
Chapter 8

NP-complete problems

8.1 Search problems

Over the past seven chapters we have developed algorithms for finding shortest paths and
minimum spanning trees in graphs, matchings in bipartite graphs, maximum increasing sub-
sequences, maximum flows in networks, and so on. All these algorithms are efficient, because
in each case their time requirement grows as a polynomial function (such as n, n2, or n3) of
the size of the input.

To better appreciate such efficient algorithms, consider the alternative: In all these prob-
lems we are searching for a solution (path, tree, matching, etc.) from among an exponential
population of possibilities. Indeed, n boys can be matched with n girls in n! different ways, a
graph with n vertices has nn−2 spanning trees, and a typical graph has an exponential num-
ber of paths from s to t. All these problems could in principle be solved in exponential time by
checking through all candidate solutions, one by one. But an algorithm whose running time is
2n, or worse, is all but useless in practice (see the next box). The quest for efficient algorithms
is about finding clever ways to bypass this process of exhaustive search, using clues from the
input in order to dramatically narrow down the search space.

So far in this book we have seen the most brilliant successes of this quest, algorithmic tech-
niques that defeat the specter of exponentiality: greedy algorithms, dynamic programming,
linear programming (while divide-and-conquer typically yields faster algorithms for problems
we can already solve in polynomial time). Now the time has come to meet the quest’s most
embarrassing and persistent failures. We shall see some other “search problems,” in which
again we are seeking a solution with particular properties among an exponential chaos of al-
ternatives. But for these new problems no shortcut seems possible. The fastest algorithms we
know for them are all exponential—not substantially better than an exhaustive search. We
now introduce some important examples.

247

248 Algorithms

The story of Sissa and Moore
According to the legend, the game of chess was invented by the Brahmin Sissa to amuse
and teach his king. Asked by the grateful monarch what he wanted in return, the wise
man requested that the king place one grain of rice in the first square of the chessboard,
two in the second, four in the third, and so on, doubling the amount of rice up to the 64th
square. The king agreed on the spot, and as a result he was the first person to learn the
valuable—-albeit humbling—lesson of exponential growth. Sissa’s request amounted to 264−
1 = 18,446,744,073,709,551,615 grains of rice, enough rice to pave all of India several times
over!

All over nature, from colonies of bacteria to cells in a fetus, we see systems that grow
exponentially—for a while. In 1798, the British philosopher T. Robert Malthus published an
essay in which he predicted that the exponential growth (he called it “geometric growth”)
of the human population would soon deplete linearly growing resources, an argument that
influenced Charles Darwin deeply. Malthus knew the fundamental fact that an exponential
sooner or later takes over any polynomial.

In 1965, computer chip pioneer Gordon E. Moore noticed that transistor density in chips
had doubled every year in the early 1960s, and he predicted that this trend would continue.
This prediction, moderated to a doubling every 18 months and extended to computer speed,
is known as Moore’s law. It has held remarkably well for 40 years. And these are the two
root causes of the explosion of information technology in the past decades: Moore’s law and
efficient algorithms.

It would appear that Moore’s law provides a disincentive for developing polynomial al-
gorithms. After all, if an algorithm is exponential, why not wait it out until Moore’s law
makes it feasible? But in reality the exact opposite happens: Moore’s law is a huge incen-
tive for developing efficient algorithms, because such algorithms are needed in order to take
advantage of the exponential increase in computer speed.

Here is why. If, for example, an O(2n) algorithm for Boolean satisfiability (SAT) were
given an hour to run, it would have solved instances with 25 variables back in 1975, 31 vari-
ables on the faster computers available in 1985, 38 variables in 1995, and about 45 variables
with today’s machines. Quite a bit of progress—except that each extra variable requires a
year and a half ’s wait, while the appetite of applications (many of which are, ironically, re-
lated to computer design) grows much faster. In contrast, the size of the instances solved
by an O(n) or O(n log n) algorithm would be multiplied by a factor of about 100 each decade.
In the case of an O(n2) algorithm, the instance size solvable in a fixed time would be mul-
tiplied by about 10 each decade. Even an O(n6) algorithm, polynomial yet unappetizing,
would more than double the size of the instances solved each decade. When it comes to the
growth of the size of problems we can attack with an algorithm, we have a reversal: expo-
nential algorithms make polynomially slow progress, while polynomial algorithms advance
exponentially fast! For Moore’s law to be reflected in the world we need efficient algorithms.

As Sissa and Malthus knew very well, exponential expansion cannot be sustained in-
definitely in our finite world. Bacterial colonies run out of food; chips hit the atomic scale.
Moore’s law will stop doubling the speed of our computers within a decade or two. And then
progress will depend on algorithmic ingenuity—or otherwise perhaps on novel ideas such as
quantum computation, explored in Chapter 10.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 249

Satisfiability
SATISFIABILITY, or SAT (recall Exercise 3.28 and Section 5.3), is a problem of great practical
importance, with applications ranging from chip testing and computer design to image analy-
sis and software engineering. It is also a canonical hard problem. Here’s what an instance of
SAT looks like:

(x ∨ y ∨ z) (x ∨ y) (y ∨ z) (z ∨ x) (x ∨ y ∨ z).
This is a Boolean formula in conjunctive normal form (CNF). It is a collection of clauses

(the parentheses), each consisting of the disjunction (logical or, denoted ∨) of several literals,
where a literal is either a Boolean variable (such as x) or the negation of one (such as x).
A satisfying truth assignment is an assignment of false or true to each variable so that
every clause contains a literal whose value is true. The SAT problem is the following: given a
Boolean formula in conjunctive normal form, either find a satisfying truth assignment or else
report that none exists.

In the instance shown previously, setting all variables to true, for example, satisfies every
clause except the last. Is there a truth assignment that satisfies all clauses?

With a little thought, it is not hard to argue that in this particular case no such truth
assignment exists. (Hint: The three middle clauses constrain all three variables to have the
same value.) But how do we decide this in general? Of course, we can always search through
all truth assignments, one by one, but for formulas with n variables, the number of possible
assignments is exponential, 2n.

SAT is a typical search problem. We are given an instance I (that is, some input data
specifying the problem at hand, in this case a Boolean formula in conjunctive normal form),
and we are asked to find a solution S (an object that meets a particular specification, in this
case an assignment that satisfies each clause). If no such solution exists, we must say so.

More specifically, a search problem must have the property that any proposed solution S
to an instance I can be quickly checked for correctness. What does this entail? For one thing,
S must at least be concise (quick to read), with length polynomially bounded by that of I. This
is clearly true in the case of SAT, for which S is an assignment to the variables. To formalize
the notion of quick checking, we will say that there is a polynomial-time algorithm that takes
as input I and S and decides whether or not S is a solution of I. For SAT, this is easy as it just
involves checking whether the assignment specified by S indeed satisfies every clause in I.

Later in this chapter it will be useful to shift our vantage point and to think of this efficient
algorithm for checking proposed solutions as defining the search problem. Thus:

A search problem is specified by an algorithm C that takes two inputs, an instance
I and a proposed solution S, and runs in time polynomial in |I|. We say S is a
solution to I if and only if C(I, S) = true.

Given the importance of the SAT search problem, researchers over the past 50 years have
tried hard to find efficient ways to solve it, but without success. The fastest algorithms we
have are still exponential on their worst-case inputs.

Yet, interestingly, there are two natural variants of SAT for which we do have good algo-
rithms. If all clauses contain at most one positive literal, then the Boolean formula is called

250 Algorithms

Figure 8.1 The optimal traveling salesman tour, shown in bold, has length 18.

4

5

6

3

3 3

2
4

1

2 3

a Horn formula, and a satisfying truth assignment, if one exists, can be found by the greedy
algorithm of Section 5.3. Alternatively, if all clauses have only two literals, then graph the-
ory comes into play, and SAT can be solved in linear time by finding the strongly connected
components of a particular graph constructed from the instance (recall Exercise 3.28). In fact,
in Chapter 9, we’ll see a different polynomial algorithm for this same special case, which is
called 2SAT.

On the other hand, if we are just a little more permissive and allow clauses to contain three
literals, then the resulting problem, known as 3SAT (an example of which we saw earlier), once
again becomes hard to solve!

The traveling salesman problem
In the traveling salesman problem (TSP) we are given n vertices 1, . . . , n and all n(n − 1)/2
distances between them, as well as a budget b. We are asked to find a tour, a cycle that passes
through every vertex exactly once, of total cost b or less—or to report that no such tour exists.
That is, we seek a permutation τ(1), . . . , τ(n) of the vertices such that when they are toured
in this order, the total distance covered is at most b:

dτ(1),τ(2) + dτ(2),τ(3) + · · · + dτ(n),τ(1) ≤ b.

See Figure 8.1 for an example (only some of the distances are shown; assume the rest are very
large).

Notice how we have defined the TSP as a search problem: given an instance, find a tour
within the budget (or report that none exists). But why are we expressing the traveling
salesman problem in this way, when in reality it is an optimization problem, in which the
shortest possible tour is sought? Why dress it up as something else?

For a good reason. Our plan in this chapter is to compare and relate problems. The
framework of search problems is helpful in this regard, because it encompasses optimization
problems like the TSP in addition to true search problems like SAT.

Turning an optimization problem into a search problem does not change its difficulty at all,
because the two versions reduce to one another. Any algorithm that solves the optimization

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 251

TSP also readily solves the search problem: find the optimum tour and if it is within budget,
return it; if not, there is no solution.

Conversely, an algorithm for the search problem can also be used to solve the optimization
problem. To see why, first suppose that we somehow knew the cost of the optimum tour; then
we could find this tour by calling the algorithm for the search problem, using the optimum
cost as the budget. Fine, but how do we find the optimum cost? Easy: By binary search! (See
Exercise 8.1.)

Incidentally, there is a subtlety here: Why do we have to introduce a budget? Isn’t any
optimization problem also a search problem in the sense that we are searching for a solution
that has the property of being optimal? The catch is that the solution to a search problem
should be easy to recognize, or as we put it earlier, polynomial-time checkable. Given a po-
tential solution to the TSP, it is easy to check the properties “is a tour” (just check that each
vertex is visited exactly once) and “has total length≤ b.” But how could one check the property
“is optimal”?

As with SAT, there are no known polynomial-time algorithms for the TSP, despite much
effort by researchers over nearly a century. Of course, there is an exponential algorithm for
solving it, by trying all (n− 1)! tours, and in Section 6.6 we saw a faster, yet still exponential,
dynamic programming algorithm.

The minimum spanning tree (MST) problem, for which we do have efficient algorithms,
provides a stark contrast here. To phrase it as a search problem, we are again given a distance
matrix and a bound b, and are asked to find a tree T with total weight

∑
(i,j)∈T dij ≤ b. The

TSP can be thought of as a tough cousin of the MST problem, in which the tree is not allowed
to branch and is therefore a path.1 This extra restriction on the structure of the tree results
in a much harder problem.

Euler and Rudrata

In the summer of 1735 Leonhard Euler (pronounced “Oiler”), the famous Swiss mathemati-
cian, was walking the bridges of the East Prussian town of Königsberg. After a while, he
noticed in frustration that, no matter where he started his walk, no matter how cleverly he
continued, it was impossible to cross each bridge exactly once. And from this silly ambition,
the field of graph theory was born.

Euler identified at once the roots of the park’s deficiency. First, you turn the map of the
park into a graph whose vertices are the four land masses (two islands, two banks) and whose
edges are the seven bridges:

1Actually the TSP demands a cycle, but one can define an alternative version that seeks a path, and it is not
hard to see that this is just as hard as the TSP itself.

252 Algorithms

Southern bank

Northern bank

Small
island

Big
island

This graph has multiple edges between two vertices—a feature we have not been allowing so
far in this book, but one that is meaningful for this particular problem, since each bridge must
be accounted for separately. We are looking for a path that goes through each edge exactly
once (the path is allowed to repeat vertices). In other words, we are asking this question:
When can a graph be drawn without lifting the pencil from the paper?

The answer discovered by Euler is simple, elegant, and intuitive: If and only if (a) the
graph is connected and (b) every vertex, with the possible exception of two vertices (the start
and final vertices of the walk), has even degree (Exercise 3.26). This is why Königsberg’s park
was impossible to traverse: all four vertices have odd degree.

To put it in terms of our present concerns, let us define a search problem called EULER
PATH: Given a graph, find a path that contains each edge exactly once. It follows from Euler’s
observation, and a little more thinking, that this search problem can be solved in polynomial
time.

Almost a millennium before Euler’s fateful summer in East Prussia, a Kashmiri poet
named Rudrata had asked this question: Can one visit all the squares of the chessboard,
without repeating any square, in one long walk that ends at the starting square and at each
step makes a legal knight move? This is again a graph problem: the graph now has 64 ver-
tices, and two squares are joined by an edge if a knight can go from one to the other in a
single move (that is, if their coordinates differ by 2 in one dimension and by 1 in the other).
See Figure 8.2 for the portion of the graph corresponding to the upper left corner of the board.
Can you find a knight’s tour on your chessboard?

This is a different kind of search problem in graphs: we want a cycle that goes through all
vertices (as opposed to all edges in Euler’s problem), without repeating any vertex. And there
is no reason to stick to chessboards; this question can be asked of any graph. Let us define the
RUDRATA CYCLE search problem to be the following: given a graph, find a cycle that visits
each vertex exactly once—or report that no such cycle exists.2 This problem is ominously
reminiscent of the TSP, and indeed no polynomial algorithm is known for it.

There are two differences between the definitions of the Euler and Rudrata problems. The
first is that Euler’s problem visits all edges while Rudrata’s visits all vertices. But there is

2In the literature this problem is known as the Hamilton cycle problem, after the great Irish mathematician
who rediscovered it in the 19th century.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 253

Figure 8.2 Knight’s moves on a corner of a chessboard.

also the issue that one of them demands a path while the other requires a cycle. Which of
these differences accounts for the huge disparity in computational complexity between the
two problems? It must be the first, because the second difference can be shown to be purely
cosmetic. Indeed, define the RUDRATA PATH problem to be just like RUDRATA CYCLE, except
that the goal is now to find a path that goes through each vertex exactly once. As we will soon
see, there is a precise equivalence between the two versions of the Rudrata problem.

Cuts and bisections
A cut is a set of edges whose removal leaves a graph disconnected. It is often of interest to find
small cuts, and the MINIMUM CUT problem is, given a graph and a budget b, to find a cut with
at most b edges. For example, the smallest cut in Figure 8.3 is of size 3. This problem can be
solved in polynomial time by n− 1 max-flow computations: give each edge a capacity of 1, and
find the maximum flow between some fixed node and every single other node. The smallest
such flow will correspond (via the max-flow min-cut theorem) to the smallest cut. Can you see
why? We’ve also seen a very different, randomized algorithm for this problem (page 150).

In many graphs, such as the one in Figure 8.3, the smallest cut leaves just a singleton
vertex on one side—it consists of all edges adjacent to this vertex. Far more interesting are
small cuts that partition the vertices of the graph into nearly equal-sized sets. More precisely,
the BALANCED CUT problem is this: given a graph with n vertices and a budget b, partition
the vertices into two sets S and T such that |S|, |T | ≥ n/3 and such that there are at most b
edges between S and T . Another hard problem.

Balanced cuts arise in a variety of important applications, such as clustering. Consider
for example the problem of segmenting an image into its constituent components (say, an
elephant standing in a grassy plain with a clear blue sky above). A good way of doing this is
to create a graph with a node for each pixel of the image and to put an edge between nodes
whose corresponding pixels are spatially close together and are also similar in color. A single

254 Algorithms

Figure 8.3 What is the smallest cut in this graph?

object in the image (like the elephant, say) then corresponds to a set of highly connected
vertices in the graph. A balanced cut is therefore likely to divide the pixels into two clusters
without breaking apart any of the primary constituents of the image. The first cut might, for
instance, separate the elephant on the one hand from the sky and from grass on the other. A
further cut would then be needed to separate the sky from the grass.

Integer linear programming
Even though the simplex algorithm is not polynomial time, we mentioned in Chapter 7 that
there is a different, polynomial algorithm for linear programming. Therefore, linear pro-
gramming is efficiently solvable both in practice and in theory. But the situation changes
completely if, in addition to specifying a linear objective function and linear inequalities, we
also constrain the solution (the values for the variables) to be integer. This latter problem
is called INTEGER LINEAR PROGRAMMING (ILP). Let’s see how we might formulate it as a
search problem. We are given a set of linear inequalities Ax ≤ b, where A is an m× n matrix
and b is an m-vector; an objective function specified by an n-vector c; and finally, a goal g (the
counterpart of a budget in maximization problems). We want to find a nonnegative integer
n-vector x such that Ax ≤ b and c · x ≥ g.

But there is a redundancy here: the last constraint c · x ≥ g is itself a linear inequality
and can be absorbed into Ax ≤ b. So, we define ILP to be following search problem: given A

and b, find a nonnegative integer vector x satisfying the inequalities Ax ≤ b, or report that
none exists. Despite the many crucial applications of this problem, and intense interest by
researchers, no efficient algorithm is known for it.

There is a particularly clean special case of ILP that is very hard in and of itself: the goal is
to find a vector x of 0’s and 1’s satisfying Ax = 1, where A is an m×nmatrix with 0−1 entries
and 1 is the m-vector of all 1’s. It should be apparent from the reductions in Section 7.1.4 that
this is indeed a special case of ILP. We call it ZERO-ONE EQUATIONS (ZOE).

We have now introduced a number of important search problems, some of which are fa-
miliar from earlier chapters and for which there are efficient algorithms, and others which
are different in small but crucial ways that make them very hard computational problems. To

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 255

Figure 8.4 A more elaborate matchmaking scenario. Each triple is shown as a triangular-
shaped node joining boy, girl, and pet.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

complete our story we will introduce a few more hard problems, which will play a role later
in the chapter, when we relate the computational difficulty of all these problems. The reader
is invited to skip ahead to Section 8.2 and then return to the definitions of these problems as
required.

Three-dimensional matching
Recall the BIPARTITE MATCHING problem: given a bipartite graph with n nodes on each side
(the boys and the girls), find a set of n disjoint edges, or decide that no such set exists. In
Section 7.3, we saw how to efficiently solve this problem by a reduction to maximum flow.
However, there is an interesting generalization, called 3D MATCHING, for which no polyno-
mial algorithm is known. In this new setting, there are n boys and n girls, but also n pets,
and the compatibilities among them are specified by a set of triples, each containing a boy, a
girl, and a pet. Intuitively, a triple (b, g, p) means that boy b, girl g, and pet p get along well
together. We want to find n disjoint triples and thereby create n harmonious households.

Can you spot a solution in Figure 8.4?

Independent set, vertex cover, and clique
In the INDEPENDENT SET problem (recall Section 6.7) we are given a graph and an integer g,
and the aim is to find g vertices that are independent, that is, no two of which have an edge
between them. Can you find an independent set of three vertices in Figure 8.5? How about
four vertices? We saw in Section 6.7 that this problem can be solved efficiently on trees, but
for general graphs no polynomial algorithm is known.

There are many other search problems about graphs. In VERTEX COVER, for example, the
input is a graph and a budget b, and the idea is to find b vertices that cover (touch) every
edge. Can you cover all edges of Figure 8.5 with seven vertices? With six? (And do you see the

256 Algorithms

Figure 8.5 What is the size of the largest independent set in this graph?

intimate connection to the INDEPENDENT SET problem?)
VERTEX COVER is a special case of SET COVER, which we encountered in Chapter 5. In

that problem, we are given a set E and several subsets of it, S1, . . . , Sm, along with a budget
b. We are asked to select b of these subsets so that their union is E. VERTEX COVER is the
special case in which E consists of the edges of a graph, and there is a subset Si for each
vertex, containing the edges adjacent to that vertex. Can you see why 3D MATCHING is also
a special case of SET COVER?

And finally there is the CLIQUE problem: given a graph and a goal g, find a set of g ver-
tices such that all possible edges between them are present. What is the largest clique in
Figure 8.5?

Longest path
We know the shortest-path problem can be solved very efficiently, but how about the LONGEST
PATH problem? Here we are given a graph G with nonnegative edge weights and two distin-
guished vertices s and t, along with a goal g. We are asked to find a path from s to t with total
weight at least g. Naturally, to avoid trivial solutions we require that the path be simple,
containing no repeated vertices.

No efficient algorithm is known for this problem (which sometimes also goes by the name
of TAXICAB RIP-OFF).

Knapsack and subset sum
Recall the KNAPSACK problem (Section 6.4): we are given integer weights w1, . . . , wn and
integer values v1, . . . , vn for n items. We are also given a weight capacity W and a goal g (the
former is present in the original optimization problem, the latter is added to make it a search
problem). We seek a set of items whose total weight is at most W and whose total value is at
least g. As always, if no such set exists, we should say so.

In Section 6.4, we developed a dynamic programming scheme for KNAPSACK with running

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 257

time O(nW), which we noted is exponential in the input size, since it involves W rather than
logW . And we have the usual exhaustive algorithm as well, which looks at all subsets of
items—all 2n of them. Is there a polynomial algorithm for KNAPSACK? Nobody knows of one.

But suppose that we are interested in the variant of the knapsack problem in which the
integers are coded in unary—for instance, by writing IIIIIIIIIIII for 12. This is admittedly
an exponentially wasteful way to represent integers, but it does define a legitimate problem,
which we could call UNARY KNAPSACK. It follows from our discussion that this somewhat
artificial problem does have a polynomial algorithm.

A different variation: suppose now that each item’s value is equal to its weight (all given in
binary), and to top it off, the goal g is the same as the capacity W . (To adapt the silly break-in
story whereby we first introduced the knapsack problem, the items are all gold nuggets, and
the burglar wants to fill his knapsack to the hilt.) This special case is tantamount to finding
a subset of a given set of integers that adds up to exactly W . Since it is a special case of
KNAPSACK, it cannot be any harder. But could it be polynomial? As it turns out, this problem,
called SUBSET SUM, is also very hard.

At this point one could ask: If SUBSET SUM is a special case that happens to be as hard
as the general KNAPSACK problem, why are we interested in it? The reason is simplicity. In
the complicated calculus of reductions between search problems that we shall develop in this
chapter, conceptually simple problems like SUBSET SUM and 3SAT are invaluable.

8.2 NP-complete problems
Hard problems, easy problems
In short, the world is full of search problems, some of which can be solved efficiently, while
others seem to be very hard. This is depicted in the following table.

Hard problems (NP-complete) Easy problems (in P)
3SAT 2SAT, HORN SAT

TRAVELING SALESMAN PROBLEM MINIMUM SPANNING TREE
LONGEST PATH SHORTEST PATH
3D MATCHING BIPARTITE MATCHING

KNAPSACK UNARY KNAPSACK
INDEPENDENT SET INDEPENDENT SET on trees

INTEGER LINEAR PROGRAMMING LINEAR PROGRAMMING
RUDRATA PATH EULER PATH
BALANCED CUT MINIMUM CUT

This table is worth contemplating. On the right we have problems that can be solved
efficiently. On the left, we have a bunch of hard nuts that have escaped efficient solution over
many decades or centuries.

258 Algorithms

The various problems on the right can be solved by algorithms that are specialized and
diverse: dynamic programming, network flow, graph search, greedy. These problems are easy
for a variety of different reasons.

In stark contrast, the problems on the left are all difficult for the same reason! At their
core, they are all the same problem, just in different disguises! They are all equivalent: as we
shall see in Section 8.3, each of them can be reduced to any of the others—and back.

P and NP
It’s time to introduce some important concepts. We know what a search problem is: its defin-
ing characteristic is that any proposed solution can be quickly checked for correctness, in the
sense that there is an efficient checking algorithm C that takes as input the given instance I
(the data specifying the problem to be solved), as well as the proposed solution S, and outputs
true if and only if S really is a solution to instance I. Moreover the running time of C(I, S)
is bounded by a polynomial in |I|, the length of the instance. We denote the class of all search
problems by NP.

We’ve seen many examples of NP search problems that are solvable in polynomial time.
In such cases, there is an algorithm that takes as input an instance I and has a running time
polynomial in |I|. If I has a solution, the algorithm returns such a solution; and if I has no
solution, the algorithm correctly reports so. The class of all search problems that can be solved
in polynomial time is denoted P. Hence, all the search problems on the right-hand side of the
table are in P.

Why P and NP?
Okay, P must stand for “polynomial.” But why use the initials NP (the common chatroom
abbreviation for “no problem”) to describe the class of search problems, some of which are
terribly hard?

NP stands for “nondeterministic polynomial time,” a term going back to the roots of
complexity theory. Intuitively, it means that a solution to any search problem can be found
and verified in polynomial time by a special (and quite unrealistic) sort of algorithm, called a
nondeterministic algorithm. Such an algorithm has the power of guessing correctly at every
step.

Incidentally, the original definition of NP (and its most common usage to this day) was
not as a class of search problems, but as a class of decision problems: algorithmic questions
that can be answered by yes or no. Example: “Is there a truth assignment that satisfies this
Boolean formula?” But this too reflects a historical reality: At the time the theory of NP-
completeness was being developed, researchers in the theory of computation were interested
in formal languages, a domain in which such decision problems are of central importance.

Are there search problems that cannot be solved in polynomial time? In other words,
is P 6= NP? Most algorithms researchers think so. It is hard to believe that exponential
search can always be avoided, that a simple trick will crack all these hard problems, famously
unsolved for decades and centuries. And there is a good reason for mathematicians to believe

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 259

that P 6= NP—the task of finding a proof for a given mathematical assertion is a search
problem and is therefore in NP (after all, when a formal proof of a mathematical statement is
written out in excruciating detail, it can be checked mechanically, line by line, by an efficient
algorithm). So if P = NP, there would be an efficient method to prove any theorem, thus
eliminating the need for mathematicians! All in all, there are a variety of reasons why it is
widely believed that P 6= NP. However, proving this has turned out to be extremely difficult,
one of the deepest and most important unsolved puzzles of mathematics.

Reductions, again
Even if we accept that P 6= NP, what about the specific problems on the left side of the
table? On the basis of what evidence do we believe that these particular problems have no
efficient algorithm (besides, of course, the historical fact that many clever mathematicians
and computer scientists have tried hard and failed to find any)? Such evidence is provided
by reductions, which translate one search problem into another. What they demonstrate is
that the problems on the left side of the table are all, in some sense, exactly the same problem,
except that they are stated in different languages. What’s more, we will also use reductions to
show that these problems are the hardest search problems in NP—if even one of them has a
polynomial time algorithm, then every problem in NP has a polynomial time algorithm. Thus
if we believe that P 6= NP, then all these search problems are hard.

We defined reductions in Chapter 7 and saw many examples of them. Let’s now specialize
this definition to search problems. A reduction from search problem A to search problem B
is a polynomial-time algorithm f that transforms any instance I of A into an instance f(I) of
B, together with another polynomial-time algorithm h that maps any solution S of f(I) back
into a solution h(S) of I; see the following diagram. If f(I) has no solution, then neither does
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I)
No solution to I

h(S) of I
Solution

h

And now we can finally define the class of the hardest search problems.

A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

260 Algorithms

Figure 8.6 The space NP of all search problems, assuming P 6= NP.

NP−

Increasing difficulty

P complete

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.

This means that once we know a problem A is NP-complete, we can use it to prove that
a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261

Factoring
One last point: we started off this book by introducing another famously hard search problem:
FACTORING, the task of finding all prime factors of a given integer. But the difficulty of
FACTORING is of a different nature than that of the other hard search problems we have just
seen. For example, nobody believes that FACTORING is NP-complete. One major difference
is that, in the case of FACTORING, the definition does not contain the now familiar clause “or
report that none exists.” A number can always be factored into primes.

Another difference (possibly not completely unrelated) is this: as we shall see in Chap-
ter 10, FACTORING succumbs to the power of quantum computation—while SAT, TSP and the
other NP-complete problems do not seem to.

262 Algorithms

Figure 8.7 Reductions between search problems.

3D MATCHING

RUDRATA CYCLESUBSET SUM

TSP

ILP

ZOE

All of NP

SAT

3SAT

VERTEX COVER

INDEPENDENT SET

CLIQUE

8.3 The reductions
We shall now see that the search problems of Section 8.1 can be reduced to one another as
depicted in Figure 8.7. As a consequence, they are all NP-complete.

Before we tackle the specific reductions in the tree, let’s warm up by relating two versions
of the Rudrata problem.

RUDRATA (s, t)-PATH−→RUDRATA CYCLE

Recall the RUDRATA CYCLE problem: given a graph, is there a cycle that passes through each
vertex exactly once? We can also formulate the closely related RUDRATA (s, t)-PATH problem,
in which two vertices s and t are specified, and we want a path starting at s and ending at t
that goes through each vertex exactly once. Is it possible that RUDRATA CYCLE is easier than
RUDRATA (s, t)-PATH? We will show by a reduction that the answer is no.

The reduction maps an instance (G = (V,E), s, t) of RUDRATA (s, t)-PATH into an instance
G′ = (V ′, E′) of RUDRATA CYCLE as follows: G′ is simply G with an additional vertex x and
two new edges {s, x} and {x, t}. For instance:

G G′

s

tt

s

x

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 263

So V ′ = V ∪ {x}, and E ′ = E ∪ {{s, x}, {x, t}}. How do we recover a Rudrata (s, t)-path in G
given any Rudrata cycle in G′? Easy, we just delete the edges {s, x} and {x, t} from the cycle.

Instance:

nodes s, t

G = (V, E)

{s, x}, {x, t}

G′ = (V ′, E′) RUDRATA

CYCLE
and edges {s, x}, {x, t}

No solution

Solution:
pathAdd node x

Solution: cycle

No solution

Delete edges

RUDRATA (s, t)-PATH

To confirm the validity of this reduction, we have to show that it works in the case of either
outcome depicted.

1. When the instance of RUDRATA CYCLE has a solution.

Since the new vertex x has only two neighbors, s and t, any Rudrata cycle in G′ must consec-
utively traverse the edges {t, x} and {x, s}. The rest of the cycle then traverses every other
vertex en route from s to t. Thus deleting the two edges {t, x} and {x, s} from the Rudrata
cycle gives a Rudrata path from s to t in the original graph G.

2. When the instance of RUDRATA CYCLE does not have a solution.

In this case we must show that the original instance of RUDRATA (s, t)-PATH cannot have a
solution either. It is usually easier to prove the contrapositive, that is, to show that if there is
a Rudrata (s, t)-path in G, then there is also a Rudrata cycle in G′. But this is easy: just add
the two edges {t, x} and {x, s} to the Rudrata path to close the cycle.

One last detail, crucial but typically easy to check, is that the pre- and postprocessing
functions take time polynomial in the size of the instance (G, s, t).

It is also possible to go in the other direction and reduce RUDRATA CYCLE to RUDRATA
(s, t)-PATH. Together, these reductions demonstrate that the two Rudrata variants are in
essence the same problem—which is not too surprising, given that their descriptions are al-
most the same. But most of the other reductions we will see are between pairs of problems
that, on the face of it, look quite different. To show that they are essentially the same, our
reductions will have to cleverly translate between them.

3SAT−→INDEPENDENT SET

One can hardly think of two more different problems. In 3SAT the input is a set of clauses,
each with three or fewer literals, for example

(x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y),

and the aim is to find a satisfying truth assignment. In INDEPENDENT SET the input is a
graph and a number g, and the problem is to find a set of g pairwise non-adjacent vertices.
We must somehow relate Boolean logic with graphs!

264 Algorithms

Figure 8.8 The graph corresponding to (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y).

y y y

x z x z xz x

y

Let us think. To form a satisfying truth assignment we must pick one literal from each
clause and give it the value true. But our choices must be consistent: if we choose x in one
clause, we cannot choose x in another. Any consistent choice of literals, one from each clause,
specifies a truth assignment (variables for which neither literal has been chosen can take on
either value).

So, let us represent a clause, say (x∨ y∨ z), by a triangle, with vertices labeled x, y, z. Why
triangle? Because a triangle has its three vertices maximally connected, and thus forces us
to pick only one of them for the independent set. Repeat this construction for all clauses—a
clause with two literals will be represented simply by an edge joining the literals. (A clause
with one literal is silly and can be removed in a preprocessing step, since the value of the
variable is determined.) In the resulting graph, an independent set has to pick at most one
literal from each group (clause). To force exactly one choice from each clause, take the goal g
to be the number of clauses; in our example, g = 4.

All that is missing now is a way to prevent us from choosing opposite literals (that is, both
x and x) in different clauses. But this is easy: put an edge between any two vertices that
correspond to opposite literals. The resulting graph for our example is shown in Figure 8.8.

Let’s recap the construction. Given an instance I of 3SAT, we create an instance (G, g) of
INDEPENDENT SET as follows.

• Graph G has a triangle for each clause (or just an edge, if the clause has two literals),
with vertices labeled by the clause’s literals, and has additional edges between any two
vertices that represent opposite literals.

• The goal g is set to the number of clauses.

Clearly, this construction takes polynomial time. However, recall that for a reduction we
do not just need an efficient way to map instances of the first problem to instances of the
second (the function f in the diagram on page 259), but also a way to reconstruct a solution
to the first instance from any solution of the second (the function h). As always, there are two
things to show.

1. Given an independent set S of g vertices in G, it is possible to efficiently recover a satis-
fying truth assignment to I.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 265

For any variable x, the set S cannot contain vertices labeled both x and x, because any such
pair of vertices is connected by an edge. So assign x a value of true if S contains a vertex
labeled x, and a value of false if S contains a vertex labeled x (if S contains neither, then
assign either value to x). Since S has g vertices, it must have one vertex per clause; this truth
assignment satisfies those particular literals, and thus satisfies all clauses.

2. If graph G has no independent set of size g, then the Boolean formula I is unsatisfiable.

It is usually cleaner to prove the contrapositive, that if I has a satisfying assignment then G
has an independent set of size g. This is easy: for each clause, pick any literal whose value
under the satisfying assignment is true (there must be at least one such literal), and add the
corresponding vertex to S. Do you see why set S must be independent?

SAT−→3SAT

This is an interesting and common kind of reduction, from a problem to a special case of itself.
We want to show that the problem remains hard even if its inputs are restricted somehow—in
the present case, even if all clauses are restricted to have ≤ 3 literals. Such reductions modify
the given instance so as to get rid of the forbidden feature (clauses with ≥ 4 literals) while
keeping the instance essentially the same, in that we can read off a solution to the original
instance from any solution of the modified one.

Here’s the trick for reducing SAT to 3SAT: given an instance I of SAT, use exactly the same
instance for 3SAT, except that any clause with more than three literals, (a1 ∨ a2 ∨ · · · ∨ ak)
(where the ai’s are literals and k > 3), is replaced by a set of clauses,

(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) (y2 ∨ a4 ∨ y3) · · · (yk−3 ∨ ak−1 ∨ ak),

where the yi’s are new variables. Call the resulting 3SAT instance I ′. The conversion from I
to I ′ is clearly polynomial time.

Why does this reduction work? I ′ is equivalent to I in terms of satisfiability, because for
any assignment to the ai’s,

{
(a1 ∨ a2 ∨ · · · ∨ ak)

is satisfied

}
⇐⇒





there is a setting of the yi’s for which
(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) · · · (yk−3 ∨ ak−1 ∨ ak)

are all satisfied





To see this, first suppose that the clauses on the right are all satisfied. Then at least
one of the literals a1, . . . , ak must be true—otherwise y1 would have to be true, which would
in turn force y2 to be true, and so on, eventually falsifying the last clause. But this means
(a1 ∨ a2 ∨ · · · ∨ ak) is also satisfied.

Conversely, if (a1 ∨ a2 ∨ · · · ∨ ak) is satisfied, then some ai must be true. Set y1, . . . , yi−2 to
true and the rest to false. This ensures that the clauses on the right are all satisfied.

Thus, any instance of SAT can be transformed into an equivalent instance of 3SAT. In fact,
3SAT remains hard even under the further restriction that no variable appears in more than

266 Algorithms

Figure 8.9 S is a vertex cover if and only if V − S is an independent set.

S

three clauses. To show this, we must somehow get rid of any variable that appears too many
times.

Here’s the reduction from 3SAT to its constrained version. Suppose that in the 3SAT in-
stance, variable x appears in k > 3 clauses. Then replace its first appearance by x1, its second
appearance by x2, and so on, replacing each of its k appearances by a different new variable.
Finally, add the clauses

(x1 ∨ x2) (x2 ∨ x3) · · · (xk ∨ x1).

And repeat for every variable that appears more than three times.
It is easy to see that in the new formula no variable appears more than three times

(and in fact, no literal appears more than twice). Furthermore, the extra clauses involv-
ing x1, x2, . . . , xk constrain these variables to have the same value; do you see why? Hence the
original instance of 3SAT is satisfiable if and only if the constrained instance is satisfiable.

INDEPENDENT SET−→VERTEX COVER

Some reductions rely on ingenuity to relate two very different problems. Others simply record
the fact that one problem is a thin disguise of another. To reduce INDEPENDENT SET to
VERTEX COVER we just need to notice that a set of nodes S is a vertex cover of graph G =
(V,E) (that is, S touches every edge in E) if and only if the remaining nodes, V − S, are an
independent set of G (Figure 8.9).

Therefore, to solve an instance (G, g) of INDEPENDENT SET, simply look for a vertex cover
of G with |V | − g nodes. If such a vertex cover exists, then take all nodes not in it. If no such
vertex cover exists, then G cannot possibly have an independent set of size g.

INDEPENDENT SET−→CLIQUE

INDEPENDENT SET and CLIQUE are also easy to reduce to one another. Define the complement
of a graph G = (V,E) to be G = (V,E), where E contains precisely those unordered pairs of
vertices that are not in E. Then a set of nodes S is an independent set of G if and only if S is
a clique of G. To paraphrase, these nodes have no edges between them in G if and only if they
have all possible edges between them in G.

Therefore, we can reduce INDEPENDENT SET to CLIQUE by mapping an instance (G, g)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 267

of INDEPENDENT SET to the corresponding instance (G, g) of CLIQUE; the solution to both is
identical.

3SAT−→3D MATCHING

Again, two very different problems. We must reduce 3SAT to the problem of finding, among
a set of boy-girl-pet triples, a subset that contains each boy, each girl, and each pet exactly
once. In short, we must design sets of boy-girl-pet triples that somehow behave like Boolean
variables and gates!

Consider the following set of four triples, each represented by a triangular node joining a
boy, girl, and pet:

p1

p3

g0

g1 b1

b0

p0 p2

Suppose that the two boys b0 and b1 and the two girls g0 and g1 are not involved in any other
triples. (The four pets p0, . . . , p3 will of course belong to other triples as well; for otherwise the
instance would trivially have no solution.) Then any matching must contain either the two
triples (b0, g1, p0), (b1, g0, p2) or the two triples (b0, g0, p1), (b1, g1, p3), because these are the only
ways in which these two boys and girls can find any match. Therefore, this “gadget” has two
possible states: it behaves like a Boolean variable!

To then transform an instance of 3SAT to one of 3D MATCHING, we start by creating a copy
of the preceding gadget for each variable x. Call the resulting nodes px1, bx0, gx1, and so on.
The intended interpretation is that boy bx0 is matched with girl gx1 if x = true, and with girl
gx0 if x = false.

Next we must create triples that somehow mimic clauses. For each clause, say c = (x∨y∨z),
introduce a new boy bc and a new girl gc. They will be involved in three triples, one for each
literal in the clause. And the pets in these triples must reflect the three ways whereby the
clause can be satisfied: (1) x = true, (2) y = false, (3) z = true. For (1), we have the triple
(bc, gc, px1), where px1 is the pet p1 in the gadget for x. Here is why we chose p1: if x = true,
then bx0 is matched with gx1 and bx1 with gx0, and so pets px0 and px2 are taken. In which case
bc and gc can be matched with px1. But if x = false, then px1 and px3 are taken, and so gc and
bc cannot be accommodated this way. We do the same thing for the other two literals of the

268 Algorithms

clause, which yield triples involving bc and gc with either py0 or py2 (for the negated variable
y) and with either pz1 or pz3 (for variable z).

We have to make sure that for every occurrence of a literal in a clause c there is a different
pet to match with bc and gc. But this is easy: by an earlier reduction we can assume that no
literal appears more than twice, and so each variable gadget has enough pets, two for negated
occurrences and two for unnegated.

The reduction now seems complete: from any matching we can recover a satisfying truth
assignment by simply looking at each variable gadget and seeing with which girl bx0 was
matched. And from any satisfying truth assignment we can match the gadget corresponding
to each variable x so that triples (bx0, gx1, px0) and (bx1, gx0, px2) are chosen if x = true and
triples (bx0, gx0, px1) and (bx1, gx1, px3) are chosen if x = false; and for each clause c match bc

and gc with the pet that corresponds to one of its satisfying literals.
But one last problem remains: in the matching defined at the end of the last paragraph,

some pets may be left unmatched. In fact, if there are n variables and m clauses, then exactly
2n − m pets will be left unmatched (you can check that this number is sure to be positive,
because we have at most three occurrences of every variable, and at least two literals in every
clause). But this is easy to fix: Add 2n − m new boy-girl couples that are “generic animal-
lovers,” and match them by triples with all the pets!

3D MATCHING−→ZOE
Recall that in ZOE we are given an m×n matrix A with 0− 1 entries, and we must find a 0− 1
vector x = (x1, . . . , xn) such that the m equations

Ax = 1

are satisfied, where by 1 we denote the column vector of all 1’s. How can we express the 3D
MATCHING problem in this framework?

ZOE and ILP are very useful problems precisely because they provide a format in which
many combinatorial problems can be expressed. In such a formulation we think of the 0 − 1
variables as describing a solution, and we write equations expressing the constraints of the
problem.

For example, here is how we express an instance of 3D MATCHING (m boys, m girls, m
pets, and n boy-girl-pet triples) in the language of ZOE. We have 0 − 1 variables x1, . . . , xn,
one per triple, where xi = 1 means that the ith triple is chosen for the matching, and xi = 0
means that it is not chosen.

Now all we have to do is write equations stating that the solution described by the xi’s is
a legitimate matching. For each boy (or girl, or pet), suppose that the triples containing him
(or her, or it) are those numbered j1, j2, . . . , jk; the appropriate equation is then

xj1 + xj2 + · · · + xjk
= 1,

which states that exactly one of these triples must be included in the matching. For example,
here is the A matrix for an instance of 3D MATCHING we saw earlier.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 269

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary

A =




1 0 0 0 0
0 0 0 1 1
0 1 1 0 0
1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 0 1 1 0
0 1 0 0 0




The five columns of A correspond to the five triples, while the nine rows are for Al, Bob, Chet,
Alice, Beatrice, Carol, Armadillo, Bobcat, and Canary, respectively.

It is straightforward to argue that solutions to the two instances translate back and forth.

ZOE−→SUBSET SUM

This is a reduction between two special cases of ILP: one with many equations but only 0 −
1 coefficients, and the other with a single equation but arbitrary integer coefficients. The
reduction is based on a simple and time-honored idea: 0− 1 vectors can encode numbers!

For example, given this instance of ZOE:

A =




1 0 0 0
0 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0



,

we are looking for a set of columns of A that, added together, make up the all-1’s vector. But
if we think of the columns as binary integers (read from top to bottom), we are looking for a
subset of the integers 18, 5, 4, 8 that add up to the binary integer 111112 = 31. And this is an
instance of SUBSET SUM. The reduction is complete!

Except for one detail, the one that usually spoils the close connection between 0 − 1 vec-
tors and binary integers: carry. Because of carry, 5-bit binary integers can add up to 31 (for
example, 5 + 6 + 20 = 31 or, in binary, 001012 + 001102 + 101002 = 111112) even when the sum
of the corresponding vectors is not (1, 1, 1, 1, 1). But this is easy to fix: Think of the column
vectors not as integers in base 2, but as integers in base n+ 1—one more than the number of
columns. This way, since at most n integers are added, and all their digits are 0 and 1, there
can be no carry, and our reduction works.

ZOE−→ILP
3SAT is a special case of SAT—or, SAT is a generalization of 3SAT. By special case we mean
that the instances of 3SAT are a subset of the instances of SAT (in particular, the ones with
no long clauses), and the definition of solution is the same in both problems (an assignment

270 Algorithms

Figure 8.10 Rudrata cycle with paired edges: C = {(e1, e3), (e5, e6), (e4, e5), (e3, e7), (e3, e8)}.

e7

e1

e5

e4

e8

e3

e2

e6

satisfying all clauses). Consequently, there is a reduction from 3SAT to SAT, in which the input
undergoes no transformation, and the solution to the target instance is also kept unchanged.
In other words, functions f and h from the reduction diagram (on page 259) are both the
identity.

This sounds trivial enough, but it is a very useful and common way of establishing that
a problem is NP-complete: Simply notice that it is a generalization of a known NP-complete
problem. For example, the SET COVER problem is NP-complete because it is a generaliza-
tion of VERTEX COVER (and also, incidentally, of 3D MATCHING). See Exercise 8.10 for more
examples.

Often it takes a little work to establish that one problem is a special case of another. The
reduction from ZOE to ILP is a case in point. In ILP we are looking for an integer vector x

that satisfies Ax ≤ b, for given matrix A and vector b. To write an instance of ZOE in this
precise form, we need to rewrite each equation of the ZOE instance as two inequalities (recall
the transformations of Section 7.1.4), and to add for each variable xi the inequalities xi ≤ 1
and −xi ≤ 0.

ZOE−→RUDRATA CYCLE

In the RUDRATA CYCLE problem we seek a cycle in a graph that visits every vertex exactly
once. We shall prove it NP-complete in two stages: first we will reduce ZOE to a generalization
of RUDRATA CYCLE, called RUDRATA CYCLE WITH PAIRED EDGES, and then we shall see how
to get rid of the extra features of that problem and reduce it to the plain RUDRATA CYCLE
problem.

In an instance of RUDRATA CYCLE WITH PAIRED EDGES we are given a graph G = (V,E)
and a set C ⊆ E × E of pairs of edges. We seek a cycle that (1) visits all vertices once, like
a Rudrata cycle should, and (2) for every pair of edges (e, e′) in C, traverses either edge e or
edge e′—exactly one of them. In the simple example of Figure 8.10 a solution is shown in bold.
Notice that we allow two or more parallel edges between two nodes—a feature that doesn’t

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 271

Figure 8.11 Reducing ZOE to RUDRATA CYCLE WITH PAIRED EDGES.

variablesequations

make sense in most graph problems—since now the different copies of an edge can be paired
with other copies of edges in ways that do make a difference.

Now for the reduction of ZOE to RUDRATA CYCLE WITH PAIRED EDGES. Given an instance
of ZOE, Ax = 1 (where A is anm×n matrix with 0−1 entries, and thus describes m equations
in n variables), the graph we construct has the very simple structure shown in Figure 8.11: a
cycle that connectsm+n collections of parallel edges. For each variable xi we have two parallel
edges (corresponding to xi = 1 and xi = 0). And for each equation xj1 + · · ·+ xjk

= 1 involving
k variables we have k parallel edges, one for every variable appearing in the equation. This
is the whole graph. Evidently, any Rudrata cycle in this graph must traverse the m + n
collections of parallel edges one by one, choosing one edge from each collection. This way, the
cycle “chooses” for each variable a value—0 or 1—and, for each equation, a variable appearing
in it.

The whole reduction can’t be this simple, of course. The structure of the matrix A (and
not just its dimensions) must be reflected somewhere, and there is one place left: the set C of
pairs of edges such that exactly one edge in each pair is traversed. For every equation (recall
there are m in total), and for every variable xi appearing in it, we add to C the pair (e, e′)
where e is the edge corresponding to the appearance of xi in that particular equation (on the
left-hand side of Figure 8.11), and e′ is the edge corresponding to the variable assignment
xi = 0 (on the right side of the figure). This completes the construction.

Take any solution of this instance of RUDRATA CYCLE WITH PAIRED EDGES. As discussed
before, it picks a value for each variable and a variable for every equation. We claim that the
values thus chosen are a solution to the original instance of ZOE. If a variable xi has value 1,
then the edge xi = 0 is not traversed, and thus all edges associated with xi on the equation

272 Algorithms

side must be traversed (since they are paired in C with the xi = 0 edge). So, in each equation
exactly one of the variables appearing in it has value 1—which is the same as saying that all
equations are satisfied. The other direction is straightforward as well: from a solution to the
instance of ZOE one easily obtains an appropriate Rudrata cycle.
Getting Rid of the Edge Pairs. So far we have a reduction from ZOE to RUDRATA CYCLE
WITH PAIRED EDGES; but we are really interested in RUDRATA CYCLE, which is a special case
of the problem with paired edges: the one in which the set of pairs C is empty. To accomplish
our goal, we need, as usual, to find a way of getting rid of the unwanted feature—in this case
the edge pairs.

Consider the graph shown in Figure 8.12, and suppose that it is a part of a larger graph
G in such a way that only the four endpoints a, b, c, d touch the rest of the graph. We claim
that this graph has the following important property: in any Rudrata cycle of G the subgraph
shown must be traversed in one of the two ways shown in bold in Figure 8.12(b) and (c). Here
is why. Suppose that the cycle first enters the subgraph from vertex a continuing to f . Then
it must continue to vertex g, because g has degree 2 and so it must be visited immediately
after one of its adjacent nodes is visited—otherwise there is no way to include it in the cycle.
Hence we must go on to node h, and here we seem to have a choice. We could continue on to
j, or return to c. But if we take the second option, how are we going to visit the rest of the
subgraph? (A Rudrata cycle must leave no vertex unvisited.) It is easy to see that this would
be impossible, and so from h we have no choice but to continue to j and from there to visit the
rest of the graph as shown in Figure 8.12(b). By symmetry, if the Rudrata cycle enters this
subgraph at c, it must traverse it as in Figure 8.12(c). And these are the only two ways.

But this property tells us something important: this gadget behaves just like two edges
{a, b} and {c, d} that are paired up in the RUDRATA CYCLE WITH PAIRED EDGES problem (see
Figure 8.12(d)).

The rest of the reduction is now clear: to reduce RUDRATA CYCLE WITH PAIRED EDGES to
RUDRATA CYCLE we go through the pairs in C one by one. To get rid of each pair ({a, b}, {c, d})
we replace the two edges with the gadget in Figure 8.12(a). For any other pair in C that
involves {a, b}, we replace the edge {a, b} with the new edge {a, f}, where f is from the gadget:
the traversal of {a, f} is from now on an indication that edge {a, b} in the old graph would
be traversed. Similarly, {c, h} replaces {c, d}. After |C| such replacements (performed in
polynomial time, since each replacement adds only 12 vertices to the graph) we are done,
and the Rudrata cycles in the resulting graph will be in one-to-one correspondence with the
Rudrata cycles in the original graph that conform to the constraints in C.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 273

Figure 8.12 A gadget for enforcing paired behavior.

(a)

a

c

f m s
b

d
qpjh

g

l

k n r

(b)
a

c

b

d

(c)
a

c

b

d

(d)
a

c

b

d
C = {({a, b}, {c, d})}

274 Algorithms

RUDRATA CYCLE−→TSP
Given a graph G = (V,E), construct the following instance of the TSP: the set of cities is the
same as V , and the distance between cities u and v is 1 if {u, v} is an edge of G and 1 + α
otherwise, for some α > 1 to be determined. The budget of the TSP instance is equal to the
number of nodes, |V |.

It is easy to see that if G has a Rudrata cycle, then the same cycle is also a tour within the
budget of the TSP instance; and that conversely, if G has no Rudrata cycle, then there is no
solution: the cheapest possible TSP tour has cost at least n+ α (it must use at least one edge
of length 1+α, and the total length of all n−1 others is at least n−1). Thus RUDRATA CYCLE
reduces to TSP.

In this reduction, we introduced the parameter α because by varying it, we can obtain two
interesting results. If α = 1, then all distances are either 1 or 2, and so this instance of the
TSP satisfies the triangle inequality: if i, j, k are cities, then dij + djk ≥ dik (proof: a + b ≥ c
holds for any numbers 1 ≤ a, b, c ≤ 2). This is a special case of the TSP which is of practical
importance and which, as we shall see in Chapter 9, is in a certain sense easier, because it
can be efficiently approximated.

If on the other hand α is large, then the resulting instance of the TSP may not satisfy the
triangle inequality, but has another important property: either it has a solution of cost n or
less, or all its solutions have cost at least n+ α (which now can be arbitrarily larger than n).
There can be nothing in between! As we shall see in Chapter 9, this important gap property
implies that, unless P = NP, no approximation algorithm is possible.

ANY PROBLEM IN NP−→SAT

We have reduced SAT to the various search problems in Figure 8.7. Now we come full circle
and argue that all these problems—and in fact all problems in NP—reduce to SAT.

In particular, we shall show that all problems in NP can be reduced to a generalization
of SAT which we call CIRCUIT SAT. In CIRCUIT SAT we are given a (Boolean) circuit (see
Figure 8.13, and recall Section 7.7), a dag whose vertices are gates of five different types:
• AND gates and OR gates have indegree 2.

• NOT gates have indegree 1.

• Known input gates have no incoming edges and are labeled false or true.

• Unknown input gates have no incoming edges and are labeled “?”.
One of the sinks of the dag is designated as the output gate.

Given an assignment of values to the unknown inputs, we can evaluate the gates of the
circuit in topological order, using the rules of Boolean logic (such as false ∨ true = true),
until we obtain the value at the output gate. This is the value of the circuit for the particular
assignment to the inputs. For instance, the circuit in Figure8.13 evaluates to false under
the assignment true,false,true (from left to right).

CIRCUIT SAT is then the following search problem: Given a circuit, find a truth assignment
for the unknown inputs such that the output gate evaluates to true, or report that no such

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 275

Figure 8.13 An instance of CIRCUIT SAT.

true

AND

NOT

AND

OR

OR

? ?

output

?

AND

assignment exists. For example, if presented with the circuit in Figure 8.13 we could have
returned the assignment (false,true,true) because, if we substitute these values to the
unknown inputs (from left to right), the output becomes true.

CIRCUIT SAT is a generalization of SAT. To see why, notice that SAT asks for a satisfying
truth assignment for a circuit that has this simple structure: a bunch of AND gates at the
top join the clauses, and the result of this big AND is the output. Each clause is the OR of its
literals. And each literal is either an unknown input gate or the NOT of one. There are no
known input gates.

Going in the other direction, CIRCUIT SAT can also be reduced to SAT. Here is how we can
rewrite any circuit in conjunctive normal form (the AND of clauses): for each gate g in the
circuit we create a variable g, and we model the effect of the gate using a few clauses:

Gate g
g g

g

g

AND NOTOR

h1 h1h2 h2 h

falsetrue

(g) (g)

(g ∨ h2)

(g ∨ h1)

(g ∨ h1 ∨ h2)

(g ∨ h1)

(g ∨ h2)

(g ∨ h)
(g ∨ h)

(g ∨ h1 ∨ h2)

(Do you see that these clauses do, in fact, force exactly the desired effect?) And to finish up,
if g is the output gate, we force it to be true by adding the clause (g). The resulting instance

276 Algorithms

of SAT is equivalent to the given instance of CIRCUIT SAT: the satisfying truth assignments of
this conjunctive normal form are in one-to-one correspondence with those of the circuit.

Now that we know CIRCUIT SAT reduces to SAT, we turn to our main job, showing that all
search problems reduce to CIRCUIT SAT. So, suppose that A is a problem in NP. We must
discover a reduction from A to CIRCUIT SAT. This sounds very difficult, because we know
almost nothing about A!

All we know about A is that it is a search problem, so we must put this knowledge to work.
The main feature of a search problem is that any solution to it can quickly be checked: there
is an algorithm C that checks, given an instance I and a proposed solution S, whether or not
S is a solution of I. Moreover, C makes this decision in time polynomial in the length of I (we
can assume that S is itself encoded as a binary string, and we know that the length of this
string is polynomial in the length of I).

Recall now our argument in Section 7.7 that any polynomial algorithm can be rendered
as a circuit, whose input gates encode the input to the algorithm. Naturally, for any input
length (number of input bits) the circuit will be scaled to the appropriate number of inputs,
but the total number of gates of the circuit will be polynomial in the number of inputs. If the
polynomial algorithm in question solves a problem that requires a yes or no answer (as is the
situation with C: “Does S encode a solution to the instance encoded by I?”), then this answer
is given at the output gate.

We conclude that, given any instance I of problem A, we can construct in polynomial time
a circuit whose known inputs are the bits of I, and whose unknown inputs are the bits of S,
such that the output is true if and only if the unknown inputs spell a solution S of I. In other
words, the satisfying truth assignments to the unknown inputs of the circuit are in one-to-one
correspondence with the solutions of instance I of A. The reduction is complete.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 277

Unsolvable problems
At least an NP-complete problem can be solved by some algorithm—the trouble is that this
algorithm will be exponential. But it turns out there are perfectly decent computational
problems for which no algorithms exist at all!

One famous problem of this sort is an arithmetical version of SAT. Given a polynomial
equation in many variables, perhaps

x3yz + 2y4z2 − 7xy5z = 6,

are there integer values of x, y, z that satisfy it? There is no algorithm that solves this
problem. No algorithm at all, polynomial, exponential, doubly exponential, or worse! Such
problems are called unsolvable.

The first unsolvable problem was discovered in 1936 by Alan M. Turing, then a student
of mathematics at Cambridge, England.] When Turing came up with it, there were no
computers or programming languages (in fact, it can be argued that these things came about
later exactly because this brilliant thought occurred to Turing). But today we can state it in
familiar terms.

Suppose that you are given a program in your favorite programming language, along
with a particular input. Will the program ever terminate, once started on this input? This
is a very reasonable question. Many of us would be ecstatic if we had an algorithm, call it
terminates(p,x), that took as input a file containing a program p, and a file of data x,
and after grinding away, finally told us whether or not p would ever stop if started on x.

But how would you go about writing the program terminates? (If you haven’t seen this
before, it’s worth thinking about it for a while, to appreciate the difficulty of writing such an
“universal infinite-loop detector.”)

Well, you can’t. Such an algorithm does not exist!
And here is the proof: Suppose we actually had such a program terminates(p,x).

Then we could use it as a subroutine of the following evil program:
function paradox(z:file)
1: if terminates(z,z) goto 1

Notice what paradox does: it terminates if and only if program z does not terminate
when given its own code as input.

You should smell trouble. What if we put this program in a file named paradox and we
executed paradox(paradox)? Would this execution ever stop? Or not? Neither answer is
possible. Since we arrived at this contradiction by assuming that there is an algorithm for
telling whether programs terminate, we must conclude that this problem cannot be solved
by any algorithm.

By the way, all this tells us something important about programming: It will never be
automated, it will forever depend on discipline, ingenuity, and hackery. We now know that
you can’t tell whether a program has an infinite loop. But can you tell if it has a buffer
overrun? Do you see how to use the unsolvability of the “halting problem” to show that this,
too, is unsolvable?

278 Algorithms

Exercises
8.1. Optimization versus search. Recall the traveling salesman problem:

TSP
Input: A matrix of distances; a budget b
Output: A tour which passes through all the cities and has length ≤ b, if such a tour
exists.

The optimization version of this problem asks directly for the shortest tour.

TSP-OPT
Input: A matrix of distances
Output: The shortest tour which passes through all the cities.

Show that if TSP can be solved in polynomial time, then so can TSP-OPT.
8.2. Search versus decision. Suppose you have a procedure which runs in polynomial time and tells

you whether or not a graph has a Rudrata path. Show that you can use it to develop a polynomial-
time algorithm for RUDRATA PATH (which returns the actual path, if it exists).

8.3. STINGY SAT is the following problem: given a set of clauses (each a disjunction of literals) and
an integer k, find a satisfying assignment in which at most k variables are true, if such an
assignment exists. Prove that STINGY SAT is NP-complete.

8.4. Consider the CLIQUE problem restricted to graphs in which every vertex has degree at most 3.
Call this problem CLIQUE-3.

(a) Prove that CLIQUE-3 is in NP.
(b) What is wrong with the following proof of NP-completeness for CLIQUE-3?

We know that the CLIQUE problem in general graphs is NP-complete, so it is enough to
present a reduction from CLIQUE-3 to CLIQUE. Given a graphG with vertices of degree≤ 3,
and a parameter g, the reduction leaves the graph and the parameter unchanged: clearly
the output of the reduction is a possible input for the CLIQUE problem. Furthermore, the
answer to both problems is identical. This proves the correctness of the reduction and,
therefore, the NP-completeness of CLIQUE-3.

(c) It is true that the VERTEX COVER problem remains NP-complete even when restricted to
graphs in which every vertex has degree at most 3. Call this problem VC-3. What is wrong
with the following proof of NP-completeness for CLIQUE-3?
We present a reduction from VC-3 to CLIQUE-3. Given a graphG = (V,E) with node degrees
bounded by 3, and a parameter b, we create an instance of CLIQUE-3 by leaving the graph
unchanged and switching the parameter to |V | − b. Now, a subset C ⊆ V is a vertex cover
in G if and only if the complementary set V − C is a clique in G. Therefore G has a vertex
cover of size ≤ b if and only if it has a clique of size ≥ |V | − b. This proves the correctness of
the reduction and, consequently, the NP-completeness of CLIQUE-3.

(d) Describe an O(|V |4) algorithm for CLIQUE-3.

8.5. Give a simple reduction from 3D MATCHING to SAT, and another from RUDRATA CYCLE to SAT.
(Hint: In the latter case you may use variables xij whose intuitive meaning is “vertex i is the
jth vertex of the Hamilton cycle”; you then need to write clauses that express the constraints of
the problem.)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 279

8.6. On page 266 we saw that 3SAT remains NP-complete even when restricted to formulas in which
each literal appears at most twice.

(a) Show that if each literal appears at most once, then the problem is solvable in polynomial
time.

(b) Show that INDEPENDENT SET remains NP-complete even in the special case when all the
nodes in the graph have degree at most 4.

8.7. Consider a special case of 3SAT in which all clauses have exactly three literals, and each variable
appears at most three times. Show that this problem can be solved in polynomial time. (Hint:
create a bipartite graph with clauses on the left, variables on the right, and edges whenever a
variable appears in a clause. Use Exercise 7.30 to show that this graph has a matching.)

8.8. In the EXACT 4SAT problem, the input is a set of clauses, each of which is a disjunction of exactly
four literals, and such that each variable occurs at most once in each clause. The goal is to find
a satisfying assignment, if one exists. Prove that EXACT 4SAT is NP-complete.

8.9. In the HITTING SET problem, we are given a family of sets {S1, S2, . . . , Sn} and a budget b, and
we wish to find a set H of size ≤ b which intersects every Si, if such an H exists. In other words,
we want H ∩ Si 6= ∅ for all i.
Show that HITTING SET is NP-complete.

8.10. Proving NP-completeness by generalization. For each of the problems below, prove that it is NP-
complete by showing that it is a generalization of some NP-complete problem we have seen in
this chapter.

(a) SUBGRAPH ISOMORPHISM: Given as input two undirected graphs G and H , determine
whether G is a subgraph of H (that is, whether by deleting certain vertices and edges of H
we obtain a graph that is, up to renaming of vertices, identical to G), and if so, return the
corresponding mapping of V (G) into V (H).

(b) LONGEST PATH: Given a graph G and an integer g, find in G a simple path of length g.
(c) MAX SAT: Given a CNF formula and an integer g, find a truth assignment that satisfies at

least g clauses.
(d) DENSE SUBGRAPH: Given a graph and two integers a and b, find a set of a vertices of G

such that there are at least b edges between them.
(e) SPARSE SUBGRAPH: Given a graph and two integers a and b, find a set of a vertices of G

such that there are at most b edges between them.
(f) SET COVER. (This problem generalizes two known NP-complete problems.)
(g) RELIABLE NETWORK: We are given two n× n matrices, a distance matrix dij and a connec-

tivity requirement matrix rij , as well as a budget b; we must find a graphG = ({1, 2, . . . , n}, E)
such that (1) the total cost of all edges is b or less and (2) between any two distinct vertices
i and j there are rij vertex-disjoint paths. (Hint: Suppose that all dij ’s are 1 or 2, b = n, and
all rij ’s are 2. Which well known NP-complete problem is this?)

8.11. There are many variants of Rudrata’s problem, depending on whether the graph is undirected or
directed, and whether a cycle or path is sought. Reduce the DIRECTED RUDRATA PATH problem
to each of the following.

(a) The (undirected) RUDRATA PATH problem.

280 Algorithms

(b) The undirected RUDRATA (s, t)-PATH problem, which is just like RUDRATA PATH except
that the endpoints of the path are specified in the input.

8.12. The k-SPANNING TREE problem is the following.

Input: An undirected graph G = (V,E)

Output: A spanning tree of G in which each node has degree ≤ k, if such a tree exists.

Show that for any k ≥ 2:

(a) k-SPANNING TREE is a search problem.
(b) k-SPANNING TREE is NP-complete. (Hint: Start with k = 2 and consider the relation

between this problem and RUDRATA PATH.)

8.13. Determine which of the following problems are NP-complete and which are solvable in polyno-
mial time. In each problem you are given an undirected graph G = (V,E), along with:

(a) A set of nodes L ⊆ V , and you must find a spanning tree such that its set of leaves includes
the set L.

(b) A set of nodes L ⊆ V , and you must find a spanning tree such that its set of leaves is
precisely the set L.

(c) A set of nodes L ⊆ V , and you must find a spanning tree such that its set of leaves is
included in the set L.

(d) An integer k, and you must find a spanning tree with k or fewer leaves.
(e) An integer k, and you must find a spanning tree with k or more leaves.
(f) An integer k, and you must find a spanning tree with exactly k leaves.

(Hint: All the NP-completeness proofs are by generalization, except for one.)
8.14. Prove that the following problem is NP-complete: given an undirected graph G = (V,E) and an

integer k, return a clique of size k as well as an independent set of size k, provided both exist.
8.15. Show that the following problem is NP-complete.

MAXIMUM COMMON SUBGRAPH
Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2); a budget b.
Output: Two set of nodes V ′

1 ⊆ V1 and V ′
2 ⊆ V2 whose deletion leaves at least b nodes

in each graph, and makes the two graphs identical.

8.16. We are feeling experimental and want to create a new dish. There are various ingredients we
can choose from and we’d like to use as many of them as possible, but some ingredients don’t
go well with others. If there are n possible ingredients (numbered 1 to n), we write down an
n × n matrix giving the discord between any pair of ingredients. This discord is a real number
between 0.0 and 1.0, where 0.0 means “they go together perfectly” and 1.0 means “they really
don’t go together.” Here’s an example matrix when there are five possible ingredients.

1 2 3 4 5
1 0.0 0.4 0.2 0.9 1.0
2 0.4 0.0 0.1 1.0 0.2
3 0.2 0.1 0.0 0.8 0.5
4 0.9 1.0 0.8 0.0 0.2
5 1.0 0.2 0.5 0.2 0.0

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 281

In this case, ingredients 2 and 3 go together pretty well whereas 1 and 5 clash badly. Notice that
this matrix is necessarily symmetric; and that the diagonal entries are always 0.0. Any set of
ingredients incurs a penalty which is the sum of all discord values between pairs of ingredients.
For instance, the set of ingredients {1, 3, 5} incurs a penalty of 0.2 + 1.0 + 0.5 = 1.7. We want this
penalty to be small.

EXPERIMENTAL CUISINE
Input: n, the number of ingredients to choose from; D, the n×n “discord” matrix; some
number p ≥ 0

Output: The maximum number of ingredients we can choose with penalty ≤ p.

Show that if EXPERIMENTAL CUISINE is solvable in polynomial time, then so is 3SAT.

8.17. Show that for any problem Π in NP, there is an algorithm which solves Π in time O(2p(n)), where
n is the size of the input instance and p(n) is a polynomial (which may depend on Π).

8.18. Show that if P = NP then the RSA cryptosystem (Section 1.4.2) can be broken in polynomial
time.

8.19. A kite is a graph on an even number of vertices, say 2n, in which n of the vertices form a clique
and the remaining n vertices are connected in a “tail” that consists of a path joined to one of the
vertices of the clique. Given a graph and a goal g, the KITE problem asks for a subgraph which
is a kite and which contains 2g nodes. Prove that KITE is NP-complete.

8.20. In an undirected graph G = (V,E), we say D ⊆ V is a dominating set if every v ∈ V is either
in D or adjacent to at least one member of D. In the DOMINATING SET problem, the input is a
graph and a budget b, and the aim is to find a dominating set in the graph of size at most b, if
one exists. Prove that this problem is NP-complete.

8.21. Sequencing by hybridization. One experimental procedure for identifying a new DNA sequence
repeatedly probes it to determine which k-mers (substrings of length k) it contains. Based on
these, the full sequence must then be reconstructed.
Let’s now formulate this as a combinatorial problem. For any string x (the DNA sequence),
let Γ(x) denote the multiset of all of its k-mers. In particular, Γ(x) contains exactly |x| − k + 1
elements.
The reconstruction problem is now easy to state: given a multiset of k-length strings, find a
string x such that Γ(x) is exactly this multiset.

(a) Show that the reconstruction problem reduces to RUDRATA PATH. (Hint: Construct a di-
rected graph with one node for each k-mer, and with an edge from a to b if the last k − 1
characters of a match the first k − 1 characters of b.)

(b) But in fact, there is much better news. Show that the same problem also reduces to EULER
PATH. (Hint: This time, use one directed edge for each k-mer.)

8.22. In task scheduling, it is common to use a graph representation with a node for each task and a
directed edge from task i to task j if i is a precondition for j. This directed graph depicts the
precedence constraints in the scheduling problem. Clearly, a schedule is possible if and only if
the graph is acyclic; if it isn’t, we’d like to identify the smallest number of constraints that must
be dropped so as to make it acyclic.
Given a directed graph G = (V,E), a subset E ′ ⊆ E is called a feedback arc set if the removal of
edges E′ renders G acyclic.

282 Algorithms

FEEDBACK ARC SET (FAS): Given a directed graph G = (V,E) and a budget b, find a
feedback arc set of ≤ b edges, if one exists.

(a) Show that FAS is in NP.

FAS can be shown to be NP-complete by a reduction from VERTEX COVER. Given an instance
(G, b) of VERTEX COVER, where G is an undirected graph and we want a vertex cover of size ≤ b,
we construct a instance (G′, b) of FAS as follows. If G = (V,E) has n vertices v1, . . . , vn, then make
G′ = (V ′, E′) a directed graph with 2n vertices w1, w

′
1, . . . , wn, w

′
n, and n+ 2|E| (directed) edges:

• (wi, w
′
i) for all i = 1, 2, . . . , n.

• (w′
i, wj) and (w′

j , wi) for every (vi, vj) ∈ E.

(b) Show that if G contains a vertex cover of size b, then G′ contains a feedback arc set of size
b.

(c) Show that if G′ contains a feedback arc set of size b, then G contains a vertex cover of size
(at most) b. (Hint: given a feedback arc set of size b in G′, you may need to first modify it
slightly to obtain another one which is of a more convenient form, but is of the same size or
smaller. Then, argue that G must contain a vertex cover of the same size as the modified
feedback arc set.)

8.23. In the NODE-DISJOINT PATHS problem, the input is an undirected graph in which some vertices
have been specially marked: a certain number of “sources” s1, s2, . . . sk and an equal number of
“destinations” t1, t2, . . . tk. The goal is to find k node-disjoint paths (that is, paths which have no
nodes in common) where the ith path goes from si to ti. Show that this problem is NP-complete.
Here is a sequence of progressively stronger hints.

(a) Reduce from 3SAT.
(b) For a 3SAT formula with m clauses and n variables, use k = m+n sources and destinations.

Introduce one source/destination pair (sx, tx) for each variable x, and one source/destination
pair (sc, tc) for each clause c.

(c) For each 3SAT clause, introduce 6 new intermediate vertices, one for each literal occurring
in that clause and one for its complement.

(d) Notice that if the path from sc to tc goes through some intermediate vertex representing,
say, an occurrence of variable x, then no other path can go through that vertex. What vertex
would you like the other path to be forced to go through instead?

