
Preface

This book evolved over the past ten years from a set of lecture notes developed while teaching
the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching
this course evolved tremendously over these years in a number of directions, partly to address
our students’ background (undeveloped formal skills outside of programming), and partly to
reflect the maturing of the field in general, as we have come to see it. The notes increasingly
crystallized into a narrative, and we progressively structured the course to emphasize the
“story line” implicit in the progression of the material. As a result, the topics were carefully
selected and clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.

Playing on the strengths of our students (shared by most of today’s undergraduates in
Computer Science), instead of dwelling on formal proofs we distilled in each case the crisp
mathematical idea that makes the algorithm work. In other words, we emphasized rigor over
formalism. We found that our students were much more receptive to mathematical rigor of
this form. It is this progression of crisp ideas that helps weave the story.

Once you think about Algorithms in this way, it makes sense to start at the historical be-
ginning of it all, where, in addition, the characters are familiar and the contrasts dramatic:
numbers, primality, and factoring. This is the subject of Part I of the book, which also in-
cludes the RSA cryptosystem, and divide-and-conquer algorithms for integer multiplication,
sorting and median finding, as well as the fast Fourier transform. There are three other parts:
Part II, the most traditional section of the book, concentrates on data structures and graphs;
the contrast here is between the intricate structure of the underlying problems and the short
and crisp pieces of pseudocode that solve them. Instructors wishing to teach a more tradi-
tional course can simply start with Part II, which is self-contained (following the prologue),
and then cover Part I as required. In Parts I and II we introduced certain techniques (such
as greedy and divide-and-conquer) which work for special kinds of problems; Part III deals
with the “sledgehammers” of the trade, techniques that are powerful and general: dynamic
programming (a novel approach helps clarify this traditional stumbling block for students)
and linear programming (a clean and intuitive treatment of the simplex algorithm, duality,
and reductions to the basic problem). The final Part IV is about ways of dealing with hard
problems: NP-completeness, various heuristics, as well as quantum algorithms, perhaps the
most advanced and modern topic. As it happens, we end the story exactly where we started
it, with Shor’s quantum algorithm for factoring.

The book includes three additional undercurrents, in the form of three series of separate

9



10 Algorithms

“boxes,” strengthening the narrative (and addressing variations in the needs and interests of
the students) while keeping the flow intact: pieces that provide historical context; descriptions
of how the explained algorithms are used in practice (with emphasis on internet applications);
and excursions for the mathematically sophisticated.


