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CSCI 2910 
Client/Server-Side Programming

Topic: More Topics in PHP
Reading: Williams & Lane pp. 108–121 and 

232–243
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Today's Goals
• Today we will begin with a discussion on 

objects in PHP including how to create 
instances and custom objects

• This will be followed by a discussion of  
PEAR along with some examples as to how 
the HTML_Template_IT package of PEAR 
can aid us with formatting.
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Objects in PHP
• The concept of objects is the same across 

different object-oriented programming 
languages

• There are, however, minor differences 
between how a programmer references 
objects using PHP 
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Creating a New PHP Object Instance

• Just like JavaScript, PHP uses the keyword 
"new" to create a new instance of an object.

• Example: $_myinstance = new Object(args);
• Syntax elements:

– Just like variables, the name used to identify the 
instance needs to begin with '$'.

– Many objects need arguments (the "args" part 
of the above example) in order to create a new 
instance.  These are passed to a function called 
a constructor which initializes the instance.
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Referring to Components 
of a PHP Instance

• In JavaScript, we used periods to 
delimit/separate the elements of an object 
hierarchy.  For example:

document.writeln("Hello, World!");

• In PHP, the operator "->" is used to 
delimit/separate the elements of an object 
hierarchy.  For example:

$object_name->object_function();

• As the parenthesis indicate, the above refers to 
a function.  The same format is used for 
properties too, i.e., $object_name->property;
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Defining a Class
• A class is the definition used to create an 

instance.
• A class definition defines the class's name, 

its variables, and functions.
• A class definition can also contain functions 

used to initialize instances (constructors) and 
remove them (destructors).
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Format of a Class Definition
<?php
// Basic format of a class definition

class ClassName
{
// Member variables

var $_variable1 = 0;
var $_variable2 = "String";

// Member functions
function classFunction($_arg1 = 0, $_arg2)
{

// Function code goes here
}

?> 
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Format of a Class Definition (continued)

• The keyword "class" followed by the class name is 
used to start the definition.  Curly brackets are 
used to enclose all of the elements of the 
defintion.

• The keyword "var" is used to identify the class' 
variables.

• Variables can be initialized.  Every time a new 
instance is created, the variables for that instance 
are initialized to these values.

• Functions are defined normally, but when 
contained within the curly brackets of the class, 
become member functions of the class.
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Private Member Variables
• There are some cases when a class may not want 

to have its variables accessible outside of the class
– Variables may be set up only for internal use within the 

class' functions
– Variables may have certain restrictions on values that 

must be enforced internally
• If a variable needs to be modified from outside the 

class, a function can be provided to do so.  For 
example, instead of:

$_instance -> variable1 = 25;

use
$_instance -> updateVariable1(25);
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Private Member Variables
• To declare a variable as private, simply 

replace the keyword "var" with the keyword 
"private" in the variable declaration.

• Example:
private $_variable3 = 4.0;

• A class can also have private member 
functions.  In this case, declare the function 
by putting the keyword "private" in front of the 
function declaration.

• Private variables are only available in PHP 5.
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Static Member Variables
• Each time an instance of a class is created, a 

whole new set of variables and functions for 
that instance is created along with it.

• It is possible to make it so that regardless of 
the number of instances of a class, only a 
single variable is created for that class.

• This allows all instances to share a single 
variable.

• To do this, replace the keyword "var" with the 
keyword "static" in the variable declaration.

• Static variables are only available in PHP 5.
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Constructors
• When an instance is created, it may be 

necessary to go through an initialization 
process.

• This initialization process might be based on 
arguments passed from the code creating the 
instance.

• A function can be written for a class that is 
automatically called whenever an instance for 
that class is created.  This is called a 
constructor.
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Constructors (continued)
• A constructor has the same format as a regular 

function except for the name.
• The name of a constructor in PHP 5 is 

_ _construct().  In PHP 4 it has the same name as 
the class.

• Example:
function _ _construct($_arg = 0)
{
// Code to initialize class

}

• Note: I have put a space between the underscores 
to show there are two of them.  No space is used.
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Destructors
• It is also possible that some housekeeping or 

cleanup needs to be performed when an 
instance is removed.

• In this case, a destructor function is 
automatically called to close the instance.

• Destructors are only available in PHP 5.
• Unlike the constructor function, no arguments 

can be passed to the destructor function.
• The name of a destructor is always 

_ _destruct().
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Class Definition Example
class Person
{

var $full_name;
var $birthday;
var $gender;

// Print function    
function printPersonInHTML()
{

print "<p>{$this->full_name} is a ";
if(($this->gender == 'M')||($this->gender == 'm'))

print "male";
else

print "female";
print 

" who was born on {$this->birthday}.</p>";
}
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Class Definition Example (continued)
// Constructor

function Person($first_name, $last_name,
$gender, $birth_month, 
$birth_day, $birth_year) 

{
$month_list = array ("January", "February",

"March", "April", "May", "June",
"July", "August", "September",
"October", "November", "December");

$this->full_name = $first_name." ".$last_name;
$this->birthday = 

$month_list[$birth_month-1]." ".
$birth_day.", ". $birth_year;

$this->gender = $gender;
}

}
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Class Definition Example (continued)

• The code to create an instance and call the 
class function printPersonInHTML() looks 
like this:
$person_1 = new Person("John", "Doe", 

"m", 3, 24, 1974);

$person_1 -> printPersonInHTML();

• The output then will be:
John Doe is a male who was born on 
March 24, 1974.
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PHP Predefined Objects
• As with other languages, PHP has a number of 

predefined objects and functions that provide access 
to system resources.

• One package containing these objects and functions is 
called the PHP Extension and Application Repository 
or PEAR.

• It includes support for:
•Web services

•Image processing

•File handling

•Data validation

•Database access

•Payment processing
• PEAR was originally designed to support scripting for 

HTML such as providing templates for documents and 
platform independence.
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PEAR Overview
The following descriptions of PEAR are copied 
from the pear.php.net website (source: 
http://pear.php.net/manual/en/introduction.php):
– "A structured library of open-sourced code for PHP 

users"
– "A system for code distribution and package 

maintenance"
– "A standard style for code written in PHP"
– "The PHP Extension Community Library (PECL)"
– "A web site, mailing lists and download mirrors to 

support the PHP/PEAR community"
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PEAR Components
• First, we need to make sure the server you're using 

has PEAR installed and see which packages it has.
• At the Unix command prompt, type "pear list".  The 

output shown below is from Einstein:
Installed packages:
===================
Package              Version State
Archive_Tar 1.1     stable
Console_Getopt 1.2     stable
HTML_Template_IT 1.1     stable
Net_UserAgent_Detect 2.0.1   stable
PEAR                 1.3.5   stable
XML_RPC              1.2.2   stable

• We will be using the HTML_Template_IT package
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Using HTML Templates
• Throughout this course, templates have 

been presented to offer a starting point for 
your web page development.

• Templates simplify the development process 
by allowing the programmer to avoid the 
tedious stuff.

• PEAR allows programmers to separate the 
HTML code from the PHP scripts.

• The PEAR package HTML_Template_IT
allows us to do just that.
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Using HTML_Template_IT
• First of all, the use of templates requires two files:

– an HTML template with placeholders for values
– PHP code to insert values at the placeholders

• The HTML template looks just like a normal HTML 
file except that there are additional tags to show 
where the PHP script is to insert values.

• The PHP script determines the values that are to 
be inserted into the HTML template at execution 
time, and the resulting HTML output is sent to the 
client.
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HTML_Template_IT Blocks
• The HTML template is divided into regions 

called blocks.  
• These blocks are used by PHP to identify the 

region being processed.
• The format of a block is 

<!-- BEGIN block_name -->
... block content ...
<!-- END block_name -->

• The name of a block can consist of upper and 
lowercase letters, underscores and hyphens. 
There can be no spaces in a block name.
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HTML_Template_IT Placeholders
• Placeholders are located within a block of the 

HTML template to identify positions where the 
PHP script will insert values

• The format of placeholder is 
{placeholder_name}

• The placeholder name can consist of upper and 
lowercase letters, underscores and hyphens. 

• The placeholder name must be placed between 
curly brackets without any spaces. 

• Examples:
{page_title}
{menuitem-1}
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Sample HTML Template
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en"> 

<head>
<title>Simple XHTML Document</title>
</head>
<body>

<!-- BEGIN TITLE_BLOCK -->
<h1>{page_title}</h1>
<p>{page_intro}</p>

<!-- END TITLE_BLOCK -->
</body>
</html>
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Populating the Template
• PHP is then used to populate the template
• Associating a PHP script with an HTML template 

involves seven steps:
1. Include the PEAR Integrated Template 
2. Create a template object to be used by the PHP script 

for function calls
3. Associate the template file with the object
4. Select a block to work with
5. Assign data to the placeholders
6. Parse (process) the block
7. Output the page
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Including the PEAR IT
• Including the PEAR Integrated Template is the same 

as including any file.  It is recommended that you use 
the require_once() function.

• require_once() includes the specified file exactly once 
during the execution of the script, i.e., it prevents 
multiple includes.

• The file to include is IT.php which may appear in 
different places on different servers.

• Einstein has IT.php in the folder 
"/usr/local/lib/php/HTML/Template/"

• Code example:
require_once
("/usr/local/lib/php/HTML/Template/IT.php");
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Creating the Template Object
• Creating the template object is the same as 

creating any object using a constructor 
function.

• Code example:
$template = new 
HTML_Template_IT("./template_folder");

• The argument for the constructor function is 
the directory where the templates will be 
found.

• The "./" points to the current folder while 
"template_folder" identifies a sub-folder.
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Associate the Template File
• Now we need to associate a template file with 

the template object.  This is done with the 
HTML_Template_IT function loadTemplatefile().

• Code example:
$template-> 
loadTemplatefile("template_01.tpl", 
true, true);

• The first argument is the template file name
• The second and third arguments tell the script 

how to handle undefined blocks and 
placeholders.
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Selecting a Block
• Since there may be multiple blocks within the 

template, the PHP script must identify which 
block is being used.

• This is done with the HTML_Template_IT
function setCurrentBlock().

• Code example:
$template-> 
setCurrentBlock("TITLE_BLOCK");
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Assign Data to the Placeholders
• Once a block is selected, the placeholders 

need to be populated.
• This is done using the HTML_Template_IT

function setVariable().
• Code example:
$template->setVariable("page_title", 
"Hello, World!");
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Parsing/Processing the Block
• Once you are finished setting the values of a 

block, it can be parsed or processed.
• This is done using the HTML_Template_IT

function parseCurrentBlock().
• Code example:
$template->parseCurrentBlock();
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Outputting the Page
• After you have finished processing all of the 

blocks, the page must be output.
• This is done using the HTML_Template_IT

function show().
• Code example:
$template->show();
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Final PHP Script Using Templates
<?php

// Load PEAR's Integrated Template class into the script
require_once ("/usr/local/lib/php/HTML/Template/IT.php"); 

// Create a new template, and specify that the template files are in the subdirectory 
"template_folder"
$template = new HTML_Template_IT("./template_folder");

// Load the necessary template file
$template->loadTemplatefile("template_01.tpl", true, true);

// Identify which block of the template we're working with
$template->setCurrentBlock("TITLE_BLOCK");

// Assign the data values to the template placeholders
$template->setVariable("page_title", "Hello, World!");
$template->setVariable("page_intro", "Our first PHP script using HTML templates!");

// Process the current block
$template->parseCurrentBlock();

// Output the web page
$template->show();

?>
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The Result
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
lang="en">

<head>

<title>Simple XHTML Document</title>
</head>
<body>

<h1>Hello, World!</h1>
<p>Our first PHP script using HTML templates!</p>

</body>
</html> 
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Loops with Templates
• By parsing the blocks properly, a loop can be used to 

generate HTML code.
• For example, we can use a loop to generate 

successive rows of a table.
• The process would be something like this:

– Print the start tag for the table
– Begin a block
– Print a row with placeholders for the PHP values
– End the block
– Print the end tag for the table

• Executing the block multiple times will create multiple 
rows
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Loops with Templates (continued)
<body>
<table align="center" border="2" 
cellpadding="5">
<!-- BEGIN TABLE_HEADING -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_HEADING -->
<!-- BEGIN TABLE_BLOCK -->

<tr><td>{column1}</td>
<td>{column2}</td></tr>

<!-- END TABLE_BLOCK -->
</table>

</body>
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Loops with Templates (continued)
• As far as using this template with a PHP script 

is concerned, the PHP script will need to insert 
the values into the placeholders once for each 
execution of the loop

• The process inside the PHP loop would be 
something like this:
– Set the current block
– Set the values for the different placeholders
– Parse the current block

• Each time the loop was executed, a new row 
would be created.
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Loops with Templates (continued)
<?php

require_once ("/usr/local/lib/php/HTML/Template/IT.php"); 
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_02.tpl", true, true);

// Create table column headings
$template->setCurrentBlock("TABLE_HEADING");
$template->setVariable("column1", "I");
$template->setVariable("column2", "I<sup>2</sup>");
$template->parseCurrentBlock();

// Create the 10 rows one at a time
for ($i = 0; $i <10; $i++)
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $i);
$template->setVariable("column2", ($i*$i));
$template->parseCurrentBlock();

}
$template->show();

?>
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Result
Okay, so it isn't a beautiful 
example, but it is a beginning. 
Imagine how much we could 
help the output of the 
database query outputs using 
this sort of tool.
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Printing MySQL Query Results with 
Templates

If we replace the code from the earlier example with the 
results from fetching each record from a MySQL query, we 
could significantly improve the format of the output.
<body>
<table align="center" border="0" cellpadding="5">
<!-- BEGIN TABLE_BLOCK -->

<tr>
<td>{column1}</td>
<td>{column2}</td>
<td>{column3}</td>
<td>{column4}</td>
</tr>

<!-- END TABLE_BLOCK -->
</table>

</body>
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Outputting PHP MySQL Results
<?php
// First, connect to the template we're going to use

require_once ("/usr/local/lib/php/HTML/Template/IT.php"); 
$template = new HTML_Template_IT("./template_folder");
$template->loadTemplatefile("template_03.tpl", true, true);

// Next, get the result of a database query
$c = mysql_connect ("localhost", "zxyx999", "12345");
mysql_select_db("zxyx999", $c);
$result = mysql_query("SELECT DEPT, COURSE, SECTION, TITLE from timetable", $c);

// Go through the records prin
while($record = mysql_fetch_array($result, MYSQL_ASSOC))
{

$template->setCurrentBlock("TABLE_BLOCK");
$template->setVariable("column1", $record[DEPT]);
$template->setVariable("column2", $record[COURSE]);
$template->setVariable("column3", $record[SECTION]);
$template->setVariable("column4", $record[TITLE]);
$template->parseCurrentBlock();

}
mysql_close ($c);
$template->show();

?>
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Result
• This makes 

formatting a great 
deal easier.  In 
addition, a single 
template can serve 
multiple PHP 
scripts.
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More on loadTemplatefile()
• We haven't yet discussed the last two arguments 

of loadTemplatefile().
• Our code example was
$template-> 
loadTemplatefile("template_01.tpl", true, 
true);

• The first argument identifies the template file.
• The second argument is set to "true" if you want 

the PHP engine to not print out blocks from the 
template that were not used in the script.

• The third argument is set to "true" if you want the 
PHP engine to not print out placeholders that 
have not had values assigned to them.


