

Algorithms and
Data Structures
VLSI Design

Christoph Meinel
Thorsten Theobald

Algorithms and
Data Structures
in VLSI Design

OBDD - Foundations and Applications

With 116 Figures

Springer-Verlag
Berlin Heidelberg New York

Prof. Dr. Christoph Meinel Dr. Thorsten Theobald
University of Trier Munich University of Technology
D-54286 Trier D-85747 Garching bei Miinchen

This is an electronic version of the book
Algorithms and Data Structures in VLSI Design
OBDD - Foundations and Applications

(© Springer-Verlag Berlin Heidelberg 1998
ISBN 3-540-64486-5

Title of the Original German Edition:

Algorithmen und Datenstrukturen im VLSI-Design
OBDD - Grundlagen und Anwendungen

(© Springer-Verlag Berlin Heidelberg 1998

ISBN 3-540-63689-5

This work is subject to copyright. All rights are reserved, whether the whole part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks.

(© Springer-Verlag Berlin Heidelberg 1998

The use of general descriptive names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors
Cover Design: Kiinkel + Lopka, Heidelberg

Preface

Within the last few years, an exciting interaction has taken place between
current research in theoretical computer science and practical applications
in the area of VLSI design. This has mainly been initiated by the following
two facts. Firstly, chip design without the assistance of computers is no
longer conceivable. And secondly, the construction of permanently more
powerful chips is reaching the absolute frontiers of current possibilities and
capabilities. In 1994, the design error in the Intel Pentium chip with its
devastating economical consequences has made particularly aware of these
difficulties.

One of the main problems is the huge number of possible combinations of
individual chip elements (giving a combinatorial explosion). For such chips,
the problem of representing and manipulating the functional behavior of the
chip within a computer has already become almost impossible. Here, a fruit-
ful connection with a core topic of theoretical computer science, the design of
data structures and efficient algorithms, has been achieved. This connection
is established by means of ordered binary decision diagrams (OBDDs), which
have led to dramatic performance improvements and breakthroughs in many
CAD projects all over the world.

This book provides a comprehensive introduction to the foundations of
this interdisciplinary research topic and discusses important applications in
computer-aided circuit design. It originated from undergraduate and grad-
uate courses at the University of Trier as well as from relevant research
projects.

On the one hand, the book is directed to students, researchers and lecturers
who work or teach in the areas of algorithms, data structures, or VLSI design
and are looking for access to the active research field of OBDDs, or are
interested in paradigmatic connections between theory and practice. On the
other hand, the book is intended to provide a valuable source for all interested
CAD engineers, VLSI designers, and users of CAD tools who are looking
for a self-contained presentation of OBDD technology, or are interested in
questions of modeling and methodology in CAD projects.

The general prerequisites for reading the book are only some basic knowledge
in computer science and pleasure in studying clever and ingenious ideas that
make CAD tools work efficiently.

VI Preface

At this point, we would like to thank everybody who was directly or indirectly
involved in the process of writing this book. In particular, we would like to
thank the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) which supported our research activities within the major program
“Efficient algorithms for discrete problems” and within the graduate program
“Mathematical optimization”.

Of course, our collaborators and colleagues Jochen Bern, Jordan Gergov, Ste-
fan Krischer, Harald Sack, Klaus Schwettmann, Anna Slobodova, and Chri-
stian Stangier have influenced the work substantially. Further thanks are
also extended to Prof. Wolfram Biittner and his working group at Siemens
for integrating us into current OBDD-based research projects there. With
regard to our numerous foreign colleagues, we would particularly like to em-
phasize the help and support of Fabio Somenzi, who was an invaluable source
of information, for example during a research visit lasting several weeks in
Trier. Finally, we would like to thank Peter Gritzmann, whose willingness
and support allowed us to finish this book project.

Trier — Miinchen Christoph Meinel
June, 1998 Thorsten Theobald

Contents

1. Introduction ittt 1
2. Basics ... 7
2.1 Propositions and Predicates............ 7
2.2 Sets, Relations, and Functions 9
2.3 Graphs. 11
2.4 Algorithms and Data Structures.......................... 13
2.5 Complexity of Algorithms, 15
2.6 Hashing i 19
2.7 Finite Automata and Finite State Machines................ 20
2.8 References........ .o 22

Part I. Data Structures for Switching Functions

3. Boolean Functions i iiiiiininan.n. 25
3.1 Boolean Algebra 26
3.2 Boolean Formulas and Boolean Functions.................. 30
3.3 Switching Functions i ... 34

3.3.1 Switching Functions with at Most Two Variables 36
3.3.2 Subfunctions and Shannon’s Expansion 38
3.3.3 Visual Representation.................oovin... 40
3.3.4 Monotone Switching Functions 41
3.3.5 Symmetric Functions oL, 44
3.3.6 Threshold Functionso, 47
3.3.7 Partial Switching Functions........................ 48

34 References.o 49

VIII

Contents

Classical Representations 51
4.1 Truth Tables. i e, 52
4.2 Two-Level Normal Forms........... o, 53
4.3 Circuits and Formulas.........o o i, 60
431 GirCuits -« o ei et e 60
432 Formulas............iiiiiii i 62
4.4 Binary Decision Trees and Diagrams 63
4.4.1 Binary Decision Trees...............oiiiiiiin.... 64
4.4.2 Branching Programs 66
4.4.3 Read-Once Branching Programs.................... 69
4.4.4 Complexity of Basic Operations 70
4.5 Referencesoo.oiino i e e 75

Requirements on Data Structures in

Formal Circuit Verification 77
5.1 Circuit Verification 79
5.2 Formal Verification of Combinational Circuits 81
5.3 Formal Verification of Sequential Circuits 84
5.4 Referencesooiiiiiii i e 86

Part II. OBDDs: An Efficient Data Structure

OBDDs — Ordered Binary Decision Diagrams 89
6.1 Notation and Exampleso 89
6.2 Reduced OBDDs: A Canonical Representation
of Switching Functionso i, 92
6.3 The Reduction Algorithm 96
6.4 Basic Constructions.ot 98
6.5 Performing Binary Operations and the Equivalence Test. 100
6.6 References........ ..ol 103
Efficient Implementation of OBDDs 105
71 KeyIdeas 105
7.1.1 Shared OBDDs ...ttt 106
7.1.2 Unique Table and Strong Canonicity 107
7.1.3 ITE Algorithm and Computed Table................ 108

7.1.4 Complemented Edges 112

Contents X
7.1.5 Standard Triplesc.ooiiiiiiiiii . 115
7.1.6 Memory Management, 117
7.2 Some Popular OBDD Packages................c...ooon... 119
7.2.1 The OBDD Package of Brace, Rudell, and Bryant 119
7.2.2 The OBDD Packageof Long 120
7.2.3 The CUDD Package: Colorado University
Decision Diagrams............cooiiiiiiininnn... 120
7.3 References 122
Influence of the Variable Order
on the Complexity of OBDDs............................. 123
8.1 Connection Between Variable Order and OBDD Size........ 123
8.2 Exponential Lower Bounds 127
8.3 OBDDs with Different Variable Orders 135
8.4 Complexity of Minimization 139
8.5 References. 144
Optimizing the Variable Order 145
9.1 Heuristics for Constructing Good Variable Orders 145
9.1.1 The Fan-In Heuristic............. ..o .. 146
9.1.2 The Weight Heuristic 147
9.2 Dynamic Reordering 149
9.2.1 The Variable Swapiiiiiiiiiiin .. 151
9.2.2 Exact Minimization................ 155
9.2.3 Window Permutations 158
9.2.4 The Sifting Algorithm 159
9.2.5 Block Sifting and Symmetric Sifting 163
9.3 Quantitative Statements............... 166
9.4 Outlook 169
9.5 References.........coiouiiiiii i 170
Part ITI. Applications and Extensions
10. Analysis of Sequential Systems 173
10.1 Formal Verification 174
10.2 Basic Operatorsouueun it e 175

11.

12.

13.

Contents

10.2.1 Generalized Cofactorsccoviiiinnnnen .. 175
10.2.2 The Constrain Operator................c...ouien .. 178
10.2.3 Quantification i 181
10.2.4 The Restrict Operatorcoiiiein... 183
10.3 Reachability Analysis 184
10.4 Efficient Image Computation.............o, 186
10.4.1 Input Splitting 187
10.4.2 Output Splittingooniiiniin i 190
10.4.3 The Transition Relation 191
10.4.4 Partitioning the Transition Relation 195
10.5 Referenceso 197
Symbolic Model Checking 199
11.1 Computation Tree Logic......... 199
11.2 CTL Model Checkingoouuiiiinniininnnenn. 202
11.3 Implementations, 206
11.3.1 The SMV Systemc.ouuuiiiiiiunenennen.nn 207
11.3.2 The VIS Systemcoviiiiiiiiiiininaen.. 208
11.4 References oo e 209
Variants and Extensions of OBDDs 211
12.1 Relaxing the Ordering Restriction 211
12.2 Alternative Decomposition Types...........ccoovieiioo... 219
12.3 Zero-Suppressed BDDs i 223
12.4 Multiple-Valued Functions, 228
12.4.1 Additional Sinks i 228
124.2 Edge Valueso 229
12.4.3 Moment Decompositionsc.cooeon.. 230
12.5 Referenceso e 233
Transformation Techniques for Optimization.............. 235
13.1 Transformed OBDDs 235
13.2 Type-Based Transformations............... 239
13.2.1 Definition ...t 239
13.2.2 Circuit Verification oo it 241
13.3 Linear Transformationsc. o iiiiinaaon.. 243

13.3.1 Definition o 243

Contents XI

13.3.2 Efficient Implementation 245

13.3.3 Linear Siftingc.ooiiiiiiiiii i 247

13.4 Encoding Transformations oo 250
13.5 Referenceso 255
Bibliography 257

1. Introduction

A wide variety of problems in discrete mathematics, computer science, or the
design of integrated circuits involve the task of manipulating objects over
finite domains. The dependencies and relations among the objects are mod-
eled by means of discrete functions. By introducing a binary encoding for
the elements of the underlying domain, each finite problem can be fully ex-
pressed by means of switching functions, i.e., functions mapping bit vectors to
single bits. Consequently, manipulations over finite domains can be entirely
reduced to the treatment of switching functions.

This approach is of particular importance in computer-aided design (CAD) of
digital systems. In this area, recent advances in very large scale integration
(VLSI) technology have raised problems that are far beyond the scope of
manual design. VLSI design in the absence of computer-aided design systems
is no longer imaginable. Hence, CAD systems have become not only a useful
tool but also an indispensable component of every chip design process.

However, the real capabilities and power of those CAD systems strongly
depend on the following two factors:

1. Compactness of the data structures used for representing relevant data
and switching functions within the computer.

2. Efficiency of the algorithms that operate on the data structures.

Within the last few years, binary decision diagrams have attracted much
attention in this context. These graphs are composed from a set of binary-
valued decisions, culminating in an overall decision that can be either TRUE
or FALSE. Binary decision diagrams, shortly called BDDs, were proposed as
data structure for switching functions by Lee as early as 1959, and later by
Akers. Meanwhile, many variations of this basic model have been investi-
gated. In the original model due to Akers, each decision is based on the
evaluation of an input variable. Subsequent approaches also consider more
highly structured BDDs, or BDDs whose decisions are based on the evalu-
ation of certain functions. From the complexity theoretical point of view,
BDDs have been investigated extensively as a computation model related to
memory consumption.

In 1986, Bryant showed that typical tasks for manipulating switching func-
tions can be performed very efficiently in terms of Akers’ model, if some

2 1. Introduction

additional ordering restrictions concerning the structure of the BDD are sat-
isfied. For this reason, Bryant proposed to employ so-called ordered binary
decision diagrams (OBDDs), where each variable is evaluated at most once
on each path (read-once property), and where the order in which the variables
are evaluated does not depend on the input.

OBDDs have found more practical applications than other representations
of switching functions, mainly for two reasons. First, by applying reduction
algorithms, OBDDs can be transformed into a canonical form, called reduced
OBDDs, which uniquely characterize a given function. Second, in terms
of their OBDD representation, Boolean operations on switching functions
can be performed quite efficiently in time and space. For example, an AND
composition of two switching functions can be performed in time that is linear
in the product of the sizes of their OBDD representations.

However, OBDDs share a fatal property with all kinds of representations
of switching functions: the representations of almost all functions need ex-
ponential space. This property is a consequence of an elementary counting
argument which was first applied by Shannon. There is another problem that
occurs when representing switching functions by means of OBDDs: the size
of OBDDs depends on the order of the input variables. For example, OBDDs
that represent adder functions are very sensitive to the variable order. In the
best case, they have linear size in the number of input bits, but in the worst
case they have exponential size. Other functions like multiplication functions
have OBDDs of exponential size regardless of the variable order. Fortunately,
for most functions that appear in real-life applications, a variable order can
be found that keeps the size of the corresponding OBDD tractable. Hence,
for most practical applications, OBDDs provide a computationally efficient
device for manipulating switching functions.

Nowadays, there exist many improvements and additions to the basic OBDD
model. Here, we primarily refer to implementation techniques based on dy-
namic data structures. Indeed, using these data structures in connection
with certain sophisticated hash techniques allows an efficient realization of
OBDD technology in the form of so-called OBDD packages. The big success
of OBDDs in numerous practical applications is due to these packages. Be-
sides employing the mentioned implementation ideas, structural extensions
to the OBDD model have been proposed in order to make practical work as
efficient as possible. As an example, we mention complemented edges, which
allow the complement of a function to be stored with almost no extra costs.

Meanwhile, for a wide spectrum of purposes, many software systems have
been developed that use OBDD packages internally for manipulating the
relevant switching functions. The first universal OBDD package was designed
by Brace, Rudell, and Bryant. This package, whose design also forms the
basis of more recent OBDD packages, exploits the above mentioned ideas
in a skillful way. For example, it uses a computed table for remembering

1. Introduction 3

the results of previous computations, and it supports an ingenious memory
management.

An important application of OBDDs can be found in formal verification of
digital circuits. Here, for example, it is to check whether two given combina-
tional circuits have the same logical behavior. In the case of combinational
circuits this task can be performed by means of OBDDs as follows. Initially,
a suitable variable order is determined, and then the uniquely determined
OBDDs of the circuits with respect to the chosen order are constructed. As
logical operations on OBDDs can be performed quickly, this computation
can be done in the following way. First, the trivial OBDD representations
of the input variables are constructed. Then, traversing the circuit in topo-
logical order, in each gate the corresponding logical operation is performed
on the OBDD representations of the predecessor gates. Due to canonicity
of reduced OBDDs, the circuits are logically equivalent if and only if the
computed OBDD representations of both circuits are equal.

Other applications of OBDDs are based on the fact that switching functions
can be used to represent sets of bit vectors. As an example, we consider a dis-
tinguished subset of bit vectors within the set of all n-dimensional bit vectors.
The characteristic function of this distinguished subset is a switching func-
tion and can therefore be manipulated by means of OBDD techniques. This
connection allows to solve problems in sequential analysis and verification,
where compact representation of state sets is of crucial importance.

The practicability of OBDDs strongly depends on the existence of suitable
algorithms and tools for minimizing the graphs in the relevant applications.
Within the last few years, primarily two kinds of technique have been in-
vestigated, both based on the optimization of the wvariable order. One kind
includes heuristic methods, which deduce a priori some information from the
application about a good order, and the other involves algorithms for dy-
namic reordering. In many cases, both techniques lead to drastic reductions
of the OBDD sizes occurring and hence improve the performance of the CAD
system considerably.

Although OBDDs now provide an efficient data structure for solving CAD
problem instances far beyond the scope of previous technologies, new fron-
tiers of intractability are coming into view. One critical aspect in the use of
OBDDs is their big memory consumption in case of certain complex func-
tions. Hence, the question arises of whether there are more sophisticated
BDD-based representations which are more succinct and space-efficient than
OBDDs, yet possess similar nice algorithmic properties. Indeed, the improve-
ment of BDD-based models is currently an active research area. So far, these
efforts have led to a variety of related data structures with remarkable prop-
erties. These data structures include free BDDs, ordered functional decision
diagrams, zero-suppressed BDDs, multi-terminal BDDs, edge-valued BDDs,
and binary moment diagrams.

4 1. Introduction

As the practical applicability of all these representations cannot be finally
judged, the investigation and development of new optimization techniques for
OBDDs remains a rewarding research project. One recent approach proposes
to transform switching functions in a suitable way before manipulating them.
This approach makes it possible to manipulate functions with inherently large
OBDD representations, as long as there exists at least a tractable OBDD
representation of a transformed version of the function.

At this point, we would like to end the above general survey on some of the
topics treated in the text. Let us continue by giving an outline of the book.

In Chapter 2, we review the relevant basics from computer science and dis-
crete mathematics, in particular from the areas of graph theory, algorithms,
data structures, and automata theory. The following chapters are organized
in three parts.

Part I: Data Structures for Switching Functions

This part deals with basic concepts for representing and manipulating switch-
ing functions. In Chapter 3, we begin at the roots with Boolean algebra and
Boolean functions. The second half of the chapter is devoted to the special
case of switching algebra and switching functions.

Chapter 4 can be seen as a presentation of the world of VLSI design in the
period of time before the invention of OBDDs. We discuss classical data
structures for switching functions, such as disjunctive normal forms, Boolean
formulas, and branching programs. We also emphasize the drawbacks of
the particular data structures, which manifest themselves in difficulties in
handling them algorithmically.

At the end of Part I, in Chapter 5, important paradigmatic applications in
VLSI design are extracted, which allows to deduce the basic requirements on
favorable data structures in VLSI design.

Part II: OBDDs: An Efficient Data Structure

Throughout the second part, ordered binary decision diagrams, shortly called
OBDDs, are at the center of attention. In Chapter 6, after presenting some
introductory examples, we start by discussing the reduction rules. By using
these techniques, the two fundamental properties of OBDDs are deduced,
namely canonicity in representation and efficient application of binary oper-
ations.

Chapter 7 is devoted to implementation techniques that transform the basic
concept of OBDDs into an efficient data structure for practical applications.

1. Introduction 5

The first half of the chapter serves to introduce the most important implemen-
tation ideas, like the unique table, the computed table, and complemented
edges. Then we describe some well-known OBDD software packages in which
these ideas have been realized.

In Chapter 8, the influence of the variable order on the complexity of OBDDs
is at the center of interest. By applying methods from theoretical computer
science, important complexity theoretical properties are proven. In particu-
lar, functions which provably do not possess gopod OBDDs are constructed,
complexity problems in the treatment of OBDDs with different orders are
discussed, and it is shown that determining the optimal variable order is an
NP-hard problem.

In Chapter 9, we address practical issues of the ordering problem. We discuss
useful heuristics for constructing good orders as well as the powerful tech-
nique of dynamic reordering. At the end of the chapter, by means of some
benchmark circuits, we demonstrate how these methods prove their worth in
practical environments.

Part ITI: Applications and Extensions

The third part of the book is devoted to various applications as well as to
extensions of the OBDD data structure.

The first extensively treated application refers to verification problems of
sequential systems, like the equivalence problem. By applying suitable al-
gorithms to concrete instances of these problems, it can be formally proven
that the input/output behavior of a given sequential circuit coincides with
the behavior of a given reference circuit. The OBDD-based approach, pre-
sented in Chapter 10, is based on reachability analysis. In order to realize
this strategy efficiently, we first introduce some more complex operators on
OBDDs, and then show that the basic step of sequential analysis, namely
image computation, can be performed efficiently.

A deeper treatment of this application in the area of model checking can be
found in Chapter 11. Here, the task is to check whether a circuit satisfies
a specification given by means of logical formulas. First, we give an intro-
duction to the temporal logic CTL, then we use this logic for solving the
verification task. This chapter, too, is closed by the description of some real
systems in which the presented ideas have been implemented.

Chapter 12 deals with some variants and extensions of the OBDD model.
We demonstrate the advantages of those variants and illustrate applications
where a certain variant is particularly suited. The chapter starts with a
description of free BDDs, which result from OBDDs by weakening the or-
dering restrictions. Then we discuss functional decision diagrams, which are
based on alternative decomposition types. Zero-suppressed BDDs, the vari-
ant presented next, are particularly suited for solving combinatorial problems.

6 1. Introduction

We close the chapter by discussing some variants for the representation of
multiple-valued functions.

In Chapter 13, we discuss a very general approach to the optimization of
decision diagrams which is based on applying suitable transformations to
the represented functions. Two particular classes of those transformations,
namely type-based transformations and linear transformations, are investi-
gated in more detail. Moreover, in conjunction with analysis of finite state
machines, encoding transformations can be applied for optimizing OBDDs.
Some aspects of this approach are presented at the end of the chapter.

2. Basics

Verbringe nicht die Zeit mit der Suche nach
einem Hindernis; vielleicht ist keines da.
[Do not waste your time with looking for
an obstacle; maybe there is none.]

Franz Kafka (1883-1924)

2.1 Propositions and Predicates

Propositional logic. The theme of propositional calculus is to investi-
gate simple logical connections among elementary statements. Such elemen-
tary statements are for example

e “Paris is the capital of France.”

e “6 is a prime number.”

An elementary statement is either true or false, but cannot be both. Each
statement having the property of being either true or false is called a proposi-
tion. In the example, the first statement has the truth value TRUE, whereas
the second statement has the truth value FALSE. The aim of propositional
calculus is to characterize how these truth values can be inferred from elemen-
tary statements towards more complicated statements, for example towards
“Paris is the capital of France, and 6 is a prime number”. For two propo-
sitions A and B, the conjunction A A B, the disjunction AV B, and the
complement A are defined as follows:

AAB is TRUE <= A is TRUE and B is TRUE, (2.1)
AV B is TRUE <= A is TRUE or B is TRUE,
A is TRUE <= A is FALSE. (2.3)

Predicate calculus. Predicate calculus is an extension of propositional
calculus. The additional components are predicates and quantifiers. These

8 2. Basics

concepts allow to describe circumstances that cannot be expressed by propo-
sitional calculus. Consider, for example, the property that two real numbers
satisfy the inequality

z-y <>
This inequality is not a proposition, as its truth value depends on the chosen

values of the two variables x and y. If, however, any particular pair of
numbers is substituted for x and y, then it becomes a proposition.

Predicates. Let z1,...,z, be variables with values in the domains Si,

. ,Sn. An expression P(zi,...,T,) involving variables z1,...,Z, is a
predicate if it becomes a proposition for each substitution of z1,...,x,
by values in Sy,...,S,. Incidentally, a proposition can be interpreted as a
predicate in zero variables.

Quantifiers. Predicate calculus allows one to express that a property holds
for all objects, or that at least one object with a certain property ezists. This
is achieved by means of two quantifiers: the universal quantifier V and the
existential quantifier 3. Thus, for a predicate P(z1,... ,2,),

Vo; P(x1,... ,2Zn)

denotes a new predicate P’ in the variables x1,...,%Z;—1, Ti+1,-.. ,Ln- Lhe
predicate P’ is true for a given substitution of values to its n — 1 variables if
this substitution makes the predicate P true for all possible substitutions of
z; by values in S;. Analogously, the predicate

Az; P(x1,... ,25)

denotes a predicate P’ in the variables z1,... ,Z;—1,Zit1,... ,Zn, Which is
true for a given substitution of its n — 1 variables if this substitution makes
P true for at least one possible substitution of x;.

Example 2.1. Let z1,...,x, be real-valued variables. Let the predicate
P(z1,22,x3) be defined by

2 >1 A 21+ 22 —23 > 5, (2.4)
and the predicate Py (z1,z3) be defined by
Pi(z1,23) = Voo P(x1,%2,23).
Obviously, P; can be simplified to
1 —x3 > 4.
The predicate
Py(z1,23) = 3z2 Pi (1, T2,%3)

is TRUE for all substitutions of z1,x3, as we can always find a suitable x5
which satisfies condition (2.4). &

2.2 Sets, Relations, and Functions 9

2.2 Sets, Relations, and Functions

Sets. A set is a collection of objects. The objects in the collection are called
elements. If the set is finite, i.e., it consists of only a finite number of
elements, then it can be described by explicitly listing the elements, e.g.,

{a,b,c}.

The order in which the elements are enumerated does not matter. A second
possible way to describe sets is by means of a membership property. To
specify a set S in this way, we write

S={z: Px)},

where the predicate P(z) is true if and only if the element z belongs to S.
This method also works in case of infinite sets, e.g.,

S = {z : z is a natural number divisible by 3 }.

Set membership of an element z in S is denoted by x € S. The following sets
are of particular importance, and therefore they are abbreviated by specific
symbols:

R : the set of real numbers,

R : the set of non-negative real numbers,
Z : the set of integers,

N : the set of natural numbers.

If every element of a set S also belongs to a set T, then we say S is a subset
of T and write S C T. Two sets S and T are equal if and only if S C T
and T' C S. The cardinality of a set S is the number of its elements and
is denoted by |S| or #S. The empty set which consists of zero elements
is represented by the symbol f. A decomposition of a set S in non-empty,
disjunct subsets is called a partition of S.

Operations on sets. The Cartesian product S x T' of two sets S, T is
defined by

SxT={(z,y):z€SandyeT}.
Thus, for example,
{1,3} x {2,4,6} = {(1,2),(1,4),(1,6),(3,2),(3,4),(3,6) }-

Here, the pairs (z,y) are ordered pairs, i.e., the order of the elements
z, y within a pair (z,y) cannot be exchanged as in sets. The union U,
intersection N, and difference \ of sets are defined by

10 2. Basics

SUT={z:ze€SorxeT},
SNT={z:zeSandzxeT},
S\T={z:ze€SbutxgT}.

Power set. The power set of a set S, denoted by 2%, is the set of subsets
of S, i.e.,

25={R: RCS}.
If, for example, S = {1,2}, then
2% = {0, {1}, {2}, {1, 2}}.

The notation 2° originates from the fact that the cardinality of the power
set of S is exactly 2/51.

Relations. A (binary) relation R between two sets S and T is a subset of
S x T. With this subset R, the following predicate = Ry is associated:

2Ry < (z,y) € R.

If for given x, y this predicate is true, we say that x is in relation R with y.
Very often, the two involved sets are identical; in this case we speak of a
relation on S.

Equivalence relation. A relation R on a set S is called an equivalence
relation if for all z,y,2 € S

e xRz (Reflexivity),
e xRy = yRxz (Symmetry),
ezRy N yRz — xRz (Transitivity).

A relation R on a set S is called a partial order (poset) if it is reflexive,
transitive, and antisymmetric. Here, antisymmetric means

Ry N yRx = z=y.

A (linear) order is a partial order in which, for every pair x # y, either
z Ry or y Rxz. Consequently, every set of elements can be arranged linearly
in a way that is consistent with the linear order.

2.3 Graphs 11

Example 2.2. 1. For each set S the subset relation C defines a partial
order on the power set 2°.

2. The relation < on the set of real numbers is a linear order. <

Functions. A function f from a set S to a set T, written
f:8—->T,

assigns to every element x € S an element f(z) € T. f(z) is called the image
of z under f. A function can be interpreted as a relation between the two sets
in which each element of S appears as the first element in exactly one pair of
the relation. The sets S and T are called the domain and co-domain of f,
respectively. The set f(S) = {f(z) : = € S} is called the range or image
of f.

A function f: S — T is called

e surjective or onto, if the range of f is equal to its co-domain, i.e., if
f(8) =T,

e injective or one-to-one, if no two different elements of S have the same
image under f, i.e., f(z1) = f(z2) implies x; = z2.

e bijective if f is both surjective and injective.

For a given function f : S — T and a subset A C S, the image of A under
f is defined by f(A) = {f(z) : © € A}. Conversely, for a subset B C T, the
inverse image of B under fis f~}(B)={z € S : f(z) € B}.

2.3 Graphs

Directed graph. A (directed) graph G consists of a finite vertex set V
and a set E of edges between the vertices. The set E is a subset of V x V.
The names vertices and edges are motivated by the pictorial representation
we have in mind when speaking of a graph. For example, let V' = {1,2,3,4,5}
and E = {(1,2), (1,3), (2,3), (2,4), (5,2), (5,3)}. Then G can be visualized
by the diagram in Fig. 2.1 (a).

Here, two nodes u and v are connected by an edge starting in v if and only if
(u,v) € E. The edge set E defines a relation on the set of edges. Conversely,
each binary relation R on a set S can be interpreted as a graph with vertex
set S and edge set R.

Undirected graph. In case of an undirected graph the edges are consid-
ered as unordered pairs and therefore have no distinguished direction. The
undirected graph which is associated with the directed graph in Fig. 2.1 (a) is
depicted in Fig. 2.1 (b). The edge set of the undirected graph is E = {{1, 2},

12 2. Basics

o
>

(a) Directed graph (b) Undirected graph

Figure 2.1. Graphs

{1,3}, {2, 3}, {2,4}, {2,5}, {3,5}}. Here, each edge is written in the form of
a set {u,v} to indicate the indifference in the order of u and v.

The indegree of a vertex v is the number of edges leading to v, i.e.,
indegree(v) = #{(u,v) € E : ue V}.
Analogously, the outdegree of v is the number of edges starting in v,

outdegree(v) = #{(v,u) € E : u € V}.

In case of undirected graphs, for each node the outdegree and the indegree
coincide, and one uses the shorter term degree. A node is called a sink if it
has outdegree 0. If the outdegree of v is bigger than 0, v is called an internal
node. Analogously, a node is called a root if it has indegree 0.

If (u,v) is an edge, then u is called a predecessor of v, and v is called a
successor of u. A path of length k — 1 is a sequence vq,... ,v; of k nodes
where v;41 is a successor of v; for all 1 <4 < k—1. If v; = vy, the path is called
cyclic. A graph is called an acyclic graph if there does not exist a cyclic
path. A directed graph G is called connected if for every pair (u,v) € V
there exist nodes u = wg, v1, V2, ..., vy = v such that either (v;,v;y1) or
(vig1,v;) is an edge.

Tree. A graph is called rooted if there exists exactly one node with indegree
0, the root. A tree is a rooted acyclic graph in which every node but the
root has indegree 1. This implies that in a tree, for every vertex v there exists
a unique path from the root to v. The length of this path is called the depth
of v. Figure 2.2 shows a tree with the depth values of its nodes. In the tree,
a successor w of a node v is called son of v. v itself is called the father of w.

2.4 Algorithms and Data Structures 13

Depth
0

Figure 2.2. A tree with depth values

2.4 Algorithms and Data Structures

Half the battle is knowing what problem to solve. When initially ap-
proached, most problems have no simple, precise specification. In fact, even
the word “problem” has very different meanings in different contexts. For
our purposes, problems typically originate from questions with several pa-
rameters whose values have not yet been determined. A problem is defined
by fixing the values of the parameters and setting conditions on admissible
solutions.

Problem. A decision problem is a problem which has only two possible
solutions: either Yes or No. An example of a decision problem is the task
of deciding whether a given graph contains a cyclic path. An optimization
problem is concerned with finding an optimal solution from a (possibly
large) set of admissible solutions. Here, the quality of a solution is measured
by means of a cost function. As it may sometimes be hard to find an optimal
solution, one is often also interested in approximate solutions, i.e., admissible
solutions whose quality closely come up to the quality of an optimal solution.

Algorithm. An algorithm is a description of a mechanical method for
solving a given problem. It may have different forms, like a sequence of
instructions or a computer program. In any case, an algorithm is expected
to satisfy the following general properties:

Finiteness of description: The method can be described by means of a
finite amount of text.

14 2. Basics

Effectiveness: Each single step of the description can be performed me-
chanically.

Termination: For each admissible input, the method stops after finitely
many steps.

For a formal definition of the term algorithm very strict mathematical and
theoretical models like Turing machines or A-calculus are required. How-
ever, these and all other formalizations of the term algorithm have led to
the same result. Based on this experience, the American logician A. Church
stated the following thesis known as Church’s Thesis:

“Every function which is computable in the intuitive sense is
Turing-computable.”

In other words, this says that for each algorithmic method in arbitrary form,
a Turing machine can be constructed that computes the same function.

Example 2.3. As an example of an algorithm and of the algorithm notation
which we will use, we consider depth first search in a directed graph G =
(V, E). Starting from an initial node vy, in systematic manner those nodes v
are traversed for which there exists a path from vy to v. In depth first search,
the order in which the nodes are traversed is defined as follows. After a node
v is visited, all successor nodes of v are visited next, in a recursive manner.
In order to guarantee that each node reachable from the initial node is only
visited once, after the treatment of v the flag mark[v] is set to 1. Pseudo
code for depth first search is shown in Fig. 2.3. <

Data structures. The question of how far algorithms can be performed
efficiently depends strongly on the organization of the data being processed.
A data type of a variable is the set of values that the variable can assume.
For example, a variable of type integer contains values from the set Z. An
abstract data type is a mathematical model which considers the objects to
be represented and the basis operations for manipulating these objects as a
unity. To represent an abstract data type we use data structures, which are
collections of variables, possibly of different data types, connected in various
ways.

The quality of a data structure is judged from the viewpoint of how far it
provides an optimal implementation of the abstract data type. In particular,
a good data structure is expected to yield memory-efficient representation of
the objects, and to enable efficient algorithms for solving the relevant basic
operations. Data structures belong to the central research topics in computer
science. In this book, we will see that even small modifications in complex
data structures can change their algorithmic properties completely.

2.5 Complexity of Algorithms 15

DFSstart(G = (V, E),vo) {
/* Input: A graph G = (V, E), an initial node vo € V */
/* Output: All nodes being reachable from v in a depth first manner */
For all nodes v € V {
mark[v] = 0;

DFS(G, vo);
}

DFS(G = (V, E),v) {
Output: “Node v";
mark[v] =1;
For all successor nodes u of v {
If (mark[u] =0) {
DFS(G,u);
}

Figure 2.3. Depth first search in a directed graph

2.5 Complexity of Algorithms

Algorithms will typically be judged according to their running time and space
requirements. In complexity theory, these resource demands are measured in
terms of the input size. This way, different algorithms for the same problems
can be compared to each other.

Complexity. The time complexity t4(n) of an algorithm A denotes the
maximal number of steps A needs for solving a problem instance with input
size m. Analogously, the space complexity s4(n) denotes the maximal
number of memory cells used to solve a problem with input size n.

Asymptotic complexity analysis. Often, it is impossible to determine the
exact complexity of an algorithm A. However, then one is at least interested
in the rate of growth of the functions t4(n) and sa(n). Good estimations
of this growth serve as criteria to judge the quality of the algorithm. When
describing the growth, it is useful, for example, to neglect constant factors.
This approach is justified as the constant factors depend quite strongly on
such technical implementation details as the chosen programming language.
In the analysis, the influence of those technical details should not prevent
one from recognizing the essentials. Moreover, it seems reasonable not to
neglect only constant factors, but to concentrate in the complexity analysis
solely on the dominant terms of the complexity functions. Here, one speaks of
asymptotic analysis, a widespread analysis technique in computer science.

16 2. Basics

Indeed, without this technique many basic insights in computer science would
not have been gained.

For asymptotically characterizing upper bounds of a complexity function f :
N — R{, one uses the notation

if there exist two constants ¢,ng € N such that for all n > ng
f(n) <c-g(n).

In fact, besides constant factors, this notation also neglects terms which are
of secondary importance for the growth of the investigated function. We read
“f is of order at most ¢”.

Example 2.4. f(n) = O(1) means f(n) < c for a constant c.
f(n) = n®M) expresses that f is bounded by a polynomial in n. <&

If we are interested in lower bounds for a complexity function f(n), then the
following notation is used. We say

read “f is of order at least g”, if there exist two constants ¢,n9 € N, such
that for all n > ng

f(n) > c-g(n).

Furthermore, we write

if f(n) = O(g(n)) and g(n) = O(f(n)), i-e., if the rates of growth are identical
for f and g.

In many applications, only those algorithms are practical whose running time
is bounded from above by a polynomial. An important — maybe the most
important — task in theoretical computer science is to answer the question of
when and for which problems such algorithms exist. In the following, we will
concentrate our description on decision problems.

The complexity class P. The class P (polynomial time) denotes the set
of all decision problems that can be solved by means of polynomial time
algorithms. Obviously, the space complexity of a polynomial time algorithm
is also polynomially bounded.

2.5 Complexity of Algorithms 17

The complexity class NP. The subsequently formally defined class NP
(nondeterministic polynomial) denotes problems that can at least be solved
efficiently in a nondeterministic way. In contrast to the deterministic case,
where in each situation exactly one action can be performed, in the nonde-
terministic case, a variety of different actions are possible.

If, for example, one considers the search for a proof of a mathematical the-
orem, then in case of a wrong claim there does not exist a proof at all. If,
however, the claim is true, then in general different proofs can be provided.
For proving the correctness of a theorem it is merely important that at least
one proof can be given. Of course, finding a proof can be arbitrarily difficult.
But if a proof is presented, then it is no longer difficult to understand it and
to accept the claim. In complexity theory, such a proof is called a witness
or certificate.

Definition 2.5. A decision problem A belongs to NP if there exist a poly-
nomial p and a polynomial time algorithm A which computes, for each input
x and each possible certificate y of length at most p(|z|), a value t(x,y) such
that:

1. If the answer to the input x is “No”, then t(x,y) = 0 for all possible
certificates.

2. If the answer to the input x is “Yes”, then t(z,y) = 1 for at least one
certificate.

«p L NP”. Obviously, the class P is contained in the class NP. The most
important open problem in modern complexity theory is the question

.
“P < NP”.

The importance of this question originates from the fact that there are nu-
merous practically relevant tasks for which polynomial algorithms are not
known, but for which membership in the class NP can be proven. With-

out a clarification of the question “P < NP” it is not possible of deciding
whether these tasks cannot be solved in polynomial time at all, or whether
such algorithms have only not been found so far.

Nearly all experts in the area of complexity theory conjecture that the classes
P and NP are different. This conjecture is supported by a series of re-
sults in the investigation of the subsequently defined concepts of polynomial
time reduction and NP -complete problems. NP-complete problems represent
the “hardest” problems within the class NP. It is proven that if any NP-
complete problem can be solved in polynomial time, then so can all other
problems in NP, and it follows that P = NP.

18 2. Basics

Definition 2.6. Let A and B two problems. A is called polynomial time
reducible to B, if, under the assumption that arbitrary instances of B can be
solved in constant time, a polynomial time algorithm for A exists. We write

A <p B.
Now the following lemma follows easily:
Lemma 2.7. If A<p B and B € P then A € P. O

Definition 2.8. 1. A problem A is called NP-hard if oll B € NP satisfy:
B<p A.
2. A problem A is called NP-complete, if both A is NP-hard and A €
NP.

Theorem 2.9. Let A be an NP-complete problem. Then the following holds:

1. If A€ P then P =NP.
2. If A ¢ P then all NP-complete problems B satisfy B ¢ P.

Proof. Let A € P, and let B be an arbitrary problem in NP. As in particular
A is NP-hard, we have B <p A. Then Lemma 2.7 implies B € P. As B was
chosen arbitrarily from NP, we have P = NP.

Now let A ¢ P, and let B be an NP-complete problem with B € P. Accord-
ing to the first statement of the theorem we have P = NP, and hence 4 € P
in contradiction to the assumption. m|

Example 2.10. (1) A man has invested all his money in 50 gold nuggets.
The weight of the i-th nugget is g; ounces. For simplicity, we assume that
91,92, .- - , gso are natural numbers. When the man dies, his last will contains
the following condition: If his riches can be split into two parts of equal
weight, then each of his daughters should obtain one of these parts. If instead
there is no such partition, then all his gold should go to the church.

The general question therefore is: Is it possible to divide a set of n natural
numbers {g1,... ,gn} in two subsets such that the sums over each subset are
equal ? This problem is called PARTITION and is NP-complete. The
straightforward trial-and-error method is only practical for small n, as it
requires testing of all 2" possibilities in the worst case. Note that if someone
gives you a solution, you can verify this solution very easily.

(2) The following problem, called HAMILTONIAN CIRCUIT, is also
NP-complete. Given an undirected graph with n nodes, does there exist a
cyclic path of length n through the graph which traverses each node in the
graph exactly once ? <

2.6 Hashing 19

Definition 2.11. The complementary problem A of a decision problem A
results from A by negating all answers.

A decision problem A is called co-NP-complete, if the complementary prob-
lem A is NP -complete.

Example 2.12. The following problem is co-NP-complete:

Input: An undirected graph with n nodes.

Output: “Yes”, if there does not exist a cyclic path of length n which tra-
verses each node in the graph exactly once. “No”, otherwise. <

2.6 Hashing

Hashing. The term hashing denotes data storage and retrieval mechanisms
which compute the addresses of the data records from corresponding keys.
Formally, a hash function

h:X—> A

has to be defined which maps the set of keys X to a set of addresses A.
A data record with a key z € X is then stored at the address h(z). Each
subsequent retrieval request for this data record consists solely of computing
the hash value h(z) and searching at this address.

In the design of hash techniques two important aspects have to be considered:

Collisions: It has to be determined how the case of two keys z and y with
z # y and identical hash value h(z) = h(y) is handled.

Choice of hash function: The hash function A should be easy to compute
and should distribute the set of keys X as even and as randomly as possible
(in order to keep the number of collisions small).

Collision list. An easy way to treat collisions is to link data objects with
identical hash values together in a linear list, the so-called collision list.
Searching for a data record with key z then requires computing h(zx), and
subsequently searching sequentially for z in the collision list corresponding
to h(zx).

Example 2.13. Let X be the set of all strings, and let A = {0,...,99}. For
a string x = z1 ...z, we define the corresponding hash value by

k
h(z) =h(zy...28) = Zasc(x,-) (mod 100),

20 2. Basics

17
18

HAMBURG

DRESDEN

99 444>|HEL$NKI| PAA’iLUXEMBURG| |

Figure 2.4. Hash table with collision lists

where asc(z;) denotes the ASCII value of symbol z; (e.g., asc(‘A’) =65, ...,
asc(‘Z’) = 90).

Then h(HELSINKI) = 72+ 69 + 76 + 83 + 73 + 78 + 75 + 73 (mod 100) =
99, h(DRESDEN) = 17, h(LUXEMBURG) = 99, h(HAMBURG) = 18. If
collision lists are used, the resulting hash table is depicted in Fig. 2.4. <&

2.7 Finite Automata and Finite State Machines

Finite automata. Finite automata provide a mathematical model for
describing computation processes whose memory requirements are bounded
by a constant. A finite automaton consists of a finite set of (memory) states
and a specification of the state transitions. The state transitions themselves
depend on the current state and on the current input.

State transition. As an easy example, let us consider a counter with reset
state go- Whenever the input is 1, the counter periodically traverses the
states qo, q1, ¢z, q3- If the input is 0, then the counter immediately returns
to the reset state go. The behavior of the counter can be precisely described
by a transition table or by a state diagram, see Fig. 2.5. A state diagram
is a graph whose nodes are labeled by the names of the states and whose
edges characterize the state transitions. The labels of the edges identify the
inputs on which the transitions takes place.

Formally, a finite state machine is defined by the following components:

o the state set (),

e the input alphabet 1,

e the next-state function 6 : Q x I — @,
e and the initial state gg.

Depending on the context, a subset of the states may be distinguished as the
set of final states.

2.7 Finite Automata and Finite State Machines 21

State Input | Successor
state
qo 0 o
9o 1 Q1
qi1 0 qdo
q 1 q2
q2 0 qo
q2 1 q3
q3 0 qo0
g3 1 qo

Figure 2.5. Transition table and state diagram of a finite automaton

Finite state machine. A sequential system or a finite state machine is
a finite automaton which is extended by an output behavior. Each transition
in the finite state machine is associated with an output symbol. Whenever
a transition takes place, the associated output symbol is sent to an output
device. In Fig. 2.6, a finite state machine is shown which has the same
internal behavior as the counter in Fig. 2.5. Additionally, the output is 1
whenever the machine enters the reset state gp, and the output is 0 for all
other transitions.

Formally, a finite state machine is a finite automaton which is extended by
the following two components:

e the output alphabet O, and
e the output function A: Q x I — O.

State Input | Successor Output
state
qo 0 q 1
o 1 Q 0
q 0 qo0 1
@ 1 g2 0
q2 0 9o 1
q2 1 qs 0
g3 0 90 1
g3 1 9 1

Figure 2.6. Transition table and state diagram of a finite state machine

22 2. Basics

2.8 References

The topics of this chapter all belong to the fundamentals of computer science
and discrete mathematics, so we cite merely a small collection of relevant
textbooks. Detailed information on the topics of discrete mathematics can be
found in [Big90]. The design and analysis of algorithms and data structures
is covered in [AHU74] and [CLR90]. Introductions to the theory of NP-
completeness can be found in [GJ78, Pap94]. In particular, the compendium
[GJ78] additionally contains a complexity theoretical classification of many
problems, in particular with regard to NP-completeness.

A standard work concerning finite automata is [HU78]. Finally, the books

[Mic94] and [HS96] excellently cover algorithmic aspects and the significance
of finite state machines in VLSI design.

Part I

Data Structures for Switching Functions

23

3. Boolean Functions

Pure mathematics was discovered by Boole in a work
which he called “The Laws of Thought”.

Bertrand Russell (1872-1970)

The basic components of computers and other digital systems are circuits.
Circuits consist of wires connecting one or several voltage input ports with
one or several output ports. The simplified model for describing the relation
between input and output voltage merely starts from two well-distinguished
signals: either there is a voltage, indicated by the value 1, or there is none,
indicated by the value 0. Of course, in a technical realization, there will be
deviations from these nominal values. However, as long as these deviations
do not exceed certain limits, they do not affect the basic functionality of the
circuit. Hence, in fact, the statement that a signal is two-valued or binary
simply means that the value of this signal is within one of two non-overlapping
continuous ranges.

VLSI circuits consist of a complex combination of a limited number of basic
elements, so-called gates, which perform simple logical operations. These
operations do not depend on the exact value of the input signal, but only
on the corresponding range. For modeling the binary signals one uses binary
variables, i.e., variables with values in the domain {0,1}. If the binary vari-
ables z1,... ,z, denote input signals of a circuit, then the output signal y
(which is determined uniquely by the input variables) can be described in
terms of switching functions y = f(x1,...,2,). Obviously, those switching
functions are defined on the set of bit vectors {0,1}™. In 1936, this “cal-
culus of switching circuits” was developed by C. E. Shannon. He showed
how the basic rules of classical logic and elementary set theory, formulated
by G. Boole in his Laws of Thought in 1854, could be used to describe and
analyze circuits, too.

The purpose of Section 3.1 and Section 3.2 of this chapter is to review fun-
damental definitions and basic properties of Boolean algebra and Boolean
functions. In Section 3.3, we consider the special case of switching functions.
At first glance, these functions, which map tuples of variables to one of only
two possible values, may look very simple. However, the almost unlimited

26 3. Boolean Functions

possibilities for combining switching functions through many stages of mod-
ern engineering systems give Boolean analysis its own typical complexity in
theory and practice.

3.1 Boolean Algebra

Definition 3.1. A set A together with two distinguished, distinct elements
0 and 1, two binary operations +, -, and a unary operation ~ is called a
Boolean algebra (A;+,-,7,0,1) if for all a,b,c € A the following azioms
are satisfied:

Commutative law:
a+b=b+a and a-b=>-a.
Distributive law:
a-(b+c)=(a-b)+(a-¢c) and a+ (b-¢c)=(a+b)-(a+c).

Identity law:

a+0=a and a-1=a.
Complement law:

a+a=1 and a-a=0.

The set A is called the carrier. The distinguished elements 0 and 1 are
called the zero element and the one element, respectively.

In the following, we shall only be concerned with finite Boolean algebras,
i.e., Boolean algebras whose carrier is finite. Following the usual parentheses
conventions, the unary operation ~ couples more tightly than -, and - couples
more tightly than +. As usual in arithmetics, we may omit the symbol -, i.e.,
a - b is also written ab.

Example 3.2. (1) If 25 denotes the power set of a set S, and if for each set
A C S the term A denotes the set S\ A, then

2%u,n,”,0,9)

is a Boolean algebra, the so-called set algebra of S.
(2) For a natural number n > 1 let T}, be the set of divisors of n. Then

(Tn; lcm('a ')7 ng('a ')a (')_17]-; n)

3.1 Boolean Algebra 27

constitutes a Boolean algebra, where lcm(-,-) and ged(.,
common multiple and the greatest common divisor, and (-)
value in the sense (z)~! = n/z.

(3) Let B=(A;+,-,7,0,1) be a Boolean algebra. The set F),(.A) of all func-

tions from A™ to A constitutes a Boolean algebra F(A) = (F,(A); +,-,,0,1)
with respect to the following operations and elements:

-) denote the least
~1 is the reciprocal

f+g: A" — A a=(ay,...,a,) = f(a) + g(a),
fg: A" — A a=(a,...,a,) — f(a)-g(a),
A" — A a=(a,...,an) — f(a),

0

1

AT — A (al,... ,an)r—>
A" — A (al,... ,an)|—>

7

=1 |

&

Investigating Boolean algebras, one realizes that identities and properties
come in pairs. Briefly stated, the so-called principle of duality expresses
that for each valid equation over a Boolean algebra, the dual equation is also
valid.

Definition 3.3. Let G denote an equation over a Boolean algebra B =
(A;+,+,7,0,1). The equation G' resulting from G by systematically exchang-
ing the two operations + and -, and by exchanging the two distinguished
elements 0 and 1, is called the dual equation of G.

For example, the dual equation of the axiom a+0 = a is the equation a-1 = a.

Theorem 3.4. (Principle of duality)
Let G' be the dual equation of G. If G is a true proposition in the theory of
Boolean algebra, then this also holds for G'.

Proof. Considering the underlying axioms of a Boolean algebra, one immedi-
ately recognizes that the set of axioms does not change, when 0 and 1, and
+ and -, respectively, are exchanged.

Consequently, for each equation which can be deduced from the axioms of the
Boolean algebra, the dual proposition can also be deduced. In each deduction
step, one merely uses the dual of the justifying axiom. |

By explicitly exploiting the principle of duality, propositions in Boolean al-
gebra are always formulated in pairs. A proof, however, is only required for
one of the two versions.

Theorem 3.5. (Computation rules)
For any elements a,b,c € A in a Boolean algebra (A;+,-,7,0,1) we have the
computation rules shown in Fig. 3.1.

28 3. Boolean Functions

Idempotence:

a+a=a and a-a=a,
Properties of 1 and 0:

a+1=1 and a-0=0,
Absorption:

a+(a-b)=a and a-(a+bd)=a,
Associativity:
a+(b+c)=(a+b)+c and a-(b-c)=(a-b) ¢,

DeMorgan’s rules:

a+b=a-b and a-b=a+b,

Involution:

Qll
I
o

Figure 3.1. Computation rules in a Boolean algebra

Proof. Idempotence:

a=a+0 (identity)
=a+(a-a) (complementation)
= (a+ a) - (a + @) (distributivity)
=(a+a)-1 (complementation)
=a+a (identity)
Particular property of 1:
a+1=(a+1)-1 (identity)
= (a+1)- (a +a) (complementation)
=a+(1-a) (distributivity)
=a+a (commutativity, identity)
=1 (complementation)
Absorption:
a+ (a-b) = (a-1)+ (a-b) (identity)
=a-(1+0b) distributivity)

I
ISIERSIERS]

— .
NN N N

identity)

commutativity, property of 1)

3.1 Boolean Algebra 29

Associativity:

Let s; = a+ (b+ ¢) denote the left side and s, = (a + b) + ¢ denote the right
side of the equation to be proved. First we show a-s; = a - s,:

a-si=a-(a+ (b+c))
= (a-a) + (a- (b+ c)) (distributivity)
=a+(a-(b+c)) (idempotence)
=a (absorption)

Analogously, a - s, = a and, hence, a-s; = a-s,.. Now we prove @-s; = a- S:

a-si=a-(a+(b+¢))
=(a-a)+(a-(b+c)) (distributivity)
=0+ (a-(b+¢)) (complementation)

-(b+¢) (commutativity, identity)

—~

Analogously, @- s, =a- (b+¢) and, hence, a-s; =a - s,.
Altogether we obtain:

si=s8-1 (identity)
=s-(a+a) (complementation)
= (s51-a) + (s; -a) (distributivity)
= (s, - a) + (s, - @) (commutativity, a - s; = a - s)
=s,-(a+a) (distributivity)
=s,-1 (complementation)
(

= s, identity)

DeMorgan’s rules:

First we show that the complement @ of an element is already uniquely deter-
mined by satisfying the two complement laws. For this reason, assume that
two elements b and ¢ satisfy the complement laws with respect to a, i.e

a+b=1, a-b=0, a+c=1, a-c=0.
This implies
b=b-(a+c)+a-c=b-a+b-c+a-c
=b-a+(b+a)-c=0+1-c=c.
Now we show that a + b and @ - b satisfy the two complement laws:

(a+b)+@-b)=((a+b)+a)-((a+b)+b) =((a+a)+b)-(a+ (b+0))
=(1+b)-(a+1)=1-1=1.
(a+b)-(@a-b)=a-a-b+b-a-b=0+0=0.

30 3. Boolean Functions

Involution: Due to

as in the proof of DeMorgan’s rules, we can deduce that a is the complement
ofa,ie., a=a. m|

The last theorem of this section, which will be stated without proof, expresses
that for each finite Boolean algebra there exists a set algebra of exactly the
same structure.

Definition 3.6. Two Boolean algebras B = (A;+,-,7,0,1) and B' =
(A" 4,70, 1") are called isomorphic if there exists a bijective map-
ping ¢ : A — A’ such that for all a,b € A:

d(a+b) = ¢(a) +' ¢(b),
$la-b) = $(a) ' $(b),
(@) = ¢(a) ,
$(0) =0,
$(1) =1

Theorem 3.7. (Stone’s representation theorem)
Every finite Boolean algebra is isomorphic to the set algebra of some finite
set. O

3.2 Boolean Formulas and Boolean Functions

Boolean functions are particular functions which can be described in terms
of expressions over a Boolean algebra, so-called Boolean formulas.

Definition 3.8. Let B = (A;+,-,7,0,1) be a Boolean algebra. An expres-

sion consisting of n variable symbols x4, ... ,x,, the symbols +,-,, and the
elements of A is called an n-variable Boolean formula if it satisfies the
following recursive rules:

1. The elements of A are Boolean formulas.

2. The variable symbols z1,... ,x, are Boolean formulas.
3. If F and G are Boolean formulas, then so are

a) (F) +(G),

b) (F)-(G), and

¢) (F)

~—

3.2 Boolean Formulas and Boolean Functions 31

4. An expression is a Boolean formula if and only if it can be produced by
means of finitely many applications of the rules 1, 2, and 3.

For the subsequent treatment, we relax this definition slightly. We still call
an expression a Boolean formula if it can be derived from a Boolean for-
mula by removing a pair of parentheses, and if this process (by means of the
usual parentheses convention) still allows us to recognize the original mean-
ing uniquely. Hence, the expressions (z1) + (a) and z; + a are equivalent in
this context.

In the above definition, Boolean formulas are merely regarded as formal
strings of symbols. In order to transform these formulas into functions, the
symbols +,-,” are interpreted as Boolean operations, and the variable sym-
bols x; are considered as input variables that can be substituted by elements
of the Boolean algebra. To be more specific, let us investigate a Boolean
algebra B = (A;+,-,7,0,1) and a formula F over this algebra. F' induces
the function fr,

fF:.An—>.A, a=(a1,...,an)HfF(al,...,an).

Here, fr(ai,... ,ay) denotes the element of A which results from substituting
the variable symbols z; in F' by the elements a; € A, and, according to the
sequence being defined by F', performing the Boolean operations on these
elements.

Definition 3.9. Let B = (A;+,-,7,0,1) be a Boolean algebra. An n-variable
function f : A" — A is called @ Boolean function if it is induced by a
Boolean formula F. We say that formula F represents the function f. The
set of all Boolean functions over B is denoted by P,(B).

Example 3.10. Let us consider the set algebra B = {{1,2},U,Nn, ", 0, {1,2}}
of the set {1,2} and the formula

F=x +7%1 2.

The tabular representation of the induced Boolean function fr is shown in
Fig. 3.2. O

Let B = (A;+,-,7,0,1) be a Boolean algebra. The set P,(B) of all n-variable
Boolean functions over the algebra B is a subset of the set F},(A) of all func-
tions from A" to A. According to Example 3.2, the set F,(A) with respect
to the operations +, -, (adjusted canonically to functions) is a Boolean alge-
bra. Of course, in the same way the operations +,-,” of B induce operations
on P,(B). In the following, we state the important property that the subset
P, (B) is closed under these operations, and that it constitutes a Boolean
algebra, too, a subalgebra of the Boolean algebra of all n-variable functions.

32 3. Boolean Functions

L2 [@ [fr | [& [@ [fr |
0 0 0 {2} 1] 12}
0 {1} {1} {2} {1} {1,2}
0 {2} {2} {2} {2} {2}
0 {1,2} {1,2} {2} {1,2} {1,2}
{1} 0 {1} {1,2} 0 {1,2}
{1} {1} {1} {1,2} {1} {1,2}
{1} {2} {1,2} {1,2} {2} {1,2}
{1} {1,2} {1,2} {1,2} {1,2} {1,2}

Figure 3.2. Tabular representation of a Boolean function

Definition 3.11. Let B = (A;+,-,7,0,1) and B' = (A';+,-,7,0,1) be two
Boolean algebras with the same operations and the same zero and one ele-
ments. B is called a subalgebra of B' if the carrier A is a subset of the
carrier A'.

Theorem 3.12. Let B = (A;+,-,7,0,1) be a Boolean algebra. The set
P, (B) of all n-variable Boolean functions over B with respect to the oper-
ations and constants

+ : addition of functions,

* : multiplication of functions,

- complement operation on functions,
zero function,

one function,

= 1o

defines a Boolean algebra which is a subalgebra of the Boolean algebra
(Fn(A);+,-,7,0,1) of all n-variable functions over B. O

It is an interesting fact that the relationship between Boolean formulas and
Boolean functions is not one-to-one: many different formulas represent the
same Boolean functions. An important and central task in many applications
of Boolean algebra is to find “good” formulas — according to problem-specific
quality criteria — for representing certain concrete Boolean functions under
investigation.

Example 3.13. The Boolean formulas (z1 + z2) - (23 + @2 - Ta + Z1 - 2) and
x3 - (x1 + x2) + 22 - (T1 + T1) represent the same Boolean function over all
Boolean algebras, as

(1 + x2) - (x3 + T2 - Tqg + T1 - T2)
=T T3+ X1 T2 T4+ T2 T3+ T2 T4+ T1 -T2
=21 T3+ T2 T3+ X2 -Tg+7T1 T2

= x5 - (1 + 22) + 22 - (T1 + T1).

3.2 Boolean Formulas and Boolean Functions 33

If the quality criterion is to minimize the number of variable symbols oc-
curring in the formula, the last formula will be preferred to the first one.
O

Two n-variable Boolean formulas over a Boolean algebra B are said to be
equivalent if for all 2" input elements in {0, 1}" the function values of both
functions coincide.

Theorem 3.14. Let B = (A,+,-,7,0,1) be a Boolean algebra. If two
Boolean functions f and g are equivalent, then they are identical, i.e., their
function values coincide for all inputs.

Proof. Let F be a Boolean formula representing f. Using the stated axioms
and identities as well as the definition of Boolean expressions, it can be shown
that the formula can be expanded to the following sum of products:

n

— e en
F= E aler, ... en) x5t -zl
(e1;...,en)€{0,1}m

where z} := z;, ¥ := T;, and a(es,...,e,) € A. Hence, the function
f is defined uniquely by the coefficients a(eq,...,en). The coefficients
ale,... ,en) themselves only depend on the function values of f for the
inputs (eq,...,e,) € {0,1}". In the same way, the 2" coefficients uniquely
describing the function g only depend on the function values for the inputs
(e1,-..,en) € {0,1}™. Hence, if f and g are equivalent, then they are iden-
tical. O

As a consequence of the last proposition and its proof, the number of different
n-variable Boolean functions can be determined. As the function values of
all 2™ inputs {0,1}" can be chosen freely, there are #A%" n-variable Boolean
functions, where #.4 is the cardinality of the carrier. However, the number
of all functions A" — A is #A#A” | as the function values of all the #.A4"
inputs can be chosen freely. Hence, we have:

Theorem 3.15. (1) If the carrier of a Boolean algebra B = (A;+,-,7,0,1)
consists of more than two elements, then there are functions A™ — A which
are not Boolean functions.

(2) If the carrier consists of exactly two elements, then each function A™ — A
is a Boolean function. |

This fundamental fact is one of the reasons why Boolean algebras with two
elements, investigated in detail in Section 3.3, are of particular importance.

Example 3.16. Let S = {1,2} and (2°;U,N, ", 0, S) be the set algebra of S.
The function f: S* = S,

34 3. Boolean Functions

— {2} if (55'1,372,.73'3,(13'4) = (@, @,@; @),
Flor, 22,25, 24) = {{1} otherwise,

is not a Boolean function. This can be seen as follows. In the notation of the
previous proof we have

a(0707070) = f(wa @7®7 @) = {2}7
a(1,0,0,0) = f(S,0,0,0) = {1}.

Hence,
f({1},0,0,0) = U aler, ez, e3,eq) N {1} NP2 NP2 NP
(e1,...,ea)€{0,1}*
= (a(1,0,0,0) N {1}) U (a(0,0,0,0) N {2}) = {1} U {2} = S,
in contradiction to the definition of f. <&

3.3 Switching Functions

In the following, we discuss the special case of Boolean algebra with two
elements, which can be seen as the theoretical foundation of circuit design.
The significance of this connection was recognized very early. In 1910, the
physician P. Ehrenfest vaguely suggested applying Boolean algebra to the
design of switching systems (in telephone networks). Much more detailed
treatments appeared independently between 1936 and 1938 in Japan, the
United States, and the Soviet Union. Without doubt, the most influential
paper in this period was C. E. Shannon’s “Symbolic Analysis of Relay and
Switching Circuits”. Nowadays, the developed calculus of switching functions
is widely used and applied.

Definition 3.17. Let the operations +,-,” on the set {0,1} be defined as
follows:

e a+ b= max{a,b},

e a-b=min{a,b},

e 0=1,1=0.

Then ({0,1},+,-,7,0,1) is a Boolean algebra, called the switching algebra.

In the following, the set {0,1} is denoted by B, and the term a-b is abbreviated
by ab.

According to Theorem 3.7, all Boolean algebras with exactly two elements
are isomorphic to the switching algebra.

3.3 Switching Functions 35

Definition 3.18. An n-variable function f : B® — B is called o switching
function. The set of all n-variable switching functions is denoted by B, .

As a consequence of Theorem 3.15, each n-variable switching function is a
Boolean function. If it is clear from the context that the underlying Boolean
algebra is the switching algebra, the terms Boolean function and switching
function can be used synonymously.

If C is a circuit with n inputs signals and m output signals, then the in-
put/output behavior of C' can be described in terms of an m-tuple f =
(f1,---, fm) of switching functions. The set of n-variable switching func-
tions with m outputs is denoted by B, ,,,. Obviously, B, ; coincides with the
already defined set B, .

The immense complexity observed when dealing with switching functions is
caused substantially by the very rapid growth of the cardinality of By, ,, .

Theorem 3.19. The number of different n-variable switching functions with
m outputs amounts to

#]Bn,m = 2m2"'

In particular, the number of n-variable switching functions with one output
amounts to

#B, =2%".

Proof. Let A and B be finite sets. Then there are #B#4 different mappings
from A to B. For A=B" and B = B™ we obtain #B,, ,, = (2™)?" = 2m?".
O

The immense growth of #B, ,, can be illustrated by the values in Fig. 3.3
which shows the cardinalities of B,, and B, ,,, for some of the smallest values
of n and m.

#B, =21 =16 #Byo = 28 #By s = 2'2
#Bs = 28 =256 #Bz, = 26 #By 3 = 2%
#B, = 2'% = 65536 #Byo = 2%2 #Bys = 28
#Bs =252 > 4-10° #Bs o = 25

#Bs = 254 > 16-10'8

Figure 3.3. Growth of the number of Boolean functions

Before going into some special classes of switching functions, we will introduce
some basic notation.

36 3. Boolean Functions

Definition 3.20. Let f € B, .

1. A vector a = (a1,... ,a,) € B" is called a satisfying assignment of f
if fa) = 1.

2. The set of all satisfying assignments and the set of all non-satisfying
assignments of f are called the on-set of f and off-setof f, respectively.

on(f) = {(a1,...,a,) € B : f(a,...,a,) =1},
Oﬂ(f) = {(a17"' 7an) €B" :f(a17"' 7an) :0}

3. A variable x; is called essential for f if there exists an input assignment
(a1,.-. ,an) with

flai, ... ,00,0,a541,... ,a,) # fla1,-.. 60,1, Q541, ... ,ap).

A switching function f can be identified with its on-set. This identification
is justified, as its on-set uniquely describes the function f. More precisely,
for each switching function f € B, we have the relation

= Xon(s):

where xon(s) denotes the characteristic function of on(f), i.e.,

_ [1 ifa€on(f),
Xon(y)(a) = {0 otherwise.

By using the notion of essential variables, two functions with different num-
bers of variables can be related to each other. For example, in order to
consider functions from B,, as a subset of B, 1, a dummy variable has to be
introduced. However, this dummy variable does not have any influence on
the actual computation, and, hence, this variable is not essential in the sense
of the above definition. As a consequence of this notion, two functions with
different numbers of variables can be considered as equal if they are equal
after eliminating all inessential variables.

3.3.1 Switching Functions with at Most Two Variables

Switching functions depending on at most two variables occur particularly
often and therefore have their own terminology.

Switching functions in zero variables. The Boolean constants 0, 1 are
the only two switching functions which do not possess any essential variables.
These two functions, also known as contradiction and tautology, belong
to any set B,, n > 0. For any input size n, they can be defined by

1(z1,...,2,) =1 and O(z1,...,7,) =0.

3.3 Switching Functions 37

Switching functions in one variable. According to Theorem 3.19, there
are exactly four switching functions in a single variable ;. Two of them are
the constant functions fi(z1) =0 and fa(z1) = 1.

A literal denotes a variable z; or its complement Z;. The two remaining
switching functions in one variable are just the two literals, f3(z1) = 21 and

fa(z1) =77,

Switching functions in two variables. Theorem 3.19 implies that there
are 16 switching functions in two variables, which are also called binary
operations. Among those, again, are the two constant functions as well as
the four literals 1, 2, Z1, Tz. The remaining 10 functions of By have the
property that both variables are essential. Due to their frequent application
they are worth enumerating explicitly:

Disjunction (OR, V, +):

OR(z1,22) =1 ifand only if z; =1 or x5 = 1.
Conjunction (AND, A, -):

AND(zq,22) =1 if and only if z; =1 and z, = 1.
Equivalence (EQUIVALENCE, <, =, =):

EQUIVALENCE(z1,22) =1 if and only if z; = z5.
Implication (IMPLY, =):

IMPLY(z1,22) =1 if and only if 1 =0 or z1 = x5 = 1.
R-L-implication (IMPLIED-BY, «):

IMPLIED-BY(z1,z2) =1 if and only if x5 =0 or z; = x5 = 1.

The other 5 functions can be obtained from these function by negation:

Negated disjunction (NOR, +, V):
NOR(z1,22) =1 if and only if z; =0 and x5 = 0.
Negated conjunction (NAND, -, A):
NAND(z1,22) =1 if and only if 23 =0 or 22 =0.
Parity function (EX-OR, EXOR, XOR, @, mod2):
EX-OR(z1,z2) =1 if and only if z; # z2.
Negated implication (NOT-IMPLY, #):
NOT-IMPLY (z;,22) =1 if and only if z; =1 and 2 = 0.
Negated R-L-implication (NOT-IMPLIED-BY, #):
NOT-IMPLIED-BY(z1,22) =1 if and only if 21 =0 and z3 = 1.

38 3. Boolean Functions

Instead of the functional notation we will mostly prefer to use the more
compact operator notation. We write

z1 + x> instead of OR(z1,x2),
x1 - 2 instead of AND(z1,z2),

21 = x2 instead of EQUIVALENCE(zq,z-),
x1 = 22 instead of IMPLY(z1,22),

21 < x2 instead of IMPLIED-BY(z1,z2),
r1 + x5 instead of NOR(zy,25),

1 - xo instead of NAND(zq,z2),

x1 @ 2 instead of EX-OR(z1,z2),

1 7 x2 instead of NOT-IMPLY(z1,z5),

x1 £ 22 instead of NOT-IMPLIED-BY(z1,22).

The small size of the domain of two-variable switching functions allows us to
present the functions f € By in tabular form as in Fig. 3.4.

zy|x2||fo|fi|f2| fa|fa|fs|fe|fr|fe|fo|fro|f11|fr2|fi3|f14|f15

0 Alri|Elm|@|+ |+ =z |<|Tr|=| 7| 1
0|0(0{0|0|0]|0Of0O|O|0O|2|2T|1 |11]|1|1]|1
0|14y0{0(0|0]1f1)1|1{0|0|0|O0O|21 |1 |1|1
1100022001 j1j0|0|j1|1|0]|O|1]|1
1j140f1{0(1(0f1(0j1j0|1j0|1(0j1(0]|1

Figure 3.4. Enumeration of binary switching functions

3.3.2 Subfunctions and Shannon’s Expansion

An important foundation for computations with Boolean and switching func-
tion is the so-called Shannon expansion, first formulated by Boole. This the-
orem establishes an important link between a function and its subfunctions.
Here, a function g is called subfunction of f if it results from f by assigning
constants to some of its input variables. In many contexts, knowledge of
the properties of certain subfunctions yields essential information about the
function itself.

Theorem 3.21. (Shannon’s expansion)
Let f € B, be an n-variable switching function. For the subfunctions g,h €
B,,_1 defined by

3.3 Switching Functions 39

g(z1,... ,xp—1) = f(x1,... ,25-1,0),
h(.’L’l,... amn—l) = f(.'L'l,... ,.’L’n_l,].)

it holds that

f=7,-9 + zn-h (3.1)
Proof. Let a = (a1,-..,a,) be an assignment to the input variables
T1,---,Tn- In case a, = 0 the theorem immediately follows from the
equation f(ai,...,a,) =g(ay,... ,an,_1). In case a, = 1 it follows from the
equation f(ai,...,a,) = h(ai,... ,ap-1)- O

A subfunction originates from fixing one or several input variables. For this
reason, each subfunction of a function f € B, can be specified by a vector
c € {0,1,id}™. If the i-th component of ¢ is the constant 0 or 1, the i-th
input variable z; in f is set to 0 or 1, respectively; if ¢; has the value id, then
the variable z; remains unfixed. Hence, the vector ¢ defines the subfunction

fe(me, ... ymy) = flei(zr),- .-, cn(mn))-

From this definition of a subfunction, it follows immediately that a switching
function can have at most 3" subfunctions.

Corollary 3.22. An n-variable switching function f € B, has at most 3"
different subfunctions. a

In general, the subfunctions of a function f are not pairwise different.

Example 3.23. The switching function f(z1,z2,z3) = 21 + (2 - T3) has 9
different subfunctions:

fe=0 for ce {(0,0,0),(0,0,1),(0,0,id), (0,1,1),
(0,id, 1)},

fo=1 for ce {(0,1,0),(1,0,0),(1,0,1),(1,0,id),
(1,1,0), (1, ,1),(, ,id), (1,id, 0),
(1,1d 1),(1,id,id), (id, 1,0)},

fe=m for ce {(id,0,0),(id,0,1), (id,0,id), (id, 1, 1),
(id,id, 1)},

fe =122 for ce 0,id,0)},

fo=73 for ce {(0,1,id)},

fe=21+ 20 for ce

fe=x21+7%3 for ce
fe = 2273 for ce

id, 1,id)},
0,id,id)},

{
{
{
{
{
{(id,id,id)} .

(
(
(id,id, 0)},
(
(
(

fe=x1+ 273 for cé€

40 3. Boolean Functions

In Shannon’s expansion of Equation (3.1), the involved subfunctions g and
h are defined by the vectors ¢ = (id,... ,id,0) and ¢' = (id,...,id,1). Of
course, the idea of Shannon’s expansion can also be transferred to other
subfunctions and to other operations.

Corollary 3.24. For each function f € B, and each 1 <i < n the following
holds:

1. Shannon’s expansion of the i-th argument:

flxe, ..o mn) =2 f(@1,--0 ,Ti-1, 1, Tiq1,- -+ s Tn)

+ T f(xh T Jm’i—1707$i+17 te 7'7771)'
2. Dual of Shannon’s expansion:

f(.il;'l,... ,lL’n) = (.CL', + f(.Z’l,... s Tic1,0,Tig1, - - - ,:I)n))
(Z'_, + f(.iL'l,... s Tim1, L, Tig1, ... ,.’L’n))

3. Shannon’s expansion with respect to ®:

fley, .. zn) =2 f(@1,... ,Ti-1, 1, Tig1,- -+ ,Zn)
EBx_zf(mla 7xi—1307$i+17"' ,.’L'n)-

O

Proof. The first statement is clear. The dual of Shannon’s expansion is a
consequence of the principle of duality. Shannon’s expansion with respect to
@ follows from the fact that for any assignment to z; either the first or the
second of the @-terms vanishes. m|

3.3.3 Visual Representation

To make use of geometric imagination and intuition in investigating Boolean
functions, the following geometric illustration of the domain B* = {0,1}"
of switching functions has turned out to be very fruitful. The single ar-
guments a = (a1,...,a,) € B" are interpreted as vertex coordinates of
an n-dimensional unit cube, so one can imagine B" as embedded in the
n-dimensional Euclidean space R™ (see Fig. 3.5). Due to this form of vi-
sualization the set B" is often called the n-dimensional Boolean cube.

Although it becomes quite hard to imagine a 4-,7-, or a 37-dimensional cube,
analogies from low-dimensional spaces can be used to deduce information
about the relations in higher dimensions. Maybe the representation of a
4-dimensional unit cube in Fig. 3.6 gives an initial idea in this direction.

3.3 Switching Functions 41

(0,1,1) (1,1,1)
(0,1) (1,1) (0,1,0) (1,1,0)
(0,0,1) (1,0,1)
0 1 (0,0) (1,0) (0,0,0) (1,0,0)

Figure 3.5. The one-, two-, and three-dimensional Boolean cubes with the coor-
dinates of their vertices

(0,0,0,0) -

(0’070)1)

Figure 3.6. The 4-dimensional Boolean cube

As a switching function f € B, assigns to each argument a € B"™ one of only
two possible values, f(a) € {0,1}, the cube visualizing the domain can also
be used to geometrically represent the function itself. For example, exactly
those vertices of the cube which represent an element in the on-set on(f) are
marked.

Example 3.25. Figure 3.7 shows a tabular representation and the geometric
visualization of the switching function f(x1,22,3) = 21 + (22 - T3). o

3.3.4 Monotone Switching Functions

In general, the analysis of switching functions with many input variables is
very difficult, as the treatment may require a large amount of resources (e.g.,

42 3. Boolean Functions

8
)

z3 | flxi,2,23) |

R oo o o8
mF,rOoOoOR OO
mFOoORORORO
RFR R RO, OO

Figure 3.7. Tabular representation and geometric visualization

time, space) that can obviously not be provided. However, under certain
circumstances, this situation can change dramatically if additional structural
properties of the occurring functions are known. One important property in
this context is monotony.

Definition 3.26. Let f € B,,, and let 1 < i < n. f is called monotone
increasing in the i-th input if for all a € B":

f(al,... ,ai_l,O,aiH,... ,an) S f(al,... ,ai_l,l,a,-_,_l,... ,an).

f is called monotone decreasing in the i-th input if for all a € B":

f(ala"' 7ai—1715ai+13'-- 7an) S f(ala"' 5ai—1507ai+17"- aan)-

If f is monotone increasing (respectively monotone decreasing) in each ar-
gument, then f is called monotone increasing (respectively monotone
decreasing).

The following characterization of monotone increasing and monotone decreas-
ing functions could be equivalently used for defining monotony.

Theorem 3.27. (1) A function f € B, is monotone increasing if and only
if for all a,b € B™ the property a < b implies f(a) < f(b).

(2) A function f € B, is monotone decreasing if and only if for all a,b € B
the property a < b implies f(a) > f(b).

Proof. Statements (1) and (2) can be proven by arguments that are com-
pletely analogous to each other. Hence, we only consider the first statement.
Let f be monotone increasing. Then, by definition, f is monotone increasing
in each argument. Now let a = (a1,...,an), b = (b1,...,b,) € B" with
a < b, and let a; < b; for 4 = i1,...,4,. If in the vector a the components
a;; are successively replaced by the components b;;, 1 < j < k, then, due to
monotony in the 4;-th argument, one obtains a chain of inequalities:

3.3 Switching Functions 43

f@) < ... < f(b).

This proves f(a) < f(b).

If, conversely, the property a < b implies f(a) < f(b), then in particular, for
all 4,1 <i<n and for all a € B" we have

f(al, cee ,ai,l,O,a,-_H, e ,an) S f(al, ey i1, 1,(1,’.,.1, e ,an).
Hence, f is monotone increasing in each argument. m|

Example 3.28. (1) Obviously, the literal z;, 1 < ¢ < n, is monotone in-
creasing in the i-th argument. In all other arguments, the literal is both
monotone increasing and monotone decreasing. Altogether, each literal z; is
a monotone increasing function. Analogously, the literals Z; are monotone
decreasing functions.

(2) The following two functions

F@see s Bn) =iy o3y 1 <
9@ty xy) =z 1< 0y

o <ig <m,

<
Sglkfn

are monotone increasing in each argument. Moreover, in the inessential ar-
guments, f and g are also monotone decreasing. <

Obviously, in all inessential arguments, Boolean functions are both mono-
tone increasing and monotone decreasing. More interesting is the question of
monotony in the essential variables. An important contribution to this ques-
tion is provided by the following representation theorem for monotone
functions in the i-th argument which we state without proof.

Theorem 3.29. (1) A switching function f € B, is monotone increasing
in the i-th argument if and only if f can be represented in the form

f = zig+h

in terms of two functions g and h which are independent of x;.

(2) A switching function f € B, is monotone decreasing in the i-th argument
if and only if f can be represented in the form

f = Tig+h
in terms of two functions g and h which are independent of x;.

Monotone functions occur in many fundamental applications, such as sorting
or matrix multiplication.

44 3. Boolean Functions

Example 3.30. (Matrix multiplication)
Let X = (z45),Y = (yi;) € B™™ be two n x n-matrices. The matrix product
Z := X -Y is defined by the elements

n
Zij = E TikYkj-
k=1

For all 1 < 4,5 < n the functions z;; are monotone increasing. <o

3.3.5 Symmetric Functions

Similar to the case of monotony, symmetry properties can also be exploited
in order to make manipulation of switching function much easier. A variety
of algorithms whose application to arbitrary functions is not practical work
efficiently in case of symmetric functions.

Definition 3.31. A switching function f € B, is called symmetric if each
permutation 7 of the input variables does not change the function value, i.e.,

f(xly--- ;xn) = f(xn(l)a"')wﬂ'(n))'

Obviously, a function f is symmetric if and only if its function value only
depends on the number of 1’s in the input vector and not on their positions.
Hence, a symmetric function f € B,, can be represented by a vector v(f) =
(vo,--. ,vn) € B! of length n + 1 in a natural way. The components
Vg, . .- , U, are defined by

1 times

and represent the function value of f if exactly ¢ input bits are 1 and n—i input
bits are 0. v(f) is called the spectrum or value vector of f. The one-to-
one-correspondence between symmetric functions and the 27t possible value
vectors immediately implies that there are exactly 2"t! symmetric functions
in n variables.

Corollary 3.32. There are 2™ symmetric functions in n variables. |
Example 3.33. The following functions are symmetric:

f(@1,%2,23) = 71 © 2 © 3,
9($1,IE2,$3,$4) =T + T2 + T3 + T4,

hx1,x2,x3) = T122 + T2T3 + T123.

The corresponding value vectors are

3.3 Switching Functions 45

v(f) = (0,1,0,1),
v(g) = (0,1,1,1,1),
o(h) = (0,0,1,1).

In contrast to this, the following functions are not symmetric:

f(z1,22,23) = z122 + 23,
9(x1, 22, 23) = T1x2 + T123,
hi(x1,..., o) =25, 1<i<n, n>2.

<

As the number of symmetric functions is very small in comparison to the total
number 22" of all Boolean function in n variables, a randomly chosen function
is symmetric only with a very small probability. However, functions which are
important for practical applications are not randomly chosen at all. In fact,
symmetric functions appear very often, e.g., when the underlying problem
is related to a counting problem. The following functions are of particular
interest — some of them already appeared in Example 3.33.

Parity function PAR, € B,:

PAR, (Z1,... ,2n) = ®] 12 = (Z z;) (mod 2),

i=1
Majority function M, € B,:
" n
M,(z1,... ,2,) =1 if and only if Zlmz > 5
=
Threshold functions 7' € B,, 0 <k <n:
n
Ti(z1,-.. ,2n) =1 if and only if Zmi >k,
i=1
Inverse threshold functions T2, € B,, 0 <k <n:
T2y(21,... ,2,) =1 if and only if Zw, <k,
i=1
Interval functions I}}, € B,, 1 <k <[l <n:

Iei(z1,... ,2n) =1 ifand only if k<) z; <I.

i=1

46 3. Boolean Functions

Example 3.34. Some relations among important classes of switching func-
tions:

T+ T+ T = (T, T0),
L1 X ... Ty = Iﬁ’n(xl,... , Tn)s
My(@1, ..., 2n) = T{ay n(@1,. .., 20),

T2y =I5k (%1, ,Tn)-

<&

The possibility of representing symmetric functions in terms of interval func-
tions is not exhausted by the examples that have just been stated. In fact,
every symmetric function can be represented by a disjunction of interval func-
tions. This statement follows from the fact that the value vectors v(f) and
v(g) of two symmetric functions f and g satisfy the following equation:

o(fVg) =uv(f)Vu(g)-

Example 3.35. Let f € By be a symmetric function with spectrum v(f) =
(1,0,0,1,0,0,1,1,1,0). The spectrum can be written in the form

o(f) = U(Ig,o) \ U(I??,s) \% U(Ig,s)-
Hence, f can be represented by the disjunction of interval functions,
[= Ig,o \ I§,3 v Ig,s-
o

Symmetry effects may sometimes also be used in case of functions which are
not “totally” symmetric. Two restricted types of symmetry are presented in
the following definition.

Definition 3.36. (1) A function f(x1,...,%,) € B, is called quasisym-
metric if substituting some variables by their complement leads to a sym-
metric function.

(2) A function f(x1,...,T,) € B, is called partially symmetric with
respect to the variables x;, , . .. ,x;, if f remains invariant for all permutations
of the variables x;,,... ,x;, .

Example 3.37. The following functions f,g € By are quasisymmetric:

f(z1,20,23) = 17223,

9(%1, 22, 23) = T1xa + T2T3 + T1 T3.

Moreover, both f and g are partially symmetric with respect to the variables
L1,T3- &

3.3 Switching Functions 47

Z1
Z2

Twl,---,wn;k

Tn

Figure 3.8. Threshold function

3.3.6 Threshold Functions

Within the presentation of symmetric switching functions we have already
mentioned the class of threshold functions 7}*. This class is of great impor-
tance for modeling biological neurons and therefore for constructing artificial
neural networks. In the biological scenario, the neuron’s cell membrane is
capable of sustaining a certain electric charge. When this charge reaches or
exceeds a threshold k, the neuron “fires.” In the terminology of switching
functions, this effect is modeled by means of threshold functions. Threshold
functions are not only symmetric but also monotone increasing.

In order to cover different input resistances in the biological setting, the
following notation, illustrated in Fig. 3.8, is quite helpful.

Definition 3.38. A switching function f € B, is called a weighted
threshold function with weights wy,... ,w, € R and threshold k € R if

flxy,...,z,) =1 if and only if szx, > k.

i=1
We write Ty, ... wnk-

Although the large number of parameter choices makes this class very pow-
erful in its expressiveness, there are nevertheless switching functions which
cannot be represented in terms of a weighted threshold function.

Example 3.39. Let us consider the function f(z1,z2) = z1T2 + x2%1. This
function cannot be represented in terms of a weighted threshold function.
This can be explained as follows. If there were real weights wy,ws and a
threshold value k satisfying f = Ty, w.;k, then the following inequalities
would hold:

0-wy +1-we >k (since f(0,1) =1),
1-wy +0-we >k (since f(1,0) =1),
1-wy +1-we <k (since f(1,1) =0).

48 3. Boolean Functions

The first two inequalities can be combined to w; +ws > 2k, which contradicts
the third equation. Consequently, the function f cannot be represented in
terms of a weighted threshold function. <&

An important structural property of weighted threshold functions says that
in each input the function is monotone increasing or monotone decreasing.
A proof of this statement can be carried out by generalizing the arguments
in the previous example.

3.3.7 Partial Switching Functions

When describing the functional behavior of a digital system, it is often not
necessary to specify this behavior for absolutely all possible input constel-
lations. In many cases it is known a priori that certain constellations do
not occur, for example if the input of the system results from the output of
another one, or if the reaction of the system on certain constellations has no
noticeable effect. Hence, appropriate functions that model the system math-
ematically only need to be partially defined. A partial switching function
in n inputs is a mapping from B™ to B which is merely defined on a subset of
B™, namely on the set def(f) C B™. For the set of all partial functions from
B™ to B we write B;,.

If, as in the case of completely specified functions, on(f) and off(f) denote
the set of input vectors of f mapping to 0 and 1, respectively, then def(f) =
on(f) U off(f). The set dc(f) = B"™ —def(f) of all inputs for which f remains
undefined is called the don’t care set. Each partial switching function is
completely described by at least two of the three sets on(f), off(f), and dc(f).

Example 3.40. Let f € B3 be a partial switching function defined on the
four inputs (0,0,1),(0,1,0),(1,1,0),(1,1,1) by

f(07071)=f(07170)=f(17171)=17 a‘nd f(17170)=O'

Then the don’t care set consists of the inputs (0,0,0), (0,1,1), (1,0,0),
(1,0,1). o

By choosing arbitrary function values for the inputs of the don’t care set, it
is possible to completely specify a partial switching function f € B},. We say
that the function f is embedded in the set B,, of all completely specified
functions. The resulting function f' € B, is called an extension of f.
Obviously, the number of possible extensions of a function f € B, is 2#4(/).
Keeping in mind that digital circuits only realize completely defined switching
functions, one recognizes the significance of the task of constructing best
suitable extensions with respect to given optimization criteria.

3.4 References 49

Example 3.41. The function f from Example 3.40 has 2* possible exten-
sions f' € B,,. These extensions include the parity function z1 @ x2 @ x3 and
the interval function I; 3. <&

An n-variable partial switching function f with m outputs is a tuple
of m partially defined switching functions f; € B}, 1 <1i <m,

f={f s fm)-

3.4 References

The material in this chapter belongs to the “classical” knowledge of Boolean
algebra and Boolean functions. An extensive presentation can be found, e.g.,
in [Bro90]. The mentioned historic books and papers by Boole, Shannon,
and Ehrenfest are [Boo54, Sha38, Ehr10].

Furthermore, we refer the interested reader to the monograph [Weg87], which
contains a comprehensive presentation of the complexity of Boolean func-
tions.

50 3. Boolean Functions

4. Classical Representations

A classic is something that everybody wants to
have read and nobody wants to read.

Mark Twain (1835-1910)

To be able to work with concrete switching functions, a description of these
functions is required. Of course, there is a very broad spectrum of possible
description types. Basically, the representation has to describe the function
adequately and thoroughly, i.e., it must be completely clear from the repre-
sentation which switching function is considered. Besides this fundamental
condition, which has always to be satisfied, a series of further properties are
desirable. For example, the description of a function should

e be rather short and efficient,
e support the evaluation and manipulation of the function,

e make particular properties of the function visible,

suggest ideas for a technical realization,

and much more.

When looking for representation types which satisfy all the above properties,
one very soon faces inherent difficulties. These difficulties are caused by the
(even for small values of n) inconceivably large number of 2™?" switching
functions with n inputs and m outputs. If only a small number of functions
were of interest, one could construct a catalog in which all these functions
were listed together with an enumeration of their properties. In this case, rep-
resenting individual functions could be achieved by using the corresponding
numbers of the entries within the catalog. Unfortunately, the large number
of switching functions necessarily leads to numbers in the order 22", and
hence to representations of exponential length m2™.

In this chapter, we present classical representation types which, thanks to
their properties, have become important in theoretical investigations and
practical applications within CAD systems.

However, all these representations have also some drawbacks. With perma-
nently increasing performance requirements, these negative properties have

52 4. Classical Representations

become much more significant. For this reason, we also discuss the drawbacks
of the individual representations.

4.1 Truth Tables

As the set B™ is finite, each switching function — at least in principle — allows
a complete tabular listing of its arguments together with the corresponding
function values. In fact, this representation in terms of truth tables is of
great practical importance for small n (e.g., n < 7). Incidentally, truth tables
were already used in the previous chapter, for instance in Example 3.25.

Example 4.1. Figure 4.1 shows the truth table of the multiplication func-
tion MULy» € Bs4, a function with four outputs. Here, MULy» =
MUL(z1,0,y1,%0) is a switching function interpreting the inputs z;x¢ and
11Yo as binary numbers of length 2, and computing the binary representation

of their product. <
[z1 woly1 yo|[(MUL22)3[(MULs,2)2[(MULz 2)1[(MUL;3 2)o|
0 0{0 O 0 0 0 0
0 0|0 1 0 0 0 0
0 0(1 0 0 0 0 0
0 0|1 1 0 0 0 0
0 1{0 0 0 0 0 0
0 1({0 1 0 0 0 1
0 1({1 0 0 0 1 0
0 1|11 1 0 0 1 1
1 0/0 0 0 0 0 0
1 0(0 1 0 0 1 0
1 0|10 0 1 0 0
1 0|11 0 1 1 0
1 1100 0 0 0 0
1 1|0 1 0 0 1 1
1 1|1 0 0 1 1 0
1 1|11 1 0 0 1

Figure 4.1. Truth table of the multiplication function MUL; o

The advantage of truth tables is their easy algorithmic handling. If, for
example, the tables of two functions f,g € B,, are given, then the functions
can be evaluated very easily, or easily combined by means of binary operators.
With regard to classical complexity theory which measures complexity in
terms of the input length, only linear time resources are required. However,
this statement completely disguises the fact that a truth table of an n-variable

4.2 Two-Level Normal Forms 53

switching function consists of 2" rows, i.e., the size of the table and hence the
mentioned linear time complexity are always exponential in the number n of
primary inputs. The size of the truth table of a partial switching function
f € B}, is proportional to the size of the definition domain def(f) and hence
typically also exponential in n. Consequently, representations of switching
functions in terms of truth tables are far from being compact.

4.2 Two-Level Normal Forms

Switching functions can be represented in terms of expressions that combine
literals by means of suitable operators. Here, normal forms based on levelized
expressions are of particular importance. The number of levels denotes the
number of iterated applications of operators, where within a level, only one
and the same operator may be employed.

One-level normal forms merely use a single operator. An easy counting
argument immediately explains that the expressiveness of one-level normal
forms is quite limited. Only very few switching functions can be represented
in terms of these normal forms, e.g., the sum of literals or their product.

Two-level normal forms are significantly more powerful in their expres-
siveness. The following considerations show that all switching functions can
be represented in terms of these normal forms.

Most work in the early days of circuit theory was dedicated to the investiga-
tion of two-level normal forms. This was mainly due to the fact that two-level
forms can immediately be technically realized, e.g., by using programmable
logic arrays (PLAs).

Definition 4.2. Let w = %, € By be an associative Boolean operation. An
w-monomial m is an w-product of literals

_ G €ig " €
M= % Ty ¥ e Ko Ty

0
T

ei;, € {0,1}, j = 1,...,l. Here, 20 and z} are defined by z} = z; and
=T;. The number | of occurring literals is called the length of m.

Example 4.3.
. ials: 20 0 .0 o
-monomials: Ty T2 T3,T] T4, T1T2T5T7 T8,

+ -monomials: 29 + 25 + 23 + 20 + 24, 21 + 22 + 25 + 27 + 25,
1 3 1

® -monomials: 2 P2, P20 P2V Py, 21 P22 DT D TT B 2, .- &
1 3 1

54 4. Classical Representations

. €3 €3 . .
- -monomials m = z;* ...z, are simply called monomials. As already

mentioned, the operator - is often omitted. The empty monomial is defined
to be the tautology function 1. + -monomials m = mfll +...+ arfl’ are called
clauses. The empty clause is defined to be the contradiction function 0.

Definition 4.4. Let w = x,, w' = %, € By be two associative Boolean
operations. An (w,w’)-polynomial is an w'-product of w-monomials. The
length of an (w,w')-polynomial is the sum of lengths of its monomials.

(-, +)-polynomials are called disjunctive normal forms (DNF).
(+,-)-polynomials are called conjunctive normal forms (CNF).

(-, ®)-polynomials are called parity normal forms (PNF).

We assume that there are no trivial redundancies like multiple occurrences of
literals or terms, and that the order of terms is of not particular importance.

Example 4.5.

DNF representation: d = z1 T y1 + T1 To Y1 Yo,
CNF representation: ¢ = 1 y1 (1 + To + U1 + Uo),
PNF representation: p = 1 Tg y1 © T1 To Y1 Yo- <

Usually, one is interested in rather short representations.

Definition 4.6. An (w,w')-polynomial of f € By, is called minimal, if its
length is minimal among all (w,w")-polynomials of f.

In order to generate (w,w’)-polynomials from tabular representations, the
following notations are useful. For a = (ay,... ,a,) € B", the monomial

me(z) = ' ... xo"
is called the minterm of a, and

Sa(z) = 28 + .. 4 20

is called the maxterm of a. The following lemma turns out to be an imme-
diate consequence of this notation.

Lemma 4.7. For a = (ay,... ,a,) € B" we have:

1. mo(x) =1 if and only if z; = a; for all 1 <i < n.
2. 54(z) =0 if and only if z; = a; for all 1 <i < n. |

4.2 Two-Level Normal Forms 55

Due to this property, each function f € B, satisfies the equation
fl@)y=Y_ mge).
a€on(f)

Indeed, this representation of f is unique. It is called the canonical dis-
junctive normal form (cDNF) of f. Analogously, f can be expressed in
terms of

acoff(f)

a representation which is called the canonical conjunctive normal form
(cCNF) of f. The two canonical normal forms can be immediately deduced
from a truth table.

Example 4.8. Using the notation of Fig. 4.1 we have:

(MULy2)1 = 23 %0 y1 Yo + 23 o y1 9o + 1 7047 yo +
xlwgylyo+w1woy?yo+w1woy1y8,

(z1 4+ To +y1 +%0) (T1 + To + y1 +¥0) (T1 + To + ¥ + ¥o)
@1+ 20 + 47 +y0) (@1 + 25 +y1 +yo) (21 + 20 + Y1+ 4p)
Y+ 20+ y1 +9o) (29 + mo + 47 + yo) (2f + x4 + y1 + yo)
1"’-"70"':‘!1 +yo)

(MUL>)1

(
(9
(9
(o

As a particular consequence of this observation, each switching function f €
B,, can be described both in terms of a disjunctive normal form and in terms
of a conjunctive normal form.

Example 4.9. The parity function PAR; € B;,

(sz m0d2)

has the following canonical disjunctive normal form:

PAR5(IL'1, [N

PARS(£1>"'7)_1.1@

yT5) = T1T2T3T4Ts + T1T2T3T4T5 + T1T223T4Tp

+ T122T3%4T5 + X1 T2X3T4 X5

+ X1 T2 T3T4 T
+ X1 T2 T3 T4 T

+ T1X2X3T4 T

+ X1 T2 T3 T4 T

+ 1 T2 X3T4 X5 -

5

This representation consists of (‘;’) + (3

+
+
+

T1 L2773 24 X5

T1 T2 T3 Ty T

T1 o I3 .’L'_4.’L'5

X1 To ﬁ.’L'_4£B5
T1 T2 T3 Ty Ts

T1 Lo T3 T4 Ty

) + (2) = 16 monomials.

56 4. Classical Representations

Although conjunctive and disjunctive normal forms have many pleasant prop-
erties, at the moment there are insurmountable problems concerning their
algorithmic handling. Here, the main source of difficulties can be seen in
the fact that neither disjunctive nor conjunctive normal forms of a switching
function are uniquely determined.

Definition 4.10. A representation type of switching functions is called
canonical if each switching function f has exactly one representation of this
type. A representation type is called universal if for each switching function
there exists a representation of this type.

Example 4.11. Truth tables, canonical disjunctive normal forms, and
canonical conjunctive normal forms constitute a canonical representation
of switching functions. However, neither the set of all disjunctive normal
forms nor the set of all conjunctive normal forms constitutes a canonical
representation, as there may be many different such normal forms for a given
function f. <

The property of a representation type that it is canonical plays an essential
role in its algorithmic behavior. Namely, if each function has exactly one
representation, then it can be tested quite easily whether two given functions
coincide: one has merely to test whether their representations are identical.
The fact that neither disjunctive normal forms nor conjunctive normal forms
provide a canonical representation is the main reason why equivalence check-
ing is difficult in this case. In the following, we prove that efficient algorithms
for solving equivalence problems of disjunctive or conjunctive normal forms
cannot be expected, as both problems are co-NP-complete. Our proof is
based on the classic result that 3-SAT is NP-complete.

Problem 4.12. The problem 3-SAT is defined as follows:

Input: A conjunctive normal form in which each clause consists of exactly
3 literals.

Output: “Yes”, if there exists a satisfying assignment for the represented
function. “No”, otherwise.

The following theorem is a central statement of the theory of NP-complete-
ness that was introduced in Section 2.5.

Theorem 4.13. The problem 3-SAT is NP -complete. |

Incidentally, one part of the theorem, namely the claimed membership of
3-SAT in the class NP is trivial. One “guesses” a satisfying assignment, and
then applies substitutions in order to verify that all clauses are satisfied for
this input (which is obviously possible in polynomial time).

4.2 Two-Level Normal Forms 57

Problem 4.14. Let X be a representation type of switching functions. The
problem EQUy is defined as follows:

Input: Two representations P; and P, from the class given by X.
Output: “Yes”, if P, and P, represent the same function. “No”, otherwise.

Theorem 4.15. The equivalence test EQUpyfg of two disjunctive normal
forms is co-NP-complete. The same statement holds for the equivalence test
EQUonF of two conjunctive normal forms.

Proof. We have to show that the test whether two disjunctive or conjunctive
normal forms represent different functions is NP-complete.

Membership in NP: First, one “guesses” an assignment which implies
different function values for the two disjunctive (conjunctive) normal forms.
By evaluating the functions for the chosen assignments, this difference can
be verified in polynomial time.

3-SAT <p EQUcnpF: Let C be an input of 3-SAT, i.e., C is a conjunctive
normal form all of whose clauses consists of exactly three literals. We choose
Cy = C and Cy = 0. (In particular, C5 is the trivial conjunctive normal form
of the contradiction function.) Now C can be satisfied if and only if Cy and
C> represent different functions.

3-SAT <p EQUpnp: Here, let C = []1", ¢; be an input of 3-SAT. Each
clause ¢; of C is of the form

_ Cil €i2 €i3
Ci=x; +T;5 +x;3,

with e;; € {0,1}, 1 < i < m, 1 < j < 3. The function fc defined by C
satisfies

f020102 N

Due to DeMorgan’s rules, fc can be satisfied if and only if

fe=a+c+...+Tn

is not the tautology function.
Further, let k; = ¢;, 1 <4 < m. Another application of DeMorgan’s rules
yields
ki =0 =xy “tay iyt 1<i<m.
Let D; be the disjunctive normal form with monomials &, ... , k;, and let

D5 be the disjunctive normal form of the tautology function, Dy = 1. Then
C can be satisfied if and only if D; and D represent different functions. O

58 4. Classical Representations

Sometimes, the very modest algebraic structure within the two operations +
and - makes it hard to work with disjunctive and conjunctive normal forms.
For example, neither the equation f 4+ g = h nor the equation f-g = h
can be solved for f. By employing the operations (®,-) instead of the pair
(+,), the situation changes fundamentally: the set B = {0,1} in connection
with the operations @ and - constitutes a field in the algebraic sense. This
fact allows us to apply the extensive tool set from the theory of algebraic
fields in the context of switching functions. Parity normal forms are also of
particular interest for practical applications. As the @-operation will change
its function value whenever exactly one bit is modified, this operation serves
as a good basis for designing circuits that can be tested easily.

Definition 4.16. A ring sum expansion (RSE) or (positive polarity)
Reed-Muller expansion is a parity normal form where all monomials only
include positive literals.

The next theorem states an important structural property for ring sum ex-
pansions.

Theorem 4.17. For each switching function f € B, , there exists a uniquely
determined representation in terms of a ring sum expansion. Hence, ring
sum expansions are a canonical representation.

Proof. Let f € B,,. First we prove the existence of a corresponding ring sum
expansion. We start from the canonical DNF representation of f,

flxe,. ... zy) = Z Me(T1, - ,Tn)-

ceon(f)

For each vector ¢ € on(f) exactly one minterm is 1 in this DNF. As 1 is an
odd number, we have

flx1, .. zp) = @ Me(T1, ... ,Tn).

ceon(f)

This a parity normal form of f. Now we have to remove negative literals
from this normal form. This is possible by using the equation § = y @ 1: each
negative literal Z; is replaced by the expression (z; @ 1). Then the resulting
expression is expanded by using distributivity, associativity, and the rules
for computations over an algebraic field. Finally, we obtain the ring sum
expansion

flx1,. .. zpn) = @ml,

IeT

where m; = x;, ... x;
TcC 2{1,...,n}

s

if I = {i1,...,is} € Z, and T is a suitable subset

4.2 Two-Level Normal Forms 59

Now we prove uniqueness. For any I C {1,...,n}, there is exactly one
my. Hence, each ring sum expansion is characterized uniquely by a set Z C
2{L.-.n} - Ag the number of subsets of 2{1::"} is exactly 22", the number of
possible ring sum expansions coincides with the number of switching functions
in n variables. As each switching function can be represented in terms of a
ring sum expansion, this one must be unique. |

Example 4.18. In this example, we illustrate the conversion from the previ-
ous proof by constructing a ring sum expansion from the disjunctive normal
form f(z1,%2,73) = 21T223 + T12273.

fz1,22,23) = 1T223 + T122T3
= T1T2Z3 D T12X2T3
=21(z2 ® 1)z3 ® (21 ® 1)z2(23 B 1)
= T12223 D T123 D 12223 D X223 D T1X2 O T2

= 2123 D 223 D 122 D T2.

&

Due to uniqueness of the representation, it can be checked easily if two given
ring sum expansions describe the same function. A severe drawback of ring
sum expansions is the fact that even some simple functions like the disjunction
of n variables require representations of exponential length.

Theorem 4.19. For a set of indices I = {iy,... ,is} let my = xz;, ... z;,.
The ring sum expansion of

fly,...,zp)=x1+ 22+ ...+ 2y
18
f@y,..e)= P mi (4.1)
IC{1,...,n}\0
and hence of exponential length.
Proof. We prove that the given ring sum expansion (4.1) computes the dis-

junction of n variables. The claim then follows from the uniqueness of ring
sum expansions.

In case z = (x1,... ,2,) = 0, none of the 2" — 1 monomials (4.1) computes
the value 1. Therefore, f(z) = 0.

Now let z be an input which consists of exactly [inputs for an [> 0. Then,
for each 1 < k <, there are exactly

(1)

60 4. Classical Representations

monomials in k variables that compute a 1. Consequently, the number of
monomials computing a 1 is exactly

2 () ()=

As for all [> 0 this value is odd, the parity function computes a 1. Hence,
we have shown that the ring sum expansion (4.1) computes the disjunction
of n variables. m|

4.3 Circuits and Formulas

4.3.1 Circuits

Turning from the extensively investigated and well understood two-level nor-
mal forms towards multiple-level forms, then in many cases substantially
more compact representations of switching functions can be found. Multiple-
level representations are based on iterated application of a fixed set of basis
operations. More precisely, let I be an arbitrary (finite or infinite) index set
and 2 = {w; € By, : i € I'} be a set of basic functions. (2 is called a basis.
An (2-circuit S in n variables denotes an acyclic graph with two types of
nodes:

e input nodes, which are nodes without an incoming edge, labeled by 0, 1,
or by a variable x;.

e function nodes, which are nodes with indegree n;, labeled by a basis
function w; € 2,7 € 1.

Each node v of the circuit S represents a switching function fs, according
to the following inductive rules:

e If v is labeled by 0 (1), then fg,(z1,...,25) =0 (1).
o If v is labeled by z;, then fgo(z1,...,2n) = ;.
e If v is labeled by w; and has predecessors v1, ... , v, then fs,(z1,...,2,)

= wilfsm (@), s fs.0., (2)-

In general, we are only interested in some of the functions being represented
within the graph. We mark the relevant nodes vy, ... ,v,, as output nodes,
and define the function fs € By, ,, which is represented by the circuit S by

fs(@) = (fs,01(®),- -+ 5[50 (@)

4.3 Circuits and Formulas 61

Figure 4.2. Circuit representation of a full adder

Example 4.20. A full adder f = f(z,y,c) € B3, well-known as a basic
hardware component in chip design, computes the binary sum = + y + ¢ of
the three input bits z, y, and c¢. In a typical application, c is the carry bit
of the previous addition. Let 2 = {+,:,7} be called the standard basis.
Figure 4.2 shows an (2-circuit of f with output nodes f1, fo. <

The number of operation levels in the circuit is called the depth of the circuit.
In a simplified consideration of physical chips, the depth corresponds to the
time consumption of the realized functionality.

Definition 4.21. A basis (2 is called complete if (2-circuits provide a uni-
versal representation type, i.e., if each switching function f € |J,,~,Bn can
be represented in terms of an 2-circuit. -

Example 4.22. (a) The standard basis {+, -, "} is complete, as each switch-
ing function can be represented in terms of a disjunctive normal form, which
can be seen as a circuit of depth 3 over the standard basis. The three opera-
tions are often symbolized by the nodes in Fig. 4.3, which are usually called
gates.

(b) The basis {@®, -} is complete, as each switching function can be represented
in terms of a ring sum expansion.

(c) The two bases {-,”} and {+, 7} are complete, as disjunction (resp. conjunc-
tion) can be expressed in terms of conjunction (resp. disjunction) by means
of DeMorgan’s rule and negation.

(d) The set {+,-} is not a complete basis, as it can only generate monotone
increasing functions. <o

62 4. Classical Representations

f=hHh+F f=fHf f=h

fi — fi
fo — fa

Figure 4.3. Symbolic representations of disjunction, conjunction, and complemen-
tation

One immediately recognizes that even for a fixed basis, circuit representations
of switching functions are not uniquely determined, i.e., circuits are not a
canonical representation type. As in the case of two-level normal forms,
we are particularly interested in representations which consist of few nodes,
as this corresponds to a chip realization with few gates. The ({2-)circuit
complexity of a switching function denotes the number of nodes in a minimal
(£2-)circuit representation of this function.

As disjunctive and conjunctive normal forms are specific circuits, the circuit
complexity of a switching function over the standard basis is never greater
than its minimal DNF or CNF representation. On the contrary, in most cases
circuit representations are substantially more compact.

This advantage of the circuit model is contrasted by a severe drawback, like
in the case of disjunctive or conjunctive normal forms: the enormous time
complexity of checking circuits for equivalence.

Theorem 4.23. The equivalence test of Boolean circuits over the standard
basis {+,-,7} is co-NP-complete.

Proof. As the function value of a circuit can be evaluated in polynomial time,
the problem is in co-NP.

From Theorem 4.15 it is known that the problem EQUpnp is co-NP-
complete. This problem can be immediately reduced to the equivalence
problem of Boolean circuits, as each conjunction and each disjunction can
be realized by a corresponding circuit node. m|

4.3.2 Formulas

A typical property of circuits is their ability to use a function fs, represented
in a node v as input to other nodes more than once. In other words, in
the case of circuits the outdegree of v can be greater than 1. Often it is
exactly this property that allows very compact representations. However, as
this property makes algorithmic handling significantly harder, the restricted
model of so-called formulas has been studied intensively. Here, multiple use
of intermediate functions within the graph is not allowed.

4.4 Binary Decision Trees and Diagrams 63

Figure 4.4. Formula representation of a full adder

Definition 4.24. Let (2 be a basis. An (2-formula is a circuit whose nodes
have outdegree 1.

Consequently, an {2-circuit is a formula if and only if the graph consists of in-
dividual trees. A formula representation of the full adder from Example 4.20
is depicted in Fig. 4.4.

Due to space limitations we can only give a reference to the interesting bi-
jective connection between (2-formulas over the standard basis 2 = {+,-,7}
and Boolean formulas of the switching algebra from Section 3.2. Surely, it is
also due to this connection that so much research effort has been devoted to
the investigation of formulas.

Although 2-formulas make the analysis of the represented functions easier —
for example, when proving lower bounds for the representation size of concrete
functions — the equivalence test of two Boolean formulas is co-NP-complete
like in the case of circuits.

4.4 Binary Decision Trees and Diagrams

In the previous section, we introduced several representations describing
switching functions by means of a computation process. In contrast, this
section deals with representation types which describe a switching function
by means of an evaluation process.

In natural sciences, evaluation processes serve for the classification of objects.
Depending on the results of several tests, an object is put into a specific class.

64 4. Classical Representations

A good illustration of such evaluation processes can be obtained by means of
directed graphs, so-called decision diagrams. Here, each node is associated
with exactly one classifying test. The consecutive order of the single tests
and the evaluation of the tests is described by means of edges. For switching
functions, the tests may be of the form: Is the i-th input bit x; zero, or one ?
In case of the answer “x; = 07, one can proceed with different tests than in
case “x; = 17.

In the following, we are concerned with representations which are based on
such decision processes. It will turn out that those representation types are
particularly useful in the context of Boolean manipulation.

4.4.1 Binary Decision Trees

A binary decision tree in n variables is a tree, whose

e internal nodes are labeled by a variable z; and have exactly two outgoing
edges, and whose

e sinks are labeled by one of the two constants 0 or 1.

A decision tree represents a switching function f € B, in a natural way.
Each assignment to the variables xi,...,x, defines a uniquely determined
path from the root of the tree to a sink. The label of this sink gives the value
of the function on this input.

We can always assume that each variable is read at most once on each path
of the decision tree. A second evaluation of an already tested variable does
not partition the input set any further: if all inputs have left the first test
along the 0-edge (1-edge), then they also leave the next test along the 0-edge
(1-edge). The other edge together with the subtree rooted in the successor
node are never visited and can therefore be eliminated.

N
N
° \
~
~
~

nn n E n E ﬁm

Figure 4.5. Complete decision tree of the function f = (z1 ® z2) - (3 B z4)

4.4 Binary Decision Trees and Diagrams 65

Example 4.25. By iterated application of Shannon’s expansion from The-
orem 3.21 and “graphical recording” we obtain a complete decision tree of
f=(z1®22) - (3 ®24), see Fig. 4.5. In the diagrams, 1-edges are drawn as
solid arrows, and 0-edges will be drawn as dashed arrows.

In many cases, there exist significantly more compact decision tree represen-
tations than those by means of the complete decision tree. An example for
the function f is shown in Fig. 4.6. o

Often, by changing the order of the partitioning variables in the individual
subgraphs, new possibilities for minimizing the size of the decision tree can
be revealed. This applies, e.g., to the tree in Fig. 4.7 which can also be
transformed to the decision tree in Fig. 4.6. In general however, with regard

onloinioioia

Figure 4.7. A decision tree of f = (x1 ® x2) - (x3 @ x4), where the variables are
tested in the order x1,xs, x2, x4

66 4. Classical Representations

to the representation size, decision trees are inferior to the model of branching
programs discussed next.

4.4.2 Branching Programs

Branching programs can be interpreted as a generalization of binary decision
trees where the tree structures are allowed to be replaced by general graph
structures. Branching programs were first investigated by C. Lee in 1959,
under the name binary decision programs. The original motivation was to
find an alternative representation to Boolean circuits. A first systematic
study of branching programs was presented by W. Masek in 1976.

A branching program or a binary decision diagram in n variables is a
directed acyclic graph with exactly one root, whose

e sinks are labeled by the Boolean constants 0, 1, and whose

e internal nodes are labeled by a variable z; and have exactly two outgoing
edges, a 0-edge and a 1-edge.

Analogous to decision trees, branching programs represent a switching func-
tion f € B, in the following way. Each assignment to the input variables x;
defines a uniquely determined path from the root of the graph to one of the
sinks. The label of the reached sink gives the function value on this input.
The size of a branching program is the number of its nodes. Figure 4.8 shows
two different branching programs of the parity function in four variables.

For decision trees we could assume — without restricting the model — that a
variable z; is tested on each path at most once. A second test of the variable

Figure 4.8. Two different branching programs of the parity function 1 ® z2 @
3 Dy

4.4 Binary Decision Trees and Diagrams 67

(a) A variable is read several times (b) Full adder

Figure 4.9. Specific branching programs

on a path could be removed immediately, as this test had to be redundant.
For branching programs this property does not hold. A node v in which a
variable z; is read can have more than one predecessor. For this reason, there
may be several paths leading from the root to the node v. On these different
paths from the root to v, the variables may be tested in a different manner.
Hence, even if the variable x; has already been tested on a path from the
root to v, the test in v cannot be eliminated in general.

Example 4.26. In the branching program in Fig. 4.9 (a), there exists a path
from the root to a sink on which the variable z» is tested more than once.
Nevertheless, the node containing the second test is not redundant for the
whole branching program. <

Branching programs can also be used for compactly representing Boolean
functions f € B, , with several outputs. Besides the trivial possibility of
representing each component f; of f by its own branching program P;, it
is possible to combine all components of f within a single branching pro-
gram with m distinguished output nodes. Figure 4.9 (b) demonstrates this
possibility in the case of the full adder from Example 4.20.

Now we would like to investigate the problem of how branching programs and
other representation types can be transformed to or from each other. How-
ever, we do not discuss the exact details of a possible implementation, which
may involve suitable adjacency lists. The algorithm in Fig. 4.10 serves for

68 4. Classical Representations

Input: A branching program P of f € B,.
Output: DNF of f.

Algorithm: Traverse all paths in P that start in the root and lead to the 1-sink.
With each of these paths, associate a monomial as follows. Let z;,,... ,z; be the
labels of the nodes on the path, and let e1,... ,ex € {0,1} be the corresponding
values of the traversed edges. Then the associated monomial is

€1

€k
i1 i

x i

X

The disjunction of these monomials over all paths yields a DNF of f.

Figure 4.10. Transformation of a branching program into a DNF

computing a disjunctive normal form from a given branching program. Here,
for each path from the root to the 1-sink the corresponding minterm is deter-
mined. Note that for multiple occurrences of a variable, the corresponding
monomial may collapse to the zero function.

Branching programs can be transformed quite easily into circuits with respect
to a complete basis 2 while preserving the structure of the branching pro-
gram. The transformation algorithm is shown in Fig. 4.11, and an example
of the transformation is given in Fig. 4.12.

At the end of this section we discuss some properties of branching programs.

Definition 4.27. Let P be a branching program.

1. The k-th level of P denotes the set of all nodes which can be reached
from the root by a path of length k — 1.

2. The mazimal cardinality w(P) of a level of P is called the width of P.

Input: A branching program P of f € B,.
Output: An 2-circuit of f with respect to a complete basis 2.

Algorithm: Let sel € Bg be the switching function
sel(z,y,z) =T -y+x-2

which represents a selection process. First, we transform P into a {sel}-circuit P’.
To each internal node v in the graph P, we add a new predecessor node which is
labeled by the variable of v. Replace the label of v by the function sel. Change the
directions of all edges and forget their labels.

As 2 is a complete basis, there exists an §2-circuit Cse; which realizes the sel-
function. Realize all occurrences of sel in P’ by the 2-circuit Cs;.

Figure 4.11. Transformation of a branching program into an {2-circuit

4.4 Binary Decision Trees and Diagrams 69

@
Bl

Figure 4.12. Transformation of a branching program into a sel-circuit

By using these notions, some important special cases of branching programs
can be defined.

Definition 4.28. Let P be a branching program.

1. P is called width-bounded with width k if each level is of cardinality
at most k.

2. P is called synchronous if for each node v of P, all paths from the root
to v are of equal length.

3. P is called oblivious if P is synchronous and all non-sink nodes within
a level are labeled by the same variable.

4. P is a read-k-times-only branching program if each variable occurs
on every path at most k times.

These definitions imply the following subclasses of branching programs:

BP;4ih-k = { branching programs of width <k },
sBP = { synchronous branching programs },
oBP = { oblivious branching programs },

BPk = { read-k-times-only branching programs }.

4.4.3 Read-Once Branching Programs

In the previous two sections we have discussed decision trees and branching
programs. There are two essential differences between these two representa-
tion types:

e In contrast to decision trees, branching programs are allowed to read a
variable more than once on a path.

e In contrast to the nodes in decision trees, the nodes in branching programs
may have more than one predecessor.

70 4. Classical Representations

With regard to the algorithmic properties, we will show that the efficiency
of important algorithms can only be guaranteed if none of the variables is
read several times on a path. Branching programs with this property are
called read-once branching programs. The model of read-once branching
programs was already studied by A. Cobham in 1966, and later by W. Masek
in 1976. This model is also of great interest from the theoretical point of
view, as since then a lot of powerful techniques for proving lower bounds
concerning the representation size of concrete functions have been developed.
Incidentally, the definitions of read-once branching programs and decision
trees imply that each decision tree is also a read-once branching program.

An important structural property of read-once branching programs is as fol-
lows. Each path in a read-once branching program is a computation path,
i.e., for all paths from the root to a sink there exists an input vector with the
property that the edge values within the graph (which are the answers to the
tests on the path) coincide with the corresponding components of the input
vector. For arbitrary branching programs this property does not hold, as a
path may contain both the 0-edge of a node with label z; and the 1-edge of
another node with label z;.

The branching programs in Figs. 4.5, 4.6, 4.8, and 4.9 (b) are read-once
branching programs, but the branching program in Fig. 4.9 (a) does not
have this property.

4.4.4 Complexity of Basic Operations

Now we analyze the complexity of some basic operations for different types of
branching programs. This shows that each of the individual types provably
suffers from difficulties in algorithmic handling. Interestingly enough, these
difficulties occur in different situations.

Problem 4.29. The problem 3-SAT/3-OCCURRENCES is defined as
follows:

Input: A conjunctive normal form C' whose clauses consist of exactly three
literals, and which has the property that each variable occurs at most three
times in C.

Output: “Yes”, if there is a satisfying assignment for the represented func-
tion. “No”, otherwise.

Lemma 4.30. The problem 3-SAT/3-OCCURRENCES is NP-complete.

Proof. As a given assignment can be verified easily for satisfiability, 3-SAT/3-
OCCURRENCES is in NP.

Now we give a polynomial time reduction from 3-SAT to the problem
3-SAT/3-OCCURRENCES. Let C = []", ¢; and ¢; = a§i' + 212 + 35,
where e;; € {0,1},1<i<m,1<j<3.

4.4 Binary Decision Trees and Diagrams 71

We construct a new conjunctive normal form C’ by replacing each variable z;
in C' by a new variable, 1 < i < mn. The new variable for the j-th occurrence
of z; is denoted by z;;. Additionally, for all 1 < ¢ < n the following clauses
are added:

(xa +T2) - (T2 +Ti3) - - (Tishi—1 + Tik;) - (Tihs + Ta1), (4.2)

where k; denotes the number of occurrences of variables x;.
Thus, for example, the 3-SAT formula

C=(x1+22+x4) - (22 + 23+ Ta)
is transformed into the formula

C' = (z11 + Ta1 + 241) - (T22 + 31 + T12)
- (z11 + T11)
- (221 + Taz) - (Tax + 22)

- (w31 + T31)-
Obviously, if (z1,. .. ,z,) is a satisfying assignment of C, then the assignment

is a satisfying assignment of C'.

Now let us consider a satisfying assignment of C'. If this one includes z;; = 0,

then relation (4.2) implies successively ;2 = 0, 23 = 0, ..., ;4 = 0. If
z;1 = 1, then relation (4.2) implies successively z;x, = 1, Zip,_, =1, ...,
x;2 = 1. As a consequence, we always have z;1 = 42 = ... = ;. This

observation immediately implies that the assignment

T; = X1, 1<i<n
satisfies the formula C. Hence, each algorithm for solving 3-SAT/3-
OCCURRENCES can also be used for solving 3-SAT.

Of course, the described transformation can be performed in polynomial time.
O

Problem 4.31. Let X be a representation type of switching functions. The
problem SATy is defined as follows:

Input: A representation P of type X.

Output: “Yes”, if there exists a satisfying assignment of the function which
is represented by P. “No”, otherwise.

72 4. Classical Representations

We show that the satisfiability test is already hard for quite specific subclasses
of branching programs.

Theorem 4.32. The problems SAT ;-2 sBpg ond SATy4h-9 oBP2 T
both NP-complete.

Proof. To prove the first statement we reduce the NP-complete problem
3-SAT/3—OCCURRENCES to the problem SATWidth-2 sBP3- Let C =
[T, ¢ and ¢; = 2§f* + 232 + z;4%, where e;; € {0,1},1<i<m,1<j<3.
The literals z} = z; and 29 = T; can be represented in terms of simple
branching programs which exactly consist of a root node and two sinks. The
conjunction of two branching programs P; and P» can be performed by iden-
tifying the 1-sinks of P; with the root of P,. In this way, branching programs
of the clauses ¢; can easily be constructed. The disjunction of P; and P, can
be performed by identifying the 0-sinks of P; with the root of P,. Using this
construction, a branching program P(C) of the conjunctive normal form C
can be generated (see Fig. 4.13 (a)). It is not difficult to construct P(C) as
a synchronous branching program of width 2. Figure 4.13 (b) illustrates this

(a) Original form (b) Synchronous branching program
of width 2

Figure 4.13. Constructing branching programs of the 3-SAT formula (z1 + Tz +
z4) - (w2 + w3 + T1)

4.4 Binary Decision Trees and Diagrams 73

fact in case of the function (z1 + T3 + z4) - (2 + 3 + T1). As each variable
occurs at most three times in the input of 3-SAT/3-OCCURRENCES, the
branching program P(C') is in the class BP3.

The construction yields a polynomial time reduction from 3-SAT/3-OCCUR-
RENCES to SATWidth-2 sBP3- It remains to show that SATWidth—2 sBP3 isin
NP. However, this is immediately clear, as the result of a branching program
for a particular input can be evaluated in polynomial time.

To prove the second statement, we modify the reduction used for proving the
NP-completeness of SAT ;4:h-2 sBp3- First, P(C) can be easily transformed
into an oblivious branching program of width 3. This only requires adding
some nodes whose 1- and O-successors are identical. The construction is
illustrated in Fig. 4.14 (a).

Then each occurrence of a variable in P(C) is replaced by a new variable,
which results in a new oblivious read-once branching program of width 3
denoted by P'(C). Furthermore, we can easily build an oblivious read-
once branching program of width 3 that tests the equality of the variables
Z1,...,%x (see Fig. 4.14 (b)). Hence, we can construct a width-3 oBP1 called

(a) Oblivious branching program (b) Branching program for the test
of width 3 1 =...= x5

Figure 4.14. Construction of branching programs for proving NP-completeness
of SATyidth-3 0BP2

74 4. Classical Representations

P"(C), which checks whether z = y for all z, y in P'(C) that correspond to
the same variable of P(C).

P(C) can be satisfied if and only if there is a variable assignment for which
P'(C) and P"(C) simultaneously compute the value 1. As the conjunction of
P'(C) and P"(C) leads to an oblivious read-2 branching program of width 3,
the desired polynomial time reduction from 3-SAT/3-OCCURRENCES to
SAT idth-3 oBP3 has been established. O

In particular, we can easily deduce the following corollary:

Corollary 4.33. 1. The problems SATgpso, SAT,gp, SAT,gp, as well as
SATgp are NP-complete.

2. The problems EQUpgpg, EQU,pp, EQUspp, as well as EQUgp are co-
NP-complete.

Proof. The second statement follows immediately from the observation
- SATx (P) = EQUx (P, 0),

where P is a representation of type X for an arbitrary switching function,
and —P denotes the complement of a problem P. |

Problem 4.34. The problem COMMON_PATHgp, is defined as fol-
lows:

Input: Two read-once branching programs P; and P;.

Output: “Yes”, if there exists an assignment to the input variables such
that P; and P, simultaneously compute the value 1. “No”, otherwise.

Lemma 4.35. The problem COMMON_PATHgp; is NP-complete.

Proof. As each of the two branching programs can be evaluated in polynomial
time, the problem is in NP.

In the proof of Theorem 4.32, for each instance C' of the problem 3-SAT/3-
OCCURRENCES we have constructed two read-once branching programs
P'(C) and P"(C) with the following property: C can be satisfied if and
only if there exists a variable assignment for P'(C) and P"(C) such that
P'(C) and P"(C) simultaneously compute the value 1. For this reason,
the NP-completeness of 3-SAT/3-OCCURRENCES immediately implies the
NP-completeness of COMMON_PATHRp1. O

4.5 References 75

Lemma 4.36. The problem SATgp; can be solved in polynomial time.

Proof. The property that each path in a read-once branching program lead-
ing from the root to a sink is a computation path immediately provides a
procedure for deciding the satisfiability problem. By using depth first search,
all nodes are marked that can be reached by a path starting in the root.
P can be satisfied if and only if the 1-sink is marked in this step. |

Problem 4.37. Let X be a representation type of switching functions, and
let * be a Boolean operation. The problem *-SYNy is defined as follows:

Input: Two representations P; and P, of switching functions which are of
type X.

Output: A representation of type X describing the function f; * fo, where
f1 and fo are the functions being represented by P; and P;.

In the proof of Theorem 4.32 we have seen that the problems *-SYN pp,
*-SYNgpp, and *-SYNpp for * € {-,+} can be solved very easily. The same
can be shown for all other Boolean operations. Interestingly enough, diffi-
culties arise in case of read-once branching programs which are well behaved
for other algorithmic problems.

Theorem 4.38. The problem --SYNgp; is NP-hard.

Proof. The problem COMMON_PATHgp can be solved by applying an al-
gorithm for --SYNppy to the input programs, and then deciding SATgp;
on the resulting program. According to Lemma 4.35 the problem COM-
MON_PATHRp; is NP-complete, and according to Lemma 4.36 the prob-
lem SATgp; is solvable in polynomial time. Consequently, --SYNpgp1 is an
NP-hard problem. O

As complementation of read-once branching programs merely requires ex-
changing the two sink values, Theorem 4.38 can be immediately generalized
to other Boolean operations.

Corollary 4.39. The problems +-SYNpgp; and ®-SYNpp; are NP-hard.
O

4.5 References

Concerning the historic works of Lee, Masek, and Cobham, the references are
[Lee59, Mas76, Cob66].

76 4. Classical Representations

More material on the mentioned classical representations of switching func-
tions can be found in, e.g., [Weg87, Mei89]. Reference [Mor92] contains a
survey on decision trees.

The complexity results for the different classes of branching programs go back
to Gergov and Meinel [GM94Db).

5. Requirements on Data Structures in
Formal Circuit Verification

In medias res [Into the medium of things].
Horace (65-8 BC)

In the previous chapter, we have introduced several representation types for
switching functions. In particular, we have described the switching functions
under consideration based on the following ideas:

e by systematically tabulating the function values (e.g., truth tables),
e by providing a method for computing the function (e.g., disjunctive or
conjunctive normal forms, Boolean formulas or circuits),

e by describing a scheme for evaluating the function (e.g., decision trees,
branching programs).

Already at first glance, many differences between these representation types
are apparent. We only mention some of them:

e The representation types differ substantially in size.

Example 5.1. A truth table of a function f € B, consists always of 2"
rows. The size of all other treated representations depends on the particular
function f. For the disjunction of the variables z4,... ,z,, for example,
there exists a very compact disjunctive normal form

fl@)y=z1 4+ ...+ zp-

On the other hand, according to Theorem 4.19, the ring sum expansion of
this disjunction consists of 2" — 1 monomials. <

e The representation types differ substantially in the efforts needed to eval-
uate the function value for a particular input.

Example 5.2. In a truth table the function value can be determined by an
easy look-up, whereas in the model of Boolean formulas the whole formula
has to be evaluated for the particular input. <

78 5. Requirements on Data Structures in Formal Circuit Verification

e The representation types differ substantially in the amount of computations
necessary for representing the result of performing a Boolean operation on
two functions.

Example 5.3. Let f,g € B,, and let * be an arbitrary Boolean operation.
In case of circuits over a complete basis, the circuit representation of f x g
can be generated easily. The outputs of the circuits of f and g are used as
inputs to a circuit that computes the operation * (which exists because the
basis is complete). In contrast to this simple construction, Theorem 4.38
shows that computing Boolean operations for read-once branching pro-
grams is NP-hard. <&

e The representation types differ substantially with regard to the complexity
of specific properties.

Example 5.4. We consider the test whether a represented function f is
constant. For read-once branching programs this test can be carried out
easily: f is constant if and only if merely one of the two sinks can be
reached from the root. On the other hand, the problem is co-NP-complete
for conjunctive normal forms. The statement can be proven by using a sim-
ple reduction from the satisfiability problem of conjunctive normal forms,
which is NP-complete according to Theorem 4.13: f cannot be satisfied if
and only if both f is constant and f(0,...,0) =0. <o

e The representation types differ substantially in the efforts needed for check-
ing whether a variable is essential for a function.

Example 5.5. On the one hand, the uniqueness of ring sum expansions
implies: a variable is essential for a function f if and only if it occurs in
the ring sum expansion of f. On the other hand, the test of essentiality is
NP-complete for conjunctive normal forms, as we have: a function f can
be satisfied if and only if for a new variable zo the function zqf depends
essentially on the variable zg. <

The above examples show that each of the discussed representations simulta-
neously has advantages and drawbacks. For example, tabular representations
allow a fast function evaluation for a given input. Due to their enormous size,
the computation of a Boolean operation using truth tables is quite expensive.
Contrariwise, in the case of circuits, Boolean operations can be performed
fast, but the equivalence test is inherently difficult.

Although it is often possible to rank the different representation schemes with
respect to different isolated aspects, it seems impossible to declare one of them
to be the best with respect to all criteria. The essential reason for this is that
in concrete applications the different criteria may be of different importance.
In one application, memory usage may be the deciding factor, and in another

5.1 Circuit Verification 79

application, it may be the running time of specific algorithms. For this reason,
it is hopeless to expect a general measure for the best compromise without
taking into account the specific application area.

In this book, we consider primarily applications in the field of computer-aided
circuit design. In order to illustrate the use of switching functions in this area,
we give a more detailed description of two paradigmatic applications from the
hot topic of formal circuit verification. These applications have turned out to
be particularly important, as they make the concrete requirements and de-
mands on representations of switching functions quite precise. The problems
to be solved occur not only in an isolated way, but often as subproblems in
larger applications, too.

5.1 Circuit Verification

Before discussing the problem of circuit verification, let us review the ob-
jects to be verified, namely digital circuits. The first circuits in the historical
development were employed to control electromechanical relays in telecom-
munication networks. These circuits were strictly combinational in the
sense that they did not include memory elements. Of course, combinational
circuits alone are only of limited interest. Their mode of operation can be im-
proved substantially by adding memory elements which preserve the current
state of the circuit. Circuits with memory elements are called sequential
circuits. In spite of the greater functionality of sequential circuits, one must
not underestimate the significance of combinational modules. Firstly, these
modules compute functions “in one step,” and secondly, each sequential cir-
cuit can be interpreted as a combinational circuit that is extended by memory
elements.

Each circuit design, no matter how complex, has to be verified with respect
to numerous aspects before production can take place. Starting from final
manufacturing and moving back through previous stages of the design pro-
cess, a large number of verification aims become obvious. As representatives,
we mention the verification of low-level design rules (e.g., layout), timing,
high-level design rules (e.g., logic level, RTL level), firmware, and functional
correctness. In the following, we restrict our discussion to the problem of
functional correctness of a circuit design.

In every design step, the exact input/output behavior of the system has to
be specified. The designer tries to realize this functional behavior within the
bounds of the given technology. The description of the system behavior is
called specification. A realization of the specified system behavior is called
implementation. Now the design process of a system can be reduced to
an iteration of specification/implementation steps by means of a successive
refinement: the implementation of step ¢ becomes the specification of step

80 5. Requirements on Data Structures in Formal Circuit Verification

i+1 (see Fig. 5.1). If it can be proven by any method that all implementations
satisfy the given specifications, then the chip design is functionally correct.

Step 1: Specification — — —Implementation

Step 2: Specification — — —Implementation

Step 3: Specification — — —Implementation

Figure 5.1. Successive refinement of specifications and implementations

For this proof of functional correctness, three concepts are of particular prac-
tical interest: simulation, formal verification, and partial verification.

Simulation means systematically evaluating the functional behavior of both
the implementation and the specification for a large number of input vectors.
If the output of the implementation and the specification agree for all these
vectors, the design is supposed to work correctly. However, the permanently
growing complexity of circuit designs renders the complexity of this tradi-
tionally applied method increasingly uncontrollable.

The aim of formal verification is a formal mathematical proof that the func-
tional behavior of the specification and the implementation coincide. The use
of ordered binary decision diagrams, called OBDDs, has given this approach
quite essential impulses and opened a new age of formal verification. In the
following, we will go into this topic in more detail.

Partial verification also uses formal mathematical methods to prove that
the implementation at least satisfies particularly important properties of the
specified system behavior. These important properties include safety proper-
ties and liveness properties. Safety properties express that certain “bad”
events cannot occur in any phase of the system’s processing. Liveness prop-
erties express that in any phase of the system’s processing, it is possible that
certain “good” events eventually occur. Of course, verification of safety and
liveness properties cannot provide a proof of the complete functional correct-
ness of the system. It is merely guaranteed that some particularly important
properties of the implemented system are satisfied.

5.2 Formal Verification of Combinational Circuits 81

5.2 Formal Verification of Combinational Circuits

First, we consider in some detail the verification issue involved in what is
called the logic synthesis design phase of a combinational circuit. Here,
the functionality of the circuit to be designed is given in terms of a network
of logical gates. A gate consists of a suitable collection of transistors such
that the output of the gate computes the result of a certain Boolean operation
on its inputs. For example, the AND-gate with two inputs z and y computes
the switching function f(x,y) = = -y. A central task in logic synthesis is
to optimize the representation of this circuit on the gate level with respect
to several factors. These optimization criteria include the number of gates,
the chip area, energy consumption, delay, clock period, etc. Due to the
large complexity of the circuits to be optimized, this task cannot be achieved
without the support of sophisticated and comprehensive software, called logic
synthesis systems.

In the historical development, several milestones in the history of logic syn-
thesis systems were passed at academic institutions. These software packages
substantially influenced the commercial tools of the next generation, or were
even adopted in industrial environments. Some of the most important logic
synthesis systems in the historical review were:

MINI (IBM Research, 1974),

ESPRESSO (University of California at Berkeley, 1984),
MIS (University of California at Berkeley, 1987),

BOLD (University of Colorado at Boulder, 1989),

SIS (University of California at Berkeley, 1992),

as well as the commercial systems of leading design tool companies as Syn-
opsis, Cadence, or Mentor Graphics.

Even without going into the details of the different software systems, it is
clear that all the systems have to employ a suitable representation which
allows the switching functions to be manipulated. These representations are
realized internally by means of suitable data structures. The memory con-
sumption and the running time of individual algorithms within the software
systems depend primarily on the chosen representation and the employed
data structures. While real memory consumption typically coincides quite
exactly with the size of the abstract representation, it is more difficult to
determine the efforts of different tasks with respect to time resources.

Before determining the time complexity of the most important routines
within logic synthesis systems (which will be done in the next chapters),
one has to state which routines are the most important ones. In the follow-
ing, we state the central problems that have to be solved by any of these
systems.

82 5. Requirements on Data Structures in Formal Circuit Verification

The first of these problems is to generate the internal circuit representation
from a given net list of gates. This process is called symbolic simula-
tion. Here we have to construct the representations of the literals, i.e., the
representations of the functions being computed in the input nodes. Then,
in topological order, the representations of the functions being computed
in the individual gates are determined depending on the functions of the
corresponding predecessor gates. This is possible by applying the Boolean
operation performed in the gate to the representations of the inputs of the
gate. Figure 5.2 illustrates this process for an AND-gate and the representation
type of disjunctive normal forms.

r1T2 JE—
1

f (z122) - (21 + 23)

r1+ 23 f =21Z2

fo —

Figure 5.2. Symbolic simulation of an AND-gate in the representation type of a
disjunctive normal form

Since, in general, combinational circuits are only available to logic synthesis
programs in the form of a net list of gates, high performance of symbolic sim-
ulation is absolutely necessary. Primarily, this demand refers to the employed
representation of the switching functions. As we have already seen, big dif-
ferences can be observed among the individual representation types. There
are representations where it is almost trivial to perform a Boolean operation,
whereas for other representations this task is NP-hard and hence hopelessly
difficult. Consequently, representation types in circuit design should neces-
sarily satisfy the following property:

(1) Boolean operations can be performed efficiently.

Example 5.6. An important step in logic synthesis is to optimize a circuit
on the logic level with regard to the number of gates from a given gate library.
We consider the problem of transforming the circuit in Fig. 5.3 (a) to a smaller
circuit which only consists of NAND-gates. A typical solution computed by
a logic synthesis tool may look like the circuit in Fig. 5.3 (b). It remains to
show that the circuits are functionally equivalent, i.e., that they compute the
same function. Indeed, in those small dimensions we can convince ourselves
even manually. Namely, DeMorgan’s rules imply:

5.2 Formal Verification of Combinational Circuits 83

Z1
2 —}}f:
D=

Z2

I3 —>_|7 7
Z3
T4

T4 —%

(a) Initial circuit (b) Realization in terms of NAND-gates

Figure 5.3. Optimizing a circuit by means of NAND-gates

To T3 X1 XLyg =29 T3 -1+ T4
= (@2 +73) 71 + 722
= 2173 + T1T3 + T4.

<&

To guarantee that the functionality of a circuit has not been modified through
the synthesis and optimization process, a verification task has to be solved
as described in Example 5.6. Here, the representation of the original circuit
is interpreted as specification. The representation of the optimized circuit is
considered as implementation. It has to be proven formally that specifica-
tion and implementation are functionally equivalent, i.e., that both compute
exactly the same switching function. Typically, this proof is carried out in
several steps: alternately, some optimization steps are applied, and then the
resulting partial solutions are verified. As a precondition, it is necessary
that both the optimization steps and the proof of functional equivalence can
be performed efficiently. The first condition can be solved quite well in the
mentioned systems, but it turns out to be difficult to satisfy the second con-
dition. In particular, the exact difficulty of this proof depends directly on the
properties of the representation of switching functions which is used. Hence,
representation types of switching functions in computer-aided circuit design
should have the following property:

(2) Functional equivalence can be tested efficiently.

The equivalence test also plays a central role within the concept of partial
verification. Later on, we will show that efficient testing the functional equiv-
alence of two circuit representations allows us to prove important properties
of a circuit efficiently.

84 5. Requirements on Data Structures in Formal Circuit Verification

The term satisfiability test of circuits denotes the test whether there is
an input vector that computes a 1 in the given circuit. The question of
how far the satisfiability test can be performed efficiently, has gained a key
position in theoretical computer science. In many investigations it serves
as a reference problem. If one has access to an efficient test concerning
functional equivalence of two circuit representations, then satisfiability can
be efficiently checked, too: it is merely to check whether the representation
of the contradiction function (which can mostly be obtained in a trivial way)
is functionally equivalent to the representation of the given circuit. If the
answer is “Yes”, then the circuit cannot be satisfied; if the answer is “No”,
then there exists at least one satisfying assignment.

5.3 Formal Verification of Sequential Circuits

While the outputs of a combinational circuit are completely determined by
the current inputs, the outputs of a sequential circuit additionally depend on
values computed in the past. The dependency on the past is established by
the possibility of storing signals in registers. The outputs of the sequential
circuit can depend both on the current inputs and on the values in the mem-
ory elements. Therefore, sequential circuits can be seen as an interconnection
of combinational logic gates and registers. Figure 5.4 illustrates this relation.
Figure 5.5 shows a simple sequential circuit.

Registers

Combinational

.Prlrnary circuit Primary
inputs outputs

Figure 5.4. Schematic view of a sequential circuit

Whereas the behavior of combinational circuits can be expressed completely
in terms of switching functions in a static way, sequential circuits additionally
show a dynamic input/output behavior with respect to time. Their behavior
can be captured adequately by means of finite state machines, which were
introduced in Section 2.7.

Solving the verification problem of sequential circuits is essentially more dif-
ficult than solving the one of combinational circuits, as it requires checking

5.3 Formal Verification of Sequential Circuits 85

D f (eap ’ q)
ﬁD__ﬁiii:::%
1
L]
1
L]

Figure 5.5. Example of a sequential circuit with two registers p, ¢q

permanent functional equivalence for all possible input sequences. In fact,
the problem is to show that every input sequence produces the same output
sequence in both circuits, where the systems are described as net lists of gates
again. Here, too, one system specifies a functional behavior, and the other
one an optimized implementation.

The equivalence test of finite state machines has been investigated in com-
puter science for many years. For systems whose states are encoded by, say,
80 bits, the number of possible states is 289. Such a huge number is hardly ac-
cessible to intuitive comprehension and may be appreciated by a comparison
from the real world. The age of our whole universe is estimated to 234 years,
so a computer which had been investigated 2 million states per second since
the Big Bang would still not have completed its analysis of all states ! As
a consequence of this dilemma, for a long time the correctness of sequential
systems in practical applications has only been verified by a large number of
simulations. However, even a large number of simulations is small compared
to the total number of all states, so that generally, only a small fraction of
cases can be covered. In contrast to this, formal verification is expected to
provide a complete proof of the correctness of the sequential circuit.

Classical approaches for solving the verification problem were doomed to
failure for large sequential systems, as they were based on explicit represen-
tations of state sets, e.g., in the form of lists. Of course, algorithms for state
sets in the mentioned sizes cannot be practical. In recent years, fundamen-
tal relations between this issue and the representation aspect of switching
functions have been revealed, which have recognized the dependency on the
algorithmic qualities of the representations. If a representation type is pro-
vided which can perform the relevant tasks quickly, then one immediately
obtains efficient algorithms for the verification of finite state machines.

The modern approaches are based on an implicit set representation. Here,
one considers a subset S C {0, 1}", which may contain all n-tuples of register

86 5. Requirements on Data Structures in Formal Circuit Verification

assignments that can be reached by arbitrary input sequences of length k.
S is a set, but the characteristic function xgs of S,

xs(1,... ,xn) =1 <= (21,...,2,) €S,

is a switching function in n variables. Hence, set representations and set oper-
ations can be completely reduced to the manipulation of switching functions.
If a compact representation of switching functions is provided, the implicit
set descriptions remain small, too. Even the equivalence test of two finite
state machines M; and M, can itself be reduced to manipulating switching
functions by means of implicit set representations.

Indeed, nowadays these implicit techniques are an indispensable tool for solv-
ing important problems within the basic model of finite state machines. As
an additional requirement on representation types of switching functions in
computer-aided circuit design we demand that:

(3) Basic algorithms on finite state machines like the
equivalence test can be performed efficiently.

As will be shown later, when reducing these algorithms to the level of switch-
ing functions, new basic problems like quantification come to the center of
attention. These new problems constitute the present challenges with re-
spect to the underlying representation types. With regard to our aim in this
chapter, namely describing paradigmatic applications of switching functions
in computer-aided circuit design, we can be content with the above formula-
tion.

5.4 References

The mentioned logic synthesis systems are described in the following ref-
erences: MINI [HCO74], ESPRESSO [BHMS84], MIS [BRSW87], BOLD
[HLJ*89] and SIS [SSM*92]. Discussions concerning the requirements on
data structures in formal circuit verification can also be found in the surveys
[Bry92, Weg94, MT98].

Part II

OBDDs: An Efficient Data Structure

87

6. OBDDs — Ordered Binary Decision
Diagrams

My power comes to full strength in weakness.
2. Corinthians 12,9

In this chapter, we introduce the representation type of ordered binary deci-
sion diagrams, called OBDDs for short. Although the underlying model of
decision diagrams (or synonymously branching programs) was already stud-
ied by Lee and Akers in the 1950s and 1970s, these representations have
not been used in serious applications for a long time. In 1986, by adding
some ingenious ordering restrictions to these models and providing a sophis-
ticated reduction mechanism, R. Bryant substantially improved the model.
Since this time, the improved representation, denoted as OBDD, has invaded
nearly all areas of computer-aided VLSI design.

These facts have been established by the following valuable properties of
OBDDs:

e Reduced OBDDs provide a canonical representation of switching functions.
e Reduced OBDDs can be manipulated efficiently.

e For many practically important switching functions, the corresponding
OBDD representations are quite small.

Exactly these properties form the basis for efficiently solving the basic prob-
lems in computer-aided circuit design that were discussed in Chapter 5.

6.1 Notation and Examples

Definition 6.1. Let w be a total order on the set of variables z1,... ,%,.
An ordered binary decision diagram with respect to the variable order
is a directed acyclic graph with exactly one root which satisfies the following
properties:

e There are exactly two nodes without outgoing edges. These two nodes are
labeled by the constants 1 and 0, respectively, and are called sinks.

90 6. OBDDs — Ordered Binary Decision Diagrams

e FEach non-sink node is labeled by a variable x;, and has two outgoing edges,
which are labeled by 1 and 0, respectively. These edges are called the
1-edge and the 0-edge, respectively.

e The order, in which the variables appear on a path in the graph, is con-
sistent with the variable order m, i.e., for each edge leading from a node
labeled by x; to a node labeled by x; it holds that x; <, x;.

Nodes labeled by a variable x; are called internal nodes. The variable of a
node v is abbreviated by var(v). The successor node determined by the 1-edge
is denoted by high(v), and the successor node determined by the 0-edge is
denoted by low(v).

In the terminology of the previous chapters, an OBDD is a read-once branch-
ing program with an additional ordering restriction on the variables. The
computation path of an input a = (a1,...,a,) € B" is the path from the
root to a sink in the OBDD which is defined by the input. More precisely,
the computation path begins in the root, and in each node labeled by z; the
path follows the edge with label a;.

Definition 6.2. An OBDD represents a given switching function f € B, if
for all inputs a € B™, the computation path of a leads to the sink with label

f(a).

Example 6.3. Let 7 be the variable order z; < z2 < x3. Figure 6.1 shows
two OBDD representations of the function f(x1,%2,%3) = 122 + 1T T3
with respect to the order 7. <&

A node v with label z; in the OBDD defines a Shannon expansion. If the
OBDD rooted in v represents the function f(z1,...,), then the two sub-
OBDDs rooted in the sons represent the functions f(z1,...,%i-1,1,Zir1,

.,Zpn) and f(z1,...,2i-1,0,Zi41,... ,%,), respectively. Figure 6.2 illus-
trates this relation.

Figure 6.1. Two OBDDs of f(z1,z2,%3) = z1%2 + T1ZT2 T3

6.1 Notation and Examples 91

Figure 6.2. Shannon’s expansion in the OBDD of f, where fi = f(z1,... ,%i-1, 1,
Li41y:--- ,(En) and fo = f((l?l, e 7$i—1507$i+17 e ,mn)

Figure 6.3. OBDDs of elementary functions

Definition 6.4. Let f = f(x1,... ,z,) € B,. The positive cofactor of f

with respect to x; is the subfunction fy,=1 = f(z1,... ,Ti—1, L, Tix1,... ,Tp),
for short denoted by f,,. The negative cofactor of f with respect to z; is
the subfunction fy,—o = f(z1,... ,2i—1,0,Zi41,... ,2Zn), abbreviated by fz.

If the root of the OBDD is labeled by the variable z;, then the Shannon
decomposition which is realized in this node can be written in the form

f=%ifo, + Tifar

Example 6.5. To complete this introduction of notation, we list some
OBDDs of basic functions. Here, we assume that in the variable order the
variable z; occurs before the variable z;. In Fig. 6.3, the OBDDs of the
literals x;, Z;, and the functions z;z;, z; + z;, z; ® x; are shown. O

92 6. OBDDs — Ordered Binary Decision Diagrams

6.2 Reduced OBDDs: A Canonical Representation
of Switching Functions

At first, OBDDs in the sense of the stated definitions are not uniquely de-
termined. A corresponding example has already been given in Example 6.3.
In his fundamental publication, Bryant investigated the redundancies within
decision diagrams. Based on this, he introduced the notion of reduced OBDDs
which provide a canonical representation of switching functions. In the fol-
lowing, we omit mentioning the variable order 7 explicitly if it is clear from
the context.

One can easily see that the following types of redundancy can occur within
an OBDD.

e The 0- and the 1-successor of a node v can be identical. In this case, the
decision in the node v does not yield any new information.

e Within the decision diagram, certain subgraphs can occur several times.
In this way, the same information about the function is represented several
times.

The following definitions make it possible to state the second form of re-
dundancy in a precise manner. It says that two OBDDs can be denoted
as isomorphic if and only if they are isomorphic as node- and edge-labeled
graphs.

Definition 6.6. Let P, and P, be two OBDDs. P, and P, are called iso-
morphic if there is a bijective mapping ¢ from the set of nodes of Py to the
set of nodes of Py such that, for each node v, either

1. the two nodes v and ¢(v) are sinks with identical labels, or

2. var(v) = var(¢(v)), ¢(high(v)) = high((v)), ¢(low(v)) = low((v)).
Definition 6.7. An OBDD is called reduced if

1. it does not contain a node v with high(v) = low(v), and

2. there does not exist a pair of nodes u, v such that the sub-OBDDs rooted
in u and v are isomorphic.

Note that the second condition for a reduced OBDD refers to a global prop-
erty of the graph, since the isomorphic subgraphs can be arbitrarily large.
However, this global property can be replaced by a local property. Indeed,
the local description is better suited for the algorithmic realization of the
reduction concept. The local properties are expressed in terms of reduction
rules that can be applied to an OBDD until it is completely reduced.

6.2 Reduced OBDDs: A Canonical Representationof Switching Functions 93

Definition 6.8. We consider two reduction rules on OBDDs:

Elimination rule: If the 1-edge and the 0-edge of a node v point to the same
node u, then eliminate v, and redirect all incoming edges of v to u.
Merging rule: If the internal nodes u and v are labeled by the same variable,
their 1-edges lead to the same node, and their 0-edges lead to the same node,
then eliminate one of the two nodes u, v, and redirect all incoming edges of
this node to the remaining one.

The two reduction rules of OBDDs are illustrated in Fig. 6.4.

N \(L %,@ Y
% | . Qggjb

Figure 6.4. The two reduction rules of OBDDs

The following theorem justifies use of the term reduction rules when speaking
of the elimination or the merging rule.

Theorem 6.9. An OBDD is reduced if and only if neither of the two reduc-
tion rules can be applied.

Proof. If an OBDD is reduced, then by definition, the elimination rule cannot
be applied. The merging rule cannot be applied either, as otherwise the
OBDD would contain two isomorphic subgraphs.

Conversely, let P be an OBDD to which neither of the reduction rules can
be applied. Then, by definition of the elimination rule, the OBDD P does
not contain a node v with high(v) = low(v).

Now we assume that P contains a pair of different nodes u, v with the prop-
erty that the subgraphs rooted in u and v are isomorphic.

Case 1: It holds high(u) = high(v) and low(u) = low(v). The merging rule
can be applied. This is a contradiction to the precondition that none of the
reduction rules can be used.

Case 2: It holds high(u) # high(v) or low(u) # low(v). W.l.o.g. we assume
that high(u) # high(v). Definition 6.6 implies that the two OBDDs rooted
in the two different nodes high(u) and high(v) are isomorphic, too. For
this reason, we apply the case distinction once again, this time to the nodes

94 6. OBDDs — Ordered Binary Decision Diagrams

high(u) and high(v). As these sub-OBDDs only depend on the variables
which occur after var(u) in the order, the recursive process stops after at
most n steps, where n is the number of variables in the original OBDD.
Then, finally, the condition of case 1 has to hold, as there is only one 1-sink
and one 0-sink. m|

The statement that iterated application of the reduction rules leads to a
reduced OBDD does not tell us yet that the resulting reduced OBDD is
uniquely determined. The following theorem establishes one of the key prop-
erty of OBDDs, namely that reduced OBDDs provide a canonical represen-
tation of switching functions: with respect to a fixed variable order, each
function can be represented by a uniquely determined OBDD. The proof of
this property is carried out in several steps. First we show that the functions
which are computed in the nodes of the OBDDs are certain subfunctions
of f. By means of these subfunctions, OBDDs of minimal size with regard
to f can be described. Based on these steps we can prove that all reduced
OBDDs are pairwise isomorphic and that they yield the minimal OBDD of
f-

For simplicity, we assume for the rest of this section that the variables
Z1,...,Ty are naturally ordered, i.e., corresponding to their indices. This
is no restriction, as we can obtain this order from every other order by re-
naming the variables.

Let v be a node labeled by x; in an OBDD of the function f. Further let
p be a path which leads from the root to v. Of course, only the variables
z; with j < ¢ — 1 may be tested on p. The path p is traversed by an input
(¢1,--.,cy) if all variables tested on p have suitable values, i.e., if ¢; coincides
with the value of the edge in p which starts in the node labeled by z;. In
the node v and in the nodes below v only variables z;, . .. , x, may be tested.
Hence, in the sub-OBDD rooted in v, a subfunction fz,—=c,,... gi_1=c;_, Of f
is computed.

If besides p there is another path ¢ leading from the root to v and tra-

versed for the inputs (di,...,d,), then in v the function fo,=d,, . zi 1=d;_;
is computed, too. As in the nodes of the OBDD below v, only the
variables x;,...,x, may be tested, the identity fi,=c,, . .0ic1i=cici =

fei=da,... ,ws_1=d;_, holds. Hence, in each node labeled by z; of an OBDD,
exactly the subfunction of f is computed which we obtain from f by suitably
fixing x1,...,z;_1 to constants.

Now we can describe OBDDs for any switching function.

Theorem 6.10. Let S; be the set of subfunctions of f which we obtain by
fizing x1,... ,xj—1 to constants, and which depend essentially on x;. Up to
isomorphisms, there is exactly one OBDD of minimal size for f with respect

to the variable order xi,...,%,. This OBDD contains exactly |S;| nodes
labeled by x;.

6.2 Reduced OBDDs: A Canonical Representationof Switching Functions 95

Proof. We explicitly construct a minimal OBDD P of f which for all ¢ con-
tains exactly |S;| nodes labeled by z;. If f is a constant function, then P
exactly consists of the two sinks 0 and 1. Otherwise, P contains a 1-sink, a
0-sink, and for each subfunction g € S; exactly one node v which is labeled
by z;. Let g,, and gz; be the positive and negative cofactor of g. For these
subfunctions, P contains the nodes v; and vg. Each of these nodes is either
a sink (if g, or gz is a constant function), or an internal node labeled by
z; where j > i. We choose v; to be the 1-successor of v, and vy to be the
0-successor of v.

In order to prove that the constructed OBDD P computes the function f,
it suffices to prove that at each node v the corresponding subfunction is
computed. We prove this statement by induction where we traverse the nodes
in a reverse topological order. First, the statement holds for the sinks, as the
sinks compute the constant functions. For an internal node v labeled by
x; which computes the function g, the induction hypothesis implies that the
1-successor computes the positive cofactor of g, and the 0-successor computes
the negative cofactor of g with respect to z;. Hence, in v the function g =
Zi gz; + Ti gz; is computed.

Minimality of P: If the constructed OBDD P is not of minimal size, then
there exists an OBDD P’ which contains for some i € {1,...,n} less than
|Si| nodes labeled by z;. However, as there are |S;| different subfunctions of
f of the form

fw1=61,--- yLi—1=Ci—1
which depend essentially on x;, there exists an assignment ¢ = (¢1,... ,¢;_1)
to the variables 1,... ,x;—1 with fo,—¢, . i 1=c;_, € Si, Whose correspond-

ing path leads to either a sink, or to a node labeled by z;, j > i, or to a
node labeled by z; that computes a different subfunction f;,—a,,... ¢i_1=di_:-
The first two cases lead to contradictions, as fz,—c,,... #;_1=c;_, depends es-
sentially on x;, and the last case leads to a contradiction, as in each node of
an OBDD only one subfunction can be computed.

Minimal OBDDs are isomorphic to P: As a consequence, each minimal
OBDD of f with respect to the variable order z1,...,z, has to contain
the following nodes: for each subfunction g € S;, there has to be a node
labeled by z; such that the successors of the node compute the cofactors g,,
and gz;. By combining these subgraphs we obtain: each OBDD of f which
contains exactly the same number of nodes as the constructed OBDD P is
isomorphic to P. Hence, an OBDD of f which is not isomorphic to P has to
contain additional nodes, and therefore it is not minimal. O

Theorem 6.11. Let P be an OBDD of the switching function f with respect
to the variable order w. P is isomorphic to the minimal OBDD P’ of f with
respect to w if and only if none of the reduction rules is applicable to P.

96 6. OBDDs — Ordered Binary Decision Diagrams

Proof. Obviously, neither of the reduction rules can be applied to a minimal
OBDD; hence, it suffices to proof that in case of an OBDD P which is not
minimal at least one of the rules can be applied.

W.l.o.g. we can assume that f is not a constant function. Moreover, for the
ease of notation we assume that the natural variable order z1, ... ,z, is used.

The proof of Theorem 6.10 implies that each OBDD of a switching function
f contains for each subfunction in S; at least one node labeled by z;. If
P is not isomorphic to the minimal OBDD P’, then there is at least one
i € {1,...,n} such that P contains more than |S;| nodes labeled by z;. Let
i’ be the greatest of these ¢. Then, in P, each of the subfunctions in S; with
j > ', and each of the two constant functions is represented by exactly one
node. As there are more than |S; | nodes labeled by z;:, P contains either a
node u labeled by x;; which computes a subfunction g that does not depend
essentially on z;, or there exist two nodes v and w which are labeled by z;
and which compute the same subfunction h € S;. In the first case we have
9 = 9z, = 9z~ As the functions g,, and gz are represented in the same
node, the node u can be removed by means of the elimination rule. In the
second case the successors of v and w compute the functions h;, and hgz;.
For each of these functions there is only one node in P, and hence, v and w
can be identified by means of the merging rule. O

Corollary 6.12. For each variable order w, the reduced OBDD of a switch-
ing function f with respect to 7 is uniquely determined (up to isomorphisms).

Proof. The statement follows immediately from Theorem 6.11 in connection
with Theorem 6.9. |

To complete this section, let us remark that all the OBDDs of the basic
functions given in Example 6.5 are reduced.

6.3 The Reduction Algorithm

The reduction rules of Definition 6.8 in connection with Theorem 6.11 suggest
an easy algorithm for transforming a given OBDD into a reduced OBDD of
the same function: apply the rules as long as this is possible. Each application
of one of the two rules decreases the size of the OBDD by at least one node.
If no reduction rule can be applied any longer, then the OBDD is reduced.

The algorithm in Fig. 6.5 performs the reduction steps in a systematic and
efficient manner. The main idea of the algorithm has already been employed
in Theorem 6.11: in order to reduce a given OBDD it is most reasonable to
proceed bottom-up. Otherwise, it cannot be guaranteed that the execution
of a reduction does not make a new reduction possible, within an already
investigated area. For this reason, first the applicability of a reduction rule

6.3 The Reduction Algorithm 97

Reduce(P) {
/* Input: An OBDD P of f(z1,...,z,) €B,
with respect to the natural variable order */
/* Output: A reduced OBDD of f */
Assign to each node v a positive number id(v) in a bijective way;
For i =n,...,1 (decreasing) {
V(i) = {v node in P : var(v) = z;};
/* Elimination rule */
Forall v € V(3) {
If id(low(v)) = id(high(v)) {
Remove v from V (i);
Redirect all incoming edges of v to low(v);
Remove v;

%Ise {
key(v) = (id(low(v), id(high(v));
}

}
/* Merging rule */
oldkey = (0,0);
For all v € V'(3), sorted by key(v) {
If key(v) = oldkey {
Remove v from V (i);
Redirect all incoming edges of v to oldnode;
Remove v;

}

Else {
oldnode = v;
oldkey = key(v);

Figure 6.5. Reduction algorithm

is checked for those nodes that are labeled by the last variable in the order.
Subsequently, the next variable, i.e., the one immediately preceding in the
order, is investigated.

At the beginning of the algorithm each node v is mapped bijectively to a
positive number id(v) which serves as identification. The test if the elimi-
nation rule is applicable can be carried out for each node locally. In order
to check whether the merging rule can be applied, it seems to be a good
strategy to sort the nodes v of the currently investigated variable accord-
ing to the key (id(low(v)),id(high(v)). The result of this sorting process is
that nodes which can be identified by means of the merging rule now appear
consecutively.

98 6. OBDDs — Ordered Binary Decision Diagrams

The time complexity of the algorithm is dominated by the time for sorting
the subsets of nodes. If the OBDD P consists of m nodes, then the running
time of the method is bounded from above by O(mlogm). By using the so-
called bucket sort technique the method can even be modified in a way that
it merely requires linear time. However, from a practical point of view this
variant has two drawbacks. First, the constants in the asymptotic O-Notation
and therefore the running times are quite large, and second, a large amount
of additional memory is required.

Example 6.13. Figure 6.6 shows an OBDD whose nodes have already been
assigned positive numbers in a bijective manner. The reduction algorithm
works on these OBDDs as follows. In the first traversal of the loop body it
is recognized that the node with label z3 has identical 1- and 0-successors.
Hence, it can be removed. In the second traversal of the loop, the merging
rule is applied to the two nodes with label x,. Finally, in the last step the
node with label z; is removed by means of the elimination rule. <&

id: 2

\ \

\ \
id: 5 ‘iid:e id: 5 ‘iid:ﬁ

Figure 6.6. Reduction of an OBDD

| I
| |
| |
| I

6.4 Basic Constructions

In this section, we describe two fundamental techniques for constructing re-
duced OBDDs of given functions. These two techniques are based on dif-
ferent approaches. In particular, both approaches are suitable for manually
constructing OBDDs of functions in few variables. Here, for example, the
starting point may be a formula representation of a function. Indeed, we rec-
ommend that the reader constructs some OBDDs of simple functions manu-
ally, as this serves to provide quite good insights into the character and shape
of OBDD representations.

6.4 Basic Constructions 99

The first method is based on the reduction algorithm presented in Section 6.3.
Let f € B,,, and let 7 be a given order on the variables. In order to construct
the reduced OBDD of f, one starts by constructing a complete decision tree
of f that reads the variables on each path according to the order 7. Of course,
the construction of the decision tree requires determination of all 2" function
values of f.

By identifying all 1-sinks and all 0-sinks, respectively, one obtains an OBDD
of f with respect to the variable order 7. Finally, the reduction algorithm is
used to reduce this OBDD. Remember that the reduction algorithms reduces
the OBDD in bottom-up manner, i.e., from the sinks to the root. Of course,
the need to construct a complete decision tree in the initial step makes the
approach practical only for functions in quite few variables.

The second method constructs the reduced OBDD in a top-down manner,
i.e., from the root to the sinks. First, the root node of the reduced OBDD is
introduced. This node is labeled by the first variable z; in the order which
is essential for the function f. By means of Shannon’s decomposition

we can construct the two subfunctions f,; and fz which are computed in
the sons of the root node. For each of these functions f,, and fz we also
determine the first variable in the order which is essential for the function.
In either case this variable becomes the label of the corresponding node.
Recursively, this method is continued. The procedure for determining the
node labels serves to completely prevent constructing redundant nodes. If
one additionally takes care that already represented subfunctions will not
be represented a second time, then the merging rule is also satisfied. The
whole process is finished when constant subfunctions are reached. Of course,
this approach is practical only for small n, too, as the test whether a certain
subfunction has already been represented requires an individual equivalence
test.

Example 6.14. Let f(x1,22,%3,24) = T2(x3 + T1) + T1 Tax4 + 2172 T,
and let m be the variable order z; < x5 < x3 < x4. Figure 6.7 shows the
order in which the nodes of the OBDDs are constructed in the presented top-
down approach. First the root node is constructed. The two subfunctions

f$1 = f1‘1:1 and fﬁ = fZ1:0 are

for =2 Tg + z2(x3 + T2),
far = Taxg + x2(23 + Tp)-

The functions have not been represented in the OBDD yet. As both of them
essentially depend on x5, we add two nodes which are labeled by z». In the
next step we compute the cofactors with respect to zs,

100 6. OBDDs — Ordered Binary Decision Diagrams

fﬂvlﬂvz = fﬂwQ = 23 + T4,
fwlﬂ = T4,

fa1 75 = 24

This leads to three functions which have not been represented yet (nodes 4,
5, 6), and one of them essentially depends on x3. For these functions, the
cofactors with respect to z3 will be computed:

f.’/L‘1.’/E2.’L‘3 = fﬁ$2$3 = 1)
fwlwzﬁ = fﬁﬂmﬁ = fz1ﬁz3 = fﬂrlE T3 — Ty,
Jot 7305 = [m 7 = s
The only one of these functions which has not been represented yet is the

constant function 1. Finally, in the last step all resulting subfunctions are
constant functions. &

Figure 6.7. Top-down construction of a reduced OBDD

6.5 Performing Binary Operations and the
Equivalence Test

Next, we show how two of the basic problems which have been pointed out in
Section 5.2 can be solved efficiently if switching functions are represented in
terms of OBDDs. The resulting algorithms will constitute the foundation for
efficiently employing the OBDD data structure in all applications. By means

6.4 Basic Constructions 101

Apply(F, G, *) {
/* Input: OBDDs F', G of f, g with respect to 7; a binary operation * */
/* Output: An OBDD of fxg */
If (F and G are sinks) {
Return (F x G);

}
Else If (F,G) € IdealComputedTable {
Return IdealComputedTable(F, G);

}

Else {
Let z; be the first variable in which is essential for F' or G;
Construct a new node v;
high(v) = Apply(Fz;=1, Ga;=1,%);
low(v) = Apply(Fz;=0, Gz;=0, *);
Insert_ideal_computed_table(F,G,v);
Return v;

Figure 6.8. OBDD-based application of a binary operation

of clever implementation techniques, which we discuss in the next chapter,
the presented algorithms can be further improved.

First we turn to the problem of performing binary operations. Let % denote
an arbitrary Boolean operation, e.g., the conjunction or disjunction. To
compute the OBDD representation of the function f x g from the OBDDs
of the functions f and g, Shannon’s expansion with respect to the leading
variable x; in the order can be used:

fxg =z (f zi=1) + T (f

By recursively constructing the OBDDs P; and P, of the two functions
Flzi=1%9|z;=1 and f|z;=0 * g|z;=0, an OBDD of f*g can simply be computed
by introducing a new node labeled by z; whose 1-edge points to the root of
Py, and whose 0-edge points to the root of F.

zi=1*%¢g z;=0 * g ZiZO)'

However, there is a hitch to this recursive method for computing f * g. If
one actually performs all the decompositions explicitly, then one has to deal
finally with up to 2™ subproblems.

To make the application of binary operations efficient, one employs the fol-
lowing considerations. Each recursive call of the computation procedure has
two arguments, which we denote by f* and g*. In each call, f* is a sub-
function of f, and g* is a subfunction of g. Each subfunction of f and g
corresponds to exactly one OBDD node. Multiple calls with the same argu-
ment pair can be avoided by recalling all the already computed results from
a table. In this way, the originally exponential number of decompositions can
now be bounded by the product of the two OBDD sizes.

102 6. OBDDs — Ordered Binary Decision Diagrams

This idea can be realized by means of the pseudo code in Fig. 6.8. First it
is checked whether the present case is a terminal case, i.e., if both OBDDs
consist of exactly one sink. If this is true, then the result can be easily
determined by applying the binary operation to the values of these sinks.
The mentioned table for storing already computed intermediate results is
realized by means of the table IdealComputedTable. If for a pair of nodes the
result is not known yet, then it is computed by two recursive calls.

Example 6.15. Let F and G be two OBDDs of the functions f(z1,z2) =
ZT1Ta, g(w1,T2) = T1 T2 with respect to the variable order z1 < z2. The
nodes in the OBDD of f + g result from the Cartesian product of the nodes
of f and the nodes of G. In Fig. 6.9, the nodes of F' and G are numbered con-
secutively. The (two-component) numbering of the resulting OBDD reflects
the correspondences among the nodes which are involved in the construction.

(FLGL)
f+g: °

(F2,G4)

Figure 6.9. Cartesian product involved in binary operations

In general, the algorithm may produce an OBDD which is not reduced. The
reduced form can be re-established by applying the already presented (linear)
reduction algorithm to the constructed OBDD. Another efficient possibility
is to take care that at each moment within the construction the OBDD is
kept in a reduced form. This technique will be extensively discussed in the
next chapter. First we summarize:

Theorem 6.16. Let the two switching functions fi and fo be represented
by the OBDDs Py, P> with respect to the same order w. For each binary
operation x, the reduced OBDD P of the function f = f1 * fo with respect to
7 can be constructed in time O(size(Py) - size(P)). m|

The test whether two given OBDDs P; and P, represent the same function
can also be performed by using the uniqueness of the representation. First,
P, and P> will be reduced. As the reduced OBDD of each function is uniquely
determined up to isomorphisms, it is merely to check whether the two OBDDs
are isomorphic, i.e., whether the underlying node- and edge-labeled graphs
are isomorphic. For this, the two OBDDs P, and P, are simultaneously

6.6 References 103

traversed from the corresponding root by using depth first search. In each
step of this depth first search, we pass over either to the 1-successors of the
two current nodes or to the 0-successors. For each visited pair of nodes we
check whether both nodes have the same label. If this is true for all nodes,
then P; and P> represent the same function. Thus we have:

Theorem 6.17. Let the switching functions fi and fo be represented by
OBDDs Py, P, with respect to the same order w. The equivalence test of
two representations can be performed in time O(size(Py) + size(Py)). O

The efficiency of the equivalence test can also be improved by suitable imple-
mentation techniques. We will come back to this aspect in the next chapter.

6.6 References

The fundamentals of OBDDs, i.e., the model, the reduction idea, efficient
algorithms for performing Boolean operations on them, and the equivalence
test, go back to Bryant [Bry86, Bry92]. The presented uniqueness theorem
follows the presentation of Sieling and Wegener [SW93a, Sie94]. The linear-
time reduction algorithm is also due to Sieling and Wegener [SW93b].

104 6. OBDDs — Ordered Binary Decision Diagrams

7. Efficient Implementation of OBDDs

Alles, was ist, ist verninftig.
[All, that is, is reasonable.]
Georg Wilhelm Friedrich Hegel (1770-1831)

So far, we have mainly considered structural properties of ordered binary
decision diagrams. Several of these properties, like the linear-time equivalence
test, already indicate the suitability of OBDDs in the context of Boolean
manipulation. However, as the efficiency of all OBDD-based applications
depends almost exclusively on the efficiency of the basic OBDD operations,
the demands on the performance of these operations are very high. Hence,
much research effort has been spent on transforming the basic OBDD concept
into fast and memory-efficient implementations.

A key step in this development was achieved by K. Brace, R. Rudell, and
R. Bryant who presented a general framework for implementing OBDD pack-
ages and developed the first efficient general-purpose package for manipulat-
ing OBDDs. During this process they had to make a number of design de-
cisions. The suitability of their decisions is confirmed by the fact that many
of the newer packages are still based on the programming techniques they
proposed.

In this chapter, we discuss the key concepts of this framework and then
present some well-known software implementations of these ideas.

7.1 Key Ideas

The core elements of the data structure that represents a single node in an
OBDD are shown in Fig. 7.1. Here, Index is the index i of the variable x;.
High is a pointer to the 1-successor, and Low is a pointer to the 0-successor
of the node. The chosen memory sizes of the components allow up to 65536
different variables to be generated. A word is the machine-dependent memory
unit that suffices to address the whole virtual address space. In case of a 32-
bit architecture, a word consists of 32 bit = 4 byte, and the virtual address
space is of size 232.

106 7. Efficient Implementation of OBDDs

| Component | Size |

Index 2 byte
High 1 word
Low 1 word

Figure 7.1. Core of the record representing a node

While discussing the key ideas of the implementation, we will see that for
efficiency reasons it is inevitable to extend this basic record. By storing
additional information the performance of individual OBDD algorithms can
be substantially improved. However, as practical applications involve large
OBDDs with millions of nodes, the inclusion of additional information has
to be carried out with great care. Otherwise, the limited memory resources
may not suffice for sophisticated and large applications. The art of finding a
good compromise goes back to the ingenious work of those researchers who
created successful OBDD packages.

7.1.1 Shared OBDDs

Several functions can be represented within a single directed acyclic graph
with several roots. In this way, subgraphs which occur in several OBDDs
only need to be represented once. This kind of representation is called a
shared OBDD.

Example 7.1. Figure 7.2 shows a shared OBDD of the switching function
fi=(z1 = 22), fo =73, f3 = 2175. &

This sharing of subgraphs saves much time and space compared to having
separate OBDDs. If it can be achieved that each relevant subfunction is

Figure 7.2. Shared OBDD of the function fi, f2, fa

7.1 Key Ideas 107

represented exactly once in the shared OBDD, then the canonical represen-
tation of OBDDs is even turned into a strongly canonical form. This term
expresses that two equivalent functions f and g do not only have the same
reduced OBDD representation, but that in an implementation they are repre-
sented by a pointer to exactly the same memory cell. Consequently, checking
two functions f and g for equivalence can be performed immediately by just
comparing the root nodes of the OBDDs that correspond to f and g — the
equivalence test now only consists of a single pointer comparison !

7.1.2 Unique Table and Strong Canonicity

The strongly canonical form which is possible in connection with shared
OBDDs makes it particularly desirable to keep all OBDDs occurring at each
moment of the computation in a reduced form. In other words, each relevant
subfunction should be represented exactly once.

Whenever a new node has to be added to the shared OBDD, its label z;, the
(already existing) 1-successor high and the (already existing) O-successor low
have to be specified. To maintain the OBDD in a reduced form, it is checked
first whether there already exists a node with this specification. If so, a new
node will not be constructed, but the existing node will be used.

The decision whether a triple (z;, high,low) has already been represented by
an OBDD node v is performed by a unique table. In order to determine the
matching node v from the information (z;, high,low), it is advisable to im-
plement the unique table by means of a hash table. The triple (z;, high, low)
of a node v is mapped to a hash value h(x, high,low). At this position in
the array uniquetable, a pointer to the node v is stored. Of course, it is
possible that different triples hash to the same value. Therefore, the array
uniquetable is implemented as an array of linked lists, called collision lists.
If the array is large enough and the hash function is well chosen, then each
list contains only few elements. The node corresponding to a given triple can
then be found very fast.

Example 7.2. In Fig. 7.3, an OBDD of the function f(x1,22,23) with re-
spect to the order zy < xo < x3 is depicted. We denote the internal nodes in
the OBDD by vy,... ,v5. The names v; only serve to distinguish the nodes
and could also be the memory addresses of the nodes.

A unique table of this reduced OBDD could be an array of size 5 with indices
0 to 4. A possible hash function for a triple (z;,v;,v) might be

Wz, vj,op) =i+ j+k (mod 5).

For example, the node vs has the hash value 2+ 5+ 7 (mod 5) = 4. The
unique table of the internal nodes in the OBDD is also illustrated in Fig. 7.3.
<

108 7. Efficient Implementation of OBDDs

1 /_,| Pointer to v1 |——| Pointer to v4
2 .
Pointer to v2

4 ——|Pointerto v3 |

|——| Pointer to v5

Figure 7.3. Example of a unique table

If the OBDD has been reduced before the lookup, then the following holds.
The subfunction which is represented by the triple (z;, high,low) already
exists in the OBDD if and only if there is a node in the list which represents
the same triple. In this way, it is easy to maintain the reduced structure of

the OBDD while inserting a new subfunction. The unique table works in the
same way for OBDDs and shared OBDDs.

An improvement of this concept is to store the nodes v; directly in the lists
instead of the pointers the nodes. In this case, the basic record in Fig. 7.1 has
to be extended by a component Next containing a reference to its successor
node in the corresponding collision list.

7.1.3 ITE Algorithm and Computed Table

In Section 6.5, we have already mentioned the basic idea of computing bi-
nary operations in terms of OBDD representations. In order to compute
the OBDD of f x g from the OBDDs of two functions f and g for a given
operation x, Shannon’s expansion with respect to a variable x; can be used:

fxg =z (f

Recursively, the binary operation with regard to the cofactors is computed.

z;i=1%g wi=1) + T (f z;=0* g wi=0)'

In order to treat all binary operations in a unified way, Brace, Rudell,
and Bryant invented the so-called If-Then-Else-operator (ITE). ITE is
a ternary Boolean function with inputs z, y, z that computes the following
function: If x, then y, else z. Formally, ITE is defined by

ITE(z,y,2) =z -y+T-2.

The ITE operator is particularly suited in the context of OBDDs, as it reflects
Shannon’s decomposition performed in a node of the OBDD.

7.1 Key Ideas 109

According to Section 3.3.1 there are exactly 16 possible binary operations.
As shown in Fig. 7.4, all these 16 operations can simply be expressed in terms
of the ITE operation.

| No. | Function | ITE operator | | No. | Function | ITE operator |

0 0 0 8 f+g ITE(£,0,9)
1 f-g ITE(f, 9,0) 9 f=g ITE(f, 9,9)
2 f#9 ITE(f,3,0) 10 7 ITE(g,0,1)
3 f f 11 f<g ITE(f,1,9)
4 féyg ITE(f,0,9) 12 f ITE(f,0,1)
5 9 9 13 f=9 ITE(f,g,1)
6 fog ITE(f,9,9) 14 | f~g | ITE(f,3,0)
7 f+yg ITE(f,1,9) 15 1 1

Figure 7.4. Realization of the 16 binary operations in terms of the ITE operator

Now let f, g, and h be switching functions, and let z; be the leading variable
in the order. For the computation of ITE(f,g,h) the following recursive
decomposition can be used.

ITE(f,9,h) = f-g+[-h
=zi-(f-g+F Mo +Ti-(f-9+ T ha
=2 (fo; * Goi + fay - hat) + Ti - (For - 9o + Far - ha)
= ITE (24, ITE(fs,, 92:, P2,), ITE(fz7, 977, hay))
= (24, ITE(fe;s 9o:s hai)s ITE(far, 9ars b)) -

The triple which has been invented in the last step of this equation has exactly
the meaning introduced in the previous section. A node with label z; and
the recursively defined successors has to be constructed if such a node does
not exist yet.

The recursion of ITE(f, g, h) stops if the first argument is constant:

ITE(L, f,9) = f,
ITE(0, f,9) = g.
Furthermore the algorithm can already stop in the following cases:
ITE(f,1,0) = f,
ITE(f.9,9) = g-

Figure 7.5 shows pseudo code for the ITE algorithm. As in the description
of the basic variant of the algorithm in Fig. 6.8, a computed table is em-
ployed for storing already computed results. Additionally, the two functions

110 7. Efficient Implementation of OBDDs

ITE(F,G,H) {
/* Input: OBDDs F', G, H of f, g, h with respect to 7 */
/* Output: An OBDD of ITE(f,g,h) */
If (terminal case) {
Return (result of the terminal case);

}
Else If (F,G, H) € ComputedTable {
Return ComputedT able(F,G, H);

}

Else {
Let z; be the first variable in & which is essential for F', G or H,;
T= ITE(Fwi s Gﬂci s Hwi);
E =ITE(Fg;, Gz, Hay);
R = Find_or_add_-unique_table(v, T, E);
Insert_computed_table({F,G, H}, R);
Return R;

Figure 7.5. ITE algorithm

Find_or_add_unique_table and Insert_computed_table are used. The first of
these functions checks whether a given triple has already been realized by a
node in the OBDD. In the positive case it returns a reference to this node,
in the negative case the node is newly constructed, and a reference to it is
returned. Insert_computed_table inserts the currently computed subproblem
into the computed table.

Let us consider three OBDDs F'; G, H, and all triples of nodes where the
first component is a node in F, the second component is a node in G, and
the third component is a node in H. If in the computed table all previously
computed subresults are stored, then for each of these triples of nodes the
ITE algorithm is called at most once. Under the assumption that a look-
up and an insert step in the unique table and the computed table requires
constant time, then the time complexity of the ITE algorithm is bounded by
O(size(F) - size(G) - size(H)).

In case of binary operations, the running time is not only bounded by a cubic
function, but even by a quadratic function. Namely, if one of the three ITE
arguments is constant and only passed through in each recursion, then ITE
has at most quadratic complexity, as only node pairs have to be counted.
The complexity of ITE is also quadratically bounded if two of the arguments
coincide in each recursive step. Additionally, in the next section we present
a technique that allows the complexity of ITE to be bounded by a quadratic
function if two of the arguments are complementary.

7.1 Key Ideas 111

Of course, these complexity estimates only yield a worst-case estimate.
In most practical applications, the time behavior of the ITE algorithm is
strongly correlated with the size of the resulting OBDDs.

Example 7.3. Let f = z1 + 22, g = 1 - 3, and h = 2 - ¢4 be switching
functions with the OBDDs F', G, H. The internal nodes in the OBDDs are
denoted by B, C, and D as in Fig. 7.6. The OBDD I computed by the
function call ITE(F, G, H) results as follows:

[= ITE(F,G, H)
= (21, ITE(Fy, , Goy, Hay), ITE(Far, Gar, Hay))
= (z1,ITE(1, C, H),ITE(B, 0, H))
= (21,C, (22, ITTE(Ba,, 0z, , Ha,), ITE(Bas, Ozs, Haz))
— (21,C, (22,ITE(1,0,1),ITE(0, 0, D))
= (21,C, (22,0, D)).

The sub-OBDDs C and D already exist in the shared OBDD. Hence, the
computation of I is finished, and I has the structure depicted in Fig. 7.6. <

Figure 7.6. Example of computing I = ITE(F, G, H)

In the previous complexity considerations for binary operations, we focused at
the running time. Of course, this is justified, as an upper bound for the time
complexity also implies an upper bound for the space complexity. However,
in case of the ITE algorithm the situation should be investigated in more
detail. For two large OBDDs P, and P» with each more than 100000 nodes
it is surely not possible to provide a computed table with size(P,) - size(Py)
entries. For this reason, it is reasonable to realize not only the unique table
in form of a hash table, but also the computed table. This technique allows
fast access without the need to allocate too much memory in advance.

112 7. Efficient Implementation of OBDDs

In case of the computed table, however, node triples which map to the same
hash value in the ITE algorithm are typically not linked by means of a col-
lision list. Instead of this, the computed table is implemented as a cache-
based hash table. This term expresses that at each possible function value
of the chosen hash function at most k nodes can be stored. If another node
is to be stored at an address which already contains k entries, then one of
the old entries is replaced.

This type of hash table requires less memory, as it is not necessary to keep all
elements in collision lists. Of course, this implementation of the computed
table makes it possible that already computed results will be “forgotten”
and that they have to be recomputed. As a consequence, the running time
analysis for the case of a non-forgetting computing table cannot be applied
any longer. In the worst case, all hash values determined in an ITE operation
are identical, and the time behavior is exponential. However, when choosing
a suitable hash function, extreme cases like this are very seldom.

Besides smaller memory requirements, it is an additional advantage of using
a cache-based hash table that locality in referencing is exploited. When the
ITE algorithm is performed, it occurs quite often that a result is needed
again shortly after its initial computation. The longer the time after the
computation of a specific result, the smaller becomes the probability that
exactly this result is needed again.

If the computed table is realized by a hash table with collision lists, then for
space reasons, it is unavoidable to remove the old entries from time to time.
In case of a cache-based table this collection process is not necessary, as the
old entries are automatically replaced. In experimental studies, a cache depth
of 2 has turned out to be favorable, i.e., for each possible function value of
the hash function there are two memory cells at which nodes can be stored.

7.1.4 Complemented Edges

A very effective feature implemented in most OBDD packages is the use of
complemented edges. This technique is based on the fact that the OBDDs
of a function f and its complement f only differ in one aspect: the values of
their sinks are interchanged. By introducing an additional edge attribute of
only one bit for each edge, this similarity can be exploited. If the attribute
bit is not set, the sub-OBDD which the edge points to is interpreted in the
original way as a switching function f. If instead the bit is set, then this sub-
OBDD is interpreted as the complement f of the ordinary subfunction f.
Therefore, the additional edge attribute is also called a complement bit.
By means of this technique the functions f and f can be represented by
essentially the same graph: f is simply expressed by a complemented edge
to the root of the OBDD of f. In this way, a substantial number of nodes
can be gained.

7.1 Key Ideas 113

In the presence of complemented edges, only one sink is required, as the
0-sink can be represented by the complement of the 1-sink. In our diagrams
the edges whose complement bit is set are represented by dotted arrows.

Example 7.4. Figure 7.7 shows the effect of complemented edges when rep-

resenting two functions f and f. The complemented edges are drawn as
dotted arrows. &

Figure 7.7. Example of complemented edges

The main problem one has to face in the presence of complemented edges
is the loss of canonicity in the representation. One way to re-establish this
property is to restrict the admissible positions of complement bits. Indeed,
some constellations of possible positions of complemented edges are function-
ally equivalent. If we consider for a node v the triple of the outgoing 1-edge,
the outgoing 0-edge, and the incoming edge, there are exactly 8 possible ways
to place the complement bits. The following equation, based on DeMorgan’s
rules, implies that some of these possible ways are functionally equivalent:

Tifo, + Tifzr = (@i fa:) - (Tifz)
= (Ti+ fo:) - (@i + for)
= Zifo; + Tifzr + foi fo
= 2i(fa; + fo: fo) + Ti(for + fo: fzr) (absorption)
=i fo; + Tifzr

Due to these equivalences, there are exactly four pairs of combinations which
represent actually different functions, where the two combinations within
a pair are functionally equivalent. Figure 7.8 illustrates this situation for
the example of an OBDD node. Here, the edges carrying the complement at-
tribute are labeled by an additional circle. Indeed, representatives of different
pairs actually represent different functions.

114 7. Efficient Implementation of OBDDs

[
()
[
(3)--

@ @D

.©
.©

!
(3)--

@D)

e a”

e ’

-
PR

Figure 7.8. Pairs of equivalent representations

For this reason, one way to re-establish canonicity in the representation is
the condition that the 1-edge of a node must never be complemented. Hence,
in the equivalence pairs of Fig. 7.8 we always choose the left representative
in each pair for uniquely representing the corresponding function. Whenever
the OBDD package generates a new OBDD node, the edge attributes are
chosen so that the condition is always satisfied.

Now it can be proven formally that this local strategy suffices to re-establish
the global canonicity property. One has merely to take care that the edge
to the root node of the OBDD may also be complemented. Otherwise, the
constant 0-function cannot be represented as the complement of the 1-sink.
The OBDD in Fig. 7.7 satisfies the presented restrictions to the positions of
the complement bits. Furthermore, the reference to the root node of f is
complemented. From now on, complemented 0-edges will always be drawn
as dotted arrows as in Fig. 7.7.

The use of complemented edges provides several remarkable advantages:

e The compactness of the data structure is improved. The size of the OBDDs
can at least theoretically be reduced up to 50%.

e The negation of a function can be performed in constant time.

e The application of Boolean operations can be significantly accelerated by
exploiting such rules as, e.g., f-f=0, f+ f=1.

When using complemented edges, the complexity of the ITE algorithm can
also be bounded quadratically if two of the arguments are complementary in
each call. Since for all 16 binary operations, either this criterion or one of the
criteria mentioned in the previous section can be applied, we can conclude
the following theorem regarding the complexity of the ITE algorithm.

7.1 Key Ideas 115

Theorem 7.5. Let the switching functions fi and fo be represented by the
OBDDs Py, P> involving complemented edges with respect to the order .
For each binary operation the reduced OBDD P of f = fi1 x fa involving
complemented edges can be determined in time O(size(Py)-size(P2)) by means
of the ITE operator. |

In practical work with OBDDs, it has turned out that in many cases the use
of complemented edges only leads to a gain of about 10% in memory con-
sumption. However, the possibility of complementing a function in constant
time often leads to a gain of about a factor 2 in time consumption.

7.1.5 Standard Triples

Now, after introducing complemented edges, we return to the efficient re-
alization of the ITE algorithm. It is possible that there are different
function triples (f1, f2, f3) and (g1,92,93) with identical function values
ITE(f1, f2, f3) = ITE(g1, 92,93)- In order to achieve a high hit rate in the
computed table, it is therefore advisable to transform each function triple to
a normal form first. By means of these standard triples one avoids storing
unnecessary triples in the computed table, and the recognition of equiva-
lences helps to avoid unnecessary recomputations. Here, in particular, we
shall exploit the advantages of complemented edges.

As an initial example, we consider some ITE calls which are all functionally
equivalent to f + g:

ITE(f, f,9) = ITE(f,1,9) = ITE(g, 1, f) = ITE(g, g, f)-

We will now state a set of rules which transform a given triple into a standard
form. The first series of transformation rules tries to replace functions by
constants whenever possible:

In case of complemented edges, the test whether two of the occurring func-
tions are equal or complementary to each other can be performed in constant
time.

The terminal cases in the ITE recursion can now be extended by the following
set:

116 7. Efficient Implementation of OBDDs

ITE(f,1,0) = f,
ITE(f,0,1) = f,
ITE(L, f,9) = f,
ITE(0, f,9) = g,
ITE(f,9,9) = g-

The next series of transformation rules exploits the commutativity of the
ITE operator if the second or the third argument are constant, or if they are
complementary to each other. In these cases, one of the following identities
holds:

ITE(f,1,9) = ITE(g, 1, f),
ITE(f,9,0) = ITE(g, £,0),
ITE(f,g9,1) = ITE(g, f, 1),
ITE(f,0,9) = ITE(g,0, f),
ITE(f,9,9) = ITE(g, f, f)-

It is typically advisable to choose that form of a pair whose first argument
depends on a variable which occurs earlier in the order. If the first argu-
ment of ITE is a single variable x; which occurs before all variables of the
other arguments, then the resulting node with label z; can be immediately
constructed. In this case, the other two arguments define the 1- and the
0-successor. Based on this observation we have another terminal case:

ITE(fagah) = (xiagah) if f = Zj
and z; <, topvar(g)
and z; <, topvar(h),

where topvar(g) is the leading variable among those variables in the order 7
which are essential for g.

Another suitable series of standardization rules refers to the use of comple-
mented edges. We have for example

ITE(f,g,h) = ITE(f,h,g)

Each of the three functions f, g, h can be represented by a conventional or
by a complemented edge. Among the four equivalent forms there is exactly
one triple whose first two arguments are not referenced by a complemented
edge. This triple is used as standard triple for looking up in the computed
table, performing the ITE operation, and storing the result in the computed

7.1 Key Ideas 117

table. In case that one of the last two triples are chosen as standard triple,
the computation yields the complement of the desired function. Hence, the
resulting function must be complemented before returning it.

The stated rules which take care of complemented rules recognize equivalences
due to DeMorgan’s rules. For example, let us assume that the references to
the functions f and g are not complemented. The chosen triple for the
computation

[+9=1ITE(f,1,9)

isITE(f, 1, g), and the result is stored under this entry in the computed table.
When a later request for

f-g=1TE(f,3,0) =1TE(f,1,9)

is carried out, then, once more, the standard triple ITE(f,1,g) is chosen,
and the previously stored result can be recalled. According to the applied
transformations, the result will be complemented before it is returned.

7.1.6 Memory Management

Large OBDDs typically emerge from combinations of smaller OBDDs by
means of Boolean operations. Hence, in a typical application many small
(intermediate) OBDDs are constructed which are only of temporary impor-
tance. In case of a symbolic simulation an OBDD is constructed for each gate
of the circuit. Each of these OBDDs is only necessary until the OBDDs of
all successor gates are computed. In order to achieve the naturally desirable
deletion of those intermediate OBDDs which are no longer of use, one has to
face the following problems:

e In general, an internal node in an OBDD has more than one predecessor.
For space reasons the references to these predecessors cannot be stored in
the node.

e The nodes in the OBDD are referenced from the unique table, from the
computed table, and from other nodes.

e It does not seem reasonable to completely eliminate the intermediate nodes
as soon as possible, as they could still be of great use for the caching
mechanism of the computed table.

For these reasons, it seems to be a good strategy not to deallocate the memory
cells of unused intermediate nodes immediately. Instead, it is better to wait
until the necessary management overhead for restructuring compares well to
the gain in storage. Such a strategy is called garbage collection.

In the framework of an OBDD package, garbage collection can be realized
efficiently in the following way. For each node v we introduce a reference

118 7. Efficient Implementation of OBDDs

counter which tells us how many nodes or external elements reference the
node v. Whenever a new node is created whose 1-edge or 0-edge points to
v, the counter is incremented. Whenever a function represented by v is no
longer of use, the counter is decremented. If the counter reaches the value
0, then the reference counter of the sub-OBDDs in the two successors are
decremented as well. Nodes whose reference counter is 0 are called dead.
When the number of dead nodes is sufficiently large, garbage collection is
activated. First the entries of dead nodes in the unique table and in the
computed table are deleted. Subsequently, the memory cells used by the
dead nodes are freed.

Even after the introduction of reference counters, the node v does not yet
know which nodes are its predecessor nodes. However, at each moment it is
known whether or not v is used any longer for the representation of other
functions. Collecting dead nodes without immediately deallocating them
offers the possibility of reviving dead nodes in case of need.

The costs of garbage collection amortize themselves when dealing with a
relatively high number of dead nodes. Moreover, at the time of garbage
collection the employed tables can be restructured quite easily. For example,
the sizes of tables can be adapted dynamically to the actual requirements.

We conclude the discussion of memory management by considering the mem-
ory consumption of a single OBDD node again. At the beginning of this
chapter, in Fig. 7.1, we described the basically necessary structure of a node.
In the course of the chapter, we added some components for improving ef-
ficiency. In Section 7.1.2, the component Next was described that points to
the successor in the collision list of the unique table.

The reference counter Refcount serves for organizing the garbage collection.
Typically, it suffices to reserve between one and two bytes for this counter.
In case of an overflow the node goes into a saturation state and will not be
freed until the end of the application.

Furthermore many OBDD-based algorithms use some bits, e.g., for recording
which part of the OBDD has already been visited. We designate a component
Mark for this purpose. The extended data structure of a node is shown in
Fig. 7.9. For a 32-bit architecture, the memory consumption per node is
4 memory words, i.e., 16 byte.

In case of using complemented edges, each edge is additionally supplied with
an attribute bit. This single bit may be provided by means of a simple
trick. If, as in the illustrated data structure, each node consists of exactly
4 memory words, then each node begins at an address whose last two bits
are zero. Hence, one can set aside a bit for storing the complement attribute
from the memory words High or Low.

In addition to the memory requirements of each individual OBDD node, we
have to take into account the memory requirements of the tables whose sizes
are dynamically adapted to the number of represented OBDD nodes. We

7.2 Some Popular OBDD Packages 119

Component | Size |

Index 2 byte
High 1 word
Low 1 word
Next 1 word
Refcount ca. 2 byte
Mark

Figure 7.9. Core of the record for representing an OBDD node

assume that the unique table and the computed table have the same size.
A favorable strategy turns out to be to choose the size of the unique table
by roughly a factor four smaller than the current number of nodes. In this
case, each collision list contains four elements on average, and there is a good
relation between memory consumption and access time. Each entry in the
unique table is a pointer to a memory cell. In case of a 32-bit architecture,
the amortized costs of this table are about 1 byte per node. Each entry in the
computed table of the ITE operator consists of 4 memory words. Hence, in
the case of a 32-bit architecture, the amortized costs of the computed table
are about 4 byte per OBDD node.

Altogether, the memory consumption per node in the OBDD is about 21 byte.
Given this estimate, an OBDD of 1 million nodes requires about 21 MB of
memory.

7.2 Some Popular OBDD Packages

Within the last few years, numerous OBDD packages have been developed
which provide interfaces for the manipulation of switching functions. Some
of these packages have been created at academic institutions, and some in
industrial development centers. Of course, the commercial packages are not,
or only very restrictively, open to the public. However, as the development of
OBDD technology has been driven strongly by universities, the publicly avail-
able academic packages provide a good insight into the state of the art. This
holds even more, as some of the packages developed at academic institutions
have been used in commercial CAD systems themselves.

7.2.1 The OBDD Package of Brace, Rudell, and Bryant

In the historical development, the first efficient implementation of the OBDD
data structure in a program system called OBDD package was created by
K. Brace at Carnegie Mellon University, in cooperation with R. Rudell and
R. Bryant. The OBDD package was written in the time from 1989 to 1990,
and offered to the public in 1990.

120 7. Efficient Implementation of OBDDs

The aim of the development was to move the frontiers of applicability of the
verification software Tranalyze as far as possible. Tranalyze serves for verify-
ing transistor circuits in MOS (Metal-Oxide-Semiconductor) technology on
the switching level. On this abstraction level, the individual transistors are
modeled as switches. In the framework of the verification task a series of
equivalence tests among the gates in a logic network are required. By intro-
ducing the OBDD data structure in the context of Tranalyze, the frontiers of
the manageable circuits could be extended substantially.

Many of the implementation techniques described in this chapter were ini-
tially developed and applied by Brace, Rudell, and Bryant. The suitability of
their design decisions is particularly confirmed by the observation that many
of the newer OBDD packages still use the same principles.

7.2.2 The OBDD Package of Long

The experiences gathered with the OBDD package of Brace, Rudell, and
Bryant were transferred to a new, improved package some time later. This
package was designed and implemented by D. Long, also at Carnegie Mellon
University. It was mainly focused on model checking applications, which will
be treated in more detail in Chapter 11.

The package has been publicly available since 1993. In particular, the package
has been integrated into the SIS software for sequential synthesis which was
developed at the University of California at Berkeley, and which has already
been mentioned in Chapter 5. Later on, the package of Long was also used
in projects inside AT&T.

An important new feature in the package of Long was the inclusion of tech-
niques for dynamically constructing good variable orders, which we will in-
vestigate in the next two chapters.

7.2.3 The CUDD Package: Colorado University
Decision Diagrams

The CUDD package (Colorado University Decision Diagrams) was devel-
oped by F. Somenzi and his working group at the University of Colorado at
Boulder. The initial version was made public in April 1996. By carefully
and ingeniously redesigning the algorithms of previous packages, Somenzi
achieved a series of substantial performance improvements.

The outstanding property of the CUDD package is a large collection of algo-
rithms for improving the variable order. These algorithms will be discussed
in the next chapters. Moreover, the package can handle several of the OBDD
variants presented in Chapter 12, namely multi-terminal BDDs and zero-
suppressed BDDs.

7.2 Some Popular OBDD Packages 121

#include <stdio.h>
#include <stdlib.h>
#include <cudd.h>

int main (int argc, char *argv([]) {
/* Input: An integer n */
/* Output: Computation of an OBDD of
x[1] x[2] + x[3] x[4] + ... + x[2n-1] x[2n] */

DdManager *bddm
DdNode *f, *tmpl, *tmp2;
int i;

if (argec < 2) return 0;
else n = atoi(argv[1i]);

/* initialize manager */
bddm = Cudd_Init(0, O, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS,
CUDD_MAX_CACHE_SIZE);

/* Initialize f to the zero function */
f = Cudd_ReadLogicalZero(bddm) ;
Cudd_Ref (£);

for (i = 1; i <= n; i++) {
tmpl = Cudd_bddAnd (bddm,
Cudd_bddIthVar (bddm, 2*i-1),
Cudd_bddIthVar (bddm, 2*i));
Cudd_Ref (tmpl);
tmp2 = Cudd_bddOr(bddm, f, tmpl);
Cudd_Ref (tmp2) ;
Cudd_RecursiveDeref (bddm, f);
f = tmp2;
}

printf("Size of the OBDD: %d \n", Cudd_DagSize(f));

return 1;

Figure 7.10. Example of using CUDD

122 7. Efficient Implementation of OBDDs

The CUDD package is used as the primary OBDD package in the VIS veri-
fication system, which will be discussed in Chapter 11.

Figure 7.10 shows how the program library in the programming language C
can be used. The BDD manager DdManager contains all relevant data struc-
tures for the global organization of a shared OBDD, such as a unique table.
In the CUDD package, for efficiency reasons, the user is responsible himself
for incrementing the reference counter of newly constructed nodes. In this
way, one can avoid the referencing and dereferencing process for intermedi-
ate functions that exist only very briefly. If a function is no longer of use, a
command for recursive dereferencing is called.

7.3 References

The key ideas for the efficient implementation of OBDDs mostly go back to
Brace, Rudell, and Bryant [BRB90]. Complemented edges were proposed
by Karplus [Kar88] and by Madre and Billon [MB88]. The three presented
OBDD packages are publicly available. The OBDD package of Long origi-
nated from the work [Lon93]. The CUDD package, the latest of these three
packages, can be found at the Internet address given in reference [Som96b].

8. Influence of the Variable Order
on the Complexity of OBDDs

Alle Rdider stehen still,

wenn dein starker Arm es will.
[All wheels stand still

if your strong arm so will.]

Georg Herwegh (1817-1875)

In this chapter we analyze the influence of the variable order on the complex-
ity of OBDDs. The following two theorems, which immediately follow from
the Theorems and Corollaries 6.9 to 6.12, are applied several times.

Theorem 8.1. Let S; be the set of subfunctions of f which we obtain by

fizing x1,... ,x2;—1 to constants, and which depend essentially on z;. The
reduced OBDD of f with respect to the variable order x4, ... ,x, has exactly
|S;| nodes labeled by x;. O

Theorem 8.2. Let (i1,... ,in) be a permutation of the set {1,...,n}, and
let P be the reduced OBDD of f with respect to the variable order z;,, ... ,z;, .

Further, let S;; be the set of subfunctions of f which we obtain by fixing
Tiyy-ee > Tij_y to constants, and which depend essentially on x;;. Then the
reduced OBDD P of f has exactly |S;;| nodes labeled by x;; . O

8.1 Connection Between Variable Order and OBDD Size

The size of an OBDD and hence the complexity of its manipulation depends
on the underlying variable order — a dependency which can be quite strong.
We want to consider some extreme examples.

The OBDD size of the function
f(.iL'l, - ,.Z'Qn) =21X2 +X3L4 + ...+ Top_1T2n

behaves very sensitively with regard to changes in the chosen variable order.
With respect to the variable order x1,z2,... ,T2n_1, 22, the reduced OBDD
consists of exactly 2n + 2 nodes. Hence, the growth is linear in the number

124 8. Influence of the Variable Order on the Complexity of OBDDs

n of variables. The OBDD for the case n = 3 is depicted in Fig. 8.1 (a).
The reason for the very compact OBDD follows from the fact that for each
ke {1,...,n—1}, after reading the assignments to the variables z1,... , zap
there are only two possibilities:

1. Due to the assignments to x1, ... ,Za it is already known that the func-
tion value is 1.

2. The first possibility does not apply. By means of this information one
can determine the function value by using only the assignments to the
remaining variables zagy1,... ,Ton.

(a) Variable order z1,... ,z¢ (b) Variable order z1, zs, x5, T2, T4, s

Figure 8.1. The function 2122 + 324 + T5%6

In other words, due to Theorem 8.1 we have: For each k and arbitrary fixing of
the variables x1,... ,Z;_1 to constants, there is always only one subfunction
fr(xk, ... ,x,) which depends essentially on zj. This subfunction is

fo = TpThil + Try2Thts + - .. + Tan—1%2, if k odd,
Tp + Tp41Tr42 + ...+ Top_122p if k even.

For the variable order z1,%3,...,Z2n_1,%2,T4,... ,T2,, the situation looks
completely different. Figure 8.1 shows the corresponding OBDD for n = 3.
We analyze the function by means of Theorems 8.1 and 8.2. First let k& < n.

8.1 Connection Between Variable Order and OBDD Size 125

There exist 2¥~! different constant vectors (ai,as,. .. ,azk—3) € {0,1}" that
can be assigned to the k — 1 variables z1,23,... ,22;r—3. These vectors lead
to the subfunctions

f(xl; s 7xn)|z1:al,ic3:a3,~-- T2k —3=02k—3
= a1%2 +a3Tq4 + ...+ A2p—3T2p—2 + A2k—1T2k
+ Top41T2g42 + ... + Ton_1T2n -

From this expression the following facts can be deduced:

1. Each of the 2%¥=1 subfunctions f(z1,...,%Zn)|z1=a1,25=as.... zor_s—ass_s
depends essentially on x95_1, the k-th variable in the order.

2. All of these subfunctions are pairwise different.

Consequently, in case k < n the reduced OBDD of f has exactly 2¥~! nodes
which are labeled by zj. Analogously, it can be verified that in case k > n
there are exactly 22”~* nodes which are labeled by z;. The total number of
nodes amounts to

n
2-2) 21 42=2.(2"—1)+2=2"""
k=1

Therefore the reduced OBDD of f with respect to this variable order grows
exponentially in n. Of course, merely to show the exponential growth, it
would have been sufficient to show the exponential growth of the nodes la-
beled by a specific variable z;.

The intuitive reason for this strong growth in size is as follows. In con-
trast to the situation for the order zi,zs,...,z,, after reading variables
1,3, ..., % for some odd k, one cannot yet deduce any information about
the function value in specific cases. For each assignment to the first vari-
ables the function value of f is not yet determined. Both of the values 0 and
1 are still possible by assigning suitable values to the remaining variables.
This fact implies that no edge in the reduced OBDD from one of the above
variables directly leads to a sink. However, it is even worse that for each
of the two assignments to the first variables z1,x3,... ,Z} an assignment to
the remaining variables can always be found such that the resulting function
values differ.

Symmetric functions. In case of symmetric functions the function value
only depends on the number of 1’s in the input vector, but not on their
position. This property implies that all variable orders for the OBDD are
equivalent and that the OBDD size is therefore independent of the chosen
variable order. This and other statements concerning symmetric functions
can be formally proven from Theorem 8.2. For this, let f(z1,...,z,) be a
symmetric function. For each k£ and an assignment of constants to the £ — 1
variables z;, ,... ,z;,_, it is only important how many of these variables are 1.
Hence, the number of different subfunctions

126 8. Influence of the Variable Order on the Complexity of OBDDs

fwi1=ai1 oo i =gy

is always bounded by k. As a consequence, for each variable z; the reduced
OBDD of a symmetric function in n variables contains at most linearly many
nodes labeled by that variable. Altogether, the reduced OBDD of a symmet-
ric function has at most quadratic size in n. Hence, the reduced OBDD size
of symmetric functions is not only independent of the variable order but is
also quite small. Exponential growth cannot occur.

Many practically relevant functions are symmetric, a fact which has already
been mentioned in Section 3.3.5. Hence, the small memory consumption of
the OBDDs of symmetric functions is particularly pleasant. The OBDDs of
the binary AND, OR and EX-OR functions were already depicted in Exam-
ple 6.5. To explain the structure of specific symmetric functions, we therefore
prefer to consider threshold functions

. - 1 1f$1++$n2k7
Ty (z1s -+, %n) = {0 otherwise.

After reading some arbitrary ¢ variables which contain at least k ones, the
function value is already determined. Let v be a node reached after an

Figure 8.2. The majority function T%

8.2 Exponential Lower Bounds 127

assignment to the first ¢ variables that include at most k£ — 1 ones. v contains
a l-edge that leads to the 1-sink. This further implies that for each i there are
at most k nodes labeled by z;. Figure 8.2 illustrates this fact in the example
of the majority function 75. In case of those two values of 4, for which
there are exactly 3 nodes labeled by z;, these 3 nodes reflect the following
information:

Left node: So far, exactly two 1’s have been read.
Middle node: So far, exactly a single 1 has been read.
Right node: So far, no 1 has been read.

Adder. Let f(an 1,bn 1,--.,0a0,b0) : B*™ — B" be a simplified adder
function whose inputs are two m-bit numbers a, 1 ...ag, bp_1..-bg, and
which computes the last n bits of their binary sum s, ;... sg, see Fig. 8.3.
In particular, an overflow is not recognized. This adder can be seen as a
switching function with n outputs.

An—1 An-2 R a2 a1 ao
bp—1 bp—2 ... b2 b1 bo
Sn—1 Sp—-2 S2 S1 So

Figure 8.3. Simplified n-bit adder

Adders contain partial symmetries in the sense that for each i the variables
a; and b; are completely equivalent. However, these partial symmetries can-
not prevent the adder from depending very sensitively on the choice of the
variable order. With respect to the variable order a,_1,b,_1,...,a0,bo the
total size of the shared OBDD representing all n output bits is linear in n. In
contrast to this, with respect to the variable order a,,_1,...,a0,bp_1,... ,bg
the size grows exponentially in n. Figure 8.4 elucidates this effect in case
n = 3. In both of the depicted graphs complemented edges are used, as
in this variant of OBDDs the structural properties of adders become more
prominent.

8.2 Exponential Lower Bounds

We have seen that the dependency of the OBDD size on the underlying vari-
able order can be very strong. It would be desirable if for all functions there
were at least one variable order leading to a small OBDD. However, OBDDs
share a fatal property with all representations of switching functions: the
representations of nearly all functions require exponential space ! The proof

128 8. Influence of the Variable Order on the Complexity of OBDDs

Variable order Variable order
a27b27a17b17a07b0 a27a17a0,b2,b1,b0

Figure 8.4. 3-bit adder function

of this fact is based on a counting argument which goes back to Shannon.
The main idea is that the number of n-variable switching functions of 22"
is so huge that it is impossible under any circumstances to represent each
of the functions in polynomial space. We will demonstrate the application
of this counting argument for the example of OBDDs. However, the proof
technique implies the generalization of the statement for all representations
of switching functions.

Theorem 8.3. We consider OBDDs with respect to their optimal order. Let
G(n) be the number of n-variable functions whose size is less than 2™ /2n, and
let N(n) = 22" be the number of all n-variable functions. Then the quotient
G(n)/N(n) converges to 0, as n tends to infinity:

G(n)

N(n)_)o as N — 00 .

Proof. Let K = |2"/2n|. By ¢; we denote the number of nodes in the
OBDD which are labeled by z;. Further let ¢,p1 = K — (¢1 +¢2 + ...+ ¢y)
denote the number of nodes which could theoretically be used in addition

8.2 Exponential Lower Bounds 129

without violating the bound. As each number ¢; is a nonnegative number,
the equation El.";rll ¢; = K has exactly

(")

We assume that all nodes are enumerated successively in the way that the
ordering property of the variable order is preserved: if ; occurs before z; in
the order, then the number of each node labeled by z; is smaller than the
number of each node labeled by z;. The two sinks are provided with the
largest numbers.

solutions.

Given this property of order preservation we can deduce that for each node
the numbers assigned to its two sons are greater than its own number. As a
consequence, there are at most

(K-1)+2)* (K-2)+2)* (K-3)+2)?2-...-2?
=(K+1)?-K?-(K—-1)>2-....22
= ((K+1)1)?

possible ways to place the edges. As there are n! different variable orders,
there exist at most

n'(n—l-K

X)((K+ D)2 = (K 4+ 1)(K + D!I(K +n)!

functions whose optimal OBDD consists of at most K nodes. The last ex-
pression is smaller than (K + n)25+7/22" which implies

log,(G(n)/N(n)) (2K + n)logy (K +n) — 27

(2" /n) + n)(n — logyn + O(1)) — 27

n? 4+ ((2"/n) 4+ n)(—logy n + O(1))

(2"/n) (n®/2" + (1 + n®/2™)(—logy n + O(1)))

— —0 as n— 4.

A IA

Hence, the quotient G(n)/N(n) converges to 0, as n tends to infinity. m|

The proof of the theorem is based on a pure counting argument and yields
no information on what concrete examples of exponential OBDD sizes look
like. Indeed, it is not at all easy to prove lower bounds for the resource
requirements of concrete switching functions. For example, in the model of
Boolean circuits the following situation can be found. Here, too, we have
the theorem that nearly all functions can only be represented by Boolean
circuits of exponential size. The question of what a concrete function with
this property looks like is tightly connected with important consequences for

130 8. Influence of the Variable Order on the Complexity of OBDDs

fundamental problems in theoretical computer science. For this reason, many
efforts have been made world wide to construct such a function. However, the
result is sobering: nobody has succeeded yet in stating a concrete function
with necessarily exponential circuit size. In fact, the situation is even worse:
nobody has succeeded either in stating a concrete function with, say, at
least quadratic size requirements in the circuit model. The “world record”
concerning lower bounds for the size of circuits is the almost frighteningly
small number of 3n. This lower bound was proven by N. Blum in 1984 for
an artificial function specifically constructed for this purpose.

Fortunately, in case of OBDDs the situation is not as hopeless as in the
case of Boolean circuits. With respect to the proof of lower bounds the
model of OBDDs can be handled in a significantly easier way. There are
explicit constructions of switching functions whose OBDD representations
have necessarily exponential resource consumption. These constructions do
not require artificially and artistically created functions, but they can also
be given in terms of practically relevant switching functions.

After the introduction of OBDDs by Bryant in 1986 and their successive
incorporation into large CAD systems, nobody succeeded in constructing a
good variable order for the binary multiplication function. At first, it was not
clear whether fundamental reasons were the deciding factor, or merely the
fact that the available optimization algorithms were not developed enough. It
took several years until the answer was found, by proving that multiplication
requires exponential OBDDs with respect to any variable order. This result
from the year 1991 is also due to Bryant.

Definition 8.4. By the term multiplication of n-ary binary numbers
we denote the switching function

F = F(.’L’n_l,... X0, Yn—15- - - ,yo) : B2 —)IB2n,

whose inputs are two n-bit numbers x = xp—1...29 and Yy = Yp—1...Yo, and
which computes their binary product z = zop—1...20 = T - y.

The proof of the lower bound is based on methods of communication com-
plexity. Let f € B, be a switching function over the set of variables
X ={z1,...,2,}, and let Y be a subset of X. By the term subfunction
of f on Y we denote a subfunction which results from fixing all variables in
Y to constants, where Y is the complement of Y.

Theorem 8.5. Let f € B, be a switching function over the set of variables
X ={z1,... ,x,} with the following property: for allY C X of a fized size
m there are at least k different subfunctions on Y. Then each OBDD of f
contains at least k nodes.

Proof. We consider an OBDD of f with respect to an arbitrary variable or-
der w. Denote the first n—m variables in w by Z and the last m variables in 7

8.2 Exponential Lower Bounds 131

by Z. Any two different assignments on Z which define different subfunctions
on Z must lead to different functions in the OBDD. As the precondition of
the theorem holds for any Y C X of size m, it holds in particular for the
chosen set Z. Hence, there are at least k different subfunctions on Z which
lead to at least k different nodes in the OBDD. m|

Now we apply this statement to families of functions f, € B,,n > 1, such as
functions which compute one particular output bit of the n-ary multiplication
function. In order to show that a family of functions f,, n > 1, has necessarily
exponential OBDDs, it suffices to prove that for a size m = m(n) there exists
an exponential number of subfunctions (e.g., 2°™ for some ¢ > 0). To prove
this large number of subfunctions one can proceed as follows. Show that for
each subset Y of the variables that consists of n — m elements there exists
an exponential number of assignments to Y with the following property: for
any two of these assignments there exists an assignment to the variables on
Y that leads to different function values.

A useful notion in the formal treatment of this situation can be established
by means of so-called fooling sets.

Definition 8.6. Let f € B, be a switching function over the set of variables
X =A{z1,...,zp}. ForY C X and z,2' € {0,1} the terms zy and zy
denote the value of © on the variables in'Y and Y, respectively (analogous
forx'). A set F C B" is called fooling set of f with respect to Y if for all
z # 1’ € F the following conditions are satisfied:

1 flx) =f(a')=1,
2. f(zyzy) =0 or f(ayay)=0.
Theorem 8.7. Let f € B, be a switching function over the set of variables

X ={=z1,...,z,}. If for all subsets Y C X of a fized size m the function f
has a fooling set of size k, then each OBDD of f contains at least k nodes.

Proof. We consider an OBDD of f with respect to an arbitrary variable
order 7. Denote the first m variables in 7 by Y and the last n — m variables
in 7 by Y. For two assignments 2 # 2’ in the fooling set, the assignments zy
and z% on the first m variables cannot lead to the same node, as we have

L f(z) = f(@') =1,
2. f(zyazs) =0 or f(zyay) =0,

and therefore

fayay) # flayay) or f(ayzy) # f(zyay) .

132 8. Influence of the Variable Order on the Complexity of OBDDs

According to Theorem 8.7 the existence of fooling sets which have ezponential
size immediately implies an exponential lower bound on the size of the cor-
responding OBDDs. In case of multiplication we will now show that already
the computation of the middle bit z,, of the multiplication function in Defini-
tion 8.4 requires exponential OBDDs. In fact, the middle bit is the “hardest”
bit in multiplication in the sense that its computation is most difficult.

Theorem 8.8. With respect to any order the (reduced) OBDD of the middle
bit in the multiplication function grows erponentially in n.

Proof. Let f = f(xp—1,---,%0,Yn—1,--- ,Y0) be the middle bit z, of the
multiplication function in Definition 8.4. We show that with respect to each
subset S C {zo,... ,Zn—1} of size n/2 the function f has a fooling set of size
2" /8. The elements of this fooling set will only differ in the assignments to
the variables z;. The variables y; are fixed in a way that the multiplication
is reduced to computing the sum of two integers. One of these integers
corresponds to a subsequence of variables with low index, i.e., of variables
in {zg,...,2,/2-1}, and the other integer corresponds to a subsequence of
variables with high index, i.e., of variables in {z,/5,... ,2, 1}. Then the
outgoing carry bit of this addition exactly coincides with the function f.

We choose the two subsequences in a way that for each index i of the subse-
quences the following two conditions are satisfied:

1. For each i, the -th bit of one of the two subsequences belongs to S, and
the i-th bit of the other subsequence belongs to S.

2. There is a k € {1,...,n} such that the two partners of all chosen bit
pairs have the same distance k.

In order to guarantee the two conditions, we define
St =8N{z0,...,Tn2—1} and Sg = SN{zp/,... ,Tn_1}

for the elements of S with low indices (Sr) and high indices (Sg). Analo-
gously, the restrictions of S on the two domains are defined:

S =8N{zo,... ,&nso—1} and Sy = SN {zy2,... ,Tn1}

By using elementary analysis it can be easily shown that for any integers
0<a,b<n/2witha+b=n/2,

[V

By setting a = |St|, b = |Sg| this implies in our case that

2
|SL X §H| + |§L X SH| > %

8.2 Exponential Lower Bounds 133

Hence, there are at least n?/8 pairs which satisfy the first condition. We
partition this set of pairs (z;, ;) according to the value ¢ — j (which satisfies
1< |i—j| < n) in n parts. Subsequently, we choose the largest of these sets.
This one consists of at least n/8 elements. Altogether we have found the
two required subsequences which satisfy the two above mentioned properties.
Figure 8.5 illustrates this connection with regard to the school method for
multiplication.

00z 1 zj 1 1 2 0|2zp 0 20 0 2, 000 =<2
x 0000 000O0 0|1 00000010 =y
0 0z 1 2 1 1z 0 z2p 0 zg 0 Oz, O 0O
zx O0xp 0 2zg 0 Oz, O O O

T
flz,y)

Figure 8.5. There is a k (here 7) such that in each chosen pair of variables (here
(zi,2p), (xj,2q), (T, z,)) the variables have distance exactly k

Exactly two bits of yg, - - . ,yn—1 are set to 1. This is done in a way that in the
pictorial representation, the elements of one of the chosen subsequences will
be exactly below the elements of the other one. In Fig. 8.5, the variables of
each pair (z;,zp), (z;,24), (zk, z,) between the horizontal lines are in exactly
the same horizontal position. The bits of g, ... ,z,_1 which have not been
included in the subsequences are set to 1 if they occur between two variables
of a sequence, and they are set to 0 otherwise. This implies that carries from
one position to the next within the chosen sequence are propagated. For the
specifically chosen assignment the middle bit of the multiplication exactly
coincides with the carry bit in the addition of the two n/8-bit integers which
are defined by the two subsequences.

Now we define a fooling set F for this addition with respect to S which auto-
matically implies a fooling set for the whole multiplication, too. The addition
can be imagined in the following way. One integer which is determined by

the assignment on S is added to another one which is determined by the
assignment on S.

To simplify the notation, we denote the variables of the subsequence which
originate from S by a = a,,/8_1, - - - , a0, and the variables of the subsequence
which results from S by b= b,/s_1,... ,bp. We define the fooling set by

n/8—1 n/8—1
F = (ao,... ,an/g_l,bo,... ,bn/g_l) : Z (I,’2i+ Z bi2i:2n/8
=0 i=0

As for each a € {0,...,2"/81} there is exactly one integer b such that a and
b sum up to 2*/8, F is of cardinality 2"/8. Hence, the first condition in the

134 8. Influence of the Variable Order on the Complexity of OBDDs

definition of fooling sets is obviously satisfied. For the second condition it
suffices to observe that in case (a,b) # (a',b’) € F one of the two pairs (a, t')
or (a’,b) no longer sums up to 2™/8. m|

We would like to demonstrate the techniques for proving lower bounds by
means of a second example. For this reason, we consider the hidden weighted
bit function, which can be used to describe an indirect memory access.

Definition 8.9. For z = (21,...,x,) € B" let wt(x) denote the number of
1’s in x. The hidden weighted bit function HWB : B" — B is defined as
follows:

_[ruw i wte) >0,
HWB(z1, ... ,2n) = { 0 otherwise.

For the representation of the hidden weighted bit function in terms of OBDDs
the following statement is known.

Theorem 8.10. With respect to any order the (reduced) OBDD of the hidden
weighted bit function grows exponentially in the input length n.

Proof. W.l.o.g. we can assume that n can be divided by 10. Otherwise, only
some small technical considerations are necessary in addition. We show that
for each subset S = {zj,,...,7j } of the variables with |S| = 0.6n an
exponential number of assignments to the variables in S exists which lead to
different subfunctions.

Let Xy and Xy be two sets of cardinality 0.4n which consists of variables
with high and low indices, respectively.

Xu ={Tosn+1,--- ,Zo.9n}, (8.1)
Xr = A{Zo1n+1s--- > Tosn}- (8.2)

The equation | X g|+|Xr| = 0.8n implies |SN(XygUXL)| > 0.4n and further
|[SNXg|>02n or |SNXL|>0.2n.

Hence, we can determine a set W of cardinality 0.2n which satisfies

WcSNnXg or WcsSnXyg.

Case 1: W C Xpg. Let the set F' be defined by
F = {z=(zj,-.-,zjs) eBS : {z;eW :z; =1} =0.1n
and Vz; € S\W:z; =1}.

Each vector z € F' defines an assignment to the variables in S which contains
exactly 0.5n ones.

8.3 OBDDs with Different Variable Orders 135

Case 2: W C X. Now let the set F' be defined by

F = {w:(wjl,...,wjls‘)el[%'s‘ t{z; €W r2; =0} =0.1n
and Vz; € S\ W :z; =0}.

Each vector z € F defines an assignment to the variables in S which contains
exactly 0.1n ones.

In both cases Stirling’s formula n! &~ v/27n(n/e)™ implies the estimation

IF| = (://15()) =0 (%) =0 (20/5—5)”) = 0(1.147).

Now we show that each two assignments from the set F' lead to different sub-
functions. For this reason, let z'y # x5 € F be assignments to the variables
in S which differ in the 4-th bit for some i € {1,... ,n}, z; # z}.

Case 1: W C Xpg. Equation (8.1) implies 0.5n < i < 0.9n. For an assign-
ment xg of the variables in S, in which exactly i — 0.5n bits are 1, we have
wt(zsrg) = wt(r'srg) =4, and hence

HWB(zszg) = z; # ; = HWB(z'52g). (8.3)

Case 2: W C Xr. Now 0.1n < ¢ < 0.5n. For an assignment zg of the
variables in S, in which exactly ¢ — 0.1n bits are 1, we have wt(zsrg) =
wt(x'srg) = i and hence also statement (8.3). O

8.3 OBDDs with Different Variable Orders

From Chapter 6 we know that in case of two OBDDs with the same order,
binary operations and the equivalence test can be performed efficiently. In
the previous sections, we have therefore investigated problems under the pre-
condition that at each moment the occurring OBDDs have the same fixed
variable order.

Of course, one may also think of working with OBDDs with respect to differ-
ent orders. For example, let P; be an OBDD with the variable order 7; and
P, be an OBDD with the variable order 7. How efficiently can the basic
operations still be performed ?

In this section, we first show that the equivalence test can also be performed
in polynomial time for OBDDs with different variable orders. Note, how-
ever, that the resulting algorithm is significantly more costly than in case
of identical orders. When investigating binary operations, the situation is
quite different. We show that performing binary operations for OBDDs with
different variable orders is an NP-hard problem. Exactly this property is
the reason why in many cases it is required that all occurring OBDDs have
a single common order.

136 8. Influence of the Variable Order on the Complexity of OBDDs

Equivalence(Py, P2) {
/* Input: Read-once branching programs P;, OBDD P,
with respect to the variable order 3. */
/* Output: “Yes”, if P, and P represent the same function.
“No”, otherwise. */
Initialize L to {(P1, P2)};
For all nodes v in P1 {
visited[v] = FALSE;

}
Do {
Let v be a node in Py with visited[v] = FALSE
whose predecessors v’ all satisfy the property visited[v'] = TRUE;
Let v be labeled by a variable z;, and
let P, the subgraph in P rooted in v;
Let {(P,Q1),...,(P,Qr)} be the list of pairs of graphs in L,
in which P occurs;
/* As Q1, ..., Qy are subgraphs of an OBDDs with variable order 2,
their equivalence can be checked in polynomial time */

If ~(fo, = ... = fa.) {
Return(“No”");

If (P only consists of a sink) {
/* As P trivially is an OBDD with variable order 72, the
equivalence of P and Q1 can be checked in polynomial time */

If =(fp # fa.) {
Return(“No”);

}
} Else {
Let P’ and P"” be the subgraphs in P; which are rooted
in the 1- and 0-successor of P, respectively;
Add the pairs (P, (Q1)s;=1) and (P",(Q1)z;=0) to L;
Remove the pairs (P, Q1), ..., (P, Qk) from L;
visited[v] = TRUE;

}
} While (there exists a v with visited[v] = FALSE);
Return (“Yes");

Figure 8.6. Equivalence test of OBDDs with different orders
Theorem 8.11. Let P, be a read-once branching program and P, be an
OBDD. Equivalence of P, and Py can be decided in polynomial time.

Proof. Figure 8.6 contains an algorithm which decides the equivalence of Py
and P,. We show

1. The algorithm works correctly.
2. The algorithm runs in polynomial time.

8.3 OBDDs with Different Variable Orders 137

The algorithm for the equivalence test is based on a simple principle: Obvi-
ously, for two switching functions f,g € B,, and a variable z; the following
equation holds:

f:g — fzi:g:vi and fﬂzgﬁ (84)

The algorithms keeps a list L of branching programs with the following prop-
erty:

fP1 = sz — V(PaQ) €L fP = fQJ (85)

where fp and fg are the functions represented by P and (), respectively.

At the beginning, L is initialized to {(Pi, P2)}. In the processing of the
algorithm L is only modified by the following kinds of operations:

1. A pair in L is replaced by the pairs of read-once branching programs of
the cofactors according to condition (8.4).

2. For two pairs (P,Q1) € L and (P,Q-) € L,

fQ1 #sz == fP1 # fP27

fa. = fg, = one of two pairs can be removed from L.

Hence, statement (8.5) is an invariant of the Do-loop. To prove the correct-
ness of the algorithm, it therefore suffices to observe that the invariant holds
at the beginning of the algorithm, and that at the end of the processing one
of the following conditions is satisfied:

1. For all nodes v in P; it holds that visited[v] = TRUE, the list L is empty,
and the answer is “Yes”.

2. There is a node v in P; with visited[v] = FALSE as well as a pair (P, Q)
with fp # fg, and the answer is “No”.

Regarding the running time, for each node in P; the Do-loop is executed at
most once. Each of these executions requires at most a number of size(Ps)
many equivalence tests of OBDDs with the same order. Each of these tests
can be performed in polynomial time. Hence, the running time of the algo-
rithm in Fig. 8.6 is polynomial. |

As an OBDD is a special case of a read-once branching program, we can
immediately deduce the following corollary.

Corollary 8.12. FEquivalence of two OBDDs with different variable orders
can be decided in polynomial time. |

Now we show that the application of binary operations to OBDDs with dif-
ferent variable orders is an NP-hard problem.

138 8. Influence of the Variable Order on the Complexity of OBDDs

Problem 8.13. The problem COMMON_PATH, _oBDD,r,-OBDD I8
defined as follows:

Input: An OBDD P; with order 7; and an OBDD P, with order 5.

Output: “Yes”, if there is an assignment to the input variables such that
P, and P, simultaneously compute the value 1. “No”, otherwise.

Lemma 8.14. The problem COMMON_PATH, _oBDD,r-OBDD
NP-complete.

Proof. As each of the two OBDDs can be evaluated in polynomial time, the
problem is in NP.

To show that the problem is NP-hard, it suffices to analyze an earlier proof
again, this time in more detail. In Theorem 4.32 it has been proven that
satisfiability of ordered read-2 branching programs of width 3 is an NP-
complete problem.

The proof idea was as follows: For each instance C' of the NP-complete
problem 3-SAT/3-OCCURRENCES we have constructed two branching pro-
grams P'(C) and P"(C) with the following property: C can be satisfied if
and only if there is a variable assignment to P'(C) and P"(C) such that
P'(C) and P"(C) simultaneously compute the value 1. From the construc-
tion rules for P'(C) and P"(C) it can be immediately recognized that both
programs even satisfy the OBDD property. As a consequence, the problem
COMMON-PATHﬂ'l-OBDD,TI'Q-OBDD is NP-hard. O

Problem 8.15. The problem --SYN,. _0BDD,r,-OBDD s defined as fol-
lows:

Input: An OBDD P; with order m; and an OBDD P, with order 5.

Output: An OBDD P (with arbitrary variable order) of the function f =
f1 - f2, where f; and f> denote the functions which are computed by P; and
P,, respectively.

Theorem 8.16. The problem "SYNm-OBDD,m-OBDD is NP-hard.
We proceed analogously to the proof of Theorem 4.38.

Proof. The problem COMMON_PATH _oBDD,7,-OBDD ¢an be solved by
applying an algorithm for --SYN ,_oBDD,7,-OBDD to the input OBDDs,
and then deciding SATogpp on the resulting OBDD. Due to Lemma 8.14
COMMON_PATH | _0BDD,7,-OBDD i an NP-complete problem, whereas
SAToppp can be decided in polynomial time. Consequently, the investi-
gated problem '_SYN7T1-OBDD,7T2-OBDD is NP-hard. O

8.4 Complexity of Minimization 139

As complementation is quite easy in the context of OBDDs, one can imme-
diately obtain the following corollary.

Corollary 8.17. The two problems +-SYNy, _0BDD,x,-OBDD 45 well as
@_SYNﬂ'l-OBDD,‘Trz-OBDD are NP-hard. O

After the analysis of the two fundamental operations we would like to go
briefly into the problem of transforming an OBDD P; with an order 7; into
an OBDD P, with an order 7. From Section 8.1 it is known that in this
process the size of an OBDD can increase by an exponential factor. Hence,
there cannot be an algorithm — not even a nondeterministic (!) one — which
guarantees to perform this transformation in polynomial time. Hence, the
best that one can hope for, is an algorithm whose running time is bounded
by a polynomial in size(P;) and size(P>). The next theorem, which we state
without proof, implies that such an algorithm exists. Here, one speaks of a
global rebuilding of the OBDD.

Theorem 8.18. Let P, be an OBDD with variable order 71, and let wo be
another variable order. There is an algorithm which transforms P into a
reduced OBDD P» with variable order w2, and whose running time is bounded
by O(size(Py)? - size(Py) - log(size(P1))).

8.4 Complexity of Minimization

As the size of an OBDD very strongly depends on the chosen variable order,
algorithms for constructing good orders are of great practical importance.
But the hope that there is an efficient algorithm which finds the best among
all possible orders cannot be satisfied. In this section it is shown that the
test whether the minimal OBDD size of a function (given also in terms of
an OBDD) is smaller than a given number s is NP-complete. Hence, it is
an NP-hard problem to construct the optimal order to a given OBDD, and
efficient algorithms cannot be expected.

In the historical development the exact clarification of the complexity theo-
retical questions was a complicated adventure. First, in the original paper of
Bryant in 1986 it was stated without proof that the construction of an op-
timal order is an NP-hard problem. This plausible statement was accepted
as fact for some time. However, as the role of the variable order in various
applications became increasingly important, it was investigated in more de-
tail, and it turned out that the complexity of the ordering questions had not
been solved at all. Indeed, for a long time this aspect eluded clarification.

Finally, in 1993 the Japanese trio S. Tani, K. Hamaguchi, and S. Yajima
succeeded partially by proving the relevant complexity statement for the
somewhat weaker case of shared OBDDs:

140 8. Influence of the Variable Order on the Complexity of OBDDs

Problem 8.19. The problem OPTIMAL SHARED OBDD is defined as
follows:

Input: A shared OBDD P and a positive integer s.

Output: “Yes”, if the functions which are represented by P can be repre-
sented by shared OBDD P’ (with respect to an arbitrary variable order) with
at most s nodes. “No”, otherwise.

Theorem 8.20. The problem OPTIMAL SHARED OBDD is NP-complete.

By means of the techniques they developed the authors did not succeed in
transferring the hardness result to the more specific class of OBDDs (i.e.,
shared OBDDs with exactly one root), a class that may be easier to handle in
the complexity theoretical sense. However, in 1996, B. Bollig and I. Wegener
managed to close this gap. They proved the complexity statements also for
the class of OBDDs.

Problem 8.21. The problem OPTIMAL OBDD is defined as follows:

Input: An OBDD P and a positive number s.

Output: “Yes”, if the function being represented by P can be represented
by an OBDD P’ (with respect to an arbitrary variable order) with at most s
nodes. “No”, otherwise.

Theorem 8.22. The problem OPTIMAL OBDD is NP-complete.

The proofs of the two theorems are quite long and rather technical, a fact that
reflects the complicated nature of the seemingly very elementary structures.
However, the basic ideas of both proofs give fundamental insights into the
tools for theoretical analysis of OBDDs. Hence, we would like to provide a
sketch of the proof for the case of shared OBDDs.

For the proof of Theorem 8.20 we first prove that the problem OPTIMAL
SHARED OBDD is in the class NP. Of course, this statement implies that
the more specific problem OPTIMAL OBDD is in the class NP, too.

Theorem 8.23. The problem OPTIMAL SHARED OBDD is in NP.

Proof. The OBDD P’ with at most s nodes can be guessed. By Corollary 8.12
the equivalence of P’ and the input OBDD P can be checked in polynomial
time. O

Theorem 8.24. The problem OPTIMAL SHARED OBDD is NP-hard.

Proof. For the proof we reduce the well-known NP-complete problem OP-
TIMAL LINEAR ARRANGEMENT (OLA) to the problem OPTIMAL
SHARED OBDD.

8.4 Complexity of Minimization 141

OPTIMAL LINEAR ARRANGEMENT:

Input: An undirected graph G = (V = {1,... ,n}, E) and a positive inte-
ger K.

Output: “Yes”, if there is a permutation ¢ on {1,... ,n} such that

D o)~ < K.

(u,v)EE

“No”, otherwise. The expression |¢)(u) — ¢ (v)| is called the costs of the edge
(u,v), and the sum Z(u’v)eE |1(u) —1p(v)| is called the costs of the graph G.

The basic idea of the reduction is to reflect the costs of an edge in the graph
by the size of an OBDD. The OBDDs which are constructed in this way
constitute elementary components within the reduction. The relevant shared
OBDDs are assembled from these elementary components.

Definition 8.25. A (u,v)-phage function in the variables z1,... , T, is a
switching function of the form
f(1,. . 2n) = (Ty © 2y) H T (8.6)
kg{u,v}

Figure 8.7 shows a phage function with respect to several variable orders,
where edges to the 0-sink are omitted. If A(u,v) denotes the distance between
the two variables z,, and z, in the order, then the phage function (8.6) has
exactly n + A(u,v) internal nodes.

Hence, for each linear arrangement 1) of a graph G the following holds. If the
edge(u, v) has costs of C, then the OBDD of the (u,v)-phage function (8.6)
with respect to the variable order zy-1(1),...,Zy-1(n) has exactly C +n
internal nodes. In this way, the desired correspondence is established. Fig-
ure 8.8 shows the costs of an edge for two different linearly arranged graphs.
The two phage functions which correspond to these two orders are exactly
those in Fig. 8.7.

Note that in general, the graph contains not just a single edge but many edges.
If all corresponding phage functions depend on the same set of variables then
subgraphs can be shared. As a consequence, the size of the shared OBDD no
longer reflects the costs of the arrangement.

Things can be put right by considering a separate variable set for each edge
and hence for each phage function: for the k-th edge the phage function
is defined on the set of variables z; j,... ,z,,x. Hence, altogether we have
n-|E| variables. If for each j the variables z;1,2;2,... ,%; g are consecutive
successors in the variable order, then the size of the resulting shared OBDD
corresponds exactly with the costs of the arrangement. If for each j the shared
OBDD satisfies this condition to the variable order, we call it well-ordered.

142 8. Influence of the Variable Order on the Complexity of OBDDs

Variable order x1,... ,z¢ Variable order x1,x4, 3, X2, X5, L6

Figure 8.7. The phage function (z2 @ z5) x123T4T6

olololololoNolololorolo

Costs of the edge: 3 Costs of the edge: 1

Figure 8.8. An edge with respect to two different linear arrangements

To establish a well-ordered OBDD, we add a modified phage function for
each node j, called the penalty function,

hj=(2j1 ®xj2®...® :L'j7|E|) H T
i,l#]
The penalty function causes that the variables x;1,...,z; g are kept to-
gether in the order. In the presented modeling there are still some small
difficulties which occur because of possible sharing of subgraphs in the low-
est OBDD level. These difficulties can be removed by doubling the set of
involved variables for each edge.

Definition 8.26. An OLA decision diagram of a graph (V, E) given in
the problem OPTIMAL LINEAR ARRANGEMENT is a shared OBDD which
represents the subsequently defined 2|E| + n functions fr,gr, 1 < k < |E|,
and hj, 1 < j <n. If the k-th edge of E is labeled by (u,v), then

8.4 Complexity of Minimization 143

fe = (@uk © Tok) H Zik>
ig{u,v}

9k = (Yu,k D Yo k) H Yisk-
ig{u,v}

For each node j the function h; is defined by

hj = (21 ®Tj2®...0T; 5 OYj1 OYj2®...0y;5) || Tt Tir-
il

Due to possible sharing of subgraphs in the lowest OBDD level, the size of
a well-ordered OLA decision diagram is not determined uniquely. Instead
of this, there are two possible types which differ in their size by exactly one
node. Exactly for solving this problem we have doubled the set of variables.
The following two statements can be proven formally with some efforts.

Lemma 8.27. For the OLA decision diagram of a linearly arranged graph
G = (V, E) with costs K the following holds: if the OLA decision diagram is
well-ordered then its size with respect to the types 1 and 2 amounts to

[V]—2
ki(K)=ky(K)+1=2|K+1—|V|+|E|V|(|[V]|+2) - |E]| Zz ,
i=1

where k; refers to type i. |

Lemma 8.28. Each non-well-ordered OLA decision diagram can be trans-
formed into a functionally equivalent well-ordered OLA decision diagram with
fewer nodes. m|

Here, we omit the proofs of the two lemmas and look instead at the overall
conclusion of the reduction. For this purpose we consider an instance of
OPTIMAL LINEAR ARRANGEMENT. This instance consists of a graph
and a positive integer s. We transform the graph into a well-ordered OLA
decision diagram and compute the number k1 (s) according to Lemma 8.27.
Then we use the OLA decision graph P and the value k1(s) as input to the
problem OPTIMAL SHARED OBDD. If there is no equivalent shared OBDD
to P which has at most k1 (s) nodes, then there is no linear arrangement with
costs at most s.

We now assume that an OLA decision diagram with at most k1 (s) nodes exist
which represents the same function as the well-ordered decision diagram. If
the OLA decision diagram is well-ordered, then there exists a linear arrange-
ment of the original graph G with costs s. (As ka(s) < k1(s) < ka(s + 1) for
each positive integer s, OLA decision diagrams of type 2 do not cause prob-
lems either). If the OLA decision graph is not well-ordered, then Lemma 8.28

144 8. Influence of the Variable Order on the Complexity of OBDDs

guarantees the existence of a well-ordered OLA decision diagram with at most
k1(s) — 1 nodes. Hence, there exists a linear arrangement ¢ with costs at
most s. As the whole construction can be performed in polynomial time,
the problem OPTIMAL LINEAR ARRANGEMENT has been reduced to
OPTIMAL SHARED OBDD in polynomial time. This implies the claim.

O

8.5 References

The asymptotic statements about switching functions go back to Shannon
[Sha49]. The mentioned paper concerning a linear lower bound for circuits is
by Blum [Blu84]. The proofs of the exponential lower bounds of multiplica-
tion as well as for the hidden weighted bit function can be found in [Bry91].
Our treatment follows the presentation of Ponzio [Pon95].

The polynomial algorithm for performing the equivalence test of OBDDs with
different orders was designed by Fortune, Hopcroft, and Schmidt [FHST78].
Gergov and Meinel proved that performing binary operations on OBDDs
with different orders is NP-hard [GM94b]. Efficient algorithms for global
rebuilding were designed independently by Meinel and Slobodova [MS94], by
Savicky and Wegener [SW97], and by Tani and Imai [TI94].

The two mentioned papers concerning the complexity of the minimization
problems are [THY93, BW96].

9. Optimizing the Variable Order

Ordnung fihrt zu allen Tugenden.
Was aber fihrt zur Ordnung ?
[Order leads to all virtues.

But what leads to order ¢]

Georg Christoph Lichtenberg (1742-1799)

Before representing and manipulating switching functions in terms of
OBDDs, an order on the set of variables has to be fixed. In the previ-
ous chapter, we have seen that the construction of the optimal variable order
is a very critical venture — as it is related to exploding running times. A
good order can lead to a very compact representation and hence to small
running times, whereas a bad representation may exceed the physically ex-
isting memory and hence causes the whole computation to abort. Even in
the cases where bad variable orders do not cause a memory overflow, they
lead to unacceptably large running times.

9.1 Heuristics for Constructing Good Variable Orders

Already in the first research papers about OBDDs the choice of suitable vari-
able orders was investigated, and some general rules for manually choosing
a good order were presented. However, the popularity of OBDDs strongly
increased exactly at the moment when powerful heuristic methods became
available to deduce a priori information for determining a good order.

The methods for heuristically constructing good orders can be classified by
the available input information. On the one hand, the switching functions
under consideration may be given in form of net lists, Boolean formulas, dis-
junctive normal forms, or other representation types, which are not sufficient
for manipulating the functions. On the other hand, additional information
may be provided and can be exploited, e.g., information concerning the se-
mantic meaning of certain input bits of a function. A third, quite frequent
situation is that the relevant functions are already provided in the form of
OBDDs.

146 9. Optimizing the Variable Order

V1 V2 V3

Figure 9.1. Motivation for the fan-in heuristic

Of course, the heuristic algorithms for constructing good variable orders de-
pend on the type of input information. The main application in which these
constructions were studied is the symbolic simulation of a combinational cir-
cuit, see Section 5.2. Starting from a given circuit representation the repre-
sented function is to be converted into an OBDD. The idea of the heuristics
is to deduce information concerning suitable positions of the variables in the
order from the topological structure of the circuit. In the following, two of
these heuristics, containing typical ideas, are described in more detail: the
fan-in heuristic of Malik, Wang, Brayton, and Sangiovanni-Vincentelli, and
the weight heuristic of Minato, Ishiura, and Yajima.

9.1.1 The Fan-In Heuristic

Definition 9.1. Let v be a node in a combinational circuit C (which we
consider as a directed acyclic graph). The transitive predecessor cone of
v denotes all nodes w with the property that there is a path of positive length
to v. The reflexive-transitive predecessor cone also contains the node
v itself.

As motivation for the fan-in heuristic we consider the circuit structure in
Fig. 9.1. We assume that the reflexive-transitive predecessor cone V; of the
predecessor nodes y; of a node z are pairwise disjoint. In order to compute
the function value in z for a given input, we need to know the function values
of all predecessors of z. Let y be one of these predecessors. If the values of
all variables in the reflexive-transitive predecessor cone of y are known, then
the function value in y can be deduced. For determining the function value
in 2z the values of these variables are no longer necessary, because

1. the function value in y is already known, and
2. the relevant variables do not occur in the other predecessor cones.

9.1 Heuristics for Constructing Good Variable Orders 147

If the variables which appear within the same predecessor cone occur con-
secutively in the order, then few subfunctions exist, and the OBDD remains
small. For this reason, the fan-in heuristic proposes to keep those variables
which appear within the same predecessor cone consecutively in the order.

Although in general, the predecessor cones are not disjoint, the realization of
this idea leads to a provably useful heuristic. All gates of the given circuit
are traversed by means of depth first search starting in the output node. If
there are several output nodes, they are first combined to a single pseudo
output function by a gate (e.g., the parity of all output nodes). The traversal
in depth first search guarantees that variables within the same predecessor
cone occur in the order as close to each other as possible.

The question which predecessor cone of a node should be traversed first is
answered by the following idea. It seems to be advisable to read those vari-
ables in the OBDD first that appear far away from the output nodes in the
circuit. Intuitively, these variables can influence the behavior of the circuit
quite strongly. Reading these variables early in the OBDD allows representa-
tion of different behaviors, being induced by different values of the variables,
in different sub-OBDDs. In particular, this avoids the need to remember the
current “state” of all occurring behaviors in each level of the OBDD simul-
taneously (which would be quite costly). The formal realization of this idea
is achieved by defining the depth of a gate in a circuit:

Definition 9.2. Let C be a combinational circuit (which we consider again
as a directed, acyclic graph with some specific nodes: the output gates). For
each gate v of C the TFI-depth (transitive fan-in) is defined as follows:

0 if v is an output node,
TFI-Depth(v) = { 1+ max { TFI-Depth(w) :
w is a successor of v } otherwise.

Pseudo code for the realization of the fan-in heuristic is given in Fig. 9.2.
First, the function Fanln calls the recursive function FanInOrder in which
depth first search is performed. If the current node has not been visited yet,
then, first, the predecessor nodes are considered recursively, and, next, the
node is appended at the end of the list of visited nodes.

Altogether, that order on the variables is chosen which is consistent with
the computed list of nodes nodelist. The earlier an input node labeled by a
variable is reached, the earlier this variable appears in the order.

9.1.2 The Weight Heuristic

The dynamic weight assignment heuristic, for short the weight heuris-
tic, also tries to exploit the topology of a circuit C' in order to deduce in-
formation about a suitable variable order for the function computed by C.

148 9. Optimizing the Variable Order

FanIn(C) {
/* Input: A combinational circuit C' with input variables
{z1,... ,zn} and exactly one output z. */
/* Output: DFS traversal of all nodes in C. */
nodelist = {J;
FanInOrder(z, nodelist);

FanInOrder(node y, list of nodes nodelist) {
If (y & nodelist) {
Let {y1,.-.,yr} be the set of predecessor nodes of y;
Fori=1,...)k
t; = TFI-Depth(y;);

}
Let L = (l1,...,lx) be the list of nodes y;
sorted by decreasing keys t;;
Fori=1,...,k{
FanInOrder(l;, nodelist);

}
Append(y, nodelist);

Figure 9.2. Fan-in heuristic

In contrast to the fan-in heuristic, which is based on local decisions, the
approach of the weight heuristic is more globally oriented.

Starting from the output, each node is assigned a weight which measures the
influence of the node on the circuit. The variable with the largest weight is
put in the first position of the variable order under construction. Initially,
the weight 1 is assigned to each output node.

The weight of a node is propagated to the input nodes according to the
following two rules:

1. At each gate, the weight of the gate is divided equally and distributed to

the predecessor gates.

2. If a gate has several successor gates, all weights which are assigned to
the gate (due to the first rule) are accumulated.

Formally, these rules can be captured by means of the following definitions.

Definition 9.3. Let C' be a combinational circuit. For each gate v of C we
define the weight of v as follows:

1 if v is an output node,
Weight(v) = > Weight(w)/indegree(w) otherwise.

w successor of v

9.2 Dynamic Reordering 149

After computing the weights of all nodes the input variable with the largest
value is determined. Intuitively, this variable has a large influence on the
represented function, and it is put at the beginning of the order. Subse-
quently, we remove the part of the circuit which is influenced by the chosen
variable. The weight assignment is computed again in order to determine the
second variable in the order. By repeated application of weight assignment
and removal the complete order is successively computed. An example of the
application of the weight heuristic is shown in Fig. 9.3. In the first assign-
ment, the variable d has the largest weight. After deleting the corresponding
circuit part the former weight of the variable d is redistributed. Intuitively,
this redistribution causes that variables which are somehow related to the
variable d obtain a super-proportional weight increase. In the depicted ex-
ample the variable ¢ has the largest weight in the second assignment, and
hence, it is put at the second position in the order.

1/6 1/4

I

b b

1/6 1/4

C C

1/6 ™ 1 12 T ™ 1
d @
1/2

First assignment Second assignment

Figure 9.3. The weight heuristic

9.2 Dynamic Reordering

The ordering heuristics described in the previous sections lead to good results
for many circuits, but they have also some drawbacks:

1. The methods are quite problem specific. For example, the presented
heuristics exploit the topology of the input circuit. However, if the rele-
vant switching functions do not origin from a circuit representation but
from another input source, there may be much less structural informa-
tion.

2. The methods work heuristically, and in general, they are not able to
find the optimal order. Although in many cases the resulting quality of
heuristically constructed orders is sufficient, there may also be extreme
cases where the heuristics fail.

150

9. Optimizing the Variable Order

A OBDDsize

\ memory limit

Figure 9.4. The problem of static orders

3.

The heuristics produce a static order which remains unchanged during the
whole course of the application. Many applications, such as the analysis
of finite state machines, are not amenable to such a static approach. In
this case, the optimal order at the beginning of the application can be
completely different from the optimal order at the end. If one works with
one and the same order for the whole time, one is often doomed to failure.
Figure 9.4 illustrates this effect. Here, order 1 is the optimal order of the
OBDDs at the beginning of the application, and order 2 is the optimal
order of the OBDDs at the end of the application. The OBDD sizes
referring to the optimal order at each moment are shown by the third
line — note that the optimal orders at different times may be different.
In many cases, when working with a fixed order it is not possible to stay
within the memory limits. In the case of such an overflow, the complete
computation fails.

A solution of this dilemma is to improve the variable order dynamically in
the course of processing the given manipulation task. Here, one speaks of
dynamic reordering.

Like the heuristics, these methods can also be classified by the type of input
information which can be used. Concerning the dynamic application, one
is particularly interested in those methods which achieve suitable reordering
by merely using the current OBDD representation. These algorithms try
to determine an improved variable 7' from a given OBDD with an initial
order 7. As according to the results of the previous chapter the computation
of an optimal order is an NP-hard problem, one typically does not aim

9.2 Dynamic Reordering 151

at computing an optimal order, but one is satisfied with sufficiently large
improvements.

The use of a reordering algorithm can now be controlled as follows:

Explicit calls: The user controls the points in time at which a reordering
step is to be performed. For example, this may be desirable before beginning
to perform a complex operation.

Automatic calls: The reordering algorithm is called automatically when-
ever certain situations arise. Typically, a reordering step is called whenever
the size of the shared OBDD representation has been doubled since the last
reordering call.

The reordering aspect is particularly interesting, as it can run in the back-
ground without direct interaction to the application program. Typically, for
the application program only the references to the represented functions are
of interest, and not their internal representation. The dynamic adjustment
of the variable order allows the internally performed OBDD representation
to be hidden from the outside almost completely.

9.2.1 The Variable Swap

A central observation which forms the key idea in many dynamic reordering
algorithms is that two neighboring variables in the order can be swapped ef-
ficiently. Of course, this statement is not valid in an unrestricted manner,
but depends on the chosen implementation. For this reason, we refer in the
following to the basic framework described in Chapter 7, upon which nearly
all existing OBDD packages are based. For this framework we show how a
swap of two neighboring variables in the order can be realized efficiently.

First, we assume that the variable x; occurs immediately before the variable
z; in the order. The effect of this swap on each node labeled by z; can be seen
by applying Shannon’s expansion with respect to z; and z;. If the function
which is represented in a node with label z; is denoted by f, then we have:

f=zix; fun + 25 fro + iz for + Ti T foo.

By using commutativity we can order the terms so that that z; occurs be-
fore x;:

f =2 fu1 + z;Tifor + Tz fro + T Tifoo.

In other words, the actual effect of the swap is the exchange of the two
subfunctions fig and fy; in the OBDD. Here, we have to take care that all
unconcerned nodes in the graph are not affected by this exchange.

152 9. Optimizing the Variable Order

0

fo
Vi
\
\
\
|
|
f00

PN

N

fi1 f10 fo1 f00

Figure 9.5. Swapping two neighboring variables

Figure 9.5 illustrates the swap of the two neighboring variables z; and z;
within an arbitrary, possibly quite large OBDD. In the initial order the func-
tion f is represented by a node v labeled by x;. First, we consider the case
that the two sons v; and vg of v are labeled by x;. The successor nodes of vy
and v represent the sub-OBDDs of the cofactors fi1, fi0, for and foo. As f
depends on the variable z;, after the modification of the order this function
has to be represented by a node with label z;. The 1-successor of this node
must possess references to the sub-OBDDs f1; and fo1, the 0-successor must
have references to the sub-OBDDs f19 and foo.

Note that the function f in Fig. 9.5 is represented by the same node v before
and after the swap. Only the label and the outgoing edges of the node have
been modified. This strategy guarantees that all existing references to f are
not affected by the swap: neither the references which result from the upper
levels in the OBDD, nor the references from outside the OBDD. As also the
two cofactors f; and fy of f are represented by the original nodes v1 and v
after the swap, each existing reference remains valid.

It is merely necessary to introduce the nodes u; and ug which represent the
cofactors of f with respect to z;. The figure seems to express that the size
of an OBDD always increases during a variable swap. In case of a reduced
representation, the equivalent status of z; and z; tell us that this cannot hold
true. Indeed, there are even two reasons which reflect this general equivalence
in the realization:

Nodes u;, ug: It is possible that the cofactors of f with respect to z; are
already represented in the original OBDD.

Nodes vg, v1: The preservation of the nodes v; and vy is only necessary if
besides the original reference starting in the node v there is at least one other

9.2 Dynamic Reordering 153

Figure 9.6. Special case of the variable swap where fo does not depend on z;

reference. In a typical implementation these references cannot be efficiently
determined, but the number of these references can be efficiently determined
(see Section 7.1.6). If the reference counter of vy is zero after deleting the
reference from the node v, then v; can be removed. The same holds true
for wvg.

In the special cases where at least one of the two successor nodes of v is not
labeled by x; analogous constructions can be performed. For example, let the
cofactor fy be independent of the variable z;. By means of the construction
in Fig. 9.6 the special case can be performed in such a way that all existing
references remain valid.

Memory management. During performing a variable swap many dead
nodes can arise. This suggests connecting the procedure directly with a
garbage collection. That connection can be achieved as follows. Before start-
ing an algorithm based on variable swaps a garbage collection is called, and
the contents of the computed table is deleted such that all dead nodes are
deleted. When swapping two neighboring variables z; and z;, only the ref-
erence counters of the nodes u; and wg may be decreased. If a reference
counter reaches the value zero, then the node is removed immediately. In
this way, it is guaranteed in a typical memory management framework that
during dynamic reordering no dead nodes are carried along.
Complemented edges. In case of OBDDs with complemented edges the
variable swap can be realized analogously. Here, it may happen at first that
during the construction a 1-edge obtains the complement bit. But this can
be corrected quickly and locally. We assume that not the subfunction fig
itself but instead its complement is represented. Hence, the edge to the sub-
OBDD fi¢ carries the complement bit. Swapping the variables first leads to
the graph in Fig. 9.7. The OBDD contains a complemented 1-edge which

154 9. Optimizing the Variable Order

Figure 9.7. Variable swap in case of complemented edges

is drawn as a bold arrow. The figure also shows the transformation which
serves to remove the complement bit from the 1-edge. Here, it is important
that no unconcerned edge is affected by this transformation. At the end of
the construction uniqueness of the representation has been re-established.

Time consumption. The efficiency of the variable swap substantially de-
pends on the time needed for accessing the set of all nodes with label x;. The
time- and space-efficient framework in the form presented in Chapter 7 does
not allow one to realize this access efficiently. However, a small modification
can change this.

Let us recall that the access to the nodes is performed by means of a unique
table. From each node with label z; we have a very fast access to its sons, but
not to all the other nodes with label x;. However, by introducing a separate
unique table for each variable z;, this situation changes. Now, by using the
collision lists we have fast access to the set of all nodes with label x;. The
required time for this access is

O(#lists + #nodes),

where #lists is the number of collision lists in the unique table, and #nodes
is the number of nodes in the table. Typically, the number of nodes is greater
than the number of collision lists, so all nodes with label x; can be visited in
linear time.

As for each node with label z; only constantly many operations are per-
formed, the variable swap can be performed in linear time with regard to
number of nodes with label z;.

9.2 Dynamic Reordering 155

9.2.2 Exact Minimization

In most cases computing the optimal order of a given OBDD is too costly;
nevertheless, exact methods are also worth considering. In particular, they
are necessary

e to judge the optimization quality of heuristics or dynamic reordering algo-
rithms,

e to work with the optimal order in particularly critical cases, or

e to be able to apply the exact method at least to parts of the OBDDs within
a heuristic procedure.

The best technique so far for finding the optimal variable order was pro-
posed by S. Friedman and K. Supowit, and is based on the principle of
dynamic programming. When applying this programming paradigm the
investigated problem is decomposed into several subproblems. The subprob-
lems are solved, and their results are all stored in tables. Finally, the initial
problem is solved by suitable look-ups in the constructed tables.

In the algorithm of Friedman and Supowit, the subfunctions of the OBDD
constitute the mentioned subproblems. The procedure has running time
O(n? - 3"). This running time is exponential, but it is significantly better
than the naive method of trying all n! different orders successively.

In the context of dynamic reordering mechanisms, we would like to present a
variant of the algorithm which has been proposed by N. Ishiura, H. Sawada,
and S. Yajima. The three authors have taken up and realized the ideas
of Friedman and Supowit. In contrast to the original method, the explicit
construction of the tables is omitted, and instead of this, all relevant subfunc-
tions are represented by OBDDs. The construction of currently not available
subfunctions is carried out solely by using the variable swaps presented in
Section 9.2.1.

Let f € B, be a switching function over the set of variables {z1,...,2,}. By
OBDD(f,) we denote the OBDD of f with respect to the order 7, and by
costy(f,) the number of nodes with label z in OBDD(f, 7). Furthermore,
for a subset I C {z1,...,z,} the set II[I] consists of all orders m which
satisfy

{7ln — || + 1), 7[n — 1| +2],... ,«n]} = 1.

For the optimization algorithm the following observation is of central impor-
tance.

Lemma 9.4. Let f = f(z1,...,2n) € By, I C {z1,...,zn} and z € I.
Then cost,(f,n) is invariant for all orders w € II[I] with w[n — |I| + 1] = =.

156 9. Optimizing the Variable Order

OptimizeExact(P, 7) {
/* Input: An OBDD P with respect to the variable order w */
/* Output: The OBDD size OptCost with respect to the optimal
variable order 7' of the function represented by P */
MinCostyg = 0;
g = T,
Fork=1,...,n{
For each subset I C {1,...,n} of size k {
Compute MinCost; and 77 by using
MinCostI\{z} and T\ {2} (z € I);

}

OptCost = MinCost(y,.. ny;

Figure 9.8. Exact minimization

Proof. Theorem 8.1 implies: For each order = € II[I] with n[n — |I| +1] =z
the value cost,(f,n) is exactly the number of subfunctions which depend

essentially on z, and which result from fixing all variables in {z1,... ,z,}\ I
to constants. Of course, this value is independent of the chosen order in
which the variables are fixed. m|

The lemma says that the number of nodes with label x does not change
when the order of the variables above (resp. below) of z is modified. By
we denote the order in II[I] which minimizes

Z costy(f,7),

zel

and by MinCost; we denote the corresponding minimal value of this sum.
The algorithm for exactly computing the optimal variable order can be algo-
rithmically realized in the following way:

1. We assume inductively that for each subset of I which contains exactly
k — 1 elements the optimal order 7y is known. 7; describes the optimal
order on the set [if the variables in I are read in the bottom part of the
OBDD.

2. By means of the orders for the subsets of size k — 1, the orders 7y for the
subsets of I that contain exactly k elements can be computed. Figure 9.8
shows pseudo code for the algorithm. For the construction of 7y, each of
the variables in T is successively put to the (n — k + 1)-th position in the
order. Lemma 9.4 implies that for each of these variables it is optimal
to construct the order in such a way that the variables in I\ {x} are
ordered according to 7\ (). The corresponding costs can be determined
by a simple accumulation.

9.2 Dynamic Reordering 157

ComputeMinCost {
/* Input: A subset I of the variables, already computed OBDD(f, 71\ {v}) */
/* Output: MinCost;, the number of nodes in OBDD(f,n7) *
MinCost; = oo;
For each variable z € I {
Reconstruct OBDD(f, < 7y\{o}, 2 >) by using OBDD(f, 71\ 4});
NewCosty = Costy(f, < Tr\{z}, % >) + MinCostp (a};
If NewCost, < MinCostr {
MinCost; = NewCosty;
T =< T\{z},T >}
OBDD(f, 71) = OBDD(f, < 7\ {2}, % >);

Figure 9.9. Computing the minimal costs

Figure 9.8 contains the main loop of the exact minimization method, and
Figure 9.9 gives pseudo code for the computation of w;y. The process of
appending a variable z to an existing part of an order 7 is abbreviated by
the notation < 7,2 >.

Implementation by means of variable swaps. The algorithm in the pre-
sented form illustrates the gap between time complexity and space complex-
ity, which can also be observed in many other algorithms. In a time-efficient
implementation, all orders my of size k — 1 are stored until the computation
of all orders 7y of size k has been completed. In this case the OBDD of each
order of size k can be generated by successive variable swaps which merely
move the currently chosen variable z to the n — |I| 4+ 1-th position.

By contrast, in a more space-efficient implementation of this idea one would
not store the OBDDs themselves, but only the orders. From this, the con-
struction of an OBDD with respect to a specific variable order can still be
performed by a sequence of variable swaps. However, in general many vari-
ables have to be moved to the right position, so the time consumption is
substantially greater.

Lower bounds. By computing lower bounds for the size of OBDDs, in
some situations the procedure can be interrupted in advance. A suitable
lower bound is the following one. Let MinCost; and 7 be already computed
for a subset I of the variables, and let ¢ denote the number of nodes which are
labeled by the variable w[n — |I| + 1]. These ¢ nodes with label n[n — |I| 4 1]
imply that there have to be at least ¢ — 1 nodes above this level in the
OBDD. Hence, a lower bound of the OBDD size, which can be established
when starting from the (part of the) order 7y, is MinCost;+c—1. If this value
is greater than the previously best computed total size this searching branch
does not have to be pursued any further. The lower bound is particularly

158 9. Optimizing the Variable Order

effective when the exact optimization algorithm is started from an already
good order.

9.2.3 Window Permutations

Now we turn to algorithms which try to improve the order of a given OBDD
without aiming at the optimum. The window permutation algorithm is
based on the observation that during iterations of variable swaps one quite
easily gets stuck in local minima. In order to prevent this, mechanisms are
provided to exchange k neighboring variables simultaneously for a k > 2. Of
course, the computation efforts increase strongly with increasing values of k.

The algorithm successively traverses all levels ¢ € {1,... ,n — k + 1} and
systematically tries all k! permutations of the variables «[¢],... ,w[i + k —1].
Subsequently, the permutation where the smallest OBDD was achieved is
reconstructed, and an analogous step is performed for the next window of
variables.

Here, the k! permutations on k variables should be generated by the minimal
possible number of k! — 1 swaps. For £ = 3 and the variable notations a, b,
¢, the following sequence can be chosen:

abc = bac — bca — cba — cab — ach.

For k = 4 and the variables a, b, ¢, d the following sequence achieves the
desired effect:

abed — bacd — bade — abde — adbe — adcb — dacb — dabe
— dbac — bdac — bdca — dbca — deba — dcab — cdab — cdba
— ¢bda — beda — bead — cbad — cabd — cadb — acdb — acbd.

The method can be extended in a natural way to arbitrary values of k. For
each positive integer k it is possible to generate the k! different permutations
of length k by using only k! — 1 swaps. After trying all permutations the best
one is reconstructed. For this, only k(k — 1)/2 additional variable swaps are
required.

In each case, the size of the resulting OBDD is never greater than the size of
the initial OBDD. If the OBDD size actually decreases the algorithm can of
course be iterated until no further improvement is achieved. Here, additional
flags for the individual windows can be useful to avoid hopeless trials. The
flag of a window is set after the optimal permutation within the window
has been determined. The flag is unset again if for one of the preceding
k — 1 windows a new permutation is determined. If during the course of the
algorithm one hits upon a window where the flag is already set, this window
does not have to be investigated again. If the flags of all windows are set,
the algorithm will not be able to achieve any further improvements.

9.2 Dynamic Reordering 159

9.2.4 The Sifting Algorithm

In 1993, R. Rudell proposed the sifting algorithm for the dynamic min-
imization of OBDDs. The basic idea of this algorithm is to overcome the
following weaknesses in the window permutation algorithm:

e Sometimes, many iterations are needed to move a variable to a position far
away from its position in the initial order.

e Optimizing the order locally within the windows often implies that the
optimization process gets stuck in a local minimum even after iterated
application of the algorithm. In fact, this local minimum may still be far
away from the global optimum.

The sifting algorithm of Rudell aims to eliminate these problems. The
method is mainly based on the application of a subroutine which looks for the
best position of a given variable without changing the positions of the other
variables. This subroutine is successively applied to all variables x1,...,z,
in the order. In detail, for the current variable z; the following two steps are
performed:

1. The variable is moved through the whole order, and the minimum of the
OBDD size in this process is recorded (see Fig. 9.10).

2. The variable is placed at the position in the order where the minimum
in the first step was observed.

Order: X[i]

Figure 9.10. Idea of the sifting algorithm

During step 1 the size of the OBDD may increase. If in the course of mov-
ing a variable the size of the OBDD strongly increases, it becomes less and
less probable that moving the variable further in this direction may pro-
duce a minimum. For this reason, the searching routine of the current vari-
able is interrupted if the size increase of the OBDD exceeds a given factor
MaxGrowth.

The pseudo code of a basic variant of the sifting algorithm is provided in
Fig. 9.11. OBDD-size(P,w) denotes the size of the (shared) OBDD P with

160 9. Optimizing the Variable Order

Sifting(Po, mo) {
/* Input: An OBDD P and a variable order mo */
/* Output: An OBDD P and a variable order 7w with
OBDD-size(P,) < OBDD-size(Py, wo) */
P = Py; m = mo;
Forallie {1,...,n} {
1.(a) /* Move variable x; through the order */
optsize = OBDD-size(P, 7);
optpos = curpos = startpos = 7 *[i];
For j = startpos — 1,...,1 (decreasing) {
curpos = j;
swapr (P, Trfj), Trj411);
If OBDD-size(P, 7) < optsize {
optsize = OBDD-size(P, 7);
optpos = j;

}
Else If OBDD-size(P, w) > MaxGrowth % optsize {
Exit(Step 1.(a));

}
1.(b) For j = curpos +1,... ,n {
curpos = j;
swapy (P, Tr[j—1], Tx[j]);
If OBDD-size(P,) < optsize {
optsize = OBDD-size(P,);
optpos = j;

}
Else If OBDD-size(P,) > MaxGrowth % optsize {
Exit(Step 1.(b));

2. /* Put variable z; at the best position found in step 1 */
If curpos > optpos {
For j = curpos —1,... ,optpos (decreasing) {
swapx (P, Tx[j], Trlj+11);

}
Else {
For j = curpos + 1, ... ,optpos {
Sﬂ)apﬂ—(P, Trlj—1]» x‘rr[j]);

Figure 9.11. Basic variant of the sifting algorithm

9.2 Dynamic Reordering 161

A OBDD size _ _
|nterrupt|0n

'

initial size

optimal position

| | | |
I I I I

k' k-1 k-2 k-3 k4 Position of x[i] in the order

Figure 9.12. Example of a change in size when moving the variable z; in the
order. The initial position of z; is k. During the searching process a new minimum
is found. If the size increase exceeds the factor MaxGrowth, then the further
movement of z; in the current direction is interrupted

respect to the variable order 7. For 1 < ¢ < n the term 7[i] denotes the index
of the variable at position 4 in the order, and 7 1[4] denotes the position of the
variable z; in the order. The algorithm uses a subroutine swap (P, z;, z;),
which swaps the variables z; and z; in the order, and adjusts the OBDD P
as well as the arrays 7| | and 7 [] accordingly.

The effectiveness of the sifting algorithm is based on the capability to move
a variable quickly over a long distance in the order. It may occur quite often
that the OBDD size first increases, and not until later drops below the initial
value (see Fig. 9.12). In particular, this property allows it to escape from a
local size minimum within the optimization space. The position at which the
current variable is placed depends only on the determined minimum, and is
independent of possibly traversed intermediate minima.

So far, the idea of sifting has turned out to be the best approach for con-
structing good variable orders in practical applications. For this reason, be-
sides algorithmic refinements, which we shall discuss in Section 9.2.5, efficient
implementations of sifting-based methods have been investigated in great de-
tail. Here, it is not the aim to improve the general asymptotic running time
behavior, but to improve the CPU times within practical applications. Con-
sideration of the following ideas has turned out to lead to substantially better
running times.

Factor MaxGrowth. An obvious implementation detail is how to make a
suitable choice of the interruption factor MazGrowth. In the original paper

162 9. Optimizing the Variable Order

of Rudell a factor MaxGrowth = 2 was proposed. However, experimental
studies have shown that the stricter factor MazGrowth = 1.2 typically leads
to a big gain in time without losing too much of the optimization quality.

Order of variable consideration. The sifting order, in which the variables
are considered successively, already has a large influence on the optimization
process. A useful heuristic consists of sorting the variables according to
decreasing occurrence frequencies first. In other words, the first variable to
be investigated is the one which occurs most frequently as label of a node,
and therefore possesses the largest optimization potential.

Moving direction. In the presented basic variant the current variable is
first moved to the top in the OBDD (i.e., decreasing in the order) and then to
the bottom. As Fig. 9.13 shows, this method may not be suited for variables
that appear right at the end of the order. For example, the second variable
from the end has to be moved twice through the whole order before the
optimal position of the variable is determined. Hence, as a typical heuristic
a variable is first moved to the nearer end.

Order: - [X[

) D

Figure 9.13. When “sifting” the second variable from the end in the order it is
favorable to move the variable to the right end of the order first

Interaction matrix. The interaction matrix is a useful tool to guarantee
high speed for the sifting algorithm. This Boolean n x n-matrix, where n
denotes the number of variables, is constructed before entering the main
sifting loop. The entry (i,7) in the matrix contains a 1 if and only if among
the functions fi,... , f, represented in the shared OBDD there is a function
fi which depends essentially on both variables z; and z;. In other words,
the entry (7,) contains a 1 if and only if there is a root in the OBDD from
which one can reach nodes with label z; as well as nodes with label z;. If two
variables z; and z; do not interact in this sense, then in particular there is no
edge which leads from a node with label z; to a node with label z;. Hence,
all necessary adjustments in the realization of a variable swap of z; and z;
are restricted to the description of the order. In the shared OBDD itself no
modifications have to be performed at all. In case of two non-interacting

9.2 Dynamic Reordering 163

variables, a variable swap can therefore be performed even in constant time,
independently of the number of nodes labeled by z; or z;.

Lower bounds. By using lower bounds like those in the discussion of exact
minimization (see Section 9.2.2), in some cases the searching step in the
sifting algorithm can be interrupted in advance. When moving the variable
x;, we check some simple lower bounds at each traversed position. This tells
us whether a further movement of z; in the current direction can — at least in
principle — still improve the minimum. If this is not the case, the movement
of z; in the current direction can be interrupted immediately.

9.2.5 Block Sifting and Symmetric Sifting

Of course, there are also problematic cases for the sifting algorithm. One
critical aspect is that the absolute position of a variable is the main opti-
mization criterion. In contrast to this, the relative positions within certain
variable sets are only indirectly taken into account.

For illustrating the related difficulties, we consider a function in two variables
a and b which have a strong attraction to each other in the following sense.
Each good variable order of the function requires that the distance between a
and b in the order is not too large. After the variable a is moved through the
order within the sifting process, it is placed near b with high probability, as
b “attracts” the variable a. If, later on, the variable b is moved through the
order, it is placed near a for analogous reasons. Nevertheless, the position
of the variable group {a, b} may be far away from a really good position for
this group. This effect of attraction is called the rubber band effect.

Variable groups in which the function is partially symmetric have this prop-
erty of mutual attraction. Indeed, often the sifting algorithm presented above
does not find the optimal position of such groups of symmetric variables.

Example 9.5. The interval function I5 2(z3, ... ,zs) yields a 1 if exactly two
of the four input bits are 1. Hence, the function

f(a:l,.. . ,.’176) = (1‘1 @1}2) . 12’2(1'3,. .. ,1’6)

is symmetric both in the variable pair {z1,z>} and in the variable set
{z1,22,%3,24}. The described rubber band effect can be well recognized
if we start from the variable order zy,...,z¢ and observe what happens if
the variable x5 is moved to the bottom of the OBDD. Figure 9.14 shows both
the initial situation and the situation where x5 is at the fourth position in
the order. Up to the level of the variable x5 in the OBDD the value of the
variable 1 has to be kept available, so the size of the OBDD increases with
the distance of the variables z; and z5 in the order. o

One solution of this problem is to unite mutually attracting variables into
a group. Then, within the sifting algorithm, instead of single variables the

164 9. Optimizing the Variable Order

x2 at the second position 2 at the fourth position

Figure 9.14. The rubber band effect

whole group is moved through the order. For the definition of the groups we
distinguish between the following two strategies:

e The groups are defined a priori by the user. Here, the user can employ his
or her knowledge of the application.

e The groups are automatically constructed during the sifting process.

The first strategy is denoted as block sifting. If a function describes a
system which consists of several modules, it may be advisable to unite the
variables of each module a priori into a block. After this definition of the
blocks, there are two different possible sifting-based reordering strategies:

1. The individual blocks are reordered by means of a sifting strategy.
2. The variables within each block are reordered by means of a sifting strat-
egy.

The term symmetric sifting refers to a sifting variant introduced by
S. Panda and F. Somenzi which realizes the second strategy. It is the aim of
this method to unite symmetric variable groups during the sifting procedure
automatically. Furthermore, variables whose behavior is similar to the be-
havior of a symmetric variable group are also united into a block. The basis
of this unification during the sifting process is constituted by the following

9.2 Dynamic Reordering 165

two statements. The first of these statements immediately follows from the
definition of partial symmetry.

Lemma 9.6. A switching function f(x1,...,x,) is partially symmetric in
x; and x; if and only if:

O

The second lemma now tells us how symmetry with respect to neighboring
variables in the OBDD can be determined effectively.

Lemma 9.7. Let P be the OBDD of a switching function f(x1,... ,z,) with
respect to the order w, and let x; and x; be neighbors in m with x; <, x;.
The function f is symmetric in x; and x; if and only if the following two
statements hold true.

1. For all subfunctions g represented by nodes with label x; we have:
(gwi)Tj = (gTi)ﬂfj‘

2. All edges which lead to a node with label z; originate in a node with
label x;.

Proof. If f is symmetric in z; and z;, then the condition of Lemma 9.6 holds
true. This property can be transferred to all subfunctions of f, in particular
to the nodes with label z;. The proof of the second property is carried out
by contradiction. We assume that there were an edge which leads to a node
with label z;, and which does not originate in a node with label z;. Then
there is a subfunction h of f with h,, = hz; which depends essentially on z;,
ie.,

(hz)z; # (har)z;-
This implies

in contradiction to the symmetry precondition.
The reverse direction can be shown analogously. m|

By using these criteria it can be efficiently checked during the sifting process
whether two variables are symmetric.

In the implementation of symmetric sifting within the CUDD package, vari-
ables are also united if the conditions in Lemma 9.7 are violated for a small
percentage of nodes and edges. Furthermore, so-called negative symmetries

166 9. Optimizing the Variable Order

are considered, too. In contrast to “conventional” symmetries which refer to
equations of the type

(fa:z)ﬁ = (fﬂ)wj;

we speak of negative symmetries if conditions of the form

are satisfied.

9.3 Quantitative Statements

In this section the optimization quality of the presented ordering strategies
is compared by means of some experimental results. For this purpose, we
consider the circuits from the ISCAS ’85 benchmark set. This set of 10 com-
binational circuits was published on the International Symposium on Circuits
and Systems (ISCAS) in 1985 and was intended to compare experimental re-
sults in the field of testing and testability of circuits. Due to their wide
distribution they have also been used in other areas. Here, we would like to
point out that benchmark sets are necessary in many fields in order to be
able to compare experimental results of different algorithms. However, one
should always keep in mind that no set of benchmarks can represent the set
of practically important function completely. Nevertheless, the ISCAS ’85 set
is suitable for our purposes to illustrate some typical effects.

The 10 circuits represent typical functionalities in the following fields of ap-
plication:

e arithmetic logical units (ALUs),
e control units,

e selector units,

e priority decoding,

e error-correcting codes.

One of the 10 circuits is a 16-bit multiplier. Due to the exponential lower
bound for multipliers proven in Section 8.2 this circuit cannot be represented
by an OBDD with reasonable memory requirements. Therefore we will re-
strict the following discussion to the 9 remaining circuits.

The circuits are given in form of net lists of gates. In the subsequent compar-
ison we would like to compare the fan-in heuristic, the window permutation
algorithm, the sifting algorithm, and the symmetric sifting algorithm. For
this reason, we consider the running times and the memory consumption in
case of a symbolic simulation. The presented running times refer to a Sun

9.3 Quantitative Statements 167

Name In | Out || Gates | Successes | Space | Time Size Time
out out
C432 36 7 160 10 0 0 | 490533 | 130.93
C499 41 32 202 10 0 0 | 840317 91.69
C880 60 26 383 10 0 0 | 776463 71.20
C1355 41 32 546 9 1 0 | 886374 | 198.09
C1908 33 25 880 10 0 0 68095 28.31
C2670 || 233 140 1193 0 9 1 - -
C3540 50 22 1669 1 9 0 | 659838 | 258.66
C5315 178 32 2307 0 9 1 - -
C7552 || 207 | 108 3512 0 9 1 - -

Figure 9.15. Experimental results for random orders

Sparc 10 workstation. If the memory requirements exceed 100 MB or the
symbolic simulation needs more than 20000 seconds, the process is inter-
rupted (memory out or time out, respectively).

As starting point, we first consider the case of a random variable order. For
each of the 9 investigated circuits, 10 random variable orders are determined.
The table in Fig. 9.15 shows the running times of the symbolic simulation
and the memory consumption of the OBDDs at the end of this process. The
first four columns contain the names of the circuits, the number of input and
output variables, and the number of gates of the circuits. Columns 5 to 7 tell
us the number of successful computations, the number of memory overflows,
and the number of time outs. In the last two columns the average number
of nodes of the resulting OBDDs and the average running times are given.
Here, the average values refer to the number of successful runs.

In particular, only for 4 of the 9 circuits did the symbolic simulation succeed
for any of the 10 random orders. The resulting numbers of nodes lie in the
range above half a million nodes with the exception of C1908.

The table in Fig. 9.16 shows the memory consumption of the resulting OBDDs
when applying different algorithms for constructing good orders. Let us recall
that different OBDD sizes for the same circuit solely go back to the fact that
the corresponding algorithms lead to different orders and hence to different
OBDD representations. The first column of the table contains the names
of the circuit, the second and the third column the number of inputs and
outputs. In the remaining columns we give the resulting OBDD sizes for the
fan-in heuristic, the window permutation algorithm with window size 3 (win-
dow3), the window permutation algorithm with window size 4 (window4), the
sifting algorithm, and the symmetric sifting algorithm. Figure 9.17 shows the
required running times in the same way.

Of course, the exact numbers of the individual methods depend on implemen-
tation details, but the presented numbers reflect the trends quite well. Our
experiments were conducted using the CUDD package, with the parameters
set according to standard parameters. For example, the dynamic reordering

168 9. Optimizing the Variable Order

Name [[In [Out

| Fan-in | Window3 | Window4 | Sift | Symm. |

C432 36 7 131178 1228 1226 1210 1210
C499 41 32 53866 39405 26541 | 26624 26624
C880 60 26 550302 14514 8388 | 10440 10440
C1355 41 32 53866 37470 26541 | 29562 29562
C1908 33 25 17758 21863 21587 6395 6395

C2670 233 140 Mem Out | Mem Out | Mem Out 4007 4007
C3540 50 22 Mem Out 471235 328242 | 23950 23950
Cbh315 || 178 32 || Mem Out | Mem Out | Mem Out 1844 1844
C7552 || 207 | 108 || Mem Out | Mem Out | Mem Out 8241 7895

Figure 9.16. OBDD sizes at the end of the symbolic simulation

algorithms are called whenever the size of an OBDD has doubled since the
last reordering step.

First, by comparing the tables in Figs. 9.15 and 9.16 it can be seen that the
presented optimization algorithms indeed substantially improve the situation
for several instances. The resulting OBDDs are often much smaller. In
general, the larger and the more complex the relevant functions are, the
more extreme this effects becomes.

The two tables in Figs. 9.16 and 9.17 tell us that the dynamic reordering
algorithms are clearly superior to the fan-in heuristic. The representations
become substantially smaller, and there fewer are circuits whose OBDD com-
putation fails because of a memory overflow. However, cases like the circuits
C1355 or C1908 also point out that dynamic reordering algorithms need much
computation time.

Furthermore, the tables tell us that the window permutation algorithm with
window size 4 typically optimizes the representation better than the algo-
rithm with window size 3. On the other hand, the time consumption is much
larger in case of window size 4.

In comparison to the other methods, the sifting algorithm as well as the
symmetric sifting variant are obviously superior. Only these methods succeed
in transforming all 9 circuits into an OBDD representation. The resulting
OBDD sizes are never more than slightly worse compared to the results of
other strategies, and particularly for large circuits, the resulting OBDDs are
much better. Although the effort required for a single application of sifting is
generally bigger than that for a single application of the window permutation
algorithm, the sifting-based symbolic simulation is much faster for the circuit
(C3540. This can be explained by the fact that during the whole time much
smaller representations are involved.

Only in one instance of the mentioned examples did the symmetric sifting
algorithm produce a better result than the sifting algorithm. This is because
the rubber band effect from Section 9.2.5 occurs in none of the circuits in an
extreme way. However, there are other real-world circuits where the influence

9.4 Outlook 169

[Name | In [Out | Fan-in | Window3 | Window4 | Sift | Symm. |
C432 36 7 10 1 2 2 2
C499 41 32 5 14 30 77 74
C880 60 26 107 11 21 40 39
C1355 41 32 11 43 100 | 338 311
C1908 33 25 5 22 66 27 26
C2670 || 233 | 140 || Mem Out | Mem Out | Mem Out 42 42
C3540 50 22 Mem Out 710 2408 | 175 175
CbH315 || 178 32 || Mem Out | Mem Out | Mem Out 17 17
C7552 || 207 | 108 || Mem Out | Mem Out | Mem Out | 105 106

Figure 9.17. Running times of the symbolic simulation

of this effect is quite strong. For this reason, the symmetric sifting algorithm
typically works more stably than the sifting algorithm.

9.4 Outlook

Although the presented techniques work effectively in many applications,
the design of good algorithms for optimizing the variable order remains an
active research area. One of the still unsolved problems in the application
of dynamic reordering originates from the fact that the presented methods,
such as the sifting algorithm, require extremely much computation time if
very large OBDDs with more than a million nodes are to be optimized. If the
achieved size reduction is the deciding factor whether or not a computation
succeeds, than the user is typically willing to accept this computation time.
However, it is possible that at the end of a rather long sifting process we
obtain the information: “Exactly 5 nodes have been gained.”

One approach for solving this problem is to develop criteria which use struc-
tural information about the OBDDs in order to restrict the sifting process to
suitable parts of the OBDD. Those parts in which no significant size reduc-
tion can be expected should not be considered. This strategy may completely
eliminate the computation time of a searching process that is doomed to fail-
ure.

A first step in this direction was recently taken by Meinel and Slobodova.
The method of block-restricted sifting picks up arguments from commu-
nication complexity that were used in the proofs of the lower bounds. These
arguments allow one to compute promising parts within the OBDD. For each
1 <4 < n the number of subfunctions sf[i] is determined which result from
fixing the first 4 — 1 variables in the order 7 to constants. The values sf[i]
can be interpreted as a function sf : {1,... ,n} = Ny which is denoted as
subfunction profile. A local minimum at a position i¢ of the subfunction
profile indicates a weak information flow between the part of the OBDD

170 9. Optimizing the Variable Order

above the i-th variable and the part below this variable. Hence, it does not
seem to be reasonable to move variables from one of these parts into another
one. The idea of block-restricted sifting is to extract sufficiently distinct local
minima in the profile sf of subfunctions. Then the sifting algorithm is called
for each sequence of variables which are located between two neighboring
minima. During the sifting process no variable is moved across the border
between different blocks, so much computation time can be gained, while the
optimization quality of block-restricted sifting is only slightly worse than the
quality of the original sifting algorithm.

9.5 References

The fan-in heuristic was proposed in the paper [MWBS88], the weight heuris-
tic in [MIY90]. The first paper describing an efficient implementation of the
variable swap is [FMK91]. The algorithm for exact minimization goes back
to [FS90], its adaption to the framework of efficient variable swaps to [ISY91].
In the same paper [ISY91], the window permutation algorithm was presented.
In 1993, Rudell proposed the sifting algorithm [Rud93], while the symmetric
variant is due to to Panda and Somenzi [PS95]. Finally, block-restricted
sifting is described in the paper [MS97].

Part III

Applications and Extensions

171

10. Analysis of Sequential Systems

Cause célébre [A sensational process].
Frangois Gayot de Pitaval (1673-1743)

The design of increasingly complex electronic systems makes it more and more
difficult to verify their correct behavior. At the same time it becomes more
and more important that the systems work correctly, as nowadays human
lives seriously depend on them, e.g., in traffic or in medicine.

The dramatic economic effects that errors in circuit design may cause is
illustrated by the example of the Intel Pentium processor from the year 1994.
In case of the Pentium implementation, a table of the SRT! divider circuit,
which has been known and used for many years was set with incorrect entries.
As a consequence, the processor — at least in some quite specific cases — did
not compute the correct results. Although Intel argued for a long time that
in practice this error would not have a serious influence on computations,
the sense of uncertainty among affected PC users caused such a great public
pressure that finally, a recall offer became unavoidable. The costs of this
recall were estimated to 475 million US dollars. The lesson drawn from this
debacle have had the effect that the field of hardware verification has become
one of the essential steps within the design process.

Of particular importance is the verification of sequential systems, as any
circuit (including combinational ones) can be modeled on the logic level by
a finite state machine. The same holds true for the mentioned SRT divider
circuit: it is nothing else but a finite state machine. In this chapter, we
treat tools for the efficient analysis and verification of sequential systems.
In particular, the paradigmatic application of the equivalence test presented
in Section 5.3 turns out to be the core problem in quite different questions.
Hence, we explain the individual techniques and their interplay in the context
of this application.

! named after the initials of the three inventors

174 10. Analysis of Sequential Systems

10.1 Formal Verification

We consider the following general verification problem:

Given: Two sequential systems: more precisely, two finite state machines
M; and M, with the same number of input and output bits which are given
by net lists of gates.

Question: Do M; and M, have the same input/output behavior, i.e., do
M; and M, produce for each input sequence the same output sequence ?

The central idea of the OBDD-based solution approach is to reduce the veri-
fication of global properties to the verification of local properties which hold
true for all states that can be reached from the initial state. For this reason,
we first consider a seemingly simpler restricted verification problem:

Given: A finite state machine M, given by a net list of gates, with a single
output A(z,e) over the output alphabet {0, 1}.

Question: Does M always produce the output value 1 for each possible
input sequence ?

The restricted verification problem can be reduced to the verification of lo-
cal properties by means of a reachability analysis. The term reachability
analysis denotes the efficient computation and compact representation of
all states which can be reached from the initial state. The characteristic
function x g of this set R C B” is a switching function and can therefore be
represented by an OBDD (see Chapter 5).

If the characteristic function x g of the reachable states has been computed,
then the restricted verification problem can be solved by checking the follow-
ing simple Boolean equation:

(xr(Z1,...,2n) = A(@1,... ,Tps€1,...,€p)) = 1.
This equation can be rewritten as:

XR(xla-'- Jmn)—i_)‘(xla--- yLn; €15 - - - 76;0) =1.

By constructing the so-called product machine, the task of solving the general
verification problem, i.e., the equivalence test for two finite state machines,
can be reduced to the restricted verification problem with respect to a single
machine.

Definition 10.1. Let M1 = (Ql; I, O, (51,)\1, ql) and M2 = (QQ, I, O, 52,
A2,q2) be two finite state machines with p input bits and m output bits. The
product machine M = (Q,1,0,6,\,qo0) of My and M is defined by

10.2 Basic Operators 175

Q=Q1 xQ2,

5((3’.173}2)36) = (61('73136),62('7“236)):

A(z1,22),€) = (M,1(71,€) = Ao j1(22,€)) .. - (A,m (71, €) = Ao (22, €)),
® g = (q1,42)-

The product machine in Fig. 10.1 simulates the behavior of M; and Ms, and
produces the output 1 whenever the outputs of M; and M, coincide.

My

input ——

I~

M,

Figure 10.1. Schematic view of a product machine

Hence, reachability analysis plays a central role in formal verification of se-
quential systems. In the next section, we first treat several operators which
turn out to be quite useful in this context. Then, in the subsequent sections,
we show how these tools can be employed for efficiently realizing OBDD-based
reachability analysis.

10.2 Basic Operators

10.2.1 Generalized Cofactors

The efficient computation of cofactors provides a key concept for performing
many operations on OBDDs. Here, Shannon’s expansion with respect to the
literals x; and T; is used to decompose a function f into f = x; fz, + ZTifz-
The literals z; and T; are quite specific functions, and the question arises of
how far cofactors can also be defined with respect to more general functions.
As it will turn out, the resulting concept is a central ingredient in the field
of image computation.

Definition 10.2. A set of switching functions {b1,... ,b.}, b; € By, is called
orthonormal, if

o Y bi=1, and

e b;-bj=0 for1<i,j<randi#j.

176 10. Analysis of Sequential Systems

Example 10.3. (1) For each variable z; the set {z;,Z;} is an orthonormal
set.

(2) For each function f € B, the set {f, f} is orthonormal. <&

For each orthonormal set {by, ... ,b.} a function f can be written in the form

F@i, o zn) =Y fil@, .., @n) i@, Tn).
i=1

Here, the coefficients f; depend on f and on {by,...,b,}. They are charac-
terized by the following result.

Theorem 10.4. Let {by,...,b.} be an orthonormal set, and let f € B,.
The decomposition

f= Z fibi
i=1
holds true if and only if all the functions f; satisfy
f-bi=fi-b; forall 1<i<r.

Proof. Firstlet f-b; = f;-b; for all 1 <i <r. Then
Dfirbhi=) fbi=f> bi=f
i=1 i=1 i=1

If, conversely, f = 37, f;b;, then

Febi= (0 fi-b;)-bi=fi-b;
j=1

due to the second basic property of orthonormal functions. |

In general, within the decomposition of Theorem 10.4 the coefficients f; are
not uniquely determined. Indeed, for an element b; of the orthonormal set
each coefficient f; with f-b; < f; < f +b; satisfies the condition f-b; = f;-b;.
This follows from

fi=f-by = fi-bij=f-bj-by=f-b;
fi=f+bi=fi-bi=(f+b;)-bi=f-bi+bi-bi=fb.

This observation can be interpreted in the way that f; has to coincide with
f at least at those positions where b; = 1. At the positions with b; = 0 the
function f; can be chosen arbitrarily. In the later discussion of image com-
putation this freedom will be used to obtain more compact representations
of the relevant functions. The next theorem implies that many properties of
usual cofactors are also valid in the more general context.

10.2 Basic Operators 177

Theorem 10.5. For an orthonormal set {bi,...,b,} and two switching
functions f =31, fibi, g =Y i, gib; we have

r

F+9=> (fi +9)bi,
i=1

f-9="> (fi-9:)bi,

i=1
f=2_fib
i=1

Proof. The proof of the first statement follows immediately from the dis-
tributive laws. The second statement follows from b; - b; = 0 for 4 # j. The
proof of the third property is based on the complete characterization of the
complement via

f?:() and f+?:15

a fact that has already been stated in the proof of Theorem 3.5.
By substituting the expressions of f and f, we obtain

=) fiby) Zf, —Z ~fi)bi =0
i=1

i=1

and

f+?:(2fzz Zfzz:Zfz+fzb—Zb_1
i=1 i=1 i=1
O

Concerning the decomposition of a function with respect to the orthonormal
set {g, g} for a g € B,, the analogy to Shannon’s decomposition of this
function suggests the notion of a generalized cofactor.

Definition 10.6. Let f,g € B,,, and let

f=9-f,+79 f5
be a decomposition of f with respect to the orthonormal set {g,g}. Then the
coefficient f, is colled positive generalized cofactor of f with respect to
g, and the coefficient fg is called negative generalized cofactor of f with
respect to g.

Lemma 10.7. Let f,g € B, with f-g =0, and let f; be a negative general-
ized cofactor with respect to g. Then

f<fE<f+y

178 10. Analysis of Sequential Systems

Proof. The equation f-g = 0 implies f = g- f7. Then the claim follows from

f=9fz < Iy
fr9=afz+9-fs+f) = fs+9 5 2 fy

10.2.2 The Constrain Operator

As already mentioned, usually generalized cofactors of a function f with re-
spect to a function g are not uniquely determined. For this reason, it is
possible to construct well-suited cofactors with respect to a given optimiza-
tion criterion. The typical criterion in our context is the OBDD size of the
cofactor.

In the previous section, we have noticed that the values of the coefficients f,
and fg in the generalized cofactor decomposition

f=9fs+3f7
are uniquely determined for the positions (z1, ... ,z,) with g(z1,... ,z,) =1
and g(x1,...,x,) = 1, respectively. However, for the positions (z1,... %)
with g(z1,...,2n) = 0, respectively g(z1, ... , ©,) = 0, there is some freedom

of choice.

The constrain operator defined below serves for the computation of compact
cofactors. We restrict to the consideration of positive cofactors, the results
can also be immediately transferred to negative cofactors. The idea of the
constrain operator is to map each minterm in the off-set of g to a minterm
in the on-set of g. This mapping is used in order to choose the values of f,
for the positions (z1,... ,z,) with g(z1,... ,2,) = 0. The mapping is based
on the following definition of the distance of two input vectors.

Definition 10.8. Let the variables x1,... ,x, be ordered in the order © ac-
cording toxj, < xj, <...<xj,. Letr =(r1,...,rp), s=(s1,...,8,) € B".
The distance ||r — s|| of r and s with respect to the order = is defined
by

lIr=sll = Irj; — 55, 2"
i=1
Definition 10.9. For f,g € B,, the constrain operator f | g is defined
by
flr) if g(r
f(

) =1,
s) if g(r) =0, g(s) =1 and ||r — s|| minimal,
0 if g=0.

(FL9)r) =

10.2 Basic Operators 179

constrain(f, g) {

/* Input: OBDDs of f,g € B, */

/* Output: An OBDD of f | g */
Let x; be the top variable in {f, g};
If (9g=1or f=0o0r f =1) Return f;
Else If (f = g) Return 1;
Else If (f =g) Return 0;
Else If (9 = 0) Return 0;
Else If (g-; = 0) Return constrain(fz7, gz7);
Else If (gz; = 0) Return constrain(fe;, g=;);
Else Return ITE(z;, constrain(fz;, g=;), constrain(fz;, gz7)):

Figure 10.2. Constrain algorithm

As at all positions (z1,...,%,) with g(x1,...,z,) = 1 the function f | g
coincides with f, we observe that f | g is a positive generalized cofactor of
f with respect to g.

Figure 10.2 contains pseudo code for computing the constrain operator. The
algorithm can be implemented efficiently by using the caching techniques
from Chapter 7. The proof that the presented algorithm computes the con-
strain operator correctly is based on the following theorem.

Theorem 10.10. Let f,g,h € B,,, and let
Fo=h-(fi)ou + 1 (o and F=h- (g, +h- (i,
Then
f=9-fy+3f5

Proof. We show that the condition in Theorem 10.4 is satisfied for the two
functions f, and fg. For f, we have

fg‘gzg‘h‘(fh)gh +9'E'(fﬁ)gi
=h-gn- (fa)gn +1- g5
Zh'gh'fh+_ﬁ'gﬁ'fﬁ

Analogously, fg -g = f -7 can be proven, and this concludes the proof. O

Theorem 10.11. The algorithm in Fig. 10.2 computes the constrain opera-
tor flg.

180 10. Analysis of Sequential Systems

Proof. The proof of the statements is carried out by means of a case distinc-
tion. To simplify the notation we assume that 7 is the natural variable order
z1 < 29 < ... < Z,. The terminal cases are

g = 1: In this case we have f | g = f in agreement with the algorithm.
f constant: We have f | g = f in agreement with the algorithm.
f =g: For all s with g(s) =1 we have f(s) = 1. This implies f | g = 1.
f =9: For all s with g(s) =1 we have f(s) = 0. This implies f | g = 0.
g = 0: The definition of the constrain operator implies f | g = 0.

The recursive cases are

9z; = 0: Let ¢ € BP be the part of the vector which contains the already fixed
variables z1, ... , £p. The task is to find the vector s with g(s) = 1 which has
minimal distance to (¢,1,n_n) = (¢1,...,¢p,1,n_n), where n_n symbolizes
the still unspecified variables.

First we remark that this vector has to be contained in the set which is
defined by (¢,0,n_n). This holds true, as the weights in the definition of
the distance decrease exponentially from the root to the sinks. Hence, each
vector in (¢,0,n_n) is nearer to the vectors in (¢,1,n_n) than any other
relevant vector.

Now we consider a vector r = (¢,1,t) in the set (¢,1,r_n). If the vector
7 = (¢,0,t) implies g(7) = 1 then s = 7. In the other case, s is the vector
in B" with g(s) = 1 which has the smallest distance from 7. This is exactly
what the algorithm computes.

gz = 0: Analogous to the case g,;, = 0.

Otherwise: In this case a recursive decomposition according to Theorem 10.10
is performed. m|

Example 10.12. An example for the application of the constrain operator
is given in Fig. 10.3. The functions f and g are f(z) = z1x3 + T(z2 @
z3) and g(x) = z1ws + T2 T3. As the algorithm exploits the property that
complemented edges allow to check the condition f = g in constant time, the
OBDDs shown include complemented edges. For h = f | g we have

h=flg=a1(for 4 92:) + 71 (far | 9a7)
=z1-(z3lq)+T1-(PLT)
=z1- (2 (231 1) + 22 - (x5 1 73)) + 71 - (z3 | 73)
=21-(X2-23+T2-0)+7T1-0
= Z12223.
The truth table of f, g, and f | g in Fig. 10.3 illustrates the minimization
idea of the constrain operator. For input vectors r € B" with g(r) = 0 the

idea is to minimize the OBDD by taking over the values f(s) from close
vectors s. <

10.2 Basic Operators 181

@ TR =7 4]

0 0 0}0j1 0
0 0 1]1/0
01 0}1/0 0
0 1 10/0
10 0|01 0
1 0 1(1/0
1 1 0(0j1 0
11 1|11 1

Figure 10.3. OBDD representations and truth table of the functions f, g and
h=flg

We would like to conclude the discussion of the constrain operator by pointing
out a difficulty. Although the OBDD of f | g usually contains fewer nodes
than the OBDD of f, there are cases where the opposite can be observed.
In particular, this effect may occur if the OBDD of g is large and depends
essentially on many variables which are not essential for f. These variables
can occur in f | g and hence cause an undesirable growth of the graphs.

In the context of cofactor computation this problem can be solved by quan-
tification and application of the restrict operator, two concepts which will be
treated in the next two sections.

10.2.3 Quantification

The Boolean existential quantifier and Boolean universal quantifier defined
below are operators which turn out to be quite essential in the context of
sequential analysis.

182 10. Analysis of Sequential Systems

Definition 10.13. For f € B,, the existential quantification with respect
to the variable x; is defined by

Joif = foi + far
The universal quantification with respect to x; is defined by

Both 3,, f and V,, f denote switching functions which no longer depend on
the variable x;. Of course, the notion of quantification originates from the
equivalences

(Fa, (@1, s Tic1, Tig1, -, Tpn) =1 <= Fp, (f(z1,...,25) = 1),
(‘v’mf)(a:l, s Li—1,Tiflye-- ,.’L’n) =1 < vz, (f(a:l, ,.’En) = 1),

where V and 3 on the right side of both equivalences denote the usual quan-
tifiers from predicate calculus.

Example 10.14. Let f(z1,z2,23) = T1 Tax3 + £1Z3 + £122. Then the two
cofactors with respect to x3 are

fzs =T1 T2 + 2172 and fzm; = 71 + 1122 = 71,
and hence,
Ao f =21 +22 and VY, f = z122.

&

If one considers 3,, f and V,, f still as functions in B, , then it can be stated:
3;, is the smallest function whose on-set is contained in the on-set of f and
which is independent of z;. V, is the largest function whose on-set contains
the on-set of f and which is independent of z;.

Lemma 10.15. For f,g € B, the following properties of quantification func-
tions can be stated:

Monotony:
f<9= 30 f < Feig and Vo, f < Va9
Commutativity:
Joi3e; f = Fo; 30 f and Vo Vo, f =V, V0, f-
Distributivity:

H-Wi(f-’_g) =3, f+3s,9 and Vwi(f'g) =Vo, f Va0

10.2 Basic Operators 183

Distributivity inequations:
o (f-9) < 3oif - 30ig and Vo, (f +9) > Vo, f +Vaig
Complementation:

3z, (7) = (Elwhf) and Vg, (7) = (v%f)

O

The proof can easily be carried out by individually checking the equations.
Due to commutativity, we can abbreviate 3;,3,, ...3;, f by 3z, 24,... . OF
for short by 3.

10.2.4 The Restrict Operator
Lemma 10.16. Let f, g, and h be switching functions with h > g. Then
9-fo=9fn-

In other words: a positive generalized cofactor with respect to h is also a
positive generalized cofactor with respect to g.

Proof. A positive generalized cofactor of f with respect to g has to coincide
with f at all positions z with g(z) = 1. This coincidence also applies to f,
as g(z) = 1 implies h(z) = 1. O

In particular, the lemma can be applied to the constrain operator from Sec-
tion 10.2.2 and to h = 3,,¢. In this way, the variables of g which do not occur
in f and which may cause an undesirable growth in size during the computa-
tion of the constrain operator can be eliminated by existential quantification
before the computation of f | g. If h denotes the result of this quantification,
then f | h is also a cofactor of f with respect to g.

As a consequence, quantification can be integrated into the computation of
the constrain operator. The operator computed by this modified algorithm
is called the restrict operator and is denoted by f | g. Whenever the
top variable z; in g has a smaller index than the top variable in f, then the
function returns the result

I (3e.9)-

The algorithm for computing the restrict operator is shown in Fig. 10.4. It
originates from the constrain algorithm in Fig. 10.2 by the incorporation of
the existential quantification.

In particular in the cases of cofactor computations where the OBDD is large
and depends on many variables, the restrict operator is superior to the con-
strain operator: typically, the generated OBDDs are significantly more com-
pact.

184 10. Analysis of Sequential Systems

restrict(f, g) {
/* Input: OBDDs of f,g € B, */
/* Output: An OBDD of f | g */
Let z; be the top variable {f, g};
If (g=1or f=0o0r f =1) Return f;
Else If (f = g) Return 1;
Else If (f = g) Return 0;
Else If (9 = 0) Return 0;
Else If (g; = 0) Return restrict(fz7, gz7);
Else If (gz; = 0) Return restrict(fz;, go;);

i

Else If (z; is not the top variable in f) {
Return restrict(f, ITE(gz;, 1, gz7));

}
Else Return ITE(z;, restrict(fz;, gz), restrict(fzr, gz7));

Figure 10.4. Restrict algorithm

10.3 Reachability Analysis

Definition 10.17. Let M = (Q,1,0,0,\,qo) be a finite state machine. A
state s € B™ is said to be reachable in exactly k steps from the state
r if there is an input sequence eg, ... ,ex—1 and a state sequence Sg, ... , Sk
such that so =T, sy = s and

8(si, i) = i1, 0<i<k.

s is said to be reachable from the state r if there is an integer k > 0 such
that s is reachable from r in exactly k steps.

The term reachability analysis of a finite state machine M denotes the com-
putation and efficient representation of all states which are reachable from
the initial state. In our context, the relevant state sets are represented in
terms of OBDDs of their characteristic function.

For a finite state machine M with p input bits, n state bits and next-state
function § : B"*? — B", let x;(21,...,2,) : B* — B denote the characteris-
tic function of all states which are reachable in at most j steps.

Definition 10.18. Let f : B* — B™. The image Im(f) of the function f
is defined by

Im(f) = {v € B™ : there ezists some x € B" with f(z) = v}.
For o subset C' of B" the image of f with respect to C is defined by

Im(f,C) = {v € B™ : there exists some x € C with f(z) = v}.

10.3 Reachability Analysis 185

traverse(d, qo) {
/* Input: Next-state function 4, initial set So */
/* Output: Set of reachable states */
Reached = From = So;
Do {
To = Im(4, From);
New = To \ Reached;
From = New;
Reached = Reached U New;
} While (New # 0);
Return Reached;

Figure 10.5. Basic algorithm for reachability analysis based on breadth-first
traversal

The basic structure of the algorithm for computing the set Reached of reach-
able states in M is shown in Fig. 10.5. The algorithm is based on breadth-
first-traversal. First, the set To of all successor states of the initial set Sy is
computed. In order to keep all the OBDDs occurring during the image op-
eration small, the subset New C To is computed which filters all states that
are already contained in the starting set. The set From, which is the starting
point of the next image computation, is set to New, and the set Reached of
all previously computed states is updated. Then the next iteration begins.

The iteration can be stopped if during one step no new states are added. The
set union and the construction of the set difference are performed by means
of the corresponding Boolean operations on the OBDDs of the characteristic
functions. The number of totally performed iterations corresponds to the
sequential depth of the finite state machine. This term denotes the smallest
integer £ > 0 such that each state is reachable from the initial state in at
most k steps.

The computation of the image operator is a rather costly operation, we will
explain algorithms for performing this operation in the next section. Indepen-
dently of the choice of a particular algorithm, it is reasonable and necessary
during the computation of Im(§, From) to keep the OBDD of the input set
From as simple as possible. For this reason, we have demanded From = New
during the traversal, i.e., exactly the newly computed states constitute the
starting point of the new computation.

Obviously, instead of From = New, any other set From with the property
New C From C ReachedU New

can also be used. According to Lemma 10.7, each generalized cofactor
(New)m satisfies this property:

186 10. Analysis of Sequential Systems

New C (New)m C ReachedU New.

Hence, it is wiser not to set From = New, but to use the restrict operator from
Section 10.2.4 to compute a suitable From. Namely, this operator computes
a generalized cofactor whose OBDD size is rather small. For this reason, we
choose as starting point for the new computation:

From = New || Reached.

Here, we remark again that in an explicit representation of the states each
state has to be touched explicitly. By contrast, in an implicit representa-
tion by means of the characteristic function, the image can be computed by
performing a single operator, the image operator. Hence, one also speaks of
symbolic breadth-first traversal. Here, the difficulty in handling large
numbers of states is again shifted to the size of the employed OBDD repre-
sentation.

However, the image operator constitutes a far more complex operation than
all the operations introduced earlier. Hence, in the next section, we shall
be intensively concerned with good algorithms for computing this important
operator. But here we would already like to mention that the algorithms
for dynamic reordering presented in Chapter 9 are of central importance in
sequential analysis. Although heuristic methods are able to construct good
orders for the first steps of an iteration process within reachability analysis,
the dynamic behavior of the iteration process cannot be captured. Instead,
dynamic reordering algorithms allow the order to be adapted to the varying
state sets continuously. In the presence of dynamic reordering, a large fraction
of the running time is put into the construction of good orders. However,
this time is invested well, as this may be the factor deciding whether or not
a computation succeeds.

10.4 Efficient Image Computation

The central operation for reachability analysis is the image computation
with respect to a subset C. In general, computing the image operator is sub-
stantially more complex than, say, computing binary operations. If during
the performance of an image computation the variable order is kept constant,
then, of course, the OBDD size of the image is independent of the algorithm
used for this computation. However, for all known algorithms of image com-
putation, the effect illustrated in Fig. 10.6 may occur. Although the initial set
C and the image Im(f, C') are of acceptable size, the sizes of the intermediate
results during the computation explode. Hence, good algorithms for image
computation aim primarily at keeping possible intermediate results small.

10.4 Efficient Image Computation 187

A OBDD size

Start of computation End of computation

Time

Figure 10.6. Explosion of memory consumption during image computation

In the following, all sets will be represented in terms of their characteristic
function. Then, in case of restricted image computation the problem to be
solved can be stated in the following way:

Given: Two OBDDs of the switching function f(z1,...,%,) and the char-
acteristic function x¢ of a subset C' C {0,1}™.

Wanted: The OBDD of the characteristic function of Im(f, C).

Typically, we express the characteristic function of Im(f,C) in the variables
Y- Ym-

10.4.1 Input Splitting

Let f : B® — B™. One of the possible methods for computing the unre-
stricted image Im(f) is called input splitting. It is based on the observation
that the image computation can be decomposed with respect to to the input
variables,

Im(f) = Im(f)e; + Im(f)a-

We assume that the characteristic function of the image set is expressed in

the variables y1,... ,ym- A function f = (f1,..., fm) which is constant in
all components, i.e., f; € {0,1}, constitutes a terminal case:
Im(f) :y{l ceeydm,

The efficiency of this approach can be improved by exploiting heuristics and
sharper stopping criteria.

188 10. Analysis of Sequential Systems

Decomposition in the direction of disjunct carrier. Let f = (f1, f2) :
B" — B?, where f; and f» depend on disjunct variable sets. Then

Im(f) = Im(f1) x Im(f2).

Of course, this statement can be generalized to functions f = (f1,..., fm)
which can be divided into blocks with disjoint variable sets. The choice of
decomposition variables in the recursive partition is performed with the aim
of obtaining blocks with disjoint carrier sets as soon as possible.

Identical and complementary components. Let f = (f1, f2) : B” — B2
be a non-constant function with f; = f or fi = fo. Then we have

Im(f) =y1 =y> or Im(f) =y1 @ yo.

This statement can also be generalized to functions f = (f1,...,fm). A
criterion for the choice of decomposition variables is to aim at reducing the
problem to a problem with identical or complementary components as soon
as possible. Namely, the latter ones can be deleted but one, and it remains
to solve a simplified problem. Later on, the deleted components are added
again by using terms of the form y; = y; or y; ® y;.

Identical subproblems. As in the case of computing binary operations, a
computed table with the results of already solved subproblems is constructed.

Example 10.19. Let f = (f1, f2, f3) be defined by

)
fi = z1(x2 + 23),
fa = @ (w1 + 3),
f3 = z3(z1 + z2).

The positive cofactors (f;)z, are
(f1)z, = T2 + 23, (f2)z, = T2, (f3)z1 = 3.

These functions do not form terminal cases yet. Another decomposition with
respect to xo yields

(f1)z12s =1, (f2)z1zs = 1, (f3)z12;, = T3-

This implies Im(f),z, = y1¥2- The negative cofactors with respect to z, are
(fez =23, (awm =0, (f3)eiz = T3

This implies Im(f);,z5 = (y1ys + 1 ¥3)¥z2, and hence

Im(f)e, = v1y2 + ¥192Y3 + Y1 U2 U3
=Y1Y2 + y1y3 + Y1 Y2 Ys-

10.4 Efficient Image Computation 189

Within the computation of Im(f)z; we obtain

(f1)ar =0, (f2)zr = (f3)zr = T273.
Eliminating the identical subproblem immediately results in

Im(f)zr = ¥i(y2y3 + 2 ¥3)-

Finally, the disjunction of the two partial results yields

Im(f) = Im(f)s, + Im(f)zr

= Y1Y2 + Y1Y3 + Y293 + Y1 Y2 Us-
O

For the computation of a restricted image Im(f, C') with respect to a subset
C C B" the constrain operator can be employed once more. By using this
operator, the function f can be modified to a function f’ such that the
computation of Im(f, C) is transformed to an unrestricted image computation

Im(f').

Lemma 10.20. Let f : B® — B™, and let x¢c € B, be the characteristic
function of a set C C B". Then we have

Im(f,C) = Im(f | xc) = Im(f1 | xc;--- s fa 4 XxC)-

Proof. As for C' = () the claim is obviously satisfied, we can assume that
C # 0. Each z € C satisfies (f | xc)(z) = f(x). This implies Im(f,C) C
Im(f | x¢)- On the other hand, for each = ¢ C there exists an s € C' with

(fixo) (@) = (i dxo@),. ., fm d xc(2)) (10.1)
= (fidxc(s),---, fm L xc(s)) (10.2)
= (fixc)(s)
= f(s)-

Hence, Im(f | x¢) C Im(f,C). Note that for functions f with several
outputs, the step from (10.1) to (10.2) only holds because the coordinate
shift of the constrain operator f | g merely depends on g. |

Each operator o which satisfies the property Im(f, C) = Im(f o x¢) is called
an image restrictor.

The effect of an image restrictor is illustrated in Fig. 10.7. Due to the modi-
fication of the function, z is not mapped to f(z), but to f'(z) € Im(f, C).

In contrast to the constrain operator |, the restrict operator f | g is not
an image restrictor, because the coordinate shift of the restrict operator also
depends on the function f itself.

190 10. Analysis of Sequential Systems

Im(f,C)

BN \ B™M

f(x)
f(x)

Im(f,B")

Figure 10.7. Effect of an image restrictor

10.4.2 Output Splitting

During image computation a function can be decomposed not only with re-
spect to the input variables z1, ... ,z,, but also with respect to the output
variables y1,...,Ym:

Im(f) =Y; Im((fla . in—la'afi—i-l;' .. 7fm):0n(fi)) (103)
+ Elm((fla in—l:':fi-i-l;"' me)50n(ﬁ))’

a method which is denoted as output splitting. Here, the dot serves to
symbolize the currently missing i-th component. By decomposing according
to (10.3), the image of f is divided into the elements with f; = 1 and into
the elements with f; = 0. In this way, an unrestricted image computation is
converted into the computation of two restricted images Im(f, C) of smaller
dimension. By using the constrain operator and the technique presented in
the previous section, these images can be transformed to the computation of
unrestricted images again.

A terminal case is reached whenever the problem has been reduced to a single
component f;. If f; is not constant, then Im(f;) = 1. In the case f; = 1 we
have Im(f;) = y;, and in the case f; = 0 we have Im(f;) = ;. Furthermore, to
improve the efficiency of output splitting the same techniques can be applied
as in the case of input splitting.

Example 10.21. Let f = (f1, f2, f3) be the function from Example 10.19,

fi = zi(x2 + x3), fo = m2(x1 + 23), fs = z3(x1 + 22).

10.4 Efficient Image Computation 191

The initial decomposition is

m(f1, f2, f3) = y1 - Im((-, fa, f3),0n(f1)) + 71 - Im((-, f2, f3), on(f1))
=y -Im((, f2 4 fi, fs 4 1) + 91 - Im((, fo 4 f1, f3 4 1))

For £ = £, | fi and £V = f5 | fi a computation yields f{"” = 73 and
f?fl) = 25T3 + T3. Hence,

Im(': 5 ~L f(l)) (7'7$3) =]-7
Im (*Lf(l)) (7'71)=y37

and

m((, fo, f3),00(f1)) = g2 - Im(£V L £9) + 72 - Im(-, - £ 4 £59)
= Y2 +Y2y3s = Y2 + y3.

Due to fo | E = fs | fi = Tiwoxs during the computation of
m((-, f2, f3),on(f1)), identical subproblems are recognized. This results
in

m((-, fa, f3),on(f1)) = y2y3 + ¥2 Vs
Finally, the total result can be determined by applying a disjunction:

m(f1, fo, f3) = y1 - Im((-, fa, f3),0n(f1)) + 71 - Im((-, f2, f3), on(ﬁ))
=y1(y2 +y3) + U1 (y2y3 + V2 U3)
=y1y2 +y1y3 + Y293 + Y1 Y2 Js-

Of course, the result coincides with that in Example 10.19. <

10.4.3 The Transition Relation

The methods of input and output splitting are based on deducing the image
directly from the functional description of the function f = (f1,..., fm)-
Another approach starts by representing the transition behavior of the finite
state machine M in terms of the characteristic function of a suitable relation.
This relation describes all state pairs which are connected by an edge in the
state diagram of M.

Definition 10.22. Let M = (Q,I,0,0d, A, qo) be a finite state machine with
n state bits and p input bits. The transition relation Ty, : B?"tP — B® of
M is defined by

192 10. Analysis of Sequential Systems

TM(may7e) = TM($1,... yTnsY1y--+ yYns€1, - - 7ep)
n
=[[i =di(z,e).
i=1
The variables ©1,... ,T, are called present-state variables and the vari-
ables y1,. .. ,yn are called next-state variables.

Theorem 10.23. Let M = (Q,I,0,0,),qo0) be a finite state machine with
n state bits and p input bits, and let C C B™. The set C' of all states which
can be reached from C' in one step satisfies

xcr(y) = Elzh.--,znzleh..-,ep (Tm(z,y,e) - xo(x)) - (10.4)

Proof. For a triple (z,y,e) € B*"t?, we have Ty (z,y,e) = 1 if and only if
in M the state x is the successor state of y for the input e. Consequently, a
vector y € B" is contained in the set described by (10.4) if and only if there
exists a vector x € C, from which the state y can be reached for some input
ecBP. O

The next-state function § of a finite state machine M is a function B*+P —
B™. In order to be able to transfer the notation from the previous section
with regard to image computation, we combine the inputs and the current
states and consider again a function

f:B* » B™

(where the symbol n now denotes the number of input and state bits, and
m denotes the number of state bits). The transition relation T (z,y) which
corresponds to the function f is an element of the set B,4,,. According to
Theorem 10.23, this implies

Im(f,C) = Jas.... 2. (Tr(z,9) - x0(2)) - (10.5)

In the framework of this image computation based on the transition
relation, we investigate, first, how far generalized cofactors can be used for
improving efficiency as well.

Lemma 10.24. Let h € Bypim, g € By, and 2 = (z1,...,2p), y =
(Y1,--- ,Ym). Further, let V be a positive generalized cofactor with

3z (W@, y)Vg(z)) < o (h(z,y) - 9())- (10.6)
Then

3z (h(z,y) - 9(x)) = 3o (h(z,y)Vg(x)).

10.4 Efficient Image Computation 193

Proof. According to Theorem 10.4 and Definition 10.6, the function AVg is
a positive generalized cofactor of h with respect to g if and only if (hVg) -
g = h-g. This implies (h-g) < hVyg, and, due to monotony of existential
quantification,

3o (h(z,y) - 9(x)) < 3o (h(z,y)Vg(z)).
It remains to prove the reverse inequation. However, this reverse inequation

is exactly the statement (10.6) in the precondition. O

The question whether the constrain operator and the restrict operator satisfy
property (10.6) can be answered positively. First we prove the statement for
the constrain operator.

Theorem 10.25. Let h € By, g € By, and z = (x1,...,2,), y =
(Y1,--- ,Ym).- Then

o (M=,y) - 9(z)) = Fo(M(=,y) | 9(2)).
Proof. W.l.o.g.let h #0, and let z € B,, y € B,,,. Then, by definition of the
constrain operator, we have
h(z,y) | g(z) = h(s1, s2)

for some s1 € B",s2 € B™ with g(s1) = 1 and ||(z,y) — (s1, $2)|| minimal.
As the chosen s, s2 only depend on g and not on h, the minimality of the
distance implies s, = y. By using this intermediate result we can now prove
condition (10.6) of Lemma 10.24.

Let y € B™ which satisfies the statement 3,(h(z,y) | g(z)). Due to the
above intermediate results there is an s € B"® with

h(s,y) - g(s) = 1.
This fact says nothing else but
as(h(say) : g(s)) =1
which proves condition (10.6). O

The next lemma and the next theorem show that the restrict operator can
also be used for simplifying the image computation based on the transition
relation.

Lemma 10.26. Let h € By, g € B, and r € B, s € B™. Further let
g € B, such that

hig=hlg.
If g(r) > g(r), then there exists some b € B™ with
gb)=gb)=1 and h(r,s) = h(b,s).

194 10. Analysis of Sequential Systems

Proof. As § originates from g by existential quantification of some cofactors,
the property g(r) > g(r) implies that on the computation path of r a subset
of the variables is quantified out. Let this subset be J = {z,,...,z;,}. h
and ¢ do not depend on the variables in J. For h, this holds true because a
quantification is only performed if the present cofactor of A does not depend
on the present top variable in the order. For g this holds true due to the
quantifications performed.

Furthermore, there exists some input z with z; = r; for all z; € J such that
g(z) = 1. Otherwise, we would have §(r) = g(r) = 0 in contradiction to the
precondition. As h does not depend on the variables J, there is some b € B"
with h(b,s) = h(r,s) and g(b) = 1. O

Theorem 10.27. Let h € Byqpn, g € By, and z = (x1,...,2,), ¥y =
(y1,--- ,ym)- Then

3z (h(z,y) - g(x)) = 3z (h(=z,y) U g(z))-

Proof. As in the proof of Theorem 10.25, we show that condition (10.6) of
Lemma 10.24 is satisfied. Let g be the function which satisfies (h | g)(z,y) =
(h 1 9)(z,y)-

Let y € B™ such that the statement 3,(h(z,y) | g(z)) holds true. Then
there is some s € B" with

his,) - 3(s) = 1.
If g(s) =1 then
h(s,y)-g(s)=1-1=1. (10.7)

If g(s) = 0 then by Lemma 10.26 there is some b € B" with §(b) = g(b) =1
and h(b,y) = h(s,y) = 1. Hence,

h(b,y)-g(b)=1-1=1. (10.8)

The two statements (10.7) and (10.8) immediately imply condition (10.6).
O

An advantage of the constrain operator is the property of distributivity which
is proven in the next lemma.

Lemma 10.28. Let he B, f:B" - B™, g€ B,,. Then

h(f(x)) 4 g(x) = h((f | 9)(2)).

10.4 Efficient Image Computation 195

Proof. Let © = (x1,...,,), and according to the definition of the constrain
operator

h(f(x)) 4 9(z) = h(f(s))

for some s € B™ with g(s) = 1. As the chosen s only depends on g and not
on h or f, the same s satisfies

h((f 4 9)(x)) = h(f(s))-

O

For the choice h = x1-x2 and f = (f1, f2), Lemma 10.28 implies a distributive
law with respect to conjunction and the constrain operator,

(fi- f2)(2) L g(x) = (fr L 9)(2) - (f2 d 9)(2) -

Hence, in computations based on the transition relation the constrain oper-
ator can be applied to each factor in the transition relation,

(T T—

i=1
m
i=1
This property of distributivity does not hold true for the restrict operator.

10.4.4 Partitioning the Transition Relation

The main problem in image computation based on transition relations is to
construct the OBDD of the transition relation according to Definition 10.22 or
Equation (10.5). Even if the OBDDs of the individual functions f; are small,
the OBDD of the transition relation may become very large. In particular,
this holds true if each of the functions f; only depends on few variables, but
the union of all these variables is large. Due to quantification the current-
state variables are removed within the process of image computation, and
the OBDD becomes substantially smaller during this process.

A strategy for avoiding these peak values of memory consumption is based
on the following observation, which follows immediately from the definition
of the Boolean existential quantifier.

Lemma 10.29. Let f € B, be a function in the variables x1,... 2y,
Yis--- sYUm, and let g € Byin_ir1 be a function in the variables x;,. .. , Ty,
Y1ye-- s Yms 1 <1< n. Then

azl,...,z" (f . g) = awi,...,z" (azl,...,zi_l(f) 9) .

196 10. Analysis of Sequential Systems

The lemma suggests partitioning the transition relation into several blocks.
Then image computation can be performed successively, where after each
multiplication possibly some of the variables can be quantified early and
hence removed.

In the following, let f : B® — B™. Further, let P,..., P, be a partition of

the set {1,...,m} which reflects a partition of the components fi,... , fm
of f. The sets Py,..., P, induce a decomposition of the transition relation
into factors 11, ... , T according to

Ti(z,y) = [[Wi =filw), 1<i<q
i€eP;

Obviously, the transition relation Ty of f can be expressed by

q

i=1

Let 7 = 7(1),... ,m(q) be an arrangement of the partition sets {P, ..., P;}.
By V; we denote the set of variables which are essential for at least one of
functions in P;. Further, let W; denote the set

q
Wi = V) — U Vri)s 1<i<gq.
j=it1
W; contains all variables in V. (;; which are not essential for any of the func-
tions in P7r(j) with j > 4.
By using these notations, the iterative computation of the set Im(f,C) by
early quantification can be stated explicitly.

Xo(z,y) = xo(),
Xl(may) = E]wi:iEW1 (Tﬁ(l)(way) : Xo(may))a
X2(%,Y) = Jpsicw, (Tn(2)($,y) “x1(z,9)),

Xq(xay) = Elzi:iEWq (T,r(q)(x,y) : qul(xay))-

Finally, as in the set x,(z,y) all variables z1,... ,z, have been quantified,
we have x,(z,y) = x,(y) = Im(5, C).

The choice of the partition P, ... , Py and the order 7 in which the partition
is processed have a big influence on the efficiency of image computation. As
in the case of variable ordering, the computation of an optimal partitioning
is not practical. Instead, there are some quite effective heuristics.

10.5 References 197

To determine the individual blocks T}, one typically uses either a priori knowl-
edge about the investigated circuit or a greedy strategy. In the greedy strat-
egy, factors are added to a partial product until a given OBDD size is ex-
ceeded. Then a new block is introduced.

One of the most frequently used heuristics for ordering the partition sets
goes back to Geist and Beer. Here, the idea is to make as many variables as
possible ready for quantification in order to keep the OBDD size small during
the whole iterative image computation. In the heuristic, 7(1),7(2),... are
determined successively. A variable x; within this determination process is
called unique with respect to the partition P; if from the remaining partitions
only P; depends on z;. The block with the largest number of unique variables
is put at the beginning of the order. In case of a tie among several blocks
we choose the block containing a maximal number of variables which do
not occur in other blocks. Then the procedure is applied recursively to the
remaining blocks until the order 7 is completely determined.

In practical use, the image computation based on a transition relation is su-
perior to the two methods of input and output splitting. This fact mainly
originates from two aspects. From the practical point of view, the opti-
mization potential of building blocks and quantification can be realized quite
effectively for the method based on a transition relation. From the theoretical
point of view we have: the two splitting methods in principle perform an ex-
ponential number of decompositions, and the acceleration is solely based on
implementation techniques like the use of a computed table. In the method
based on a transition relation only a linear number of relatively well under-
stood operations on OBDDs is necessary.

10.5 References

The analysis of sequential systems using symbolic OBDD techniques was
established primarily by Coudert, Berthet, and Madre [CBM89] as well as by
Burch, Clarke, Long, McMillan, and Dill [BCL*94]. The constrain operator
and the restrict operator also go back to Coudert, Berthet, and Madre. A
survey article on implicit set representations can be found in [CM95].

The partitioning technique for image computation based on a transition re-
lation is due to [BCL194]. The presented heuristic for the arrangement of
the partitions was proposed by Geist and Beer [GB94].

Our presentation of reachability analysis follows the one in [Som96a].

198 10. Analysis of Sequential Systems

11. Symbolic Model Checking

Corriger la fortune [Take control of destiny].
Gotthold Ephraim Lessing (1729-1781)

In the verification methods presented in Chapter 10, the model of finite state
machine was the center of attention. Based on this, we now consider the
more general verification concept of model checking. This concept is not
strictly tied to the model of finite state machine, but is capable in addition
of handling logic-based specifications.

We begin with an explanation of the term: the aim of model checking is to
check whether an implementation satisfies a specification that is given by a
logic formula. By considering a formalization of a specification within a for-
mal logic, properties of a system can be described completely independent of
concrete implementation details. Examples of those properties are invariants,
liveness properties, or fairness properties.

The idea of designing algorithms for model checking that are based on OBDD
data structures has been developed independently by several research groups.
Due to the symbolic character of OBDD-based computations one also speaks
of symbolic model checking.

In this chapter, we first discuss the temporal logic CTL which provides a
suitable framework for model checking. The significance of this logic results
from two facts. On the one hand, the formulas of this logic are suited quite
well for specifying important properties of sequential systems. On the other
hand, manipulations within this logic can be performed quite well in terms
of OBDDs. Subsequent to this, in Section 11.2, we explain in detail how
model checking can be realized efficiently by means of OBDD-based methods.
This realization relies strongly on the fundamental techniques presented in
Chapter 10. In Section 11.3, we describe some existing model checkers.

11.1 Computation Tree Logic

As sequential systems capture time-variant behavior, it is not possible to
describe their properties completely in the framework of conventional propo-

200 11. Symbolic Model Checking

sitional formulas. In a temporal logic, modal operators are additionally
provided which can be used to express time-variant dependencies.

In particular, with regard to modeling time, two different types of temporal
logics can be distinguished. In a linear time temporal logic, time is
imagined as a factor which proceeds in a fixed direction in a linear manner,
and which can be quantified by means of the real or the natural numbers. If
the behavior of finite state machines were described in a linear time temporal
logic, the operators could always refer to only a single sequence of states. In
a branching time temporal logic, time is imagined to branch and proceed
like a tree as shown in Fig. 11.1. Here, the branching points correspond to
events which take place at measurable discrete points in time. The past of
each event is uniquely determined, but the future is not. This corresponds
exactly to the dynamic behavior of finite state machines. At each time the
already traversed sequence of states is uniquely determined. As the future
input values are not already determined, there are several alternatives for
each step in the future.

@ =0

Figure 11.1. Illustration of the model of branching time. The time ¢; is reached
before the times t2 and ¢3. But the times ¢ and t3 are not in any temporal relation

Computation tree logic (CTL) is a temporal logic which is based on the
model of branching time. The formulas of the logic describe properties of
computation paths. Here, a computation path is an infinite sequence of
states which is traversed during the computation.

In addition to the logic connections AND, OR, and NOT, the logic CTL has the
following four operators which can be used to express temporal relations: the
next-time operator X, the global operator G, the future operator F,
and the until operator U. In a first stage, these operators are defined for a
fixed computation path P and have the following meaning there:

Next-time operator X f: In the next step on the computation path P,
the formula f holds true.

Global operator G f: f is valid globally in all states on the computation
path P.

11.1 Computation Tree Logic 201

Future operator F f: f holds true eventually on the computation path
pP.

Until operator f U g: There is some state s on the computation path P
in which g is valid, and f holds true in all states preceding s.

In general, more than one computation path starts in a given state. For this
reason, each operator in CTL is preceded by a path quantifier. There are
two path quantifiers: the universal path quantifier A and the existential path
quantifier E.

Universal path quantifier A: The property holds true on all computa-
tion paths which start in the current state.

Existential path quantifier E: There is at least one computation path
starting in the current state on which the property holds true.

As each of the temporal operators is preceded by a path quantifier, the truth
value of a formula only depends on the present state and not on a specific
computation path P.

Example 11.1. Consider the sequences of states in Fig. 11.2. If a state
is labeled by a formula f, this tells us that in this state the formula f is
valid. In the left representation the following statement for the distinguished
state go holds true: on each computation path starting in gg the formula f is
eventually valid. As a consequence, the temporal formula AF f holds true
in state qq.

o ® @

AF f holds in the marked state EG f holds in the marked state

Figure 11.2. Path quantifiers

In the right representation there is a computation path starting in ¢o on
which the formula f is globally valid. Hence, EG f holds true. <o

Indeed, already the operators EX, E(U) and EG suffice to describe the
whole logic, as all other operators can be deduced from these three.

202 11. Symbolic Model Checking

Lemma 11.2. The following relations hold true:

EF g = E(TRUE U g),
AX f=-EX (=f),
AG f = —EF (-f),
A(f U g)=~(E(~g U~fA-g) vV EG —g), (11.1)
AF g = A(TRUE U g), (11.2)

where — denotes the negation of a formula.

By using Property (11.1), the Property (11.2) can also be reduced to the
three operators.

Proof. Exemplarily, we prove Property (11.1). The opposite of the statement
A(f U g) is: there is a computation path on which g never holds true,
(EG —g), or there is a computation path on which in some state ¢ neither
f nor g is valid and in no state preceding g the formula g is valid. This is
exactly Equation (11.1). O

Example 11.3. In this example, some typical CTL formulas are collected
which are useful for proving the correctness of sequential systems.

AG (req — AF ack): Each request is eventually acknowledged.

AG —(f AND g): This formula guarantees mutual exclusion. The properties
f and g are never satisfied simultaneously.

AG (req — A (req U ack)): Each request is stored until an acknowledg-
ment takes place.

AG EF ¢g: At each time, there is a suitable sequence of states which allows
a return to the initial state. Such a property serves to verify that the system
can never deadlock, where deadlock means that the system stops working due
to a waiting state which cannot be cleared. <

11.2 CTL Model Checking

Since the mid-1980s, decision procedures have been known which can be
used to check whether a CTL formula is valid for a given sequential system.
The particular importance of CTL among the temporal logics stems from
the fact the decision procedures for CTL can be efficiently performed in the
complexity theoretical sense.

In the original methods the state space was traversed enumeratively using
depth first search. With the advance of OBDD technology, symbolic breadth
first traversal as described in Chapter 10 could be employed in the framework

11.2 CTL Model Checking 203

of model checking. The basic strategy in model checking is based on comput-
ing state sets with certain temporal logical properties. We now explain an
OBDD-based procedure which decides whether a given formula f is satisfied
in a state s of a sequential system.

Let the transition relation of the system be denoted by T and represented by
an OBDD: T'(sg,s1) is 1 if and only if sq is a successor state of so. The fact
that we do not consider the input in the transition relation expresses that
the formula under investigation should hold true independently of the input.
Hence, formally, the transition relation 7" originates from Definition 10.22 by
existential quantification over all primary inputs.

The algorithm is based on a function Check with the following specification:

Input: The transition relation T of a sequential system and a CTL for-
mula f.

Output: The set of states of the sequential system which satisfy the for-
mula f.

Of course, the representation of the state set is carried out in terms of OBDDs
again.

The function Check is defined inductively over the structure of the CTL
formulas. According to Lemma 11.2, only three CTL operators have to be
considered. The inductive steps on the CTL formulas EX f, E(f U g), and
EG f are computed by means of the auxiliary functions CheckEX, CheckEU,
CheckEG:

Check(EX f,T) = CheckEX(Check(f),T),
Check(E(f U g),T) = CheckEU(Check(f), Check(g),T),
Check(EG f,T) = CheckEG(Check(f),T).

Note that the arguments of the auxiliary procedures CheckEX, CheckEU,
and CheckEG are propositional formulas, whereas as argument of Check
more general CTL formulas are possible. If the argument of Check is a time-
independent propositional formula, then the occurring Boolean operators are
treated as in case of a symbolic simulation.

The formula EX f is true in a state z if and only if there exists a successor
state of x which satisfies f. In Boolean notation this can be expressed by

CheckEX(f, T)(x) = 351 (T(x, s1) - CheckEX(f,T)(s1)) -

Of course, in the symbolic set representation in terms of OBDDs, all states
with this property are processed simultaneously.

The definition of CheckEX has the same structure as image computation
based on a transition relation, but there is one essential difference. In image
computation, all states are determined which can be reached from a state

204 11. Symbolic Model Checking

so in one step, but here, all those states are computed starting in which
one can enter the state s;. Hence, an inverse image computation, also
called a backward step, has to be performed. However, the techniques for
efficient image computation from Chapter 10 can be adapted to inverse image
computation.

The formula E(f U g) means that on a computation path there exists a state
z with the property g, and f is true in all states preceding z. Recursively,
this fact can be expressed as follows:

e g is true in the current state, or

e f is true, and furthermore, there is a successor state in which E(f U g) is
satisfied.

This relation can be realized by means of a fixed point computation analo-
gously to reachability analysis:

CheCkEUo(f, 9, T)(.’E) = g(.Z’),
CheckEU;41(f, g, T)(xz) = CheckEU;(f, g,T)(z) +
(f(z) - CheckEX(CheckEU;(f,g,T)(x)))-

The number of states being described by CheckEU increases in a monotone
way. As the state set is finite, there has to be a k with CheckEUgy; =
CheckEUy. At this stage, the iteration can be stopped, and we have

CheckEU(f, g, T)(z) = CheckEUk(f, g, T)(x).

The formula EG f is true in a state z if and only if there is a computation
path starting in = on which f is always true. This means that f is true in the
current state and that EG f is true in one of the successor states. Hence, the
operator EG can also be expressed by means of a fixed point computation.

CheckEGo (£, T)(z) = f(x),
CheckEG;41(f, T)(z) = CheckEG;(f,T)(z) -
(f(z) - CheckEX(CheckEG;(f, T)(z))).

In this sequence of monotone decreasing state sets, there has to be a k with
CheckEGp4+1 = CheckEGy. At this stage, the iteration can be stopped, and
we have

CheckEG(f,T)(x) = CheckEGg(f, T)(x).

In this way, for a given sequential system and a formula f which has to be
verified, all states are determined in which the property f is satisfied. If f is
true in the initial state of the system, then the system satisfies the formula.
By using representations in form of OBDDs, the occurring state sets can be
represented compactly.

11.2 CTL Model Checking 205

Example 11.4. Consider a finite state machine M with two state bits, one
input bit and initial state go. Further, let the next-state function § = (d1,d2)
be given by

01((z1,22),€) = T1 Tz € + T1Tae + 122,

d2((1,22),€) = T173¢,

the initial state is go = 00. The state diagram of M is depicted in Fig. 11.3.
State 01 is not reachable from the initial state, and hence, it is not shown in
the figure.

00 1 (10) 1t 11

Figure 11.3. State diagram of a finite state machine M

Now the aim is to check whether from any reachable state the system can
always return to the initial state go. The set S of the three states can be
described in terms of the characteristic function xg,

xs(z) = xs(z1,22) = 21 + Ts.

If the characteristic function (of the one-element set) of the state go is denoted
by xo, then we have

Xo(x) =71 T3 -

Each state, from which the initial state qo is reachable, is characterized by
AF (Z1 T3). We can return from each state to the initial state if the predicate

xs(z) = AF (xo(2)) (11.3)

is a tautology.
According to Lemma 11.2 this statement can be written as

xs(z) = A(TRUE U xo(x)) o
= xs(z) > ~(E(w(®) U (FALSEA Xo())) V EG Xo(®))
(2)
(2)

x
< Xs —~(FALSE V EG xo(z))
< xs(x) = ~(EG xo(z)). (11.4)

) —
—

For the existential global operator EG a fixed point procedure is at our
disposal. The iteration for (EG xo(z)) yields

206 11. Symbolic Model Checking

CheckEGy (X0, T)(x)
CheckEG1 (X0, T) ()

o(z)
xo(z) - (xo0(z) - CheckEX(CheckEG (xa, T)(z),T))

Xo(z) - CheckEX(xo(z),T).

Il
>

The computation of the inverse image results to

CheckEX(xo0(z),T) = CheckEX(z1 + z2,T)

=71 T3 +217%2.

Hence, the iterative procedure further implies

CheckEG; (%, T)(.CL') = (.’L‘l + 1'2) . (Z'_l T2 + 1'1@)
= 2122,

CheckEG2(Xo,T)(z) = 1%z - (T1 T2) - CheckEX(CheckEG/ (X0, T)(x),T)
=0.

Therefore CheckEGs(x0,7) = CheckEGa(xo0,T) = 0, and the predicate
(EG xo(z)) is a contradiction. Another equivalence transformation of (11.4)
yields

xs(z) = —(FALSE)
<= xs(z) — TRUE.

This shows that the predicate of interest (11.3) is a tautology. Therefore
it has been formally proven that from each reachable state the system can
always return to the initial state. By using the mentioned algorithms, all
performed steps can be carried out completely automatically. <

11.3 Implementations

Based on the presented techniques, several OBDD-based model checkers have
already been implemented and employed in industrial design cycles. A par-
ticular position is played by K. McMillan’s symbolic model checker SMV,
developed at Carnegie Mellon University, which has also been used in numer-
ous other systems. The VIS system, primarily developed at the University
of California at Berkeley and the University of Colorado at Boulder, unifies
the mentioned verification techniques of finite state machines with techniques
for synthesis of VLSI circuits. More recently, commercial systems have also
become available, e.g., CVE (Circuit Verification Environment) by Siemens,
or the system RuleBase by IBM which is built on top of SMV.

In the next two sections, the pioneering systems SMV and VIS will be pre-
sented in more detail.

11.3 Implementations 207

11.3.1 The SMYV System

SMYV stands for Symbolic Model Verifier. This software system, de-
veloped by K. McMillan, has illustrated the capabilities and the power of
OBDD-based verification tools with regard to several aspects. On the one
hand, this system has served to verify pipeline-based arithmetic-logic units
with more than 10'°0 (1) states. On the other hand, the cache coherence
protocol of the IEEE (Institute of Electrical and Electronical Engineers) Fu-
turebus+ Standard 896.1-1991 has been verified by using SMV. This protocol
serves to ensure the consistency of local caches within a multiprocessor ar-
chitecture. During the verification process several previously unknown bugs
were discovered in the design of the protocol. Incidentally, this was the first
time that an automatic verification tool found bugs in an IEEE standard.

By using the OBDD-based algorithms from Section 11.2, SMV allows to
check sequential systems against specifications in the temporal logic CTL.
The input language of SMV offers the possibility to define the systems which
have to be analyzed on different abstraction levels.

To illustrate the input interface of SMV as well as its mode of operation, we
consider the small demonstration program in Fig. 11.4. The input file con-
tains both the description of the sequential system and its logic specification.
The states of the finite state machine are represented by program variables.
Here, not only binary but also multiple-valued variables are allowed. How-
ever, internally all variables are encoded in binary. In the example, the state
of the system consists of two components, request and state. The compo-
nent request can assume the two truth values TRUE or FALSE, the possible
values for the component state are ready and busy.

In the example program the initial value of the variable state is set to ready.

The successor value depends on the present state of the system. The value
of a case expression is determined by the right side of the first line which

MODULE main
VAR
request : boolean;
state : {ready,busy};
ASSIGN
init(state) := ready;
next(state) := case
state = ready & request : busy;
1 : {ready,busy};
esac;
SPEC
AG(request -> AF state = busy)

Figure 11.4. Input language of SMV

208 11. Symbolic Model Checking

matches the condition on the left side. If state has the value ready and
request is true, then the value busy is assigned to state. If this condition
is not satisfied, then state will take on one of the two values ready or
busy. This nondeterminism characterizes, e.g., the behavior as a reaction to
different inputs to the system. Furthermore, we observe that the value of the
variable request is never set explicitly in the program. Hence, this variable
corresponds to a primary input variable.

The specification of this small system demands that each request eventually

implies the value busy in the variable state. The SMV model checker verifies
whether all possible initial states satisfy this specification.

11.3.2 The VIS System

VIS (Verification Interacting with Synthesis) is an OBDD-based soft-
ware system which unifies verification, simulation and synthesis of finite state
machines. It was developed primarily at the University of California at Berke-
ley and the University of Colorado at Boulder, and was made accessible to
the public in 1996.

Figure 11.5 shows the architecture of the VIS system. There are four essential
ingredients: the front end, the verification core, the synthesis core, and the
underlying OBDD package.

VIS front end:
traversal of hierarchy

Verification: Synthesis:
@_> - model checking - state minimization H@
- reachability analysis - state encoding

- simulation - restructuring

OBDD package

Figure 11.5. Architecture of the VIS system

The front end provides routines for transforming various well-known input
formats into the internal hierarchical network description. In particular, also

11.4 References 209

high-level languages like the widespread commercial language Verilog can be
transformed into the internal format.

In order to represent the occurring switching functions, VIS employs OBDDs
as internal data structure. All accesses to the level of Boolean manipulation
are performed through uniform interfaces which correspond exactly to those
operations and functions that have been discussed in the previous chapters.
Due to the clear separation of the verification algorithms from the underlying
level of Boolean manipulation it is possible to choose the OBDD package
out of several available packages. In particular, the package of Long (see
Section 7.2.2) and the CUDD package (see Section 7.2.3) are supported.

The verification core provides the presented algorithms for reachability analy-
sis, equivalence checking, and model checking. In addition to the CTL-based
model checking, fairness constraints, which cannot be expressed in CTL, can
also be taken into account.

The synthesis core captures two aspects. On the one hand, it contains several
new algorithms for synthesis of circuits which have been specifically developed
for VIS. On the other hand, the synthesis core includes well-defined interfaces
to the software package SIS (Sequential Interactive Synthesis). This software
package, which is also based on OBDDs, was developed in Berkeley and
provides numerous tools for synthesis and optimization of sequential circuits.

11.4 References

The significance of computation tree logic for model checking was recognized
by Clarke, Emerson, and Sistla [CES86].

In the years 1989/90, several research groups simultaneously opened up the
potential of OBDD-based set representations for model checking: Coudert,
Madre, and Berthet, further Burch, Clarke, McMillan, and Dill, and as third
group Bose and Fisher. A chronicle of these achievements can be found in
[BCL*t94]. A substantial contribution in the development of symbolic model
checking is due to McMillan, the author of the OBDD-based model checker
SMV [McM93].

The VIS verification system was developed by research groups in Berkeley and
in Boulder under the direction of Brayton, Hachtel, Sangiovanni-Vincentelli,
and Somenzi [BHST96]. Descriptions of the commercial systems CVE and
RuleBase can be found in [BLPV95] and [BBEL96].

210 11. Symbolic Model Checking

12. Variants and Extensions of OBDDs

Wer nicht das Grifiere zum Groflen fiigt,
der mége nie sich seiner Ahnen rithmen.
[Those, who never join the greater

to the great one,

may never boast of their ancestors.]

August von Kotzebue (1761-1819): Oktavia

To further improve the efficiency of the data structure of OBDDs, several
variants and extensions have been proposed. For the requirements in specific
application fields, these refined models are better suited than the “classic”
OBDDs. We would like to present some particularly interesting and impor-
tant developments in this area, although the relevant research efforts have
not been completed yet. The search for more compact representations of
switching functions, which preserve the valuable properties of OBDDs, is
still ongoing.

12.1 Relaxing the Ordering Restriction

Some important functions like multiplication of binary numbers or indirect
storage access (e.g., the hidden weighted bit function in Definition 8.9) have
provably exponential-size OBDDs with respect to any variable order. The
proofs of these exponential lower bounds were given in Section 8.2. Now the
aim is to investigate how far the restriction to a fixed linear order on the
set of variables can be relaxed without weakening or even losing the good
algorithmic properties of OBDDs.

If the ordering requirement as well as the read-once property of OBDDs are
dropped completely, one immediately obtains general branching programs
as introduced in Section 4.4.2. Of course, the size of an optimal branching
program of a switching function f is less than or equal to the size of an optimal
OBDD, but in many cases, the size may be much smaller, sometimes even
exponentially smaller. However, this compactness often makes it hard or even
impossible to perform the basic tasks of Boolean manipulation efficiently. For

212 12. Variants and Extensions of OBDDs

example, in Corollary 4.33 it was shown that the test whether two branching
programs represent the same function is co-NP-complete.

The difficulty in performing the equivalence test for arbitrary branching pro-
grams is based on the fact that a variable may occur several times on a path.
In order to avoid this problem, in Section 4.4.3 read-once branching programs
were considered which test a variable at most once on each path. Indeed, in
this scenario the equivalence test can be performed at least probabilistically
in an efficient manner. However, for read-once branching programs a new dif-
ficulty arises. As proven in Theorem 4.38, performing binary operations for
read-once branching programs is NP-hard. The reason for this difficulty can
be seen in the fact that variables on different paths can occur in a different
order.

The problem of performing a Boolean operation on two arbitrary read-once
branching programs does not only emerge in this context. From Theorem 8.16
it is known that computing binary Boolean operations for two OBDDs with
different variable orders is even an NP-hard problem. Only by adding the
restriction that both OBDDs satisfy the same order does the problem become
solvable in polynomial time. For this reason, J. Gergov and Ch. Meinel
define the notion of a complete type for a read-once branching program which
generalizes the notion of “order” of OBDDs in a sense that the following two
properties are satisfied:

e With respect to a given complete type 7, read-once branching programs
form a canonical representation of switching functions.

e For two read-once branching programs which are of the same type 7, binary
operations can be performed efficiently.

As this concept yields a generalization of OBDDs, read-once branching pro-
grams are often denoted as FBDDs (free binary decision diagrams) in
this context. The term “free” indicates that due to the read-once property it
is true that whenever a variable is tested, this variable has not already been
assigned a value before.

Definition 12.1. (1) A type 7T over the set of variables {z1,... ,x,} is
defined like an OBDD, but with the following two exceptions:

1. There is only one sink.

2. There does not need to exist a common variable order for the individual
computation paths.

As in the case of OBDDs, each variable may occur at most once on each path
from the root to a sink.

(2) A type T is called complete if each variable occurs exactly once on each
path from the root to a sink.

(3) Let P be an FBDD. By merging the two sinks of P we obtain a type
which is denoted by type(P).

12.1 Relaxing the Ordering Restriction 213

First we remark that linear orders can be interpreted as quite simply struc-
tured complete types, see Fig. 12.1. Furthermore, the figure shows a more
interesting example of a complete type with four variables.

sink

Figure 12.1. Two complete types

In Definition 6.8 the elimination and the merging rule were introduced for
the reduction of OBDDs — the application of these rules does not modify the
represented function itself. Indeed, the two reduction rules do not have any
influence on the order in which the variables in the OBDD are read. For
this reason, both rules can also be used in the context of FBDDs and their
generalized orders described by types.

Definition 12.2. We define two reduction rules on FBDDs and on types:

Elimination rule: If the I-edge and the 0-edge of a node v point to the same
node u, then eliminate v, and redirect all incoming edges of v to u.

Merging rule: If the internal nodes u and v are labeled by the same variable,
their 1-edges lead to the same node and their 0-edges lead to the same node,
then eliminate one of the two edges u, v, and redirect all incoming edges of
this node to the remaining one.

Definition 12.3. (1) An FBDD P is called reduced if neither of the two
reduction rules can be applied.

(2) A type T or an FBDD P are called algebraically reduced if the merg-
ing rule cannot be applied to T or P, respectively.

The following statement can now be proven similarly to the uniqueness the-
orem of OBDDs.

214 12. Variants and Extensions of OBDDs

Theorem 12.4. The reduced FBDD which results from an FBDD P by com-
plete application of the two reduction rules is determined uniquely. In the
same way, the algebraically reduced FBDD and the algebraically reduced type
which originate from complete application of the merging rules are uniquely
determined. O

In order to identify classes of FBDDs which test the variables in a similar
sequence, it suffices to compare the types of different FBDDs. We define
the notion of a subtype which serves to describe the consistency of types in
different FBDDs.

Definition 12.5. Let 7 be a type. A type 7' is called a subtype of 7, 7' < 7,
if T =7 orif 7' can be constructed from T by applications of the merging
and the elimination rules.

With respect to the operator < the set of all types constitutes a partial order.
Figure 12.2 shows a type 7 and a subtype 7’.

Figure 12.2. A type 7 and a subtype 7/, 7’/ < 7

Definition 12.6. Let 7 be a complete type. An FBDD P is of type 7 if
there exists a type 7' with type(P) < 7' such that 7 and 7' coincide after a
complete algebraic reduction.

Due to this definition it is reasonable only to work with complete types which
are already algebraically reduced.

One can see that in the sense of the definition an FBDD can belong to several
types. However, if an FBDD P is of type 7, then the reduced FBDD which
originates from P is also of type 7.

Equipped with these notational tools it can now be proven that reduced
FBDDs with respect to a given complete type constitute a canonical repre-
sentation of switching functions.

12.1 Relaxing the Ordering Restriction 215

We begin with an observation: for representing any input variable z; there is a
decision diagram which consists of exactly one node labeled by z;, and whose
1-edge and 0-edge lead to the 1-sink and 0-sink, respectively. Let us call this
decision diagram (which is even ordered) the standard representation of
Li.

Lemma 12.7. Let 7 be a complete type over the set of variables {1,
.oy Zn}, and let ©; € {x1,...,2,}. The standard representation Py, of
x; s of type T.

Proof. As 7 is a complete type, the variable z; appears on each path from
the root to the sink. By means of the elimination rule, starting in the sink
of 7, we can eliminate all successors of the node labeled by x;. After iterated
application of the merging rule we obtain a type 7' such that a single node
labeled by x; is the only predecessor of the sink. Finally, by iterated appli-
cation of the elimination rule, this time starting in the node labeled by z;,
we can successively construct from 7' the type type(Py,)- O

Theorem 12.8. Let 7 be a complete and algebraically reduced type over the
set of variables {z1,... ,z,}, and let f € B,. Then there is exactly one
reduced FBDD of type T which represents the function f.

Proof. First, it is clear that there exists a complete binary decision tree T
which represents f and which is of type 7. Due to the completeness of 7 and
T, the tree T is uniquely determined. The reduced FBDD P of T is also of
type 7, and according to Theorem 12.4 it is uniquely determined.

Now let P’ be an arbitrary FBDD of type 7 which represents f. The reduced
FBDD P” originating from P is also of type 7 and represents f. Hence,
Theorem 12.4 implies P’ = P. We can conclude that there is only one
reduced FBDD of type 7 which represents f. This FBDD can, e.g., be
constructed by complete reduction of T'. |

This uniqueness statement is the reason why many OBDD-based algorithms,
such as algorithms for performing binary operations, can be directly trans-
ferred to type-based FBDDs. We summarize the corresponding statements
which result from generalizing the statements of OBDDs.

Theorem 12.9. Let f, f1,f2 € B,, and let 7 be a complete, algebraically
reduced type on the set of variables {x1,...,z,}.

Universality of FBDD representation: Any switching function f € B,
can be represented by a (reduced) FBDD of type 7.

Canonicity of FBDD representation: Any switching function f € B,
has exactly one representation as a reduced FBDD of type 7.

216 12. Variants and Extensions of OBDDs

Efficient synthesis of FBDDs: Let Py, P, be two FBDD representations
of f1, fo which are of type 7. Then for each binary operation x the reduced
FBDD representation of f = f1 * fa can be computed in time O(size(r) -
size(Py) - size(P2)).

Efficient equivalence test: Let P, and Py be two FBDD representations of
f1, f2 which are of type 7. Equivalence of P, and P, can be decided in linear
time O(size(Py) + size(Ps)). In case of a strongly canonical representation
only constant time is needed. a

Compared to the more restricted class of OBDDs, the time complexity for
computing binary operations increases by the additional factor size(7). How-
ever, often binary operations in the case of FBDDs can be computed not only
in cubic but even in quadratic time. For example, this holds true if the width
of the underlying type is bounded by a constant.

When comparing OBDD and FBDDs, one should always keep in mind that
OBDDs can be considered as special cases of FBDDs. For this reason, (op-
timal) FBDD representations are never larger than (optimal) OBDD rep-
resentations, but FBDD representations may be substantially smaller. For
the practical work with the representations, one should take into account
that often the linear order of OBDDs can be handled more easily. This ap-
plies to the construction of heuristics, dynamic optimization algorithms, or
more complex manipulation algorithms such as quantification. Hence, before
tackling a certain practical application, it should be checked whether the ad-
ditional optimization potential of FBDDs is in good relation to the additional
expenses in the algorithmic handling.

We would like to present a concrete example which illustrates the additional
optimization potential of FBDDs for a concrete function. For this purpose, we
consider again the hidden weighted bit function HWB(z), from Definition 8.9
which describes an indirect storage access. According to Theorem 8.10 it is
known that with respect to any variable order the OBDD representation of
HWB(x) grows exponentially in the input length n.

In contrast to this, it is possible to represent the hidden weighted bit function
by an FBDD of merely polynomial size. The basic idea of the construction

is a recursive decomposition of the function HWB(z) = HWB(z1, ... ,Zp).
To simplify notation, let z;.; denote the subsequence z;, ... ,z; of the input
vector (21,...,,). We define the two functions H; ;,G; ;

oy = Tt i wi(@ig) >0,
(i) = { 0 otherwise,

(i) = 4 Titwt(zag) if wi(zi;) <j—i+l,
Gij(@ij) { 1 ’ otherwise.

12.1 Relaxing the Ordering Restriction 217

Figure 12.3. Construction of an FBDD of the hidden weighted bit function

[—

1

The definition of H; ; immediately implies

HWB(SL‘l, .o ,.Cl}n) = Hl,n(xl:n)-

Now, a recursive construction rule for the functions H; ; and G; ;, ¢ > j, can
be stated. This rule is based on Shannon’s decomposition.

H; j(zij) = TjH; j—1(®ij—1) + 2;Gi j—1 (Tij—1), (12.1)
Gij(@i:j) = TiHiv1,j(Tit1:5) + 2iGit1,j(@Tig1:5)- (12.2)

The terminal cases are
H;i(z3) = Gii(zis) = 1.

The idea of the recursive definition of H; ; and G} ; is to reduce the computa-
tion of the hidden weighted bit function to the computation of subproblems
for which partial information is already known. The simultaneous computa-
tion of these subproblems with respect to different constraints finally allows
the construction of a polynomial-size FBDD.

The recursive construction of an FBDD of HWB(x1, ... ,Z,) is illustrated in
Fig. 12.3. Simultaneously, the functions H;; and G;; are computed. For
each function H; ;(z;;) or Gy (i), which originates by k decompositions
according to (12.1) or (12.2) from Hy n(21,...,2n) = HWB(21,... ,2,), We
have j —i =n—k—1,0 < k < n— 1. Consequently, in the (n — k)-th
level of the FBDDs there are only nodes which refer to the subfunctions
H; itk (Tisik), Giitr (Tizitr), 0 < k <n — 1. For each k this amounts to at
most 2n nodes. Furthermore, we observe that on each path from the root to
the sink each variable is read at most once. Hence, we can conclude:

Theorem 12.10. There is an FBDD representation of the hidden weighted
bit function HWB(z) = HWB(x1, ... ,&y), whose number of nodes is bounded
by the polynomial 2n? + 2. O

218 12. Variants and Extensions of OBDDs

Figure 12.4. Complete type of the FBDD P for the hidden weighted bit function
in case n =6

Figure 12.4 shows the underlying complete type of the FBDD representation
for the case n = 6. This type is tailored quite specifically for the hidden
weighted bit function. In general, it is surely not practical to construct for
each concrete application instance the best possible type. However, as anal-
ogously to the variable order of OBDDs the size of FBDDs depends very
strongly on the chosen type, heuristic methods for automatically generating
FBDD types are required. Bern, Gergov, Meinel, and Slobodova have pre-
sented such heuristics. They are based on ideas similar to those on which the
heuristics for constructing good variable orders are based.

However, in case of FBDD heuristics an additional idea can be brought into
play. If for example the top variable x; of the type 7 under construction has
already been determined, then the construction of 7 can be independently
continued for the two situations xz; = 0 and z; = 1. Finally, the type 7 is
obtained by a simply plugging together the two partial types which have been
constructed.

12.2 Alternative Decomposition Types 219

12.2 Alternative Decomposition Types

If f denotes the function being represented by a node with label z; in an
OBDD, then Shannon’s decomposition holds:

[= zifo+Tifs

with the cofactors fo = f(z1,---,%i-1,0,%iy1,---,2,) and f1 = f(zq,...,
Ti—1,].,.TL‘Z'+1, . ,.Z‘n).

Already in Corollary 3.24 we presented some different methods for decompos-
ing a function with respect to a given variable. We will now introduce further
decomposition types, namely the Reed-Muller or Davio decompositions.

Theorem 12.11. Let f € B, be a switching functions in n variables. For
the functions fo, f1, fo defined by

fo(IL') = f(z'l,... ,:cn_l,O),
fl(x) = f(wla"' axn—lal)a
f2(z) = folz) ® f1(z)

the following two decompositions hold true:

Reed-Muller decomposition or positive Davio decomposition:
[= fo®znfo.

Negative Davio decomposition:
[= L&z fa.

Of course, this decomposition holds in analogous manner for each variable
z;, 1 <i<n.

Proof. Due to Shannon’s decomposition with respect to the EX-OR opera-
tion @ from Corollary 3.24, we have

(@) =Znfo(z) © 0 f1(z) @n =1 zn)
= fo(-'E) S (mnfo(l") 53] xnfl(w))
= fo(z) ® zn fo(2).
Analogously,
f(IL') =$nf1($)@ﬁfo(ﬂf) (xn = 169%)
= fi(z) ® @nf1(2) © Tr fo(z))
= fi(z) © T fa(x).

220 12. Variants and Extensions of OBDDs

Figure 12.5. Example of an OFDD

Ordered functional decision diagrams introduced by U. Kebschull, E. Schu-
bert, and W. Rosenstiel are not based on Shannon’s decomposition like
OBDDs, but instead are based on the Reed-Muller decomposition.

Definition 12.12. An ordered functional decision diagram, OFDD,
is defined like an OBDD with one difference: the function f, which is com-
puted in a node v of the graph is now defined by the following inductive rules:

1. If v is a sink with label 1 (0), then f, =1 (f, =0).

2. If v is a node with label x;, whose 1- and 0-successor nodes represent the
functions h and g, respectively, then

fv =g z;h.
Example 12.13. If the graph in Fig. 12.5 is interpreted as an OBDD, then

the function fOBPP(g) = x125 + 2,73 T3 is represented. But if the graph is
interpreted as an OFDD, the two nodes with label x3 represent the functions

fogp(@) =1®z3-0=1, fog2(@) =0@23-1 =123,
the two nodes with label x5 represent the functions
Jz21(2) = 1@ 22733, J22,2(x) =08 2325 = 29733,
and the root node represents the function
fOFDD(a:) = 2223 ® 11 (1 ® T273) = T223 B T1 ® T1T2T3.

The represented functions fOBPP(z) and fOFPP(z) are totally different.
For example, we have 0 = fOBPD(1,0,1) # fOFPP(1,0,1) = 1. &

12.2 Alternative Decomposition Types 221

The elimination rule for OBDDs allows to remove nodes v with identical 1-
and 0-successors without modifying the represented function. The reduction
is possible if and only if the function being represented in v does not depend
on the label variable of v. In case of OFDDs this reduction rule cannot be
applied in this form, as in the case of two identical successors the function
represented in v may depend on the label variable nevertheless. Instead,
those nodes are redundant whose 1-edge points to the 0-sink, see Fig. 12.6.

Figure 12.6. Elimination rule for OFDDs

Definition 12.14. We define two reduction rules on OFDDs:

Elimination rule: If the 1-edge of a node v points to the 0-sink, then elim-
inate v, and redirect all incoming edges of v to the 0-successor of v.
Merging rule: If the internal nodes u and v are labeled by the same variable,
their 1-edges lead to the same node and their 0-edges lead to the same node,
then eliminate one of the two edges u, v, and redirect all incoming edges of
this node to the remaining one.

Definition 12.15. An OFDD P is called reduced if neither of the two
reduction rules can be applied.

Now in the same way as for OBDDs, a uniqueness statement can be deduced
for OFDDs.

Corollary 12.16. For all variable orders w we have: the reduced OFDD of
a switching function f with respect to the order 7 is uniquely determined (up
to isomorphisms). O

OFDDs do not only possess the property of canonicity, but they have also
many other properties in common with OBDDs. However, there are some

222 12. Variants and Extensions of OBDDs

important differences. The first one refers to the application of binary oper-
ations. According to Theorem 6.16 all binary operations on OBDDs can be
computed in polynomial time and space. In case of OFDDs this also holds
for the EX-OR operation ®&. However, the computation of a conjunction or
a disjunction of two OFDDs can provably lead to an exponential increase in
size.

Function evaluation for a given OBDD P and a given input vector a =
(a1,--.,an) € B can be achieved quite easily: in each node with label z;
one follows the edge with label a; until a sink is reached. The value of the
sink gives the function value of P on the input a. In case of OFDDs it is not
sufficient for evaluating an input to traverse only a single path from the root
to a sink. Instead, for each node v both subgraphs have to be evaluated, and
the exclusive-or (EX-OR) of both values has to be computed. However, by
traversing the nodes level by level from the sinks to the root, an evaluation of
the function is possible in asymptotically linear time in the number of nodes.

For some classes of functions, OFDDs are exponentially more compact than
OBDDs, for other classes exactly the contrary is true. For this reason, Drech-
sler, Sarabi, Theobald, et al. have proposed a way to unite the advantages
of both classes. They have shown that the different decomposition types can
be combined within the same subgraph while preserving good algorithmic
properties. In this hybrid representation type called ordered Kronecker
functional decision diagrams (OKFDDs) each variable z; is assigned a
decomposition type d; € {S,pD,nD} with the following meaning;:

e S: Shannon decomposition,
e pD: positive Davio decomposition,
e nD: negative Davio decomposition.

In each node with label z; the decomposition defined by d; is carried out.

Example 12.17. Figure 12.7 shows the graph from Fig. 12.5 again, but this
time additionally, each variable z; is assigned a decomposition type S, pD or
nD. In the OKFDD which is defined by this graph the two nodes with label
z3 represent the functions

frs1(x) = T3, Jzs,2(%) = 23,
the two nodes with label x5 represent the functions
fzo1 (%) = T3 © T223, fro2(x) = 0® Taw3 = Taxs,
and the root node represents the function

12.3 Zero-Suppressed BDDs 223

pD

nD

Figure 12.7. An OKFDD with the decomposition types di = pD, d2» = nD,
dz3 =S

The classes of OFDDs and OKFDDs are particularly suited as data structure
in connection with the Reed-Muller expansions described in Section 4.2.

Definition 12.18. A path from the root of an OFDD to the 1-sink is denoted
as 1-path.

The defining equation of the positive Davio decomposition immediately im-
plies that an OFDD is basically a Reed-Muller expansion which has been
written in a compact graph-based form. Hence, we can deduce the following
theorem:

Theorem 12.19. The number of 1-paths in an OFDD of the switching func-
tion f € B, is equal to the number of monomials in the Reed-Muller expansion

of f. |

Additionally, the data structure of OKFDDs allows us to solve problems
in connection with fixed-polarity Reed-Muller expansions efficiently.
Here, for each variable a fixed polarity (negated or unnegated) is chosen.
In the discussed “classic” Reed-Muller expansions each variable occurs in
unnegated form.

12.3 Zero-Suppressed BDDs

Combinatorial problems can be reduced to the task of manipulating switching
functions, too. Here, sets of element combinations often have to be repre-
sented.

A combination of n elements in the bit vector representation is an n-bit
vector (z1,...,T,) € B™, where the i-th bit reports whether or not the i-th
element is contained in the combination.

224 12. Variants and Extensions of OBDDs

Figure 12.8. An OBDD and a ZDD of the set of combinations {(0,0,1),
(0,1,0),(1,0,0),(1,0,1)}

Hence, a set of combinations can be represented by a switching function f :
B® — B. A combination given by the input vector (ai,... ,a,) is contained
in the set if and only if f(a1,...,a,) = 1.

Example 12.20. We consider the three elements {1,2,3} which are repre-
sented by the variables x1, 2,23, respectively. Let ¢; be the combination
in which the first and the second element are not contained, but the third
element is, i.e., t; = (0,0,1). In the same way, let us define the combina-
tions t2 = (0,1,0), t3 = (1,0,0), t4 = (1,0,1). The corresponding Boolean
function which represents the set {t1,ta,t3,t4} is

f(z) = o1 T273 + T17273 + 2172 T3 + T17273.
An OBDD of f is depicted in Fig. 12.8. <

In many applications with combinatorial background the bit vectors to be
represented are sparse with regard to two aspects:

e the set to be represented contains only a small fraction of the 2™ possible
bit vectors, and

e each bit vector contains many zeroes.

This is true since the underlying basis set of all elements may be quite large,
while the number of really relevant combinations is often very small in com-
parison to this large set. Furthermore, often each of the relevant combinations
consists of only a few elements. Based on these observations, S. Minato has
introduced a BDD-based representation type which exploits both types of
sparsity. Zero-suppressed BDDs (ZDDs), sometimes also called com-
binational sets, are defined like OBDDs, but now the elimination rule is
specifically adjusted in order to exploit sparsity.

12.3 Zero-Suppressed BDDs 225

Definition 12.21. We define two reduction rules on ZDDs:

Elimination rule: If the 1-edge of a node v points to the 0-sink, then elim-
inate v, and redirect all incoming edges of v to the 0-successor of v.

Merging rule: If the internal nodes u and v are labeled by the same variable,
their 1-edges lead to the same node and their 0-edges lead to the same node,
then eliminate one of the two edges u, v, and redirect all incoming edges of
this node to the remaining one.

Hence, the elimination rule of ZDDs is of the same form as the elimination
rule of OFDDs, see Fig. 12.6.

Example 12.22. If interpreted as OBDD, the graph in Example 12.20
(Fig. 12.8) represents the set of combinations

{(0707]‘)7 (07]‘70)7 (]‘707 0)7 (1707]‘)}'

In order to interpret the graph as ZDD, we imagine adding a node with label
z3 on the edge from the node with label x5 to the 0-sink — the 1-edge of the
new node shall lead to the 0-sink. This node has been reduced due to the
elimination rule of ZDDs. It can be easily seen that in this case the ZDD
describes the same set of combinations as the OBDD.

We now extend the basis set formally by a fourth element which is repre-
sented by the bit z4. If one now considers the same set as before, then all
combinations have to be extended by a zero component, as x4 occurs in none
of these combinations:

{(07 07]‘70)7 (07]‘707 0)7 (1707 07 0)7 (1707]‘70)}'

The OBDD of the resulting Boolean function is depicted in Fig. 12.9. Starting
from the OBDD in Fig. 12.8, it has to be additionally checked that for a
combination in the set the property x4 = 0 is satisfied.

Now we turn to the question of what the ZDD of the new set of combinations
looks like. One easily checks that it is identical with the ZDD in Fig. 12.8 !
The formal extension by the fourth element to the basis set does not become
noticeable at all, because the resulting nodes in the ZDD are suppressed by
means of the elimination rule.

The example shows not only that ZDDs are independent of possible exten-
sions to the basic set but also that ZDDs are particularly compact if only a
small part of the basic set has to be represented. <&

Analogously to OBDDs, the class of ZDDs constitutes a canonical represen-
tation of switching functions. However, we would like to point out some
important differences to OBDDs. In case of OBDDs a function can be recon-
structed solely from a given graph. In contrast to this, in the case of ZDDs

226 12. Variants and Extensions of OBDDs

Figure 12.9. An OBDD of the set of combinations {(0,0,1,0),(0,1,0,0),
(1,0,0,0),(1,0,1,0)}

additional information about the underlying basis set of variables is required.
Due to the elimination rule of ZDDs a graph which only consists of the 1-sink
can represent the functions 1, T1, T1 T3, T1 T2 Z3, and so on. Which of these
functions is represented in a certain case depends on the given basis set of
variables.

In case of reduced ZDDs it is possible that the 1-edge and the 0-edge of a
node point to the same successor. Those nodes can be reduced only in the
case of OBDDs. The elimination rule defines for both types of graphs how the
case of non-occurrence of a variable x; has to be interpreted. This situation
means

e in case of OBDDs: the represented function is independent of z;;

e in case of ZDDs: z; = 1 immediately implies the function value 0.

So far, the data structure of zero-suppressed BDDs has primarily been used
to solve problems in two- and multiple-level logic minimization. An example
from a quite different area illustrates the fundamental importance of ZDDs:
M. Lobbing and I. Wegener report successful ZDD experiments for solving
difficult combinatorial problems which occur in the analysis of knight moves
on a chess board.

The following theorem says that when using ZDDs instead of OBDDs the
size of the resulting graphs can decrease by at most a factor of n. However,
in practical applications this seemingly small reduction can be large enough
to decide the success of a computation.

12.3 Zero-Suppressed BDDs 227

t

-]

Figure 12.10. Construction of an OBDD from a ZDD, showing how to replace all
possible edge types into a node with label x5

Theorem 12.23. Let f € B, and « be a variable order on {z1,... ,x,}. The
reduced OBDD Py and the reduced ZDD Py of f with respect to 7 satisfy

size(Pp) < n - size(Pz + 2).

Proof. Starting from the reduced ZDD Pz we add those nodes again which
do not appear due to the elimination rule. This addition of nodes does not
modify the represented function.

W.Lo.g. we can assume the order to be the natural variable order x1,... ,x,.
To simplify notation, we further assume that the two sinks are labeled by an
auxiliary variable z,4;. For each node with label z;, 1 < j <n 41, we add
J—1nodesvy,...,v;_1 with labels z1,... ,z;_1 to the ZDD, see Fig. 12.10.
The 0-edge of the node vy, leads to the node vi41, where v; := v. The 1-edge
of the node vy leads to that specific node vg41 which has been constructed
for the 0-sink. Finally, each edge of a node w with label z;, i < j — 1, to
the node v is replaced by an edge to the node v;;1. Here, each edge which
points to the root of the ZDD is considered as an edge which stems from a
node that is labeled by an auxiliary variable .

228 12. Variants and Extensions of OBDDs

In this way, the outgoing edges of each node with label x; point to a node
with label z; 1. In the resulting graph no node has been eliminated due to
the reduction rule. Hence, the graph is also an OBDD of the function f. O

12.4 Multiple-Valued Functions

Based on the advances that have been achieved by using OBDD data struc-
tures, the search for more compact, but still efficient representations of
switching functions is continuing. In addition to this, there are several con-
cepts for transferring the efficient OBDD-based algorithms also to applica-
tions involving non-binary values of functions. Here, the range of integers
plays a prominent role. In the variants of OBDDs defined below, the input
variables are kept binary in order to be able to establish a similar branching
structure like in OBDDs.

12.4.1 Additional Sinks

A natural method for representing multiple-valued functions by decision
graphs consists in adding further sinks. These sinks can be labeled by ar-
bitrary values. If for example a function f : B — {0,...,n} is to be
represented, then the n+ 1 sinks carry the labels 0 through n. This represen-
tation type is denoted as multi-terminal BDD (MTBDD) or algebraic
decision diagram (ADD).

The evaluation of an MTBDD for a given assignment to the variables proceeds
analogously to the evaluation in an OBDD: one pursues that unique path
from the root to a sink which is determined by the input. The value of the
reached sink givens the desired function value.

Example 12.24. Figure 12.11 illustrates an MTBDD representation of the
function z¢ + 227 + 4z with respect to the variable order x5, 21, zg. This
function interprets the three input bits xs,21,29 as binary representation
and produces as result the corresponding natural number. For example, the
input 2 = 1,27 = 0,29 = 1 yields the value 5. <

The example illustrates that MTBDDs are quite inefficient when representing
functions with a large range. For example, if all those numbers are possible
as function values whose binary representation has length at most n, then
there exist 2™ different function values. Hence, each MTBDD representation
of such functions contains an exponential number of terminal nodes. Often,
however, the number of possible function values is much more restricted, and
MTBDD representations are acceptable in many applications. In these cases,
the simplicity of the representation and the similarity to OBDDs makes the
class of MTBDDs to an attractive data structure.

12.4 Multiple-Valued Functions 229

ET:i

Figure 12.11. MTBDD representation of converting a binary number into the
corresponding natural number

12.4.2 Edge Values

Typically, for applications where the number of admissible function values is
large, MTBDDs are not suited. A way to obtain a suitable OBDD-based rep-
resentation in theses cases arises from additionally introducing edge weights.
By using these weights, sharing of common subgraphs can be improved.

Definition 12.25. An edge-valued decision diagram (EVBDD) is de-
fined like an OBDD, where each edge is additionally provided with an integer
weight g.

Each node v with label x; computes a function f, : B* — Z,

fo=2(g1 + f1) + (1 — 2)(go + fo),

where f1, fo are the functions represented by the 1- and 0-successor of v, and
g1, go are the corresponding edge weights, respectively. Additionally, to the
function f being computed in the root node a fized constant ¢ can be added.

Example 12.26. The EVBDD in Fig. 12.12 describes the same function as
the MTBDD in Example 12.11:

f(xo,x1,m2) = T + 211 + 4.
Here, the node with label xo represents the function fy,
fo=20(0+ 1)+ (1 —z)(0 + 0) = =o.
The node with label x; represents the function f,
fi=212+20) + (1 —21)(0 + 20) = 221 + Toz1 + o — T1Z0 = 221 + Zo.

The MTBDD representation size of the function for converting an n-bit string
into the corresponding natural number grows exponentially in n, but the
growth of the EVBDD representation is linearly bounded. <&

230 12. Variants and Extensions of OBDDs

Figure 12.12. EVBDD representation for the conversion of a binary number into
the corresponding natural number

By restricting the choice of admissible edge weights, EVBDDs can be brought
into a canonical form, too. One possibility is to fix the edge value of each
0-edge to 0. In Fig. 12.12 this condition is already satisfied.

Interesting applications of the data structure of EVBDDs presented in the
literature include solving problems which are tightly connected to integer
optimization problems.

12.4.3 Moment Decompositions

Now we describe a representation form which is particularly suited for arith-
metic functions of the type f:{0,1}" — Z.

If one interprets switching functions as numerical functions with range {0,1},
then Shannon’s expansion

can also be written in the form
f=zi fo, + (1—m)" far

Here, +, —, and - denote the usual arithmetic operations over the integers.
Of course, this decomposition is based on the precondition that the variable
z; can only assume the values 0 or 1.

The moment decomposition of a function is obtained by rearranging the
terms in the above decomposition:

12.4 Multiple-Valued Functions 231

= fz; + w;(fa:,_fﬁ)

Definition 12.27. Let f € B,,. For each variable z; of f the function

f(5m = fwi - fﬁ
is called the linear moment of f with respect to x;.

The terminology originates from the point of view which considers f as a
linear function in its variables. Then fs,, is the partial derivative of f with
respect to z;. As the function value of f is only defined for two values of z;,
we can always extend f to a linear function. Thus the moment decomposition
is

f=far + i foui-

Definition 12.28. A binary moment diagram (BMD) is defined like an
OBDD with one difference: the function f : B® — Z represented by a BMD
results from computing in each node the corresponding function according to

the moment decomposition. Fach node v with label x; computes a function
fo:B* > 7Z,

fo = fo+zif1,

where f1, fo are the functions defined by the 1- and 0-successor of v, respec-
tively.

Example 12.29. We consider again the conversion of a binary number into
the corresponding natural number from Examples 12.11 and 12.12. A BMD
of this function is shown in Fig. 12.13 (a).

Here, the node with label xo represents the function fy,
fo=0+2z0-1= o,
and the node with label z; represents the function fi,
fi=x0+ 1 -2=12¢ + 221

The linear moment of the example function with respect to a variable z;
is exactly 2¢. In other words, the function is decomposed according to the
individual bit significances. Due to this property BMDs are particularly
suited to represent arithmetic functions. <

Like MTBDDs, BMDs also provide a canonical representation. However,
some of the relevant basic operations may imply exponential running times
in the worst case. Although BMDs are typically quite efficient in practical

232 12. Variants and Extensions of OBDDs

(a) Conversion of a binary number (b) Multiplication function
into a natural number

Figure 12.13. BMDs and multiplicative BMDs

applications, it should always be checked whether their use can actually lead
to significant size reductions with regard to the relevant functions.

A particularly interesting extension of BMDs is the concept of multiplica-
tive BMDs (*BMDs). These graphs also allow edge weights which serve
as factor for the function that is represented at the target node of the edge.
With help of suitable restrictions to the choice of edge weights, *BMDs can
also be brought into a canonical form. By employing *BMDs it becomes
possible to represent an n-bit multiplier {0,1}" x {0,1}" — Z within linear
space. Remember that due to Theorem 8.8 multipliers necessarily lead to
exponential OBDDs on the bit level, and hence they cause serious problems
in practice.

Example 12.30. Let f: {0,1}" x {0,1}" — Z be the function whose input
consists of two vectors ¢ = (zy—1,... ,%0) and y = (Yp—1,--- ,Yo), and which
computes the natural number of their product

n—1 n—1
Foy) = (z 2i) Ty
i=0 =0

12.5 References 233

A *BMD in case n = 3 can be seen in Fig. 12.13 (b). Let fy,, fy, and fy,
be the function which are represented in the nodes with label z2, yo and y,
respectively. Example 12.29 implies

2
i=0

Hence,

2
f’yo(may) =0+ yOfEQ(:E;y) = Yo 21'1217
=0
2 2
fy1 (x,y) = fyo(xay) + 2y1fa:2(33,y) =Y Z$i2z + 23/1 Z$i2l
i=0 i=0

2 1
= (Zm’) > oy |,
=0 =0
2 1 2
f(xay) = fyl(xay) +4y2fw2($,y) = <2m121> Zyj2] + 4y inzz
i=0 =0 =0

2 2
=0 j=0

For larger values of n this construction can be continued analogously.

If the represented circuit computes the multiplication function correctly, then,
consequently, the representation in terms of a *BMD remains provably small.
However, in industrial use of the verification tools, one can observe a very
undesirable effect whose prevention is a topic of current research. If due
to a design error a circuit C' does not compute the multiplication function
correctly, but instead, it differs merely very slightly, then it may happen that
the size of the *BMD representation of C' explodes. In other words, *BMDs
are excellently suited to represent multipliers, but they are highly sensitive
to small disturbances of the multiplier structure of the function.

12.5 References

The model of FBDDs was introduced as a data structure for Boolean manip-
ulation by Gergov and Meinel [GM94a], and independently by Sieling and
Wegener [SW95b]. The heuristic ideas for constructing complete types were
presented in [BGMS94].

234 12. Variants and Extensions of OBDDs

OFDDs were proposed by Kebschull, Schubert, and Rosenstiel [KSR92]; the
combination of different decomposition types is due to Drechsler, Sarabi,
Theobald, et al. [DST94]. Applications of OFDDs in minimizing Reed-
Muller expressions are investigated in [DTB96]. Recently, an alternative
approach for constructing decision diagrams based on the EX-OR operation
has been proposed in [MS98].

The variant of zero-suppressed BDDs goes back to Minato [Min93, Min96].
The theorem relating the sizes of OBDDs and ZDDs to each other was proven
by Schroer and Wegener [SW95a]. Successful applications of ZDDs in the area
of logic synthesis are presented in the survey [Cou94].

In the two papers [CMZ193, BFG193], the model of multi-terminal BDDs
was introduced. The model of edge-valued BDDs was proposed in the pa-
per [LPV94]. Finally, the moment decomposition, BMDs, and *BMDs were
introduced and studied by Bryant and Chen [BC95].

13. Transformation Techniques for
Optimization

Die Ringenden sind die Lebendigen.
[The struggling ones are the living.]

Gerhart Hauptmann (1862-1946): Der arme Heinrich

In this chapter, we introduce transformation techniques which serve to further
optimize OBDD representations. The optimization space in this framework
goes far beyond the optimization space established by the optimization of
the variable order.

Domain transformations constitute a classic concept in mathematics, physics,
and engineering. By transforming a function into a new space, where
the representation of the function can be handled easily, applications can
be improved and simplified. Examples of classic transformation concepts
include the Fourier transformation, the Laplace transformation, and the
Z-transformation. In this chapter, we explain how transformation techniques
of this kind can also be successfully applied to the context of OBDD-based
Boolean manipulation.

In contrast to the OBDD variants presented in Chapter 12, the use of do-
main transformations does not require a separate software package. Instead,
it remains possible to work with conventional OBDD packages, merely the
semantic interpretation of the OBDDs under consideration is changed.

13.1 Transformed OBDDs

In the transformation techniques discussed below, the concept of cube trans-
formations stands in the center of attraction. These cube transformations
describe a repositioning of the vertices of a Boolean cube, which induces a
transformation on the argument domain of the switching function that has
to be represented.

Definition 13.1. A cube transformation 7 is a bijective mapping T :
B* — B”.

236 13. Transformation Techniques for Optimization

A cube transformation 7 defines a mapping ¢, : B, — B, onto the Boolean
algebra of all switching functions in n variables through

for all a = (a1,...,a,) € B". ¢, is called the mapping induced by 7. The
following lemma can be immediately deduced from the definition of a cube
transformation.

Lemma 13.2. For each cube transformation 7 : B® — B", the mapping ¢,
defines an automorphism on B, , i.e., for all functions f,g € B, we have:

1. f=g ifand only if ¢:(f)=¢-(9).
2. For any binary operation * on B, it holds ¢, (f *g9) = ¢-(f) x¢.(g9). O

In other words: the second property says that it is not important whether
first a Boolean operation is applied to the functions f and g and then the
resulting function is transformed, or whether first the functions f and g are
transformed and then the transformation is applied. Both ways lead to the
same result. If the operation is performed in terms of OBDDs, then the
polynomial complexity is ensured also when working with the transformed
functions. Now let us consider the equivalence test of two function representa-
tions in a situation where only the transformed representations are available.
Then the first statement of the lemma tells us that in this situation it is not
necessary at all to retransform the functions. As ¢, is bijective, the decision
is also possible on the transformed representations.

According to the following definition the OBDDs of transformed switching
functions are denoted as TBDD:s.

Definition 13.3. Let f € B,, and let 7 be a cube transformation T : B* —
B*. A ~-TBDD representation of f is an OBDD representation of ¢, (f).

If we succeed in finding and constructing those transformations 7 which lead
to small 7-TBDD representations of the relevant switching functions, then
OBDD-based algorithms can be substantially accelerated by applying them
on the transformed switching functions.

Example 13.4. Let f(x1,z2,23) = T122 + z123. Figure 13.1 shows a trans-
formation (y1,¥2,y3) = 7(x1,Z2,%3) in explicit form. On the right side of
Fig. 13.1, the OBDDs of the two functions f and ¢, (f) are depicted. The
function f computes a 1 for an input (z1, z2,23) if and only if

(.’L‘1,£U2,CE'3) S {(Oa 1,0), (05]-a 1)5 (1505 1)5 (15 1; 1)}

13.1 Transformed OBDDs 237

[(z1, 2, x3)[7T (%1, 22, 3) = (Y1,Y2,y3)]

(0,0,0) (0,0,0)

(0’ 0’ 1) (0’ 0’ 1)

(0,1,0) (0,1,0)

(051:1) (0:1’1) ’/

(1’0’ 0) (1’0’ 0)

(1,0,1) (1,1,0)

(1,1,0) (1,0,1) e e
(1L,1,1) (1,1,1) . El

1

Figure 13.1. Example of a TBDD representation

According to the transformation 7, the function ¢, (f) computes a 1 for an
input (y1,y2,y3) = 7(x1,22,23) if and only if

(y17923y3) € {(07 1;0)7 (03]-7 1)3 (17 150)7 (1;]-7 1)}

Hence, 7(f) = y2. When applying a cube transformation the size of the on-set
remains invariant, but a reduction of memory consumption can be achieved
nevertheless. In our example, the OBDD of f requires three internal nodes,
but a single node suffices for the OBDD of ¢, (f). &

The well-known properties of OBDDs in connection with the fact that cube
transformations induce automorphisms on B,, (see Lemma 13.2) immediately
imply the following properties of TBDDs.

Theorem 13.5. Let f, f1, fo € B, be switching functions, and let 7 : B* —
B™ be a cube transformation. Further, let w be an order on the set of variables

{1’1,... ,.’L‘n}.

Universality of TBDD representation: Any switching function f € B,
can be represented by a (reduced) 7-TBDD with respect to the order .

Canonicity of TBDD representation: Any switching function f € B,
has exactly one representation as reduced T-TBDD with respect to the order m.

Efficient synthesis of TBDDs: Let T, T> be two 7-TBDD representa-
tions of fi and fo with respect to w. For each binary Boolean operation
x the (reduced) 7-TBDD representation of f = f1 * fo with respect to m can
be computed in time O(size(Th) - size(T»)).

Efficient equivalence test: Let Ty and Ty be the reduced T-TBDDs of f1,
fo with respect to w. Equivalence of the functions fi and fy corresponds to the
functional equivalence of their representations Ty and Ts, and can be tested
in linear time. In case of a strongly canonical representation only constant
time s necessary. O

238 13. Transformation Techniques for Optimization

The universality of the TBDD representation says that each switching func-
tion can also be represented by a TBDD. However, this fact alone does not
suffice to make TBDDs an interesting representation type, as already the
model of OBDD provides a universal and unique representation of switching
functions. The real aim of the concept of TBDDs is to reduce the mem-
ory consumption during the manipulation process significantly, while keeping
the well-understood “manipulation language” of OBDDs. Indeed, it can be
shown that for each switching function f there exists a cube transformation
7 such that f has a very small 7-TBDD representation.

Theorem 13.6. For each switching function f € B, there exists a T-TBDD
representation of size n.

Proof. Let k = |on(f)|. We consider the inputs a = (a1,...,a,) € B" as
binary representations of the numbers 0,...,2™ — 1. Let 7 be the bijection
which maps those strings representing the numbers 0,... ,k — 1 onto the
elements of on(f). Then ¢,(f) can be represented by an OBDD with natural
variable order which tests whether the input (interpreted as binary number)
is smaller then k (in this case the 1-sink is reached) or not (in this case the
0-sink is reached). This test can be performed by an OBDD which for each
variable x; has at most one node labeled by z;. |

Before this result is celebrated euphorically as solution to all representation
problems, one should be aware of the fact that still some problems have to
be coped with. In particular, it may be very difficult and costly to store and
to manipulate the mentioned transformation for specific functions.

To conclude this introductory section on TBDDs we would like to describe
how combinational circuit verification can be realized in terms of TBDDs.
Starting from two net lists of gates it is to check for the circuits C' and C’
whether C' and C’ compute the same functions. When applying OBDD-based
methods we start from the (trivial) OBDD representations of the primary in-
put variables z1, ... ,z, and successively construct OBDDs for each of these
gates from the OBDDs of the predecessor gates. After this symbolic simu-
lation of the two circuits, a comparison of the resulting OBDDs — realized
by a single pointer comparison — suffices to determine whether the two net
lists are functionally equivalent. For very complex circuits it may happen
that during constructing the OBDDs the available memory is exceeded, and
therefore the OBDD representation of the two circuits cannot be constructed
at all.

Now the TBDD concept allows us to work with a suitably transformed func-
tion instead of the original function. In order to check whether two circuits C
and C' are equivalent, it suffices to show that two reduced TBDD represen-
tations T and Tf of C' and C' coincide. As the mapping ¢, on B,, which
is induced by the cube transformation 7, is an automorphism, the desired

13.2 Type-Based Transformations 239

TBDD representation can be constructed in exactly the same way as in case
of OBDDs. First, one generates the 7-TBDD representation of the variables
Z1,... ,%n, and then computes (now within a usual OBDD environment) the
7-TBDDs of C' and C’ by means of a symbolic simulation. With the excep-
tion of the construction of the TBDDs of the variables z1,... ,Z,, all steps
can be performed by employing a conventional OBDD package.

When optimizing OBDDs by means of cube transformations, the main task
is to characterize “feasible” classes of cube transformations from the tremen-
dously large set of (2")! different cube transformations in n variables. Here,
“feasible” means that the cube transformations in the chosen class can be
handled efficiently enough to be suitable for practical applications.

Practical classes of cube transformations have to satisfy primarily two con-
ditions:

e It must be possible to store the transformations 7 efficiently.

e It must be possible to compute the 7-TBDD representations of the primary
input variables easily.

In the following sections, we treat two classes of cube transformations which
satisfy these two properties, namely type-based transformations and linear
transformations.

13.2 Type-Based Transformations

13.2.1 Definition

One way to obtain easy-to-handle but nevertheless powerful cube transfor-
mations is to apply complete types, as introduced in Definition 12.1.

By using complete types, cube transformations can be defined as follows.
Throughout the description, let ¢ be a fixed chosen complete type. Then
each vector a = (ay,... ,an) € B" defines a uniquely determined path p(a)
from the root to the sink of o. al?l denotes the index of the variables which are
tested in the i-th position of p(a). Now the cube transformation 7, : B® — B”
which is induced by the complete type ¢ is defined by

To(a1, - yan) = (agul, - - »agml)-

Before proving that 7, is actually bijective and hence a cube transformation,
we first consider an example.

Example 13.7. For the complete type in Fig. 13.2 we consider the input
a = (a1,aa,a3,a4) = (1,0,0,0). The path which is induced by the input is

240 13. Transformation Techniques for Optimization

Figure 13.2. The left side shows a complete type of the variables z1,z2,x3, 4.
In the right picture, additionally the path of the input (1,0, 0,0) is marked

marked in the right part of Fig. 13.2. On this path, the variables are traversed
in the sequence x4, 3,21, 22. Hence,

TG-(I,O,O,O) = (04,@3,0,1,0,2) = (03(],150)
<o

Theorem 13.8. Let o be a complete type over the set of variables {z1,
- »Zn}. Then 7, defines a cube transformation on B™.

Proof. As o is a complete type and, hence, each variable occurs on each path
from the root to the sink, the mapping 7, is completely defined. In order to
show that 7, is a cube transformation, it therefore suffices to show that 7,
is injective. Let a,b € B™ with 7,(a) = 7,(b). Then, by definition of 7, the
complete type o satisfies

Agyli] = bb[i], 1 S) S n.

First, we show that all = bl#l for all 1 < i < n. Since, by Definition 12.1, we
have c!'l = dlY! for any ¢,d € B, the equation a,u; = by implies al?! = bl2.
Analogously, a,21 = by implies al®! = b3l. Inductively, we obtain a,u = by
forall 1< <mn.

Now let j € {1,...,n}. Due to the read-once property of a complete type
there is exactly one i € {1,...,n} with all = j. Hence,

aj; = Qgli] = bb[i] = ba[i] = bj.

As this statement is true for all j, we haven proven a = b. Consequently, 7,
is injective. O

13.2 Type-Based Transformations 241

Note that linear orders only permute the set of variables, i.e., the indices in
the arguments. Hence, the space of cube transformations which are induced
by linear orders is isomorphic to the optimization space which is generated
by the choice of a variable order. However, by means of complete types much
more complex cube transformations can be defined. Here, the indices of the
arguments can be permuted depending on the arguments themselves.

13.2.2 Circuit Verification

The framework of using type-based TBDDs as tool for combinational circuit
verification was already described in Section 13.1. It was based on symbolic
simulation, where in the first step the transformed functions on the input
variables have to be computed. Now we discuss how to realize this first step
for the class of type-based transformations.

Let C be a circuit, and let ¢ be a complete type over the set of vari-
ables {21, ... ,2,} which underlies the TBDD-representation of C. The idea
behind the construction of the reduced 7,-TBDDs P; of the variables z;,
i.e., the reduced OBDDs of the switching functions resulting from the vari-
ables z; through the transformation 7,, is as follows. We consider a fixed
i € {1,...,n}. For each input (b,...,b,) € B", the OBDD P; has to
compute a 1 if and only if a; = 1 for a = 7,1 (b).

Starting from the type o, all nodes below the nodes with label z; are removed.
We connect the 1-edge of each node labeled by z; with a newly introduced
1-sink, and the 0-edge of each node labeled by z; with a newly introduced
0-sink. Then we change the labels of the variables. The root obtains the
label y;, all successors of the root the label y5, and so on.

Now let b = (b1,...,b,) € B" be an input, and let a = (a1,...,a,) =
7, 1(b) € B*. Further, let j be the position of the variable y; on the path in
P; which is induced by b. The input b yields an output value 1 if and only if
blil = 1. Since b = 7,(a), this is the case if and only if a,;;; = 1. By definition
of j we have al/l = i. Hence, b implies an output value 1 in P;, if for any
a = 7,1(b) it holds a; = 1.

Finally, the constructed OBDD P; can be reduced. Figure 13.3 shows pseudo
code to realize this idea. If already computed subproblems are stored, then in
the course of performing this algorithm each node has to be considered only
once. In the pseudo code of the algorithm this is indicated by the function
set_mark.

Example 13.9. We illustrate the algorithm in Fig. 13.3 with the example
of the variable z3 of the complete type o in Fig. 13.2. All nodes below the
nodes with label z3 are removed, and the two outgoing edges of the nodes
with label x3 are connected with the newly introduced sinks. Figure 13.4
shows this intermediate step and the 7,-TBDD of the variable x3 in the
transformed variables y1, ... ,y4, where this TBDD is in reduced form. <

242 13. Transformation Techniques for Optimization

transform_variables(c, %) {

/* Input: A complete type o and an integer i € {1,... ,n} */
/* Output: A 7,-OBDD of z; over the (transformed) set of variables
{1, un} */
transform_step(é, 1, {z1,... ,Zn }, 0);

clear_mark_below(o);

transform_step(a, ¢, M, t) {
If M = @ Return Undefined;
If marked(t) {
Return result(t);

set_mark(t);
Let the node t be described by the triple (z,t1,t0);
if z; € M\ {z}
f1 = transform_step(¢,r + 1, M{x},t1);
fo = transform_step(i,r + 1, M{z},t0);
reduce_and_return(y,, fi, fo);
Else {
If ; # « Then Return Undefined;
Else reduce_and_return(y-,1,0);

Figure 13.3. Algorithm for constructing the OBDDs of the transformed variables

A complexity analysis of the algorithm yields the following estimation:

Theorem 13.10. Let o be a complete type over the set of variables {z1,

. ,Zn}, and let P; be the reduced 7,-TBDDs of the variables z;, 1 <i < n.
Each P; has at most as many nodes as o and can therefore be computed in
linear time and linear space with respect to the size of o. O

Of course, a practical realization of this concept not only needs these ba-
sic algorithms but also requires heuristics that automatically deduce good
types from the structure of a given problem. For the case of symbolic simu-
lation, J. Bern, Ch. Meinel, and A. Slobodové have proposed heuristics for
constructing good cube transformations from a circuit topology. Comparing
these TBDD heuristics with the well-known heuristics for constructing good
variable orders of OBDDs, the TBDD-based approach leads to significantly
smaller representations. In some specific cases, the TBDD-based approach
succeeds in symbolic simulating circuits whose representation by a “classical”
OBDD exceeds the available memory.

13.3 Linear Transformations 243

Figure 13.4. Intermediate step and reduced 7,-TBDD of the variable x3

13.3 Linear Transformations

13.3.1 Definition

In this section, we go into a transformation concept which can also be ap-
plied dynamically and hence forms the counterpart to dynamic reordering
algorithms. The concept is based on linear transformations.

Definition 13.11. An elementary linear transformation 7;; : B* —
B*, 1<14,j <n,i#], is defined by the following mapping:

Ti’j(.'L'l,. .. ,:L‘n) = (331,.. -y Li—1,T; DTy, Tip1,--- ,xn).
For this mapping, we write ; = z; ® x;.

Obviously, the mapping 7; ; is a one-to-one correspondence and therefore a
cube transformation.

Considering the set B" together with the two Boolean operations & and - as
a field, this transformation is a linear mapping in the algebraic sense, i.e.,
there is an n X n-matrix A with entries in B such that

Tij (@1, xn) T = A (@1, 20) T

Here, (x1,...,2,)T denotes the transposed vector to (z,...,z,), and the
matrix product is computed with respect to the operations @ and -. In case
of the elementary linear transformation 7; ;, besides the diagonal elements,
only the rows ¢ and j as well as the columns ¢ and j may contain non-zero
entries.

244 13. Transformation Techniques for Optimization

Example 13.12. We consider a Boolean function in 3 variables z;, 22 and
z3. By the linear transformation zs — x5 @ z3 the input vector (0,1,1) is
mapped to the vector (0,0,1). The matrix A corresponding to this transfor-
mation is

100
A=1{011
001

<o
Of course, each elementary linear transformation x; — x; © z; can be de-

scribed by the following truth table in the variables z; and z;. For large n,
this representation is much more compact than the matrix representation.

| (@i,z) | (@i @y x;) |
0 O 0 0
0 1 1 1
1 0 1 0
1 1 0 1

From linear algebra, it is well-known that the set of elementary linear trans-
formations constitutes a generating system of the set of all bijective (i.e. in-
vertible) linear transformations. This implies that any given invertible linear
transformation can be generated by a sequence of elementary linear transfor-
mations. The following lemma already indicates that the optimization space
induced by linear transformations is quite suitable for minimizing OBDD rep-
resentations. The space is substantially larger than the optimization space of
different variable orders. However, it is still much smaller than the number
of all cube transformations, and thus it seems possible to gain control of the
class of linear transformations.

Lemma 13.13. (1) The number t(n) of invertible linear transformations
on B" amounts to

n—1

t(n) = [@" - 29.

=0

(2) The quotient of t(n) and the number (2™)! of all cube transformations
on B™ converges to 0, as n tends to infinity.

(3) The quotient of the number n! of all possible variable orders in n variables
and the the number t(n) converges to 0, as n tends to infinity.

Proof. (1) The number of invertible linear transformations on B™ coincides
with the number of regular n x n-matrices over the field Zs. The number of
these matrices can be computed as follows. The first row vector b; can be

13.3 Linear Transformations 245

chosen arbitrarily from the set Z5\{0}. The i-th row vector b;, 2 < i < n, can
be chosen arbitrarily from the set of vectors which are linearly independent
from {bl, ce. ;bz'—l} over Zg‘,

i—1
b; € Zg\{Z)\]bJ :)\1,... ;)\i—l S ZQ}
=1

Hence, for choosing the vector b; there are 2" —2'~1 possibilities. This proves
the claim.

(2) It holds

~ 30 as n — .

(2m! = (27! = (27)!
(3) It holds
(2n)! _ 2n(2n—1) (2n—2)(2n —3) 2.1
t(n) = 2n_20 ° 2n_21 277._271—1_)0 as n — o0.

13.3.2 Efficient Implementation

Before explaining how linear transformations can be employed for optimizing
OBDD-based data structures in an efficient way, let us recall the variable
swap of neighboring variables in the order, presented in Chapter 9. This
time, our viewpoint is slightly different and serves for the incorporation of
linear transformations. The process of swapping two neighboring variables
in the order can be interpreted as cube transformation. We assume that the
variable x; appears in the order immediately before the variable z;. The
effect of a variable swap on a node with label z; can be seen by applying
Shannon’s expansion,

f=zx; fu1 + x5 fro + Tixj for + 75 T foo. (13.1)

Now we consider the cube transformation 7 which maps two variables x; and
x; to each other,

T(®1yeo 5 Tn) = (@1, oo T 1, Ty Tig 1y e oo s Tj—1, Tiy Tjg1, - - - ,Lp)-

The function ¢ (f) = ¢-(f) induced by this cube transformation results from
the same effect as the one that is caused by swapping the variables z; and x;
in the order. Rearranging the individual terms in ¢ (f), such that z; occurs
before z; in each product, yields

246 13. Transformation Techniques for Optimization

\ \
b b
— Cay (o)
N N
! N | N
N N
Y A Y
f11 f10 fol f00 f11 fo1l f10 f00

Figure 13.5. Swapping two neighboring variables z;, z;

¢1(f) = zizj fi1 + %% for + Tiz; fro + Ti T; foo. (13.2)
In other words, the effect of a variable swap is to interchange fio and fo;.
Figure 13.5 illustrates this effect.

If we repeat the same process for the application of a linear transformation
x; — &; ® x;, then the resulting function ¢»(f) is

#2(f) = zixj for + =% fro + ZTizj f11 + T3 T foo. (13.3)

A comparison of the two Equations (13.2) and (13.3) shows that there is
only a single difference: in case of the linear transformation, instead of the
two functions fio and fo1, the two functions f;; and fo; are interchanged.
Hence, the fundamental techniques for efficiently implementing a swap of
two variables can also be applied for their linear combination. Figure 13.6
illustrates the described elementary transformation.

\ \
b b
—
N N
! N | N
N N
Y A Y
f11 f10 fol f00 fol f10 f11 f00

Figure 13.6. z; — z; ® x; for two neighboring variables z;, z;

Another inspection of the Equations (13.1) to (13.3) shows: by means of the
variable swap, the linear transformation, and the original state, all partitions

13.3 Linear Transformations 247

/g 110 1\ %;\

Figure 13.7. In case of complemented edges, locality of the transformation x; —
x; @ x; is lost

of the set {fi1, fi0, fo1, foo} in two subsets of equal size can be generated.
Hence, by combining variable swapping and linear transformations it is possi-
ble to reduce the size of the OBDDs in more cases than by variable swapping
only.

In case of complemented edges, another difficulty has to be take into account.
For this, we consider the OBDD with complemented edges from Fig. 13.7.
The 0-edge of the node with label z; is complemented and points to a sub-
OBDD g whose root is not labeled by z;. The linear transformation z; —
z; ® x; now causes the 1-edge of the left z;-node to become complemented,
which is indicated by a bold arrow. In order to re-establish canonicity, the
complement bit has to be moved up at least to a position above the node
labeled by z;. This fact destroys the locality of the linear transformation, a
highly undesirable property.

If instead of the linear transformation z; — z; ® z; the complementary
operation z; — x; = x;, i.e., the equivalence operation, is applied, then the
problem vanishes. Figure 13.8 illustrates the transformation z; — z; = ;.
Now the two functions foo and fip are interchanged. Indeed, nothing is lost
by this modification; the application of the equivalence operation also allows
one to generate all partitions of the set {fi1, fi0, fo1, foo} in two subsets of
equal size.

13.3.3 Linear Sifting

As the class of linear transformations on neighboring variables can be imple-
mented efficiently, this class provides a tool which offers further optimization
potential with regard to the minimization of OBDDs. However, once more
the question arises of how to convert this basic concept into an automatic

248 13. Transformation Techniques for Optimization

\ \
by by
—
N N
| N | N
N N
) \/\
fl1 f10 fo1 foo f11 foo fo1 /10 N

Figure 13.8. Transformation z; — z; = x; for two neighboring variables z;, x;

procedure. A promising approach in this context is to combine the two basic
operations on neighboring variables, namely

e the variable swap and

e the linear combination of two variables

within a single optimization algorithm.

To realize these ideas, Ch. Meinel, F. Somenzi, and T. Theobald proposed
integrating linear transformations into what is currently the best reordering
method: the sifting algorithm. The resulting algorithm has obtained the
name linear sifting.

As in the conventional sifting procedure, in linear sifting each variable is
moved once through the whole order. Let z; be the currently considered
variable, and let z; be the immediate successor of x;. The basic step of
the sifting algorithm consists in swapping the two variables in the order. In
contrast to this, the basic step of the linear sifting algorithm consists of the
following three phases:

1. The variables z; and z; are swapped in the order. Let s; be the size of
the OBDD after this swapping process.

2. The linear transformation z; — z; = x; is applied. Let sy be the size of
the resulting OBDD.

3. If 51 < s9, then the linear transformation is immediately undone. This is
achieved by simply applying the transformation again, since it is its own
inverse.

In each basic step the variable z; is moved one position onward in the order
and possibly linearly combined with the variable z;.

Of course, an algorithm that reorders variables in an OBDD has to keep
track of the permutation produced. Likewise, the linear sifting algorithm has
to keep track of the generated linear transformation. The most expedient

13.3 Linear Transformations 249

way to do that is to maintain the transformation itself within the shared
OBDD. When applying a transformation to a shared OBDD, the OBDDs of
the original literals z; are also transformed. In this way, the generated linear
transformation is automatically carried along.

In order to make the performance of the linear sifting competitive with the
sifting algorithm, the ideas for improving efficiency from Section 9.2.4 have
also to be taken into account. A central device in an efficient sifting realiza-
tion is the interaction matrix which says whether there is a function in the
OBDD which simultaneously depends on two given variables z; and z;. If two
variables are not interacting in this sense, then the swap can be performed
in constant time. The interaction matrix is also effective in the case of linear
sifting. On the one hand, it allows fast swaps in case of two non-interacting
variables. On the other hand, it can be used to avoid linear combinations
of variables that do not interact. In contrast to the exclusive application of
the swap operation, when linearly combining two variables the interaction
matrix can change.

Example 13.14. We consider the case of two functions in three variables:

f=zdy,
g=y==z.

The variables z and y do not interact, as neither f nor g depends simultane-
ously on both variables. However, the transformation y — x = y generates
the transformed functions

Now all variables interact with each other. &

If during performing the linear sifting algorithm, two variables are combined
with each other, then the interaction matrix is updated accordingly.

Due to the additional costs of the linear transformations within a basic step,
the time consumption of linear sifting is by a factor of 2 to 3 larger than the
time consumption of sifting. Experimental studies with regard to the size of
the resulting graphs have shown that in many cases the use of linear sifting
may lead to significantly smaller representations compared to the classical
sifting algorithm. In extreme cases, such as the circuits C499 and C1355
(see Section 9.3), the OBDD size obtained after an optimization by means
of variable reordering can be reduced by more than 90% when using linear
sifting.

250 13. Transformation Techniques for Optimization

13.4 Encoding Transformations

A central element of finite state machines, as introduced in Section 2.7, is
the state set (). Before the system can be analyzed by means of Boolean
manipulation techniques or synthesized into a digital circuit, each state has to
be identified with a binary bit-string. This process is called state encoding.
An example can be seen in Fig. 13.9.

Symbolic
state Encoding
qo 00
q 01
q2 1 0
qs 11

Figure 13.9. State encoding

The actual input/output behavior of the system is not influenced at all by
the choice of the concrete encoding. However, the encoding can strongly
influence the complexity of the manipulation of the system. In connection
with representation and analysis of sequential systems the state encoding can
therefore be applied as an additional optimization parameter. In order to
demonstrate how strongly the size of the OBDD representation may depend
on the choice of the state encoding, we consider finite state machines with a
very simple structure.

Definition 13.15. An autonomous counter with 2" states qg,... ,qan—_1
is an autonomous (i.e., input-independent) finite state machine with 6(¢;) =
Git1, 0 <0< 2™ —1, 8(g2n—1) = qo-

Such a counter occurs — at least as a submodule — in many sequential sys-
tems. Figure 13.10 illustrates the structure of the autonomous counter. The
following theorem shows that almost all encodings of the autonomous counter
lead to OBDD representations of exponential size, even with respect to the
optimal order.

Theorem 13.16. Let G(n) be the number of n-bit encodings of the au-
tonomous counter with 2" states which have a (shared) OBDD size of at most
2" /n with respect to their optimal order. Further, let N(n) = (2™)! be the
number of all possible n-bit counter encodings. Then the quotient G(n)/N (n)
converges to 0, as n tends to infinity.

13.4 Encoding Transformations 251

N . /

Figure 13.10. Autonomous counter

Proof. Let k = [2"™/n]|. Analogous to the proof of Theorem 8.3 one can show
that there exist at most

n! (" : k) (k+ 1)) = (k+ 1)(k + D)k + n)!

shared OBDDs with at most k& nodes with respect to their optimal order.
Due to the cyclic symmetry of the counter we have

G(n) < 2"nl(n+k)! ((k+1)!)?
<2"(2n + 3k +2)!
<2"(2n+3-2"/n+2)!
<2"(4-2"%/n)! for sufficiently large n,

and hence,

G(n)
—0 as n— oo.
N(n) O

Definition 13.17. An encoding transformation or a re-encoding is a
bijective mapping o : B® — B"™, which converts a given state encoding to a
new encoding. If a state s is encoded by a bit-string ¢ € B™, then its new
encoding is g(c).

An example of a re-encoding can be seen in Fig. 13.11. The change in the
internal state encoding does not modify the input/output behavior of the
sequential system. Let the system with the new encoding be denoted by
M'=(Q',I,0,0,X,q})- The encoded next-state function, output function
and the encoded initial state of M’ can be computed as follows:

&'(s,e) = o(6(a " (s),€)),
X(s,e) = Ao~ '(s),e), (13.4)
9 = o(q),

where 6,8 : B” x B? — B", A, X : B" x B? —» B™, and qo, ¢ € B".

252 13. Transformation Techniques for Optimization

old New
encoding | encoding
qo 00 01
q 01 11
q2 10 00
s 11 10
(J2 old: 10, new: 00
Figure 13.11. Re-encoding of the symbolic states qo, ... ,q3

The transition relation of the re-encoded machine M' can be obtained from
the transition relation of M as follows:

Lemma 13.18. Let T'(z,y,e) be the characteristic function of the transition
relation of M. Then the characteristic function T'(x,y,e) of the transition
relation of M' is

I (o') = 6ie " (2))) -

i=1

Therefore T'(z,y,e) can be obtained from T(x,y,e) by the substitutions y; —
07 (y) and z; — 0, (2), 1 <i < n.

Proof. The claim is a consequence of the following equivalences:

T'(z,y,e) =1 <= y; = 0:(6(¢ *(2))) for all 4
= y=0((c " (x)))
= o '(y) =60 (z))

= H (o' () = di(0 () = 1.
O

The optimization potential of encoding transformations can now be illus-
trated at the example of the autonomous counter. First we show that there
exist encodings whose transition relation is very small, even if the variable
order is fixed to z1,y1,--- ,Tn,Yn- We consider the standard encoding of
the counter, where the encoding of the state g; is the binary representation of
i (see Fig. 13.12). Let My~ be the autonomous counter with n states under
this encoding.

13.4 Encoding Transformations 253

| State | Encoding |

¢ | 00...000
i | 00...001

q2 00...010

gon—1 | 11...111

Figure 13.12. Standard encoding

Lemma 13.19. For n > 2, the reduced OBDD of the transition relation of
Mosn with respect to the variable order x1,y1,... ,Tn,Yn consists of exactly
5n — 1 nodes.

Proof. The idea is based on using the OBDD of the transition relation of
Msn—-1, in order to construct the OBDD of the transition relation of Man.
Formally, this leads to a proof by induction. We show: the reduced OBDD
has the form shown in Fig. 13.13 (a) (in the sense that the depicted nodes exist
and are not pairwise isomorphic) with sub-OBDDs A and B and contains
exactly 5n — 1 nodes. The case n = 2 can be checked easily.

(a) Structure (b) Induction (c) Induction step
of the OBDD hypothesis

\ \
N\ 7 N\ 7
N N
2 \
2
A B B

Figure 13.13. Inductively constructing the OBDD of the transition relation of
the autonomous counter

Induction step: The OBDD for the n — 1 bits o, ... ,z, has the form shown
in Fig. 13.13 (b). Let |z| be the binary number defined by a bit-string .
With this notation we have for the roots of the sub-OBDDs A, B:

254 13. Transformation Techniques for Optimization

A: leads to the 1-sink if and only if |yz...yp| = |23...2p| + 1, 23...2, #
11...1.

B: leads to the 1-sink if and onlyif x5 =... =2, =1, y5=... =y, = 0.

We construct the reduced OBDD of the transition relation of Ms~» as in
Fig. 13.13 (c). The roots of the sub-OBDDs C and D have the following
meanings:

C': leads to the 1-sink if and only if |ys...yn| = |T2...zp| + 1, 22... 2, #
11...1.

D: leads to the 1-sink if and only if 2o = ... =2z, =1, 92 = ... =y, =0.

It can easily be checked that all the subfunctions represented in the newly
introduced nodes are pairwise different. Therefore

size(Man) = size(Man-1) — 3 + 8 = size(Man-1) + 5.
O

Hence, for each encoding of an autonomous counter there exists a re-encoding
which leads to an OBDD of linear size. As according to Theorem 13.16 most
counter encodings lead to OBDDs of exponential size, the gain between the
original OBDD and the OBDD after performing a suitable re-encoding is
exponential in most cases. Now the aim is to find those re-encodings which
lead to small OBDD sizes.

Similarly to dynamic reordering or to linear sifting, when performing re-
encodings, it is also promising to combine local operations which can be
performed quickly. In particular, here, the set of elementary linear transfor-
mations introduced in Section 13.3 provides an attractive class, too. If for
example each state is described by a bit-string (g1, - .. ,gn), then the elemen-
tary linear transformation g; — ¢; ® g; defines the following re-encoding;:

(qry---5qn) = (q1y- - 5 Qi—1,0 D > Qit1s--- > Gn)-

Example 13.20. Figure 13.14 shows the effect of an encoding transforma-

tion ¢1 — q1 @ qo. <

Original New

encoding encoding

@ g | gt gt”

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Figure 13.14. The elementary linear transformation g1 — ¢1 @ g2 on the state
space

13.5 References 255

13.5 References

The concept of transformed decision diagrams as well as the use of type-
based cube transformations is due to Bern, Meinel, and Slobodova [BMS95].
The use of linear transformations for optimization was proposed by Meinel
and Theobald [MT96], its realization through the linear sifting algorithm
was done Meinel, Somenzi, and Theobald [MST97]. Finally, optimization
of OBDDs by means of encoding transformations goes back to the papers
[MT96, MT97].

256 13. Transformation Techniques for Optimization

Bibliography

[AHU74]

[BBELY6]

[BC95)

[BCL*94]

[BFG193]

[BGMS94]

[BHMS84]

[BHS96]

[Big90]
[BLPV95]

[Blu84]

[BMSO5]

[Boob4]

Ano, A. V., J. E. HOPCROFT and J. D. ULLMAN: The Design and
Analysis of Algorithms. Addison-Wesley, Reading, MA, 1974.

BEER, 1., S. BEN-DaAvID, C. EisNER and A. LANDVER: RuleBase: An
industry-oriented formal verification tool. In Proc. 33rd ACM/IEEE
Design Automation Conference (Las Vegas, NV), pages 655—660, 1996.
BRYANT, R. E. and Y.-A. CHEN: Verification of arithmetic circuits
with binary moment diagrams. In Proc. 82nd ACM/IEEE Design Au-
tomation Conference (San Francisco, CA), pages 535-541, 1995.

BURCH, J. R., E. M. CLARKE, D. E. LoNGg, K. L. MCMILLAN and
D. L. DiLL: Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
13:401-424, 1994.

BaHAR, R. I., E. A. FrouM, C. M. GaoNa, G. D. HACHTEL,
E. MaAci, A. PARDO and F. SOMENzI: Algebraic decision diagrams
and their applications. In Proc. IEEE International Conference on
Computer-Aided Design (Santa Clara, CA), pages 188-191, 1993.
BERN, J., J. GERGOV, CH. MEINEL and A. SLOBODOVA: Boolean ma-
nipulation with free BDDs. First experimental results. In Proc. Euro-
pean Design Automation Conference, pages 200207, 1994.

BrAYTON, R. K., G. HACHTEL, C. MCMULLEN and A. SANGIOVANNI-
VINCENTELLL: Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Boston, MA, 1984.

BrayTON, R. K., G. D. HACHTEL, A. SANGIOVANNI-VINCENTELLI,
F. SoMENzZI and OTHERS: VIS: A system for verification and synthesis.
In Proc. Computer-Aided Verification 96, volume 1102 of Lecture Notes
in Computer Science, pages 428-432. Springer, Berlin, 1996.

BiaaGs, N. L.: Discrete Mathematics. Clarendon Press, Oxford, 1990.
BORMANN, J., J. LoHSE, M. PAYER and G. VENZL: Model checking
in industrial hardware design. In Proc. 32nd ACM/IEEE Design Au-
tomation Conference (San Francisco, CA), pages 298-303, 1995.
Brum, N.: A Boolean function requiring 3n network size. Theoretical
Computer Science, 28:337-345, 1984.

BERN, J., CH. MEINEL and A. SLoBODOVA: OBDD-Based Boolean
manipulation in CAD beyond current limits. In Proc. 32nd ACM/IEEE
Design Automation Conference (San Francisco, CA), pages 408-413,
1995.

BOOLE, G.: An Investigation of the Laws of Thought. Walton, London,
1854. Reprinted by Dover Books, New York, 1954.

258 Bibliography

[BRBYO]
[Brog0]
[BRSWS7]
[Bry86]
[Bry91]

[Bry92]

[BW96]

[CBMS9]

[CESS6]

[CLR90]
[CM95]
[CMZ193]
[Cob66]

[Cou94]

[DST*94]

[DTBY6]

BRACE, K. S., R. L. RUDELL and R. E. BRYANT: Efficient implemen-
tation of a BDD package. In Proc. 27th ACM/IEEE Design Automation
Conference (Orlando, FL), pages 40-45, 1990.

BrowN, F. M.: Boolean Reasoning. Kluwer Academic Publishers,
Boston, MA, 1990.

BrayTON, R. K., R. RUDELL, A. SANGIOVANNI-VINCENTELLI and
A. R. WaNG: MIS: A multiple-level interactive logic optimization sys-
tem. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 6:1062-1081, 1987.

BryANT, R. E.: Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, C-35:677—691, 1986.
BRYANT, R. E.: On the complezity of VLSI implementations and graph
representations of Boolean functions with application to integer multi-
plication. IEEE Transactions on Computers, C-40:205-213, 1991.
BryaNT, R. E.: Symbolic Boolean manipulation with ordered binary
decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.
BoLLig, B. and I. WEGENER: Improving the variable ordering of
OBDDs is NP-complete. IEEE Transactions on Computers, 45:993—
1002, 1996.

CouUDERT, O., C. BERTHET and J. C. MADRE: Verification of syn-
chronous sequential machines using symbolic execution. In Proc. Work-
shop on Automatic Verification Methods for Finite State Machines,
volume 407 of Lecture Notes in Computer Science, pages 365-373.
Springer, Berlin, 1989.

CLARKE, E. M., E. A. EMERSON and A. P. SisTLA: Automatic ver-
ification of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Systems,
8:244-263, 1986.

CorMEN, T. H., C. E. LEISERSON and R. L. RIVEST: Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

COUDERT, O. and J. C. MADRE: The implicit set paradigm: A new
approach to finite state system verification. Formal Methods in System
Design, 6(2):133-145, 1995.

CLARKE, E. M., K. L. MCMILLAN, X. ZHAO, M. FuJiTA and J. C.-Y.
YANG: Spectral transforms for large Boolean functions with application
to technology mapping. In Proc. 30th ACM/IEEE Design Automation
Conference (Dallas, TX), pages 54-60, 1993.

COBHAM, A.: The recognition problem for the set of perfect squares. In
7th SWAT, 1966.

COUDERT, O.: Two-level logic minimization: An overview. INTEGRA-
TION, the VLSI journal, 17:97-140, 1994.

DRECHSLER, R., A. SARABI, M. THEOBALD, B. BECKER and M. A.
PERKOWSKI: Efficient representation and manipulation of switching
functions based on ordered Kronecker functional decision diagrams. In
Proc. 81st ACM/IEEE Design Automation Conference (San Diego,
CA), pages 415-419, 1994.

DRECHSLER, R., M. THEOBALD and B. BECKER: Fast OFDD-based
minimization of fized polarity Reed-Muller expressions. IEEE Transac-
tions on Computers, C-45:1294-1299, 1996.

[Ehr10]

[FHSTS]

[FMK91]

[FS90]

[GBY4]

[GI78]

[GM94a]

[GM94b]

[HCOT74]

[HLJ "89]

[HS96]

[HUTS]

[ISY91]

[Kar88]

[KSR92]

[Leeb9]

Bibliography 259

EHRENFEST, P.: Review of L. Couturat, ‘The Algebra of Logic’. Journal
Russian Physical & Chemical Society, 42:382, 1910.

FoOrTUNE, S., J. HOPCROFT and E. M. ScHMIDT: The complexity of
equivalence and containment for free single variable program schemes.
In Proc. International Colloquium on Automata, Languages and Pro-
gramming, volume 62 of Lecture Notes in Computer Science, pages
227-240. Springer, Berlin, 1978.

FuiitA, M., Y. MATSUNAGA and T. KAKUDA: On variable ordering of
binary decision diagrams for the application of multi-level logic synthe-
sis. In Proc. European Design Automation Conference (Amsterdam),
pages 50-54, 1991.

FrRIEDMAN, S. J. and K. J. SUPOWIT: Finding the optimal variable or-
dering for binary decision diagrams. IEEE Transactions on Computers,
39:710-713, 1990.

GEi1sT, D. and I. BEER: Efficient model checking by automated ordering
of transition relation partitions. In Proc. Computer-Aided Verification,
volume 818, pages 299-310, 1994.

GAREY, M. R. and M. JoHNsON: Computers and Intractibility: A
Guide to the Theory of NP-Completeness. W. H. Freeman, San Fran-
cisco, CA, 1978.

GERGOV, J. and CH. MEINEL: Efficient analysis and manipulation of
OBDDs can be extended to FBDDs. IEEE Transactions on Computers,
43(10):1197-1209, 1994.

GERGOV, J. and CH. MEINEL: On the complezity of analysis and ma-
nipulation of Boolean functions in terms of decision diagrams. Infor-
mation Processing Letters, 50:317-322, 1994.

Hong, S., R. CaIN and D. OsTAPKO: MINI: A heuristic approach
for logic minimization. IBM Journal of Research and Development,
18:443-458, 1974.

HACHTEL, G., M. LIGHTNER, R. JACOBY, C. MORRISON, P. MOCEYU-
NAS and D. BosTIiCK: BOLD: The Boulder Optimal Logic Design Sys-
tem. In Hawaii International Conference on System Sciences, 1989.
HACHTEL, G. and F. SOMENZzI: Logic Synthesis and Verification Algo-
rithms. Kluwer Academic Publishers, Boston, MA, 1996.

HopcroFT, J. E. and J. D. ULLMAN: Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, Reading, MA,
1978.

IsHIURA, N., H. SAWADA and S. YAJIMA: Minimization of binary deci-
ston diagrams based on the exchanges of variables. In Proc. IEEE In-
ternational Conference on Computer-Aided Design (Santa Clara, CA),
pages 472-475, 1991.

Karprus, K.: Representing Boolean functions with If-Then-Else
DAGSs. Technical Report UCSC-CRL-88-28, Computer Engineering,
University of California at Santa Cruz, 1988.

KEBscHULL, U., E. SCHUBERT and W. ROSENSTIEL: Multilevel logic
synthesis based on functional decision diagrams. In Proc. European
Design Automation Conference, pages 43-47, 1992.

Leg, C. Y.: Representation of switching circuits by binary decision
programs. Bell System Technical Journal, 38:985-999, 1959.

260 Bibliography

[Lon93]

[LPV94]

[Mas76]

[MB8S]

[McM93]

[Mei89]

[Mic94]

[Min93]

[Min96]

[MTY90]

[Mor92]

[MS94]

[MS97]

[MS98]

[MST97]

[MT96]

[MT97]

LoNG, D.: Model Checking, Abstraction and Compositional Verifica-
tion. PhD thesis, Carnegie Mellon University, 1993.

LA, Y.-T., M. PEDRAM and S. B. K. VRuDHULA: EVBDD-based
algorithms for integer linear programming, spectral transformation and
function decomposition. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13:959-975, 1994.

MASEK, W.: A fast algorithm for the string editing problem and deci-
ston graph complerity. Master’s thesis, MIT, 1976.

MADRE, J.-C. and J.-P. BILLON: Proving circuit correctness using for-
mal comparison between expected and extracted behaviour. In Proc. 25th
ACM/IEEE Design Automation Conference (Anaheim, CA), pages
205-210, 1988.

McMILLAN, K. L.: Symbolic Model Checking. Kluwer Academic Pub-
lishers, Boston, MA, 1993.

MEINEL, CH.: Modified Branching Programs and Their Computational
Power, volume 370 of Lecture Notes in Computer Science. Springer,
Berlin, 1989. Reprinted by World Publishing Corporation, Beijing,
1991.

MicHELI, G. DE: Synthesis and Optimization of Digital Circuits.
McGraw-Hill, New York, NY, 1994.

MINATO, S.: Zero-suppressed BDDs for set manipulation in combina-
torial problems. In Proc. 30th ACM/IEEE Design Automation Confer-
ence (Dallas, TX), pages 272-277, 1993.

MINATO, S.: Binary Decision Diagrams and Applications for VLSI
CAD. Kluwer Academic Publishers, Boston, MA, 1996.

MINATO, S.; N. IsHIURA and S. YAJIMA: Shared binary decision dia-
grams with attributed edges. In Proc. 27th ACM/IEEE Design Automa-
tion Conference (Florida, FL), pages 52-57, 1990.

MORET, B. M. E.: Decision trees and diagrams. ACM Computing
Surveys, 14(4):593-623, 1992.

MEINEL, CH. and A. SLOBODOVA: On the complexity of constructing
optimal ordered binary decision diagrams. In Proc. Mathematical Foun-
dations in Computer Science, volume 841 of Lecture Notes in Computer
Science, pages 515-524, 1994.

MEINEL, CH. and A. SLOBODOVA: Speeding up wvariable ordering
of OBDDs. 1In Proc. International Conference on Computer Design
(Austin, TX), 1997.

MEINEL, CH. and H. SACK: @-OBDDs - a BDD structure for proba-
bilistic verification. In International Workshop on Logic Synthesis (Lake
Tahoe, CA), 1998.

MEINEL, CH., F. SOMENZzI and T. THEOBALD: Linear sifting of deci-
sion diagrams. In Proc. 34th ACM/IEEE Design Automation Confer-
ence (Anaheim, CA), pages 202-207, 1997.

MEINEL, CH. and T. THEOBALD: Local encoding transformations for
optimizing OBDD-representations of finite state machines. In Proc. In-
ternational Conference on Formal Methods in Computer-Aided Design
(Palo Alto, CA), volume 1166 of Lecture Notes in Computer Science,
pages 404-418. Springer, Berlin, 1996.

MEINEL, CH. and T. THEOBALD: On the influence of the state encoding
on OBDD-representations of finite state machines. In Mathematical

[MT98]

[MWBSSS]

[Pap94]
[Pon95]

[PS95]

[Rud93]

[Sha38]

[Shad]
[Sie94]

[Som96a]
[Som96b]

[SSM192]

[SW93a]
[SW93b]

[SW95a]

[SW95b]

[SWo7]

[THY93]

Bibliography 261

Foundations of Computer Science (Bratislava), volume 1295 of Lecture
Notes in Computer Science, pages 408-417. Springer, Berlin, 1997.
MEINEL, CH. and T. THEOBALD: Ordered binary decision diagrams and
their significance in computer-aided design of VLSI circuits. Bulletin of
the European Association for Theoretical Computer Science, (64):171—
187, 1998.

MaLik, S.;, A. WaNG, R. K. BRAYTON and A. SANGIOVANNI-
VINCENTELLI: Logic verification using binary decision diagrams in a
logic synthesis environment. In Proc. IEEE International Conference
on Computer-Aided Design (Santa Clara, CA), pages 6-9, 1988.
PapAapiMITRIOU, C. H.: Computational Complezrity. Addison-Wesley,
Reading, MA, 1994.

Ponzi0, S.: Restricted Branching Programs and Hardware Verification.
PhD thesis, MIT, 1995.

PAaNDA, S. and F. SOMENZzI: Who are the variables in your neigh-
borhood. In Proc. IEEE International Conference on Computer-Aided
Design (San José, CA), pages 74-77, 1995.

RuUDELL, R.: Dynamic variable ordering for ordered binary decision
diagrams. In Proc. IEEE International Conference on Computer-Aided
Design (Santa Clara, CA), pages 42-47, 1993.

SHANNON, C. E.: A symbolic analysis of relay and switching circuits.
Transactions American Institute of Electrical Engineers, 57:713-723,
1938.

SHANNON, C. E.: The synthesis of two-terminal switching circuits. Bell
System Technical Journal, 28:59-98, 1949.

SIELING, D.: Algorithmen und untere Schranken fir verallgemeinerte
OBDDs. PhD thesis, Universitdt Dortmund, 1994.

SOMENZI, F.: Binary Decision Diagrams. Lecture Notes (University of
Colorado, Boulder), 1996.

SoMmENZI, F.: CUDD: Colorado University Decision Diagram Package.
ftp://vlsi.colorado.edu/pub/, 1996.

SENTOVICH, E. M., K. J. SINGH, C. MoON, H. SavoJ, R. K. BRAY-
TON and A. SANGIOVANNI-VINCENTELLL: Sequential circuit design us-
ing synthesis and optimization. In Proc. International Conference on
Computer Design (Cambridge, MA), pages 328-333, 1992.

SIELING, D. and I. WEGENER: NC-algorithms for operations on binary
decision diagrams. Parallel Processing Letters, 3:3—12, 1993.

SIELING, D. and I. WEGENER: Reduction of OBDDs in linear time.
Information Processing Letters, 48:139-144, 1993.

SCHROER, O. and I. WEGENER: The theory of zero-suppressed BDDs
and the number of knight’s tours. In Proc. Workshop on Applications
of the Reed-Muller Ezpansion, pages 38—45, 1995.

SIELING, D. and I. WEGENER: Graph driven BDDs — a new data struc-
ture for Boolean functions. Theoretical Computer Science, 141:283-310,
1995.

SAvVICKY, D. and I. WEGENER: Efficient algorithms for the transfor-
mation between different types of binary decision diagrams. Acta Infor-
matica, 34:245-256, 1997.

TANI, S., K. HAMAGUCHI and S. YAJIMA: The complexity of the op-
timal variable ordering problems of shared binary decision diagrams.

262

[T194]

[Weg87]

[Weg94]

Bibliography

In Proc. International Symposium on Algorithms and Computation,
volume 762 of Lecture Notes in Computer Science, pages 389-398.
Springer, Berlin, 1993.

TaNI, S. and H. IMAL: A reordering operation for an ordered bi-
nary decision diagram and an extended framework for combinatorics of
graphs. In Proc. International Symposium on Algorithms and Computa-
tion, volume 834 of Lecture Notes in Computer Science, pages 575-592.
Springer, Berlin, 1994.

WEGENER, 1.: The Complezity of Boolean Functions. John Wiley &
Sons and Teubner-Verlag, New York-Stuttgart, 1987.

WEGENER, 1.: Efficient data structures for Boolean functions. Discrete
Mathematics, 136:347-372, 1994.

Index

A-calculus, 14
1-path, 223
3-SAT, 56

absorption, 28
abstract data type, 14
ADD, 228

adder function, 2, 127
algorithm, 1, 4, 13
analysis

— asymptotic, 15
antisymmetric, 10
Apply, 101
associative, 28
automaton, 4

— finite, 20

backward step, 204

basis, 60

BDD, see branching program

benchmark circuit, 5, 166

bijective, 11

binary, 25

binary decision diagram, see branching
program

binary operation, 4, 37, 101, 216, 222,
237

bit vector, 3

BMD, 3, 231

— multiplicative, 232

BOLD, 81

Boolean algebra, 4, 26

Boolean cube, 40

Boolean formula, 4, 30, 62, 77

Boolean function, 4, 30, 31

Boolean quantification, 181

branching program, 4, 66, 77

— oblivious, 69

— read-k-times only, 69

— read-once, 69

— synchronous, 69

— width-bounded, 69

breadth-first traversal
— symbolic, 186

cache, 112

canonicity, 2, 3, 56, 89, 113

— strong, 107

cardinality, 9

carrier, 26

Cartesian product, 102
certificate, 17

characteristic function, 36, 86, 174
circuit, 60, 77, 79

— combinational, 3, 79, 146, 166, 241
— sequential, 5, 79, 84

circuit complexity, 62, 129
co-domain, 11

co-NP-complete, 19

cofactor

— generalized, 175, 177

— negative, 91

— positive, 91

collision, 19

collision list, 19

combination, 223
combinational set, 224
communication complexity, 130
commutative, 26

complement, 7, 26

complement bit, 112
complexity, 1, 5, 15, 123, 139
computation path, 70, 90
Computation Tree Logic, see CTL
computed table, 5, 108
computer-aided design, 79
conjunction, 7, 37

constrain operator, 178
contradiction, 36

correctness

— functional, 79

counter

— autonomous, 250

CTL, 5, 199

264 Index

cube transformation, 235
CUDD, see OBDD package
CVE, 206

data structure, 1, 4, 13, 14, 105

data type, 14

Davio decomposition, 219

decision diagram, 64

— algebraic, see ADD

— binary, see branching program

— ordered binary, see OBDD

decision problem, 13

decision tree

— binary, 64, 77, 99

decomposition type, 222

degree, 12

DeMorgan’s rules, 28

depth, 12, 61

— sequential, 185

depth first search, 14

difference, 9

disjunction, 7, 37

disjunctive normal form, 4

distributive, 26

domain, 11

don’t care set, 48

dynamic programming, 155

dynamic reordering, 5, 149

dynamic weight assignment heuristic,
147

edge, 11

— complemented, 2, 5, 112, 153

edge-valued BDD, see EVBDD

effectiveness, 14

element, 9

elimination rule, 93, 213, 221, 225

encoding transformation, 6, 250, 251

equation

— dual, 27

equivalence relation, 10

equivalence test, 57, 83, 102, 136, 173,
216, 237

equivalent, 33, 37

ESPRESSO, 81

essential, 36

EVBDD, 3, 229

extension, 48

fan-in heuristic, 146, 166
father, 12

FBDD, 3, 5, 212

finite set, 9

finite state machine, 6, 20, 84, 150, 173
fooling set, 131

free BDD, see FBDD

full adder, 61

function, 11

function node, 60

future operator, 201

Futurebus+, 207

garbage collection, 117
gate, 61, 81

global operator, 200
graph, 11

— acyclic, 12
connected, 12
directed, 11

— rooted, 12

— undirected, 11
graph theory, 4

Hamiltonian circuit, 18
hashing, 19, 107, 111
hidden weighted bit, 134, 211, 216

idempotence, 28

identity, 26

image, 11, 184

image computation, 5, 186
— based on transition relation, 192
input splitting, 187
inverse, 204

— output splitting, 190
image restrictor, 189
implementation, 4, 79, 105
implication, 37

indegree, 12

initial state, 20

injective, 11

input alphabet, 20

input node, 60

input splitting, 187

Intel, 173

interaction matrix, 162, 249
intersection, 9

interval function, 45
inverse image, 11
involution, 28

ISCAS, 166

isomorphic, 92

ITE algorithm, 108

level, 53, 68
literal, 37
liveness, 80

logic

— branching time temporal, 200
— linear time temporal, 200

— temporal, 200

logic synthesis, 81

lower bound, 127, 157, 163

majority function, 45

manager, 122

matrix multiplication, 44
maxterm, 54

membership property, 9

memory management, 3, 117, 153
merging rule, 93, 213, 221, 225
MINTI, 81

minimization

— exact, 155

minterm, 54

MIS, 81

model checking, 5, 199

— symbolic, 199

moment decomposition, 230
moment diagram

- binary, see BMD

monomial, 53

MTBDD, 3, 228

multi-terminal BDD, see MTBDD
multiple-valued function, 228
multiplication, 2, 52, 130, 132, 166

neural network, 47
neuron, 47

next-state function, 20
next-time operator, 200
node

— dead, 118

— internal, 12, 90

normal form, 53

— canonical conjunctive, 55
— canonical disjunctive, 55
— conjunctive, 54, 77

— disjunctive, 54, 77

— one-level, 53

— parity, 54

— two-level, 53

NP, 17

NP-complete, 17, 18
NP-hard, 18

OBDD, 2, 4, 80, 89

— reduced, 92

— shared, 106

OBDD package, 2, 5, 119

Index

— CUDD, 120

265

— of Brace, Rudell, and Bryant, 2, 105,

119
— of Long, 120
OFDD, 3, 5, 220
off-set, 36
OKFDD, 222
on-set, 36, 41
one element, 26
one-to-one mapping, 11
optimization, 145
optimization problem, 13
order
— linear, 10

ordered functional decision diagram,

see OFDD

ordered Kronecker functional decision

diagram, see OKFDD
ordered pair, 9
ordering heuristic, 3, 5, 145
orthonormal, 175
outdegree, 12
output splitting, 190

P, 16

parity, 37, 45
partial order, 10
partition, 9, 18
path, 12

— cyclic, 12

path quantifier

— existential, 201
— universal, 201
Pentium, 173
phage function, 141
polynomial, 54

— minimal, 54

polynomial time reducible, 17

poset, 10

power set, 10
predecessor, 12
predecessor cone

— reflexive-transitive, 146
— transitive, 146
predicate, 8

predicate calculus, 7
principle of duality, 27
problem, 13

product machine, 174
proposition, 7
propositional logic, 7

quantification, 181
quantifier, 7, 8

266 Index

subfunction, 38, 94
subfunction profile, 169
subset, 9

subtype, 214

— existential, 8
— universal, 8

R-L-implication, 37

range, 11 successor, 12
re-encoding, see encoding transforma- ~ Surjective, 11

tion switching algebra, 4, 34
reachability analysis, 5, 174, 184 switching function, 1, 4, 25, 34
reachable, 184 — monotone, 42
read-once property, 2 - part}al, 48 .
rebuilding — partially symmetric, 46
— global, 139 — quasisymmetric, 46

— symmetric, 44, 125

symbolic simulation, 82, 146
symmetric, 10

system

— sequential, see finite state machine

reduction algorithm, 96

reduction rule, 4, 93, 213, 221, 225
Reed-Muller decomposition, 219
Reed-Muller expansion, see ring sum

expansion
reference counter, 118
reflexive, 10
relation, 10
reordering
— dynamic, 3
restrict operator, 183
ring sum expansion, 58, 77
root, 12
RuleBase, 206

safety, 80

satisfiability problem, 70, 71, 84
satisfying assignment, 36
set, 9

set algebra, 26

set representation

— implicit, 85, 186
Shannon’s expansion, 38, 90
sifting, 159, 166

— block, 163

— block-restricted, 169
— linear, 247

— symmetric, 163, 166
simulation, 80

sink, 12

SIS, 81, 209

son, 12

space complexity, 15
specification, 79, 199
spectrum, 44

standard basis, 61
standard encoding, 252
standard triple, 115
state encoding, 250
state set, 20, 85

Stone’s representation theorem, 30

tautology, 36

TBDD, 236

temporal logic, 5
threshold function, 45, 47
— inverse, 45

time complexity, 15
transformation, 4, 6, 235
— linear, 6, 243

— type-based, 6, 239
transition relation, 191, 252
— partitioning, 195
transitive, 10

tree, 12

truth table, 52, 77

truth value, 7

Turing machine, 14

type, 214

— complete, 212, 239

union, 9

unique table, 5, 107
universal, 56

until operator, 201

variable order, 3, 5, 123, 145
variable swap, 151, 245, 248
variables

— next-state, 192

— present-state, 192
verification

— formal, 3, 5, 79, 80, 85, 174
— partial, 80

verification problem

— general, 174

— restricted, 174

vertex, 11

Index 267

VIS, 122, 206, 208 window permutation algorithm, 158,
VLSI design, 4 166
witness, 17
weight heuristic, 147, see dynamic ZDD, 3, 5, 223
weight assignment heuristic zero element, 26

window permutation, 158 zero-suppressed BDD, see ZDD

