
1

Parallel Processing – Page 1 of 63CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Symmetric Multiprocessors & Clusters

Reading: Stallings, Sections 18.1 through 18.4

Parallel Processing – Page 2 of 63CSCI 4717 – Computer Architecture

Classifications of Parallel Processing

M. Flynn classified types of parallel
processing in 1972 ("Some Computer
Organizations and Their Effectiveness",
IEEE Transactions on Computers) Types of
Parallel Processor Systems (Figure 18.2)
– Single instruction, single data stream
– Single instruction, multiple data stream
– Multiple instruction, single data stream
– Multiple instruction, multiple data stream

Parallel Processing – Page 3 of 63CSCI 4717 – Computer Architecture

Classifications of Parallel Processing
(continued)

• Single Instruction, Single Data Stream
(SISD) – Single processor operates on a
single instruction stream from a single
memory (Uniprocessor)

• Single Instruction, Multiple Data Stream
(SIMD) – Lockstep operation of multiple
processors on single instruction memory
with one data memory per processing
element. (Vector/array processing)

Parallel Processing – Page 4 of 63CSCI 4717 – Computer Architecture

Classifications of Parallel Processing
(continued)

• Multiple Instruction, Single Data Stream
(MISD) – Multiple processors execute
different sequences of instructions on a
single data set. Not commercially
implemented

• Multiple Instruction, Multiple Data Stream
(MIMD) – A set of processors
simultaneously execute different instructions
on different data sets.

Parallel Processing – Page 5 of 63CSCI 4717 – Computer Architecture

Classifications of Parallel Processing
(continued)

Parallel Processing – Page 6 of 63CSCI 4717 – Computer Architecture

Multiple Instruction, Multiple Data
Stream

• Processors are general purpose
• Each processor should be able to complete

process by themselves
• Communications methods

– Through shared memory ("Tightly Coupled")
• Symmetric multiprocessor (SMP) – memory access times

are consistent for all processors
• Nonuniform Memory Access (NUMA) – memory access

times may differ
– Cluster – Either through fixed connections or a

network ("Loosely Coupled")

2

Parallel Processing – Page 7 of 63CSCI 4717 – Computer Architecture

Symmetric Multiprocessors (SMP)
A stand alone computer with the following traits
• Two or more similar processors of

comparable capacity
• Processors share same memory and I/O
• Processors are connected by a bus or other

internal connection
• Memory access time is approximately the

same for each processor

Parallel Processing – Page 8 of 63CSCI 4717 – Computer Architecture

Symmetric Multiprocessors (continued)

• All processors share access to I/O through either:
– same channels
– different channels providing paths to same

devices
• All processors can perform the same functions

(hence symmetric)
• System controlled by integrated operating system

providing interaction between processors
• Interaction at job, task, file and data element levels

Parallel Processing – Page 9 of 63CSCI 4717 – Computer Architecture

Integrated Operating System
• O/S for SMP is NOT like clusters/loosely

coupled where communication usually is at
file level

• Can be a high degree of interaction between
processes

• O/S schedules processes or threads across
all processors

Parallel Processing – Page 10 of 63CSCI 4717 – Computer Architecture

SMP Advantages
Advantages only realized if O/S can provide parallelism
• Performance, but only if some work can be done in

parallel
• Availability/reliability – Since all processors can

perform the same functions, failure of a single
processor does not halt the system

• Incremental growth – User can enhance performance
by adding additional processors

• Scaling – Vendors can offer range of products based
on number of processors

• Transparent to user – User only sees improvement in
performance

Parallel Processing – Page 11 of 63CSCI 4717 – Computer Architecture

Organization of Tightly Coupled
Multiprocessor

• Individual processors are self-contained,
i.e., they have their own control unit, ALU,
registers, one or more levels of cache, and
private main memory

• Access to shared memory and I/O devices
through some interconnection network

• Processors communicate through memory
in common data area

Parallel Processing – Page 12 of 63CSCI 4717 – Computer Architecture

Organization of Tightly Coupled
Multiprocessor (continued)

• Memory is often organized to provide
simultaneous access to separate blocks of
memory

• Bus
– Time-shared or common bus
– Central controller (arbitrator)
– Multiport memory

3

Parallel Processing – Page 13 of 63CSCI 4717 – Computer Architecture

Organization of
Tightly Coupled
Multiprocessor

(continued)

Parallel Processing – Page 14 of 63CSCI 4717 – Computer Architecture

Time Shared Bus
• Structure and interface similar to single processor

system (control, address, and data)
• Similar to DMA with single processor
• Following features provided

– Addressing - distinguish modules on bus
– Arbitration

• Any module can be temporary master
• Must have an arbitration scheme

– Time sharing - if one module has the bus, others must wait
and may have to suspend

• Now have multiple processors as well as multiple I/O
modules

Parallel Processing – Page 15 of 63CSCI 4717 – Computer Architecture

Time Shared Bus (continued)

Parallel Processing – Page 16 of 63CSCI 4717 – Computer Architecture

Time Shared Bus (continued)
• Advantages

– Simplicity – not only is it easy to understand,
form already used with DMA

– Flexibility – adding processor involves simple
addition of processor to bus

– Reliability – As long as arbitration does not
involve single controller, then there is no single
point of failure

Parallel Processing – Page 17 of 63CSCI 4717 – Computer Architecture

Time Shared Bus (continued)
• Disadvantages

– Waiting for bus creates bottleneck
• Can be helped with individual caches
• Usually L1 and L2

– Cache coherence policy must be used (usually
hardware)

Parallel Processing – Page 18 of 63CSCI 4717 – Computer Architecture

Multiport Memory
• Direct independent access of memory

modules by each processor and I/O module
• Logic internal to memory required to resolve

conflicts
• Little or no modification to processors used

to single processor applications or I/O
modules required

4

Parallel Processing – Page 19 of 63CSCI 4717 – Computer Architecture

Multiport Memory

Parallel Processing – Page 20 of 63CSCI 4717 – Computer Architecture

Multiport Memory (continued)
• Advantages

– Removing bus access bottleneck
– Dedicate portions of memory to only one

processor
• Better security
• Better recovery from faults

• Disadvantages
– Complex memory logic
– More PCB wiring
– Write through policy should be used for caches

Parallel Processing – Page 21 of 63CSCI 4717 – Computer Architecture

Central Control Unit
Functions
• Funnels separate data streams between

independent modules
• Can buffer requests
• Performs arbitration and timing
• Pass status and control
• Perform cache update alerting

Parallel Processing – Page 22 of 63CSCI 4717 – Computer Architecture

Central Control Unit (continued)
• Uses same control, addressing, and data

interfaces as typical processor, therefore,
interfaces to modules remain the same

• Disadvantages
– Very complex control unit
– Control unit is possible bottleneck

Parallel Processing – Page 23 of 63CSCI 4717 – Computer Architecture

SMP Operating System
• To user, it appears as if there is a single O/S, i.e.,

single processor multiprogramming system
• User should be able to create multithreaded

processes without needing to know whether one
processor or more will be used

Parallel Processing – Page 24 of 63CSCI 4717 – Computer Architecture

SMP Operating System Design Issues

• Simultaneous concurrent processes
– O/S routines should be reentrant
– O/S tables and other management structures must

be expanded to handle multiple processes and
processors

• Scheduling
– More than just order now, also which processor

gets a process
– Any processor should be capable of scheduling too

5

Parallel Processing – Page 25 of 63CSCI 4717 – Computer Architecture

SMP Operating System Design Issues
(continued)

• Synchronization – scheduling of resources
now more than just for processes but also
for processors

• Memory management
– Shared page replacement strategy
– Must understand and take advantage of

memory hardware
• Reliability and fault tolerance – Must be able

to handle the loss of a processor without
taking down other processors.

Parallel Processing – Page 26 of 63CSCI 4717 – Computer Architecture

Cache Coherence
• One or two levels of cache typically

associated with each processor – this is
essential for performance

• Problem
– Multiple copies of same data in different caches
– Can result in an inconsistent view of memory

Parallel Processing – Page 27 of 63CSCI 4717 – Computer Architecture

Write Policy Review
• Write back policy

– Write goes only to cache
– Main memory updated only when cache block is

replaced
– Can lead to inconsistency

• Write through policy
– All writes made to cache and main memory
– Inconsistencies can occur unless all caches

monitor memory traffic

Parallel Processing – Page 28 of 63CSCI 4717 – Computer Architecture

Software Solutions
• Compiler and operating system deal with

problem
• Overhead transferred to compile time
• Design complexity transferred from

hardware to software
• Software tends to make conservative

decisions leading to inefficient cache
utilization

Parallel Processing – Page 29 of 63CSCI 4717 – Computer Architecture

Software Solutions (continued)
• Marked shared variables as non-cacheable

– Too conservative
• Instructions added to enable/disable caching

for variables. Then compiler can analyze
code to determine safe periods for caching
shared variables

Parallel Processing – Page 30 of 63CSCI 4717 – Computer Architecture

Hardware Solution
• A.K.A cache coherence protocols
• Dynamic recognition of potential problems at

run time
• Because it only deals w/problem when it

occurs, more efficient use of cache
• Transparent to programmer and compiler
• Methods

– Directory protocols
– Snoopy protocols

6

Parallel Processing – Page 31 of 63CSCI 4717 – Computer Architecture

Directory Protocols – Central control

• Central memory controller maintains
directory of:
– where blocks are held
– in which caches they are held
– what state the data is in

• Appropriate transfers are performed by
controller

Parallel Processing – Page 32 of 63CSCI 4717 – Computer Architecture

Directory Protocols – Write Process
• Requests to write to a line are made to

controller
• Using directory, controller tells all other

processors with copy of same data to invalidate
• Write is granted to requesting processor and

that processor has exclusive rights to that data
• Request to read from another processor forces

controller to issue command to processor with
exclusive rights to update (write back) main
memory.

Parallel Processing – Page 33 of 63CSCI 4717 – Computer Architecture

Directory Protocols (continued)
• Problems

– Creates central bottleneck
– Communication overhead

• Effective in large scale systems with
complex interconnection schemes

Parallel Processing – Page 34 of 63CSCI 4717 – Computer Architecture

Snoopy Protocols – Distributed control

• Distribute cache coherence responsibility
among cache controllers

• Cache recognizes that a line is shared
• Updates announced to other caches
• Suited to bus based multiprocessor
• Problem – possible to increase bus traffic to

point of canceling out benefits
• Two types of implementations:

– Write Invalidate
– Write Update

Parallel Processing – Page 35 of 63CSCI 4717 – Computer Architecture

Write Invalidate (a.k.a. MESI)
• Multiple readers, one writer
• When a write is required, command is issued and

all other caches of the line are invalidated
• Writing processor then has exclusive (cheap)

access until line required by another processor
• A state is associated with every line

– Modified
– Exclusive
– Shared
– Invalid

Parallel Processing – Page 36 of 63CSCI 4717 – Computer Architecture

Write Update (a.k.a. write broadcast)

• Multiple readers and writers
• Updated word is distributed to all other

processors

7

Parallel Processing – Page 37 of 63CSCI 4717 – Computer Architecture

Snoopy Protocols – Implementations

• Performance of these two implementations
depends on number of caches and pattern
of read/writes

• Some systems use adaptive protocols to
use both methods

• Write invalidate most common – Used in
Pentium 4 and PowerPC systems

Parallel Processing – Page 38 of 63CSCI 4717 – Computer Architecture

MESI Protocol
• Each line of a cache has associated with it two bits

– four states
• Modified – line in this cache is modified and only

valid in this cache
• Exclusive – line in this cache is same as that in

memory (unmodified) and not present in any other
cache

• Shared – line in this cache is same as that in
memory (unmodified) and may also be present in
another cache

• Invalid – line in this cache contains bad data
• Write throughs from an L1 cache to an L2 cache

makes it visible to the MESI protocol

Parallel Processing – Page 39 of 63CSCI 4717 – Computer Architecture

MESI Protocol (continued)

Parallel Processing – Page 40 of 63CSCI 4717 – Computer Architecture

MESI – State Transition Diagram

Parallel Processing – Page 41 of 63CSCI 4717 – Computer Architecture

Clusters
• Defined

– a group of interconnected, whole computers
– working together as a unified computing resource
– can create the illusion of being one machine

• Alternative to Symmetric Multiprocessing
(SMP)
– High performance
– High availability
– Server applications

• Each computer called a node
Parallel Processing – Page 42 of 63CSCI 4717 – Computer Architecture

Cluster Computer Architecture

Figure 18.11 from Stallings, Computer Organization & Architecture

8

Parallel Processing – Page 43 of 63CSCI 4717 – Computer Architecture

Cluster Benefits
• Absolute scalability – Almost limitless in

terms of adding independent
multiprocessing machines

• Incremental scalability – Can start out small
and build as user acquires new machines

Parallel Processing – Page 44 of 63CSCI 4717 – Computer Architecture

Cluster Benefits (continued)
• High availability

– Loss of one node only causes small decrement
in performance

– Software (middleware) handles fault tolerance
automatically

• Superior price/performance
– By using easily affordable building blocks, gets

better performance at a lower price than a
single large computer

– Expanding design doesn't depend on PCB
redesign

Parallel Processing – Page 45 of 63CSCI 4717 – Computer Architecture

Cluster Configurations
• High-speed message link

options/configurations
– Dedicated LAN with at least one having

connection to remote client
– Shared LAN with other non-cluster machines

• Simplest way to classify clusters is based on
whether computers share disk(s)
– No shared disk – each machine has a local disk
– Shared disk in addition to local disk – should

use disk mirroring or RAID

Parallel Processing – Page 46 of 63CSCI 4717 – Computer Architecture

Cluster Configurations – Standby
Server with no Shared Disk

Parallel Processing – Page 47 of 63CSCI 4717 – Computer Architecture

Cluster Configurations – Shared Disk

Parallel Processing – Page 48 of 63CSCI 4717 – Computer Architecture

Cluster Configurations (continued)
• Secondary server – cluster functional

classification
– Passive Standby

• Second computer will take over in the event of a failure
on the part of the first

• First computer sends "heartbeat“
• Heartbeat stops, secondary takes over
• Data must be shared or disks must be shared in order for

secondary to take over database stuff too
– Active Standby – Second computer participates in

processing

9

Parallel Processing – Page 49 of 63CSCI 4717 – Computer Architecture

Active Standby Configurations
• Separate Server

– No shared disk
– High performance and availability
– Scheduling software is needed to assign client

requests to servers to balance the load
– If a computer fails in middle of application,

another can take over
– To do this, must have some method of copying

data between at least neighboring computers

Parallel Processing – Page 50 of 63CSCI 4717 – Computer Architecture

Active Standby Configurations
(continued)

• Shared nothing
– All computers share common RAID, but have

partitions all to themselves.
– If one fails, the cluster is reconfigured to

reallocate failed computer's partitions
• Shared disk

– All computers have access to all volumes of the
same disk

– Must use some type of locking facility to ensure
that data can be accessed by one computer at a
time

Parallel Processing – Page 51 of 63CSCI 4717 – Computer Architecture

Comparison of Clustering Methods

Table 18.2 from Stallings, Computer Organization & Architecture

Parallel Processing – Page 52 of 63CSCI 4717 – Computer Architecture

Cluster O/S Design Issues –
Failure Management

• Two types of management: high availability and
fault tolerant

• High availability
– Independent processes
– If one goes down, anything in progress is lost
– Application layer must handle uncertainty of partially

executed transactions
– Process is taken over by next machine

• Fault tolerant
– Redundancies
– Mechanisms for handling partially executed transactions

Parallel Processing – Page 53 of 63CSCI 4717 – Computer Architecture

Cluster O/S Design Issues –
Failure Management (continued)

• Failover -- Switching applications & data
from failed system to alternative within
cluster

• Failback -- Restoration of applications and
data to original system after problem is fixed

Parallel Processing – Page 54 of 63CSCI 4717 – Computer Architecture

Cluster O/S Design Issues –
Load balancing

• Incremental scalability of load with changes
in number of nodes

• Automatically include new computers in
scheduling

• Middleware needs to recognise that
processes may switch between machines

10

Parallel Processing – Page 55 of 63CSCI 4717 – Computer Architecture

Cluster O/S Design Issues –
Parallelizing Computation

• Single application executing in parallel on a
number of machines in cluster

• Three general approaches to the problem:
– Parallelizing compiler
– Parallelizing application
– Parametric computing

Parallel Processing – Page 56 of 63CSCI 4717 – Computer Architecture

Parallelizing Compiler
• Determines at compile time which parts can

be executed in parallel
• Split off for different computers
• Performance depends on compiler

Parallel Processing – Page 57 of 63CSCI 4717 – Computer Architecture

Parallelizing Application
• Application written to be parallel
• Message passing to move data between

nodes
• Hard to program
• Performance depends on programmer
• Potential for best end result

Parallel Processing – Page 58 of 63CSCI 4717 – Computer Architecture

Parametric computing
• If a problem is repeated execution of

algorithm on different sets of data
• Example: simulation using different

scenarios
• Depends on tools to organize/manage and

execute

Parallel Processing – Page 59 of 63CSCI 4717 – Computer Architecture

Cluster Middleware
Software installed on each node to enable cluster operation:
• Provides high availability through load balancing and failover

control
• Creates unified image to user

– Single point of entry – User logs onto cluster rather than a
node

– Single file hierarchy – User sees a single file structure
– Single control point – single node acts as the interface to the

user
– Single virtual network visible to cluster nodes
– Single memory space – programs are allowed to share

variables across distributed memory
– Single job management system – cluster assigns the jobs,

not the user
– Single user interface

Parallel Processing – Page 60 of 63CSCI 4717 – Computer Architecture

Cluster Middleware (continued)
• Enhancement of availability

– Single I/O space – I/O is accessible by any of
the nodes regardless of the I/O device's location

– Single process space
• Processes are treated as if they are all operating on

a single machine
• This means that the process identification scheme

should be uniform and independent of host node
– Checkpointing – for recovery from a failure,

each process should periodically save its state
and intermediate variable values for failback

– Process migration – to allow for load balancing

11

Parallel Processing – Page 61 of 63CSCI 4717 – Computer Architecture

Cluster v. SMP
Positive points for both
• Both provide multiprocessor support to high

demand applications.
• Both available commercially – SMP has

been around longer

Parallel Processing – Page 62 of 63CSCI 4717 – Computer Architecture

SMP benefits
• Easier to manage and configure since it is a

single machine
• Closer to single processor systems for

which nearly all applications are written
• Scheduling is main difference between SMP

and single-processor system
• Less physical space
• Lower power consumption
• Well-established

Parallel Processing – Page 63 of 63CSCI 4717 – Computer Architecture

Cluster benefits
• Superior incremental & absolute scalability
• Superior availability through redundancy of

all components, not just processors
• Simpler to create from computers than SMP

which is designed from PCB level
• With time, clusters are likely to dominate

