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CSCI 4717/5717 
Computer Architecture

Topic: Symmetric Multiprocessors & Clusters

Reading: Stallings, Sections 18.1 through 18.4
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Classifications of Parallel Processing

M. Flynn classified types of parallel 
processing in 1972 ("Some Computer 
Organizations and Their Effectiveness",  
IEEE Transactions on Computers) Types of 
Parallel Processor Systems (Figure 18.2)
– Single instruction, single data stream
– Single instruction, multiple data stream
– Multiple instruction, single data stream
– Multiple instruction, multiple data stream
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Classifications of Parallel Processing 
(continued)

• Single Instruction, Single Data Stream 
(SISD) – Single processor operates on a 
single instruction stream from a single 
memory (Uniprocessor)

• Single Instruction, Multiple Data Stream 
(SIMD) – Lockstep operation of multiple 
processors on single instruction memory 
with one data memory per processing 
element. (Vector/array processing)

Parallel Processing – Page 4 of 63CSCI 4717 – Computer Architecture

Classifications of Parallel Processing 
(continued) 

• Multiple Instruction, Single Data Stream 
(MISD) – Multiple processors execute 
different sequences of instructions on a 
single data set.  Not commercially 
implemented

• Multiple Instruction, Multiple Data Stream 
(MIMD) – A set of processors 
simultaneously execute different instructions 
on different data sets.
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Classifications of Parallel Processing 
(continued)
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Multiple Instruction, Multiple Data 
Stream 

• Processors are general purpose
• Each processor should be able to complete 

process by themselves
• Communications methods

– Through shared memory ("Tightly Coupled")
• Symmetric multiprocessor (SMP) – memory access times 

are consistent for all processors
• Nonuniform Memory Access (NUMA) – memory access 

times may differ
– Cluster – Either through fixed connections or a 

network ("Loosely Coupled")
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Symmetric Multiprocessors (SMP)
A stand alone computer with the following traits
• Two or more similar processors of 

comparable capacity
• Processors share same memory and I/O
• Processors are connected by a bus or other 

internal connection
• Memory access time is approximately the 

same for each processor
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Symmetric Multiprocessors (continued) 

• All processors share access to I/O through either:
– same channels 
– different channels providing paths to same 

devices
• All processors can perform the same functions 

(hence symmetric)
• System controlled by integrated operating system

providing interaction between processors 
• Interaction at job, task, file and data element levels
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Integrated Operating System
• O/S for SMP is NOT like clusters/loosely 

coupled where communication usually is at 
file level

• Can be a high degree of interaction between 
processes

• O/S schedules processes or threads across 
all processors
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SMP Advantages
Advantages only realized if O/S can provide parallelism
• Performance, but only if some work can be done in 

parallel
• Availability/reliability – Since all processors can 

perform the same functions, failure of a single 
processor does not halt the system

• Incremental growth – User can enhance performance 
by adding additional processors

• Scaling – Vendors can offer range of products based 
on number of processors

• Transparent to user – User only sees improvement in 
performance
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Organization of Tightly Coupled 
Multiprocessor

• Individual processors are self-contained, 
i.e., they have their own control unit, ALU, 
registers, one or more levels of cache, and 
private main memory

• Access to shared memory and I/O devices 
through some interconnection network

• Processors communicate through memory 
in common data area
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Organization of Tightly Coupled 
Multiprocessor (continued)

• Memory is often organized to provide 
simultaneous access to separate blocks of 
memory

• Bus
– Time-shared or common bus
– Central controller (arbitrator)
– Multiport memory



3

Parallel Processing – Page 13 of 63CSCI 4717 – Computer Architecture

Organization of 
Tightly Coupled 
Multiprocessor 

(continued)
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Time Shared Bus
• Structure and interface similar to single processor 

system (control, address, and data)
• Similar to DMA with single processor
• Following features provided

– Addressing - distinguish modules on bus 
– Arbitration

• Any module can be temporary master
• Must have an arbitration scheme

– Time sharing - if one module has the bus, others must wait 
and may have to suspend

• Now have multiple processors as well as multiple I/O 
modules
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Time Shared Bus (continued)
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Time Shared Bus (continued)
• Advantages

– Simplicity – not only is it easy to understand, 
form already used with DMA

– Flexibility – adding processor involves simple 
addition of processor to bus

– Reliability – As long as arbitration does not 
involve single controller, then there is no single 
point of failure
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Time Shared Bus (continued)
• Disadvantages

– Waiting for bus creates bottleneck
• Can be helped with individual caches
• Usually L1 and L2

– Cache coherence policy must be used (usually 
hardware)
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Multiport Memory
• Direct independent access of memory 

modules by each processor and I/O module
• Logic internal to memory required to resolve 

conflicts
• Little or no modification to processors used 

to single processor applications or I/O 
modules required
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Multiport Memory
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Multiport Memory (continued)
• Advantages

– Removing bus access bottleneck
– Dedicate portions of memory to only one 

processor
• Better security
• Better recovery from faults

• Disadvantages
– Complex memory logic
– More PCB wiring
– Write through policy should be used for caches
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Central Control Unit
Functions
• Funnels separate data streams between 

independent modules
• Can buffer requests
• Performs arbitration and timing
• Pass status and control
• Perform cache update alerting
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Central Control Unit (continued)
• Uses same control, addressing, and data 

interfaces as typical processor, therefore, 
interfaces to modules remain the same

• Disadvantages
– Very complex control unit
– Control unit is possible bottleneck
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SMP Operating System
• To user, it appears as if there is a single O/S, i.e., 

single processor multiprogramming system
• User should be able to create multithreaded 

processes without needing to know whether one 
processor or more will be used
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SMP Operating System Design Issues

• Simultaneous concurrent processes
– O/S routines should be reentrant
– O/S tables and other management structures must 

be expanded to handle multiple processes and 
processors

• Scheduling
– More than just order now, also which processor 

gets a process
– Any processor should be capable of scheduling too
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SMP Operating System Design Issues 
(continued)

• Synchronization – scheduling of resources 
now more than just for processes but also 
for processors

• Memory management
– Shared page replacement strategy
– Must understand and take advantage of 

memory hardware
• Reliability and fault tolerance – Must be able 

to handle the loss of a processor without 
taking down other processors.
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Cache Coherence
• One or two levels of cache typically 

associated with each processor – this is 
essential for performance

• Problem
– Multiple copies of same data in different caches
– Can result in an inconsistent view of memory
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Write Policy Review
• Write back policy

– Write goes only to cache
– Main memory updated only when cache block is 

replaced
– Can lead to inconsistency

• Write through policy
– All writes made to cache and main memory
– Inconsistencies can occur unless all caches 

monitor memory traffic
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Software Solutions
• Compiler and operating system deal with 

problem
• Overhead transferred to compile time
• Design complexity transferred from 

hardware to software
• Software tends to make conservative 

decisions leading to inefficient cache 
utilization
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Software Solutions (continued)
• Marked shared variables as non-cacheable 

– Too conservative
• Instructions added to enable/disable caching 

for variables.  Then compiler can analyze 
code to determine safe periods for caching 
shared variables
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Hardware Solution
• A.K.A cache coherence protocols
• Dynamic recognition of potential problems at 

run time
• Because it only deals w/problem when it 

occurs, more efficient use of cache
• Transparent to programmer and compiler
• Methods

– Directory protocols
– Snoopy protocols
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Directory Protocols – Central control

• Central memory controller maintains 
directory of:
– where blocks are held
– in which caches they are held
– what state the data is in

• Appropriate transfers are performed by 
controller
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Directory Protocols – Write Process
• Requests to write to a line are made to 

controller
• Using directory, controller tells all other 

processors with copy of same data to invalidate
• Write is granted to requesting processor and 

that processor has exclusive rights to that data
• Request to read from another processor forces 

controller to issue command to processor with 
exclusive rights to update (write back) main 
memory.
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Directory Protocols (continued)
• Problems

– Creates central bottleneck
– Communication overhead

• Effective in large scale systems with 
complex interconnection schemes
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Snoopy Protocols – Distributed control

• Distribute cache coherence responsibility 
among cache controllers

• Cache recognizes that a line is shared
• Updates announced to other caches
• Suited to bus based multiprocessor
• Problem – possible to increase bus traffic to 

point of canceling out benefits
• Two types of implementations:

– Write Invalidate
– Write Update 
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Write Invalidate (a.k.a. MESI)
• Multiple readers, one writer
• When a write is required, command is issued and 

all other caches of the line are invalidated
• Writing processor then has exclusive (cheap) 

access until line required by another processor
• A state is associated with every line

– Modified
– Exclusive
– Shared
– Invalid
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Write Update (a.k.a. write broadcast)

• Multiple readers and writers
• Updated word is distributed to all other 

processors
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Snoopy Protocols – Implementations

• Performance of these two implementations 
depends on number of caches and pattern 
of read/writes

• Some systems use adaptive protocols to 
use both methods

• Write invalidate most common – Used in 
Pentium 4 and PowerPC systems

Parallel Processing – Page 38 of 63CSCI 4717 – Computer Architecture

MESI Protocol
• Each line of a cache has associated with it two bits 

– four states
• Modified – line in this cache is modified and only 

valid in this cache
• Exclusive – line in this cache is same as that in 

memory (unmodified) and not present in any other 
cache

• Shared – line in this cache is same as that in 
memory (unmodified) and may also be present in 
another cache

• Invalid – line in this cache contains bad data
• Write throughs from an L1 cache to an L2 cache 

makes it visible to the MESI protocol

Parallel Processing – Page 39 of 63CSCI 4717 – Computer Architecture

MESI Protocol (continued)
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MESI – State Transition Diagram
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Clusters
• Defined

– a group of interconnected, whole computers
– working together as a unified computing resource 
– can create the illusion of being one machine

• Alternative to Symmetric Multiprocessing 
(SMP)
– High performance
– High availability
– Server applications

• Each computer called a node
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Cluster Computer Architecture

Figure 18.11 from Stallings, Computer Organization & Architecture
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Cluster Benefits
• Absolute scalability – Almost limitless in 

terms of adding independent 
multiprocessing machines

• Incremental scalability – Can start out small 
and build as user acquires new machines
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Cluster Benefits (continued)
• High availability

– Loss of one node only causes small decrement 
in performance

– Software (middleware) handles fault tolerance 
automatically

• Superior price/performance
– By using easily affordable building blocks, gets 

better performance at a lower price than a 
single large computer

– Expanding design doesn't depend on PCB 
redesign
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Cluster Configurations
• High-speed message link 

options/configurations
– Dedicated LAN with at least one having 

connection to remote client
– Shared LAN with other non-cluster machines

• Simplest way to classify clusters is based on 
whether computers share disk(s)
– No shared disk – each machine has a local disk
– Shared disk in addition to local disk – should 

use disk mirroring or RAID

Parallel Processing – Page 46 of 63CSCI 4717 – Computer Architecture

Cluster Configurations – Standby 
Server with no Shared Disk
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Cluster Configurations – Shared Disk

Parallel Processing – Page 48 of 63CSCI 4717 – Computer Architecture

Cluster Configurations (continued)
• Secondary server – cluster functional 

classification
– Passive Standby

• Second computer will take over in the event of a failure 
on the part of the first

• First computer sends "heartbeat“
• Heartbeat stops, secondary takes over
• Data must be shared or disks must be shared in order for 

secondary to take over database stuff too
– Active Standby – Second computer participates in 

processing
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Active Standby Configurations
• Separate Server

– No shared disk
– High performance and availability
– Scheduling software is needed to assign client 

requests to servers to balance the load
– If a computer fails in middle of application, 

another can take over
– To do this, must have some method of copying 

data between at least neighboring computers
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Active Standby Configurations 
(continued)

• Shared nothing
– All computers share common RAID, but have 

partitions all to themselves.
– If one fails, the cluster is reconfigured to 

reallocate failed computer's partitions
• Shared disk

– All computers have access to all volumes of the 
same disk

– Must use some type of locking facility to ensure 
that data can be accessed by one computer at a 
time
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Comparison of Clustering Methods

Table 18.2 from Stallings, Computer Organization & Architecture
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Cluster O/S Design Issues –
Failure Management

• Two types of management: high availability and 
fault tolerant

• High availability
– Independent  processes
– If one goes down, anything in progress is lost
– Application layer must handle uncertainty of partially 

executed transactions
– Process is taken over by next machine

• Fault tolerant
– Redundancies
– Mechanisms for handling partially executed transactions
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Cluster O/S Design Issues –
Failure Management (continued)

• Failover -- Switching applications & data 
from failed system to alternative within 
cluster

• Failback -- Restoration of applications and 
data to original system after problem is fixed
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Cluster O/S  Design Issues –
Load balancing

• Incremental scalability of load with changes 
in number of nodes

• Automatically include new computers in 
scheduling

• Middleware needs to recognise that 
processes may switch between machines
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Cluster O/S Design Issues –
Parallelizing Computation

• Single application executing in parallel on a 
number of machines in cluster

• Three general approaches to the problem:
– Parallelizing compiler
– Parallelizing application
– Parametric computing
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Parallelizing Compiler
• Determines at compile time which parts can 

be executed in parallel
• Split off for different computers
• Performance depends on compiler
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Parallelizing Application
• Application written to be parallel
• Message passing to move data between 

nodes
• Hard to program
• Performance depends on programmer
• Potential for best end result
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Parametric computing
• If a problem is repeated execution of 

algorithm on different sets of data
• Example: simulation using different 

scenarios
• Depends on tools to organize/manage and 

execute
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Cluster Middleware 
Software installed on each node to enable cluster operation:
• Provides high availability through load balancing and failover 

control
• Creates unified image to user

– Single point of entry – User logs onto cluster rather than a 
node

– Single file hierarchy – User sees a single file structure
– Single control point – single node acts as the interface to the 

user
– Single virtual network visible to cluster nodes
– Single memory space – programs are allowed to share 

variables across distributed memory
– Single job management system – cluster assigns the jobs, 

not the user
– Single user interface
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Cluster Middleware (continued)
• Enhancement of availability

– Single I/O space – I/O is accessible by any of 
the nodes regardless of the I/O device's location

– Single process space
• Processes are treated as if they are all operating on 

a single machine
• This means that the process identification scheme 

should be uniform and independent of host node
– Checkpointing – for recovery from a failure, 

each process should periodically save its state 
and intermediate variable values for failback

– Process migration – to allow for load balancing
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Cluster v. SMP
Positive points for both
• Both provide multiprocessor support to high 

demand applications.
• Both available commercially – SMP has 

been around longer
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SMP benefits
• Easier to manage and configure since it is a 

single machine
• Closer to single processor systems for 

which nearly all applications are written
• Scheduling is main difference between SMP 

and single-processor system
• Less physical space
• Lower power consumption
• Well-established
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Cluster benefits
• Superior incremental & absolute scalability
• Superior availability through redundancy of 

all components, not just processors
• Simpler to create from computers than SMP 

which is designed from PCB level
• With time, clusters are likely to dominate


