator for Formulas and ∗Undecidability

Setting us up for failure, let us attempt to write an eval function for FOL, as we
did for propositional logic.

In propositional logic, we allowed the interpretation of propositional variables
to change depending on the environment. Here, we will let the interpretation
of term variables be dependent on an environment, which will therefore map
(term) variables to individuals (VarT → RatSem). If we so wished, we could
have an environment for the interpretation of predicate names, with an envi-
ronment of type PSym → [RatSem] → Bool. Rather, with little loss of gener-
ality, we will fix this interpretation, via a constant function eval0, which may
look like this:

eval0 :: PSym→ [RatSem]→ Bool
eval0 "Equal" [t1, t2] = t1 t2
eval0 "LessThan" [t1, t2] = t1 < t2
eval0 "Positive" [t1] = t1 > 0

etc.

So we would use the following type:

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 60

eval :: FOL→ (VarT → RatSem)→ Bool

And go our merry way for most cases:

eval formula env = case formula of
PName n args→ eval0 n (map (flip evalRat env) args)
Equal a b → evalRat a env evalRat b env
And p q → eval p env∧ eval p env
Or p q → eval p env∨ eval p env

However, as soon as we encounter quantifiers, we have a problem. To eval-
uate EXISTS x p (at least in certain contexts) we may need to evaluate p for
each possible value of x. But, unfortunately, there are infinitely many such
possible values, and so we can never know if the formula is a tautology.3 So, if
we were to try and run the evaluator, it would not terminate. Hence, the best
that we can ever do is, given a hand-written proof of the formula, check if the
proof is valid. Fortunately, we have already studied the notion of proof in the
section on propositional logic, and it can be extended to support quantifiers.

2.2.2 Universal quantification

Universal quantification (Forall or ∀) can be seen as a generalisation of And.
To see this, we can begin by generalising the binary operator And to an n-ary
version: Andn. To prove Andn (A1, A2, ..., An) we need a proof of each Ai.
Thus we could define Andn (A1, A2, ..., An) = A1 & A2 & ... & An where & is
the infix version of binary And. The next step is to require the formulas Ai to
be of the same form, i.e. the result of applying a constant function A to the
individual i. And, we can think of the variable i ranging over the full set of
individuals i1, i2, Then the final step is to introduce the notation ∀ i. A (i)
for A (i1) & A (i2) &

Now, a proof of ∀ x. A (x) should in some way contain a proof of A (x) for
every possible x. For the binary And we simply provide the two proofs, but in
the infinite case, we need an infinite collection of proofs. To do so, a possible
procedure is to introduce a fresh (meaning that we know nothing about this
new term) constant term a and prove A (a). Intuitively, if we can show A (a)

3FOL experts will scoff at this view, because they routinely use much more sophisticated meth-
ods of evaluation, which handle quantifiers in completely different ways. Their methods are even
able to identify tautologies as such. However, even such methods are not guaranteed to termi-
nate on formulas which are not tautologies. Therefore, as long as an even-very-advanced FOL
tautology-checker is running, there is no way to know how close it is to confirming if the formula
at hand is a tautology or not. This is not a technical limitation, but rather a fundamental one,
which boils down to the presence of quantifiers over an infinite domain.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 61

without knowing anything about a, we have proved ∀ x. A (x). Another way
to view this is to say that a proof of ∀ x. P x is a function f from individuals to
proofs such that f t is a proof of P t for each term t.

So we can now extend our type for proofs: the introduction rule for universal
quantification is A(x) x fresh

∀x.A(x) . The corresponding constructor can be ∀-Intro ::
(RatSem → Proof) → Proof . (In Haskell we would use the textual syntax
AllIntro for ∀-Intro) and AllElim for ∀-Elim.)

Note that the scoping rule for ∀ x. b is similar to the rule for a function defini-
tion, f x = b, and for anonymous functions, λx → b. Just as in those cases we
say that the variable x is bound in b and that the scope of the variable binding
extends until the end of b (but not further).

One common source of confusion in mathematical (and other semi-formal)
texts is that variable binding is sometimes implicit. A typical example is the
notation for equations: for instance xˆ2 + 2 ∗ x + 1 0 usually means roughly
∃ x. xˆ2 + 2 ∗ x + 1 0. We write “roughly” here because in math texts the
scope of x very often extends to some text after the equation where something
more is said about the solution x.4

Let us now consider the elimination rule for universal quantification. The
idea here is that if A (x) holds for every abstract individual x, then it also
holds for any concrete individual a: ∀x.A(x)

A(a) . As for And we had to provide the
other argument to recover p ‘And‘ q, here we have to be able reconstruct the
general form A (x) — indeed, it is not simply a matter of substituting x for a,
because there can be several occurences of a in the formula to prove. So, in
fact, the proof constructor must contain the general form A (x), for example
as a function from individuals: ∀-Elim :: (RatSem→ Prop)→ Proof → Proof .

Let us sketch the proof-checker cases corresponding to universal quantifica-
tion. The introduction rule uses a new concept: subst x a p, which replaces the
variable x by a in p, but otherwise follows closely our informal explanation:

proofChecker (∀-Intro f a) (∀ x. p) = proofChecker (f a′) (subst x a′ p)
where a′ = freshFor [a, ∀ x. p]

proofChecker (∀-Elim f t) p = checkUnify (f x′) p∧ proofChecker t (∀ x′. f x′)
where x′ = freshFor [f x, p]

The eliminator uses checkUnify which verifies that f x is indeed a generalisa-
tion of the formula to prove, p. Finally we need a way to introduce fresh vari-
ables freshFor, which conjures up a variable occuring nowhere in its argument
list.

4This phenomena seems to be borrowed from the behaviour of quantifiers in natural language.
See for example [Bernardy and Chatzikyriakidis, 2020] for a discussion.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 62

2.2.3 Existential quantification

We have already seen how the universal quantifier can be seen as a generali-
sation of And and in the same way we can see the existential (∃) quantifier as
a generalisation of Or.

First we generalise the binary Or to an n-ary Orn. To prove Orn A1 A2 ... An it
is enough (and necessary) to find one i for which we can prove Ai. As before
we then take the step from a family of formulas Ai to a single unary predicate
A expressing the formulas A (i) for the (term) variable i. Then the final step is
to take the disjunction of this infinite set of formulas to obtain ∃ i. A i.

The elimination and introduction rules for existential quantification are:

P(a)
∃i.P(i)

∀x.P(x)→ R ∃i.P(i)
R

The introduction rule says that to prove the existential quantification, we only
need exhibit one witness (a) and one proof for that member of the set of indi-
viduals. For binary Or the “family” only had two members, one labelled Left
and one Right, and we effectively had one introduction rule for each. Here, for
the generalisation of Or, we have unified the two rules into one with an added
parameter a corresponding to the label which indicates the family member.

In the other direction, if we look at the binary elimination rule, we see the need
for two arguments to be sure of how to prove the implication for any family
member of the binary Or.

orElim :: Or p q→ (p ‘Implies‘ r)→ (q ‘Implies‘ r)→ r

The generalisation unifies these two to one family of arguments. If we can
prove R for each member of the family, we can be sure to prove R when we
encounter some family member.

The constructors for proofs can be ∃-Intro :: RatSem → Proof → Proof and
∃-Elim :: Proof → Proof → Proof . In this case we’d have i as the first argument
of ∃-Intro and a proof of A (i) as its second argument.

Exercise 2.5. Sketch the proofChecker cases for existential quantification.

2.2.4 Typed quantification

So far, we have considered quantification always as over the full set of in-
dividuals, but it is often convenient to quantify over a subset with a certain
property (like all even numbers, or all non-empty sets).

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 63

Even though it is not usually considered as strictly part of FOL, it does not
fundamentally change its character if we extended it with several types (or
sorts) of individuals (one speaks of “multi-sorted” FOL).

In such a variant, the quantifiers look like ∀ x : S. P x and ∃ x : S. P x.

Indeed, if a type (a set) S of terms can be described as those that satisfy the
unary predicate T we can understand ∀ x : T. P x as a shorthand for ∀ x. T x⇒
P x. Likewise we can understand ∃ x : T. P x as a shorthand for ∃ x. T x & P x.

As hinted at in the previous chapters, we find that writing types explicitly can
greatly help understanding, and we won’t refrain from writing down types in
quantifiers in FOL formulas.

Exercise 2.6. Prove that the de Morgan dual of typed universal quantification
is the typed existential quantification, using the above translation to untyped
quantification.

2.2.5 Curry-Howard for quantification over individuals

We can try and draw parrellels with a hypothetical programming language
corresponding to FOL. In such a programming language, we expect to be able
to encode proof rules as follows (we must use a dependent function type here,
(a : A)→ B, see below)

allIntro :: ((a : Individual)→ P a)→ (∀ x. P x)
allElim :: (∀ x. P x)→ ((a : Individual)→ P a)
existIntro :: (a : Individual)→ P a→ ∃ x. P x
existsElim :: ((a : Individual)→ P a ‘Implies‘ R)→ (∃ x. P x) ‘Implies‘ R

Taking the intuitionistic version of FOL (with the same treatment of nega-
tion as for propositional logic), we additionally expect to be able to represent
proofs of quantifiers, directly. That is:

(t, bt) is a program of type ∃ x. P x if bt is has type P t.
f is a program of type ∀ x. P x if f t is has type P t for all t.

Unfortunately, in its 2010 standard, Haskell does not provide the equivalent
of quantification over individuals. Therefore, one would have to use a differ-
ent tool than Haskell as a proof assistant for (intuitionistic) FOL. The quan-
tification that Haskell provides (forall a. ...) is over types rather than individu-
als.What we would need is: 1. a type corresponding to universal quantifica-
tion, the dependent function type (a : A)→ B, and 2. a type corresponding to
∃ x : A. P x, the dependent pair (x : A, P x).

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 64

We can recommend the language Agda [Norell and Chapman, 2009] or Idris
[Brady, 2016], however, in order to avoid a multiplicity of tools and potentially
an excessive emphasis on proof formalism, we will refrain to formalise proofs
as Agda or Idris programs in the remainder. Rather, in the rest of the chapter,
we will illustrate the logical principles seen so far by examples.

2.3 An aside: Pure set theory

One way to build mathematics from the ground up is to start from pure set
theory and define all concepts by translation to sets. We will only work with
(a small corner of) this as a mathematical domain to study, not as “the right
way” of doing mathematics (there are other ways). To classify the sets we
will often talk about the cardinality of a set which is defined as the number of
elements in it.

The core of the language of pure set theory is captured by four function sym-
bols ({ }, S, Union, and Intersection). We use a nullary function symbol { } to
denote the empty set (sometimes written ∅) and a unary function symbol S for
the function that builds a singleton set from an “element”. All non-variable
terms so far are { }, S { }, S (S { }), . . . The first set is empty but all the others
denote (different) one-element sets.

Next we add two binary function symbols for union and intersection of sets
(denoted by terms). Using union we can build sets of more than one element,
for example Union (S { }) (S (S { })) which has two “elements”: { } and S { }.

In pure set theory we don’t actually have any distinguished “elements” to
start from (other than sets), but it turns out that quite a large part of mathe-
matics can still be expressed. Every term in pure set theory denotes a set, and
the elements of each set are again sets.

At this point it is a good exercise to enumerate a few sets of cardinality 0, 1,
2, and 3. There is really just one set of cardinality 0: the empty set s0 = { }.
Using S we can then construct s1 = S s0 of cardinality 1. Continuing in this
manner we can build s2 = S s1, also of cardinality 1, and so on. Now we can
combine different sets (like s1 and s2) with Union to build sets of cardinality 2:
s3 = Union s1 s2, s4 = Union s2 s3, etc. And we can at any point apply S to get
back a new set of cardinality 1, like s5 = S s3.

Natural numbers To talk about things like natural numbers in pure set the-
ory they need to be encoded. FOL does not have function definitions or re-
cursion, but in a suitable meta-language (like Haskell) we can write a function

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 65

that creates a set with n elements (for any natural number n) as a term in FOL.
Here is some pseudo-code defining the “von Neumann” encoding:

vN 0 = { }
vN (n + 1) = step (vN n)
step x = Union x (S x)

If we use conventional set notation we get vN 0 = { }, vN 1 = {{ }}, vN 2 =
{{ }, {{ }}}, vN 3 = {{ }, {{ }}, {{ }, {{ }}}}, etc. If we use the shorthand
n for vN n we see that 0 = { }, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and, in
general, that n has cardinality n (meaning it has n elements).

Pairs The constructions presented so far show that, even starting from no
elements, we can embed all natural numbers in pure set theory. We can also

embed unordered pairs: {a, b} def
= Union (S a) (S b) and normal, ordered

pairs: (a, b) def
= {S a, {a, b}}. With a bit more machinery it is possible to step

by step encode N, Z, Q, R, and C. A good read in this direction is “The
Haskell Road to Logic, Maths and Programming” [Doets and van Eijck, 2004].

2.3.1 Assignment 1: DSLs, sets and von Neumann

In this assignment you will build up a domain-specific language (a DSL) for fi-
nite sets. The domain you should model is pure set theory where all members
are sets.

Define a datatype TERM v for the abstract syntax of set expressions with vari-
ables of type v and a datatype PRED v for predicates over pure set expressions.

Part 1. TERM should have constructors for

• the Empty set

• the one-element set constructor Singleton

• Union, and Intersection

– you can also try Powerset

• set-valued variables (Var :: v→ TERM v)

PRED should have contructors for

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 66

• the two predicates Elem, Subset

• the logical connectives And, Or, Implies, Not

Part 2. A possible semantic domain for pure sets is

newtype Set = S [Set]

Implement the evaluation functions

eval :: Eq v⇒ Env v Set→ TERM v→ Set
check :: Eq v⇒ Env v Set→ PRED v→ Bool

type Env var dom = [(var, dom)]

Note that the type parameter v to TERM is for the type of variables in the set
expressions, not the type of elements of the sets. (You can think of pure set
theory as “untyped” or “unityped”.)

Part 3. The von Neumann encoding of natural numbers as sets is defined re-
cursively as

vonNeumann 0 = Empty
vonNeumann (n + 1) = Union (vonNeumann n)

(Singleton (vonNeumann n))

Implement vonNeumann and explore, explain and implement the following
“pseudocode” claims as functions in Haskell:

claim1 n1 n2 = {- if (n1 6 n2) then (n1⊆ n2) -}
claim2 n = {- n = {0, 1, ..., n− 1} -}

You need to insert some embeddings and types and you should use the eval
and check functions. (For debugging it is useful to implement a show function
for Set which uses numerals to show the von Neumann naturals.)

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 67

2.4 Examples

2.4.1 Proof by contradiction

Let us express and prove the irrationality of the square root of 2. We have two
main concepts involved: the predicate “irrational” and the function “square
root of”. The square root function can be specified by the relation between
two positive real numbers r and s as r =

√
s iff rˆ2 s. The formula “x is

irrational” is just ¬ (R x) where R is the predicate “is rational”.5

R x = ∃ a : Z. ∃ b : N>0. b ∗ x a & GCD (a, b) 1

The pattern “proof by contradiction” says that a way to prove some statement
P is to assume ¬ P and derive something absurd. The traditional “absurd”
statement is to prove simultaneously some Q and ¬ Q, for example.

Let us take P = ¬ (R r) so that ¬ P = ¬ (¬ (R r)) = R r and try with
Q = GCD (a, b) 1. Assuming ¬ P we immediately get Q so what we need
is to prove ¬ Q, that is GCD (a, b) 6 1. We can use the equations b ∗ r a and
rˆ2 2. Squaring the first equation and using the second we get bˆ2 ∗ 2 aˆ2.
Thus aˆ2 is even, which means that a is even, thus a 2 ∗ c for some c. But then
bˆ2 ∗ 2 aˆ2 4 ∗ cˆ2 which means that bˆ2 2 ∗ cˆ2. By the same reasoning
again we have that also b is even. But then 2 is a factor of both a and b, which
means that GCD (a, b) > 2, which in turn implies ¬ Q.

To sum up: by assuming ¬ P we can prove both Q and ¬ Q. Thus, by contra-
diction, P must hold (the square root of two is irrational).

2.4.2 Proof by cases

As another example, let’s prove that there are two irrational numbers p and q
such that pˆq is rational.

S = ∃ p. ∃ q. ¬ (R p) &¬ (R q) & R (pˆq)

We know from above that r =
√

2 is irrational, so as a first attempt we could
set p = q = r. Then we have satisfied two of the three clauses (¬ (R p) and
¬ (R q)). What about the third clause: is x = pˆq = rˆr rational? By the
principle of the excluded middle (Section 2.1.7), we know that either R x or

5In fact we additionally require the rational to be normalised (no common factor between the
denominator and numerator) to simplify the proof.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 68

¬ (R x) must hold. Then, we apply ∨-elimination, and thus we have to deal
with the two possible cases separately.

Case 1: R x holds. Then we have a proof of S with p = q = r =
√

2.

Case 2: ¬ (R x) holds. Then we have another irrational number x to play with.
Let’s try p = x and q = r. Then pˆq = xˆr = (rˆr)ˆr = rˆ(r ∗ r) = rˆ2 = 2 which
is clearly rational. Thus, also in this case we have a proof of S, but now with
p = rˆr and q = r.

To sum up: yes, there are irrational numbers such that their power is rational.
We can prove the existence without knowing what numbers p and q actually
are: this is because negation-elimination is a non-constructive principle. The
best we could do in an intuitionistic logic, which is constructive, is to show
that, if they were not to exist, then we come to a contradiction.

2.4.3 There is always another prime

As an example of combining quantification (forall, exists) and implication let
us turn to one statement of the fact that there are infinitely many primes. If
we assume that we have a unary predicate expressing that a number is prime
and a binary (infix) predicate ordering the natural numbers we can define a
formula IP for “Infinitely many Primes” as follows:

IP = ∀ n. Prime n⇒ ∃ m. Prime m & m > n

Combined with the fact that there is at least one prime (like 2) we can repeat-
edly refer to this statement to produce a never-ending stream of primes.

To prove this formula we are going to translate from logic to programs as
described in Section 2.1.6. We can translate step by step, starting from the
top level. The forall-quantifier translates to a (dependent) function type (n :
Term)→ and the implication to a normal function type Prime n→. The exists-
quantifier translates to a (dependent) pair type ((m : Term), ...) and finally the
& translates into a pair type. Putting all this together we get a type signature
for any proof of the theorem:

proof : (n : Term)→ Prime n→ ((m : Term), (Prime m, m > n))

This time the proof is going to be constructive: we have to find a concrete
bigger prime, m. We can start filling in the definition of proof as a 2-argument
function returning a triple. The key idea is to consider 1 + factorial n as a
candidate new prime:

proof n pn = (m, (pm, gt))
where m′ = 1 + factorial n

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 69

m = {- some non-trivial prime factor of m′ -}
pm = {- a proof that m is prime -}
gt = {- a proof that m > n -}

The proof pm is the core of the theorem. Let x%y be the remainder after integer
division of x by y and let (p) denote “equality modulo p”: x p y = x%p
y%p. Then note that for any number p where 2 6 p 6 n we have n! p 0. We
then calculate

m′ p {- Def. of m′ -}
1 + n ! p {- modulo distributes over +, and n! p 0 -}
1

Thus m′ is not divisible by any number from 2 to n. But is it a prime? Here
we could, as before, use the law of excluded middle to progress. But we don’t
have to, because primality is a decidable property: we can write a terminating
function which checks if m′ is prime. We can then proceed by case analysis
again: If m′ is prime then m = m′ and the proof is done (because 1 + n! > 1 +
n > n). Otherwise, let m be a prime factor of m′ (thus m′ = m ∗ q, q > 1). Then
1 p m′ p (m%p) ∗ (q%p) which means that neither m nor q are divisible by
p (otherwise the product would be zero). As m is thus not divisible by any
number from 2 to n, it has to be bigger than n. QED.

The constructive character of this proofs means that it can be used to define a
(mildly useful) function which takes any prime number to some larger prime
number. We can compute a few example values:

2 7→ 3 (1+2!)
3 7→ 7 (1+3!)
5 7→ 11 (1+5! = 121 = 11*11)
7 7→ 71 . . .

2.5 Basic concepts of calculus

Now we have built up quite a bit of machinery to express logic formulas and
proofs. It is time time to apply it to some concepts in calculus. We start with
the concept of “limit point” which is used in the formulation of different prop-
erties of limits of functions.

Limit point Definition (adapted from Rudin [1964], page 28): Let X be a sub-
set of R. A point p∈R is a limit point of X iff for every ε > 0, there exists q∈X
such that q 6= p and |q− p|< ε.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 70

To express “Let X be a subset of R” we write X : P R. In general, the function
P takes a set (here R) to the set of all its subsets.

Limp : R→P R→ Prop
Limp p X = ∀ε > 0. ∃ q∈X− {p}. |q− p|< ε

Notice that q depends on ε. Thus by introducing a function getq we can move
the ∃ out.

type Q = R>0→ (X− {p})
Limp p X = ∃getq : Q. ∀ ε > 0. |getq ε− p|< ε

Next: introduce the “open ball” function B.

B : R→R>0→P R

B c r = {x | |x− c|< r}

B c r is often called an “open ball” around c of radius r. On the real line this
“open ball” is just an open interval, but with complex c or in more dimensions
the term feels more natural. In every case B c r is an open set of values (points)
of distance less than r from c. The open balls around c are special cases of
neighbourhoods of c which can have other shapes but must contain some open
ball.

Using B we get

Limp p X = ∃getq : Q. ∀ ε > 0. getq ε ∈ B p ε

Example 1: Is p = 1 a limit point of X = {1}? No! X− {p} = { } (there is no
q 6 p in X), thus there cannot exist a function getq because it would have to
return elements in the empty set!

Example 2: Is p = 1 a limit point of the open interval X = (0, 1)? First note
that p 6∈ X, but it is “very close” to X. A proof needs a function getq which
from any ε computes a point q = getq ε which is in both X and B 1 ε. We need
a point q which is in X and closer than ε from 1. We can try with q = 1− ε / 2
because |1 − (1 − ε / 2)| = |ε / 2| = ε / 2 < ε which means q ∈ B 1 ε. We
also see that q 6 1 because ε > 0. The only remaining thing to check is that
q ∈X. This is true for sufficiently small ε but the function getq must work for
all positive reals. We can use any value in X (for example 17 / 38) for ε which
are “too big” (ε > 2). Thus our function can be

getq ε | ε < 2 = 1− ε / 2
| otherwise = 17 / 38

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 71

A slight variation which is often useful would be to use max to define getq ε =
max (17 / 38, 1− ε / 2).

Similarly, we can show that any internal point (like 1 / 2) is a limit point.

Example 3: limit of an infinite discrete set X

X = {1 / n | n∈N>0}

Show that 0 is a limit point of X. Note (as above) that 0 6∈X.

We want to prove Limp 0 X which is the same as ∃getq : Q. ∀ ε > 0. getq ε ∈
B 0 ε. Thus, we need a function getq which takes any ε > 0 to an element of
X − {0} = X which is less than ε away from 0. Or, equivalently, we need
a function getn : R>0→N>0 such that 1 / n < ε. Thus, we need to find an n
such that 1 / ε < n. If 1 / ε would be an integer we could use the next integer
(1 + 1 / ε), so the only step remaining is to round up:

getq ε = 1 / getn ε
getn ε = 1 + ceiling (1 / ε)

Exercise 2.7. prove that 0 is the only limit point of X.

Proposition: If X is finite, then it has no limit points.

∀ p∈R. ¬ (Limp p X)

This is a good exercise in quantifier negation!

¬ (Limp p X) = {- Def. of Limp -}
¬ (∃getq : Q. ∀ ε > 0. getq ε ∈ B p ε) = {- Negation of existential -}
∀ getq : Q. ¬ (∀ε > 0. getq ε ∈ B p ε) = {- Negation of universal -}
∀ getq : Q. ∃ ε > 0. ¬ (getq ε ∈ B p ε) = {- Simplification -}
∀ getq : Q. ∃ ε > 0. |getq ε− p| > ε

Thus, using the “functional interpretation” of this type we see that a proof
needs a function noLim

noLim : (getq : Q)→R>0

such that let ε = noLim getq in |getq ε− p| > ε.

Note that noLim is a higher-order function: it takes a function getq as an argu-
ment. How can we analyse this function to find a suitable ε? The key here
is that the range of getq is X − {p} which is a finite set (not containing p).
Thus we can enumerate all the possible results in a list xs = [x1, x2, . . . xn],
and measure their distances to p: ds = map (λx → |x− p|) xs. Now, if we let
ε = minimum ds we can be certain that |getq ε− p| > ε just as required (and
ε 6 0 because p /∈ xs).

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 72

Exercise 2.8. Show that Limp p X implies that X is infinite.

Show how to construct an infinite sequence a : N → R of points in X− {p}
which gets arbitrarily close to p. Note that this construction can be seen as a
proof of Limp p X⇒ Infinite X.

2.5.1 The limit of a sequence

Now we can move from limit points to the more familiar limit of a sequence.
At the core of this book is the ability to analyse definitions from mathematical
texts, and here we will use the definition of the limit of a sequence of Adams
and Essex [2010, page 498]:

We say that sequence an converges to the limit L, and we write
limn→∞ an = L, if for every positive real number ε there exists
an integer N (which may depend on ε) such that if n > N, then
|an − L|< ε.

The first step is to type the variables introduced. A sequence a is a function
from N to R, thus a : N → R where an is special syntax for normal function
application of a to n : N. Then we have L : R, ε : R>0, and N : N (or getN :
R>0 →N as we will see later).

In the next step we analyse the new concept introduced: the syntactic form
limn→∞ an = L which we could express as an infix binary predicate haslim
where a haslim L is well-typed if a : N→ R and L : R.

The third step is to formalise the definition using logic: we define haslim using
a ternary helper predicate P:

a haslim L = ∀ ε > 0. P a L ε -- “for every positive real number ε . . . ”
P a L ε = ∃N : N. ∀ n≥N. |an − L|< ε

= ∃N : N. ∀ n≥N. an ∈ B L ε
= ∃N : N. I a N⊆ B L ε

where we have introduced an “image function” for sequences “from N on-
ward”:

I : (N→X)→N→P X
I a N = {a n | n≥N}

The “forall-exists”-pattern is very common and it is often useful to transform
such formulas into another form. In general ∀ x : X. ∃ y : Y. Q x y is equivalent

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 73

to ∃ gety : X → Y. ∀ x : X. Q x (gety x). In the new form we more clearly see
the function gety which shows how the choice of y depends on x. For our case
with haslim we can thus write

a haslim L = ∃ getN : R>0 →N. ∀ ε > 0. I a (getN ε)⊆ B L ε

where we have made the function getN more visible. The core evidence of
a haslim L is the existence of such a function (with suitable properties).

Exercise 2.9. Prove that the limit of a sequence is unique.

Exercise 2.10. Prove (a haslim L) & (b haslim M)⇒ (a + b) haslim (L + M).

When we are not interested in the exact limit, just that it exists, we say that a
sequence a is convergent when ∃L. a haslim L.

2.5.2 Case study: The limit of a function

As our next mathematical text book quote we take the definition of the limit
of a function of type R→ R from Adams and Essex [2010]:

A formal definition of limit

We say that f (x) approaches the limit L as x approaches a, and
we write

lim
x→a

f (x) = L,

if the following condition is satisfied:
for every number ε > 0 there exists a number δ > 0, possibly
depending on ε, such that if 0 < |x− a|< δ, then x belongs to the
domain of f and

|f (x)− L|< ε.

The lim notation has four components: a variable name x, a point a, an ex-
pression f (x) and the limit L. The variable name and the expression can be
combined into just the function f 6 and this leaves us with three essential com-
ponents: a, f , and L. Thus, lim can be seen as a ternary (3-argument) predicate
which is satisfied if the limit of f exists at a and equals L. If we apply our logic
toolbox we can define lim starting something like this:

6To see why this works in the general case of any expression of x, read Section 1.7

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 74

lim a f L = ∀ ε > 0. ∃ δ > 0. P ε δ

when P is a predicate yet to define. Indeed, it is often useful to introduce a
local name (like P here) to help break the definition down into more manage-
able parts. If we now naively translate the last part we get this “definition”
for P:

where P ε δ = (0 < |x− a|< δ)⇒ (x ∈ Dom f ∧ |f x− L|< ε))

Note that there is a scoping problem: we have a, f , and L from the “call” to lim
and we have ε and δ from the two quantifiers, but where did x come from? It
turns out that the formulation “if . . . then . . . ” hides a quantifier that binds x.
Thus we get this definition:

lim a f L = ∀ ε > 0. ∃ δ > 0. ∀ x. P ε δ x
where P ε δ x = (0 < |x− a|< δ)⇒ (x ∈ Dom f ∧ |f x− L|< ε))

The predicate lim can be shown to be a partial function of two arguments, a
and f . This means that at a point a each function f can have at most one limit L.
(This is not evident from the definition and proving it is a good exercise.)

Exercise 2.11. What does Adams mean by “δ > 0, possibly depending on ε”?
How did we express “possibly depending on” in our formal defintion? Hint:
how would you express that δ cannot depend on ε?

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 75

2.6 Exercises

2.6.1 Representations of propositions

Exercise 2.12. Define a function for de Morgan dualisation.

Exercise 2.13. Define a function to rewrite propositions into conjunctive nor-
mal form.

Exercise 2.14. Define a function to rewrite propositions into disjunctive nor-
mal form.

Exercise 2.15. Propositions as polynomials. (This is a difficult exercise: it is a
good idea to come back to it after Chapter 4 (where one learns about abstract
structures) and after Chapter 5).

One way to connect logic to calculus is to view propositions as polynomials
(in several variables). The key idea is to represent the truth values by zero
(False) and one (True) and each named proposition P by a fresh variable p.

To represent logical operations one just has to check that the usual notion of
expression evaluation gives the right answer for zero and one. (Can you ex-
press this as a homomorphism — seen in Chapter 4?)

The simplest operation to represent is And which becomes multiplication: the
predicate And P Q translates to p ∗ q as can be easily checked. Note that p + q
does not represent any proposition, because its value would be 2 for p = q = 1,
but 2 does not represent any boolean.

How should Not, Or, and Implies be represented?

2.6.2 Proofs

{-# LANGUAGE EmptyCase #-}
import PropositionalLogic

Short technical note For the exercises on the abstract representation of proofs
for the propositional calculus using Haskell, (see Section 2.1.5), you might find
it useful to take a look at typed holes, a feature which is enabled by default
in GHC and available (the same way as the language extension EmptyCase

above) from version 7.8.1 onwards: https://wiki.haskell.org/GHC/Typed_
holes.

https://wiki.haskell.org/GHC/Typed_holes
https://wiki.haskell.org/GHC/Typed_holes

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 76

If you are familiar with Agda, these will be familiar to use. In summary, when
trying to code up the definition of some expression (which you have already
typed) you can get GHC’s type checker to help you out a little in seeing how
far you might be from forming the expression you want. That is, how far you
are from constructing something of the appropriate type.

Take example0 below, and say you are writing:

example0 e = andIntro (e)

When loading the module, GHC will tell you which types your holes (marked
by “_”) should have for the expression to be type correct.

On to the exercises.

Exercise 2.16. Prove these theorems (for arbitrary p, q and r):

Impl (And p q) q
Or p q→ Or q p
(p→ q)→ (Not q→ Not p) -- call it notMap
Or p (Not p) -- recall the law of excluded middle

For the hardest examples it can be good to use “theory exploration”: try to
combine the earlier theorems and rules to build up suitable term for which
notMap or notElim could be used.

Exercise 2.17. Translate to Haskell and prove the De Morgan laws:

¬ (p∨ q)↔ ¬ p∧ ¬q
¬ (p∧ q)↔ ¬ p∨ ¬q

(translate equivalence to conjunction of two implications).

Exercise 2.18. So far, the implementation of the datatypes has played no role:
we treated them as abstract. To make this clearer: define the types for connec-
tives in AbstractFol in any way you wish, e.g.:

newtype And p q = A p q
newtype Not p = B p

etc. as long as you still export only the data types, and not the constructors.
Convince yourself that the proofs given above still work and that the type
checker can indeed be used as a poor man’s proof checker.

Exercise 2.19. From now on you can assume the representation of proofs de-
fined in Section 2.1.6.

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 77

1. Check your understanding by re-defining all the introduction and elim-
ination rules as functions.

2. Compare proving the distributivity laws

(p∧ q) ∨ r↔ (p∨ r) ∧ (q∨ r)
(p∨ q) ∧ r↔ (p∧ r) ∨ (q∧ r)

using only the introduction and elimination rules (no pairs, functions, etc.),
with writing the corresponding functions with the given implementations of
the datatypes. The first law, for example, requires a pair of functions:

(Either (p, q) r→ (Either p r, Either q r)
, (Either p r, Either q r)→ Either (p, q) r
)

Exercise 2.20. Assume

type Not p = p→ False

Implement notIntro2 using the definition of Not above, i.e., find a function

notIntro2 :: (p→ (q, q→ False))→ (p→ False)

Using

contraHey :: False→ p
contraHey evE = case evE of { }

prove

(q∧ ¬q)→ p

Can you prove p∨ ¬p?

Prove

¬ p∨ ¬q→¬(p∧ q)

Can you prove the converse?

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 78

Exercise 2.21. Recall that every sentence provable in constructive logic is prov-
able in classical logic. But the converse, as we have seen in the previous ex-
ercise, does not hold. On the other hand, there is no sentence in classical
logic which would be contradicted in constructive logic. In particular, while
we cannot prove p ∨ ¬p, we can prove (constructively!) that there is no p for
which ¬(p∨ ¬p), i.e., that the sentence ¬ ¬ (p∨ ¬p) is always true.

Show this by implementing the following function:

noContra :: (Either p (p→ False)→ False)→ False

Hint: The key is to use the function argument to noContra twice.

2.6.3 Continuity and limits

Below, when asked to “sketch an implementation” of a function, you must
explain how the various results might be obtained from the arguments, in
particular, why the evidence required as output may result from the evidence
given as input. You may use all the facts you know (for instance, that addition
is monotonic) without formalisation.

Exercise 2.22. Consider the classical definition of continuity:

Definition: Let X ⊆ R, and c ∈ X. A function f : X → R is
continuous at c if for every ε > 0, there exists δ > 0 such that, for
every x in the domain of f , if |x− c| < δ, then | f x− f c| < ε.

1. Write the definition formally, using logical connectives and quantifiers.

2. Introduce functions and types to simplify the definition.

3. Prove the following proposition: If f and g are continuous at c, f + g is
continuous at c.

Exercise 2.23. Adequate notation for mathematical concepts and proofs.

A formal definition of “ f : X → R is continuous” and “ f is continuous at c”
can be written as follows (using the helper predicate Q):

C (f) = ∀ c : X. Cat (f , c)
Cat (f , c) = ∀ ε > 0. ∃ δ > 0. Q (f , c, ε, δ)
Q (f , c, ε, δ) = ∀ x : X. |x− c|< δ⇒ |f x− f c|< ε

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 79

By moving the existential quantifier outwards we can introduce the function
getδ which computes the required δ from c and ε:

C′ (f) = ∃ getδ : X→ R>0 → R>0. ∀ c : X. ∀ ε > 0. Q (f , c, ε, getδ c ε)

Now, consider this definition of uniform continuity:

Definition: Let X ⊆ R. A function f : X → R is uniformly continu-
ous if for every ε > 0, there exists δ > 0 such that, for every x and
y in the domain of f , if |x− y|< δ, then |f x− f y|< ε.

1. Write the definition of UC (f) = “f is uniformly continuous” formally,
using logical connectives and quantifiers. Try to use Q.

2. Transform UC (f) into a new definition UC′ (f) by a transformation
similar to the one from C (f) to C′ (f). Explain the new function newδ
introduced.

3. Prove that ∀f : X → R. UC′ (f) ⇒ C′ (f). Explain your reasoning in
terms of getδ and newδ.

Exercise 2.24. Consider the statement:

The sequence {an} = (0, 1, 0, 1, ...) does not converge.

To keep things short, let us abbreviate a significant chunk of the definition of
a haslim L (see Section 2.5.1) by

P : Seq X→ X→ R>0 → Prop
P a L ε = ∃ N : N. ∀ n : N. (n≥N)→ (|an − L|< ε)

1. Define the sequence {an} as a function a : N→R.

2. The statement “the sequence {an} is convergent” is formalised as

∃ L : R. ∀ ε > 0. P a L ε

The formalisation of “the sequence {an} is not convergent” is therefore

¬ ∃ L : R. ∀ ε > 0. P a L ε

Simplify this expression using the rules

¬ (∃ x. P x)↔ (∀ x. ¬ (P x))
¬ (∀ x. P x)↔ (∃ x. ¬ (P x))
¬ (P→Q)↔ P∧ ¬Q

The resulting formula should have no ¬ in it (that’s possible because the
negation of < is ≥).

CHAPTER 2. DSLS FOR LOGIC AND PROOFS 80

3. Give a functional interpretation of the resulting formula.

4. Sketch an implementation of the function, considering two cases: L 6= 0
and L = 0.

Exercise 2.25. Same as Exercise 2.24 but for a = id.

Exercise 2.26. Consider the statement:

The limit of a convergent sequence is unique.

1. There are many ways of formalising this in FOL. For example:

let Q a L = ∀ ε > 0. P a L ε
in ∀ L1 : R. ∀ L2 : R. (Q a L1 ∧Q a L2)→ L1 = L2

i.e., if the sequence converges to two limits, then they must be equal, or

∀ L1 : R. ∀ L2 : R. Q a L1 ∧ L1 6= L2→ ¬Q a L2

i.e., if a sequence converges to a limit, then it doesn’t converge to any-
thing that isn’t the limit.

Simplify the latter alternative to eliminate the negation and give func-
tional representations of both.

2. Choose one of the functions and sketch an implementation of it.

Chapter 3

Types in Mathematics

3.1 Typing Mathematics: derivative of a function

Consider the classical definition of the derivative of Adams and Essex [2010]:

The derivative of a function f is another function f ′ defined by

f ′(x) = lim
h→0

f (x + h)− f (x)
h

at all points x for which the limit exists (i.e., is a finite real number).
If f ′(x) exists, we say that f is differentiable at x.

We can start by assigning types to the expressions in the definition. Let’s write
X for the domain of f so that we have f : X→ R and X ⊆ R (or, equivalently,
X : P R). If we denote with Y the subset of X for which f is differentiable we
get f ′ : Y → R. Thus, the operation which maps f to f ′ has type (X → R) →
(Y→ R). Unfortunately, the only notation for this operation given (implicitly)
in the definition is a prime symbol (apostrophe), written postfix. To make it
easier to see we use a prefix D instead and we can thus write D : (X → R) →
(Y→ R). We will often assume that X = Y (f is differentiable everywhere) so
that we can can see D as preserving the type of its argument.

Now, with the type of D sorted out, we can turn to the actual definition of
the function D f . The definition is given for a fixed (but arbitrary) x. (At this
point the reader may want to check the definition of “limit of a function” in
Section 2.5.2.) The lim expression is using the (anonymous) function g h =

81

CHAPTER 3. TYPES IN MATHEMATICS 82

f (x+h)−f x
h and that the limit of g is taken at 0. Note that g is defined in the

scope of x and that its definition uses x so it can be seen as having x as an
implicit, first argument. To be more explicit we write ϕ x h = f (x+h)−f x

h and
take the limit of ϕ x at 0. So, to sum up, D f x = lim 0 (ϕ x). 1The key here
is that we name, type, and specify the operation of computing the derivative
(of a one-argument function). We will use this operation quite a bit in the rest
of the book, but here are just a few examples to get used to the notation. With
the following definitions:

sq x = xˆ2
double x = 2 ∗ x
c2 x = 2

we have the following equalities:

sq′ D sq D (λx→ xˆ2) D (ˆ2) (2∗) double
sq′′ D sq′ D double c2 const 2

What we cannot do at this stage is to actually implement D in Haskell. If we
only have a function f : R→ R as a “black box” we cannot really compute the
actual derivative f ′ : R→ R, but only numerical approximations. However if
we also have access to the “source code” of f , then we can apply the usual rules
we have learnt in calculus. We will get get back to this question in Section 3.6.

3.2 Typing Mathematics: partial derivative

Armed with our knowledge of functions of more than one variable, we can
continue on our quest to type the elements of mathematical textbook defini-
tions. Our example here is by Mac Lane [1986, page 169], where we read

[...] a function z = f (x, y) for all points (x, y) in some open set U1

of the cartesian (x, y)-plane. [...] If one holds y fixed, the quantity z2

remains just a function of x; its derivative, when it exists, is called3

the partial derivative with respect to x. Thus at a point (x, y) in U4

this derivative for h 6= 0 is5

∂z/∂x = f ′x(x, y) = lim
h→0

(f (x + h, y)− f (x, y))/h6

1We could go one step further by noting that f is in the scope of ϕ and used in its definition.
Thus the function ψ f x h = ϕ x h, or ψ f = ϕ, is used. With this notation we obtain a point-free
definition that can come in handy: D f = lim 0 ◦ ψ f .

CHAPTER 3. TYPES IN MATHEMATICS 83

What are the types of the elements involved? We have

U ⊆R×R -- cartesian plane
f : U→ R

z : U→ R -- but see below
f ′x : U→ R

The x in the subscript of f ′ is not a real number, but a symbol (we used String
for similar purposes in Section 1.7.3).

The expression (x, y) has six occurrences. The first two (on line 1) denote vari-
ables of type U, the third (on line 2) is just a name ((x, y)-plane). The fourth (at
line 4) denotes a variable of type U bound by a universal quantifier: “a point
(x, y) in U” as text which would translate to ∀(x, y)∈U as a formula fragment.

The variable h is a non-zero real number. The use of the word “for” might
lead one to believe that it is bound by a universal quantifier (“for h 6= 0” on
line 4), but that is incorrect. In fact, h is used as a local variable introduced in
the subscript of lim. This variable h is a parameter of an anonymous function,
whose limit is then taken at 0.

That function, which we can name ϕ, has the type ϕ : U → (R− {0}) → R

and is defined by

ϕ (x, y) h = (f (x + h, y)− f (x, y)) / h

The limit is then written lim 0 (ϕ (x, y)). Note that 0 is a limit point of R−{0},
so the type of lim is the one we have discussed:

lim : {p | p∈R, Limp p X} → (X→ R)→ R

On line 1, z = f (x, y) probably does not mean that we let z be a fixed value
in R, although the phrase “the quantity z” (on line 2) suggests this. Rather,
a possible interpretation is that z is used to abbreviate the expression f (x, y).
That is, z stands for an expression which depends on x and y; thus, it can
be enlightening to replace z with f (x, y) everywhere. In particular, ∂z / ∂x
becomes ∂f (x, y) / ∂x, which we can interpret as the operator ∂ / ∂x applied
to f and (x, y) (remember that (x, y) is bound in the context by a universal
quantifier on line 4). There is the added difficulty that, just like the subscript
in f ′x, the x in ∂x is not the x bound by the universal quantifier, but just a
symbol.

To sum up, partial derivative operators which mention symbols (such as ∂ / ∂x
or “prime subscript x”) do act on an representation of functions which uses
symbols for the variables (not positions), such as presented in Section 1.7.3.

CHAPTER 3. TYPES IN MATHEMATICS 84

This is why we mostly see ∂ f /∂x, ∂ f /∂y, ∂ f /∂z etc. when, in the context, the
function f has been given a definition of the form f (x, y, z) = This kind of
approach presents several difficulties:

1. it makes it hard to rename variables (for example for the purpose of
integration)

2. Further confusion can be created when a variable (such as z above) de-
pends on other variables. Tracing dependencies can become daunting
and it is easy to make errors of name when doing calculations.

3. it makes it difficult to assign a higher order type to the partial deriva-
tives. Indeed, as we have seen in Section 1.7.2, the ∂ f /∂x style means
that the operator binds the name of the variable.

One possibility would be to use the following type: ∂/∂xi : (Rn → R) →
(Rn → R), but it still assumes as input a vector of variables x— even though
the type assumes independence with respect to the variable names. Hence
we prefer a notation which doesn’t rely on the names given to the arguments
whatsoever. It was popularised by Landau [1934] (English edition Landau
[2001]): D1 for the partial derivative with respect to the first argument, D2 for
the partial derivative with respect to the second argument, etc.

Exercise 3.5: for f : R2 → R define D1 and D2 using only D.

3.3 Type inference and understanding: Lagrangian
case study

From Sussman and Wisdom [2013]:

A mechanical system is described by a Lagrangian function of the
system state (time, coordinates, and velocities). A motion of the
system is described by a path that gives the coordinates for each
moment of time. A path is allowed if and only if it satisfies the La-
grange equations. Traditionally, the Lagrange equations are writ-
ten

d
dt

∂L
∂q̇
− ∂L

∂q
= 0

What could this expression possibly mean?

CHAPTER 3. TYPES IN MATHEMATICS 85

To start answering the question of Sussman and Wisdom, we start typing the
elements involved:

1. First, note that the “system state” mentioned can be modelled as a triple
(of type S = T ×Q× V) and we can call the three components t : T for
time, q : Q for coordinates, and v : V for velocities.

2. If we let “coordinates” be just one coordinate, then there is also a single
velocity. (A bit of physics domain knowledge is useful here: if q is a
position of a particle, then v is its velocity.) Thus we can use T = Q =
V = R in this example but it can help the reading to remember the
different uses of R — this would help for example to generalise to more
than one coordinate.

3. Also the use of notation for “partial derivative”, ∂L/∂q, suggests that L
is a function of at least a pair of arguments:

L : Ri→R, i≥ 2

This is consistent with our plan so far if we take i = 3:

L : R3→R

4. Looking again at the same derivative, ∂L/∂q suggests that q is the name
of a real variable, one of the three arguments to L. In the context, which
we do not have, we would expect to find somewhere the definition of
the Lagrangian as a function of the system state:

L : T×Q×V → R

L (t, q, v) = ...

5. Consequently the type of the partial derivatives get specialised as fol-
lows:

(∂/∂q) : (T×Q×V → R)→ (T×Q×V → R)

The notation ∂L/∂q is equivalent to (∂/∂q) L, and D2 L; applying the
partial derivative with respect to the second argument (named q) of L.

6. Therefore, ∂L/∂q should also be a function of the same triple of argu-
ments as L:

(∂L/∂q) : T×Q×V → R

CHAPTER 3. TYPES IN MATHEMATICS 86

It follows that the equation expresses a relation between functions, thus
the 0 on the right-hand side of the Lagrange equation(s) is not the real
number 0, but rather the constant function const 0:

const 0 : T×Q×V→R

const 0 (t, q, v) = 0

7. We now have a problem: d/dt can only be applied to functions of one
real argument t, and the result is a function of one real argument:

(d/dt) (∂L/∂q̇) : T→R

Since we subtract from this the function ∂L/∂q, it follows that this, too,
must be of type T → R. But we already typed it as T × Q × V→ R,
contradiction!

8. The expression ∂L/∂q̇ appears to also be malformed. We would expect
a variable name where we find q̇, but q̇ is the same as dq/dt, a function.
But, with some knowledge from physics we can guess that q̇, the rate of
change of the position with time, is the same as the v, the velocity. Thus
∂L/∂q̇ = ∂L/∂v = D3 L — now well-formed, but still ill-typed.

9. Looking back at the description above, we see that the only immediate
candidate for an application of d/dt is “a path that gives the coordinates
for each moment of time”. Thus, the path is a function of time, let us say

w : T→Q -- with T for time and Q for coordinates (q : Q)

We can now guess that the use of the plural form “equations” might
have something to do with the use of “coordinates” in the plural. In an
n-dimensional space, a position is given by n coordinates. A path would
then be a function

w : T→Q -- with Q = Rn

which is equivalent to n functions of type T→R, each computing one
coordinate as a function of time. We would then have an equation for
each of them. But we will come back to use n = 1 for the rest of this
example.

10. Now that we have a path, the coordinates at any time are given by
the path. And because the time derivative of a coordinate is a velocity,
we can actually compute the trajectory of the full system state (T, Q, V)
starting from just the path.

CHAPTER 3. TYPES IN MATHEMATICS 87

q : T→Q
q t = w t -- or, equivalently, q = w
q̇ : T→V
q̇ t = dw/dt -- or, equivalently, q̇ = D w

We combine these in the “combinator” expand, given by

expand : (T→Q)→ (T→ T×Q×V)
expand w t = (t, w t, D w t)

11. With expand in our toolbox we can fix the typing problem in item 7
above. The Lagrangian is a “function of the system state (time, coor-
dinates, and velocities)” and the “expanded path” (expand w) computes
the state from just the time. By composing them we get a function

L ◦ (expand w) : T → R

which describes how the Lagrangian would vary over time if the system
would evolve according to the path w.

This particular composition is not used in the equation, but we do have

(∂L/∂q) ◦ (expand w) : T → R

which is used inside d/dt (and which now type-checks).

12. We now move to using D for d/dt, D2 for ∂/∂q, and D3 for ∂/∂q̇. The
type of the partial derivatives D2 and D3 is (S → R) → (S → R), and
here D : (T → R) → (T → R). In combination with expand w we find
these type correct combinations for the two terms in the equation:

D ((D2 L) ◦ (expand w)) : T→R

(D3 L) ◦ (expand w) : T→R

The equation becomes

D ((D3 L) ◦ (expand w))− (D2 L) ◦ (expand w) = const 0

or, after simplification:

D (D3 L ◦ expand w) = D2 L ◦ expand w

where both sides are functions of type T→R.

CHAPTER 3. TYPES IN MATHEMATICS 88

13. “A path is allowed if and only if it satisfies the Lagrange equations”
means that this equation is a predicate on paths (for a particular L):

Lagrange (L, w) = D (D3 L ◦ expand w) D2 L ◦ expand w

where we use () to avoid confusion with the equality sign (=) used for
the definition of the predicate.

So, we have figured out what the equation means in terms of operators that
we recognise. If we zoom out slightly we see that the quoted text means
something like: If we can describe the mechanical system in terms of a “La-
grangian” (L : S → R where S = T×Q×V), then we can use the equation to
check if a particular candidate path w : T→R qualifies as an allowed “motion
of the system” or not. The unknown of the equation is the path w, and as the
equation involves partial derivatives it is an example of a partial differential
equation (a PDE). We will not dig into how to solve such PDEs, but they are
widely used in physics.

3.4 Incremental analysis with types

So far we have worked on typing mathematics, but without the help of any
tool. However we can in fact get the Haskell interpreter to help a bit even
when we are still at the specification stage. It is often useful to collect the
known (or assumed) facts about types in a Haskell file and regularly check if
the type checker agrees. This is a form of type-driven development.

Consider the following text from Mac Lane’s Mathematics Form and Function1

(page 182):2

In these cases one tries to find not the values of x which make a3

given function y = f (x) a minimum, but the values of a given4

function f (x) which make a given quantity a minimum. Typically,5

that quantity is usually measured by an integral whose integrand6

is some expression F involving both x, values of the function y =7

f (x) at interest and the values of its derivatives — say an integral8

∫ b

a
F(y, y′, x)dx, y = f (x).9

10

We will use the above example as an example of getting feedback from a type
checker. We start by declaring two types, X and Y, and a function f between
them:

CHAPTER 3. TYPES IN MATHEMATICS 89

data X -- X must include the interval [a, b] of the reals
data Y -- another subset of the reals
f :: X→ Y
f = undefined

To the Haskell interpreter, such empty data-declarations mean that there is
no way to construct any element for them, as we saw in Section 2.1.6. But at
this stage of the specfication, we will use this notation to indicate that we do
not know anything about values of those types. Similarly, f has a type, but
no proper implementation. We will declare types for the rest of the variables
as well, and because we are not implementing any of them right now, we can
just make provide a dummy definition for a few of them in one go:

(x, deriv, ff , a, b, int) = undefined

We write ff for the capital F (to satisfy Haskell rules for variable names), deriv
for the derivation operator (D above), and int for the integral operator. On
line 3 “values of x” hints at the type X for x and the way y is used indicates
that it is to be seen as an alias for f (and thus must have the same type) As we
have discussed above, the derivative normally preserves the type and thus we
can write:

x :: X
y :: X→ Y
y = f
y′ :: X→ Y
y′ = deriv f
deriv :: (X→ Y)→ (X→ Y)

Next up (on line 7) is the “expression F” (which we write ff). It should take
three arguments: y, y′, x, and return “a quantity”. We can invent a new type Z
and write:

data Z -- Probably also some subset of the real numbers
ff :: (X→ Y)→ (X→ Y)→ X→ Z

Then we have the operation of definite integration, which we know should
take two limits a, b :: X and a function X → Z. The traditional mathematics
notation for integration uses an expression (in x) followed by dx, but we can
treat that as a function expr binding x:

a, b :: X
integral = int a b expr

where expr x = ff y y′ x

CHAPTER 3. TYPES IN MATHEMATICS 90

int :: X→ X→ (X→ Z)→ Z

Now we have reached a stage where all the operations have types and the
type checker is happy with them. At this point it is possible to experiment
with variations based on alternative interpretations of the text. For this kind
of “refactoring” is very helpful to have the type checker to make sure the types
still make sense. For example, we could write ff2 :: Y → Y → X → Z as a
variant of ff as long as we also change the expression in the integral:

ff2 :: Y→ Y→ X→ Z
ff2 = undefined
integral2 = int a b expr

where expr x = ff2 y y′ x
where y = f x

y′ = deriv f x

Both versions (and a few more minor variations) would be fine as exam solu-
tions, but something where the types don’t match up would not be OK.

The kind of type inference we presented so far in this chapter becomes auto-
matic with experience in a domain, but is very useful in the beginning.

3.5 Type classes

One difficulty when reading (and implementing) mathematics is overloading.
For our purposes, we say that a symbol is overloaded when its meaning de-
pends on the type of the expressions that it applies to.

Consider, for example, the operator (+). According to usual mathematical no-
tation, one can use it to add integers, rational numbers, real numbers, complex
numbers, etc. and it poses no difficulty. We explore the mathematical reasons
in more detail in Section 4.2.2, but for now we will concentrate on the view of
functional programming of this problem: one way to understand overloading
is via type classes.

In Haskell both 4 3 and 3.4 3.2 typecheck because both integers and
floating point values are member of the Eq class, which we can safely assume
to be defined as follows:

class Eq a where () :: a→ a→ Bool

The above declaration does two things. First, it names a set of types which
have equality test. One can tell the Haskell compiler that certain types belong

CHAPTER 3. TYPES IN MATHEMATICS 91

to this set by using instance declarations, which additionally provide an im-
plementation for the equality test. For example, we can make Bool member of
the Eq using the following declaration:

eqBool :: Bool→ Bool→ Bool
eqBool True True = True
eqBool False False = True
eqBool = False
instance Eq Bool where () = eqBool

(The Haskell compiler will in fact provide instances for primitive types).

Second, the Eq class declaration provides an operator () of type Eq a⇒ a→
a → Bool. One can use the operator on any type a which belongs to the Eq
set. This is expressed in general by a constraint Eq a occuring before the ⇒
symbol.

Instance declarations can also be parameterised on another instance. Consider
for example:

instance Eq a⇒ Eq [a] where () = ... -- exercise

In the above, the expression Eq a⇒ Eq [a] means that for any type a which is
already an instance of Eq we also make the type [a] an instance of Eq. Thus,
for example, by recursion we now have an infinite collection of instances of
Eq: Char, [Char], [[Char]], etc.

3.5.1 Numeric operations

Haskell also provides a Num class, containing various numeric types (Int,
Double, etc.) with several operators (+,∗, etc.). Unfortunately, the Num class
was designed with more regard for implementation quirks than mathemati-
cal structure, and thus it is a poor choice for us. We take a more principled
approach instead, and define the following classes, which together serve a
similar role as Num, and which we study in more detail in Section 4.1:

class Additive a where
zero :: a
(+) :: a→ a→ a

class Additive a⇒ AddGroup a where
negate :: a→ a -- specified as x + negate x zero

class Multiplicative a where
one :: a
(∗) :: a→ a→ a

CHAPTER 3. TYPES IN MATHEMATICS 92

class Multiplicative a⇒ MulGroup a where
recip :: a→ a -- reciprocal, specified as x ∗ recip x one

The operator names clash with the Num class, which we will avoid from now
on in favour Additive and Multiplicative. In Section 4.1 we will get back to these
classes and present a comparison in Fig. 4.1.

Exercise 3.1. Consider the exponentiation operator, which we can write (̂).
Taking advantage of the above classes, propose a possible type for it and
sketch an implementation.

Solution: One possibility is (̂) :: MulGroup a ⇒ a → Int → a. For positive
exponents, one can use repeated multiplication. For negative exponents, one
can use repeated division.

3.5.2 Overloaded integer literals

We will spend some time explaining a convenient Haskell-specific syntactic
shorthand which is very useful but which can be confusing: overloaded in-
tegers. In Haskell, every use of an integer literal like 2, 1738, etc., is actually
implicitly an application of fromInteger to the literal typed as an Integer.

But what is fromInteger? It is a function that converts integers to any type that
supports zero, one, (+), and (−). We can implement it as follows:

fromInteger :: (AddGroup a, Multiplicative a)⇒ Integer→ a
fromInteger n | n < 0 = negate (fromInteger (negate n))

| n 0 = zero
| otherwise = one + fromInteger (n− 1)

Exercise 3.2. Define fromRational which does the same but also handles ratio-
nal numbers and has the MulGroup a constraint.

This means that the same program text can have various meanings depending
on the type of the context (but see also Exercise 4.4): The literal three = 3,
for example, can be used as an integer, a real number, a complex number, or
anything which belongs both to AddGroup and Multiplicative.

3.5.3 Structuring DSLs around type classes

Type classes are related to mathematical structures which, in turn, are related
to DSLs. As an example, consider again the DSL of expressions of one vari-
ables. We saw that such expressions can be represented by the type R → R

CHAPTER 3. TYPES IN MATHEMATICS 93

in the shallow embedding. Using type classes, we can use the usual operators
names instead of funAdd, funMul, etc. We could write:

instance Additive (R→ R) where
(+) = funAdd
zero = funConst zero

The instance declaration of the method zero above looks recursive, but is not:
zero is used at a different type on the left- and right-hand-side of the equal
sign, and thus refers to two different definitions. One the left-hand-side we
define zero :: R→ R, while on the right-hand-side we use zero :: R.

instance Additive a ⇒ Additive (x→ a) where
(+) = funAdd
zero = funConst zero

instance Multiplicative a ⇒ Multiplicative (x→ a) where
(∗) = funMul
one = funConst one

instance AddGroup a ⇒ AddGroup (x→ a) where
negate f = negate ◦ f

instance MulGroup a ⇒ MulGroup (x→ a) where
recip f = recip ◦ f

instance Algebraic a ⇒ Algebraic (x→ a) where√
f =

√
· ◦ f

instance Transcendental a⇒ Transcendental (x→ a) where
π = const π
sin f = sin ◦ f ; cos f = cos ◦ f ; exp f = exp ◦ f

Figure 3.1: Numeric instances lifted to functions (Full definitions can be found
in module Algebra in the repo).

However, as one may suspect, for functions, we can use any domain and any
numeric co-domain in place of R. Therefore we prefer to define the more gen-
eral instances in Fig. 3.1. Here we extend our set of type-classes to cover al-
gebraic and transcendental numbers. A simplified version, which is sufficent
for our purposes, looks as follows:

class Field a⇒ Algebraic a where√
· :: a→ a

class Field a⇒ Transcendental a where
π :: a

CHAPTER 3. TYPES IN MATHEMATICS 94

exp :: a→ a
sin :: a→ a
cos :: a→ a

While classes up to Field follow mathematical conventions very closely, for
Algebraic and Transcendental we take the pragmatic approach and list only the
methods which are necessary for our development.

Together, these type classes represent an abstract language of abstract and
standard operations, abstract in the sense that the exact nature of the elements
involved is not important from the point of view of the type class, only from
that of its implementation. What does matter for the class (but is not captured
in the Haskell definition of the class), is the relationship between various op-
erations (for example addition should distribute over multiplication).

These instances for functions allow us to write expressions which are very
commonly used in math books, such as f + g for the sum of two functions
f and g, say sin + cos :: R → R. Somewhat less common notations, like sq ∗
double :: Z → Z are also possible. They have a consistent meaning: the same
argument is passed to all functions in an expression. As another example, we
can write sinˆ2, which the above instance assigns the following meaning:

sinˆ2 = λx→ (sin x)ˆ(const 2 x) = λx→ (sin x)ˆ2

thus the typical math notation sin2 can work fine in Haskell, provided the
above instances for functions, assuming a fixed argument. (Note that there is
a clash with another common use of superscript for functions in mathematical
texts: sometimes f ˆn means composition of f with itself n times. With that
reading sin2 would mean λx→ sin (sin x).)

Exercise 3.3. Experiment with this feature using ghci, for example by evalu-
ating sin + cos at various points.

Something which may not be immediately obvious, but is nonetheless use-
ful, is that all the above instances are of the form C a ⇒ C (x → a) and
are therefore parametric. This means that, for example, given the instance
Additive a ⇒ Additive (x → a) and the instance Additive R, we have that the
types a→ R, a→ (b→ R), etc. are all instances of Additive. Consequently, we
can use the usual mathematical operators for functions taking any number of
arguments — provided that they match in number and types.

3.6 Computing derivatives

An important part of calculus is the collection of laws, or rules, for comput-
ing derivatives. They are provided by Adams and Essex [2010] as a series of

CHAPTER 3. TYPES IN MATHEMATICS 95

theorems, starting at page 108 of their book. We we can summarize those as
follows:

(f + g)′(x) = f ′(x) + g′(x)

(f ∗ g)′(x) = f ′(x) ∗ g(x) + f (x) ∗ g′(x)

(C ∗ f)′(x) = C ∗ f ′(x)

(f ◦ g)′(x) = f ′(g(x)) ∗ g′(x) -- chain rule

(After a while, Adams and Essex switch to differential notation, so we omit
corresponding rules for trigonometric and exponential functions.) Using the
notation D f for the derivative of f and applying the numeric operations to
functions directly, we can fill in a table of examples which can be followed to
compute derivatives of many functions:

D (f + g) = D f + D g
D (f ∗ g) = D f ∗ g + f ∗D g
D id = const 1
D (const a) = const 0
D (f ◦ g) = (D f ◦ g) ∗D g -- chain rule
D sin = cos
D cos = − sin
D exp = exp

and so on.

If we want to get a bit closer to actually implementing D we quickly notice a
problem: if D has type (R → R) → (R → R), we have no way to turn the
above specification into a program, because the program has no way of telling
which of these rules should be applied. That is, given an extensional (seman-
tic, shallow) function f , the only thing that we can ever do is to evaluate f at
given points, and thus we cannot know if this function was written using a
+, or sin or exp as outermost operation. The only thing that a derivative op-
erator could do would be to numerically approximate the derivative, and that
is not what we are exploring in this book. Thus we need to take a step back
and change the type that we work on. Even though the rules in the table are
obtained by reasoning semantically, using the definition of limit for functions
(of type R→R), they are really intended to be used on syntactic functions or
expressions: abstract syntax trees representing the (semantic) functions.

We observe that we can compute derivatives for any expression made out of
arithmetic functions, trigonometric functions, the exponential and their com-
positions. In other words, the computation of derivatives is based on a domain
specific language of expressions (representing functions in one variable). This
means that we can in fact implement the derivative of FunExp expressions

CHAPTER 3. TYPES IN MATHEMATICS 96

(from Section 1.7.1), using the rules of derivatives. Because the specification
of derivation rules is already in the right format, the way to obtain this imple-
mentation may seem obvious, but we will go through the steps as a way to
show the process in a simple case.

Our goal is to implement a function derive :: FunExp → FunExp which makes
the following diagram commute:

FunExp Func

FunExp Func

eval

derive D

eval

That is, we want the following equality to hold:

eval ◦ derive = D ◦ eval

In turn, this means that for any expression e :: FunExp, we want

eval (derive e) = D (eval e)

For example, let us calculate the derive function for Exp e:2

eval (derive (Exp e)) = {- specification of derive above -}
D (eval (Exp e)) = {- def. eval -}
D (exp (eval e)) = {- def. exp for functions -}
D (exp ◦ eval e) = {- chain rule -}
(D exp ◦ eval e) ∗D (eval e) = {- D rule for exp -}
(exp ◦ eval e) ∗D (eval e) = {- specification of derive -}
(exp ◦ eval e) ∗ (eval (derive e)) = {- def. of eval for Exp -}
(eval (Exp e)) ∗ (eval (derive e)) = {- def. of eval for :∗: -}
eval (Exp e :∗: derive e)

Therefore, the specification is fulfilled by taking

derive (Exp e) = Exp e :∗: derive e

Similarly, we obtain

derive :: FunExp→ FunExp
derive (Const α) = Const 0

2We have added a constructor Exp :: FunExp→ FunExp for this example.

CHAPTER 3. TYPES IN MATHEMATICS 97

derive X = Const 1
derive (e1 :+: e2) = derive e1 :+: derive e2
derive (e1 :∗: e2) = (derive e1 :∗: e2) :+: (e1 :∗: derive e2)
derive (Exp e) = Exp e :∗: derive e

Exercise 3.4. Complete the FunExp type and the eval and derive functions.

CHAPTER 3. TYPES IN MATHEMATICS 98

3.7 Exercises

Exercise 3.5. Partial Derivatives For f : R2 → R define D1 and D2 using
only D. In more detail: let the type F2 = R2 → R and F1 = R → R. Then
D1 : F2 → F2 and D : F1 → F1. Start by defining helper functions: fstFixed :
a → (b → (a, b)) and sndFixed : b → (a → (a, b)). Then use D and the helpers
in the definitions of D1 and D2.

Exercise 3.6. To get a feeling for the Lagrange equations, let L (t, q, v) = m ∗ vˆ
2 / 2−m ∗ g ∗ q, compute expand w, perform the derivatives and check if the
equation is satisfied for

• w1 = id or

• w2 = sin or

• w3 = (q0−) ◦ (g∗) ◦ (/2) ◦ (ˆ2)

Exercise 3.7. Consider the following text from Mac Lane’s Mathematics Form
and Function (page 168):

If z = g(y) and y = h(x) are two functions with continuous deriva-
tives, then in the relevant range z = g(h(x)) is a function of x and
has derivative

z′(x) = g′(y) ∗ h′(x)

Give the types of the elements involved (x, y, z, g, h, z′, g′, h′, ∗ and ′).

Exercise 3.8. Consider the following text from Mac Lane’s Mathematics Form
and Function (page 182):

In these cases one tries to find not the values of x which make a
given function y = f (x) a minimum, but the values of a given
function f (x) which make a given quantity a minimum. Typically,
that quantity is usually measured by an integral whose integrand
is some expression F involving both x, values of the function y =
f (x) at interest and the values of its derivatives – say an integral∫ b

a
F(y, y′, x)dx, y = f (x).

Give the types of the variables involved (x, y, y′, f , F, a, b) and the type of the
four-argument integration operator:∫ .

.
·d·

CHAPTER 3. TYPES IN MATHEMATICS 99

Exercise 3.9. In the case of the simplest probability theory, we start with a
finite, non-empty set Ω of elementary events. An event is a subset of Ω, i.e. an
element of the powerset of Ω, (that is, P Ω). A probability function P associates
to each event a real number between 0 and 1, such that

• P ∅ = 0, P Ω = 1

• A and B are disjoint (i.e., A∩ B = ∅), then: P A + P B = P (A∪ B).

Conditional probabilities are defined as follows [Stirzaker, 2003]:

Let A and B be events with P B > 0. given that B occurs, the condi-
tional probability that A occurs is denoted by P (A | B) and defined
by

P (A | B) = P (A∩ B) / P B

1. What are the types of the elements involved in the definition of condi-
tional probability?
(P, ∩, /, |)

2. In the 1933 monograph that set the foundations of contemporary prob-
ability theory, Kolmogorov used, instead of P (A | B), the expression
PB A. Type this expression. Which notation do you prefer (provide a
brief explanation).

Exercise 3.10. Multiplication for matrices (from the matrix algebra DSL).

Consider the following definition, from “Linear Algebra” by Donald H. Pel-
letier:

Definition: If A is an m× n matrix and B is an n× p matrix, then the product,
AB, is an m× p matrix; the (i, j)th entry of AB is the sum of the products of
the pairs that are obtained when the entries from the ith row of the left factor,
A, are paired with those from the jth column of the right factor, B.

1. Introduce precise types for the variables involved: A, m, n, B, p, i, j. You
can write Fin n for the type of the values {0, 1, ..., n− 1}.

2. Introduce types for the functions mul and proj where AB = mul A B and
proj i j M = “take the (i, j)th entry of M”. What class constraints (if any)
are needed on the type of the matrix entries in the two cases?

CHAPTER 3. TYPES IN MATHEMATICS 100

3. Implement mul in Haskell. You may use the functions row and col spec-
ified by row i M = “the ith row of M” and col j M = “the jth column of
M”. You don’t need to implement them and here you can assume they
return plain Haskell lists.

Exercise 3.11. (Extra material outside the course.) In the same direction as
the Lagrangian case study in Section 3.3 there are two nice blog posts about
Hamiltonian dynamics: one introductory and one more advanced. It is a good
exercise to work through the examples in these posts.

https://blog.jle.im/entry/introducing-the-hamilton-library.html
https://blog.jle.im/entry/hamiltonian-dynamics-in-haskell.html

Chapter 4

Compositionality and
Algebras

Algebraic structures are fundamental to the structuralist point of view in math-
ematics, which emphasises relations between objects rather than the objects
themselves and their representations. Furthermore, each mathematical do-
main has its own fundamental structures. Once these structures have been
identified, one tries to push their study as far as possible on their own terms,
without picking any particular representation (which may have richer struc-
ture than the one we want to study). For example, in group theory, one starts
by exploring the consequences of just the group structure, rather than intro-
ducing any particular group (like integers) which have (among others) an or-
der structure and monotonicity.

Furthermore, mappings or (translations) between such structures become an
important topic of study. When such mappings preserve the structure, they
are called homomorphisms. As two examples, we have the homomorphisms exp
and log, specified as follows:

exp : R → R>0

exp 0 = 1 -- e0 = 1
exp (a + b) = exp a ∗ exp b -- ea+b = eaeb

log : R>0 → R

log 1 = 0 -- log 1 = 0
log (a ∗ b) = log a + log b -- log(ab) = log a + log b

What we recognize as the familiar laws of exponentiation and logarithms arise

101

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 102

from homomorphism conditions, which relate the additive and multiplicative
structures of reals and positive reals.

Additionally, homomorphisms play a crucial role when relating an abstract
syntax (a datatype), and a semantic domain (another type) via an evaluation
function between them (the semantics). In this chapter we will explain the
notions of algebraic struture and homomorphism in detail and show applica-
tions both in mathematics and DSLs in general.

4.1 Algebraic Structures

What is an algebraic structure? Let’s turn to Wikipedia as a starting point:

In universal algebra, an algebra (or algebraic structure) is a set A
together with a collection of operations on A (of finite arity) and a
collection of axioms which those operation must satisfy.

The fact that a type a is equipped with operations is conveniently captured in
Haskell using a type class (Section 3.5).

Example A particularly pervasive structure is that of monoids. A monoid is
an algebra which has an associative operation op and a unit:

class Monoid a where
unit :: a
op :: a→ a→ a

The laws cannot easily be captured in the Haskell class, but can be formulated
as the following propositions:

∀ x : a. (unit ‘op‘ x x∧ x ‘op‘ unit x)
∀ x, y, z : a. (x ‘op‘ (y ‘op‘ z) (x ‘op‘ y) ‘op‘ z)

The first law ensures that unit is indeed the unit of op and the second law is
the familiar associativity law for op.

Example Examples of monoids include numbers with addition, (R, 0, (+)),
positive numbers with multiplication (R>0, 1, (∗)), and even endofunctions
with composition (a → a, id, (◦)). An “endofunction” is a function of type
X → X for some set X. A structure-preserving endofunction is called an
endomorphism.

Exercise 4.1. Define the above monoids as type class instances and check that
the laws are satisfied.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 103

Example To make this concept a bit more concrete, here are two examples of
monoids in Haskell: the additive monoid ANat and the multiplicative monoid
MNat.

newtype ANat = A Natural deriving (Show, Eq)
instance Monoid ANat where

unit = A zero
op (A m) (A n) = A (m + n)

newtype MNat = M Natural deriving (Show, Eq)
instance Monoid MNat where

unit = M one
op (M m) (M n) = M (m ∗ n)

In Haskell there can be at most one instance of a given class in scope for a
given type, so we cannot define two instance Monoid Natural: we must make
a newtype whose role is to indicate which of the two possible monoids (addi-
tive or applicative) applies in a given context. But, in mathematical texts the
constructors M and A are usually omitted, and instead the names of the oper-
ations suggest which of the monoids one is referring to. To be able to conform
to that tradition we define two separate classes, one for the additive and one
for the multiplicative monoids, as follows.

class Additive a where zero :: a; (+) :: a→ a→ a
class Multiplicative a where one :: a; (∗) :: a→ a→ a

This is what we have done in Section 3.5.1.

4.1.1 Groups and rings

Another important structure are groups, which are monoids augmented with
an inverse. To continue our mathematically-grounded Num replacement, we
have also defined the additive group as follows:

class Additive a⇒ AddGroup a where
negate :: a→ a

Groups demand that the inverse (called negate for the additive group) act like
an inverse. Namely, applying the operation to an element and its inverse
should yield the unit of the group. Thus, for the additive group, the laws
are:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 104

(+), zeroAdditive

(−), negateAddGroup abs, signum

(∗), oneMultiplicative fromInteger

(/), recipMulGroup fromRational

Num
Fractional

Ring
Field

Figure 4.1: Comparing the Haskell Prelude class hierarchy (Num, Fractional)
with the book’s hierarchy. In addition to the groupings visible in the figure,
the class AddGroup includes the Additive operations and MulGroup includes
the Multiplicative operations.

∀ a. negate a + a = zero
∀ a. a + negate a = zero

And thus we can define subtraction as

(−) :: AddGroup a⇒ a→ a→ a
a− b = a + negate b

When the additive monoid is abelian (commutative) and multiplication dis-
tributes over addition (x ∗ (y + z) (x ∗ y) + (x ∗ z)), we have a Ring. As
always we cannot conveniently specify laws in Haskell typeclasses and thus
define Ring simply as the conjunction of AddGroup and Multiplicative:

type Ring a = (AddGroup a, Multiplicative a)

With that, we have completed the structural motivation of our replacement
for the Num class!

Exercise 4.2. Prove that N admits the usual Additive instance. Likewise for
Ring instances of Z, Q, and R.

We note right away that one can have a multiplicative group structure as well,
whose inverse is called the reciprocal (abbreviated as recip in Haskell). With
that in place, division can be defined in terms of multiplication and reciprocal.

class Multiplicative a⇒ MulGroup a where
recip :: a→ a -- reciprocal

(/) :: MulGroup a⇒ a→ a→ a
a / b = a ∗ recip b

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 105

Often the multiplicative group structure is added to a Ring, and one has a
Field:

type Field a = (Ring a, MulGroup a)

For fields, the reciprocal is not defined at zero. We will not capture this precon-
dition in types: it would cause too much notational awkwardness. Example
instance of Field are Q and R.

Fig. 4.1 provides a graphical illustration of some of the relations between the
Haskell Num class hierarchy and the corresponding numerical classes we use
in this book.

4.2 Homomorphisms

The Wikipedia definition of homomorphism states that “A homomorphism
is a structure-preserving map between two algebraic structures of the same
type”.

4.2.1 (Homo)morphism on one operation

As a stepping stone to capture the idea of homomorphism, we can define a
ternary predicate H2·. The first argument h, is the map. The second (Op) and
third (op) arguments correspond to the algebraic structures.

H2(h, Op, op) = ∀ x. ∀ y. h (Op x y) op (h x) (h y)

If the predicate H2(h, Op, op) holds, we say that h : A→ B is a homomorphism
from Op : A → A → A to op : B → B → B. Or that h is a homomorphism from
Op to op. Or even that h is a homomorphism from A to B if the operators are
clear from the context. We have seen several examples in earlier chapters:

1. in Section 1.4 we saw that evalE : ComplexE → ComplexD is a homomor-
phism from the syntactic operator Plus to the corresponding semantic
operator plusD.

2. in Chapter 2 we saw de Morgan’s laws, which say that “not” (¬) is a
homomorphism in two ways: H2(¬, (∧), (∨)) and H2(¬, (∨), (∧)).

3. in Section 1.7.1 we saw that eval : FunExp → Func is a homomorphism
from syntactic (:∗:) to semantic (∗) for functions

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 106

4. If (∗) distributes over (+) for some type A then (∗c) : A→ A is a homo-
morphism from (+) to (+): H2((∗c), (+), (+)).

To see how this last item plays out, it can be helpful to study the syntax trees
of the left and right hand sides of the distributive law: ((a + b) ∗ c = (a ∗ c) +
(b ∗ c)). We observe that the function (∗c) is “pushed down” to both a and b:

∗

+

a b

c

+

∗

a c

∗

b c

Exercise 4.3. Expand the definition of H2· in each case and check that the
obtained conditions hold.

4.2.2 Homomorphism on structures

So far our definition of homomorphism takes the rather limited view that a
single operation is transformed. Usually, homomorphisms map a whole struc-
ture.

Back to Wikipedia:

More formally, a homomorphism between two algebras A and B
is a function h : A→ B from the set A to the set B such that, for
every operation fA of A and corresponding fB of B (of arity, say, n),
h (fA (x1, ..., xn)) = fB (h (x1), ..., h (xn)).

In our Haskell interpretation, the above would mean that we have H2(h, fA, fB)
for every binary method f in a given class C and more generally Hn (h, opA, opB)
for each operation op of arity n. We can also use type class overloading to write
Hn (h, op, op) where the first occurence of op comes from the C A instance and
the second one from C B.

Example The general monoid homomorphism conditions for h : A→ B are:

h unit = unit -- h takes units to units
h (x ‘op‘ y) = h x ‘op‘ h y -- and distributes over op (for all x and y)

Note that both unit and op have different types on the left and right hand
sides. On the left they belong to the monoid (A, unitA, opA) and on the right
the belong to (B, unitB, opB).

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 107

Example Hence, the function exp is a monoid homomorphism from (R,0,(+))
to (R>0,1,(∗)).

exp : R → R>0

exp 0 = 1 -- e0 = 1
exp (a + b) = exp a ∗ exp b -- ea+b = eaeb

In the above example, we have simply checked the homomorphism condi-
tions for the exponential function. But we can try to go the other way around:
knowing that a function h is homomorphism, what kind of function can h be?

Example As an example, let us characterise the homomorphisms from ANat
to MNat (from Section 4.1).

Let h : ANat → MNat be a monoid homomorphism. Then it must satisfy the
following conditions:

h 0 = 1
h (x + y) = h x ∗ h y -- for all x and y

For example h (x + x) = h x ∗ h x = (h x)ˆ2 which for x = 1 means that
h 2 = h (1 + 1) = (h 1)ˆ2.

More generally, every natural number is equal to the sum of n ones: 1 + 1 +
... + 1. Therefore

h n = h (1 + ... + 1)
= h 1 ∗ ... ∗ h 1
= (h 1)ˆn

That is, every choice of h 1 induces a homomorphism from ANat to MNat.
This means that the value of the function h, for any natural number, is fully
determined by its value for 1.

In other words, we know that every h (homomorphism from ANat to MNat) is
of the form

h n = aˆn

for a given natual number a = h 1. So, the set of homomorphisms between
the additive monoid and the multiplicative monoid is the set of exponential
functions, one for every base a.

Exercise 4.4. Assume an arbitrary Ring-homomorphism f from Integer to an
arbitrary type a. Prove f fromInteger, provided the definition in Section 3.5.2.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 108

Solution: The homomorphism conditions include:

f zero = zero
f (one + x) = one + (f x)
f (negate x) = negate (f x)

By substitution we get the following equations:

f zero = zero
f x = one + (f (x− one))
f x = negate (f (negate x))

These are compatible with the behaviour of fromInteger, but they also com-
pletely fix the behaviour of f if x is an integer, because it can either be zero,
positive or negative.

Other homomorphisms

Exercise 4.5. Show that const is a homomorphism.

Solution: This exercise is underspecified (what structure? from and to which
types?) so we need to explore a bit to find a reasonable interpretation. We
can start simple and use addition (+) as the structure, thus we want to show
H2(h, (+), (+)) where h = const is of type A → B. Next we need to identify
the types A and B where addition is used in the predicate. We have const ::
a → (x → a) for any types a and x and we can take A = a = R and B =
x → R. As B is a function type the (+) on that side is addition of functions,
which we defined in Section 3.5.3 in terms of funAdd from Section 1.7.1. The
homomorphism law (that h distributes over (+)) can be shown as follows:

h (a + b) = {- h = const in this case -}
const (a + b) = {- By def. of const -}
(λx→ a + b) = {- By def. of const, twice, backwards -}
(λx→ const a x + const b x) = {- By def. of funAdd, backwards -}
funAdd (const a) (const b) = {- By def. of (+) on functions -}
const a + const b = {- h = const, twice -}
h a + h b

We now have a homomorphism from values to functions, and you may won-
der if there is a homomorphism in the other direction. The answer is “Yes,
many”. Such homomorphisms take the form apply c, for any c.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 109

Exercise 4.6. Show that apply c is an Additive homomorphism for all c, where
apply x f = f x.

Solution: Indeed, writing h = apply c for some fixed c, we have

h (f + g) = {- def. apply -}
(f + g) c = {- def. (+) for functions -}
f c + g c = {- def. apply -}
h f + h g

and

h zero = {- def. apply -}
zero c = {- def. zero for functions -}
zero

4.2.3 ∗Isomorphisms

Two homomorphisms which are inverse of each other define an isomorphism. If
an isomorphism exist between two sets, we say that they are isomorphic. For
example, the exponential and the logarithm witness an isomorphism between
R>0 and R.

Exercise 4.7. Show that exponential and logarithm are inverse of each other.

Exercise 4.8. Extend the exponential-logarithm isomorphism to relate AddGroup
and MulGroup.

Exercise 4.9 (Hard.). Sketch the isomorphism between IPC and STLC seen in
Section 2.1.6. What are the structures? What are mappings (functions)?

Exercise 4.10. Sketch an isomorphism between pairs of numbers and complex
numbers, as suggested in Section 1.4.

4.3 Compositional semantics

4.3.1 Compositional functions are homomorphisms

Consider a datatype of very simple integer expressions:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 110

data E = Add E E | Mul E E | Con Integer deriving Eq
e1, e2 :: E -- 1 + 2 ∗ 3
e1 = Add (Con 1) (Mul (Con 2) (Con 3)) -- 1 + (2 ∗ 3)
e2 = Mul (Add (Con 1) (Con 2)) (Con 3) -- (1 + 2) ∗ 3

e1 =
Add

Con

1

Mul

Con

2

Con

3

e2 =
Mul

Add

Con

1

Con

2

Con

3

As the reader may have guessed, the natural evaluator eval : E → Integer (de-
fined later) is a homomorphism from Add to (+) and from Mul to (∗). But to
practice the definition of homomorphism we will here check if even or isPrime
is a homomorphism from E to Bool.

Let’s try to define even : E→ Bool with the usual induction pattern:

even (Add x y) = evenAdd (even x) (even y)
even (Mul x y) = evenMul (even x) (even y)
even (Con c) = evenCon c
evenAdd :: Bool→ Bool→ Bool
evenMul :: Bool→ Bool→ Bool
evenCon :: Integer→ Bool

Note that even throws away lots of information: the domain is infinite and
the range is a two-element set. This information loss could make it difficult
to define the helper functions evenAdd, etc. because they only get to work on
the small range. Still, in this case we are lucky: we can use the “parity rules”
taught in elementary school: even + even is even, etc. In code we simply get:1

evenAdd = ()
evenMul = (∨)
evenCon = (0) ◦ (‘mod‘2)

Exercise 4.11. Prove H2(even, Add, evenAdd) and H2(even, Mul, evenMul).
1A perhaps more natural alternative would be to taken odd instead of even as the homomor-

phism. You can try it out as an exercise.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 111

4.3.2 An example of a non-compositional function

Let’s now try to define isPrime : E → Bool in the same way to see a simple
example of a non-compositional function. In this case it is enough to just focus
on one of the cases to already see the problem:

isPrimeAdd :: Bool→ Bool→ Bool
isPrimeAdd = error "Can this be done?"

isPrime (Add x y) = isPrimeAdd (isPrime x) (isPrime y)

As before, if we can define isPrimeAdd, we will get H2(isPrime, Add, isPrimeAdd)
“by construction”. But it is not possible for isPrime to both satisfy its specifi-
cation and H2(isPrime, Add, isPrimeAdd). To shorten the calculation we write
just n for Con n.

False
= {- By spec. of isPrime (four is not prime). -}

isPrime (Add 2 2)
= {- by H2· -}

isPrimeAdd (isPrime 2) (isPrime 2)
= {- By spec. of isPrime (two is prime). -}

isPrimeAdd (isPrime 2) True
= {- By spec. of isPrime (three is also prime). -}

isPrimeAdd (isPrime 2) (isPrime 3)
= {- by H2· -}

isPrime (Add 2 3)
= {- By spec. of isPrime (five is prime). -}

True

But because we also know that False 6 True, we have a contradiction. Thus
we conclude that isPrime is not a homomorphism from E to Bool, regardless of
the choice of the operator (on the the boolean side) corresponding to addition.

4.4 Folds

In general, for a syntax Syn, and a possible semantics (a type Sem and an eval
function of type Syn → Sem), we call the semantics compositional if we can
implement eval as a fold. Informally a “fold” is a recursive function which
replaces each abstract syntax constructor Ci of Syn with its semantic interpre-
tation ci — but without doing any other change in the structure. In particular,
moving around constructors is forbidden. For example, in our datatype E,
a compositional semantics means that Add maps to add, Mul 7→ mul, and
Con 7→ con for some “semantic functions” add, mul, and con.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 112

Add

Con 1 Mul

Con 2 Con 3

add

con 1 mul

con 2 con 3

As an example we can define a general foldE for the integer expressions:

foldE :: (s→ s→ s)→ (s→ s→ s)→ (Integer→ s)→ (E→ s)
foldE add mul con = rec

where rec (Add x y) = add (rec x) (rec y)
rec (Mul x y) = mul (rec x) (rec y)
rec (Con i) = con i

Notice that foldE has three function arguments corresponding to the three con-
structors of E. The “natural” evaluator to integers is then easy to define:

evalE1 :: E→ Integer
evalE1 = foldE (+) (∗) id

and with a minimal modification we can also make it work for other numeric
types:

evalE2 :: Ring a⇒ E→ a
evalE2 = foldE (+) (∗) fromInteger

Another thing worth noting is that if we replace each abstract syntax construc-
tor with itself we get an identity function, sometimes known as a “deep copy”:

idE :: E→ E
idE = foldE Add Mul Con

Finally, it is useful to capture the semantic functions (the parameters to the
fold) in a type class:

class IntExp t where
add :: t→ t→ t
mul :: t→ t→ t
con :: Integer→ t

In this way we can turn the arguments to the fold into a constraint on the
return type:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 113

foldIE :: IntExp t⇒ E→ t
foldIE = foldE add mul con
instance IntExp E where

add = Add
mul = Mul
con = Con

instance IntExp Integer where
add = (+)
mul = (∗)
con = id

idE′ :: E→ E
idE′ = foldIE
evalE′ :: E→ Integer
evalE′ = foldIE

Additionally IntExp is the underlying algebraic structure of the fold. The func-
tion foldIE is a homomorphism which maps the IntExp E instance to another
(arbitrary) instance IntExp e. This is what a fold is in general. Given a struc-
ture C, a fold is a homomorphism from a realisation of C as a data-type. We
can note at this point that a class C a can be realised as a datatype only if all
the functions of class C a return a. (Otherwise the constructors could create
another type; and so they are not constructors any more.) This condition was
satisfied in the case of our class IntExp t: all function signatures end with
... → t. When this condition is satisfied, we say that the class is an algebra —
not just any algebraic structure.2

4.4.1 Even folds can be wrong!

When working with expressions it is often useful to have a “pretty-printer” to
convert the abstract syntax trees to strings like "1+2*3".

pretty :: E→ String

We can view pretty as an alternative eval function for a semantics using String
as the semantic domain instead of the more natural Integer. We can implement
pretty in the usual way as a fold over the syntax tree using one “semantic
constructor” for each syntactic constructor:

pretty (Add x y) = prettyAdd (pretty x) (pretty y)
pretty (Mul x y) = prettyMul (pretty x) (pretty y)

2Indeed, this terminology can be confusing.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 114

pretty (Con c) = prettyCon c
prettyAdd :: String→ String→ String
prettyMul :: String→ String→ String
prettyCon :: Integer→ String

We can also see String and pretty as an instance of the IntExp class:

instance IntExp String where
add = prettyAdd
mul = prettyMul
con = prettyCon

pretty′ :: E→ String
pretty′ = foldIE

Now, if we try to implement the semantic constructors without thinking too
much we would get the following:

prettyAdd xs ys = xs ++ "+"++ ys
prettyMul xs ys = xs ++ "*"++ ys
prettyCon c = show c
p1, p2 :: String
p1 = pretty e1
p2 = pretty e2

trouble :: Bool
trouble = p1 p2

Note that e1 and e2 are not equal, but they still pretty-print to the same string.
This means that pretty is doing something wrong: the inverse, parse, is ambigu-
ous. There are many ways to fix this, some more “pretty” than others. One
way to characterise the issue is that some information is lost in the translation:
pretty is not invertible.

Thus, we can see that a function can be a homomorphism and still be “wrong”.

For the curious One solution to the problem with parentheses is to create
three (slightly) different functions intended for printing in different contexts.
The first of them is for the top level, the second for use inside Add, and the
third for use inside Mul. These three functions all have type E → String and
can thus be combined with the tupling transform into one function returning
a triple: prVersions :: E→ (String, String, String). The result is the following:

prTop :: E→ String
prTop e = let (pTop, ,) = prVersions e

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 115

in pTop
type ThreeVersions = (String, String, String)
prVersions :: E→ ThreeVersions
prVersions = foldE prVerAdd prVerMul prVerCon
prVerAdd :: ThreeVersions→ ThreeVersions→ ThreeVersions
prVerAdd (_xTop, xInA, _xInM) (_yTop, yInA, _yInM) =

let s = xInA ++ "+"++ yInA -- use InA because we are “in Add”
in (s, paren s, paren s) -- parens needed except at top level

prVerMul :: ThreeVersions→ ThreeVersions→ ThreeVersions
prVerMul (_xTop, _xInA, xInM) (_yTop, _yInA, yInM) =

let s = xInM ++ "*"++ yInM -- use InM because we are “in Mul”
in (s, s, paren s) -- parens only needed inside Mul

prVerCon :: Integer→ ThreeVersions
prVerCon i =

let s = show i
in (s, s, s) -- parens never needed

paren :: String→ String
paren s = "("++ s ++ ")"

Exercise 4.12. Another way to make this example go through is to refine the
semantic domain from String to Precedence → String. This can be seen as an-
other variant of the result after the tupling transform: if Precedence is an n-
element type then Precedence→ String can be seen as an n-tuple. In our case a
three-element Precedence would be enough.

4.5 Initial and Free Structures

In Section 4.4 we started with a data-type, and derived an algebraic structure
(more precisely an algebra) from it. But we can go in the other direction: start
with an algebra and derive a datatype which captures the structure of the
algebra, but nothing more. This representation is called the initial algebra.

The Initial Monoid

As a first example, consider an initial algebra for monoids (an initial monoid
for short).

We know that we have at least one element: the unit. But we can also construct
more elements using op: unit ‘op‘ unit, unit ‘op‘ (unit ‘op‘ unit), etc. So a draft
for the initial monoid could be:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 116

data M where
Unit :: M
Op :: M→ M→ M

or:

data M = Unit | Op M M

But we also have the unit laws, which in particular tell us that unit ‘op‘ unit
unit. So, in fact, we are left with a single element: the unit. A representation of
the initial monoid is then simply:

data M = Unit

As one might guess, there are not many interesting applications of the initial
monoid, so let us consider another structure.

The Initial Ring

Gathering all function in various type classes, we find that a Ring corresponds
to the following algebra — again we start by ignoring laws:

zero :: a
(+) :: a→ a→ a
negate :: a→ a
one :: a
(∗) :: a→ a→ a

In this case, we can start with zero and one. As before, using addition on zero or
multiplication on one would yield no more elements. But we can use addition
on one, and get one+ one, one+ one+ one, etc. Because of associativity, we don’t
have to — and ought not to — write parentheses. Let’s write an addition of
n ones as n. What about multiplying? Are we going to get more kinds of
numbers from that? No, because of distributivity. For example:

(one + one) ∗ (one + one) one + one + one + one

By following this line of reasoning to its conclusion, we will find that the initial
Ring is the set of integers.

4.5.1 A general initial structure

In Haskell, the type C a ⇒ a is a generic way to represent the initial algebra
for a class C. To get a more concrete feeling for this, let us return to IntExp,
and consider a few values of type IntExp a⇒ a.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 117

seven :: IntExp a⇒ a; seven = add (con 3) (con 4)
testI :: Integer; testI = seven
testE :: E; testE = seven
testP :: String; testP = seven
check :: Bool
check = and [testI 7

, testE Add (Con 3) (Con 4)
, testP "3+4"

]

By defining a class IntExp (and some instances) we can use the methods (add,
mul, con) of the class as “generic constructors” which adapt to the context.
An overloaded expression, like seven :: IntExp a ⇒ a, which only uses these
generic constructors can be instantiated to different types, ranging from the
syntax tree type E to any possible semantic interpretations (like Integer, String,
etc.). In general, for any given value x of type IntExp a ⇒ a, all the variants
of x instantiated at different types are guaranteed to be related by homomor-
phisms, because one simply replaces add, mul, con by valid instances.

The same kind of reasoning justifies the overloading of Haskell integer literals.
They can be given the type Ring a ⇒ a, and doing it in a mathematically
meaningful way, because Ring a⇒ a is the initial algebra for Ring.

4.5.2 Free Structures

Another useful way of constructing types is through “free structures”. They
are similar to initial structures, but they also allows one to embed an arbitrary
set of generators G. That is, it is as if we would throw an additional generate
function in the algebra:

class Generate a where
generate :: G→ a

We could parameterize the class over an abstract generator set g, but will re-
frain from doing so to avoid needless complications.

Free Monoid

As an example, consider the free monoid. Our algebra has the following sig-
nature:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 118

generate :: G→ a
unit :: a
op :: a→ a→ a

As a first version, we can convert each function to a constructor and obtain
the following type:

data FreeMonoid g = Unit
| Op (FreeMonoid g) (FreeMonoid g)
| Generator g deriving Show

instance Monoid (FreeMonoid g) where unit = Unit; op = Op

Let us consider a fold for FreeMonoid. We can write its type as follows:

evalM :: (Monoid a, Generate a)⇒ (FreeMonoid G→ a)

but we can also drop the Generate constraint and take the generate method as
an explicit argument:

evalM :: Monoid a⇒ (G→ a)→ (FreeMonoid G→ a)

This form is similar to the evaluators of expressions with variables of type
G, which we have seen for example in Section 1.7.3. Once given a function
f :: G→ a (which we call an “assignment function”), the homomorphism con-
dition forces evalM to be a fold:

evalM Unit = unit
evalM f (Op e1 e2) = op (evalM f e1) (evalM f e2)
evalM f (Generator x) = f x

However, before being completely satisfied, we must note that the FreeMonoid
representation is ignoring monoid laws. By following the same kind of rea-
soning as before, we find that we have in fact only two distinct forms for the
elements of the free monoid:

• unit

• generate x1 ‘op‘ generate x2 ‘op‘ ... ‘op‘ generate xn

Because of associativity we have no parentheses in the second form; and be-
cause of the unit laws we need not have unit composed with op either.

Thus, the free monoid over a generator set G can be represented by a list of G.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 119

We seemingly also ignored the laws when defining evalM. Is this a problem?
For example, is it possible that e1 ‘Op‘ (e2 ‘Op‘ e3) and (e1 ‘Op‘ e2) ‘Op‘ e3 which
are by monoid laws equal, map to different values? By definition of evalM,
the condition reduces to checking evalM f e1 ‘op‘ (evalM f e2 ‘op‘ evalM f e3)
(evalM f e1 ‘op‘ evalM f e2) ‘op‘ evalM f e3. But then, this turns out to be satisfied
if op is associative. In sum, evalM will be correct if the target Monoid instance
satisfies the laws. This is true in general: folds are always homomorphisms
even if the datatype representation that they work on ignore laws.

Functions of one variable as free algebras

Earlier we have used (many variants of) data types for arithmetic expressions.
Using the free construction, we can easily conceive a suitable type for any such
expression language. For example, the type for arithmetic expressions with
(+), (−), (∗) and variables is the free Ring with the set of variables as genera-
tor set.

Let us consider again our deep-embedding for expressions of one variable
from Section 1.7.1. According to our analysis, it should be a free structure,
and because we have only one variable, we can take the generator set (G) to
be the unit type.

type G = ()
instance Generate FunExp where generate () = X

We can easily show that FunExp is Additive and Multiplicative:

instance Additive FunExp where (+) = (:+:); zero = Const 0
instance Multiplicative FunExp where (∗) = (:∗:); one = Const 1

Exercise 4.13. Implement FunExp instances for AddGroup, and (possibly ex-
tending the datatype) for MulGroup and Transcendental.

We can then define a compositional evaluator. It would start as follows:

eval (e1 :∗: e2) = eval e1 ∗ eval e2
eval (e1 :+: e2) = eval e1 + eval e2

Remark: to translate the Const :: R → FunExp constructor we need a way to
map any R to the above structures. Here we will restrict ourselves to integers.

The most general type of evaluator will give us: 3

3We call this constraint “OneVarExp” because we have fixed G = (). In general the number of
variables is the cardinality of G.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 120

type OneVarExp a = (Generate a, Ring a)
eval :: FunExp→ (OneVarExp a⇒ a)

With this class in place we can define generic expressions using generic con-
structors just like in the case of IntExp above. For example, we can define

varX :: OneVarExp a⇒ a
varX = generate ()
twoX :: OneVarExp a⇒ a
twoX = two ∗ varX

and instantiate twoexp to either syntax or semantics:

type Func = R→ R

testFE :: FunExp; testFE = twoX
testFu :: Func; testFu = twoX

provided a suitable instance for Generate Func:

instance Generate Func where
generate () = id

As before, we can always define a homomorphism from FunExp to any in-
stance of OneVarExp, in a unique way, using the fold pattern.

This is because the datatype FunExp is an initial OneVarExp. Working with
OneVarExp a ⇒ a can be more economical than using FunExp: one does not
need any explicit eval function.

We now have two DSLs which capture the similar concepts. One of them
is given by the data type FunExp. The other one is given by the type class
(synonym) OneVarExp. In fact, the instances and the evaluator would form an
isomorphism between FunExp (the version restricted to integer constants) and
OneVarExp a⇒ a.

The difference is that the first one builds a syntax tree, while the other one
refers to the semantics (algebraic) value. For example, :+: stands for a function,
while + is that function.

4.5.3 ∗A generic Free construction

We can use the same trick as for initial algebras to construct free algebras:
(C a, Generate a) ⇒ a is the free C-structure. However, it is often more con-
venient to pass the embedding function explicitly rather than via the Generate

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 121

class. In this case, we obtain the type: C a ⇒ (g → a) → a if g is the set of
generators. In modern versions of Haskell, we can even parameterize over the
C class, and write:

newtype Free c g = Free (forall a. c a⇒ (g→ a)→ a)

Embedding a generator is then done as follows:

embed :: g→ Free c g
embed g = Free (λgenerate→ generate g)

Unfortunately the Free c type is not automatically an instance of c: we have to
implement those manually. Let us see how this plays out for monoid:

instance Monoid (Free Monoid g) where
unit = Free (_→ unit)
Free f ‘op‘ Free g = Free (λx→ f x ‘op‘ g x)

We can also check the monoid laws for the free monoid. For example, here is
the proof that the right identity law holds:

Free f ‘op‘ unit
{- def. -}
Free f ‘op‘ Free (_→ unit)
{- def. -}
Free (λx→ f x ‘op‘ unit)
{- law of the underlying monoid -}
Free (λx→ f x)
{- eta-reduction -}
Free f

Exercise 4.14. Prove group laws for Free AdditiveGroup.

We can also recover the whole structure which was used to build an element
of this type, for example we could use lists (recall that they are isomorphic to
free monoids):

extract :: Free Monoid g→ [g]
extract (Free f) = f (λg→ [g])

As an example, we can extract the value of the following example:

example :: Free Monoid Int
example = embed 1 ‘op‘ embed 10 ‘op‘ unit ‘op‘ embed 11

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 122

-- >>> extract example
-- [1, 10, 11]

Exercise 4.15. Show that Free Ring () covers most of the type FunExp from
Section 1.7.1.

4.6 Computing derivatives, reprise

As discussed in Section 4.5.2, it can sometimes be good to use the represen-
tation OneVarExp a ⇒ a rather than the FunExp data type. However, in Sec-
tion 3.6 we argued that the rules for derivatives were naturally operating on a
syntactic representation.

The question is: can we implement derive in the shallow embedding? As a
reminder, the reason that the shallow embedding (R → R) works is that the
eval function is a fold: first evaluate the sub-expressions of e, then put the eval-
uations together without reference to the sub-expressions.

Let us now check whether the semantics of derivatives is compositional. This
evaluation function for derivatives is given by composition as below:

type Func = R→ R

eval′ :: FunExp→ Func
eval′ = eval ◦ derive

In a diagram:

FunExp (R→ R)

FunExp (R→ R)

eval

derive
eval′

D

eval

Let us consider the Exp case (the eval′Exp-lemma):

eval′ (Exp e) = {- def. eval′, function composition -}
eval (derive (Exp e)) = {- def. derive for Exp -}
eval (Exp e :∗: derive e) = {- def. eval for :∗: -}
eval (Exp e) ∗ eval (derive e) = {- def. eval for Exp -}
exp (eval e) ∗ eval (derive e) = {- def. eval′ -}
exp (eval e) ∗ eval′ e = {- let f = eval e, f ′ = eval′ e -}

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 123

exp f ∗ f ′

Thus given only the derivative f ′ = eval′ e, it looks hard to compute exp f ∗ f ′.
More concretely, if we take e1 = X and e2 = X :+: Const 1, then eval′ e1
const 1 eval′ e2 but eval′ (Exp e1) 0 1 6 e eval′ (Exp e2). Thus, it is
impossible to compute eval′ compositionally.

Another example of the problem is derive (f :∗: g) where the result involves
not only derive f and derive g, but also f and g on their own. In general, the
problem is that some of the rules for computing the derivative depend not
only on the derivative of the subexpressions, but also on the subexpressions
before taking the derivative.

Consequently, eval′ is in fact non-compositional (just like isPrime). There is no
way to implement eval′ :: FunExp → Func as a fold if Func is the target type.
One way of expressing this fact is to say that in order to implement eval′ ::
FunExp → Func we need to also compute eval :: FunExp → Func. Thus we
need to implement a pair of eval-functions (eval, eval′) together.

In practice, the solution is to extend the return type of eval′ from one semantic
value f of type Func = R → R to two such values (f , f ′) :: (Func, Func) where
f ′ = D f . That is, we are using the “tupling transform”: we are computing just
one function evalD :: FunExp → (Func, Func) returning a pair of f and D f at
once. (At this point, you are advised to look up and solve Exercise 1.6 in case
you have not done so already.)

type FD a = (a→ a, a→ a)
evalD :: FunExp→ FD R

evalD e = (eval e, eval′ e)

Is evalD compositional? We compute, for example:

evalD (Exp e) = {- specification of evalD -}
(eval (Exp e), eval′ (Exp e)) = {- def. eval for Exp + eval′Exp-lemma -}

(exp (eval e), exp (eval e) ∗ eval′ e) = {- introduce local names -}
let f = eval e

f ′ = eval′ e
in (exp f , exp f ∗ f ′) = {- def. evalD -}
let (f , f ′) = evalD e
in (exp f , exp f ∗ f ′)

This semantics is compositional and the Exp case is as follows:

evalDExp :: FD R→ FD R

evalDExp (f , f ′) = (exp f , exp f ∗ f ′)

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 124

In general, while eval′ is non-compositional, evalD is a more complex, but com-
positional, semantics. We can then get eval′ back as the second component of
evalD e:

eval′ :: FunExp→ Func
eval′ = snd ◦ evalD

Because all compositional functions can be expressed as a fold for a given alge-
bra, we can now define a shallow embedding for the combined computation
of functions and derivatives, using the numerical type classes.

instance Additive a ⇒ Additive (FD a) where
zero = zeroFD; (+) = addFD

instance (Additive a, Multiplicative a)⇒ Multiplicative (FD a) where
one = oneFD; (∗) = mulFD

zeroFD :: Additive a ⇒ FD a
oneFD :: (Additive a, Multiplicative a)⇒ FD a
zeroFD = (const zero, const zero)
oneFD = (const one, const zero)
addFD :: Additive a ⇒ Dup a→ Dup a→ Dup a
mulFD :: (Additive a, Multiplicative a)⇒ Dup a→ Dup a→ Dup a
addFD (f , f ′) (g, g′) = (f + g, f ′ + g′)
mulFD (f , f ′) (g, g′) = (f ∗ g, f ′ ∗ g + f ∗ g′)

Exercise 4.16. Implement the rest of the numeric instances for FD a.

4.6.1 Automatic differentiation

The simultaneous computation of values and derivatives is an important tech-
nique called “automatic differentiation”. Automatic differentiation has grown
in importance with the rise of machine learning, which often uses derivatives
(or gradients) to find a values of parameter which minimizes a user-defined
objective function. However, in such systems, one is often not interested in
computing whole functions and their derivatives (as we have done so far),
but rather a function at a point (say f x0) and the derivative at the same point
(say D f x0).

The question then arises: is it enough to only compute the pair (f x0, D f x0)?
In other words, is automatic differentiation compositional? To answer this
question, we must find yet again if there is a homomorphism between whole
functions and their value at a point.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 125

Fortunately, we have already seen part of the answer in Exercise 4.6. Namely,
the homomorphism is apply c, with the definition:

apply :: a→ (a→ b)→ b
apply a = λf → f a

Because apply c is so simple, it is an homomorphism not only for Additive, but
also Ring (and any numeric class we have seen so far). We already took advan-
tage of this simple structure to define homomorphism in the other direction
in Section 3.5.3, where we defined a Ring instance for functions with a Ring
codomain.

Can we do something similar for FD? The elements of FD a are pairs of func-
tions, so we can take

type Dup a = (a, a)
type FD a = (a→ a, a→ a)
applyFD :: a→ FD a → Dup a
applyFD c (f , f ′) = (f c, f ′ c)

We now have the domain of the homomorphism (FD a) and the homomor-
phism itself (applyFD c), but we are missing the structure on the codomain,
which now consists of pairs Dup a = (a, a). In fact, we can compute this struc-
ture from the homomorphism condition. For example:

h ((f , f ′) ∗ (g, g′)) = {- def. (∗) for FD a -}
h (f ∗ g, f ′ ∗ g + f ∗ g′) = {- def. h = applyFD c -}
((f ∗ g) c, (f ′ ∗ g + f ∗ g′) c) = {- def. (∗) and (+) for functions -}
(f c ∗ g c, f ′ c ∗ g c + f c ∗ g′ c) = {- let x = f c; y = g c; x′ = f ′ c; y′ = g′ c -}
(x ∗ y, x′ ∗ y + x ∗ y′) = {- introduce ~ to make the ends meet -}
(x, x′)~ (y, y′) = {- expand shorter names again -}
(f c, f ′ c)~ (g c, g′ c) = {- def. h = applyFD c -}
h (f , f ′)~ h (g, g′)

The identity will hold if we take

(~) :: Ring a⇒ Dup a→ Dup a→ Dup a
(x, x′)~ (y, y′) = (x ∗ y, x′ ∗ y + x ∗ y′)

Thus, if we define a “multiplication” on pairs of values using (~), we get
that (applyFD c) is a homomorphism from FD a to Dup a for all c. To make
it a Multiplicative-homomorphism we just need to calculate a definition for
oneDup to make it satisfy to homomorphism law:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 126

oneDup = {- H0 (applyFD c, oneFD, oneDup) -}
applyFD c oneFD = {- Def. of oneFD and applyFD -}
(const one c, const zero c) = {- Def. of const -}
(one, zero)

We can now define an instance

oneDup :: Ring a⇒ Dup a
oneDup = (one, zero)
instance Ring a⇒ Multiplicative (Dup a) where

one = oneDup
(∗) = (~)

Exercise 4.17. Complete instance declarations for Dup R: Additive, AddGroup,
etc.

In sum, because this computation goes through also for the other cases we can
actually work with just pairs of values (at an implicit point c :: a) instead of
pairs of functions. Thus we can define a variant of FD a to be type Dup a =
(a, a).

4.7 Summary

In this chapter we have compared and contrasted a number of mathematical
concepts and their computer science representations or alternative interpreta-
tions. Mathematical structures can often be use to capture the core of a DSL,
initial algebras can be used (with data-types) for abstract syntax (deep embed-
dings) but can also be constructed with type classes (Class a⇒ a) without ref-
erence to concrete data. Other algebras capture different shallow embeddings,
and semantics (the semantic function eval) is normally a homomorphism from
the initial algebra.

4.7.1 Homomorphism as roadmaps

Homomorphisms are key to describe mathematical structures, specify pro-
grams, and derive of correct programs. The relation h : S1 → S2 (standing for
“h is a homomorphism from S1 to S2”), can be used in many ways, depending
on what is known and what is unknown.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 127

• ? : S1 → S2. Given two structures S1 and S2, can we derive some function
which is a homomorphism between those two structures? We asked
such a question in Exercise 4.6 (apply c : Additive (x → a) → Additive a)
and Section 4.2.2 (exponentials).

• h : S1 → S2?. What is a structure S2 compatible with a given structure
S1 and given homomorphism h? (e.g., we derived the operations on
Dup a = (a, a) from applyFD c : FD a→ Dup a and operations on FD a in
Section 4.6.1.)

• ? : S1 → S2?. Can we find a good structure on S2 so that it becomes
homomorphic with S1? This is how we found the structure FD in evalD :
FunExp→ FD a.

• h : S1?→ S2. Given h and S2, can we find a structure S1 compatible with
a given homomorphism h? We will encounter an example in Chapter 5
(evaluation function for polynomials).

4.7.2 Structures and representations

One take home message of this chapter is that one should, as a rule, start with
structural definitions first, and consider representation second. For example,
in Section 4.6 we defined a Ring structure on pairs (R, R) by requiring the op-
erations to be compatible with the interpretation (f a, f ′ a). This requirement
yields the following definition for multiplication for pairs:

(x, x′)~ (y, y′) = (x ∗ y, x′ ∗ y + x ∗ y′)

But there is nothing in the “nature” of pairs of R that forces this definition
upon us. We chose it, because of the intended interpretation.

This multiplication is not the one we need for complex numbers. It would be
instead:

(x, x′) ∗. (y, y′) = (x ∗ y− x′ ∗ y′, x ∗ y′ + x′ ∗ y)

Again, there is nothing in the nature of pairs that foists this operation on us. In
particular, it is, strictly speaking, incorrect to say that a complex number is a
pair of real numbers. The correct interpretation is that a complex number can
be represented by a pair of real numbers, provided that we define the operations
on these pairs in a suitable way.

The distinction between definition and representation is similar to the one be-
tween specification and implementation, and, in a certain sense, to the one
between syntax and semantics. All these distinctions are frequently obscured,

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 128

for example, because of prototyping (working with representations / imple-
mentations / concrete objects in order to find out what definition / specifi-
cation / syntax is most adequate). They can also be context-dependent (one
man’s specification is another man’s implementation). Insisting on the differ-
ence between definition and representation can also appear quite pedantic (as
in the discussion of complex numbers in Section 1.4). In general though, it
is a good idea to be aware of these distinctions, even if they are suppressed
for reasons of brevity or style. We will encounter this distinction again in Sec-
tion 5.1.

4.8 Beyond Algebras: Co-algebra and the Stream
calculus

In the coming chapters there will be quite a bit of material on infinite struc-
tures. These are often captured not by algebras, but by co-algebras. We will
not build up a general theory of co-algebras in this book, but because we will
be using infinite streams in the upcoming chapters we will expose right here
their co-algebraic structure.

Streams as an abstract datatype. Consider the API for streams of values of
type A represented by some abstract type X:

data X
data A
head :: X→ A
tail :: X→ X
cons :: A→ X→ X
law1 s = s cons (head s) (tail s)
law2 a s = s tail (cons a s)
law3 a s = a head (cons a s)

With this API we can use head to extract the first element of the stream, and tail
to extract the rest as a new stream of type X. Using head and tail recursively
we can extract an infinite list of values of type A:

toList :: X→ [A]
toList x = head x : toList (tail x)

In the other direction, if we want to build a stream we only have one construc-
tor: cons but no “base case”. In Haskell, thanks to laziness, we can still define

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 129

streams directly using cons and recursion As an example, we can construct a
constant stream as follows:

constS :: A→ X
constS a = ca

where ca = cons a ca

Instead of specifying a stream in terms of how to contruct it, we could describe
it in terms of how to take it apart; by specifying its head and tail. In the constant
stream example we would get something like:

head (constS a) = a
tail (constS a) = constS a

but this syntax is not supported in Haskell.

The last part of the API are a few laws we expect to hold. The first law simply
states that if we first take a stream s apart into its head and its tail, we can get
back to the original stream by consing them back together. The second and
third are variant on this theme, and together the three laws specify how the
three operations interact.

4.9 A solved exercise

We have seen three different ways to use a generic f :: Transcendental a⇒ a→ a
to compute the derivative at some point (say, at 2.0, f ′ 2):

• fully symbolic (using FunExp),

• using pairs of functions (FD a = (a→ a, a→ a)),

• or just pairs of values (Dup a = (a, a)).

Given the following definition of f , compute f ′ 2.

f :: Transcendental a⇒ a→ a
f x = sin x + two ∗ x

(So, we have: f 0 = 0, f 2 = 4.909297426825682, etc.)

Solution:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 130

1. Using FunExp
Recall expressions (or functions) of one variables, from Section 1.7.1:

data FunExp = Const Rational
| X
| FunExp :+: FunExp
| FunExp :∗: FunExp
| FunExp :/: FunExp
| Exp FunExp
| Sin FunExp
| Cos FunExp

-- and so on
deriving (Eq, Show)

What is the expression e for which f = eval e?

We have

eval e x = f x
⇔ eval e x = sin x + 2 ∗ x
⇔ eval e x = eval (Sin X) x + eval (Const 2 :∗: X) x
⇔ eval e x = eval ((Sin X) :+: (Const 2 :∗: X)) x
⇐ e = Sin X :+: (Const 2 :∗: X)

Finally, we can apply derive :: FunExp → FunExp, defined in Section 3.6,
and obtain

e = Sin X :+: (Const 2 :∗: X)
f ′ 2 = eval (derive e) 2

This can hardly be called “automatic”, look at all the work we did in
deducing e!4

However, consider this definition:

fe :: FunExp
fe = f X

As X :: FunExp, the Haskell interpreter will look for FunExp instances of
Additive and other numeric classes and build the syntax tree for f instead
of computing its semantic value.

In general, to find the derivative of a function f :: Transcendental a⇒ a→
a, we can use

drv f = eval (derive (f X))

4Besides, manipulating symbolic representations (even in a program), is not was is usually
called automatic differentiation.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 131

2. Using FD (pairs of functions)

Recall

type FD a = (a→ a, a→ a)
applyFD c (f , g) = (f c, g c)

The operations (the numeric type class instances) on FD a are such that,
if eval e = f , then

(eval e, eval′ e) = (f , f ′)

We are looking for (g, g′) such that

f (g, g′) = (f , f ′) -- (*)

so we can then do

f ′ 2 = snd (applyFD 2 (f (g, g′)))

We can fullfill (*) if we can find a pair (g, g′) that is a sort of “unit” for
FD a:

sin (g, g′) = (sin, cos)
exp (g, g′) = (exp, exp)

and so on.

In general, the chain rule gives us

f (g, g′) = (f ◦ g, (f ′ ◦ g) ∗ g′)

Therefore, we need: g = id and g′ = const 1.

Finally

f ′ 2 = snd (applyFD 2 (f (id, const 1)))

In general

drvFD f x = snd (applyFD x (f (id, const 1)))

computes the derivative of f at x.

3. Using Dup (pairs of values).

We have instance Transcendental a ⇒ Transcendental (a, a), moreover,
the instance declaration looks exactly the same as that for FD a:

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 132

instance Transcendental a⇒ Transcendental (FD a) where
exp (f , f ′) = (exp f , (exp f) ∗ f ′) -- pairs of functions
sin (f , f ′) = (sin f , (cos f) ∗ f ′)

-- ...
instance Transcendental a⇒ Transcendental (a, a) where

exp (x, x′) = (exp x, (exp x) ∗ x′) -- just pairs
sin (x, x′) = (sin x, (cos x) ∗ x′)

-- ...

In fact, the latter instance (just pairs) a generalisation of the former in-
stance (FD). To see this, recall that FD a = (a → a, a → a), and note that
if we have a Transcendental instance for some A, we get a Transcendental
instance for x → A for all x from Fig. 3.1. Then from the instance for
pairs we get an instance for any type of the form (x → A, x → A). As
a special case when x = A this includes all (A → A, A → A) which is
FD A. Thus it is enough to have the instance Transcendental (x→ A) and
the pair instance to get the “pairs of functions” instance (and more).

The pair instance is also the “maximally general” such generalisation.

Still, we need to use this machinery to finally compute f ′ 2. We are now
looking for a pair of values (g, g′) such that

f (g, g′) = (f 2, f ′ 2)

In general we have the chain rule:

f (g, g′) = (f g, (f ′ g) ∗ g′)

Therefore

f (g, g′) = (f 2, f ′ 2)
⇔ (f g, (f ′ g) ∗ g′) = (f 2, f ′ 2)
⇐ g = 2, g′ = 1

Introducing

var x = (x, one)

we can, as in the case of FD, simplify matters a little:

f ′ x = snd (f (var x))

In general

drvP f x = snd (f (var x))

computes the derivative of f at x.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 133

Numeric instances for Dup For reference: the rest of the instance declara-
tions for Dup (the Multiplicative instance was provided above):

instance Additive a⇒ Additive (Dup a) where
zero = zeroDup; (+) = addDup

zeroDup :: Additive a⇒ Dup a
zeroDup = (zero, zero)
addDup :: Additive a⇒ Dup a→ Dup a→ Dup a
addDup (x, x′) (y, y′) = (x + y, x′ + y′)
instance AddGroup a⇒ AddGroup (Dup a) where

negate = negateDup
negateDup :: AddGroup a⇒ Dup a→ Dup a
negateDup (x, x′) = (negate x, negate x′)
instance (AddGroup a, MulGroup a)⇒ MulGroup (Dup a) where

recip = recipDup
recipDup :: (AddGroup a, MulGroup a)⇒ Dup a→ Dup a
recipDup (x, x′) = (y, y′)

where y = recip x
y′ = negate (y ∗ y) ∗ x′

instance Transcendental a⇒ Transcendental (Dup a) where
π = piDup; sin = sinDup; cos = cosDup; exp = expDup

piDup :: Transcendental a⇒ Dup a
piDup = (π, zero)
sinDup, cosDup, expDup :: Transcendental a⇒ Dup a→ Dup a
sinDup (x, x′) = (sin x, cos x ∗ x′)
cosDup (x, x′) = (cos x, negate (sin x) ∗ x′)
expDup (x, x′) = (exp x, exp x ∗ x′)

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 134

4.10 Exercises

Exercise 4.18. Homomorphisms. Consider the following definitions:

-- h : A→ B is a homomorphism from Op : A→ A→ A to op : B→ B→ B
H2(h, Op, op) = ∀ x. ∀ y. h (Op x y) op (h x) (h y)

-- h : A→ B is a homomorphism from F : A→ A to f : B→ B
H1(h, F, f) = ∀ x. h (F x) f (h x)

-- h : A→ B is a homomorphism from E : A to e : B
H0 (h, E, e) = h E e

Prove or disprove the following claims:

• H2((2∗), (+), (+))

• H2((2∗), (∗), (∗))

• H2(exp, (+), (∗))

• H2(eval′, (:+:), (+))

• H1(
√
·, (4∗), (2∗))

• ∃ f . H1(f , (2∗) ◦ (1+), (1+) ◦ (2∗))

Exercise 4.19. Complete the numeric instance declarations for FunExp.

Exercise 4.20. Complete the instance declarations for Dup R, deriving them
from the homomorphism requirement for applyFD (in Section 4.6.1).

Exercise 4.21. We now have three different ways of computing the derivative
of a function such as f x = sin x + exp (exp x) at a given point, say x = π.

1. Find e :: FunExp such that eval e = f and use eval′.

2. Find an expression of type FD R and use apply.

3. Apply f directly to the appropriate (x, x′) and use snd.

Do you get the same result?

Exercise 4.22. In Exercise 1.14 we looked at the datatype SR v for the language
of semiring expressions. We will now use some of the concepts discussed in
this chapter to expand on this language.

1. Define a type class SemiRing that corresponds to the semiring structure.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 135

2. Define a SemiRing instance for the datatype SR v that you defined in
exercise 1.3.

3. Find two other instances of the SemiRing class.

4. Specialise the evaluator that you defined in Exercise 1.14 to the two
SemiRing instances defined above. Take three semiring expressions of
type SR String, give the appropriate assignments and compute the re-
sults of evaluating, in each case, the three expressions.

Exercise 4.23. Show that arithmetic modulo n satisfies the semiring laws (it is
even a ring). In more details: show that Zn = {0, 1, ..., n− 1} with plus x y =
(x + y)%n and times x y = (x ∗ y)%n forms a semiring.

With h x = x%n, show that h is a homomorphism from Z to Zn.

Exercise 4.24. In Exercise 1.15, we looked a datatype for the language of lattice
expressions. We will now use some of the concepts discussed in this chapter
to expand on this language.

1. Define a type class Lattice that corresponds to the lattice structure.

2. Define a Lattice instance for the datatype for lattice expressions that you
defined in Exercise 1.15.

3. Find two other instances of the Lattice class.

4. Specialise the evaluator you defined in Exercise 1.15 to the two Lattice
instances defined above. Take three lattice expressions, give the appro-
priate assignments and compute the results of evaluating, in each case,
the three expressions.

Exercise 4.25. In Exercise 1.16, we looked a datatype for the language of abelian
monoid expressions. We will now use some of the concepts discussed in this
chapter to expand on this language.

1. Define a type class AbMonoid that corresponds to the abelian monoid
structure.

2. Define an AbMonoid instance for the datatype for abelian monoid expres-
sions that you defined in Exercise 1.16.

3. Find one other instance of the AbMonoid class and give an example which
is not an instance of AbMonoid.

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 136

4. Specialise the evaluator that you defined in Exercise 1.16 to the AbMonoid
instance defined above. Take three AbMonoidExp expressions, give the
appropriate assignments and compute the results of evaluating the three
expressions.

Exercise 4.26. A ring is a set A together with two constants, 0 and 1, one unary
operation, negate, and two binary operations, (+) and (∗), such that

a. 0 is the neutral element of (+)

∀ x∈A. x + 0 = 0 + x = x

b. (+) is associative

∀ x, y, z∈A. x + (y + z) = (x + y) + z

c. negate inverts elements with respect to addition

∀ x∈A. x + negate x = negate x + x = 0

d. (+) is commutative

∀ x, y∈A. x + y = y + x

e. 1 is the unit (neutral element) of (∗)

∀ x∈A. x ∗ 1 = 1 ∗ x = x

f. (∗) is associative

∀ x, y, z∈A. x ∗ (y ∗ z) = (x ∗ y) ∗ z

g. (∗) distributes over (+)

∀ x, y, z∈A. x ∗ (y + z) = (x ∗ y) + (x ∗ z)
∀ x, y, z∈A. (x + y) ∗ z = (x ∗ z) + (y ∗ z)

Remarks:

• a. – b. say that (A, 0,+) is a monoid and e. – f. that (A, 1, ∗) is a monoid

• a. – c. say that (A, 0,+, negate) is a group

• a. – d. say that (A, 0,+, negate) is a commutative (Abelian) group

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 137

i Define a type class Ring that corresponds to the ring structure.

ii Define a datatype for the language of ring expressions (including vari-
ables) and define a Ring instance for it.

iii Find two other instances of the Ring class.

iv Define a general evaluator for Ring expressions on the basis of a given
assignment function (mapping variables to semantic values).

v Specialise the evaluator to the two Ring instances defined at point iii.
Take three ring expressions, give the appropriate assignments and com-
pute the results of evaluating, in each case, the three expressions.

Exercise 4.27. (Note that the Num hierarchy has been replaced by Additive,
AddGroup, etc.)

Recall the type of expressions of one variable from Section 1.7.1.

data FunExp = Const Rational | X
| FunExp :+: FunExp | Exp FunExp
| FunExp :∗: FunExp | Sin FunExp
| FunExp :/: FunExp | Cos FunExp

-- and so on
deriving Show

and consider the function

f :: R→ R

f x = exp (sin x) + x

1. Find an expression e such that eval e f and show this using equational
reasoning.

2. Implement a function deriv2 such that, for any f :: Fractional a ⇒ a → a
constructed with the grammar of FunExp and any x in the domain of f ,
we have that deriv2 f x computes the second derivative of f at x. Use the
function derive :: FunExp → FunExp from the lectures (eval (derive e) is
the derivative of eval e). What instance declarations do you need?

The type of deriv2 f should be Fractional a⇒ a→ a.

Exercise 4.28. Based on the lecture notes, complete all the instance and datatype
declarations and definitions in the files FunNumInst.lhs, FunExp.lhs, Derive.lhs,
EvalD.lhs, and ShallowD.lhs.

https://github.com/DSLsofMath/DSLsofMath/tree/master/L/DSLsofMath/FunNumInst.lhs
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/DSLsofMath/FunExp.lhs
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/DSLsofMath/Derive.lhs
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/DSLsofMath/EvalD.lhs
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/DSLsofMath/ShallowD.lhs

CHAPTER 4. COMPOSITIONALITY AND ALGEBRAS 138

Exercise 4.29. Write a function

simplify :: FunExp→ FunExp

to simplify the expression resulted from derive. For example, the following
tests should work:

testSimplify = -- all evaluate to True
[simplify (Const 0 :∗: Exp X) Const 0
, simplify (Const 0 :+: Exp X) Exp X
, simplify (Const 2 :∗: Const 1) Const 2
, simplify (derive (X :∗: X)) Const 2 :∗: X
]

As a motivating example, note that without simplify we have derive (X :∗: X)
(Const 1 :∗: X) :+: (X :∗: Const 1), and that the syntax tree of the second

derivative is twice that size.

Chapter 5

Polynomials and Power
Series

5.1 Polynomials

Again we take as starting point a definition from Adams and Essex [2010], this
time from page 39:

A polynomial is a function P whose value at x is

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

where an, an−1, . . . , a1, and a0, called the coefficients of the poly-
monial [sic], are constants and, if n > 0, then an 6= 0. The number
n, the degree of the highest power of x in the polynomial, is called
the degree of the polynomial. (The degree of the zero polynomial
is not defined.)

This definition raises a number of questions, for example “what is the zero
polynomial?” (and why isn’t its degree defined).

The types of the elements involved in the definition appear to be

P : R→ R; x : R; n : N; a0, . . . , an : R with an 6= 0 if n > 0

139

CHAPTER 5. POLYNOMIALS AND POWER SERIES 140

The phrasing should be “whose value at any x is”. The remark that the ai
are constants is probably meant to indicate that they do not depend on x,
otherwise every function would be a polynomial. The zero polynomial is,
according to this definition, the const 0 function. Thus, what is meant is

A polynomial is a function P : R→ R which either is the constant
zero function, or there exist a0, . . . , an : R with an 6= 0 (called
coefficients) such that, for every x : R

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

For the constant zero polynomial the degree is not defined. Other-
wise, the degree is n.

Syntax and semantics of polynomials. Given the coefficients ai we can eval-
uate P at any given x. Ignoring the condition on coefficients for now, we can
assume that the coefficients are given as a list as = [a0, a1, ..., an] (we prefer
counting up). Then the evaluation function is:

evalL :: [R]→ R→ R

evalL [] x = 0
evalL (a : as) x = a + x ∗ evalL as x

Note that we can read the type as evalL :: [R] → (R → R) and thus identify
[R] as the type for the (abstract) syntax (for polynomials) and (R→ R) as the
type of the semantics (for polynomial functions). Exercise 5.2: Show that this
evaluation function gives the same result as the formula above.

Using the Ring instance for functions we can rewrite eval into a one-argument
function (returning a polynomial function):

evalL :: [R]→ (R→ R)
evalL [] = const 0
evalL (a : as) = const a + id ∗ evalL as

As an example, the polynomial which is usually written just x is represented
by the list [0, 1] and the polynomial function λx → xˆ2− 1 is represented by
the list [−1, 0, 1].

It is worth noting that the definition of what we call a “polynomial function”
is semantic, not syntactic. A syntactic defintion would talk about the form of
the expression (a sum of coefficients times natural powers of x). In contrast,
this semantic definition only requires that the function P behaves like such a
sum. Insisting on this difference may seem pedantic, but here is an interesting

CHAPTER 5. POLYNOMIALS AND POWER SERIES 141

example of a family of functions which syntactically does not look like a sum
of powers:

Tn(x) = cos(n ∗ arccos(x)) .

And yet, it can be shown that Tn is a polynomial function of degree n (on the
interval [−1, 1]). Exercise 5.4 guides you to a proof. At this point you could
just compute T0, T1, and T2 by hand to get a feeling for how it works.

Not every list of coefficients is valid according to the definition. In particular,
the empty list is not a valid list of coefficients, so we have a conceptual, if not
empirical, type error in our evaluator.

The valid lists are those finite lists in the set

{ [0]} ∪ {(a : as) | last (a : as) 6= 0}

The fact that the element should be non-zero is easy to express as a Haskell
expression (last (a : as) 6= 0), but not so easy to express in the types.

We could try jumping through the relevant hoops. However, at this stage, we
can realise that the the non-zero condition is there only to define the degree of
the polynomial. The same can be said about the separation between zero and
non-zero polynomials, which is there to explicitly leave the degree undefined.
So we can further improve the definition as follows:

A polynomial is a function P : R→ R such that there exist a0, . . . ,
an : R and for any x : R

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

The degree of the polynomial is the largest i such that ai 6= 0.

This definition is much simpler to manipulate and clearly separates the defi-
nition of degree from the definition of polynomial. Perhaps surprisingly, there
is no longer any need to single out the zero polynomial to define the degree.
Indeed, when the polynomial is zero, ai = 0 for every i, and we have an empty
set of indices where ai 6= 0. The largest element of this set is undefined (by
definition of largest, see also Exercise 5.11), and we have the intended defini-
tion.

Representing polynomials So, we can simply use any list of coefficients to
represent a polynomial:

newtype Poly a = Poly [a] deriving (Show, Eq)

CHAPTER 5. POLYNOMIALS AND POWER SERIES 142

Since we only use the arithmetic operations, we can generalise our evaluator
to an arbitrary Ring type.

evalPoly :: Ring a⇒ Poly a→ (a→ a)
evalPoly (Poly []) = 0
evalPoly (Poly (a : as)) x = a + x ∗ evalPoly (Poly as) x

Since we have Ring a, there is a Ring structure on a → a, and evalPoly looks
like a homomorphism. Question: is there a Ring structure on Poly a, such that
evalPoly is a homomorphism?

For example, the homomorphism condition gives for (+)

evalPoly as + evalPoly bs = evalPoly (as + bs)

Note that this equation uses (+) at two different type: on the left hand side
(lhs) two functions of type a→ a are added (pointwise) and on the right hand
side (rhs) two Poly a (lists of coefficients) are added. We are using the homo-
morphism condition to find requirements on the definition of (+) on Poly a.

Both sides (lhs and rhs) are functions, thus they are equal if and only if they
are equal for every argument. For an arbitrary x

(evalPoly as + evalPoly bs) x = evalPoly (as + bs) x
⇔ {- (+) on functions is defined point-wise -}

evalPoly as x + evalPoly bs x = evalPoly (as + bs) x

To proceed further, we need to consider the various cases in the definition
of evalPoly and use list induction. We give here the computation for the step
case, dropping the Poly constructor and writing eval cs = evalPoly (Poly cs) for
brevity.

eval (a : as) x + eval (b : bs) x = eval ((a : as) + (b : bs)) x

We use the homomorphism condition for as and bs. For the left-hand side, we
have:

eval (a : as) x + eval (b : bs) x = {- def. eval -}
(a + x ∗ eval as x) + (b + x ∗ eval bs x) = {- arithmetic (ring laws) -}
(a + b) + x ∗ (eval as x + eval bs x) = {- homomorphism condition -}
(a + b) + x ∗ (eval (as + bs) x) = {- def. eval -}
eval ((a + b) : (as + bs)) x

The homomorphism condition will hold for every x if we define

CHAPTER 5. POLYNOMIALS AND POWER SERIES 143

(a : as) + (b : bs) = (a + b) : (as + bs)

This definition looks natural (we could probably have guessed it early on) but
it is still interesting to see that we can derive it as the form that it has to take
for the proof to go through.

Numeric instances for polynomials We leave the derivation of the other
cases and operations as an exercise. Here, we just give the corresponding
definitions.

instance Additive a⇒ Additive (Poly a) where
(+) = addPoly
zero = Poly []

instance Ring a⇒ Multiplicative (Poly a) where
(∗) = mulPoly
one = Poly [one]

instance AddGroup a⇒ AddGroup (Poly a) where
negate = negPoly

addPoly :: Additive a⇒ Poly a→ Poly a→ Poly a
addPoly (Poly xs) (Poly ys) = Poly (addList xs ys)
addList :: Additive a⇒ [a]→ [a]→ [a]
addList = zipWithLonger (+)

zipWithLonger :: (a→ a→ a)→ ([a]→ [a]→ [a])
zipWithLonger [] bs = bs -- 0 + bs bs -""-
zipWithLonger as [] = as -- as + 0 as
zipWithLonger op (a : as) (b : bs) = op a b : zipWithLonger op as bs
mulPoly :: Ring a⇒ Poly a→ Poly a→ Poly a
mulPoly (Poly xs) (Poly ys) = Poly (mulList xs ys)
mulList :: Ring a⇒ [a]→ [a]→ [a]
mulList [] = [] -- 0 ∗ bs 0
mulList [] = [] -- as ∗ 0 0
mulList (a : as) (b : bs) = (a ∗ b) : addList (scaleList a bs)

(mulList as (b : bs))
scaleList :: Multiplicative a⇒ a→ [a]→ [a]
scaleList a = map (a∗)
negPoly :: AddGroup a⇒ Poly a→ Poly a
negPoly = polyMap negate
polyMap :: (a→ b)→ (Poly a→ Poly b)
polyMap f (Poly as) = Poly (map f as)
polyCons :: a→ Poly a→ Poly a
polyCons x (Poly xs) = Poly (x : xs)

CHAPTER 5. POLYNOMIALS AND POWER SERIES 144

As we can define a Ring structure on Poly a, and we have arrived at the canon-
ical definition of polynomials, as found in any algebra book (see, for example,
Rotman [2006] for a very readable text):

Given a commutative ring A, the commutative ring given by the
set Poly A together with the operations defined above is the ring of
polynomials with coefficients in A.

Note that from here on we will use the term “polynomial” for the abstract
syntax (the list of coefficients, as) and “polynomial function” for its semantics
(the function evalPoly as : A→ A).

An alternative representation The canonical representation of polynomials
in algebra does not use finite lists, but the equivalent

Poly′ A = {a : N→A | {- a has a finite number of non-zero values -} }

Exercise 5.7: What are the ring operations on Poly′ A? For example, here is the
specification of addition:

a + b = c⇔ ∀ n : N. a n + b n = c n

Hint: they are not all the same as the operations on arbitrary functions X→ A
defined in Section 3.5.3.

Remark: Using functions from N in the definition has certain technical ad-
vantages over using finite lists. For example, consider adding [a0, a1, ..., an]
and [b0, b1, ..., bm], where n > m. Then, we obtain a polynomial of degree n:
[c0, c1, ..., cn]. The formula for the ci must now be given via a case distinction:

ci = if i > m then ai else ai + bi

since bi does not exist for values greater than m.

Compare this with the formula for functions from N, where no case distinc-
tion is necessary. The advantage is even clearer in the case of multiplication.

Syntax 6 semantics If one considers arbitrary rings, polynomials are not
isomorphic (in one-to-one correspondence) to polynomial functions. For any
finite ring A, there is a finite number of functions A→ A, but there is a count-
able infinity of polynomials. That means that the same polynomial function
on A will be the evaluation of many different polynomials.

CHAPTER 5. POLYNOMIALS AND POWER SERIES 145

For example, consider the ring Z2 ({0, 1} with addition and multiplication
modulo 2). In this ring, we have that p x = x + xˆ2 is actually a constant
function. The only two input values to p are 0 and 1 and we can easily check
that p 0 = 0 and also p 1 = (1 + 1ˆ2)%2 = 2%2 = 0. Thus

eval [0, 1, 1] = p = const 0 = eval [] -- in Z2 → Z2

but

[0, 1, 1] 6= [] -- in Poly Z2

Therefore, it is not generally a good idea to conflate polynomials (syntax) and
polynomial functions (semantics).

Algebra of syntactic polynomials Following the DSL terminology, we can
say that the polynomial functions are the semantics of the language of polyno-
mials. We started with polynomial functions, we wrote the evaluation func-
tion and realised that we have the makings of a homomorphism. That sug-
gested that we could create an adequate language for polynomial functions.
Indeed, this turns out to be the case; in so doing, we have recreated an impor-
tant mathematical achievement: the algebraic definition of polynomials.

Let

x :: Ring a⇒ Poly a
x = Poly [0, 1]

Then for any polynomial as = Poly [a0, a1, ..., an] we have

as = a0 · xˆ0 + a1 · xˆ1 + a2 · xˆ2 + ... + an · xˆn

where (+) is addition of coefficient lists and (·) is an infix version of scaleList.
Exercise 5.3: Prove the above equality.

This equality justifies the standard notation

as ∑n
i=0 ai · xˆi

where both sides of the equality are syntax (expressions of type Poly a).

5.2 Division and the degree of the zero polynomial

Recall the fundamental property of division that we learned in high school:

CHAPTER 5. POLYNOMIALS AND POWER SERIES 146

For all naturals a, b, with b 6= 0, there exist unique integers q and r,
such that

a = b ∗ q + r, with 0 6 r < b

When r = 0, a is divisible by b.

Questions of divisibility are essential in number theory and its applications
(including cryptography). A similar theorem holds for polynomials (see, for
example, [Adams and Essex, 2010, page 40]):

For all polynomials as, bs, with bs 6= 0, there exist unique polynomi-
als qs and rs, such that

as = bs ∗ qs + rs, with degree rs < degree bs

The condition r < b is replaced by degree rs < degree bs. However, we now
have a problem. Every polynomial is divisible by any non-zero constant poly-
nomial, resulting in a zero polynomial remainder. But the degree of a con-
stant polynomial is zero. If the degree of the zero polynomial were a natural
number, it would have to be smaller than zero. For this reason, it is either
considered undefined (as in Adams and Essex [2010]), or it is defined as −∞.1

The next section examines this question from the point of view of homomor-
phisms.

5.3 Polynomial degree as a homomorphism

It is often the case that a certain function is almost a homomorphism and the
domain or range structure is almost a monoid. In Section 4.6, we saw tupling
as one way to fix such a problem and here we will introduce another way.

The degree of a polynomial is a good candidate for being a homomorphism:
if we multiply two polynomials we can normally add their degrees. If we
try to check that degree :: Poly a → N is the function underlying a monoid
morphism we need to decide on the monoid structure to use for the source
and for the target, and we need to check the homomorphism laws. We can
use the multiplicative monoid (unit = one and op = mulPoly) for the source
and we can try to use the additive monoid (unit = zero and op = (+)) for the
target monoid. Then we need to check that

1Likewise we could define the largest element of the empty set to be −∞.

CHAPTER 5. POLYNOMIALS AND POWER SERIES 147

degree one = zero
∀ x, y. degree (x ‘op‘ y) = degree x + degree y

The first law is no problem and for most polynomials the second law is also
straighforward to prove (try it as an exercise). But we run into trouble with
one special case: the zero polynomial.

Looking back at the definition from [Adams and Essex, 2010, page 55] it says
that the degree of the zero polynomial is not defined. Let’s see why that is the
case and how we might “fix” it. Assume that there exists a natural number z
such that degree 0 = z. Assume additionally a polynomial p with degree p = n
(for example, p = xˆn would do). Then we get

z = {- assumption -}
degree 0 = {- simple calculation -}
degree (0 ∗ p) = {- homomorphism condition -}
degree 0 + degree p = {- assumption -}
z + n

Thus we need to find a degree z, for the zero polynomial, such that z = z + n
for all natural numbers n! At this stage we could either give up, or think out
of the box. Intuitively we could try to use z = −Infinity, which would seem
to satisfy the law but is not a natural number (not even an integer). More
formally what we need to do is to extend the monoid (N, 0,+) by one more
element. In Haskell we can do that using the Maybe type constructor:

class Monoid a where
unit :: a
op :: a→ a→ a

instance Monoid a⇒ Monoid (Maybe a) where
unit = Just unit
op = opMaybe

opMaybe :: Monoid a⇒ Maybe a→ Maybe a→ Maybe a
opMaybe Nothing _m = Nothing -- (−Inf) + m = −Inf
opMaybe _m Nothing = Nothing -- m + (−Inf) = −Inf
opMaybe (Just m1) (Just m2) = Just (op m1 m2)

Thus, to sum up, degree is a monoid homomorphism from (Poly a, 1, ∗) to
(Maybe N, Just 0, opMaybe).

Exercise 5.9: Check all the Monoid and homomorphism properties.

CHAPTER 5. POLYNOMIALS AND POWER SERIES 148

5.4 Power Series

Consider the following (false) proposition:

Proposition 1. Let m, n ∈N and let cs and as be any polynomials of degree m + n
and n, respectively, and with a0 6 0. Then there exists a polynomial bs of degree m
such that cs = as ∗ bs (thus cs is divisible by as).

Even if the proposition is false, we can make the following proof attempt:

Proof. We need to find bs = [b0, ..., bm] such that cs = as ∗ bs. From the multi-
plication of polynomials, we know that

ck = ∑k
i=0 ai ∗ bk−i

Therefore:

c0 = a0 ∗ b0

Since c0 and a0 are known, computing b0 = c0 / a0 is trivial. Next

c1 = a0 ∗ b1 + a1 ∗ b0

Again, we are given c1, a0 and a1, and we have just computed b0, therefore we
can obtain b1 = (c1 − a1 ∗ b0) / a0. Similarly

c2 = a0 ∗ b2 + a1 ∗ b1 + a2 ∗ b0

from which we obtain, as before, the value of b2 by subtraction and division.

It is clear that this process can be continued, yielding at every step a value for
a coefficient of bs, and thus we have obtained bs satisfying cs = as ∗ bs.

The problem with this proof attempt is in the statement “it is clear that this
process can be continued”. In fact, it is rather clear that it cannot be continued
(for polynomials)! Indeed, bs only has m + 1 coefficients, therefore for all re-
maining n equations of the form ck = ∑k

i=0 ai ∗ bk−i, the values of bk (for k>m)
have to be zero. But in general this will not satisfy the equations.

However, we can now see that, if we were able to continue forever, we would
be able to divide cs by as exactly. The only obstacle is the “finite” nature of our
lists of coefficients.

Power series are obtained from polynomials by removing in Poly′ the restric-
tion that there should be a finite number of non-zero coefficients; or, in, the
case of Poly, by going from finite lists to infinite streams.

CHAPTER 5. POLYNOMIALS AND POWER SERIES 149

-- PowerSeries′ a = { f : N→ a}
type PowerSeries a = Poly a -- finite and infinite lists

The operations are still defined as before. If we consider only infinite lists,
then only the equations which deal with nonempty lists will apply.

Power series are usually denoted

∞

∑
n=0

an ∗ xn

the interpretation of x being the same as before. The simplest operation, addi-
tion, can be illustrated as follows:

∞

∑
i=0

ai ∗ xi ∼= [a0, a1, . . .]

∞

∑
i=0

bi ∗ xi ∼= [b0, b1, . . .]

∞

∑
i=0

(ai + bi) ∗ xi ∼= [a0 + b0, a1 + b1, . . .]

The evaluation of a power series represented by a : N→ A is defined, in case
the necessary operations make sense on A, as a function

eval a : A→ A
eval a x = lim s where s n = ∑n

i=0 ai ∗ xi

We will focus on the case in which A = R or A = C. Note that eval a is,
in general, a partial function (the limit might not exist). To make eval a a total
function, the domain A would have to be restricted to just those values of x for
which the limit exists (the infinite sum converges). Keeping track of different
domains for different power series is cumbersome and the standard treatment
is to work with “formal power series” with no requirement of convergence.

Here the qualifier “formal” refers to the independence of the definition of
power series from the ideas of convergence and evaluation. In particular, two
power series represented by a and b, respectively, are equal only if a = b (as
infinite series of numbers). If a 6= b, then the power series are different, even if
eval a = eval b.

Since we cannot in general compute limits, we can use an approximative eval,
by evaluating the polynomial initial segment of the power series.

CHAPTER 5. POLYNOMIALS AND POWER SERIES 150

evalPS :: Ring a⇒ Int→ PowerSeries a→ (a→ a)
evalPS n as = evalPoly (takePoly n as)
takePoly :: Int→ PowerSeries a→ Poly a
takePoly n (Poly xs) = Poly (take n xs)

Note that evalPS n is not a homomorphism: for example:

evalPS 2 (x ∗ x) 1 =
evalPoly (takePoly 2 [0, 0, 1]) 1 =
evalPoly [0, 0] 1 =
0

but

(evalPS 2 x 1) =
evalPoly (takePoly 2 [0, 1]) 1 =
evalPoly [0, 1] 1 =
1

and thus evalPS 2 (x ∗ x) 1 = 0 6 1 = 1 ∗ 1 = (evalPS 2 x 1) ∗ (evalPS 2 x 1).

5.5 Operations on power series

Power series have a richer structure than polynomials. For example, as sug-
gested above, we also have division (this is reminiscent of the move from
Z to Q to allow division to be generalised). To illustrate, let us start with a
special case: trying to compute p = 1

1−x as a power series. The specifica-
tion of a / b = c is a = c ∗ b, thus in our case we need to find a p such that
1 = (1− x) ∗ p. For polynomials there is no solution to this equation. One
way to see that is by using the homomorphism degree: the degree of the left
hand side is 0 and the degree of the RHS is 1 + degree p 6 0. But there is still
hope if we move to formal power series.

Remember that p is then represented by a stream of coefficients, and let that
stream be [p0, p1, ...]. We make a table of the coefficients of the RHS = (1−
x) ∗ p = p− x ∗ p and of the LHS = 1 (seen as a power series).

p [p0, p1, p2, ...
x ∗ p [0, p0, p1, ...
p− x ∗ p [p0, p1 − p0, p2 − p1, ...
1 [1, 0, 0, ...

Thus, to make the last two lines equal, we are looking for coefficients satisfy-
ing p0 = 1, p1 − p0 = 0, p2 − p1 = 0, The solution is unique: 1 = p0 =

CHAPTER 5. POLYNOMIALS AND POWER SERIES 151

p1 = p2 = . . . but it only exists for streams (infinite lists) of coefficients. In the
common math notation we have just computed

1
1− x

=
∞

∑
i=0

xi

Note that this equation holds when we interpret both sides as formal power
series, but not necessarily if we try to evaluate the expressions for a particu-
lar x. Indeed, the RHS will converge if |x|< 1 but not for x = 2, for example.

For a more general case of power series division, consider p / q with p = a : as,
q = b : bs, and assume that a ∗ b 6= 0. Then we want to find, for any given (a : as)
and (b : bs), the series (c : cs) satisfying

(a : as) / (b : bs) = (c : cs) ⇔ {- spec. of division -}
(a : as) = (c : cs) ∗ (b : bs) ⇔ {- def. of ∗ for Cons -}
(a : as) = (c ∗ b) : ([c] ∗ bs + cs ∗ (b : bs))⇔ {- equality on components -}
a = c ∗ b {- and -}
as = [c] ∗ bs + cs ∗ (b : bs) ⇔ {- solve for c and cs -}
c = a / b {- and -}
cs = (as− [c] ∗ bs) / (b : bs)

This leads to the implementation:

instance (Eq a, Field a)⇒ MulGroup (PowerSeries a) where
(/) = divPS

divPS :: (Eq a, Field a)⇒ PowerSeries a→ PowerSeries a→ PowerSeries a
divPS (Poly as) (Poly bs) = Poly (divL as bs)
divL :: (Eq a, Field a)⇒ [a]→ [a]→ [a]
divL [] _bs = [] -- case 0 / q
divL (0 : as) (0 : bs) = divL as bs -- case xp / xq
divL (0 : as) bs = 0 : divL as bs -- case xp / q
divL as [b] = scaleList (1 / b) as -- case p / c
divL (a : as) (b : bs) = c : divL (addList as (scaleList (−c) bs)) (b : bs)

where c = a / b
divL [] = error "divL: division by zero"

This definition allows us to also use division on polynomials, but the result
will, in general, be a power series, not a polynomial. The different cases can
be calculated from the specification. Some examples:

ps0, ps1, ps2 :: (Eq a, Field a)⇒ PowerSeries a
ps0 = 1 / (1− x) -- ps0 Poly [1, 1, 1, 1, ...]

CHAPTER 5. POLYNOMIALS AND POWER SERIES 152

ps1 = 1 / (1− x)ˆ2 -- ps1 Poly [1, 2, 3, 4, ...]
ps2 = (xˆ2− 2 ∗ x + 1) / (x− 1) -- ps2 Poly [−1, 1, 0]

Every ps is the result of a division of polynomials: the first two return power
series, the third is a polynomial (even though it ends up having a trailing
zero). We can get a feeling for the definition by computing ps0 “by hand”. We
let p = [1] and q = [1,−1] and seek r = p / q.

divL p q = {- def. of p and q -}
divL (1 : []) (1 : [−1]) = {- main case of divL -}
(1 / 1) : divL ([]− [1] ∗ [−1]) (1 : [−1]) = {- simpl., def. of (∗), (−) -}
1 : divL [1] (1 : [−1]) = {- def. of p and q -}
1 : divL p q

Thus, the answer r starts with 1 and continues with r! In other words, we have
that 1 / [1,−1] = [1, 1 . .] as an infinite list of coefficients and 1

1−x = ∑∞
i=0 xi in

the more traditional mathematical notation.

5.6 Formal derivative

Considering the analogy between power series and polynomial functions (via
polynomials), we can arrive at a formal derivative for power series through
the following computation:(

∞

∑
n=0

an ∗ xn

)′
=

∞

∑
n=0

(an ∗ xn)′ =
∞

∑
n=0

an ∗ (xn)′ =
∞

∑
n=0

an ∗ (n ∗ xn−1)

=
∞

∑
n=0

(n ∗ an) ∗ xn−1 =
∞

∑
n=1

(n ∗ an) ∗ xn−1

=
∞

∑
m=0

((m + 1) ∗ am+1) ∗ xm

(5.1)

Thus the mth coefficient of the derivative is (m + 1) ∗ am+1.

We can implement this formula, for example, as

deriv :: Ring a⇒ Poly a→ Poly a
deriv (Poly as) = Poly (derivL as)
derivL :: Ring a⇒ [a]→ [a]
derivL [] = []
derivL (: as) = zipWith (∗) oneUp as

CHAPTER 5. POLYNOMIALS AND POWER SERIES 153

oneUp :: Ring a⇒ [a]
oneUp = one : map (one+) oneUp

Side note: we cannot in general implement a decidable (Boolean) equality test
for PowerSeries. For example, we know that deriv ps0 equals ps1 but we cannot
compute True in finite time by comparing the coefficients of the two power
series.

checkDeriv :: Int→ Bool
checkDeriv n = takePoly n (deriv ps0) takePoly n (ps1 :: Poly Rational)

Recommended reading: the Functional pearl: “Power series, power serious”
McIlroy [1999].

CHAPTER 5. POLYNOMIALS AND POWER SERIES 154

5.7 Exercises

The first few exercises are about filling in the gaps in the chapter above.

Exercise 5.1. Polynomial multiplication. To get a feeling for the definition it
can be useful to take it step by step, starting with some easy cases.

mulP [] p = -- TODO
mulP p [] = -- TODO

mulP [a] p = -- TODO
mulP p [b] = -- TODO

mulP (0 : as) p = -- TODO
mulP p (0 : bs) = -- TODO

Finally we reach the main case

mulP (a : as) q@(b : bs) = -- TODO

Exercise 5.2. Show (by induction) that the evaluation function evalL (from
page 140) gives the same result as the formula

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

from the quote on that same page.

Exercise 5.3. Prove that, with the definitions x = [0, 1] and as = [a0, a1, ..., an],
we really have

as = a0 · xˆ0 + a1 · xˆ1 + a2 · xˆ2 + ... + an · xˆn

where (+) is addition of coefficient lists and (·) is an infix version of scaleList.

Exercise 5.4. Chebyshev polynomials. Let Tn(x) = cos(n ∗ arccos(x)) for x in
the interval [−1, 1]. Compute T0, T1, and T2 by hand to get a feeling for how
it works. Note that they all turn out to be polynomial functions. In fact, Tn is
a polynomial function of degree n for all n. To prove this, here are a few hints:

• cos(α) + cos(β) = 2 ∗ cos(α+β
2) ∗ cos(α−β

2)

• let α = (n + 1) ∗ arccos(x) and β = (n− 1) ∗ arccos(x)

• Simplify Tn+1(x) + Tn−1(x) to relate it to Tn(x).

CHAPTER 5. POLYNOMIALS AND POWER SERIES 155

• Note that the relation can be seen as an inductive definition of Tn+1(x).

• Use induction on n.

Exercise 5.5. Another view of Tn from Exercise 5.4 is as a homomorphism. Let
H1(h, F, f) = ∀ x. h (F x) f (h x) be the predicate that states “h : A → B is a
homomorphism from F : A → A to f : B → B”. Show that H1(cos, (n∗), Tn)
holds, where cos : R≥0 → [−1, 1], (n∗) : R≥0 → R≥0, and Tn : [−1, 1] →
[−1, 1].

Exercise 5.6. Complete the following definition for polynomials represented
as a plain list of coefficients:

instance Num a⇒ Num [a] where
(+) = addP
(∗) = mulP

-- ... TODO
addP :: Num a⇒ [a]→ [a]→ [a]
addP = zipWith′ (+)
mulP :: Num a⇒ [a]→ [a]→ [a]
mulP = -- TODO

Note that zipWith′ is almost, but not quite, the definition of zipWith from the
standard Haskell prelude.

Exercise 5.7. What are the ring operations on Poly′ A where

Poly′ A = {a : N→A | {- a has a finite number of non-zero values -} }

Exercise 5.8. Prove the degree law

∀ x, y. degree (x ‘op‘ y) = degree x + degree y

for polynomials.

Exercise 5.9. Is degree a homomorphism from the monoid (Poly a, 1, ∗) to the
monoid (Maybe N, Just 0, opMaybe)? Check all the Monoid and homomor-
phism properties in the claim.

Exercise 5.10. The helper function polyMap :: (a → b) → (Poly a → Poly b)
that was used in the implementation of negPoly is a close relative of the usual
map :: (a → b) → ([a] → [b]). Both these are members of a typeclass called
Functor:

class Functor f where
fmap :: (a→ b)→ (f a→ f b)

Implement an instance of Functor for Maybe and ComplexSyn from Chapter 1.
Is fmap f a homomorphism?

CHAPTER 5. POLYNOMIALS AND POWER SERIES 156

Exercise 5.11. Can the function maximum :: [Z] → Z be defined as a homo-
morphism?

Solution: Some information is lacking, but we assume a monoid homomor-
phism is requested. We write maxi instead of maximum below to keep it short.
The source type (lists) is a monoid with op = (++) and unit = [] and we
are looking for a monoid structure on Z. The homomorphism conditions are
then maxi (xs ++ ys) = op (maxi xs) (maxi ys) and maxi [] = unit, for some
operation op : Z→ Z→ Z and a constant unit : Z, forming a monoid.

Because of what maximum does, we must pick op = max. The unit must act
like an identity for max: max unit x = x. This is possible only if unit≤ x for
every x. But, this is not possible: there is no lower bound in Z. Thus, maxi is
not a (monoid) homomorphism from [Z] to Z. (If we create another type Z′

with −∞ added to Z we could define another maxi′ : [Z]→ Z′).

Chapter 6

Higher-order Derivatives and
their Applications

In this chapter we make heavy use of concepts from Chapter 4 and thus we
urge readers to verify their understanding of Sections 4.7.1 and 4.9 in case they
might have skipped it. We have seen in particular that we can give a numeric
(Field, etc.) structure not only to functions, but also to pairs of functions and
their derivatives (Field x ⇒ Field (a → x, a → x)). But why stop there? Why
not compute a (lazy) list (also called a stream) of a function together with its
derivative, second derivative, etc.:

[f , f ′, f ′′, ...] :: [a→ a]

The above then represents the evaluation of a 1-variable expression as a func-
tion, and all its derivatives. We can write this evaluation as an explicit func-
tion:

evalAll :: Transcendental a⇒ FunExp→ [a→ a]
evalAll e = (evalFunExp e) : evalAll (derive e)

However evalAll is a non-compositional way of computing this stream. We
will now proceed to define a specification of evalAll (as a homomorphism), and
then derive a compositional implementation. Along the way we will continue
to build insight about such streams of derivatives.

Notice that if we look at our stream of derivatives,

[f , f ′, f ′′, ...] = evalAll e

157

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS158

then the tail is also such a stream, but starting from f ′:

[f ′, f ′′, ...] = evalAll (derive e)

Thus evalAll (derive e) tail (evalAll e) which can be written evalAll ◦ derive =
tail ◦ evalAll. Thus evalAll is a homomorphism from derive to tail, or in other
words, we have H1(evalAll, derive, tail) (H1· was defined in Exercise 4.18) —
this is our specification for what follows.

We want to define the other numeric operations on streams of derivatives in
such a way that evalAll is a homomorphism in each of them. For example,
consider multiplication:

evalAll (e1 :∗: e2) = evalAll e1 ∗ evalAll e2

where the (∗) sign stands for the multiplication of derivative streams — an
operation we are trying to determine, not the usual multiplication. We as-
sume that we have already derived the definition of (+) for these streams (it
is zipWithLonger (+), or just zipWith (+) if we stick to infinite streams only).

We have the following derivation (writing eval for evalFunExp and d for derive
in order to get a better overview):

LHS
= {- def. -}

evalAll (e1 :∗: e2)
= {- def. of evalAll -}

eval (e1 :∗: e2) : evalAll (d (e1 :∗: e2))
= {- def. of eval for (:∗:) -}
(eval e1 ∗ eval e2) : evalAll (d (e1 :∗: e2))

= {- def. of derive for (:∗:) -}
(eval e1 ∗ eval e2) : evalAll ((d e1 :∗: e2) :+: (e1 ∗ d e2))

= {- we assume H2(evalAll, (:+:), (+)) -}
(eval e1 ∗ eval e2) : (evalAll (d e1 :∗: e2) + evalAll (e1 :∗: d e2))

Similarly, starting from the other end we get

evalAll e1 ∗ evalAll e2
= {- def. of evalAll, twice -}
(eval e1 : evalAll (d e1)) ∗ (eval e2 : evalAll (d e2))

Now, to see the pattern it is useful to give simpler names to some common
subexpressions: let a = eval e1 and b = eval e2.

(a ∗ b) : (evalAll (d e1 :∗: e2) + evalAll (e1 ∗ d e2))
=?
(a : evalAll (d e1)) ∗ (b : evalAll (d e2))

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS159

Now we can solve part of the problem by defining (∗) as

(a : as) ∗ (b : bs) = (a ∗ b) : help a b as bs

The remaining part is then

evalAll (d e1 :∗: e2) + evalAll (e1 :∗: d e2)
=?

help a b (evalAll (d e1)) (evalAll (d e2))

We now have two terms of the same form as we started out from: calls of
evalAll on the constructor (:∗:). If we assume the homomorphism condition
holds for these two calls we can rewrite evalAll (d e1 :∗: e2) to evalAll (d e1) ∗
evalAll e2 and similarly for the second term. (For a formal proof we also need
to check that this assumption can be discharged.)

We also have evalAll ◦ d = tail ◦ evalAll which leads to:

tail (evalAll e1) ∗ evalAll e2 + evalAll e1 ∗ tail (evalAll e2)
=?

help a b (tail (evalAll e1)) (tail (evalAll e2))

Finally we rename common subexpressions: let a : as = evalAll e1 and b : bs =
evalAll e2.

tail (a : as) ∗ (b : bs) + (a : as) ∗ tail (b : bs)
=?

help a b (tail (a : as)) (tail (b : bs))

This equality is clearly satisfied if we define help as follows:

help a b as bs = as ∗ (b : bs) + (a : as) ∗ bs

Thus, we can eliminate help to arrive at a definition for multiplication1:

mulStream :: Ring a⇒ Stream a→ Stream a→ Stream a
mulStream (a : as) (b : bs) = (a ∗ b) : (as ∗ (b : bs) + (a : as) ∗ bs)

As in the case of pairs, we find that we do not need any properties of functions,
other than their Ring structure, so the definitions apply to any infinite list of
Ring values which we call a Stream:

1This expression is reminiscent of polynomial multiplication (Section 5.1), but it is different
from it because here each element is implicitly divided by a factorial, as we shall see below. Hence
we compute several terms many times here, and sum them together.

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS160

type Stream a = [a]
instance Additive a⇒ Additive (Stream a) where

zero = repeat zero
(+) = addStream

instance Ring a⇒ Multiplicative (Stream a) where
one = one : zero
(∗) = mulStream

addStream :: Additive a⇒ Stream a→ Stream a→ Stream a
addStream (a : as) (b : bs) = (a + b) : (as + bs)

Exercise 6.1. Complete the instance declarations for Fractional and Transcendental.

Note that it may make more sense to declare a newtype for Stream a instead
of using [a], for at least two reasons. First, because the type [a] also contains
finite lists, but we use Stream here to represent only the infinite lists. Second,
because there are competing possibilities for Ring instances for infinite lists,
for example applying all the operations indexwise.2 We used just a type syn-
onym here to avoid cluttering the definitions with the newtype constructors.

Exercise 6.2. Write a general derivative computation: drv k f x = the kth
derivative of f at x.

6.1 Taylor series

We have arrived at the instances for Stream (a → a) by reasoning about
lists of functions. But everywhere we needed to manipulate functions, we
ended up using their numerical structure directly (assuming instances such as
Ring (x→ a), rather than treating them at functions). So, the Stream instances
hold for any numeric type a. Effectively, we have implicitly used the apply ho-
momorphism, as we did in Section 4.6.1. So we can view Stream a as series of
higher-order derivatives taken at the same point a:

[f (a), f ′ (a), f ′′ (a), ...]

Assume now that f is a power series of coefficients (ai):

f = eval [a0, a1, ..., an, ...]

We derive:
2These can be obtained applying the the homomorphism between [a] and N → a to the Ring

instances of (x→ a)

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS161

f 0 = a0
f ′ = eval (deriv [a0, a1, ..., an, ...])

= eval ([1 ∗ a1, 2 ∗ a2, 3 ∗ a3, ..., n ∗ an, ...])
⇒

f ′ 0 = 1 ∗ a1
f ′′ = eval (deriv [1 ∗ a1, 2 ∗ a2, ..., n ∗ an, ...])

= eval ([2 ∗ 1 ∗ a2, 3 ∗ 2 ∗ a3, ..., n ∗ (n− 1) ∗ an, ...])
⇒

f ′′ 0 = 2 ∗ 1 ∗ a2

In general:

f (k)0 = fact k ∗ ak

Therefore

f = eval [f 0, f ′ 0, f ′′ 0 / 2, ..., f (n)0 / (fact n), ...]

That is, there is a simple mapping between the representation of f as a power
series (the coefficients ak), and the value of all derivatives of f at 0.

The power series represented by [f 0, f ′ 0, f ′′ 0 / 2, ..., f (n)0 / (fact n), ...] is
called the Taylor series centred at 0, or the Maclaurin series.

type Taylor a = Stream a

We can perform the above mapping (between a power series and its Maclaurin
series) efficiently as follows:

toMaclaurin :: Ring a⇒ PowerSeries a→ Taylor a
toMaclaurin (Poly as) = zipWith (∗) as factorials
fromMaclaurin :: Field a⇒ Taylor a→ PowerSeries a
fromMaclaurin as = Poly (zipWith (/) as factorials)

using a list of all factorials (starting from 0):

factorials :: Ring a⇒ [a]
factorials = factorialsFrom 0 1
factorialsFrom :: Ring a⇒ a→ a→ [a]
factorialsFrom n factn = factn : factorialsFrom (n + 1) (factn ∗ (n + 1))

Remember that x = Poly [0, 1]:

ex3, ex4 :: (Eq a, Field a)⇒ Taylor a
ex3 = toMaclaurin (xˆ3 + two ∗ x)
ex4 = toMaclaurin sinx

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS162

This means that the Taylor type, interpreted as a Maclaurin series, can work as
an alternative representation for power series (and in certain cases it can be a
better choice computationally).

Regardless, we can see toMaclaurin as a way to compute all the derivatives at
0 for all functions f constructed with the grammar of FunExp. That is because,
as we have seen, we can represent all of them by power series!

What if we want the value of the derivatives at some other point a (different
from zero)? We then need the power series of the “shifted” function g:

g x = f (a + x)⇔ g = f ◦ (a+)

If we can represent g as a power series, say [b0, b1, ...], then we have

g(k)0 = fact k ∗ bk = f (k)a

In particular, we would have

f x = g (x− a) = ∑ bn ∗ (x− a)n

which is called the Taylor expansion of f at a.

Example: We have that idx = [0, 1], thus giving us indeed the values

[id 0, id′ 0, id′′ 0, ...]

In order to compute the values of

[id a, id′ a, id′′ a, ...]

for a 6 0, we compute

ida a = toMaclaurin (evalP (X :+: Const a))

More generally, if we want to compute the derivatives of a function f con-
structed with FunExp grammar, at a point a, we can use the power series of
g x = f (x + a) (we additionally restrict ourselves to the first 10 derivatives):

d f a = take 10 (toMaclaurin (evalP (f (X :+: Const a))))

Use, for example, our f x = sin x + 2 ∗ x from Section 4.9. As before, we can
use power series directly to construct the input:

dP f a = toMaclaurin (f (idx + Poly [a]))

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS163

6.2 Derivatives and Integrals for Maclaurin series

Since the Maclaurin series represents [f 0, f ′ 0, f ′′ 0, ...], the tail of the list is
equivalent to the derivative of f . To prove that fact, one can substitute f by
f ′ in the above. Another way to see it is to remark that we started with the
equation evalAll ◦ derive = tail ◦ evalAll; but now our input represention is
already a Maclaurin series so evalAll = id, and in turn derive = tail.

In sum:

head f = eval f 0 -- value of f at 0
tail f = deriv f -- derivative of f

Additionally, integration can be defined simply as the list constructor “cons”
with the first argument being the value of f at 0:

integ :: a→ Taylor a→ Taylor a
integ = (:)

Given that we have an infinite list, we have f = head f : tail f . Let’s see what
this law means in terms of calculus:

f head f : tail f
integ (head f) (tail f)
integ (f 0) (deriv f)

or, in traditional notation:

f (x) = f (0) +
∫ x

0
f ′(t)dt

which is the fundamental theorem of calculus. In sum, we find that our defi-
nition of integ is exactly that needed to comply with calculus laws.

6.3 Integral for Formal Power series

In Section 5.6 we found a definition of derivatives for formal power series
(which we can also divide, as well as add and multiply):

deriv :: Ring a⇒ PowerSeries a→ PowerSeries a
deriv (Poly []) = Poly []
deriv (Poly (: as)) = Poly (zipWith (∗) oneUp as)

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS164

oneUp :: Ring a⇒ [a]
oneUp = countUp one
countUp :: Ring a⇒ a→ [a]
countUp = iterate (one+)

With our insight regarding Taylor series, we can now see that deriv = fromMaclaurin◦
tail ◦ toMaclaurin. We can apply the same recipe to obtain integration for
power series:

integ :: Field a⇒ a→ PowerSeries a→ PowerSeries a
integ a0 (Poly as) = Poly (integL a0 as)
integL :: Field a⇒ a→ [a]→ [a]
integL c cs = c : zipWith (/) cs oneUp

Remember that a0 is the constant that we need due to indefinite integration.

These operations work on the type PowerSeries a which we can see as the syn-
tax of power series, often called “formal power series”. The intended seman-
tics of a formal power series a is, as we saw in Chapter 5, an infinite sum

eval a : R→ R

eval a = λx→ lim s where s n = ∑n
i=0 ai ∗ xi

For any n, the prefix sum, s n, is finite and it is easy to see that the derivative
and integration operations are well defined. When we take the limit, how-
ever, the sum may fail to converge for certain values of x. Fortunately, we
can often ignore that, because seen as operations from syntax to syntax, all the
operations are well defined, irrespective of convergence.

If the power series involved do converge, then eval is a morphism between the
formal structure and that of the functions represented:

eval as + eval bs = eval (as + bs) -- H2(eval, (+), (+))
eval as ∗ eval bs = eval (as ∗ bs) -- H2(eval, (∗), (∗))
eval (derive as) = D (eval as) -- H1(eval, derive, D)

eval (integ c as) x = c +
∫ x

0 (eval as t) dt

6.4 Simple differential equations

Many first-order differential equations have the structure

f ′ x = g f x, f 0 = f0

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS165

i.e., they are defined in terms of the higher-order function g and initial value
f0. The fundamental theorem of calculus [Adams and Essex, 2010, Sect. 5.5]
gives us

f x = f0 +
∫ x

0 (g f t) dt

If f = eval as

eval as x = f0 +
∫ x

0 (g (eval as) t) dt

Assuming that g is a polymorphic function defined both for the syntax (PowerSeries)
and the semantics (R→ R), and that

∀ as. eval (gsyn as) gsem (eval as)

or simply H1(eval, g, g). (This particular use of H1· is read “g commutes with
eval”.) Then we can move eval outwards step by step:

eval as x = f0 +
∫ x

0 (eval (g as) t) dt
⇔ eval as x = eval (integ f0 (g as)) x
⇐ as = integ f0 (g as)

Finally, we have arrived at an equation expressed in only syntactic operations,
which is implementable in Haskell (for a reasonable g).

Which functions g commute with eval? All the ones in Ring, Field, Transcendental,
by construction; additionally, as above, deriv and integ. Therefore, we can im-
plement a general solver for these simple equations:

solve :: Field a⇒ a→ (PowerSeries a→ PowerSeries a)→ PowerSeries a
solve f0 g = f -- solves f ′ = g f , f 0 = f0

where f = integ f0 (g f)

On the face of it, the solution f appears not well defined, because its definition
depends on itself. We come back to this point soon, but first we observe solve
in action on simple instances of g, starting with const 1 and id:

idx :: Field a⇒ PowerSeries a
idx = solve 0 (_f → 1) -- f ′(x) = 1, f (0) = 0
expx :: Field a⇒ PowerSeries a
expx = solve 1 (λf → f) -- f ′(x) = f (x), f (0) = 1
expf :: Field a⇒ a→ a
expf = evalPS 100 expx

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS166

Exercise 6.3. Write expx as a recursive equation (inline solve in the definition
above).

The first solution, idx is just the polynomial [0, 1] — i.e. just x in usual mathe-
matical notation. We can easily check that its derivative is constantly 1 and its
value at 0 is 0.

The second solution expx is a formal power series representing the exponential
function. It is equal to its derivative and it starts at 1. The function expf is a
good approximation of the semantics for small values of its argument — the
following testing code shows that the maximum difference in the interval from
0 to 1 is below 5 ∗ 1016 (very close to the precision of Double).

testExp :: Double
testExp = maximum (map diff [0, 0.001 . . 1 :: Double])

where diff = abs ◦ (expf − exp) -- using the function instance for exp
testExpUnits :: Double
testExpUnits = testExp / ε

ε :: Double -- one bit of Double precision
ε = last (takeWhile (λx→ 1 + x 6 1) (iterate (/2) 1))

As an alternative to using solve we can use recursion directly. For example, we
can define sine and cosine in terms of each other:

sinx, cosx :: Field a⇒ PowerSeries a
sinx = integ 0 cosx
cosx = integ 1 (−sinx)
sinf , cosf :: Field a⇒ a→ a
sinf = evalPS 100 sinx
cosf = evalPS 100 cosx

Exercise 6.4. Write the differential equations characterising sine and cosine,
using usual mathematical notation.

The reason that these definitions produce an output instead of entering an in-
finite loop is that Haskell is a lazy language: integ can immediately return the
first element of the stream before requesting any information about its second
input. It is instructive to mimic part of what the lazy evaluation machinery is
doing by hand, as follows. We know that both sinx and cosx are streams, thus
we can start by filling in just the very top level structure:

sx = sh : st
cx = ch : ct

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS167

where sh & ch are the heads and st & ct are the tails of the two streams. Then
we notice that integ fills in the constant as the head, and we can progress to:

sx = 0 : st
cx = 1 : ct

At this stage we only know the constant term of each power series, but that is
enough for the next step: the head of st is 1

1 and the head of ct is -0
1 :

sx = 0 : 1 :
cx = 1 : -0 :

As we move on, we can always compute the next element of one series by the
previous element of the other series (divided by n, for cx negated).

sx, cx :: [Double]
sx = 0 : 1 : -0 : -1

6 : error "TODO"
cx = 1 : -0 : -1

2 : 0 : error "TODO"

6.5 Exponentials and trigonometric functions for PowerSeries

We have now shown how to compute the power series representations of the
functions exp, sin, and cos. We have also implemented all the Field class oper-
ations on power series. The next step would be to compute the Transcendental
class operations directly on the power series representation. For example, can
we compute expPS?

Specification:

eval (expPS as) = exp (eval as)

Differentiating both sides, we obtain

D (eval (expPS as)) = exp (eval as) ∗D (eval as)
⇔ {- eval morphism -}

eval (deriv (expPS as)) = eval (expPS as ∗ deriv as)
⇐

deriv (expPS as) = expPS as ∗ deriv as

Now we have reached the form of an ordinary differential equation for expPS as,
and we know how to solve them by integration, given the initial condition.
Using eval (expPS as) 0 exp (eval as 0) exp (head as), we obtain

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS168

expPS as = integ (exp (head as)) (expPS as ∗ deriv as)

Note: we cannot use solve here, because the g function uses both expPS as and
as (it “looks inside” its argument).

In the same style we can fill in the Transcendental instance declaration for
PowerSeries:

instance (Eq a, Transcendental a)⇒ Transcendental (PowerSeries a) where
π = Poly [π]
exp = expPS
sin = sinPS
cos = cosPS

expPS, sinPS, cosPS :: (Eq a, Transcendental a)⇒ PowerSeries a→ PowerSeries a
expPS as = integ (exp (val as)) (exp as ∗ deriv as)
sinPS as = integ (sin (val as)) (cos as ∗ deriv as)
cosPS as = integ (cos (val as)) (−sin as ∗ deriv as)
val :: Additive a⇒ PowerSeries a→ a
val (Poly (a: _)) = a
val = zero

In fact, we can now implement all the operations needed for evaluating FunExp
functions as power series!

evalP :: (Eq r, Transcendental r)⇒ FunExp→ PowerSeries r
evalP (Const x) = Poly [fromRational (toRational x)]
evalP (e1 :+: e2) = evalP e1 + evalP e2
evalP (e1 :∗: e2) = evalP e1 ∗ evalP e2
evalP X = idx
evalP (Negate e) = negate (evalP e)
evalP (Recip e) = recip (evalP e)
evalP (Exp e) = exp (evalP e)
evalP (Sin e) = sin (evalP e)
evalP (Cos e) = cos (evalP e)

6.6 Associated code

Here we collect in one place the definitions of eval for FunExp, syntactic deriva-
tive, and syntactic instance declarations for FunExp.

evalFunExp :: Transcendental a⇒ FunExp→ a→ a
evalFunExp (Const α) = const (fromRational (toRational α))

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS169

evalFunExp X = id
evalFunExp (e1 :+: e2) = evalFunExp e1 + evalFunExp e2 -- note the use of “lifted +”
evalFunExp (e1 :∗: e2) = evalFunExp e1 ∗ evalFunExp e2 -- “lifted ∗”
evalFunExp (Exp e) = exp (evalFunExp e) -- and “lifted exp”
evalFunExp (Sin e) = sin (evalFunExp e)
evalFunExp (Cos e) = cos (evalFunExp e)
evalFunExp (Recip e) = recip (evalFunExp e)
evalFunExp (Negate e) = negate (evalFunExp e)

-- and so on
derive (Const) = Const 0
derive X = Const 1
derive (e1 :+: e2) = derive e1 :+: derive e2
derive (e1 :∗: e2) = (derive e1 :∗: e2) :+: (e1 :∗: derive e2)
derive (Recip e) = let re = Recip e in Negate (re :∗: re) :∗: derive e
derive (Negate e) = Negate (derive e)
derive (Exp e) = Exp e :∗: derive e
derive (Sin e) = Cos e :∗: derive e
derive (Cos e) = Const (−1) :∗: Sin e :∗: derive e
instance Additive FunExp where
(+) = (:+:)
zero = Const 0

instance AddGroup FunExp where
negate x = Const (−1) ∗ x

instance Multiplicative FunExp where
(∗) = (:∗:)
one = Const 1

instance MulGroup FunExp where
recip = Recip

instance Transcendental FunExp where
π = Const π
exp = Exp
sin = Sin
cos = Cos

6.6.1 Not included to avoid overlapping instances

instance Num a⇒ Num (FD a) where
(f , f ′) + (g, g′) = (f + g, f ′ + g′)
zero = (zero, zero)

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS170

instance Multiplicative (FD a) where
(f , f ′) ∗ (g, g′) = (f ∗ g, f ′ ∗ g + f ∗ g′)
one = (one, zero)

instance Field a⇒ MulGroup (FD a) where
(f , f ′) / (g, g′) = (f / g, (f ′ ∗ g− g′ ∗ f) / (g ∗ g))

instance Transcendental a⇒ Transcendental (FD a) where
π = (π, zero)
exp (f , f ′) = (exp f , (exp f) ∗ f ′)
sin (f , f ′) = (sin f , (cos f) ∗ f ′)
cos (f , f ′) = (cos f , − (sin f) ∗ f ′)

6.6.2 This is included instead

instance Additive a⇒ Additive (a, a) where
(f , f ′) + (g, g′) = (f + g, f ′ + g′)
zero = (zero, zero)

instance AddGroup a⇒ AddGroup (a, a) where
negate (f , f ′) = (negate f , negate f ′)

instance Ring a⇒ Multiplicative (a, a) where
(f , f ′) ∗ (g, g′) = (f ∗ g, f ′ ∗ g + f ∗ g′)
one = (one, zero)

instance Field a⇒ MulGroup (a, a) where
(f , f ′) / (g, g′) = (f / g, (f ′ ∗ g− g′ ∗ f) / (g ∗ g))

instance Transcendental a⇒ Transcendental (a, a) where
π = (π, zero)
exp (f , f ′) = (exp f , (exp f) ∗ f ′)
sin (f , f ′) = (sin f , cos f ∗ f ′)
cos (f , f ′) = (cos f , − (sin f) ∗ f ′)

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS171

6.7 Exercises

Exercise 6.5. As shown in Section 4.9, we can find expressions e :: FunExp such
that eval e = f automatically using the assignment e = f Id. This is possible
thanks to the Ring, Transcendental, etc. instances of FunExp. Use this method
to find FunExp representations of the functions below, and show step by step
how the application of the function to Id is evaluated in each case.

1. f1 x = xˆ2 + 4

2. f2 x = 7 ∗ exp (2 + 3 ∗ x)

3. f3 x = 1 / (sin x + cos x)

Exercise 6.6. For each of the expressions e :: FunExp you found in Exercise 6.5,
use derive to find an expression e′ :: FunExp representing the derivative of the
expression, and verify that e′ is indeed the derivative of e.

Exercise 6.7. At the start of this chapter, we saw three different ways of com-
puting the value of the derivative of a function at a given point:

1. Using FunExp

2. Using FD

3. Using pairs

Try using each of these methods to find the values of f ′1 2, f ′2 2, and f ′3 2, i.e.
the derivatives of each of the functions in Exercise 6.5, evaluated at the point
2. You can verify that the result is correct by comparing it with the expressions
e′1, e′2 and e′3 that you found in 6.6.

Exercise 6.8. The exponential function exp t = eˆt has the property that
∫

exp t dt =
exp t + C. Use this fact to express the functions below as PowerSeries using
integ. Hint: the definitions will be recursive.

1. λt→ exp t

2. λt→ exp (3 ∗ t)

3. λt→ 3 ∗ exp (2 ∗ t)

Exercise 6.9. In the chapter, we saw that a representation expx :: PowerSeries of
the exponential function can be implemented using solve as expx = solve 1 id.
Use the same method to implement power series representations of the fol-
lowing functions:

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS172

1. λt→ exp (3 ∗ t)

2. λt→ 3 ∗ exp (2 ∗ t)

Exercise 6.10.

1. Implement idx′, sinx′ and cosx′ using solve

2. Complete the instance Floating (PowerSeries a)

Exercise 6.11. Consider the following differential equation:

f ′′ t + f ′ t− 2 ∗ f t = e3∗t, f 0 = 1, f ′ 0 = 2

We will solve this equation assuming that f can be expressed by a power series
fs, and finding the three first coefficients of fs.

1. Implement expx3 :: PowerSeries R, a power series representation of e3∗t

2. Find an expression for fs′′, the second derivative of fs, in terms of expx3,
fs′, and fs.

3. Find an expression for fs′ in terms of fs′′, using integ.

4. Find an expression for fs in terms of fs′, using integ.

5. Use takePoly to find the first three coefficients of fs. You can check that
your solution is correct using a tool such as MATLAB or WolframAlpha,
by first finding an expression for f t, and then getting the Taylor series
expansion for that expression.

Exercise 6.12. From exam 2016-03-15

Consider the following differential equation:

f ′′ t− 2 ∗ f ′ t + f t = e2∗t, f 0 = 2, f ′ 0 = 3

Solve the equation assuming that f can be expressed by a power series fs, that
is, use deriv and integ to compute fs. What are the first three coefficients of fs?

Exercise 6.13. From exam 2016-08-23

Consider the following differential equation:

f ′′ t− 5 ∗ f ′ t + 6 ∗ f t = et, f 0 = 1, f ′ 0 = 4

Solve the equation assuming that f can be expressed by a power series fs, that
is, use deriv and integ to compute fs. What are the first three coefficients of fs?

CHAPTER 6. HIGHER-ORDER DERIVATIVES AND THEIR APPLICATIONS173

Exercise 6.14. From exam 2016-Practice

Consider the following differential equation:

f ′′ t− 2 ∗ f ′ t + f t− 2 = 3 ∗ e2∗t, f 0 = 5, f ′ 0 = 6

Solve the equation assuming that f can be expressed by a power series fs, that
is, use deriv and integ to compute fs. What are the first three coefficients of fs?

Exercise 6.15. From exam 2017-03-14

Consider the following differential equation:

f ′′ t + 4 ∗ f t = 6 ∗ cos t, f 0 = 0, f ′ 0 = 0

Solve the equation assuming that f can be expressed by a power series fs, that
is, use integ and the differential equation to express the relation between fs, fs′,
fs′′, and rhs where rhs is the power series representation of (6∗) ◦ cos. What are
the first four coefficients of fs?

Exercise 6.16. From exam 2017-08-22

Consider the following differential equation:

f ′′ t− 3
√

2 ∗ f ′ t + 4 ∗ f t = 0, f 0 = 2, f ′ 0 = 3
√

2

Solve the equation assuming that f can be expressed by a power series fs, that
is, use integ and the differential equation to express the relation between fs, fs′,
and fs′′. What are the first three coefficients of fs?

Chapter 7

Elements of Linear Algebra

Often, especially in engineering textbooks, one encounters the following def-
inition: a vector is an n + 1-tuple of real or complex numbers, arranged as a
column:

v =

v0
...

vn

Other times, this is supplemented by the definition of a row vector:

v =
[
v0 · · · vn

]
The vis are real or complex numbers, or, more generally, elements of a field
(See Section 4.1.1 for the definition of a field).

However, following our theme, we will first characterize vectors algebraically.
From this perpective a vector space is an algebraic structure that captures a set
of vectors, with zero, a commutative addition, and scaling by a set of scalars
(i.e., elements of the field). In terms of typeclasses, we can characterize this
structure as follows:

infixr 7 /
class (Field s, AddGroup v)⇒ VectorSpace v s where
(/) :: s→ v→ v

Additionally, every vector space must satisfy the following laws:

174

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 175

1. Vector scaling (s/) is a homomorphism over (from and to) the additive
group structure of v:

s / (a + b) = s / a + s / b
s / zero = zero
s / (negate a) = negate (s / a)

2. On the other side, (/ a) is a homomorphism from the additive group
structure of s to the group structure of v:

(s + t) / a = s / a + t / a
zero / a = zero
negate s / a = negate (s / a)

3. Finally (/) is a homomorphism from the multiplicative monoid of s to
the monoid of endofunctions over v (see Section 4.1):

(/) one = id
(/) (s ∗ t) = (/) s ◦ (/) t

Applying the vector a everywhere gives the familiar form for these laws:

one / a = id a = a
(s ∗ t) / a = ((s/) ◦ (t/)) a = s / (t / a)

Often, the above laws are not expressed in terms of homomorphisms, but
rather as individual equations. This means that some of them are often omit-
ted, because they are consequences of sets of other laws.

An important consequence of the algebraic structure of vectors is that they
can be expressed as a simple sort of combination of other special vectors. More
precisely, we can uniquely represent any vector v in the space in terms of a fixed
set of basis vectors {b0, ..., bn}. By definition, basis vectors cover the whole
space:

∀ v. ∃ s0, . . . , sn. v s0 / b0 + ... + sn / bn

They are also linearly independent:

(s0 / b0 + ... + sn / bn = 0)⇔ (s0 = ... = sn = 0)

One can prove the uniqueness of representation as follows:

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 176

Proof. Assume two representations of v, given by si and ti. The difference of
those representations is given by si − ti. But because they represent the same
vector, they must be equal to the zero vector: (s0 − t0) / b0 + ... + (sn − tn) /
bn = 0. By the bases being linearly independent, we find si − ti = 0, and thus
si = ti.

According to our red thread, this representation (coefficients) is akin to the
notion of syntax. But this is a case where the representation is equivalent to
the algebraic definition: the evaluator is not only a homomorphism, but an
isomorphism between the space of vectors and the list of coefficients. This
equivalence is what justifies the definition of vectors as columns (or rows) of
numbers.

Indeed, we can define:

v =

v0
...

vn

 = v0 /

1
0
...
0

+ v1 /

0
1
...
0

+ · · ·+ vn /

0
0
...
1

So, for our column vectors, we can define the operations as follows:

v + w =

v0
...

vn

+

w0
...

wn

 =

v0 + w0
...

vn + wn

s / v =

s ∗ v0
...

s ∗ vn

In the following we denote by

ek =

0
...
0
1 ← position k
0
...
0

the canonical base vectors, i.e. ek is the vector that is everywhere zero except
at position k, where it is one, so that v = v0 / e0 + ... + vn / en. This formula
maps the syntax (coefficients) to the semantics (a vector).

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 177

Exercise 7.1. Define a function which takes as input a vector v and a set of
(non-canonical) basis vectors bi and returns the coefficients of v in that basis.

7.1 Representing vectors as functions

In what follows we will systematically use the represention of vectors as a
linear combination of basis vectors. There is a temptation to model the corre-
sponding collection of coefficients as a list, or a tuple, but a more general (and
conceptually simpler) way is to view them as a function from a set of indices
G:

newtype Vector s g = V (g→ s) deriving (Additive, AddGroup)

We define right away the notation a ! i for the coefficient of the canonical base
vector e i, as follows:

infix 9 !
(!) :: Vector s g→ g→ s
V f ! i = f i

We sometimes omit the constructor V and the indexing operator (!), thereby
treating vectors as functions without the newtype.

As discussed above, the S parameter in Vector S has to be a field (R, or C, or
Zp, etc.)1 for values of type Vector S G to represent elements of a vector space.

The cardinality of G, which we sometimes denote card G, is the number of
basis vectors, and thus the dimension of the vector space. Often G is finite,
and in the examples so far we have used indices from G = {0, . . . , n}. Thus
the dimension of the space would be n + 1.

In Haskell finiteness of G can be captured by the conjunction of Bounded (there
is a minimum and a maximum element in G) and Enumerable (there is a no-
tion of enumeration from a given element of G) and Eq. Hence, the list of all
elements of G can be extracted:

type Finite g = (Bounded g, Enum g, Eq g)
finiteDomain :: Finite a⇒ [a]
finiteDomain = [minBound . . maxBound]

Let us now define a VectorSpace instance for the Vector representation. This
can only be done if s is a Field. Then, we must provide an associative and

1The set Zp is the set of integers modulo p. We let the reader lookup the appropriate notion of
division for it.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 178

commutative addition operation. For Vector, it can is defined indexwise. Be-
cause indexwise addition is already our definition of addition for functions
(g → s), from Section 3.5.3, we can simply reuse this definition. (Function
addition demands that s is an instance of AddGroup, but it’s fine since s is
even a Field.) This is what the deriving clause amounts to in the definition of
newtype Vector. The rest of the AddGroup structure, zero and negate is defined
by the same means.

What about vector scaling, (/)? Can we simply reuse the definition that we
had for functions? No, because multiplication of vectors does not work point-
wise. In fact, attempting to lift multiplication from the Multiplicative class
would give a homogenous multiplication operator (∗) :: v→ v→ v, but such
an operator is not part of the definition of vector spaces. Consequently, vector
spaces are in general not rings.

Indeed, the scaling operator (/) :: s → v → v, is inhomogenous: the first
argument is a scalar and the second one is a vector. For our representation it
can be defined as follows:

instance Field s⇒ VectorSpace (Vector s g) s where
(/) :: Multiplicative s⇒ s→ Vector s g→ Vector s g
s / V a = V (λi→ s ∗ a i)

Exercise 7.2. Show that Vector s g satisfies the laws of vector spaces.

The canonical basis for Vector are given by

e :: (Eq g, Ring s)⇒ g→ Vector s g
e i = V (λj→ i ‘is‘ j)

In linear algebra textbooks, the function is is often referred to as the Kronecker-
delta function and is i j is written δi,j.

is :: (Eq g, Ring s)⇒ g→ g→ s
is i j = if i j then one else zero

It is 1 if its arguments are equal and 0 otherwise. Thus e i has zeros every-
where, except at position i where it has a one.

We can see that, as exepected, every v : g→ s is a linear combination of vectors
e i where the coefficient of the canonical base vector e i is the scalar v i:

v (v 0 / e 0) + ... + (v n / e n)

To be sure, every vector v is a linear combination of base vectors. But when
using canonical base vectors, the coefficients come simply from applying v

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 179

(seen as a function) to the possible indices. Because we will work with many
such linear combinations we introduce a helper function linComb:

linComb :: (Finite g, VectorSpace v s)⇒ (g→ s)→ (g→ v)→ v
linComb a v = sum (map (λj→ a j / v j) finiteDomain)

Using linComb the characterising equation for vectors reads:

v linComb v e (7.1)

Exercise 7.3. Using the elements defined above, sketch the isomorphism be-
tween an abtract vector space and its representation. Recall the definition of
isomorphism in Section 4.2.3.

7.2 Linear transformations

As we have seen in earlier chapters, morphisms between structures are of-
ten important. Vector spaces are no different: if we have two vector spaces
Vector S G and Vector S G′ for the same set of scalars S, we can study functions
f : Vector S G→ Vector S G′:

f v = f (v 0 / e 0 + ... + v n / e n)

It is particularly interesting to study functions which preserve the vector space
structure: vector-space homomorphisms. Such functions are more commonly
called “linear maps”, but to avoid unnecessary confusion with the Haskell
map function we will refer to vector-space homomorphisms by the slightly
less common name “linear transformation”. Spelling out the homomorphism,
the function f is a linear transformation if it maps the operations in Vector S G
into operations in Vector S G′ as follows:

f (u + v) = f u + f v
f (s / u) = s / f u

Because v = linComb v e = (v 0 / e 0 + ... + v n / e n), we also have:

f v = f (v 0 / e 0 + ... + v n / e n)
{- because f is linear -}

= v 0 / f (e 0) + ... + v n / f (e n)
{- by def. of linComb -}

= linComb v (f ◦ e)

But this means that we can determine f : Vector S G → Vector S G′ from just
f ◦ e : G→ Vector S G′, which has a much smaller domain. Let m = f ◦ e. Then,

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 180

for each i, the vector m i is the image of the canonical base vector e i through
f . Then

f v = linComb v m = v 0 / m 0 + ... + v n / m n

Each of the m k is a Vector S G′, as is the resulting f v. If we look at the
component g′ of f v we have

f v g′ = {- as above -}
(linComb v m) g′ = {- linComb, (/), (+) are all linear -}
linComb v (λg→ m g g′)

That is, it suffices to know the behaviour of f on the basis vectors to know its
behaviour on the whole vector space.

It is enlightening to compare the above sum with the standard vector-matrix
multiplication. Let us define M as follows:

M = [m 0 | ... | m n] -- where m : G→ Vector S G′

That is, the columns of M are m 0 to m n, or, in other words, the columns of
M are f (e i). Every m k has card G′ elements, and it has become standard to
write M i j to mean the ith element of the jth column, i.e., M i j = m j i, so that,
if we denote the usual matrix-vector multiplication by mulMV:

(mulMV M v) i = linComb v (M i)

therefore, one has

(mulMV M v) i = -- by def. of mulMV
linComb v (M i) = -- by def. of M i j
linComb v (λj→ m j i) = -- earlier computation (linearity)
f v i

If we take Matrix to be just a synonym for functions of type G→ Vector S G′:

type Matrix s g g′ = g′ → Vector s g

then we can implement matrix-vector multiplication as follows:

mulMV :: (Finite g, Field s)⇒ Matrix s g g′ → Vector s g→ Vector s g′

mulMV m (V v) = linComb v (transpose m)

transpose :: Matrix s i j→ Matrix s j i
transpose m i = V (λj→ m j ! i)

In the terminology of the earlier chapters, we can see Matrix s g g′ as a type
of syntax and the linear transformation (of type Vector S G → Vector S G′)

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 181

as semantics. With this view, mulMV is just another evaluation function from
syntax to semantics. However, again, given a fixed basis we have an isomor-
phism rather than a mere homomorphism: for a given linear transformation,
the matrix representation is unique.

Example Consider the multiplication of a matrix with a basis vector:

(M ∗ e k) ! i = (linComb (is k) (transpose M)) ! i = M i ! k

i.e., e k extracts the kth column from M (hence the notation “e” for “extract”).

We have seen how a linear transformation f can be fully described by a matrix
of scalars, M. Similarly, in the opposite direction, given an arbitrary matrix M,
we can define

f v = M ∗ v

and obtain a linear transformation f = (M∗). Moreover ((M∗) ◦ e) g g′ =
M g′ g, i.e., the matrix constructed as above for f is precisely M.

Exercise 7.8: compute ((M∗) ◦ e) g g′.

Therefore, every linear transformation is of the form (M∗) and every (M∗) is
a linear transformation. There is a bijection between these two sets. Matrix-
matrix multiplication is defined in order to ensure associativity (note here the
overloading of the operator ∗):

(M′ ∗M) ∗ v = M′ ∗ (M ∗ v)

that is

((M′ ∗M)∗) = (M′∗) ◦ (M∗)

You may want to refer to Exercise 7.9, which asks you to work this out in
detail. Additionally, exercise 7.10 is about associativity of matrix-matrix mul-
tiplication.

A simple vector space is obtained for G = (), the singleton index set. In this
case, the vectors s : () → S are functions that can take exactly one value as
argument, therefore they have exactly one value: s (), so they are isomorphic
with S. But, for any v : G→ S, we have a function fv : G→ (()→ S), namely

fv g () = v g

fv is similar to our m function above. The associated matrix is

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 182

M = [m 0 | ... | m n] = [fv 0 | ... | fv n]

having n + 1 columns (the dimension of Vector G) and one row (dimension of
Vector ()). Let w :: Vector S G:

M ∗w = w 0 / fv 0 + ... + w n / fv n

M ∗ v and each of the fv k are “almost scalars”: functions of type ()→ S, thus,
the only component of M ∗w is

(M ∗w) () = w 0 ∗ fv 0 () + ... + w n ∗ fv n () = w 0 ∗ v 0 + ... + w n ∗ v n

i.e., the scalar product of the vectors v and w.

Remark: We have not discussed the geometrical point of view.

7.3 Inner products

An important concept is the inner product between vectors. We define inner
product space as a vector space equipped with an inner product, as follows:

class VectorSpace v s⇒ InnerSpace v s where
inner :: v→ v→ s

Inner products have (at least) two aspects. First, they yield a notion of how
“big” a vector is, the norm.

sqNorm :: InnerSpace v s⇒ v→ s
sqNorm v = inner v v

norm v =
√

sqNorm v

Additionally, the inner product often serves as a measure of how much vectors
are similar to (or correlated with) each other.

For two non-zero vectors u and v, we can define:

similarity u v = inner u v / norm u / norm v

Dividing by the norms mean that abs (similarity u v) is at most 1 — the simi-
larity is always in the interval [−1, 1].

For example, in Euclidean spaces, one defines the inner product to be the
product of the cosine of the angle between the vectors and their norms. Con-
sequently, similarity is the cosine of the angle betwen vectors.

For this reason, one says that two vectors are orthogonal when their inner
product is 0 — even in non-Euclidean spaces.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 183

Dot product An often used inner product is the dot product, defined as fol-
lows:2

dot :: (Field s, Finite g)⇒ Vector s g→ Vector s g→ s
dot (V v) (V w) = linComb v w

We should note that the dot product acts on the representations (syntax). This
means that it will change dependending on the basis chosen to represent vec-
tors. Thus, the dot product is a syntactic concept, and it should be clearly
identified as such. This can be somewhat counterintuitive, because so far in
this chapter it was fine to use representations (they were unique given the ba-
sis). To further confuse matters, in Euclidean spaces (which are often used
as illustration) if the basis vectors are orthogonal, then the dot product coin-
cides with the inner product. But, according to our methodology, one should
start by defining a suitable inner product, and then check if the dot product is
equivalent to it. See Section 7.4.3 for an example.

Orthogonal transformations An important subclass of the linear transfor-
mations are those which preserve the inner product.

inner (f u) (f v) = inner u v

In Euclidean spaces, such a transformation preserve angles. In the context of
linear algebra they are either called orthogonal transformations (emphasizing
the preservation of angles) or unitary transformations (emphasizing preserva-
tion of norms). 3

Exercise 7.4. Can you express this condition as a homomorphism condition?

Such transformations necessarily preserve the dimension of the space (other-
wise at least one base vector would be squished to nothing and inner products
involving it become zero). The corresponding matrices are square.

Exercise 7.5. Prove that orthogonal operators form a monoid with multiplica-
tion as an operator.

If angles are preserved what about distances? An isometry f is a distance-
preserving transformation:

2This code is using the one-dimensional vector space instance defined in Section 7.6.1.
3In today’s mathematical vocabulary, the word “unitary” signals that a complex scalar field is

used, whereas the word “orthogonal” signals that that a real field is used, and that the space is
Euclidean.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 184

norm (f v) = norm v

We can prove that f is orthogonal iff. it is an isometry. The proof in the left-to-
right direction is easy and left as an exercise. In the other direction one uses
the equality:

4 ∗ inner u v = sqNorm (u + v)− sqNorm (u− v)

In Euclidean spaces, this means that preserving angles and preserving dis-
tances go hand-in-hand.

Orthogonal transformations enjoy many more useful properties: we have barely
scratched the surface here. Among others, their rows (and columns) are or-
thogonal to each other. The are also invertible (and so they form a group), and
the inverse is the given by (conjugate-) transpose of the matrix.

7.4 Examples of matrix algebra

7.4.1 Functions

A useful example of vector space is functions from real to real. In terms of
VectorSpace instance:

instance VectorSpace (R→ R) R where
s / f = (s∗) ◦ f

Here s / f scales pointwise the function f by s.

Exercise 7.6. Verify the VectorSpace laws for the above instance.

An example of a linear transformation is the derivative. Indeed, we have al-
ready seen that D (f + g) = D f + D g. The equation D (s / f) = s / D f is
verified by expanding the definitions. Together, this means that the laws of
linear transformations are verified.

7.4.2 Polynomials and their derivatives

In Chapter 5, we have represented polynomials of degree n + 1 by the list of
their coefficients. This is the same representation as the vectors represented
by n + 1 coordinates which we referred to in the introduction to this chapter.
Indeed, polynomials of degree n form a vector space, and we could interpret
that as {0, ..., n} → R (or, more generally, Field a ⇒ {0, ..., n} → a). The

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 185

operations, (+) for vector addition and (/) for vector scaling, are defined in
the same way as they are for functions.

To give an intuition for the vector space it is useful to consider the interpreta-
tion of the canonical base vectors. Recall that they are:

e i : {0, ..., n} → R, e i j = i ‘is‘ j

but how do we interpret them as polynomial functions?

When we represented a polynomial by its list of coefficients in Chapter 5, we
saw that the polynomial function λx→ xˆ3 could be represented as [0, 0, 0, 1],
where 1 is the coefficient of xˆ3.

This representation suggests to use as canonical base vectors e i the monomials
λx → xˆi. Representing the above list of coefficients as a vector is then a
matter of converting lists to functions {0, ..., n} → R). This way, the vector
λj → if j 3 then 1 else 0 is equal to λj → 3 ‘is‘ j or simply e 3. Any other
polynomial function p equals the linear combination of monomials, and can
therefore be represented as a linear combination of our base vectors e i. For
example, p x = 2 + xˆ3 is represented by 2 / e 0 + e 3.

The evaluator from the Vector g s representation to polynomial functions is as
follows:

evalP :: Vector R {0, ..., n} → (R→ R)
evalP (V v) x = sum (map (λi→ v i ∗ xˆi) [0 . . n])

Let us now turn to the representation of the derivative of polynomials. We
have already seen in the previous section that the derive function is a linear
transformation. We also know that it takes polynomials of degree n + 1 to
polynomials of degree n, and as such it is well defined as a linear transfor-
mation of polynomials too. Its representation can be obtained by appling the
linear transformation to every base vector:

M = [derive (e 0), derive (e 1), ..., derive (e n)]

where each derive (e i) has length n. The vector e (i + 1) represents λx →
xˆ(i + 1) and thus we want derive (e (i + 1)) to represent the derivative of
λx→ xˆ(i + 1):

evalP (derive (e (i + 1))) = {- by spec. -}
D (evalP (e (i + 1))) = {- by def. of e, evalP -}
D (λx→ xˆ(i + 1)) = {- properties of D from lecture 3 -}
λx→ (i + 1) ∗ xˆi = {- by def. of e, evalP, (/) -}
evalP ((i + 1) / (e i))

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 186

Thus

derive (e (i + 1)) = (i + 1) / (e i)

Also, the derivative of evalP (e 0) = λx → 1 is λx → 0 and thus derive (e 0) is
the zero vector:

derive (e 0) = 0

Example: n + 1 = 3:

M =

[
0 1 0
0 0 2

]
Take the polynomial function p x = 1 + 2 ∗ x + 3 ∗ xˆ2 as a vector

v =

1
2
3

and we have

M ∗ v =

[[
0
0

] [
1
0

] [
0
2

]]
∗

1
2
3

 =

[
2
6

]
representing the polynomial function p′ x = 2 + 6 ∗ x.

Exercise 7.11: write the (infinite-dimensional) matrix representing D for power
series.

Exercise 7.12: write the matrix In associated with integration of polynomials.

7.4.3 ∗Inner product for functions and Fourier series

We said before that the inner product yields a notion of norm and similarity.
Can we use the dot product as inner product for power series (if the base is
e i = xˆi)? We could, but then it would not be very useful. For example, it
would not yield a useful notion of similarity between the represented func-
tion. To find a more useful inner product, we can return to the semantics of
power series in terms of functions. But for now we consider them over the
restricted domain I = [−π, π].

Assume for a moment that we would define the inner product of functions u
and v as follows:

innerF u v =
∫

I
(eval u x) ∗ (eval v x)dx

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 187

Then, the norm of a function would be a measure of how far it gets from
zero, using a quadratic mean. Likewise, the corresponding similarity measure
corresponds to how much the functions “agree” on the interval. That is, if the
signs of eval u and eval v are the same on a sub-interval I then the integral is
positive on I, and negative if they are different.

As we suspected, using inner = innerF, the straightforward representation
of polynomials as list of coefficients is not an orthogonal basis. There is, for
example, a positive correlation between the canonical vectors x and xˆ3.

If we were using instead a set of basis polynomials bn which are orthogonal
using the above definition of inner, then we could simply let inner = dot, and
this would be a lot more efficient than to compute the integral by the following
series of steps: 1) compute the product using mulPoly, 2) integrate using integ,
3) use eval on the end points of the domain.

Let us consider as a base the functions bn x = sin (n ∗ x), prove that they are
orthogonal.

We first use trigonometry to rewrite the product of bases:

2 ∗ (bi x ∗ bj x)
= 2 ∗ sin (i ∗ x) ∗ sin (j ∗ x)
= cos ((i− j) ∗ x)− cos ((i + j) ∗ x)

Assuming i 6 j, we can take the indefinite integral, and find:

sin ((i− j) ∗ x) / (i− j)− sin ((i + j) ∗ x) / (i + j) + K

Taking the definite integral over the domain I yields:

2 ∗ (inner bi bj) =

sin ((i− j) ∗ π) / (i− j)− sin ((i + j) ∗ π) / (i + j) + K
− sin ((i− j) ∗ π) / (i− j) + sin ((i + j) ∗ π) / (i + j)− K

But sin (k ∗ π) = 0 for any integer k, and thus inner bi bj = 0

We can now compute sqNorm of bi. Trigonometry says:

2 ∗ (bi x ∗ bi x)
= 2 ∗ sin (i ∗ x) ∗ sin (i ∗ x)
= cos (0 ∗ x)− cos (2 ∗ i ∗ x)
= 1− cos (2 ∗ i ∗ x)

When taking the integral on I, the cosine disappears using the same argument
as before, and there remains: 2 ∗ sqNorm bi = 2 π. Thus to normalise the base

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 188

vectors we need to scale them by 1 /
√

π. In sum bi x = sin (i ∗ x) /
√

π is an
orthonormal basis:

bi ‘innerF‘ bj = is i j

As interesting as it is, this basis does not cover all functions over I. To start,
eval bi 0 0 for every i, and thus linear combinations can only ever be zero at
the origin.

But if we were to include cos (n ∗ x) /
√

π in the set of base vectors, it would
remain orthogonal, and the space would cover all periodic functions with pe-
riod 2π. A representation of a function in this basis is called the Fourier series.
Let us define a meaningful index (G) for the basis:

data Periodic where
Sin :: N→ Periodic
Cos :: N→ Periodic

A useful property of an orthonormal basis is that its representation as coef-
ficients can be obtained by taking the inner product with each base vectors.
Indeed, using Eq. (7.1) as a starting point, we can calculate:4

v linComb v b
⇒ v sum [vi / bi | i← finiteDomain]
⇒ v ‘inner‘ bj sum [vi / bi | i← finiteDomain] ‘inner‘ bj
⇒ v ‘inner‘ bj sum [vi / (bi ‘inner‘ bj) | i← finiteDomain]
⇒ v ‘inner‘ bj sum [vi / is i j | i← finiteDomain]
⇒ v ‘inner‘ bj vj

Thus, in our application, given a periodic function f , one can compute its
Fourier series by taking the innerF product of it with each of sin (n ∗ x) /

√
π

and cos (n ∗ x) /
√

π.

Exercise 7.7. Derive derive for this representation.

7.4.4 Simple deterministic systems (transition systems)

Simple deterministic systems are given by endo-functions5 on a finite set next :
G→ G. They can often be conveniently represented as a graph, for example

4The proof can be easily adapted to infinite sums.
5An endo-function is a function from a set X to itself: f : X→ X.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 189

0

1

3

6

4

52

Here, G = {0, ..., 6}. A node in the graph represents a state. A transition
i→ j means next i = j. Since next is an endo-function, every node must be the
source of exactly one arrow.

We can take as vectors the characteristic functions of subsets of G, i.e., G →
{0, 1}. Now, {0, 1} is not a field w.r.t. the standard arithmetical operations (it
is not even closed w.r.t. addition), and the standard trick to workaround this
issue is to extend the type of the functions to R.

The canonical basis vectors are, as usual, e i = V (is i). Each e i is the charac-
teristic function of a singleton set, { i}.
We can interpret e (next 0), ..., e (next 6) as the images of the basis vectors
e 0, ..., e 6 of Vector R G under the transformation

f :: Vector R G→ Vector R G
f (e i) = e (next i)

To write the matrix associated to f , we have to compute what vector is associ-
ated to each canonical base vector vector:

M = [f (e 0), f (e 1), ..., f (e n)]

Therefore:

M =

c0 c1 c2 c3 c4 c5 c6

r0 0 0 0 0 0 0 0
r1 1 0 0 0 0 0 0
r2 0 0 0 0 0 0 0
r3 0 1 0 0 0 0 0
r4 0 0 0 0 0 1 0
r5 0 0 1 0 0 0 1
r6 0 0 0 1 1 0 0

Notice that row 0 and row 2 contain only zero, as one would expect from the
graph of next: no matter where we start from, the system will never reach
node 0 or node 2.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 190

Starting with a canonical base vector e i, we obtain M ∗ e i = f (e i), as
we would expect. The more interesting thing is if we start with something
different from a basis vector, say [0, 0, 1, 0, 1, 0, 0] e 2 + e 4. We obtain
{ f 2, f 4} = {5, 6}, the image of {2, 4} through f . In a sense, we can say
that the two transitions happened in parallel. But that is not quite accu-
rate: if we start with {3, 4}, we no longer get the characteristic function of
{ f 3, f 4} = {6}, instead, we get a vector that does not represent a charac-
teristic function at all: [0, 0, 0, 0, 0, 0, 2] = 2 / e 6. In general, if we start with
an arbitrary vector, we can interpret this as starting with various quantities of
some unspecified material in each state, simultaneously. If f were injective,
the respective quantities would just get shifted around, but in our case, we get
a more general behaviour.

What if we do want to obtain the characteristic function of the image of a
subset? In that case, we need to use other operations than the standard arith-
metical ones, for example min and max.

However, ({0, 1}, max, min) is not a field, and neither is (R, max, min). This
means that we do not have a vector space, but rather a module. One can still
do a lot with modules: for example the definition of matrix multiplication
only demands a Ring rather than a Field (and none of the VectorSpace laws
demand scalar division). Therefore, having just a module is not a problem
if all we want is to compute the evolutions of possible states, but we cannot
apply most of the deeper results of linear algebra. 6

In the example above, we have:

newtype G = G Int deriving (Eq, Show)

instance Bounded G where
minBound = G 0
maxBound = G 6

instance Enum G where
toEnum = G
fromEnum (G n) = n

Note that the Ring G instance is given just for convenient notation (integer
literals): vector spaces in general do not rely on any numeric structure on
the indices (G). The transition function has type G → G and the following
implementation:

next1 :: G→ G
next1 (G 0) = G 1; next1 (G 1) = G 3;

6For instance, such deeper result would give ways to easily compute the stable state of a dy-
namic system.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 191

next1 (G 2) = G 5; next1 (G 3) = G 6;
next1 (G 4) = G 6; next1 (G 5) = G 4;
next1 (G 6) = G 5

Its associated matrix is

m g′ {- m is the matrix version of f -}
V (λg→ (f (e g)) ! g′){- by the spec. of f -}
V (λg→ (e (next1 g)) ! g′){- by def. of e -}
V (λg→ (V (is (next1 g))) ! g′){- by def. of (!) -}
V (λg→ is (next1 g) g′) {- is is symmetric -}
V (λg→ is g′ (next1 g)) {- by def. of (◦) -}
V (is g′ ◦ next1)

Thus we can implement m as:

m1 :: Ring s⇒ G→ Vector s G
m1 g′ = V (is g′ ◦ next1)

7.4.5 Non-deterministic systems

Another interpretation of the application of M to characteristic functions of a
subset is the following: assuming that all I know is that the system is in one of
the states of the subset, where can it end up after one step? (This assumes the
max-min algebra as above.)

The general idea for non-deterministic systems, is that the result of applying
the step function a number of times from a given starting state is a list of the
possible states one could end up in.

In this case, the uncertainty is entirely caused by the fact that we do not know
the exact initial state. However, there are cases in which the output of f is
not known, even when the input is known. Such situations are modelled by
endo-relations: R : G→ G, with g R g′ if g′ is a potential successor of g. Endo-
relations can also be pictured as graphs, but the restriction that every node
should be the source of exactly one arrow is lifted. Every node can be the
source of zero, one, or many arrows.

For example:

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 192

0

1

3

6

4

52

Now, starting in 0 we might end up either in 1 or 2 (but not both!). Starting in
6, the system breaks down: there is no successor state.

The matrix associated to R is built in the same fashion: we need to determine
what vectors the canonical base vectors are associated with:

M =

c0 c1 c2 c3 c4 c5 c6

r0 0 0 0 0 0 0 0
r1 1 0 0 0 1 0 0
r2 1 0 0 0 0 0 0
r3 0 1 0 0 0 0 0
r4 0 0 1 0 0 1 0
r5 0 0 1 0 0 0 0
r6 0 0 0 1 1 0 0

Exercise 7.13: start with e 2+ e 3 and iterate a number of times, to get a feeling
for the possible evolutions. What do you notice? What is the largest number
of steps you can make before the result is the zero vector? Now invert the
arrow from 2 to 4 and repeat the exercise. What changes? Can you prove it?

Implementation: The transition relation has type G→ (G→ Bool):

f2 :: G→ (G→ Bool)
f2 (G 0) (G g) = g 1∨ g 2
f2 (G 1) (G g) = g 3
f2 (G 2) (G g) = g 4∨ g 5
f2 (G 3) (G g) = g 6
f2 (G 4) (G g) = g 1∨ g 6
f2 (G 5) (G g) = g 4
f2 (G 6) (G g) = False

The associated matrix:

m2 g′ = V (λg→ f2 g g′)

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 193

Even though Bool is not a Field (not even a Ring) the computations we need go
through with these instances:

instance Additive Bool where
zero = False
(+) = (∨)

instance AddGroup Bool where
negate = error "negate: not used"

instance Multiplicative Bool where
one = True
(∗) = (∧)

instance MulGroup Bool where
recip = id

As a test we compute the state after one step from “either 3 or 4”:

t2′ = mulMV m2 (e (G 3) + e (G 4))
t2 = toL t2′ -- [False, True, False, False, False, False, True]

7.4.6 Stochastic systems

Quite often, we have more information about the transition to possible future
states. In particular, we can have probabilities of these transitions. For example

0

1

3

6

4

52

.4

.6

1

.7
.3

1

.5 .5

1

1

One could say that this case is a generalisation of the previous one, in which
we can take all probabilities to be equally distributed among the various pos-
sibilities. While this is plausible, it is not entirely correct. For example, we
have to introduce a transition from state 6 above. The nodes must be sources
of at least one arrow.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 194

In the case of the non-deterministic example, the “legitimate” inputs were
characteristic functions, i.e., the “vector space” was G → {0, 1} (the scare
quotes are necessary because, as discussed, the target is not a field). In the
case of stochastic systems, the inputs will be probability distributions over G,
that is, functions p : G→ [0, 1] with the property that

sum [p g | g← G] = 1

If we know the current probability distributions over states, then we can com-
pute the next one by using the total probability formula, which can be expressed
as

p a = sum [p (a | b) ∗ p b | b← G]

We study probability extensively in Chapter 9, but for now, let’s just remark
that the notation is extremely suspicious. (a | b), which is usually read “a,
given b”, is clearly not of the same type as a or b, so cannot really be an argu-
ment to p. Additionally, the p a we are computing with this formula is not the
p a which must eventually appear in the products on the right hand side.

In any case, at this stage, what we need to know is that the conditional prob-
ability p (a | b) gives us the probability that the next state is a, given that
the current state is b. But this is exactly the information summarised in the
graphical representation. Moreover, it is clear that, at least formally, the total
probability formula is identical to a matrix-vector multiplication.

As usual, we write the associated matrix by looking at how the canonical base
vectors are transformed. In this case, the canonical base vector e i = λj→ i ‘is‘ j
is the probability distribution concentrated in i. This means that the probability
to be in state i is 100% and the probability of being anwhere else is 0.

M =

c0 c1 c2 c3 c4 c5 c6

r0 0 0 0 0 0 0 0
r1 .4 0 0 0 .5 0 0
r2 .6 0 0 0 0 0 0
r3 0 1 0 0 0 0 0
r4 0 0 .7 0 0 1 0
r5 0 0 .3 0 0 0 0
r6 0 0 0 1 .5 0 1

Exercise 7.14: starting from state 0, how many steps do you need to take before
the probability is concentrated in state 6? Reverse again the arrow from 2 to 4
(so that 2→ 5 has probability 1, 4→ 2 probability 0.7, 4→ 6 and 4→ 1 have
probability 0.15 each. What can you say about the long-term behaviour of the
system now?

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 195

Exercise 7.15: Implement the example. You will need to define:

The transition function (giving the probability of getting to g′ from g)

f3 :: G→ Vector R G

and the associated matrix

m3 :: G→ Vector R G

(We want only G→ Vector [0, 1] G, using the unit interval in place of R.)

7.4.7 ∗Quantum Systems

Instead of real numbers for probabilities, we could consider using complex
numbers — one then speaks of “amplitudes”. An amplitude represented by
a complex number z is converted to a probability by taking the square of the
modulus of z:

p z = conj z ∗ z

We can then rewrite the law of total probability as follows:

sum [p ! i | i← finiteDomain]
= sum [conj (z ! i) ∗ (z ! i) | i← finiteDomain]
= inner z z

Indeed, for spaces with complex scalars, one should conjugate coefficients (of
an orthonormal basis) when computing the inner products. Hence, rather con-
veniently, the law of total probability is replaced by conservation of the norm
of state vectors. In particular, norms are conserved if the transition matrix is
unitary.

The unitary character of the transition matrix defines valid systems from the
point of view of quantum mechanics. Because all unitary matrices are in-
vertible, it follows that all quantum mechanical systems have an invertible
dynamics. Furthermore, the inverted matrix is also unitary, and therefore the
inverted system is also valid as a quantum dynamical system.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 196

Here is an example unitary matrix

M =

c0 c1 c2 c3 c4 c5 c6

r0 0 0 1 0 0 0 0
r1 1 0 0 0 0 0 0
r2 0 1 0 0 0 0 0
r3 0 0 0

√
2/2 −

√
2/2 0 0

r4 0 0 0
√

2/2
√

2/2 0 0
r5 0 0 0 0 0 1/2

√
3/2

r6 0 0 0 0 0
√

3/2 −1/2

In this example the amplitudes of states 0, 1, and 2 are permuted at every
step. States 3 and 4 get mixed into one another, and one can note that the sign
of their amplitudes may get inverted. A similar situation happens between
states 5 and 6, but at a higher rate.

7.5 ∗Monadic dynamical systems

This section is meant to give perspective for the readers who are already fa-
miliar with monads. Even though it can be safely skipped, it presents a useful
unified view of the previous sections which could help understanding the ma-
terial.

All the examples of dynamical systems we have seen in the previous section
have a similar structure. They work by taking a state (which is one of the
generators) and return a structure of possible future states of type G:

• deterministic: there is exactly one possible future state: we take an ele-
ment of G and return an element of G. The transition function has the
type f : G→ G, the structure of the target is just G itself.

• non-deterministic: there is a set of possible future states, which we have
implemented as a characteristic function G → {0, 1}. The transition
function has the type f : G → (G → {0, 1}). The structure of the target
is the powerset of G.

• stochastic: given a state, we compute a probability distribution over pos-
sible future states. The transition function has the type f : G→ (G→ R),
the structure of the target is the probability distributions over G.

• quantum: given an observable state, we compute a superposition of pos-
sible orthogonal future states.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 197

Therefore:

• deterministic: f : G→ Id G

• non-deterministic: f : G→ Powerset G, where Powerset G = G→ {0, 1}

• stochastic: f : G→ Prob G, where Prob G = G→ [0, 1]

• quantum: f : G → Super G, where Super G = G → Complex. (Addition-
ally f must be invertible)

We have represented the elements of the various structures as vectors. We
also had a way of representing, as structures of possible states, those states
that were known precisely: these were the canonical base vectors e i. Due to
the nature of matrix-vector multiplication, what we have done was in effect:

M ∗ v -- v represents the current possible states
= {- v is a linear combination of the base vectors -}

M ∗ (v 0 / e 0 + ... + v n / e n)
= {- homomorphism -}

v 0 / (M ∗ e 0) + ... + v n / (M ∗ e n)
= {- e i represents the perfectly known current state i, therefore M ∗ e i = f i -}

v 0 / f 0 + ... + v n / f n

So, we apply f to every state, as if we were starting from precisely that state,
obtaining the possible future states starting from that state, and then collect
all these hypothetical possible future states in some way that takes into ac-
count the initial uncertainty (represented by v 0, ..., v n) and the nature of the
uncertainty (the specific (+) and (/)).

If you examine the types of the operations involved

e : G→ Possible G

and

flip (∗) : Possible G→ (G→ Possible G)→ Possible G

you see that they are very similar to the monadic operations

return : g→ m g
(>>=) : m g→ (g→ m g′)→ m g′

which suggests that the representation of possible future states might be monadic.
Indeed, that is the case.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 198

Since we implemented all these as matrix-vector multiplications, this raises
the question: is there a monad underlying matrix-vector multiplication, such
that the above are instances of it (obtained by specialising the scalar type S)?
The answer is yes, up to a point, as we shall see in the next section.

Exercise: write Monad instances for Id, Powerset, Prob, Super.

7.5.1 ∗The monad of linear algebra

Haskell Monads, just like Functors, require return and >>= to be defined for
every type. This will not work, in general. Our definition will work for finite
types only.

class FinFunc f where
func :: (Finite a, Finite b)⇒ (a→ b)→ f a→ f b

class FinMon f where
embed :: Finite a⇒ a→ f a
bind :: (Finite a, Finite b)⇒ f a→ (a→ f b)→ f b

The idea is that vectors on finite types are finite functors and monads:

instance Ring s⇒ FinFunc (Vector s) where
func f (V v) = V (λg′ → sum [v g | g← finiteDomain, g′ f g])

instance Field s⇒ FinMon (Vector s) where
embed = embedFinM
bind = bindFinM

embedFinM :: (Eq a, Ring s)⇒ a→ Vector s a
embedFinM g = V (is g)
bindFinM :: (Field s, Finite a)⇒ Vector s a→ (a→ Vector s b)→ Vector s b
bindFinM (V v) f = V (λg′ → linComb v (λg→ f g ! g′))

Note that, if v :: Vector S G and f :: G → Vector S G′ then both func f v and
bind v f are of type Vector S G′. How do these operations relate to linear
algebra and matrix-vector multiplication?

Remember that e g is that vector whose components are zero except for the
gth one which is one. In other words

e g = V (is g) = embed g

and thus embed = e. In order to understand how matrix-vector multiplication
relates to the monadic operations, remember that matrices are just functions
of type G→ Vector S G′:

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 199

type Matrix s g g′ = g′ → Vector s g

According to our earlier definition, we can rewrite matrix-vector multiplica-
tion in terms of linComb

mulMV m (V v)
= {- earlier definition -}

linComb v (transpose m)

Now we have:

mulMV (transpose m) (V v)
= {- def. of mulMV -}

linComb v (transpose (transpose m))

= {- Property of transpose -}
linComb v m

= {- linComb-V lemma -}
V (λi→ linComb v (λj→ m j ! i))

= {- def. of bind -}
bind (V v) m

Thus we see that bind v f is “just” a matrix-vector multiplication.

The linComb-V lemma says that for a :: j → s and v :: j → Vector s i we have
linComb a v V (λi → linComb a (λj → v j ! i)). The proof uses the defini-
tions of linComb, (/), and the Additive instances for Vector and functions but is
omitted here for brevity.

7.6 Associated code

Conversions and Show functions so that we can actually see our vectors.

toL :: Finite g⇒ Vector s g→ [s]
toL (V v) = map v finiteDomain
instance (Finite g, Show s)⇒ Show (g→ s) where show = showFun
instance (Finite g, Show s)⇒ Show (Vector s g) where show = showVector
showVector :: (Finite g, Show s)⇒ Vector s g→ String
showVector (V v) = showFun v
showFun :: (Finite a, Show b)⇒ (a→ b)→ String
showFun f = show (map f finiteDomain)

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 200

Similarly, we can define matrix-matrix multiplication:

mulMM′ :: (Finite b, Ring s)⇒
Mat s b c→ Mat s a b→ Mat s a c

mulMM′ m1 m2 = λr c→ mulMV′ m1 (getCol m2 c) r
transpos :: Mat s g g′ → Mat s g′ g
transpos m i j = m j i
getCol :: Mat s g g′ → g→ Vec s g′

getCol = transpos
getRow :: Mat s g g′ → g′ → Vec s g
getRow = id

7.6.1 One-dimensional space

The following instance means that we can treat scalar fields as one-dimensional
vector spaces:

instance Field s⇒ VectorSpace s s where (/) = (∗)

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 201

7.7 Exercises

Search the chapter for tasks marked “Exercise”.

Exercise 7.8. Compute ((M∗) ◦ e) g g′.

Exercise 7.9. Matrix-matrix multiplication is defined in order to ensure a ho-
momorphism from (∗) to (◦).

∀M. ∀M′. ((M′ ∗M)∗) (M′∗) ◦ (M∗)

or in other words

H2((∗), (∗), (◦))

Work out the types and expand the definitions to verify that this claim holds.
Note that one (∗) is matrix-vector multiplication and the other is matrix-matrix
multiplication.

Exercise 7.10. Show that matrix-matrix multiplication is associative.

Exercise 7.11. With G = N for the set of indices, write the (infinite-dimensional)
matrix representing D for power series.

Exercise 7.12. Write the matrix In associated with integration of polynomials
of degree n.

Exercise 7.13. In the context of Section 7.4.5: start with v0 = e 2 + e 3 and
iterate M∗ a number of times, to get a feeling for the possible evolutions. What
do you notice? What is the largest number of steps you can make before the
result is the origin vector (just zero)?

Now change M to M′ by inverting the arrow from 2 to 4 and repeat the exer-
cise. What changes? Can you prove it?

Exercise 7.14. In the context of the example matrix M in Section 7.4.6: starting
from state 0, how many steps do you need to take before the probability is
concentrated in state 6?

Now change M to M′ by inverting the arrow from 2 to 4 and repeat the exer-
cise. What can you say about the long-term behaviour of the system now?

Exercise 7.15. In the context of the example matrix M in Section 7.4.6: im-
plement the example. You will need to define the transition function of type
G → (G → [0, 1]) returning the probability of getting from g to g′, and the
associated matrix.

CHAPTER 7. ELEMENTS OF LINEAR ALGEBRA 202

7.7.1 Exercises from old exams

Exercise 7.16. From exam 2017-03-14

Consider a non-deterministic system with a transition function f : G → [G]
(for G = {0 . . 5}) represented in the following graph

1 5

0 3

2 4

The transition matrix can be given the type m :: G → (G → Bool) and the
canonical vectors have type e i :: G→ Bool for i in G.

1. (General questions.) What do the canonical vectors represent? What
about non-canonical ones? What are the operations on Bool used in the
matrix-vector multiplication?

2. (Specific questions.) Write the transition matrix m of the system. Com-
pute, using matrix-vector multiplication, the result of three steps of the
system starting in state 2.

Chapter 8

Exponentials and Laplace

8.1 The Exponential Function

In one of the classical analysis textbooks, Rudin [1987] starts with a prologue
on the exponential function. The first sentence is

This is undoubtedly the most important function in mathematics.

Rudin goes on

It is defined, for every complex number z, by the formula

exp(z) =
∞

∑
n=0

zn

n!

We, on the other hand, have defined the exponential function as the solution
of a differential equation, which can be represented by a power series:

expx :: Field a⇒ PowerSeries a
expx = integ 1 expx

and approximated by

expf :: Field a⇒ a→ a
expf = evalPS 100 expx

203

CHAPTER 8. EXPONENTIALS AND LAPLACE 204

It is easy to see, using the definition of integ that the power series expx is,
indeed

expx = Poly [1, 1 / 1, 1 / 2, 1 / 6, ..., 1 / (1 ∗ 2 ∗ 3 ∗ ... ∗ n), . .]

We can compute the exponential for complex values if we can give an in-
stance of Field for complex numbers. We use the datatype Data.Complex from
the Haskell standard library, which is isomorphic to the implementation from
Chapter 1. In Data.Complex a complex value z is represented by two values,
the real and the imaginary part, connected by an infix constructor: z = re :+ im.

i :: Ring a⇒ Complex a
i = zero :+ one

Therefore we can define, for example, the exponential of the imaginary unit:

ex1 :: Field a⇒ Complex a
ex1 = expf i

And we have ex1 0.5403023058681398 :+ 0.8414709848078965. Observe at
the same time:

cosf 1 = 0.5403023058681398
sinf 1 = 0.8414709848078965

and therefore expf i cosf 1 :+ sinf 1. This is not a coincidence, as we shall
see.

First we define a helper function compScale specified by eval (compScale as c) x =
eval as (c ∗ x). Then we define the power series representing the function
f (x) = eix as compScale expx i.

compScale :: Ring a⇒ Poly a→ a→ Poly a
compScale (Poly as) c = Poly (zipWith (∗) as (iterate (c∗) 1))
type PSC a = PowerSeries (Complex a)
expix :: Field a⇒ PSC a
expix = compScale expx i
cosxisinx :: Field a⇒ PSC a
cosxisinx = cosx + Poly [i] ∗ sinx
ex2, ex2′ :: Field a⇒ PSC a
ex2 = takePoly 8 expix
ex2′ = takePoly 8 cosxisinx
test2 :: Bool
test2 = ex2 (ex2′ :: PSC Rational)

CHAPTER 8. EXPONENTIALS AND LAPLACE 205

As the code is polymorphic in the underlying number type, we can use ratio-
nals here to be able to test for equality without rounding problems. We can
see that every second coefficient is real and every second is imaginary:

check2 :: Bool
check2 = ex2 coeff2

coeff2 :: PSC Rational
coeff2 = Poly [1 :+ 0, 0 :+ 1,

(− 1 / 2) :+ 0, 0 :+ (−1 / 6),
1 / 24 :+ 0, 0 :+ 1 / 120,

(− 1 / 720) :+ 0, 0 :+ (−1 / 5040)]

We can see that the real part of this series is the same as

ex2R :: Poly Rational
ex2R = takePoly 8 cosx

and the imaginary part is the same as

ex2I :: Poly Rational
ex2I = takePoly 8 sinx

Therefore, the coefficients of cosx are

[1, 0,−1 / 2!, 0, 1 / 4!, 0,−1 / 6!, ...]

In other words, the power series representation of the coefficients for cos is

cosa (2 ∗ n) = (−1)ˆn / (2 ∗ n) !
cosa (2 ∗ n + 1) = 0

and the terms of sinx are

[0, 1, 0,−1 / 3!, 0, 1 / 5!, 0,−1 / 7!, ...]

i.e., the corresponding function for sin is

sina (2 ∗ n) = 0
sina (2 ∗ n + 1) = (−1)ˆn / (2 ∗ n + 1) !

This can be proven from the definitions of cosx and sinx. From this we obtain
Euler’s formula:

exp (i ∗ x) = cos x + i ∗ sin x

CHAPTER 8. EXPONENTIALS AND LAPLACE 206

One thing which comes out of Euler’s formula is the fact that the exponential
is a periodic function along the imaginary axis. A function f : A → B is said to
be periodic if there exists T ∈A such that

f x = f (x + T) -- ∀x∈A

Therefore, for this definition to make sense, we need addition on A; in fact we
normally assume at least AddGroup A.

Since sin and cos are periodic, with period τ = 2 ∗ π, we have, using the
standard notation a + i ∗ b for some z = a :+ b:

exp (z + i ∗ τ) = {- Def. of z -}
exp ((a + i ∗ b) + i ∗ τ) = {- Assoc. + distrib. -}
exp (a + i ∗ (b + τ)) = {- H2(exp, (+), (∗)) -}
exp a ∗ exp (i ∗ (b + τ)) = {- Euler’s formula -}
exp a ∗ (cos (b + τ) + i ∗ sin (b + τ)) = {- cos and sin are τ-periodic -}
exp a ∗ (cos b + i ∗ sin b) = {- Euler’s formula -}
exp a ∗ exp (i ∗ b) = {- exp is a homomorphism -}
exp (a + i ∗ b) = {- Def. of z -}
exp z

Thus, we see that exp is periodic, because exp z = exp (z + T) with T = i ∗ τ,
for all z.

8.2 The Laplace transform

This material was inspired by Quinn and Rai [2008], which is highly recom-
mended reading. In this section we typeset multiplication as (·) to avoid vi-
sual confusion with the convolution operator (~).

Consider the differential equation

f ′′ x− 3 · f ′ x + 2 · f x = exp (3 · x), f 0 = 1, f ′ 0 = 0

We can solve such equations with the machinery of power series:

fs :: Field a⇒ PowerSeries a
fs = integ 1 fs′

where fs′ = integ 0 fs′′

fs′′ = exp3x + 3 · fs′ − 2 · fs

CHAPTER 8. EXPONENTIALS AND LAPLACE 207

exp3x :: Field a⇒ PowerSeries a
exp3x = compScale expx 3

We have done this by “zooming in” on the function f and representing it by a
power series, f x = Σ an · xˆn. This allows us to reduce the problem of finding
a function f : R→R to that of finding a list of coefficients an, or equivalently
a function a : N→R. Or even, if one wants an approximation only, finding a
list of sufficiently many a-values for a good approximation.

Still, recursive equations are not always easy to solve (especially without a
computer), so it’s worth looking for alternatives.

When “zooming in” we go from f to a, but we can also look at it in the other
direction: we have “zoomed out” from a to f via an infinite series:

a : N→R f : R→R
∑ an ·xn

We would like to go one step further

a : N→R f : R→R F:?∑ an ·xn ??

That is, we are looking for a transformation from f to some F in a way which
resembles the transformation from a to f . The analogue of “sum of an infinite
series” for a continuous function is an integral:

a : N→R f : R→R F:?∑ an ·xn
∫
(f t)·xt dt

We note that, for the integral
∫ ∞

0 (f t) · xt dt to converge for a larger class of
functions (say, bounded functions1), we have to limit ourselves to |x|< 1. Both
this condition and the integral make sense for x∈C, so we could take

a : N→R f : R→R F : {z | |z|< 1}→C
∑ an ·xn

∫
(f t)·xt dt

but let us stick to R for now.

Writing, somewhat optimistically

L f x =
∫ ∞

0 (f t) · xˆt dt

we can ask ourselves what L f ′ looks like. After all, we want to solve differen-
tial equations by “zooming out”. We have

L f ′ x =
∫ ∞

0 (f ′ t) · xˆt dt

1A function is bounded if there exists a bound B such that forall x, |f x| 6 B.

CHAPTER 8. EXPONENTIALS AND LAPLACE 208

Remember that D (f · g) = D f · g+ f ·D g, which we use with g t = xˆt so that
D g t = log x · xˆt (note that t is the variable here, not x).

L f ′ x = {- Def. of L -}∫ ∞
0 (D f t) · xˆt dt = {- Derivative of product -}∫ ∞
0 (D (f t · xˆt))− f t · log x · xˆt dt = {- Linearity of integration -}∫ ∞
0 (D (f t · xˆt)) dt− log x ·

∫ ∞
0 f t · xˆt dt = {- Def. of integral to ∞. -}

limt→∞(f t · xˆt)− (f 0 · xˆ0)
− log x ·

∫ ∞
0 f t · xˆt dt = {- |x|< 1 -}

− f 0− log x ·
∫ ∞

0 f t · xˆt dt = {- Def. of L -}

− f 0− log x ·L f x

The factor log x is somewhat awkward. Let us therefore return to the definition
of L and operate a change of variables. First some rewriting:

L f x =
∫ ∞

0 (f t) · xˆt dt ⇔ {- x = exp (log x) -}

L f x =
∫ ∞

0 (f t) · (exp (log x))ˆt dt⇔ {- (aˆb)ˆc = aˆ(b · c) -}

L f x =
∫ ∞

0 (f t) · exp (log x · t) dt

Since log x < 0 for |x|< 1, we make the substitution −s = log x. The condition
|x|< 1 becomes s > 0 (or, in C, real s > 0), and we have

L f s =
∫ ∞

0 (f t) · exp (−s · t) dt

This is the definition of the Laplace transform of the function f . Going back to
the problem of computing L f ′, we now have

L f ′ s = {- The computation above with s = −log x. -}
− f 0 + s ·L f s

We have obtained

L f ′ s = s ·L f s− f 0 -- The "Laplace-D" law

From this, we can deduce

L f ′′ s = {- Laplace-D for f ′ -}
s ·L f ′ s− f ′ 0 = {- Laplace-D for f -}
s · (s ·L f s− f 0)− f ′ 0 = {- Simplification -}
sˆ2 ·L f s− s · f 0− f ′ 0

CHAPTER 8. EXPONENTIALS AND LAPLACE 209

Exercise 8.1: what is the general formula for L f (k)s?

Returning to our differential equation, we have

f ′′ x− 3 · f ′ x + 2 · f x = exp (3 · x), f 0 = 1, f ′ 0 = 0
⇔ {- point-free form -}

f ′′ − 3 · f ′ + 2 · f = exp ◦ (3·), f 0 = 1, f ′ 0 = 0
⇒ {- applying L to both sides -}

L (f ′′ − 3 · f ′ + 2 · f) = L (exp ◦ (3·)), f 0 = 1, f ′ 0 = 0 -- Eq. (1)

Remark: Note that this is a necessary condition, but not a sufficient one. The
Laplace transform is not injective. For one thing, it does not take into account
the behaviour of f for negative arguments. Because of this, we often assume
that the domain of definition for functions to which we apply the Laplace
transform is R≥0. For another, it is known that changing the values of f for a
countable number of its arguments does not change the value of the integral.

According to the definition of L and because of the linearity of the integral,
we have that, for any f and g for which the transformation is defined, and for
any constants α and β

L (α / f + β / g) = α / L f + β / L g

Note that this is an equality between functions. Indeed, recalling Chapter 7,
in particular Section 7.4.1, we are working here with the vector space of func-
tions (f and g are elements of it) The operator (/) refers to scaling in a vector
space — here scaling functions. The above equation says that L is a linear
transformation in that space.

Applying this linearity property to the left-hand side of (1), we have for any s:

L (f ′′ − 3 · f ′ + 2 · f) s
= {- L is linear -}

L f ′′ s− 3 ·L f ′ s + 2 ·L f s
= {- re-writing L f ′′ and L f ′ in terms of L f -}

sˆ2 ·L f s− s · f 0− f ′ 0− 3 · (s ·L f s− f 0) + 2 ·L f s
= {- f 0 = 1, f ′ 0 = 0 -}
(sˆ2− 3 · s + 2) ·L f s− s + 3

= {- Factoring -}
(s− 1) · (s− 2) ·L f s− s + 3

For the right-hand side, we apply the definition:

CHAPTER 8. EXPONENTIALS AND LAPLACE 210

L (exp ◦ (3·)) s = {- Def. of L -}∫ ∞
0 exp (3 · t) · exp (−s · t) dt =∫ ∞
0 exp ((3− s) · t)) dt =

limt→∞
exp ((3−s)·t)

3−s − exp ((3−s)·0)
3−s = {- for s > 3 -}

1
s−3

Therefore, we have, writing F for L f :

(s− 1) · (s− 2) · F s− s + 3 = 1
s−3

and therefore, by solving for F s we get

F s =
1

s−3 + s− 3
(s− 1) · (s− 2)

=
10− 6 · s + sˆ2

(s− 1) · (s− 2) · (s− 3)

We now have the problem of “recovering” the function f from its Laplace
transform. The standard approach is to use the linearity of L to write F as
a sum of functions with known inverse transforms. We know one such func-
tion:

exp (α · t) {- is the inverse Laplace transform of -} 1
s−α

In fact, in our case, this is all we need.

The idea is to write F s as a sum of three fractions with denominators s− 1,
s− 2, and s− 3 respectively, i.e., to find A, B, and C such that

A
s−1 + B

s−2 + C
s−3 = 10−6·s+ŝ2

(s−1)·(s−2)·(s−3)

⇒ {- Multiply both sides by (s− 1) · (s− 2) · (s− 3) -}
A · (s− 2) · (s− 3) + B · (s− 1) · (s− 3) + C · (s− 1) · (s− 2)

= 10− 6 · s + sˆ2 -- (2)

We need this equality (2) to hold for values s> 3. A sufficient condition for this
is for (2) to hold for all s. A necessary condition for this is for (2) to hold for the
specific values 1, 2, and 3.

For s = 1 : A · (−1) · (−2) = 10− 6 + 1 ⇒ A = 5
2

For s = 2 : B · 1 · (−1) = 10− 12 + 4⇒ B = −2
For s = 3 : C · 2 · 1 = 10− 18 + 9⇒ C = 1

2

CHAPTER 8. EXPONENTIALS AND LAPLACE 211

It is now easy to check that, with these values, (2) does indeed hold, and there-
fore that we have

F s = 5
2 ·

1
s−1 − 2 · 1

s−2 + 1
2 ·

1
s−3

The inverse transform is now easy:

f t = 5
2 · exp t− 2 · exp (2 · t) + 1

2 · exp (3 · t)

Our mix of necessary and sufficient conditions makes it necessary to check
that we have, indeed, a solution for the differential equation. To do this we
compute the first and second derivatives of f :

f ′ t = 5
2 · exp t− 4 · exp (2 · t) + 3

2 · exp (3 · t)
f ′′ t = 5

2 · exp t− 8 · exp (2 · t) + 9
2 · exp (3 · t)

We then check the main equation:

LHS
=

f ′′ x− 3 · f ′ x + 2 · f x
= {- Fill in the computed definitions of f , f ′, and f ′′. -}

5
2 · exp x− 8 · exp (2 · x) + 9

2 · exp (3 · x)
− 3 · (5

2 · exp x− 4 · exp (2 · x) + 3
2 · exp (3 · x))

+ 2 · (5
2 · exp x− 2 · exp (2 · x) + 1

2 · exp (3 · x))
= {- Collect common terms -}

(1− 3 + 2) · · 5
2 · exp x

+ (−8− 3 · (−4) + 2 · (−2)) · exp (2 · x)
+ (9− 3 · 3 + 2 · 1) · 1

2 · exp (3 · x)
= {- Arithmetics -}

2
2 · exp (3 · x)

=
RHS

Finally, we check the initial conditions: f 0 = 1 and f ′ 0 = 0. Here we use that
exp (α · 0) = exp 0 = 1 for all α:

f 0 = 5
2 · exp 0− 2 · exp (2 · 0) + 1

2 · exp (3 · 0)
= 5

2 − 2 + 1
2

= 1

f ′ 0 = 5
2 · exp 0− 4 · exp (2 · 0) + 3

2 · exp (3 · 0)
= 5

2 − 4 + 3
2

= 0

CHAPTER 8. EXPONENTIALS AND LAPLACE 212

Thus we can conclude that our f does indeed solve the differential equation.
The checking may seem overly pedantic, but when solving these equations by
hand it is often these last checks which help catching mistakes along the way.

8.3 Laplace and other transforms

To sum up, we have defined the Laplace transform and shown that it can be
used to solve differential equations. It can be seen as a continuous version of
the transform between the infinite sequence of coeeficients a : N→ R and the
functions behind formal power series.

Laplace is also closely related to Fourier series, which is a way of express-
ing functions on a closed interval as a linear combination of dicrete frequency
components rather than as a function of time. Finally, Laplace is also a close
relative of the Fourier transform. Both transforms are used to express func-
tions as a sum of “complex frequencies”, but Laplace allows a wider range
of functions to be transformed. A nice local overview and comparison is B.
Berndtsson’s “Fourier and Laplace Transforms”2 Fourier analysis is a com-
mon tool in courses on Transforms, Signals and Systems.

2Available from http://www.math.chalmers.se/Math/Grundutb/CTH/mve025/1516/

Dokument/F-analys.pdf.

http://www.math.chalmers.se/Math/Grundutb/CTH/mve025/1516/Dokument/F-analys.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/mve025/1516/Dokument/F-analys.pdf

CHAPTER 8. EXPONENTIALS AND LAPLACE 213

8.4 Exercises

Exercise 8.1. Starting from the “Laplace-D” law

L f ′ s = s ·L f s− f 0

Derive a general formula for L f (k)s.

Exercise 8.2. Find the Laplace transforms of the following functions:

1. λt→ 3 · e5·t

2. λt→ eα·t − β

3. λt→ et+ π
6

Exercise 8.3.

1. Show that:

• sin t = 1
2·i · (ei·t − e−i·t)

• cos t = 1
2 · (ei·t + e−i·t)

2. Find the Laplace transforms L sin and L cos using the transform for
the exponentials and the result from Item 1.

8.4.1 Exercises from old exams

Exercise 8.4. From exam 2016-03-15

Consider the following differential equation:

f ′′ t− 2 · f ′ t + f t = e2·t, f 0 = 2, f ′ 0 = 3

Solve the equation using the Laplace transform. You should need only one
formula (and linearity):

L (λt. eα·t) s = 1/(s− α)

CHAPTER 8. EXPONENTIALS AND LAPLACE 214

Exercise 8.5. From exam 2016-08-23

Consider the following differential equation:

f ′′ t− 5 · f ′ t + 6 · f t = et, f 0 = 1, f ′ 0 = 4

Solve the equation using the Laplace transform. You should need only one
formula (and linearity):

L (λt. eα·t) s = 1/(s− α)

Exercise 8.6. From exam 2016-Practice

Consider the following differential equation:

f ′′ t− 2 · f ′ t + f t− 2 = 3 · e2·t, f 0 = 5, f ′ 0 = 6

Solve the equation using the Laplace transform. You should need only one
formula (and linearity):

L (λt. eα·t) s = 1/(s− α)

Exercise 8.7. From exam 2017-03-14

Consider the following differential equation:

f ′′ t + 4 · f t = 6 · cos t, f 0 = 0, f ′ 0 = 0

Solve the equation using the Laplace transform. You should need only two
formulas (and linearity):

L (λt. eα·t) s = 1/(s− α)

2 · cos t = ei·t + e−i·t

Exercise 8.8. From exam 2017-08-22

Consider the following differential equation:

f ′′ t− 3
√

2 · f ′ t + 4 · f t = 0, f 0 = 2, f ′ 0 = 3
√

2

CHAPTER 8. EXPONENTIALS AND LAPLACE 215

Solve the equation using the Laplace transform. You should need only one
formula (and linearity):

L (λt. eα·t) s = 1/(s− α)

Chapter 9

Probability Theory

We have by now acquired a firm grip on DSL notions and several mathemat-
ical domains. In this chapter, will apply the DSL methodology once more to
the area of probability theory. By building a DSL from scratch, we will not
only clarify notations for (conditional) probabilities, such as P(A | B), but we
will also be able to describe and reason about problems such as those in the
following list. For them we will even be able to compute the probabilities
involved by evaluating the DSL expressions.

1. Assume you throw two 6-faced dice, what is the probability that the
product is greater than 10 if their sum is greater than 7?

2. Suppose that a test for using a particular drug is 99% sensitive and 99%
specific. That is, the test will produce 99% true positive results for drug
users and 99% true negative results for non-drug users. Suppose that
0.5% of people are users of the drug. What is the probability that a ran-
domly selected individual with a positive test is a drug user? 1

3. Suppose you’re on Monty Hall’s Let’s Make a Deal! You are given the
choice of three doors, behind one door is a car, the others, goats. You
pick a door, say 1, Monty opens another door, say 3, which has a goat.
Monty says to you “Do you want to pick door 2?” Assuming that the car
is more desirable than the goat, is it to your advantage to switch your
choice of doors?

Our method will be to:
1Example found in Wikipedia article on Bayes’ theorem

216

https://en.wikipedia.org/wiki/Bayes'_theorem

CHAPTER 9. PROBABILITY THEORY 217

• Describe the space of possible situations, or outcomes.

• Define the events whose probabilities we will consider.

• Evaluate such probabilities.

9.1 Sample spaces

Generally, textbook problems involving probability involve the description of
some scenario or experiment, with an explicit uncertainty, including the out-
come of certain measures.2 Then the reader is asked to compute the probabil-
ity of some event.

It is common to refer to a sample space by the labels S, Ω, or U, but in this
chapter we will define many such spaces, and therefore we will use descrip-
tive names instead. While the concept of a space of events underpins modern
understandings of probability theory, textbooks sometimes give a couple of
examples involving coin tosses and promptly forget the concept of sample
space in the body of the text. Here we will instead develop this concept us-
ing our DSL methodology. Once this is done, we will be able to see that an
accurate model of the sample space is an essential tool to solve probability
problems.

Our first task is to describe the possible structure of sample spaces, and model
them as a DSL. To this end we will use a data type to represent spaces. This
type is indexed by the underlying Haskell type of possible outcomes. Hence
Space maps this underlying type to another type:

Space :: Type→ Type

We will then carry on and define the constructions which can inhabit the above
type.

Finite space In Example 1., we consider dice with 6 faces. For such a purpose
we define a constructor Finite embedding a list of possible outcomes into a
space:

Finite :: [a]→ Space a

2Depending on the context, we use the word “situation” or “outcome” for the same math-
ematical objects. The word “outcome” evokes some experiment, explicitly performed; and the
“outcome” is the situation after the experiment is over. When we use the word “situation” there
is not necessarily an explicit experiment, but something happens according to a specific scenario.
In this case we call the “situation” the state of affairs at end of the scenario in question.

CHAPTER 9. PROBABILITY THEORY 218

The scenario (or “experiment”) corresponding to throwing a die is then repre-
sented by the following space:

die :: Int→ Space Int
die n = Finite [1 . . n]
d6 = die 6

In particular the space point x is the space with a single point — only trivial
probabilities (zero or one) are involved here:

point :: a→ Space a
point x = Finite [x]

Scaling space If the die is well-balanced, then all cases have the same prob-
ability (or probability mass) in the space, and this is what we have modelled
above. But this is not always the case. Hence we’ll need a way to represent
such imbalances. We use the following combinator:3

Factor :: R→ Space ()

Its underlying type is the unit type (), but its mass (or density) is given by a
real number.

On its own, Factor may appear useless, but we can setup the Space type so that
this mass or density can depend on (previously introduced) spaces.

Product of spaces As a first instance of a dependency, we introduce the
product of two spaces, as follows:

prod :: Space a→ Space b→ Space (a, b)

For example, the “experiment” of throwing two 6-faced dice is represented as
follows:4

twoDice :: Space (Int, Int)
twoDice = prod d6 d6

3This is in fact scaling, as defined in Chapter 7. Indeed, there is a vector space of measurable
spaces, where each space is one vector. However, we choose not to use this terminology, because
we are generally not interested in the vector space structure of probability spaces. There is also
potential for confusion, because “Factor” does not scale the points in the space. What it does is to
scale the probability mass associated with each such points.

4The use of a pair corresponds to the fact that the two dice can be identified individually.

CHAPTER 9. PROBABILITY THEORY 219

But let’s say now that we know that the sum is greater than 7. We can then
define the following parametric space, which has a mass 1 if the condition is
satisfied and 0 otherwise. (This space is trivial in the sense that no uncertainty
is involved.)

sumAbove7 :: (Int, Int)→ Space ()
sumAbove7 (x, y) = Factor (if x + y > 7 then 1 else 0)

We now want to take the product of the twoDice space and the sumAbove7
space; but the issue is that sumAbove7 depends on the outcome of twoDice. To
support this dependency we need a generalisation of the product which we
call “Sigma” (Σ) because of its similarity of structure with the summation op-
eration.

Σ :: Space a→ (a→ Space b)→ Space (a, b)

Hence:

problem1 :: Space ((Int, Int), ())
problem1 = Σ twoDice sumAbove7

The values of the dice are the same as in twoDice, but the density of any sum
less than 7 is brought down to zero.

We can check that the product of spaces is a special case of Σ: 5

prod a b = Σ a (const b)

Projections In the end we may not be interested in all values and hide some
of them. For this purpose we use the following combinator:

Project :: (a→ b)→ Space a→ Space b

A typical use is Project fst :: Space (a, b)→ Space a, ignoring the second compo-
nent of a pair.

Real line Before we continue, we may also add a way to represent real-
valued spaces, which assign the same probability for every real number.

RealLine :: Space R

5If we call card a the cardinality of the support type of space a, then card (prod a b) = card a×
card b, and in the general case card (Σ a f) = ∑i∈support(a) card (f i).

CHAPTER 9. PROBABILITY THEORY 220

Summary We have already completed the description of a DSL for spaces,
whose abstract syntax is captured by the following datatype:

data Space a where
Finite :: [a]→ Space a
Factor :: R→ Space ()
Σ :: Space a→ (a→ Space b)→ Space (a, b)
Project :: (a→ b)→ Space a→ Space b
RealLine :: Space R

9.2 ∗Monad Interface

Seasoned functional programmers will be aware of monadic interfaces. For
them, it may be useful to know that one can easily provide a monadic interface
for spaces. The implementation is the following:

instance Functor Space where
fmap = Project

instance Applicative Space where
pure = point
(<∗>) = Control.Monad.ap

instance Monad Space where
a >>= f = Project snd (Σ a f)

Exercise 9.1. Prove the functor and monad laws for the above definitions.
(Use semantic equality.)

9.3 Distributions

So far we have defined several spaces, but we have not used them to compute
any probability. We set out to do this in this section. In section 9.4 we will
see how to compute the total mass (or measure :: Space a → R) of a space. But
before that we will talk about another important notion in probability theory:
that of a distribution. A distribution is a space whose measure is equal to 1.

isDistribution :: Space a→ Bool
isDistribution s = measure s 1

We may use the following type synonym to indicate distributions:

CHAPTER 9. PROBABILITY THEORY 221

type Distr a = Space a

Let us define a few useful distributions. First, we present the uniform distri-
bution among a finite set of elements. It is essentially the same as the Finite
space, but we scale it so that the total measure comes down to 1.

uniformDiscrete :: [a]→ Distr a
uniformDiscrete xs = scale (1.0 / fromIntegral (length xs))

(Finite xs)

Scaling is defined as follows:

marginaliseWith :: (a→ R)→ Space a→ Space a
marginaliseWith f s = Project fst (Σ s (λx→ Factor (f x)))
scale :: R→ Space a→ Space a
scale c = marginaliseWith (const c)

Here, marginaliseWith is a function which applies a factor to every element,
and ignores the unit type associated with Factor. In the jargon of Bayesian
reasoning, this operation is often called “marginalisation”. If the scaling is
all-or-nothing, we have the following version, which will be useful later.

observing :: (a→ Bool)→ Space a→ Space a
observing f = marginaliseWith (indicator ◦ f)

The distribution of the balanced die can then be represented as follows:

dieDistr :: Distr Integer
dieDistr = uniformDiscrete [1 . . 6]

Another useful discrete distribution is the Bernoulli distribution of parameter
p. It is a distribution whose value is True with probability p and False with
probability 1− p. Hence it can be used to represent a biased coin toss.

bernoulli :: R→ Distr Bool
bernoulli p = marginaliseWith (λb→ if b then p else 1− p)

(Finite [False, True])

Finally we can define the normal distribution with average µ and standard
deviation σ.

normal :: R→ R→ Distr R

normal µ σ = marginaliseWith (normalMass µ σ) RealLine

CHAPTER 9. PROBABILITY THEORY 222

normalMass :: Floating r⇒ r→ r→ r→ r
normalMass µ σ x = exp (−(((x− µ) / σ)ˆ2 / 2)) / (σ ∗

√
2 ∗ π)

In scientific literature, distributions are sometimes called “random variables”.
However we consider this terminology to be misleading — random variables
will be defined precisely later on.

We could try to define the probabilities or densities of possible values of a
distribution, say distributionDensity :: Space a → (a → R), and from there de-
fine the expected value (and other statistical moments), but we’ll take another
route.

9.4 Semantics of spaces

First, we come back to general probability spaces without restriction on their
measure: it does not need to be equal to one. We define a function integrator,
which generalises the notions of weighted sum, and weighted integral. When
encountering Finite spaces, we sum; when encountering RealLine we integrate.
When encountering Factor we will adjust the weights. The integrator of a
product (in general Σ) is the nested integration of spaces. The weight is given
as a second parameter to integrator, as a function mapping elements of the
space to a real value.

In code, we obtain the following:6

integrator :: Space a→ (a→ R)→ R

integrator (Finite a) g = bigsum a g
integrator (RealLine) g = integral g
integrator (Factor f) g = f ∗ g ()
integrator (Σ a f) g = integrator a $ λx→

integrator (f x) $ λy→
g (x, y)

integrator (Project f a) g = integrator a (g ◦ f)

The above definition relies on the usual notions of sum (bigsum) and integral.
We can define the sum of some terms, for finite lists, as follows:

bigsum :: [a]→ (a→ R)→ R

bigsum xs f = sum (map f xs)

6You may want to come back to Section 1.7.2 to see how to deal with the integration (or sum-
mation) variable and what it means for the type of the integrator.

CHAPTER 9. PROBABILITY THEORY 223

We use also the definite integral over the whole real line. However, at the
Haskell level, we will leave this concept undefined — thus whenever using
real-valued spaces, our defintions are not usable for numerical computations,
but for symbolic computations only.

integral :: (R→ R)→ R

integral = undefined

The simplest useful quantity that we can compute using the integrator is the
measure of the space — its total “mass” or “volume”. To compute the measure
of a space, we can simply integrate the constant 1 (so only the mass of the
space matters).

measure :: Space a→ R

measure d = integrator d (const 1)

As a sanity check, we can compute the measure of a Bernoulli distribution (we
use the >>> notation to indicate an expression being computed) and find that
it is indeed 1.

-- >>> measure (bernoulli 0.2)
-- 1.0

The integration of id over a real-valued distribution yields its expected value.7

expectedValueOfDistr :: Distr R→ R

expectedValueOfDistr d = integrator d id
-- >>> expectedValueOfDistr dieDistr
-- 3.5

Exercise 9.2. Compute symbolically the expected value of the bernoulli distri-
bution

Properties of integrator We can use calculational reasoning to show some
useful properties of spaces.

Lemma 1 (Linearity of integrator). If g is a linear function (addition or multiplica-
tion by a constant), then:

integrator s (g ◦ f) g (integrator s f)

(or, equivalently, integrator s (λx→ g (f x)) = g (integrator s f))
7We reserve the name expectedValue for the expected value of a random variable, defined later.

CHAPTER 9. PROBABILITY THEORY 224

Proof. The proof proceeds by structural induction over s. The hypothesis of
linearity is used in the base cases. Notably the linearity property of Finite and
RealLine hinges on the linearity of sums and integrals.8 The case of Project is
immediate by definition. The case for Σ is proven as follows:

integrator (Σ a f) (g ◦ h)
= {- By definition -}

integrator a $ λx→ integrator (f x) $ λy→ g (h (x, y))
= {- By induction -}

integrator a $ λx→ g (integrator (f x) $ λy→ h (x, y)
= {- By induction -}

g (integrator a $ λx→ (integrator (f x) $ λy→ h (x, y))
= {- By definition -}

g (integrator (Σ a f) h)

Lemma 2 (Properties of measure).

• measure (Finite xs) length xs

• measure (Σ s (const t)) measure s ∗measure t.

• If s is a distribution and f x is a distribution for every x, then Σ s f is a
distribution

• s is a distribution iff. Project f s is a distribution.

The proof of the second item is as follows:

measure (Σ s (const t))
{- By definition of measure -}

integrator (Σ s (const t)) (const 1)
{- By definition of integrator for Σ -}

integrator s $ λx→ integrator (const t x) (const 1)
{- By definition of of measure, const -}

integrator s $ λx→ measure t
{- By linearity of integrator -}

measure t ∗ integrator s (const 1)
{- By definition of measure -}

measure t ∗measure s

Exercise 9.3. Using the above lemmas, prove integrator (bernoulli p) f p ∗
integrator f + (1− p) ∗ integrator f .

8Recall that integration is a linear operator in the space of functions (Section 7.4.1).

CHAPTER 9. PROBABILITY THEORY 225

9.5 Random Variables

Even though we have already studied variables in detail (in Chapter 3), it is
good to come back to them for a moment before returning to random variables
proper.

According to Wikipedia9, a variable has a different meaning in computer sci-
ence and in mathematics:

Variable may refer to:

• Variable (computer science): a symbolic name associated with
a value and whose associated value may be changed

• Variable (mathematics): a symbol that represents a quantity
in a mathematical expression, as used in many sciences

At this stage of the book, we have a pretty good grip on variables in com-
puter science. In particular, in Chapter 3, we have described a way to reduce
mathematical variables (position q and velocity v in Lagrangian mechanics)
to computer science variables. This was done by expressing variables as func-
tions of a truly free variable, time (t). Time is a “computer science” variable in
this context: it can be substituted by any value without “side effects” on other
variables (unlike positions (q) and velocities (v)).

In this light, let us return to random variables. Wikipedia is not very helpful
here, so we can turn ourselves to Grinstead and Snell [2003], who give the
following definition:

A random variable is simply an expression whose value is the out-
come of a particular experiment.

This may be quite confusing at this stage. What are those expressions in our
DSL? And where does the experiment influence the variable? Our answer is to
use spaces to represent the “experiments” that Grinstead and Snell mention.
More specifically, if s : Space a, then each possible situation at the end of the
experiment is representable in the type a and the space will specify the mass
of each of them (formally, via the integrator).

Then, a b-valued random variable (observed after an experiment represented
by a space s : Space a) is a function f of type a→ b. Then f x is the “expression”
that Grinstead and Snell refer to. The (computer science) variable x is the

9https://en.wikipedia.org/wiki/Variable, retrieved Nov. 1st, 2021.

https://en.wikipedia.org/wiki/Variable

CHAPTER 9. PROBABILITY THEORY 226

outcome, and s represents the experiment — which is most often implicit in a
random variable expressions as written in a mathematics book.

We can finally define the expected value (and other statistical moments) of
random variable.

In textbooks, one will often find the notation E[t] for the expected value of a
real-valued random variable t. As just mentioned, from our point of view, this
notation can be confusing because it leaves the space of situations completely
implicit. That is, it is not clear how t depends on the outcome of experiments.

With our DSL approach, we make this dependency completely explicit. For
example, the expected value of real-valued random variable takes the space
of outcomes as its first argument:

expectedValue :: Space a→ (a→ R)→ R

expectedValue s f = integrator s f / measure s

For instance, we can use the above function to compute the expected value of
the sum of two dice throws:

expect2D6 = expectedValue twoDice (λ(x, y)→ fromIntegral (x + y))

Exercise 9.4. Run the above code and check that you obtain the value 7.

Essentially, what the above definition of expected value does is to compute
the weighted sum/integral of f x for every point x in the space. And because
s is a space (not a distribution), we must normalise the result by dividing by
its measure.

Exercise 9.5. Define various statistical moments (variance, skew, curtosis, etc.)

9.6 Events and probability

In textbooks, one typically finds the notation P(e) for the probability of an
event e. Again, the space of situations s is implicit as well as the dependency
between e and s.

Here, we define events as boolean-valued random variables. Thus an event
e can be defined as a boolean-valued function e : a → Bool over a space s :
Space a. Assuming that the space s accurately represents the relative mass of
all possible situations, there are two ways to define the probability of e.

CHAPTER 9. PROBABILITY THEORY 227

The first definition of the probability of e is the expected value of indicator ◦ e,
where indicator maps boolean to reals as follows:

indicator :: Bool→ R

indicator True = 1
indicator False = 0
probability1 :: Space a→ (a→ Bool)→ R

probability1 d e = expectedValue d (indicator ◦ e)

The second definition of probability is the ratio between the measure of the
subspace where e holds, and the measure of the complete space.

probability2 :: Space a→ (a→ Bool)→ R

probability2 s e = measure (Σ s (isTrue ◦ e)) / measure s
isTrue :: Bool→ Space ()
isTrue = Factor ◦ indicator

where isTrue c is the subspace which has measure 1 if c is true and 0 otherwise.
The subspace of s where e holds is then the first projection of Σ s (isTrue ◦ e).

subspace :: (a→ Bool)→ Space a→ Space a
subspace e s = Project fst (Σ s (isTrue ◦ e))

We can show that if s has a non-zero measure, then the two definitions are
equivalent:

Lemma 3. measure s ∗ probability s e = measure (Σ s (isTrue ◦ e))

Proof. (where we shorten indicator to ind and integrator to int)

measure_sigma_equations s e =
probability1 s e

{- Def. of probability1 -}
expectedValue s (ind ◦ e)

{- Def. of expectedValue -}
int s (ind ◦ e) / measure s

{- Def. of (◦) -}
int s (λx→ ind (e x)) / measure s

{- mutiplication by 1 -}
int s (λx→ ind (e x) ∗ const 1 (x, ())) / measure s

{- Def. of int -}
int s (λx→ int (Factor (ind (e x))) (λy→ const 1 (x, y))) / measure s

{- Def. of isTrue -}

CHAPTER 9. PROBABILITY THEORY 228

int s (λx→ int (isTrue (e x)) (λy→ const 1 (x, y))) / measure s
{- Def. of int for Σ -}

measure (Σ s (isTrue ◦ e)) / measure s

We can now note that the space observing e s is the subspace of s where the
event e is observed to be true— a kind of subspace which is often used in
textbook problems.

It will often be convenient to define a space whose underlying set is a boolean
value and compute the probability of the identity event:

probability :: Space Bool→ R

probability d = expectedValue d ind

Sometimes one even finds in the literature and folklore the notation P(v),
where v is a value, which stands for P(t = v), for an implicit random vari-
able t. Here even more imagination is required from the reader, who must not
only infer the space of outcomes, but also which random variable the author
means.

9.7 Conditional probability

In Section 7.4.6, we encountered the notion of conditional probability, tradi-
tionally written P(F | G) and read “probability of F given G”. As suggested
in Section 7.4.6 and brushed upon in Exercise 3.9, it is not the case that (F | G)
is an event. Rather, a conditional probability is a separate concept, which takes
both f and g as arguments. It is defined as the probability of f in the sub space
where g holds:

condProb :: Space a→ (a→ Bool)→ (a→ Bool)→ R

condProb s f g = probability1 (subspace g s) f

We find the above definition more intuitive than the more usual definition
P(F | G) = P(F ∩ G)/P(G). Why? Because it makes clear that, in P(F | G),
the event G acts as the subspace upon which the truth of F is integrated. (In
fact, the P(F | G) notation is an improvement over the P(F) notation, in the
sense that the underlying space is more explicit.)

Regardless, the equivalence between the two definitions can be proven, by
symbolic calculation:

CHAPTER 9. PROBABILITY THEORY 229

Lemma 4. condProb s f g probability s (λy→ f y∧ g y) / probability s g

Proof.

cond_prob_equations :: Space a→ (a→ Bool)→ (a→ Bool)→ R

cond_prob_equations s f g =
condProb s f g

{- Def of condProb -}
probability1 (subspace g s) f

{- Def of subspace -}
probability1 (Σ s (isTrue ◦ g)) (f ◦ fst)

{- Def of probability1 -}
expectedValue (Σ s (isTrue ◦ g)) (ind ◦ f ◦ fst)

{- Def of expectedValue -}
(1 / measure (Σ s (isTrue ◦ g))) ∗ (int (Σ s (isTrue ◦ g)) (ind ◦ f ◦ fst))

{- Def of int (Sigma) -}
(1 / measure s / probability1 s g) ∗ (int s $ λx→

int (isTrue (g x)) $ λy→
ind ◦ f ◦ fst $ (x, y))

{- Def of fst -}
(1 / measure s / probability1 s g) ∗ (int s $ λx→

int (isTrue (g x)) $ λy→
ind ◦ f $ x)

{- Def of isTrue -}
(1 / measure s / probability1 s g) ∗ (int s $ λx→ ind (g x) ∗ ind (f x))

{- Property of ind -}
(1 / measure s / probability1 s g) ∗ (int s $ λx→ ind (g x∧ f x))

{- associativity of multiplication -}
(1 / probability1 s g) ∗ (int s $ λx→ ind (g x∧ f x)) / measure s

{- Definition of probability1 -}
(1 / probability1 s g) ∗ probability1 s (λx→ g x∧ f x)

9.8 Examples

We are now ready to solve all three problems motivating this chapter.

CHAPTER 9. PROBABILITY THEORY 230

9.8.1 Dice problem

diceSpace :: Space Bool
diceSpace =

-- consider only the event “product >= 10”
Project (λ(x, y)→ (x ∗ y > 10)) $

-- observe that the sum is >= 7
observing (λ(x, y)→ (x + y > 7)) $

-- sample two balanced die
twoDice

Then we can compute its probability:

diceProblem :: R

diceProblem = probability diceSpace
-- >>> diceProblem
-- 0.9047619047619047

Exercise 9.6. Use the monadic interface to define the same experiment.

To illustrate the use of the various combinators from above to explore a sample
space we can compute a few partial results explaining the diceProblem:

p1 (x, y) = x + y > 7
p2 (x, y) = x ∗ y > 10
test1 = measure (observing p1 twoDice) -- 21
test2 = measure (observing p2 twoDice) -- 19
testBoth = measure (observing (λxy→ p1 xy∧ p2 xy) twoDice) -- 19
prob21 = condProb (prod d6 d6) p2 p1 -- 19/21

We can see that 21 possibities give a sum > 7, that 19 possibilities give a prod-
uct > 10 and that all of those 19 satisfy both requirements.

9.8.2 Drug test

The above drug test problem (item Item 2. at the start of this chapter) is often
used as an illustration for the Bayes theorem. We can solve it in exactly the
same fashion as the Dice problem.

We begin by describing the space of situations. To do so we make heavy use of
the bernoulli distribution. First we model the distribution of drug users. Then

CHAPTER 9. PROBABILITY THEORY 231

we model the distribution of test outcomes — depending on whether we have
a user or not. Finally, we project out all variables, caring only about isUser.

drugSpace :: Space Bool
drugSpace =

-- we’re interested the posterior distribution of isUser,
-- (first component of the pair, ignoring the result of the test).

Project fst $
-- we have “a positive test” by assumption
-- (second component of the pair contains result of the test)

observing snd $
Σ
(bernoulli 0.005) -- model the distribution of drug users
(λisUser→ bernoulli (if isUser then 0.99 else 0.01))

-- model test results depending on whether we have a drug user

The probability is computed as usual:

userProb :: R

userProb = probability drugSpace
-- >>> userProb
-- 0.33221476510067116

Thus a randomly selected individual with a positive test is a drug user with
probability around one third (thus about two thirds are false positives).

Perhaps surprisingly, we never needed the Bayes theorem to solve the prob-
lem. Indeed, the Bayes theorem is already incorporated in our defintion of
probability, so our methodology guarantees that we always respect it.

9.8.3 Monty Hall

We can model the Monty Hall problem as follows. For expository purposes,
let us define the list of doors:

type Door = Int
doors :: [Door]
doors = [1, 2, 3]

The event of “winning” depends on four variables:

• which door is the winning door (winningDoor :: Door)

CHAPTER 9. PROBABILITY THEORY 232

• the initial door choice (initiallyPickedDoor :: Door)

• the door which Monty opens (montyPickedDoor :: Door)

• and finally, whether the player changes their mind after Monty shows
that the door has a goat (changing :: Bool).

One way to do it is as follows:

haveWon :: Bool→ ((Door, Door), Door)→ Bool
haveWon changing ((winningDoor, initiallyPickedDoor), montyPickedDoor)

= finalChoice winningDoor
where finalChoice = case changing of

False→ initiallyPickedDoor
True → head (doors \\ [initiallyPickedDoor, montyPickedDoor])

The player wins if their final choice is the right one. If they do not change their
mind, then the final choice is equal to the initial one. If they do does change
their mind, then the final choice is neither their inital choice nor Monty’s door.
(Because there are only three doors there is only one door left.)

Then, we need to describe the set of situations, as a triple

((winningDoor, initiallyPickedDoor), montyPickedDoor)

. The first two variables are uniform, but the montyPickedDoor is uniform in
the set (doors \\ [pickedDoor, winningDoor]). Note that if the initiallyPickedDoor
is the same as the winningDoor, then Monty has two choices. We then imagine
that Monty picks a door at random among those, even though this might not
be the case in a real game.10

montySpace :: Space ((Door, Door), Door)
montySpace =
(Σ (prod (uniformDiscrete doors)

(uniformDiscrete doors))
(λ(winningDoor, pickedDoor)→

uniformDiscrete (doors \\ [pickedDoor, winningDoor])))

montyProblem :: Bool→ Space Bool
montyProblem changing = Project (haveWon changing) montySpace

-- >>> probability (montyProblem False)
-- 0.3333333333333333

10Exercise: check other strategies for Monty.

CHAPTER 9. PROBABILITY THEORY 233

-- >>> probability (montyProblem True)
-- 0.6666666666666666

Thus, the “changing door” strategy has twice the expected winning probabil-
ity.

The Monty Hall is sometimes considered paradoxical: it is strange that chang-
ing one’s mind can change the outcome. The crucial point to see this is that
Monty can never show a door which contains the prize. To illustrate, an incor-
rect way to model the Monty Hall space of situations is the following:

montySpaceIncorrect :: Space ((Door, Door), Door)
montySpaceIncorrect =
(Σ (prod (uniformDiscrete doors)
(uniformDiscrete doors))
(λ(, pickedDoor)→ uniformDiscrete (doors \\ [pickedDoor])))

-- >>> probability (Project (haveWon False) montySpaceIncorrect)
-- 0.5

The above does not correctly model the problem, because it allows Monty to
pick the door already chosen by the player.

9.8.4 Solving an advanced problem with equational reason-
ing

Consider the following problem: how many times must one throw a coin be-
fore one obtains 3 heads in a row? We can model the problem as follows:

coin :: Distr Bool
coin = bernoulli 0.5
coins :: Distr [Bool]
coins =

Project (λ(x, xs)→ x : xs)
(prod coin coins)

threeHeads :: [Bool]→ Int
threeHeads (True : True : True: _) = 3
threeHeads (: xs) = 1 + threeHeads xs
example′ :: Space Int
example′ = Project threeHeads coins

Even though the problem is easy to model using the DSL, it is not easy to com-
pute a solution. Indeed, attempting to evaluate probability1 threeHeads (<5)

CHAPTER 9. PROBABILITY THEORY 234

does not terminate. This is because, we have an infinite list, which translates
to infinitely many cases to consider. So the evaluator cannot solve this prob-
lem in finite time. Hence, we have to resort to a symbolic method to solve
it. This will require extensive symbolic reasoning (perhaps not for the faint of
heart). One may skip all the equational reasoning in first reading: the impor-
tant point is to realize that one is able to write down the kind of proofs that
one would do with pen and paper directly within a program. (We even use
the Haskell type checker to verify that each line typechecks— even though
this does not guarantee that the proof is sound, we catch most typos this way.)

The first step in our computation of the solution is a creative one, which in-
volves generalising the problem to computing the number of throws to obtain
3− m heads in a row. For this purpose we define the function tH, such that
tH 3 threeHeads:

tH :: Int→ [Bool]→ Int
tH 0 = 0
tH m (x : xs) = 1 + if x then tH (m− 1) xs else tH 3 xs

We then define helper m = Project (tH m) coins. Computing it symbolically
will give our answer. But first, we need a lemma which helps us push Project
inside Σ:

Lemma 5. Project f (Σ a g) Project snd (Σ a (λx→ Project (f ◦ (x,)) (g x)))

Proof. We check the equivalence by using semantic equality:

project_sigma_equations f a g h =
int (Project f (Σ a g)) h

-- by def
int (Σ a g) (h ◦ f)

-- by def
int a (λx→ int (g x) (λy→ (h ◦ f) (x, y)))

-- rewriting in point-free style
int a (λx→ int (g x) (h ◦ f ◦ (x,)))

-- by def of integrator of Project
int a (λx→ int (Project (f ◦ (x,)) (g x)) h)

-- h λy→ h y
int a (λx→ int (Project (f ◦ (x,)) (g x)) $ λy→ h y)

-- taking an explicit (x,y) pair
int a (λx→ int (Project (f ◦ (x,)) (g x)) $ λy→ (h ◦ snd) (x, y))

-- by def of integrator of Σ
int (Σ a (λx→ Project (f ◦ (x,)) (g x))) (h ◦ snd)

-- by def of integrator of Project
int (Project snd (Σ a (λx→ Project (f ◦ (x,)) (g x)))) h

CHAPTER 9. PROBABILITY THEORY 235

Lemma 6. Project (if c then a else b) s if c then Project a s else Project b s

Proof. We check the equivalence by using semantic equality:

project_if _equations c a b s g =
int (Project (if c then a else b) s) g

-- by def
int s ((if c then a else b) ◦ g)

-- by def
int (if c then Project a s else Project b s) g

We can unfold the expression helper m by equational reasoning, and see what
we get:

unfolding_helper_equations m =
helper m

-- by def
Project (tH m) coins

-- by def
Project (tH m) (Project (λ(x, xs)→ x : xs) (prod coin coins))

-- property of Project (Exercise 9.1, functoriality of Project)
Project (tH m ◦ λ(x, xs)→ x : xs) (prod coin coins)

-- by def
Project (λ(x, xs)→ 1 + if x then tH (m− 1) xs else tH 3 xs)

(prod coin coins)
-- by functoriality of Project

Project (1+) (Project (λ(x, xs)→ if x then tH (m− 1) xs else tH 3 xs)
(prod coin coins))

-- by Lemma 5
Project (1+) (Project snd

(Σ coin (λx→ Project (λxs→ if x then tH (m− 1) xs
else tH 3 xs)

coins)))
-- by functoriality of Project

Project ((1+) ◦ snd)
(Σ coin (λx→ Project (λxs→ if x then tH (m− 1) xs

else tH 3 xs)
coins))

-- by semantics of if in Haskell

CHAPTER 9. PROBABILITY THEORY 236

Project ((1+) ◦ snd)
(Σ coin (λx→ Project (if x then (tH (m− 1))

else (tH 3))
coins))

-- by semantics of if in Haskell
Project ((1+) ◦ snd)

(Σ coin (λx→ if x then Project (tH (m− 1)) coins
else Project (tH 3) coins))

-- by definition of helper.
Project ((1+) ◦ snd) (Σ coin (λx→ if x then helper (m− 1) else helper 3))

In summary:

helper 0 = point 0
helper m =

Project ((1+) ◦ snd)
(Σ coin (λh→ if h

then helper (m− 1)
else helper 3)) -- when we have a tail, we start from scratch

Evaluating the probability still does not terminate: we no longer have an in-
finite list, but we still have infinitely many possibilities to consider: however
small, there is always a probability to get a “tail” at the wrong moment, and
the evaluation must continue.

But we can keep performing our symbolic calculation. We can start by show-
ing that helper m is a distribution (its measure is 1). The proof is by induction
on m:

• for the base case measure (helper 0) = measure (pure 0) = 1

• induction: assume that helper m is a distribution. Then if h then helper m else helper 3
is a distribution too, for every h. The result is obtained by using the dis-
tribution property of Σ (Lemma 2).

Then, we can symbolically compute the integrator of helper. The base case is
int (helper 0) id 0, and left as an exercise to the reader. In the recursive case,
we have:

int (helper (m + 1)) id
{- By above result regarding helper -}

int (Project ((1+) ◦ snd)
(Σ coin (λh→ if h then helper (m− 1) else helper 3))) id
{- By integrator def -}

CHAPTER 9. PROBABILITY THEORY 237

int (Σ coin (λh→ if h then helper (m− 1) else helper 3)) ((1+) ◦ snd)
{- By integrator def -}

int coin $ λh→ int (if h then helper m else helper 3) (1+)
{- By linearity of int -}

1 + int coin $ λh→ int (if h then helper m else helper 3) id
{- By case analysis -}

1 + (int coin $ λh→ if h then int (helper m) id else int (helper 3) id)
{- By integrator/bernouilli (Exercise 9.3) -}

1 + 0.5 ∗ int (helper m) id + 0.5 ∗ int (helper 3) id

If we let h m = expectedValueOfDistr (helper m), and using the above lemma,
then we find:

h (m + 1) 1 + 0.5 ∗ h m + 0.5 ∗ h 3

which we can rewrite as:

2 ∗ h (m + 1) = 2 + h m + h 3

and expand for m = 0 to m = 2:

2 ∗ h 1 = 2 + h 3
2 ∗ h 2 = 2 + h 1 + h 3
2 ∗ h 3 = 2 + h 2 + h 3

This leaves us with a system of linear equations with three unknowns h 1, h 2
and h 3, which admits a single solution with h 1 = 8, h 2 = 12, and finally
h 3 = 14, giving the answer to the initial problem: we can expect to need 14
coin flips to get three heads in a row.

9.9 Independent events

Another important notion in probability theory is that of independent events.
One way to define independent events is as follows. E is independent from F
iff P(E | F) = P(E).

According to Grinstead and Snell [2003], two events independent iff. P(E ∩
F) = P(E) · P(F).

The proof can be written in the traditional notation as follows:

Proof. In the left to right direction:

CHAPTER 9. PROBABILITY THEORY 238

P (E∩ F)
= {- by def. of cond. prob -}

P (E | F) · P (F)
= {- by def. of independent events -}

P (E) · P (F)

In the right to left direction:

P (E | F)
= {- by def. of cond. prob -}

P (E∩ F) / P (F)
= {- by assumption -}

P (E) · P (F) / P (F)
= {- by computation -}

P (E)

Let us now express the same definitions and the same theorem and proof in
our DSL. The defintion for independent events is:

independentEvents :: Space a→ (a→ Bool)→ (a→ Bool)→ Bool
independentEvents s e f = probability1 s e condProb s e f

The equivalent formulation is:

independentEvents2 s e f =
probability1 s (λx→ e x∧ f x) probability1 s e ∗ probability1 s f

We can now state (and prove) the lemma using the DSL notation:

Lemma 7. independentEvents s e f⇔ independentEvents2 s e f

Proof. Left to right direction:

probability1 s (λx→ e x∧ f x)
{- by Lemma 4 -}

condProb s e f ∗ probability1 s f
{- by assumption -}

probability1 s e ∗ probability1 s f

We note that at this level of abstraction, the proofs follow the same structure
as the textbook proofs — the underlying space s is constant.

Exercise 9.7. Express the rest of the proof using our DSL

Appendix A

The course “DSL of
Mathematics”

From 2016 there has been a BSc-level university course on “Domain-Specific
Languages of Mathematics” at the Computer Science and Engineering (CSE)
Department, joint between Chalmers University of Technology and Univer-
sity of Gothenburg, Sweden. The learning outcomes of the course are pre-
sented in Figure A.1.

In the first instances, the course is an elective course for the second year within
programmes such as CSE1, SE, and Math. The potential students will have all
taken first-year mathematics courses, and the only prerequisite which some of
them will not satisfy will be familiarity with functional programming. How-
ever, as some of the current data structures course (common to the Math and
CSE programmes) shows, math students are usually able to catch up fairly
quickly, and in any case we aim to keep to a restricted subset of Haskell (no
“advanced” features are required).

The formal course prerequisites say that the student should have successfully
completed

• a course in discrete mathematics as for example Introductory Discrete
Mathematics.

• 15 hec in mathematics, for example Linear Algebra and Calculus

1CSE = Computer Science & Engineering = Datateknik = D

239

APPENDIX A. THE COURSE “DSL OF MATHEMATICS” 240

• 15 hec in computer science, for example (Introduction to Programming
or Programming with Matlab) and Object-oriented Software Develop-
ment

• an additional 22.5 hec of any mathematics or computer science courses.

The unit here is “higher education credit (hec)” where 60 hec corresponds to
one full-time year of study.

• Knowledge and understanding

– design and implement a DSL
for a new domain

– organize areas of mathematics
in DSL terms

– explain main concepts of el-
ementary real and complex
analysis, algebra, and linear al-
gebra

• Skills and abilities

– develop adequate notation for
mathematical concepts

– perform calculational proofs

– use power series for solving
differential equations

– use Laplace transforms for
solving differential equations

• Judgement and approach

– discuss and compare differ-
ent software implementations
of mathematical concepts

Figure A.1: Learning outcomes

To assess the impact in terms of
increased quality of education, we
planned to measure how well the
students do in ulterior courses that
require mathematical competence
(in the case of engineering students)
or software compentence (in the case
of math students). For math stu-
dents, we would like to measure
their performance in ulterior scien-
tific computing courses, but we have
taught too few math students so far
to make good statistics. But for
CSE students we have measured the
percentage of students who, hav-
ing taken DSLM, pass the third-year
courses Transforms, signals and sys-
tems (TSS) and Control Theory (sv: Re-
glerteknik), which are current major
stumbling blocks. We have com-
pared the results with those of a con-
trol group (students who have not
taken the course). The evaluation of
the student results shows improve-
ments in the pass rates and grades
in later courses. This is very briefly
summarised in Table A.1 and more details are explained by Jansson et al.
[2019].

The work that leads up to the current book started in 2014 with an assessment
of what prerequisites we can reasonably assume and what mathematical fields
the targeted students are likely to encounter in later studies. In 2015 we sub-
mitted a course plan so that the first instance of the course could start early
2016. We also surveyed similar courses being offered at other universities,
but did not find any close matches. (“The Haskell road to Logic Math and

https://www.student.chalmers.se/sp/course?course_id=21865
https://www.student.chalmers.se/sp/course?course_id=21865
https://www.student.chalmers.se/sp/course?course_id=21303
https://www.student.chalmers.se/sp/course?course_id=21303

APPENDIX A. THE COURSE “DSL OF MATHEMATICS” 241

PASS IN OUT
TSS pass rate 77% 57% 36%
TSS mean grade 4.23 4.10 3.58

Control pass rate 68% 45% 40%
Control mean grade 3.91 3.88 3.35

Table A.1: Pass rate and mean grade in third year courses for students who
took and passed DSLsofMath and those who did not. Group sizes: PASS 34,
IN 53, OUT 92 (145 in all).

Programming” by Doets and van Eijck [2004] is perhaps the closest, but it is
mainly aimed at discrete mathematics.)

While preparing course materials for use within the first instance we wrote a
paper [Ionescu and Jansson, 2016] about the course and presented the peda-
gogical ideas at several events (TFPIE’15, DSLDI’15, IFIP WG 2.1 #73 in Göte-
borg, LiVe4CS in Glasgow). In the following years we used the feedback from
students following the standard course evaluation in order to improve and
further develop the course material into complete lecture notes, and now a
book.

In the first few years, the enrolment and results of the DSLsofMath course
itself was as follows:

Year ’16 ’17 ’18 ’19 ’20 ’21
Student count 28 43 39 59 50 67
Pass rate (%) 68 58 89 73 68 72

Note that this also counts students from other programmes (mainly SE and
Math) while Table A.1 only deals with the CSE programme students.

Appendix B

Parameterised Complex
Numbers

module DSLsofMath.CSem (module DSLsofMath.CSem, module DSLsofMath.Algebra) where
import Prelude hiding (Num (. .), (/), (̂), Fractional (. .), Floating (. .), sum)
import DSLsofMath.Algebra
(Additive (zero, (+))
, AddGroup (negate), (−)
, Multiplicative (one, (∗)), (ˆ+)
, MulGroup ((/))
, Ring
, Field
)

newtype Complex r = C (r, r) deriving Eq

Lifting operations to a parameterised type When we define addition on
complex numbers (represented as pairs of real and imaginary components)
we can do that for any underlying type r which supports addition.

type CS = Complex -- for shorter type expressions below
liftCS :: (r→ r→ r)→

(CS r→ CS r→ CS r)
liftCS (+) (C (x, y)) (C (x′, y′)) = C (x + x′, y + y′)

Note that liftCS takes (+) as its first parameter and uses it twice on the RHS.

242

APPENDIX B. PARAMETERISED COMPLEX NUMBERS 243

addC :: Additive r⇒ Complex r→ Complex r→ Complex r
addC = liftCS (+)

toC :: Additive r⇒ r→ Complex r
toC x = C (x, zero)
mulC :: Ring r⇒ Complex r→ Complex r→ Complex r
mulC (C (ar, ai)) (C (br, bi)) = C (ar ∗ br− ai ∗ bi, ar ∗ bi + ai ∗ br)
modulusSquaredC :: Ring r⇒ Complex r→ r
modulusSquaredC (C (x, y)) = x ˆ+ 2 + y ˆ+ 2

scaleC :: Multiplicative r⇒ r→ Complex r→ Complex r
scaleC a (C (x, y)) = C (a ∗ x, a ∗ y)
conj :: AddGroup r⇒ Complex r→ Complex r
conj (C (x, y)) = C (x, negate y)
instance Additive r⇒ Additive (Complex r) where
(+) = addC
zero = toC zero

instance AddGroup r⇒ AddGroup (Complex r) where
negate (C (a, b)) = C (negate a, negate b)

instance Ring r⇒ Multiplicative (Complex r) where
(∗) = mulC
one = toC one
-- abs = absC – requires Floating r as context

instance Field r⇒ MulGroup (Complex r) where
(/) = divC

divC :: Field a⇒ Complex a→ Complex a→ Complex a
divC x y = scaleC (one / modSq) (x ∗ conj y)

where modSq = modulusSquaredC y
re :: Complex r → r
re z@(C (x, y)) = x
im :: Complex r → r
im z@(C (x, y)) = y
instance Show r⇒ Show (Complex r) where

show = showCS
showCS :: Show r⇒ Complex r→ String
showCS (C (x, y)) = show x ++ " + "++ show y ++ "i"

A corresponding syntax type: the second parameter r makes is possible to ex-
press “complex numbers over” different base types (like Double, Float, Integer,
etc.).

APPENDIX B. PARAMETERISED COMPLEX NUMBERS 244

data ComplexSy v r = Var v
| FromCart r r
| ComplexSy v r :++ ComplexSy v r
| ComplexSy v r :∗∗ ComplexSy v r

Bibliography

R. A. Adams and C. Essex. Calculus: a complete course. Pearson Canada, 7th
edition, 2010.

J.-P. Bernardy and S. Chatzikyriakidis. A computational treatment of
anaphora and its algorithmic implementation. Journal of Logic, Language and
Information, 2020.

N. Botta, P. Jansson, and C. Ionescu. Contributions to a computational theory
of policy advice and avoidability. Journal of Functional Programming, 27:1–52,
2017a. ISSN 0956-7968. doi: 10.1017/S0956796817000156.

N. Botta, P. Jansson, C. Ionescu, D. R. Christiansen, and E. Brady. Sequential
decision problems, dependent types and generic solutions. Logical Methods
in Computer Science, 13(1), 2017b. doi: 10.23638/LMCS-13(1:7)2017. URL
https://doi.org/10.23638/LMCS-13(1:7)2017.

R. Boute. The decibel done right: a matter of engineering the math. Anten-
nas and Propagation Magazine, IEEE, 51(6):177–184, 2009. doi: 10.1109/MAP.
2009.5433137.

E. Brady. Type-driven Development With Idris. Manning, 2016. ISBN
9781617293023. URL http://www.worldcat.org/isbn/9781617293023.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random test-
ing of Haskell programs. In Proc. of the fifth ACM SIGPLAN international
conference on Funct. Prog., pages 268–279. ACM, 2000.

K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming.
Texts in computing. King’s College Publications, London, 2004. ISBN 978-
0-9543006-9-2. URL https://fldit-www.cs.uni-dortmund.de/~peter/

PS07/HR.pdf.

C. H. Edwards, D. E. Penney, and D. Calvis. Elementary Differential Equations.
Pearson Prentice Hall Upper Saddle River, NJ, 6h edition, 2008.

245

https://doi.org/10.23638/LMCS-13(1:7)2017
http://www.worldcat.org/isbn/9781617293023
https://fldit-www.cs.uni-dortmund.de/~peter/PS07/HR.pdf
https://fldit-www.cs.uni-dortmund.de/~peter/PS07/HR.pdf

BIBLIOGRAPHY 246

D. Gries and F. B. Schneider. A logical approach to discrete math. Springer, 1993.
doi: 10.1007/978-1-4757-3837-7.

D. Gries and F. B. Schneider. Teaching math more effectively, through calcu-
lational proofs. American Mathematical Monthly, pages 691–697, 1995. doi:
10.2307/2974638.

C. M. Grinstead and J. L. Snell. Introduction to Probability. AMS,
2003. URL http://www.dartmouth.edu/~chance/teaching_aids/books_

articles/probability_book/book.html.

R. Hinze and A. Löh. Guide to lhs2TeX, 2020. The tool lhs2tex is a prepro-
cessor for typesetting Haskell sources with LATEX. Available from https:

//hackage.haskell.org/package/lhs2tex-1.24.

C. Ionescu and P. Jansson. Dependently-typed programming in scientific
computing: Examples from economic modelling. In R. Hinze, editor, 24th
Symposium on Implementation and Application of Functional Languages (IFL
2012), volume 8241 of LNCS, pages 140–156. Springer-Verlag, 2013a. doi:
10.1007/978-3-642-41582-1_9.

C. Ionescu and P. Jansson. Dependently-typed programming in scientific com-
puting. In Implementation and Application of Functional Languages, pages 140–
156. Springer Berlin Heidelberg, 2013b. doi: 10.1007/978-3-642-41582-1_9.

C. Ionescu and P. Jansson. Domain-specific languages of mathematics: Pre-
senting mathematical analysis using functional programming. In J. Jeuring
and J. McCarthy, editors, Proceedings of the 4th and 5th International Workshop
on Trends in Functional Programming in Education, Sophia-Antipolis, France and
University of Maryland College Park, USA, 2nd June 2015 and 7th June 2016,
volume 230 of Electronic Proceedings in Theoretical Computer Science, pages
1–15. Open Publishing Association, 2016. doi: 10.4204/EPTCS.230.1.

C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, and J. D. Tabara. GSS:
Towards a research program for Global Systems Science. http://blog.

global-systems-science.eu/?p=1512, 2013. ISBN 978.3.94.1663-12-1.
Conference Version, prepared for the Second Open Global Systems Science
Conference June 10-12, 2013, Brussels.

P. Jansson, S. H. Einarsdóttir, and C. Ionescu. Examples and results from a
bsc-level course on domain-specific languages of mathematics. In Proc. 7th
Int. Workshop on Trends in Functional Programming in Education, volume 295
of EPTCS, page 79–90. Open Publishing Association, 2019. doi: 10.4204/
eptcs.295.6. URL http://dx.doi.org/10.4204/EPTCS.295.6. Presented at
TFPIE 2018.

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
https://hackage.haskell.org/package/lhs2tex-1.24
https://hackage.haskell.org/package/lhs2tex-1.24
http://blog.global-systems-science.eu/?p=1512
http://blog.global-systems-science.eu/?p=1512
http://dx.doi.org/10.4204/EPTCS.295.6

BIBLIOGRAPHY 247

R. Kraft. Functions and parameterizations as objects to think with. In Maple
Summer Workshop, July 2004, Wilfrid Laurier University, Waterloo, Ontario,
Canada, 2004.

E. Landau. Einführung in die Differentialrechnung und Integralrechnung. Noord-
hoff, 1934.

E. Landau. Differential and Integral Calculus. AMS/Chelsea Publication Series.
AMS Chelsea Pub., 2001.

D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++
with concepts from high-level domain descriptions in Haskell: A DSL for
computational vulnerability assessment. In IFIP Working Conf. on Domain-
Specific Languages, volume 5658/2009 of LNCS, pages 236–261, 2009. doi:
10.1007/978-3-642-03034-5_12.

S. Mac Lane. Mathematics Form and function. Springer New York, 1986.

M. D. McIlroy. Functional pearl: Power series, power serious. J. of Functional
Programming, 9:323–335, 1999. doi: 10.1017/S0956796899003299.

U. Norell and J. Chapman. Dependently typed programming in agda. In
Advanced Functional Programming, volume 5832 of LNCS, pages 230–266.
Springer, 2009.

T. J. Quinn and S. Rai. Discovering the laplace transform in undergraduate
differential equations. PRIMUS, 18(4):309–324, 2008.

J. J. Rotman. A first course in abstract algebra. Pearson Prentice Hall, 2006.

W. Rudin. Principles of mathematical analysis, volume 3. McGraw-Hill New
York, 1964.

W. Rudin. Real and complex analysis. Tata McGraw-Hill Education, 1987.

D. Stirzaker. Elementary Probability. Cambridge University Press, 2 edition,
2003. doi: 10.1017/CBO9780511755309.

G. J. Sussman and J. Wisdom. Functional Differential Geometry. MIT Press, 2013.

J. Tolvanen. Industrial experiences on using DSLs in embedded software
development. In Proceedings of Embedded Software Engineering Kongress
(Tagungsband), December 2011, 2011. doi: 10.1.1.700.1924.

C. Wells. Communicating mathematics: Useful ideas from computer science.
American Mathematical Monthly, pages 397–408, 1995. doi: 10.2307/2975030.

Index

abstract syntax tree, 16, 26, 45, 65,
102, 109, 126, 144, 220

AddGroup (type class), 91, 103, 104,
133, 143, 174, 177, 206

Additive (type class), 91, 103, 104,
119, 124, 133, 143, 177

algebra, see algebraic structure,
113, 145

Algebraic (type class), 93
algebraic structure, 102, 106
anonymous function, 11
apply, 109, 125
approximation, 31
arity, 11
assignment function, 42, 43, 46,

118, 137
associative, 29, 102
AST, see abstract syntax tree
automatic differentiation, 124

big operator, 31
bijection, 16
binary (arity 2), 11, 18, 30
Bool (B), 9, 17, 40

False, 9
True, 9

cardinality, 40
cartesian product, see pair type
Chebyshev polynomials, 154
class (keyword), 90, 112

commutative, 29, 42
compositional semantics, 111
conditional probability, 228
const (constant function), 11, 108
constraint (type), 13, 91
constructor function, 16, 26, 111
cos, 94
counterexample, 28

data (keyword), 16, 89
deep embedding, 26, 32
degree, 139, 146, 155
derivative (D), 35, 81, 95
derive, 96
deriving (keyword), 25, 26
distribute over, 29
domain-specific language (DSL), 2
DSL

complex expressions, 26
complex numbers, 20
expr. of one variable, 32
expr. of several variables, 36
first order logic, 57
infinite sequences, 20
predicate logic, 57
propositional calculus, 44
propositional logic, 44
Sample spaces, 217
type expressions, 9

Either type, 17, 40

248

INDEX 249

Left : a→ Either a b, 17
Right : b→ Either a b, 17

endofunction, 102
endomorphism, 102
Env (environment type), 13, 15, 39
Eq (type class), 13, 23, 26, 90
equational reasoning, 96, 108, 109,

111, 121–123, 125, 130,
147, 150, 151

eval : Syn→ Sem, 26, 33, 42, 43, 45,
50, 110, 111, 118, 123, 140,
142

evalEnv, 13
existantial quantifier, 62
exists, 62
exp, 94, 107

factorial, 19
family of types, 17
FD, 123
Field (type class), 104, 105
flip, 11
fold, 111, 118
forall, 60
Fractional (type class), 104
free structure, 117
fromInteger, 92
function composition (◦), 11, 41
function type, 10, 40
Functor (type class), 155
FunExp (type), 32, 95, 130

H0 (h, E, e), 134
H1(h, F, f), 134
H2(h, Op, op), 105, 134
higher-order function, 11, 15, 36
homomorphism, 101, 105, 106,

108, 110, 126, 134, 142,
146

id (identity function), 10
imaginary unit (i), 20
implication, 45, 54

import (Haskell), 8
impure function, 10
independent events, 237
initial algebra, 115
injective, 23
instance (keyword), 23, 91
isomorphism, 16, 24, 40, 109

Lagrange equations, 84, 88, 98
lambda expression, 11, 35
Laplace, 14
lattice, 135
Left : a→ Either a b, 17
left-hand side (LHS), 15
lim (limit), 19, 81
limit (of sequence), 19, 35
List types, 9
lookup, 14

matrix, 99
Maybe type, 12, 13, 17, 40, 147

Just, 12, 17
Nothing, 12, 17

module (Haskell), 8
monoid, 42, 102, 107, 115, 118, 135,

147
MulGroup (type class), 92, 104, 104,

133, 151
Multiplicative (type class), 92, 103,

104, 119, 124, 126, 133,
143

Not a number (NaN), 12
N (natural numbers), 9, 16

S : N→N (successor), 17
Z : N (zero), 17

negate, 103
newtype (keyword), 15
not (¬ : B→ B), 10
nullary, 11
Num (type class), 91, 104

operator section, 12, 41

INDEX 250

opMaybe, 147, 155
option type, see Maybe type
overloading, 90, 92

pair type, 9, 17, 40
parameterised laws, 30
parameterised type, 17
partial derivative, 82, 98
partial differential equation, 88
partial function, 12, 13
partial sums, 19
pattern matching, 24
π, 94
pointwise, 18
Poly, 141
polymorphic, 10, 31
polynomial, 139
power series, 149, 150
predicate, 28
probability distribution, 220
probability notation, 226
product type, 17
proof, 48
property based testing, 28
pure function, 10

QuickCheck, see property based
testing

R (real numbers), 22
recip, see MulGroup (type class)
recursive datatype, 16
Right : b→ Either a b, 17
right-hand side (RHS), 15
Ring (type class), 104, 117

ring, 116, 136

semantics, 9, 26
semiring, 42, 134
sequence, 18, 41
shallow embedding, 26, 33, 35
sin, 94
square root (

√
·), 12, 93

stream, 128
structural induction, 27
subset, 28
sum of a sequence, 19
sum type, 17
syntax, 9, 21, 26
syntax tree, 17

total function, 12
Transcendental (type class), 94, 133
triple, see tuple types
tuple types, see pair type
tupling transform, 40, 123
type, 9
type (keyword), 15
type class, 90
type constructor, 15
type hints, 14
type judgment (e : t or e :: t), 9
type parameter, 17
type-driven development, 9, 55, 88

unary, 11
universal quantifier, 60

wishful thinking, 27

zipWithLonger, 143

	About this book
	Origins
	Who should read this book?
	Notation and code convention
	Common pitfalls with traditional mathematical notation
	A function or the value at a point?
	Scoping

	Types, Functions, and DSLs for Expressions
	Types of data and functions
	What is a type?
	Functions and their types
	Partial and total functions
	Variable names as type hints

	Types in Haskell: type, newtype, and data
	Notation and abstract syntax for sequences
	A DSL of complex numbers
	A syntax for (complex) arithmetical expressions
	Laws, properties and testing
	Generalising laws

	Types of functions, expressions and operators
	Expressions and functions of one variable
	Scoping and typing big operators
	Detour: expressions of several variables

	Exercises: Haskell, DSLs and expressions

	DSLs for logic and proofs
	Propositional Calculus
	An Evaluator for Prop
	Truth tables and tautologies
	Proofs for Propositional Logic
	Implication, hypothetical derivations, contexts
	The Haskell type-checker as a proof checker
	Intuitionistic Propositional Logic
	Type-Driven Development of Proofs as Programs

	First Order Logic
	Evaluator for Formulas and Undecidability
	Universal quantification
	Existential quantification
	Typed quantification
	Curry-Howard for quantification over individuals

	An aside: Pure set theory
	Assignment 1: DSLs, sets and von Neumann

	Examples
	Proof by contradiction
	Proof by cases
	There is always another prime

	Basic concepts of calculus
	The limit of a sequence
	Case study: The limit of a function

	Exercises
	Representations of propositions
	Proofs
	Continuity and limits

	Types in Mathematics
	Typing Mathematics: derivative of a function
	Typing Mathematics: partial derivative
	Type inference and understanding: Lagrangian case study
	Incremental analysis with types
	Type classes
	Numeric operations
	Overloaded integer literals
	Structuring DSLs around type classes

	Computing derivatives
	Exercises

	Compositionality and Algebras
	Algebraic Structures
	Groups and rings

	Homomorphisms
	(Homo)morphism on one operation
	Homomorphism on structures
	Isomorphisms

	Compositional semantics
	Compositional functions are homomorphisms
	An example of a non-compositional function

	Folds
	Even folds can be wrong!

	Initial and Free Structures
	A general initial structure
	Free Structures
	A generic Free construction

	Computing derivatives, reprise
	Automatic differentiation

	Summary
	Homomorphism as roadmaps
	Structures and representations

	Beyond Algebras: Co-algebra and the Stream calculus
	A solved exercise
	Exercises

	Polynomials and Power Series
	Polynomials
	Division and the degree of the zero polynomial
	Polynomial degree as a homomorphism
	Power Series
	Operations on power series
	Formal derivative
	Exercises

	Higher-order Derivatives and their Applications
	Taylor series
	Derivatives and Integrals for Maclaurin series
	Integral for Formal Power series
	Simple differential equations
	Exponentials and trigonometric functions for PowerSeries
	Associated code
	Not included to avoid overlapping instances
	This is included instead

	Exercises

	Elements of Linear Algebra
	Representing vectors as functions
	Linear transformations
	Inner products
	Examples of matrix algebra
	Functions
	Polynomials and their derivatives
	Inner product for functions and Fourier series
	Simple deterministic systems (transition systems)
	Non-deterministic systems
	Stochastic systems
	Quantum Systems

	Monadic dynamical systems
	The monad of linear algebra

	Associated code
	One-dimensional space

	Exercises
	Exercises from old exams

	Exponentials and Laplace
	The Exponential Function
	The Laplace transform
	Laplace and other transforms
	Exercises
	Exercises from old exams

	Probability Theory
	Sample spaces
	Monad Interface
	Distributions
	Semantics of spaces
	Random Variables
	Events and probability
	Conditional probability
	Examples
	Dice problem
	Drug test
	Monty Hall
	Solving an advanced problem with equational reasoning

	Independent events

	The course ``DSL of Mathematics''
	Parameterised Complex Numbers

