
1

MySQL in PHP – Page 1CSCI 2910 – Client/Server-Side Programming

CSCI 2910
Client/Server-Side Programming

Topic: More Topics in PHP
Reading: Williams & Lane pp. 108–121 and

232–243

MySQL in PHP – Page 2CSCI 2910 – Client/Server-Side Programming

Today's Goals
• Today we will begin with a discussion on

objects in PHP including how to create
instances and custom objects

• This will be followed by a discussion of
PEAR along with some examples as to how
the HTML_Template_IT package of PEAR
can aid us with formatting.

MySQL in PHP – Page 3CSCI 2910 – Client/Server-Side Programming

Objects in PHP
• The concept of objects is the same across

different object-oriented programming
languages

• There are, however, minor differences
between how a programmer references
objects using PHP

MySQL in PHP – Page 4CSCI 2910 – Client/Server-Side Programming

Creating a New PHP Object Instance

• Just like JavaScript, PHP uses the keyword
"new" to create a new instance of an object.

• Example: $_myinstance = new Object(args);
• Syntax elements:

– Just like variables, the name used to identify the
instance needs to begin with '$'.

– Many objects need arguments (the "args" part
of the above example) in order to create a new
instance. These are passed to a function called
a constructor which initializes the instance.

MySQL in PHP – Page 5CSCI 2910 – Client/Server-Side Programming

Referring to Components
of a PHP Instance

• In JavaScript, we used periods to
delimit/separate the elements of an object
hierarchy. For example:

document.writeln("Hello, World!");

• In PHP, the operator "->" is used to
delimit/separate the elements of an object
hierarchy. For example:

$object_name->object_function();

• As the parenthesis indicate, the above refers to
a function. The same format is used for
properties too, i.e., $object_name->property;

MySQL in PHP – Page 6CSCI 2910 – Client/Server-Side Programming

Defining a Class
• A class is the definition used to create an

instance.
• A class definition defines the class's name,

its variables, and functions.
• A class definition can also contain functions

used to initialize instances (constructors) and
remove them (destructors).

2

MySQL in PHP – Page 7CSCI 2910 – Client/Server-Side Programming

Format of a Class Definition
<?php
// Basic format of a class definition

class ClassName
{
// Member variables

var $_variable1 = 0;
var $_variable2 = "String";

// Member functions
function classFunction($_arg1 = 0, $_arg2)
{

// Function code goes here
}

?>

MySQL in PHP – Page 8CSCI 2910 – Client/Server-Side Programming

Format of a Class Definition (continued)

• The keyword "class" followed by the class name is
used to start the definition. Curly brackets are
used to enclose all of the elements of the
defintion.

• The keyword "var" is used to identify the class'
variables.

• Variables can be initialized. Every time a new
instance is created, the variables for that instance
are initialized to these values.

• Functions are defined normally, but when
contained within the curly brackets of the class,
become member functions of the class.

MySQL in PHP – Page 9CSCI 2910 – Client/Server-Side Programming

Private Member Variables
• There are some cases when a class may not want

to have its variables accessible outside of the class
– Variables may be set up only for internal use within the

class' functions
– Variables may have certain restrictions on values that

must be enforced internally
• If a variable needs to be modified from outside the

class, a function can be provided to do so. For
example, instead of:

$_instance -> variable1 = 25;

use
$_instance -> updateVariable1(25);

MySQL in PHP – Page 10CSCI 2910 – Client/Server-Side Programming

Private Member Variables
• To declare a variable as private, simply

replace the keyword "var" with the keyword
"private" in the variable declaration.

• Example:
private $_variable3 = 4.0;

• A class can also have private member
functions. In this case, declare the function
by putting the keyword "private" in front of the
function declaration.

• Private variables are only available in PHP 5.

MySQL in PHP – Page 11CSCI 2910 – Client/Server-Side Programming

Static Member Variables
• Each time an instance of a class is created, a

whole new set of variables and functions for
that instance is created along with it.

• It is possible to make it so that regardless of
the number of instances of a class, only a
single variable is created for that class.

• This allows all instances to share a single
variable.

• To do this, replace the keyword "var" with the
keyword "static" in the variable declaration.

• Static variables are only available in PHP 5.

MySQL in PHP – Page 12CSCI 2910 – Client/Server-Side Programming

Constructors
• When an instance is created, it may be

necessary to go through an initialization
process.

• This initialization process might be based on
arguments passed from the code creating the
instance.

• A function can be written for a class that is
automatically called whenever an instance for
that class is created. This is called a
constructor.

3

MySQL in PHP – Page 13CSCI 2910 – Client/Server-Side Programming

Constructors (continued)
• A constructor has the same format as a regular

function except for the name.
• The name of a constructor in PHP 5 is

_ _construct(). In PHP 4 it has the same name as
the class.

• Example:
function _ _construct($_arg = 0)
{
// Code to initialize class

}

• Note: I have put a space between the underscores
to show there are two of them. No space is used.

MySQL in PHP – Page 14CSCI 2910 – Client/Server-Side Programming

Destructors
• It is also possible that some housekeeping or

cleanup needs to be performed when an
instance is removed.

• In this case, a destructor function is
automatically called to close the instance.

• Destructors are only available in PHP 5.
• Unlike the constructor function, no arguments

can be passed to the destructor function.
• The name of a destructor is always

_ _destruct().

MySQL in PHP – Page 15CSCI 2910 – Client/Server-Side Programming

Class Definition Example
class Person
{

var $full_name;
var $birthday;
var $gender;

// Print function
function printPersonInHTML()
{

print "<p>{$this->full_name} is a ";
if(($this->gender == 'M')||($this->gender == 'm'))

print "male";
else

print "female";
print

" who was born on {$this->birthday}.</p>";
}

MySQL in PHP – Page 16CSCI 2910 – Client/Server-Side Programming

Class Definition Example (continued)
// Constructor

function Person($first_name, $last_name,
$gender, $birth_month,
$birth_day, $birth_year)

{
$month_list = array ("January", "February",

"March", "April", "May", "June",
"July", "August", "September",
"October", "November", "December");

$this->full_name = $first_name." ".$last_name;
$this->birthday =

$month_list[$birth_month-1]." ".
$birth_day.", ". $birth_year;

$this->gender = $gender;
}

}

MySQL in PHP – Page 17CSCI 2910 – Client/Server-Side Programming

Class Definition Example (continued)

• The code to create an instance and call the
class function printPersonInHTML() looks
like this:
$person_1 = new Person("John", "Doe",

"m", 3, 24, 1974);

$person_1 -> printPersonInHTML();

• The output then will be:
John Doe is a male who was born on
March 24, 1974.

MySQL in PHP – Page 18CSCI 2910 – Client/Server-Side Programming

PHP Predefined Objects
• As with other languages, PHP has a number of

predefined objects and functions that provide access
to system resources.

• One package containing these objects and functions is
called the PHP Extension and Application Repository
or PEAR.

• It includes support for:
•Web services

•Image processing

•File handling

•Data validation

•Database access

•Payment processing
• PEAR was originally designed to support scripting for

HTML such as providing templates for documents and
platform independence.

4

MySQL in PHP – Page 19CSCI 2910 – Client/Server-Side Programming

PEAR Overview
The following descriptions of PEAR are copied
from the pear.php.net website (source:
http://pear.php.net/manual/en/introduction.php):
– "A structured library of open-sourced code for PHP

users"
– "A system for code distribution and package

maintenance"
– "A standard style for code written in PHP"
– "The PHP Extension Community Library (PECL)"
– "A web site, mailing lists and download mirrors to

support the PHP/PEAR community"

MySQL in PHP – Page 20CSCI 2910 – Client/Server-Side Programming

PEAR Components
• First, we need to make sure the server you're using

has PEAR installed and see which packages it has.
• At the Unix command prompt, type "pear list". The

output shown below is from Einstein:
Installed packages:
===================
Package Version State
Archive_Tar 1.1 stable
Console_Getopt 1.2 stable
HTML_Template_IT 1.1 stable
Net_UserAgent_Detect 2.0.1 stable
PEAR 1.3.5 stable
XML_RPC 1.2.2 stable

• We will be using the HTML_Template_IT package

MySQL in PHP – Page 21CSCI 2910 – Client/Server-Side Programming

Using HTML Templates
• Throughout this course, templates have

been presented to offer a starting point for
your web page development.

• Templates simplify the development process
by allowing the programmer to avoid the
tedious stuff.

• PEAR allows programmers to separate the
HTML code from the PHP scripts.

• The PEAR package HTML_Template_IT
allows us to do just that.

MySQL in PHP – Page 22CSCI 2910 – Client/Server-Side Programming

Using HTML_Template_IT
• First of all, the use of templates requires two files:

– an HTML template with placeholders for values
– PHP code to insert values at the placeholders

• The HTML template looks just like a normal HTML
file except that there are additional tags to show
where the PHP script is to insert values.

• The PHP script determines the values that are to
be inserted into the HTML template at execution
time, and the resulting HTML output is sent to the
client.

MySQL in PHP – Page 23CSCI 2910 – Client/Server-Side Programming

HTML_Template_IT Blocks
• The HTML template is divided into regions

called blocks.
• These blocks are used by PHP to identify the

region being processed.
• The format of a block is

<!-- BEGIN block_name -->
... block content ...
<!-- END block_name -->

• The name of a block can consist of upper and
lowercase letters, underscores and hyphens.
There can be no spaces in a block name.

MySQL in PHP – Page 24CSCI 2910 – Client/Server-Side Programming

HTML_Template_IT Placeholders
• Placeholders are located within a block of the

HTML template to identify positions where the
PHP script will insert values

• The format of placeholder is
{placeholder_name}

• The placeholder name can consist of upper and
lowercase letters, underscores and hyphens.

• The placeholder name must be placed between
curly brackets without any spaces.

• Examples:
{page_title}
{menuitem-1}

5

MySQL in PHP – Page 25CSCI 2910 – Client/Server-Side Programming

Sample HTML Template
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">

<head>
<title>Simple XHTML Document</title>
</head>
<body>

<!-- BEGIN TITLE_BLOCK -->
<h1>{page_title}</h1>
<p>{page_intro}</p>

<!-- END TITLE_BLOCK -->
</body>
</html>

MySQL in PHP – Page 26CSCI 2910 – Client/Server-Side Programming

Populating the Template
• PHP is then used to populate the template
• Associating a PHP script with an HTML template

involves seven steps:
1. Include the PEAR Integrated Template
2. Create a template object to be used by the PHP script

for function calls
3. Associate the template file with the object
4. Select a block to work with
5. Assign data to the placeholders
6. Parse (process) the block
7. Output the page

MySQL in PHP – Page 27CSCI 2910 – Client/Server-Side Programming

Including the PEAR IT
• Including the PEAR Integrated Template is the same

as including any file. It is recommended that you use
the require_once() function.

• require_once() includes the specified file exactly once
during the execution of the script, i.e., it prevents
multiple includes.

• The file to include is IT.php which may appear in
different places on different servers.

• Einstein has IT.php in the folder
"/usr/local/lib/php/HTML/Template/"

• Code example:
require_once
("/usr/local/lib/php/HTML/Template/IT.php");

MySQL in PHP – Page 28CSCI 2910 – Client/Server-Side Programming

Creating the Template Object
• Creating the template object is the same as

creating any object using a constructor
function.

• Code example:
$template = new
HTML_Template_IT("./template_folder");

• The argument for the constructor function is
the directory where the templates will be
found.

• The "./" points to the current folder while
"template_folder" identifies a sub-folder.

MySQL in PHP – Page 29CSCI 2910 – Client/Server-Side Programming

Associate the Template File
• Now we need to associate a template file with

the template object. This is done with the
HTML_Template_IT function loadTemplatefile().

• Code example:
$template->
loadTemplatefile("template_01.tpl",
true, true);

• The first argument is the template file name
• The second and third arguments tell the script

how to handle undefined blocks and
placeholders.

MySQL in PHP – Page 30CSCI 2910 – Client/Server-Side Programming

Selecting a Block
• Since there may be multiple blocks within the

template, the PHP script must identify which
block is being used.

• This is done with the HTML_Template_IT
function setCurrentBlock().

• Code example:
$template->
setCurrentBlock("TITLE_BLOCK");

6

MySQL in PHP – Page 31CSCI 2910 – Client/Server-Side Programming

Assign Data to the Placeholders
• Once a block is selected, the placeholders

need to be populated.
• This is done using the HTML_Template_IT

function setVariable().
• Code example:
$template->setVariable("page_title",
"Hello, World!");

MySQL in PHP – Page 32CSCI 2910 – Client/Server-Side Programming

Parsing/Processing the Block
• Once you are finished setting the values of a

block, it can be parsed or processed.
• This is done using the HTML_Template_IT

function parseCurrentBlock().
• Code example:
$template->parseCurrentBlock();

MySQL in PHP – Page 33CSCI 2910 – Client/Server-Side Programming

Outputting the Page
• After you have finished processing all of the

blocks, the page must be output.
• This is done using the HTML_Template_IT

function show().
• Code example:
$template->show();

MySQL in PHP – Page 34CSCI 2910 – Client/Server-Side Programming

Final PHP Script Using Templates
<?php

// Load PEAR's Integrated Template class into the script
require_once ("/usr/local/lib/php/HTML/Template/IT.php");

// Create a new template, and specify that the template files are in the subdirectory
"template_folder"
$template = new HTML_Template_IT("./template_folder");

// Load the necessary template file
$template->loadTemplatefile("template_01.tpl", true, true);

// Identify which block of the template we're working with
$template->setCurrentBlock("TITLE_BLOCK");

// Assign the data values to the template placeholders
$template->setVariable("page_title", "Hello, World!");
$template->setVariable("page_intro", "Our first PHP script using HTML templates!");

// Process the current block
$template->parseCurrentBlock();

// Output the web page
$template->show();

?>

MySQL in PHP – Page 35CSCI 2910 – Client/Server-Side Programming

The Result
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">

<head>

<title>Simple XHTML Document</title>
</head>
<body>

<h1>Hello, World!</h1>
<p>Our first PHP script using HTML templates!</p>

</body>
</html>

MySQL in PHP – Page 36CSCI 2910 – Client/Server-Side Programming

Loops with Templates
• By parsing the blocks properly, a loop can be used to

generate HTML code.
• For example, we can use a loop to generate

successive rows of a table.
• The process would be something like this:

– Print the start tag for the table
– Begin a block
– Print a row with placeholders for the PHP values
– End the block
– Print the end tag for the table

• Executing the block multiple times will create multiple
rows

7

MySQL in PHP – Page 37CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
<body>
<table align="center" border="2"
cellpadding="5">
<!-- BEGIN TABLE_HEADING -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_HEADING -->
<!-- BEGIN TABLE_BLOCK -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_BLOCK -->
</table>

</body>

MySQL in PHP – Page 38CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
• As far as using this template with a PHP script

is concerned, the PHP script will need to insert
the values into the placeholders once for each
execution of the loop

• The process inside the PHP loop would be
something like this:
– Set the current block
– Set the values for the different placeholders
– Parse the current block

• Each time the loop was executed, a new row
would be created.

MySQL in PHP – Page 39CSCI 2910 – Client/Server-Side Programming

Loops with Templates (continued)
<?php

require_once ("/usr/local/lib/php/HTML/Template/IT.php");
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_02.tpl", true, true);

// Create table column headings
$template->setCurrentBlock("TABLE_HEADING");
$template->setVariable("column1", "I");
$template->setVariable("column2", "I²");
$template->parseCurrentBlock();

// Create the 10 rows one at a time
for ($i = 0; $i <10; $i++)
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $i);
$template->setVariable("column2", ($i*$i));
$template->parseCurrentBlock();

}
$template->show();

?>

MySQL in PHP – Page 40CSCI 2910 – Client/Server-Side Programming

Result
Okay, so it isn't a beautiful
example, but it is a beginning.
Imagine how much we could
help the output of the
database query outputs using
this sort of tool.

MySQL in PHP – Page 41CSCI 2910 – Client/Server-Side Programming

Printing MySQL Query Results with
Templates

If we replace the code from the earlier example with the
results from fetching each record from a MySQL query, we
could significantly improve the format of the output.
<body>
<table align="center" border="0" cellpadding="5">
<!-- BEGIN TABLE_BLOCK -->

<tr>
<td>{column1}</td>
<td>{column2}</td>
<td>{column3}</td>
<td>{column4}</td>
</tr>

<!-- END TABLE_BLOCK -->
</table>

</body>

MySQL in PHP – Page 42CSCI 2910 – Client/Server-Side Programming

Outputting PHP MySQL Results
<?php
// First, connect to the template we're going to use

require_once ("/usr/local/lib/php/HTML/Template/IT.php");
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_03.tpl", true, true);

// Next, get the result of a database query
$c = mysql_connect ("localhost", "zxyx999", "12345");
mysql_select_db("zxyx999", $c);
$result = mysql_query("SELECT DEPT, COURSE, SECTION, TITLE from timetable", $c);

// Go through the records prin
while($record = mysql_fetch_array($result, MYSQL_ASSOC))
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $record[DEPT]);
$template->setVariable("column2", $record[COURSE]);
$template->setVariable("column3", $record[SECTION]);
$template->setVariable("column4", $record[TITLE]);
$template->parseCurrentBlock();

}
mysql_close ($c);
$template->show();

?>

8

MySQL in PHP – Page 43CSCI 2910 – Client/Server-Side Programming

Result
• This makes

formatting a great
deal easier. In
addition, a single
template can serve
multiple PHP
scripts.

MySQL in PHP – Page 44CSCI 2910 – Client/Server-Side Programming

More on loadTemplatefile()
• We haven't yet discussed the last two arguments

of loadTemplatefile().
• Our code example was
$template->
loadTemplatefile("template_01.tpl", true,
true);

• The first argument identifies the template file.
• The second argument is set to "true" if you want

the PHP engine to not print out blocks from the
template that were not used in the script.

• The third argument is set to "true" if you want the
PHP engine to not print out placeholders that
have not had values assigned to them.

