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Preface

At first glance, the title of this book is an oxymoron. After all, the term abstraction
refers to an idea or general description, divorced from physical objects. On the other
hand, something is concrete when it is a particular object, perhaps something that
you can manipulate with your hands and look at with your eyes. Yet you often deal
with concrete abstractions. Consider, for example, a word processor. When you use
a word processor, you probably think that you have really entered a document into
the computer and that the computer is a machine which physically manipulates the
words in the document. But in actuality, when you “enter” the document, there
is nothing new inside the computer—there are just different patterns of activity of
electrical charges bouncing back and forth. Moreover, when the word processor
“manipulates” the words in the document, those manipulations are really just more
patterns of electrical activity. Even the program that you call a “word processor” is an
abstraction—it’s the way we humans choose to talk about what is, in reality, yet more
electrical charges. Still, although these abstractions such as “word processors” and
“documents” are merely convenient ways of describing patterns of electrical activity,
they are also things that we can buy, sell, copy, and use.

As you read through this book, we will introduce several abstract ideas in as
concrete a way as possible. As you become familiar and comfortable with these
ideas, you will begin to think of the abstractions as actual concrete objects. Having
already gone through this process ourselves, we've chosen to call computer science
“the discipline of concrete abstractions”; if that seems too peculiar to fathom, we
invite you to read the book and then reconsider the notion.

This book is divided into three parts, dealing with procedural abstractions, data
abstractions, and abstractions of state. A procedure is a way of abstracting what’s
called a computational process. Roughly speaking, a process is a dynamic succession
of events—a happening. When your computer is busy doing something, a process

IX
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is going on inside it. When we call a process a computational process, we mean
that we are ignoring the physical nature of the process and instead focusing on
the information content. For example, consider the problem of conveying some
information to a bunch of other people. If you think about writing the message
on paper airplanes and tossing it at the other people, and find yourself considering
whether the airplanes have enough lift to fly far enough, then you are considering a
mechanical process rather than a computational one. Similarly, if you think about
using the phone, and find yourself worrying about the current carrying capacity of the
copper wire, you are considering an electrical process rather than a computational
one. On the other hand, if you find yourself considering the alternative of sending
your message (whether by phone or paper airplane) to two people, each of whom
send it to two more, each of whom send it to two more, and so forth, rather than
directly sending the message to all the recipients, then you are thinking about a
computational process.

What do computer scientists do with processes? First of all, they write descriptions
of them. Such descriptions are often written in a particular programming language
and are called procedures. These procedures can then be used to make the processes
happen. Procedures can also be analyzed to see if they have been correctly written
or to predict how long the corresponding processes will take. This analysis can then
be used to improve the performance or accuracy of the procedures.

In the second part of the book, we look at various types of data. Data is the
information processed by computational processes, not only the externally visible
information, but also the internal information structures used within the processes.
First, we explore exactly what we mean by the term data, concentrating on how
we use data and what we can do with it. Then we consider various ways of gluing
small pieces of atomic data (such as words) into larger, compound pieces of data
(such as sentences). Because of our computational viewpoint, we write procedures
to manipulate our data, and so we analyze how the structure of the data affects the
processes that manipulate it. We describe some common data structures that are
used in the discipline, and show how to allow disparate structures to be operated on
uniformly in a mix-and-match fashion. We end this part of the book by looking at
programs in a programming language as data structures. That way, carrying out the
computational processes that a program describes is itself a process operating on a
data structure, namely the program.

We start the third part of the book by looking at computational processes from
the perspective of the computer performing the computation. This shows how pro-
cedurally described computations actually come to life, and it also naturally calls
attention to the computer’s memory, and hence to the main topic of this part, state.
State is anything that can be changed by one part of a computation in order to
have an effect on a later part of the computation. We show several important uses
for state: making processes model real-world phenomena more naturally, making
processes that are more efficient than without state, and making certain programs
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divide into modules focused on separate concerns more cleanly. We combine the
new material on state with the prior material on procedural and data abstraction
to present object-oriented programming, an approach to constructing highly modular
programs with state. Finally, we use the objects’ state to mediate interactions between
concurrently active subprocesses.

In summary, this book is designed to introduce you to how computer scientists
think and work. We assume that as a reader, you become actively involved in reading
and that you like to play with things. We have provided a variety of activities that
involve hands-on manipulation of concrete objects such as paper chains, numbered
cards, and chocolate candy bars. The many programming exercises encourage you to
experiment with the procedures and data structures we describe. And we have posed
a number of problems that allow you to play with the abstract ideas we introduce.

Our major emphasis is on how computer scientists think, as opposed to what they
think about. Our applications and examples are chosen to illustrate various problem-
solving strategies, to introduce some of the major themes in the discipline, and to
give you a good feel for the subject. We use sidebars to expand on various topics in
computer science, to give some historical background, and to describe some of the
ethical issues that arise.

Audience

This book is primarily intended as the text for a first (and possibly only) undergraduate
course in computer science. We believe that every college student should have a
trial experience of what it’s like to think abstractly, the way mathematicians and
computer scientists think. We hope that the tangible nature of the computer scientist’s
abstractions will attract some of the students who choose to avoid math courses.
Because of this, we don’t require that our readers have taken a college-level math
course. On the other hand, mathematics is used in computer science in much the
same way it is used in biology, chemistry, and physics. Thus we do assume that our
readers have a knowledge of high school algebra.

Although we've tried to reach a broad audience, this is not a watered-down text
unsuitable for serious students planning to major in computer science. We reject
the notion than an introduction for majors should be different from an introduction
for non-majors. Beyond the obvious difficulty that most students will not have any
reasonable basis for categorizing themselves without having taken even a single
course, we feel strongly that the most important need of a prospective major is the
same as that of a non-major: a representative trial experience of what it is like to
think the computer science way. Those who part company with us after this book
will have an appreciation for what we do; those who stay with us will know what lies
ahead for them.

Like most introductory college-level books, we make some assumptions about the
readers’ backgrounds. As we have said before, we assume that the readers understand
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the material that is typically taught in a high school algebra course. We also make
some assumptions about the readers’ attitudes towards mathematics; in short, they
should be willing to use mathematics as a tool for analyzing and solving problems.
We occasionally use some mathematical tools that aren’t typically taught in high
school. When we do this, we present the relevant material in the text and the
students need to be willing to learn this material on the fly.

Similarly, we also assume that our readers may not have had much computing or
programming experience, beyond playing an occasional computer game or using a
word processor. However, we do not describe how to start a computer, how to use a
Scheme programming environment, or similar mechanics. This kind of information
varies greatly from machine to machine and is best taught by a person rather than a
book. Again, keeping an open mind about learning is probably more important than
any prior experience.

Additionally, we assume that students have had some experience in writing. When
we teach a course based on this book, we rely heavily on writing assignments.
Students are expected to be able to write descriptions of what their procedures do
and need to be able to articulate clearly the problems they may have in order to
get help in solving them. Most of our students find that their writing skill improves
considerably over the semester.

Finally, although we attempt to be reasonably gentle toward those with little
prior mathematical or computer programming experience, in our experience even
those students who think of themselves as experts find much here that is not only
unfamiliar, but also challenging and interesting.

In short: this is an introduction for everyone.

Technical Assumptions

To make full use of this book, you will need access to a computer with an implemen-
tation of the Scheme programming language; for the final chapter, you will also need
an implementation of the Java'™ programming language, version 1.1 or later. Most
of our examples should work on essentially any modern Scheme, since we have used
constructs identified in the so-called “R*RS” standard for Scheme—the Revised®
Report on the Algorithmic Language Scheme, which is available on the web site for
this book, located at http://www.pws.com/compsci/authors/hailperin. The
following materials are available:

= all code shown in this text, together with some additional supporting code;

= information on obtaining various Scheme implementations and using them with
this text;

® Java applets that provide instructional support, such as simulations;

® manipulatives (i.e., physical materials to experiment with);

® the Scheme language specification;
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® bug-reporting forms and author contact information;
m 3 list of errata; and

® tips for instructors.

One notable exception is that we use graphics, even though there are no graphics
operations defined in R*RS. Nearly every modern Scheme will have some form of
graphics, but the details vary considerably. We have provided “library” files on our
web site for each of several popular Scheme systems, so that if you load the library
in before you begin work, the graphics operations we presume in this book will be
available to you. The nonstandard Scheme features, such as graphics, that we use in
the book are explained in the Appendix, as well as being identified where they are
first used.

Teaching with This Book

Enough material is here to cover somewhere in the range from two quarters to
two semesters, depending on your pace. If you want to cut material to fit a shorter
format, the dependencies among the chapters allow for a number of possibilities
beyond simply truncating at some point:

m Chapter 10 has only weak ties to the later chapters, so it can be omitted easily.

= Chapter 11 is primarily concerned with computer organization and assembly
language programming; however, there is also a section introducing Scheme’s
vectors. It would be possible to skip the machine-level material and cover just the
vectors with only minor adverse impact.

m  Chapter 12 can be omitted without serious impact on the later chapters.

m  Chapter 13 divides roughly into two halves: elementary data structures (stacks and
queues) and an advanced data structure (red-black trees). You can stop after the
queues section if you don’t want the more advanced material.

m Chapter 14 has a large section on how object-oriented programming is imple-
mented, which can be omitted without loss of continuity.

® You can skip straight from Chapter 7 to the vector material in Chapter 11,
provided you stop after the queues section in Chapter 13. (Chapter 8 is crucial for
the red-black tree material in Chapter 13, and Chapter 9 is crucial for Chapter
14.)

All exercises, other than those in the separate “review problems” section at the
end of each chapter, are an integral part of the text. In many cases skipping over
them will cause loss of continuity, or omission of some idea or language feature
introduced in the exercise. Thus as a general rule, even when you don’t assign the
exercises, you should consider them part of the reading.
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PART 1

Procedural Abstraction

omputer scientists study the processing of information. In this first part

of the book, we will focus our attention on specifying the nature of

that processing, rather than on the nature of the information being
processed. (The latter is the focus of Parts II and III.) For this part of the book,
we will look at procedures for processing only a few simple kinds of data, such
as numbers and images; in the final chapter of Part I, we will look at procedures
for processing other procedures.

We'll examine procedures from several different viewpoints, focusing on the
connection between the form of the procedure and the form of the process
that results from carrying it out. We'll see how to design procedures so that
they have a desired effect and how to prove that they indeed have that effect.
We'll see various ways to make procedures generate “expansible” processes that
can grow to accommodate arbitrarily large instances of a general problem and
see how the form of the procedure and process influences the efficiency of this
growth. We'll look at techniques for capturing common processing strategies in
general form, for example, by writing procedures that can write any of a family
of similar procedures for us.






CHAPTER ONE

Computer Science
and Programming

What’s It All About?

Computer science revolves around computational processes, which are also called in-
formation processes or simply processes. A process is a dynamic succession of events—a
happening. When your computer is busy doing something, a process is going on in-
side it. What differentiates a computational process from some other kind of process
(e.g., a chemical process)? Although computing originally referred to doing arith-
metic, that isn’t the essence of a computational process: For our purposes, a word, for
example, enjoys the same status as a number, and looking up the word in a dictionary
is as much a computational process as adding numbers. Nor does the process need
to go on inside a computer for it to be a computational process—it could go on in
an old-fashioned library, where a patron turns the pages of a dictionary by hand.

What makes the process a computational process is that we study it in ways that
ignore its physical nature. If we chose to study how the library patron turns the
pages, perhaps by bending them to a certain point and then letting gravity flop them
down, we would be looking at a mechanical process rather than a computational
one. Here, on the other hand, is a computational description of the library patron’s
actions in looking up fiduciary:

1. Because fiduciary starts with an f, she uses the dictionary’s index tabs to locate
the f section.

2. Next, because the second letter (i) is about a third of the way through the alphabet,
she opens to a point roughly a third of the way into the f section.

3. Finding herself slightly later in the alphabet (fjord), she then scans backward in a
straightforward way, without any jumping about, until she finds fiduciary.
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Notice that although there are some apparently physical terms in this description
(index tab and section), the interesting thing about index tabs for the purposes of this
process description is not that they are tabs but that they allow one to zoom in on
those entries of the dictionary that have a particular initial letter. If the dictionary
were stored in a computer, it could still have index tabs in the sense of some structure
that allowed this operation, and essentially the same process could be used.

There are lots of questions one can ask about computational processes, such as

. How do we describe one or specify which one we want carried out?
. How do we prove that a process has a particular effect?
. How do we choose a process from among several that achieve the same effect?

. Are there effects we can’t achieve no matter what process we specify?

Vi W N

. How do we build a machine that automatically carries out a process we've speci-
fied?

6. What processes in the natural world are fruitfully analyzed in computational

terms?

We'll touch on all these questions in this book, although the level of detail varies
from several chapters down to a sentence or two. Our main goal, however, is not
so much to answer the questions computer scientists face as to give a feel for the
manner in which they formulate and approach those questions.

Because we'll be talking about processes so much, we’ll need a notation for
describing them. We call our descriptions programs, and the notation a programming
language. For most of this book we’ll be using a programming language called
Scheme. (Two chapters near the end of the book use other programming languages
for specialized purposes: assembly language, to illustrate at a detailed level how
computers actually carry out computations, and Java, to illustrate how computational
processes can interact with other, concurrently active processes.) One advantage of
Scheme is that its structure is easy to learn; we will describe its basic structure in
Section 1.2. As your understanding of computational processes and the data on
which they operate grows, so too will your understanding of how those processes and
data can be notated in Scheme.

An added benefit of Scheme (as with most useful programming languages) is that
it allows us to make processes happen, because there are machines that can read our
notation and carry out the processes they describe. The fact that our descriptions of
abstract processes can result in their being concretely realized is a gratifying aspect
of computer science and reflects one side of this book’s title. It also means that
computer science is to some extent an experimental science.

However, computer science is not purely experimental, because we can apply
mathematical tools to analyze computational processes. Fundamental to this analysis
is a way of modeling these evolving processes; we describe the so-called substitution
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1.2

1.2 Programming in Scheme — ® 5

If you are using a shared computer system, there are some issues you should think
about regarding the social acceptability of your behavior.

The most important point to keep in mind is that the feasibility of an action
and its acceptability are quite different matters. You may well be technically cap-
able of rummaging through other people’s computer files without their approval.
However, this act is generally considered to be like going down the street turning
doorknobs and going inside if you find one unlocked.

Sometimes you won’t know what is acceptable. If you have any doubts about
whether a particular course of action is legal, ethical, and socially acceptable, err
on the side of caution. Ask a responsible system administrator or faculty member
first.

model in Section 1.2. This abstract model of a concrete process reflects another side
of the book’s title as it bears on the computational process itself.

As was mentioned above, computational processes do not only deal with numbers.
The final section of this chapter applies the concepts of this chapter to an example
involving building quilt-cover patterns out of more basic images. We will continue
this convention of having the last section of each chapter be an application of that
chapter’s concepts. Following this application section, each chapter concludes with
a collection of review problems, an inventory of the material introduced in the
chapter, and notes on reference sources.

Programming in Scheme

The simplest possible Scheme program is a single number. If you ask the Scheme
system to process such a program, it will simply return the number to you as its
answer. We call what the Scheme system does finding the value of the expression you
provide, or more simply evaluation. Fxactly how this looks will vary from one version
of Scheme to another; in our book, we’ll show it as follows, with dark, upright
type for your input and light, slanted type for the computer’s output:

12
12

The first line here was typed by a human, whereas the second line was the com-
puter’s response. Other kinds of numbers also work: negative numbers, fractions, and
decimals:

-7
-7
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1/3
1/3

3.1415927
3.1415927

In Scheme, decimals are used for inexact approximations (as in the above approxi-
mation to ), and fractions are used for exact rational numbers.

Other kinds of expressions are less boring to evaluate. For example, the value of
a name is whatever it is a name for. In a moment we’ll see how we can name things
ourselves, but there are many names already in place when we start up Scheme.
Most are names for procedures; for example, the name sqrt names a procedure, as
does the name +. If we evaluate either of them, we’ll see a printed representation of
the corresponding procedure:

sqrt
#<procedure>

+
#<procedure>

The appearance of procedures varies from one version of Scheme to another; in this
book, we'll show them as #<procedure>, but you may see something different on
your computer. However, this difference generally doesn’t matter because procedures
aren’t meant to be looked at; they’re meant to be used.

The way we use a procedure is to apply it to some values. For example, the
procedure named sqrt can be applied to a single number to take its square root,
and the procedure named + can be applied to two numbers to add them. The way
we apply a procedure to values is as follows:

(sqrt 9)
3
(+ 3 86)
9

In every case, an application consists of a parenthesized list of expressions, separated
by spaces. The first expression’s value is the procedure to apply; the values of the
remaining expressions are what the procedure should be applied to. Applications are
themselves expressions, so they can be nested:

(sqrt (+ 3 6))
3
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Here the value of the expression (+ 3 6) is 9, and that is the value to which the
procedure named sqrt is applied. (More succinctly, we say that 9 is the argument
to the sqrt procedure.)

There are any number of other useful procedures that already have names, such
as * for multiplying, - for subtracting, and / for dividing.

P ceie 1

What is the value of each of the following expressions? You should be able to do
them in your head, but checking your answers using a Scheme system will be a good
way to get comfortable with the mechanics of using your particular system.

a. (x 3 4)
b. (x (+ 53) (-5 3))
c. (/ (+ (x (- 17 14) 5) 6) 7)

It is customary to break complex expressions, such as in Exercise 1.1c, into several
lines with indentation that clarifies the structure, as follows:

(/ (+ (x (- 17 14)
5)
6)
7)

This arrangement helps make clear what’s being multiplied, what’s being added, and
what’s being divided.

Now that we've gained some experience using those things for which we already
have names, we should learn how to name things ourselves. In Scheme, we do this
with a definition, such as the following:

(define ark-volume (* (* 300 50) 30))

Scheme first evaluates the expression (* (* 300 50) 30) and gets 450000; it then
remembers that ark-volume is henceforth to be a name for that value. You may
get a response from the computer indicating that the definition has been performed;
whether you do and what it is varies from system to system. In this book, we’ll show
no response. The name you defined can now be used as an expression, either on its
own or in a larger expression:

ark-volume
450000
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(/ ark-volume 8)
56250

Although naming allows us to capture and reuse the results of computations, it
isn’t sufficient for capturing reusable methods of computation. Suppose, for example,
we want to compute the total cost, including a 5 percent sales tax, of several different
items. We could take the price of each item, compute the sales tax, and add that tax
to the original price:

(+ 1.29 (* 5/100 1.29))
1.3545

(+ 2.40 (* 5/100 2.40))
2.52

Alternatively, we could define a procedure that takes the price of an item (such as
$1.29 or $2.40) and returns the total cost of that item, much as sqrt takes a number
and returns its square root. To define such a total cost procedure we need to specify
how the computation is done and give it a name.

We can specify a method of computation by using a lambda expression. In our
sales tax example, the lambda expression would be as follows:

(lambda (x) (+ x (*x 5/100 x)))

Other than the identifying keyword lambda, a lambda expression has two parts: a
parameter list and a body. The parameter list in the example is (x) and the body is
(+ x (* 5/100 x)). The value of a lambda expression is a procedure:

(lambda (x) (+ x (* 5/100 x)))
#<procedure>

Normally, however, we don’t evaluate lambda expressions in isolation. Instead, we
apply the resulting procedure to one or more argument values:

((lambda (x) (+ x (x 5/100 x))) 1.29)
1.3545

((lambda (x) (+ x (* 5/100 x))) 2.40)
2.52
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When the procedure is applied to a value (such as 1.29), the body is evaluated, but
with the parameter (x in this example) replaced by the argument value (1.29). In our
example, when we apply (lambda (x) (+ x (* 5/100 x))) to 1.29, the compu-
tation done is (+ 1.29 (* 5/100 1.29)). When we apply the same procedure to
240, the computation done is (+ 2.40 (* 5/100 2.40)), and so on.

Including the lambda expression explicitly each time it is applied is unwieldy, so
we usually use a lambda expression as part of a definition. The lambda expression
produces a procedure, and define simply associates a name with that procedure.
This process is similar to what mathematicians do when they say “let f(x) = x X x.
In this case, the parameter is x, the body is x X x, and the name is f. In Scheme we
would write

(define f (lambda (x) (* x x)))
or more descriptively

(define square
(lambda (x) (* x x)))

Now, whenever we need to square a number, we could just use square:

(square 3)
9

(square -10)
100

P eecie 12

a. Create a name for the tax example by using define to name the procedure
(lambda (x) (+ x (*x 5/100 x))).
b. Use your named procedure to calculate the total price with tax of items costing

$1.29 and $2.40.

P eercie .3

a. In the text example, we defined £ and square in exactly the same way. What
happens if we redefine £2 Does the procedure associated with square change
also?

b. Suppose we wrote:

(define f (lambda (x) (* x x)))
(define square f)
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Fill in the missing values:

(£ 7

(square 7)

(define f (lambda (x) (+ x 2)))
(£ 7

(square 7)

Here is another example of defining and using a procedure. Its parameter list is
(radius height), which means it is intended to be applied to two values. The
first should be substituted where radius appears in the body, and the second where
height appears:

(define cylinder-volume
(lambda (radius height)
(* (* 3.1415927 (square radius))
height)))

(cylinder-volume 5 4)
314.15927

Notice that because we had already given the name square to our procedure for
squaring a number, we were then able to simply use it by name in defining another
procedure. In fact, it doesn’t matter which order the two definitions are done in as
long as both are in place before an attempt is made to apply the cylinder-volume
procedure.

We can model how the computer produced the result 314.15927 by consulting
Figure 1.1. In this diagram, the vertical arrows represent the conversion of a problem
to an equivalent one, that is, one with the same answer. Alternatively, the same
process can be more compactly represented by the following list of steps leading
from the original expression to its value:
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(cylinder-volume 5 4)

(x (* 3.1415927 (square 5)) 4)
(x (* 3.1415927 (* 5 5)) 4)

(x (x 3.1415927 25) 4)

(x 78.5398175 4)

314.15927

Whether we depict the evaluation process using a diagram or a sequence of expres-
sions, we say we're using the substitution model of evaluation. We use this name
because of the way we handle procedure application: The argument values are sub-

Problem Subproblem Sub-subproblem

| (cylinder-volume 5 4) |

Y
(* (* 3.1415927 (square 5))
4)

i

| (* 3.1415927 (square 5)) |

(square 5)

Y
[(* 3.1415927 25

Y
78.5398175

(*78.5398175
4)

Y

314.15927

Figure 1.1 The process of evaluating (cylinder-volume 5 4)
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stituted into the procedure body in place of the parameter names and then the
resulting expression is evaluated.

> Exercise 1.4

According to the Joy of Cooking, candy syrups should be cooked 1 degree cooler than
listed in the recipe for each 500 feet of elevation above sea level.

a. Define candy-temperature to be a procedure that takes two arguments: the
recipe’s temperature in degrees and the elevation in feet. It should calculate the
temperature to use at that elevation. The recipe for Chocolate Caramels calls for
a temperature of 244 degrees; suppose you wanted to make them in Denver, the
“mile high city.” (One mile equals 5280 feet.) Use your procedure to find the
temperature for making the syrup.

b. Candy thermometers are usually calibrated only in integer degrees, so it would be
handy if the candy-temperature procedure would give an answer rounded to
the nearest degree. Rounding can be done using the predefined procedure called
round. For example, (round 7/3) and (round 5/3) both evaluate to 2. Insert
an application of round at the appropriate place in your procedure definition and
test it again.

Procedures give us a way of doing the same computation to different values.
Sometimes, however, we have a computation we want to do to different values,
but not exactly in the same way with each. Instead, we want to choose a particular
computation based on the circumstances. For example, consider a simplified income
tax, which is a flat 20 percent of income; however, those earning under $10,000 don’t
have to pay any tax at all. We can write a procedure for calculating this tax as follows:

(define tax
(lambda (income)
(if (< income 10000)
0
(* 20/100 income))))

Two things are new in this example. The first is the procedure named <. Unlike
the procedures we've seen so far, it doesn’t calculate a number. Instead it calculates a
boolean or truth value—i.e., either true or false. It's what we call a test or predicate: a
procedure that determines whether some fact is true or not. (In this case, it determines
whether the income is less than $10,000.) The other new thing is the if expression,
which uses the truth value to decide which of the remaining two expressions to
evaluate. (As you may have guessed, there are other predefined predicates, including
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>, =, <=, >= even?, odd?, and many others. Of those we mentioned, only <= and
>= are perhaps not self-explanatory; they correspond to the mathematical symbols =
and = respectively.)

We can trace through the steps the computer would take in evaluating (tax
30000) as follows:

(tax 30000)

(if (< 30000 10000) O (* 20/100 30000))
(if #f 0 (*x 20/100 30000))

(* 20/100 30000)

6000

In going from the second to the third line, the expression (< 30000 10000) is
evaluated to the false value, which is written #£. (Correspondingly, the true value is
written #t.) Because the if’s test evaluated to false, the second subexpression (the
0) is ignored and the third subexpression (the (* 20/100 30000)) is evaluated. We
can again show the computational process in a diagram, as in Figure 1.2.

| INE

The preceding tax example has (at least) one undesirable property, illustrated by the
following: if you earn $9999, you pay no taxes, so your net income is also $9999.
However, if you earn $10,000, you pay $2000 in taxes, resulting in a net income of
$8000. Thus, earning $1 more results in a net loss of $1999!

The U.S. tax code deals with this potential inequity by using what is called a
marginal tax rate. This policy means roughly that each additional dollar of income
is taxed at a given percentage rate, but that rate varies according to what income
level the dollar represents. In the case of our simple tax, this would mean that the
first $10,000 of a person’s income is not taxed at all, but the amount above $10,000
is taxed at 20 percent. For example, if you earned $12,500, the first $10,000 would
be untaxed, but the amount over $10,000 would be taxed at 20 percent, yielding a
tax bill of 20% X ($12, 500 — $10, 000) = $500. Rewrite the procedure tax to reflect
this better strategy.

> Exercise 1.6

The Joy of Cooking suggests that to figure out how many people a turkey will serve,
you should allow 3 /4 of a pound per person for turkeys up to 12 pounds in weight, but
only 1/2 pound per person for larger turkeys. Write a procedure, turkey-servings,
that when given a turkey weight in pounds will calculate the number of people it
serves.
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Problem Subproblem

(tax 30000)

Y
(if (< 30000 10000)

0 T~

(* 20/100 30000))

(< 30000 10000)

Y
(if #f <
0
(* 20/100 30000))

Y
[ ( 20/100 30000) |

Y

6000

Figure 1.2 The process of evaluating (tax 30000)

P ercise 17

Wirite a succinct English description of the effect of each of the following procedures.
Try to express what each calculates, not how it calculates that.

a. (define puzzlel
(lambda (a b c)
(+ a (if (> b c)
b
c))))
b. (define puzzle2
(lambda (x)
(GEf (< x 0)
+)
0 x)))
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Figure 1.3 A sample of the Repeating Crosses quilt

An Application: Quilting

Now we turn our attention to building procedures that operate on rectangular im-
ages, rather than numbers. Using these procedures we can produce geometric quilt
patterns, such as the Repeating Crosses pattern shown in Figure 1.3.

In doing numeric computations, the raw materials are numbers you type in and
some primitive numeric procedures, such as +. (By primitive procedures, we mean
the fundamental predefined procedures that are built into the Scheme system.) The
situation here is similar. We will build our images out of smaller images, and we will
build our image procedures out of a few primitive image procedures that are built
into our Scheme system. Unfortunately, image procedures are not as standardized as
numeric procedures, so you can’t count on these procedures to work in all versions
of Scheme; any Scheme used with this book, however, should have the procedures
we use here. There is also the problem of how to input the basic building-block
images that are to be manipulated. Graphic input varies a great deal from computer
to computer, so rather than tell you how to do it, we've provided a file on the web
site for this book that you can load into Scheme to define some sample images.
Loading that file defines each of the names shown in Figure 1.4 as a name for the
corresponding image. (Exercise 1.11 at the end of this section explains how these
blocks are produced.)

We'll build our quilts by piecing together small square images called basic blocks.
The four examples in Figure 1.4 are all basic blocks; the one called rcross-bb was
used to make the Repeating Crosses quilt. The quilt was made by piecing together
copies of the basic block, with some of them turned.

To make the Repeating Crosses quilt, we need at least two primitive procedures:
one that will produce an image by piecing together two smaller images and one
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rcross-bb corner-bb test-bb nova-bb
Figure 1.4 Predefined images

that will turn an image a quarter turn to the right. These procedures, which are
built into the Scheme systems recommended for this book, are called stack and
quarter-turn-right.

> Exercise 1.8

Try evaluating the following expressions:

(stack rcross-bb corner-bb)
(quarter-turn-right test-bb)

What happens if you nest several expressions, such as in the following:

(stack (stack rcross-bb corner-bb) test-bb)
(stack (stack rcross-bb corner-bb)
(stack (quarter-turn-right test-bb) test-bb))

Can you describe the effect of each primitive?

> Exercise 1.9

Before undertaking anything so ambitious as making an actual quilt, it may pay to
have a few more tools in our kit. For example, it would be nice if we could turn an
image to the left, or half way around, as well as to the right. Similarly, it would be
desirable to be able to join two images side by side as well as stacking them on top
of one another.

a. Define procedures half-turn and quarter-turn-left that do as their names
suggest. Both procedures take a single argument, namely, the image to turn. You
will naturally need to use the built-in procedure quarter-turn-right.

b. Define a procedure side-by-side that takes two images as arguments and creates
a composite image having the first image on the left and the second image on
the right.
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If you don’t see how to build the three additional procedures out of quarter-
turn-right and stack, you may want to play more with combinations of those
two. Alternatively, try playing with paper squares with basic blocks drawn on them.
(The web site for this book has some basic blocks you can print out, but hand-drawn
ones work just as well.)

> Exercise 1.10

Fach dark cross in the repeating crosses pattern is formed by joining together four
copies of the basic block, each facing a different way. We can call this operation
pinwheeling the basic block; here is an example of the same operation performed on
the image test-bb:

V
i

Define the pinwheel procedure and show how you can use it to make a cross out
of the basic block.

Now try pinwheeling the cross—you should get a sample of the quilt, with four
dark crosses, as shown at the beginning of the section. If you pinwheel that, how big
is the quilt you get?

Try making other pinwheeled quilts in the same way, but using the other basic

blocks. What do the designs look like?

(pinwheel ) =

Although you have succeeded (through the exercises) in making the Repeating
Crosses quilt described at the beginning of this section, there are at least two ques-
tions you may have. First, how are the basic blocks constructed in the first place? And
second, how could we create quilts that aren’t pinwheels of pinwheels? This latter
question will be dealt with in the next two chapters, which introduce new program-
ming techniques called recursion and iteration. The former question is addressed in
the following exercise.

P eecise .11

All four basic blocks shown previously can be produced using two primitive graphics
procedures supported by all the Scheme systems recommended for this book. The
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first of these procedures, filled-triangle, takes six arguments, which are the x
and y coordinates of the corners of the triangle that is to be filled in. The coordinate
system runs from —1 to 1 in both dimensions. For example, here is the definition of
test-bb:

(define test-bb
(filled-triangle 0 1 0 -1 1 -1))

The second of these procedures, overlay, combines images. To understand how it
works, imagine having two images on sheets of transparent plastic laid one on top of
the other so that you see the two images together. For example, here is the definition
of nova-bb, which is made out of two triangles:

(define nova-bb
(overlay (filled-triangle 0 1 0 0 -1/2 0)
(filled-triangle 0 0 0 1/2 1 0)))

a. Use these primitive graphics procedures to define the other two basic blocks from

Figure 1.4.

b. Now that you know how it is done, be inventive. Come up with some basic blocks
of your own and make pinwheeled quilts out of them. Of course, if your system
supports direct graphical input, you can also experiment with freehand images,
or images from nature. You might find it interesting to try experiments such as
overlaying rotated versions of an image on one another.

Review Problems
I> Exercise 1.12

Find two integers such that applying £ to them will produce 16 as the value, given
that £ is defined as follows:

(define f
(lambda (x y)
(if (even? x)
7
(x x y))))

I> Exercise 1.13

Write a Scheme expression with no multidigit numbers in it that has 173 as its value.
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Exercise 1.14

Wirite a procedure that takes two arguments and computes their average.

Exercise 1.15

What could be filled into the blank in the following procedure to ensure that no
division by zero occurs when the procedure is applied? Give several different answers.

(define foo
(lambda (x y)
(if
+xy
« xy))N

I> Exercise 1.16

A 10-foot-long ladder leans against a wall, with its base 6 feet away from the bottom
of the wall. How high on the wall does it reach? This question can be answered by
evaluating (ladder-height 10 6) after entering the following definition. Make a
diagram such as the one in Figure 1.1 showing the evaluation of (ladder-height
10 6) in the context of this definition:

(define ladder-height
(lambda (ladder-length base-distance)
(sqrt (- (square ladder-length)
(square base-distance)))))

Chapter Inventory
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New Predefined Scheme Names

The dagger symbol (1) indicates a name that is not part of the R*RS standard for

Scheme.

sqrt <=

+ >=

* even?

- odd?

/ stackt

round quarter-turn-rightt

< filled-trianglet
overlayt

New Scheme Syntax

number parameter list

name body

application if expression

definition #f

lambda expression #t

Scheme Names Defined in This Chapter

ark-volume corner-bb

square test-bb

cylinder-volume nova-bb

candy-temperature half-turn

tax quarter-turn-left

turkey-servings side-by-side

puzzlel pinwheel

puzzle2 ladder-height

rcross-bb

Sidebars

Responsible Computer Use

The identifying keyword 1ambda, which indicates that a procedure should be created,
has a singularly twisted history. This keyword originated in the late 1950s in a
programming language (an early version of Lisp) that was a direct predecessor to
Scheme. Why? Because it was the name of the Greek letter A, which Church

had used in the 1930s to abstract mathematical functions from formulas [12]. For
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example, where we write (lambda (x) (* x x)), Church might have written
Ax.x X x. Because the computers of the 1950s had no Greek letters, the A needed
to be spelled out as 1ambda. This development wasn’t the first time that typographic
considerations played a part in the history of lambda. Barendregt [6] tells “what
seems to be the story” of how Church came to use the letter A. Apparently Church
had originally intended to write .x X x, with a circumflex or “hat” over the x. (This
notation was inspired by a similar one that Whitehead and Russell used in their
Principia Mathematica [53].) However, the typesetter of Church’s work was unable
to center the hat over the top of the x and so placed it before the x, resulting in
x.x X x instead of Z.x X x; a later typesetter then turned that hat with nothing under
it into a A, presumably based on the visual resemblance.

The formula for candy-making temperatures at higher elevations, the recipe for
chocolate caramels, and the formula for turkey servings are all from the Joy of Cooking
[42]. The actual suggested formula for turkey servings gives a range of serving sizes
for each class of turkeys; we've chosen to use the low end of each range, because
we've never had a shortage of turkey.

The quilting application is rather similar to the “Little Quilt” language of Sethi
[49]. The Repeating Crosses pattern is by Helen Whitson Rose [43].



CHAPTER TWO

2.1

Recursion and Induction

Recursion

We have used Scheme to write procedures that describe how certain computational
processes can be carried out. All the procedures we've discussed so far generate
processes of a fixed size. For example, the process generated by the procedure
square always does exactly one multiplication no matter how big or how small the
number we're squaring is. Similarly, the procedure pinwheel generates a process
that will do exactly the same number of stack and turn operations when we use
it on a basic block as it will when we use it on a huge quilt that’s 128 basic blocks
long and 128 basic blocks wide. Furthermore, the size of the procedure (that is,
the size of the procedure’s text) is a good indicator of the size of the processes it
generates: Small procedures generate small processes and large procedures generate
large processes.

On the other hand, there are procedures of a fixed size that generate computa-
tional processes of varying sizes, depending on the values of their parameters, using
a technique called recursion. 'To illustrate this, the following is a small, fixed-size
procedure for making paper chains that can still make chains of arbitrary length —
it has a parameter n for the desired length. Youll need a bunch of long, thin
strips of paper and some way of joining the ends of a strip to make a loop. You
can use tape, a stapler, or if you use slitted strips of cardstock that look like this

] LI, you can just slip the slits together. You'll need some
classmates, friends, or helpful strangers to do this with, all of whom have to be willing
to follow the same procedure as you. You will need to stand in a line.

22
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To make a chain of length n:

1.Ifn=1,
(a) Bend a strip around to bring the two ends together, and join them.
(b) Proudly deliver to your customer a chain of length 1.
2. Otherwise,
(a) Pick up a strip.
(b) Ask the person next in line to please make you a chain of length n — 1.
(c) Slip your strip through one of the end links of that chain, bend it around,
and join the ends together.
(d) Proudly deliver to your customer a chain of length n.

Now you know all there is to know about recursion, you have met a bunch of
new people, and if you were ambitious enough to make a long chain, you even
have a nice decoration to drape around your room. Despite all these advantages, it
is generally preferable to program a computer rather than a person. In particular,
using this same recursive technique with a computer comes in very handy if you
have a long, tedious calculation to do that you'd rather not do by hand or even ask
your friends to do.

For example, imagine that you want to compute how many different outcomes
there are of shuffling a deck of cards. In other words, how many different orderings (or
permutations) of the 52 cards are there? Well, 52 possibilities exist for which card is on
top, and for each of those 51 possibilities exist for which card is next, or 52 X 51 total
possibilities for what the top two cards are. This pattern continues similarly on down
the deck, leading to a total number of possibilities of 52 X 51 X 50 X - -+ X3 X2 X1,
which is the number that is conventionally called 52 factorial and written 52!. To
compute 52! we could do a lot of tedious typing, spelling out the 51 multiplications of
the numbers from 52 down to 1. Alternatively, we could write a general procedure for
computing any factorial, which uses its argument to determine which multiplications
to do, and then apply this procedure to 52.

To write this procedure, we can reuse the ideas behind the paper chain procedure.
One of these is the following very important general strategy:

The recursion strategy: Do nearly all the work first; then there will only be a
little left to do.

Although it sounds silly, it describes perfectly what happened with the paper chain:
You (or rather your friends) did most of the work first (making a chain of length
n — 1), which left only one link for you to do.

Here we're faced with the problem of multiplying 52 numbers together, which
will take 51 multiplications. One way to apply the recursion principle is this: Once
50 of the multiplications have been done, only 1 is left to do.
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We have many possible choices for which 50 multiplications to do first versus
which one to save for last. Almost any choice can be made to work, but some may
make us work a bit harder than others. One choice would be to initially multiply
together the 51 largest numbers and then be left with multiplying the result by the
smallest number. Another possibility would be to initially multiply together the 51
smallest numbers, which would just leave the largest number to multiply in. Which
approach will make our life easier? Stop and think about this for a while.

We start out with the problem of multiplying together the numbers from 52
down to 1. To do this, were going to write a general factorial procedure, which can
multiply together the numbers from anything down to 1. Fifty-two down to 1 is just
one special case; the procedure will be equally capable of multiplying 105 down to
1, or 73 down to 1, or 51 down to 1.

This observation is important; if we make the choice to leave the largest number
as the one left to multiply in at the end, the “nearly all the work” that we need to do
first is itself a factorial problem, and so we can use the same procedure. To compute
521, we first compute 51!, and then we multiply by 52. In general, to compute n!,
for any number n, we’ll compute (n — 1)! and then multiply by n. Writing this in
Scheme, we get:

(define factorial
(lambda (n)
(* (factorial (- n 1))
n)))

The strategy of choosing the subproblem to be of the same form as the main
problem is probably worth having a name for:

The self-similarity strategy: Rather than breaking off some arbitrary big chunk
of a problem to do as a subproblem, break off a chunk that is of the same form
as the original.

Will this procedure for computing factorials work? No. It computes the factorial of
any number by first computing the factorial of the previous number. That works up
to a point; 52! can be computed by first computing 51!, and 51! can be computed by
first computing 50!. But, if we keep going like that, we’ll never stop. Every factorial
will be computed by first computing a smaller one. Therefore 1! will be computed
in terms of 0!, which will be computed in terms of (—1)!, which will be computed
in terms of (—2)!, and so on.

When we have a lot of multiplications to do, it makes sense to do all but one and
then the one that’s left. Even if we only have one multiplication to do, we could
do all but one (none) and then the one that’s left. But what if we don’t have any
multiplications at all to do? Then we can’t do all but one and then the one that’s
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left—there isn’t one to leave for last. The fundamental problem with this procedure
is, it tries to always leave one multiplication for last, even when there are none to be
done.

Computing 1! doesn’t require any multiplications; the answer is simply 1. What
we can do is treat this base case specially, using if, just like in the human program
for making chains:

(define factorial

(lambda (n)
(if (=n 1)
1
(x (factorial (- n 1))
n))))

(factorial 52)
80658175170943878571660636856403766975289505440883277824000000000
000

Thus, base cases are treated separately in recursive procedures. In particular, they
result in no further recursive calls. But we also need to guarantee that the recursion
will always eventually end in a base case. This is so important that we give it the
following name:

The base case imperative: In a recursive procedure, all roads must lead to a
base case.

This procedure generates what is called a recursive process; a similar but smaller
computation is done as a subgoal of solving the main problem. In particular, cases
like this with a single subproblem that is smaller by a fixed amount, are called linear
recursions because the total number of computational steps is a linear function of the
problem size. We can see the recursive nature of the process clearly in Figure 2.1,
which shows how the evaluation of (factorial 3) involves as a subproblem com-
puting (factorial 2), which in turn involves computing (factorial 1) as a
sub-subproblem. If the original problem had been (factorial 52), the diagram
would be 52 columns wide instead of only 3.

This diagram isn’t complete —the evaluation of the if expression with its equality
test isn’t explicitly shown and neither is the subtraction of one. These omissions were
made to simplify the diagram, leaving the essential information more apparent. If we
included all the details, the first three steps (leading from the problem (factorial

3) to the subproblem (factorial 2)) would expand into the ten steps shown in
Figure 2.2.
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Problem Subproblem Sub-subproblem

(factorial 3)

Y
| (* (factorial 2) 3) |

(factorial 2)

| (* (factorial 1) 2) |

(factorial 1)

Figure 2.1 The recursive process of evaluating (factorial 3).

Although the recursive nature of the process is most evident in the original
diagram, we can as usual save space by instead listing the evaluation steps. If we do
this with the same details omitted, we get

(factorial 3)

(* (factorial 2) 3)

(* (x (factorial 1) 2) 3)
(x (x12) 3

(* 2 3)

6
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Problem Subproblem Sub-subproblem

(factorial 3)

Y

(if(=31)

1
(* (factm
3))

(if #f <
1
(* (factorial (-3 1))
3))

Y

(* (factorial (- 3 1))

3)

T
|
|
: (factorial (- 3 1))
. I
I |
! |
I |
! |
I |
! |
|
|
I (factorial 274
|
\/

Figure 2.2 Details of the recursive process of evaluating (factorial 3).

Let’s sum up what we've done in both the paper chain example and the factorial
example. In both, we had to solve a problem by doing something repeatedly, either
assembling links or multiplying numbers. We broke off a big chunk of each problem
(the recursion principle) that was just like the original problem (the self-similarity
principle) except that it was smaller. After that chunk was finished, we only had a
little work left to do, either by putting in one more link or multiplying by one more
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-j’ Exponents

In this book, when we use an exponent, such as the k in x, it will almost always
be either a positive integer or zero. When k is a positive integer, x* just means
k copies of x multiplied together. That is, x* = x X x X -+ X x, with k of the
x’s. What about when the exponent is zero? We could equally well have said that
X =1 XxXxX -+ Xx with k of the x’s. For example, x> = 1 X x X x X x,
x* = 1XxXx, and x! =1 X x. If we continue this progression with one fewer x,
we see that x” = 1.

number. In each case, the smaller subproblems must invariably lead to a problem
so small that it could be made no smaller (the base case imperative), that is, when
we needed to make a chain of length 1 or when we had to compute 1!, which is
handled separately.

P ercise21 |

Write a procedure called power such that (power base exponent) raises base to the
exponent power, where exponent is a nonnegative integer. As explained in the sidebar
on exponents, you can do this by multiplying together exponent copies of base. (You
can compare results with Scheme’s built-in procedure called expt. However, do not
use expt in power. Expt computes the same values as power, except that it also
works for exponents that are negative or not integers.)

Induction

Do you believe us that the factorial procedure really computes factorials? Proba-
bly. That’s because once we explained the reasoning behind it, there isn’t much to
it. (Of course, you may also have tried it out on a Scheme system —but that doesn’t
explain why you believe it works in the cases you didn’t try.)

Sometimes, however, it is a bit trickier to convince someone that a procedure
generates the right answer. For example, here’s another procedure for squaring a
number that is rather different from the first one:

(define square

(lambda (n)
(if (=n 0)
0

(+ (square (- n 1))
(- (+ nmn) 1))



2.2 Induction L] 29

Just because it is called square doesn’t necessarily mean that it actually squares
its argument; we might be trying to trick you. After all, we can give any name we
want to anything. Why should you believe us? The answer is: You shouldn’t, yet,
because we haven’t explained our reasoning to you. It is not your job as the reader of
a procedure to figure it out; it is the job of the writer of a procedure to accompany
it with adequate explanation. Right now, that means that we have our work cut out
for us. But it also means that when it becomes your turn to write procedures, you
are going to have to similarly justify your reasoning.

Farlier we said that the procedure was “for squaring a number.” Now that we're
trying to back up that claim, we discover we need to be a bit more precise: This
procedure squares any nonnegative integer. Certainly it correctly squares 0, because
it immediately yields 0 as the answer in that case, and 0> = 0. The real issue is with
the positive integers.

We're assuming that - subtracts and + adds, so (- n 1) evaluates to n — 1, and
(= (+ n n) 1) evaluates to (n + n) — 1 or 2n — 1. What if we went one step
further and assumed that where square is applied to n — 1, it squares it, resulting
in the value (n — 1)?? In that case, the overall value computed by the procedure is
(n—1)*+2n—1. With a little bit of algebra, we can show that (n —1)*+2n—1 = n?,
and so in fact the end result is n?, just like we said it was.

But wait, not so fast: To show that square actually squares n, we had to assume
that it actually squares n — 1; we seem to need to know that the procedure works
in order to show that it works. This apparently circular reasoning isn’t, however,
truly circular: it is more like a spiral. To show that square correctly squares some
particular positive integer, we need to assume that it correctly squares some smaller
particular integer. For example, to show that it squares 10, we need to assume that
it can square 9. If we wanted to, though, we could show that it correctly squares
9, based on the assumption that it correctly squares 8. Where does this chain of
reasoning end? It ends when we show that (square 1) really computes 12, based
on the fact that (square 0) really computes 0?. At that point, the spiraling stops,
because we’ve known since the very beginning that square could square 0.

The key point that makes this spiral reasoning work is that the chain of reasoning
leads inexorably down to the base case of zero. We only defined square in terms
of smaller squares, so there is a steady progression toward the base case. By contrast,
even though it is equally true that n> = (n + 1) — (2n + 1), the following procedure
does not correctly compute the square of any positive integer:

(define square ; This version doesn’t work.
(lambda (n)
(if (=n 0)
0
(- (square (+ n 1))
(+ (+nn) 1))
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The reason why this procedure doesn’t correctly compute the square of any positive
integer isn’t that it computes some incorrect answer instead. Rather, it computes
no answer at all, because it works its way further and further from the base case,
stopping only when the computer runs out of memory and reports failure. We say
that the computational process doesn’t terminate.

We've also used this procedure to introduce another feature of the Scheme pro-
gramming language: comments. Any text from a semicolon to the end of the line is
ignored by the Scheme system and instead is for use by human readers.

The reasoning technique we’ve been using is so generally useful that it has a name:
mathematical induction. Some standard terminology is also used to make arguments
of this form more brief. The justification that the base case of the procedure works is
called the base case of the proof. The assumption that the procedure works correctly
for smaller argument values is called the induction hypothesis. The reasoning that
leads from the induction hypothesis to the conclusion of correct operation is called
the inductive step. Note that the inductive step only applies to those cases where the
base case doesn’t apply. For square, we only reasoned from n — 1 to n in the case
where n was positive, not in the case where it was zero.

Putting this all together, we can write an inductive proof of square’s correctness
in a reasonably conventional format:

Base case: (square 0) terminates with the value 0 because of the evaluation
rule for if. Because 0 = 0%, (square 0) computes the correct value.

Induction hypothesis: Assume that (square k) terminates with the value k* for
all k in the range 0 = k < n.

Inductive step: Consider evaluating (square n), with n > 0. This will ter-
minate if the evaluation of (square (- n 1)) does and will have the same
value as (+ (square (- n 1)) (- (+ n n) 1)). Because (- n 1) evaluates
ton—1and 0 =n — 1 <n, we can therefore assume by our induction hypoth-
esis that (square (- n 1)) does terminate, with the value (n — 1)%. Therefore
(+ (square (- n 1)) (- (+ n n) 1)) evaluates to (n — 1)> + 2n — 1. Be-
cause (n — 1)> + 2n — 1 = n?, we see that (square n) does terminate with the
correct value for any arbitrary positive nn, under the inductive hypothesis of correct
operation for smaller arguments.

Conclusion: Therefore, by mathematical induction on n, (square n) termi-
nates with the value n* for any nonnegative integer n.

If you have trouble understanding this, one useful trick is to think of proving one
special case of the theorem each day. The first day you prove the base case. On any
subsequent day, you prove the next case, making use only of results you've previously
proven. There is no particular case that you won'’t eventually show to be true—so
the theorem must hold in general.
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We wish to point out two things about this proof. First, the proof is relative
in the sense that it assumes that other operations (such as + and -) operate as
advertised. But this is an assumption you must make, because you were not there
when the people who implemented your Scheme system were doing their work.
Second, an important part of verifying that a procedure computes the correct value
is showing that it actually terminates for all permissible argument values. After all, if
the computation doesn’t terminate, it computes no value at all and hence certainly
doesn’t compute the correct value. This need for termination explains our enjoinder
in the base case imperative given earlier.

B ceie22

Write a similarly detailed proof of the factorial procedure’s correctness. What are
the permissible argument values for which you should show that it works?

Proving is also useful when you are trying to debug a procedure that doesn’t work
correctly, that is, when you are trying to figure out what is wrong and how to fix it.
For example, look at the incorrect version of square given earlier. If we were trying
to prove that this works by induction, the base case and the inductive hypothesis
would be exactly the same as in the proof above. But look at what happens in the
inductive step:

Inductive step: Consider evaluating (square n), with n > 0. This will termi-
nate if the evaluation of (square (+ n 1)) does and will have the same value as
(- (square (+ n 1)) (+ (+ n n) 1)).Because (+ n 1) evaluates ton + 1
and0=n+1<n... Oops...

The next time you have a procedure that doesn’t work, try proving that it does
work. See where you run into trouble constructing the proof— that should point you
toward the bug (error) in the procedure.

P cerie 23

Here’s an example of a procedure with a tricky bug you can find by trying to do
an induction proof. Try to prove the following procedure also computes n* for any
nonnegative integer n. Where does the proof run into trouble? What's the bug?

(define square ; another version that doesn’t work

(lambda (n)
(if (=n 0)
0

(+ (square (- n 2))
(- (x4 1n) N
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The most important thing to take away from this encounter with induction is a
new way of thinking, which we can call one-layer thinking. To illustrate what we
mean by this, contrast two ways of thinking about what the square procedure does
in computing 4%:

1. You can try thinking about all the layers upon layers of squares, with requests
going down through the layers and results coming back up. On the way down,
42 requests 3% requests 2% requests 12 requests 0. On the way back up, 0 gets
1 +1—1 added to it yielding 1, which gets 2+ 2 — 1 added to it yielding 4, which
gets 3 + 3 — 1 added to it yielding 9, which gets 4 + 4 — 1 added to it yielding
16, which is the answer.

2. Alternatively, you can just stick with one layer. The computation of 4* requests 3
and presumably gets back 9, because that’s what 3% is. The 9 then gets 4 + 4 — 1
(or 7) added to it, yielding the answer 16.

This is really just an informal version of relying on an induction hypothesis—that’s
what we were doing when we said “...and presumably gets back 9, because that’s
what 3% is.” It saves us having to worry about how the whole rest of the computation
is done.

One-layer thinking is much better suited to the limited capacities of human brains.
You only have to think about a little bit of the process, instead of the entire arbitrarily
large process that you've really got. Plunging down through a whole bunch of layers
and then trying to find your way back up through them is a good way to get hopelessly
confused. We sum this up as follows:

The one-layer thinking maxim: Don't try to think recursively about a recursive
process.

One-layer thinking is more than just a way to think about the process a procedure
will generate; it is also the key to writing the procedure in the first place. For example,
when we presented our recursive version of square at the beginning of this section,
you may well have wondered where we got such a strange procedure. The answer is
that we started with the idea of computing squares recursively, using smaller squares.
We knew we would need to have a base case, which would probably be when n = 0.
We also knew that we had to relate the square of n to the square of some smaller
number. This led to the following template:

(define square

(lambda (n)
(if (= n 0)
0
(___ (square )

))))
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We knew that the argument to square would have to be less than n for the induction

hypothesis to apply; on the other hand, it would still need to be a nonnegative integer.
The simplest way to arrange this is to use (- n 1); thus we have

(define square

(lambda (n)
(if (=n 0)
0
(__ (square (- n 1))

2)))

At this point, our one-layer thinking tells us not to worry about the specific computa-
tional process involved in evaluating (square (- n 1)). Instead, we assume that
the value will be (n — 1)%. Thus the only remaining question is, What do we need
to do to (n — 1)? to get n?? Because (n — 1)> = n? — 2n + 1, it becomes clear that
we need to add 2n — 1. This lets us fill in the remaining two blanks, arriving at our
procedure:

(define square

(lambda (n)
(if (=n 0)
0

(+ (square (- n 1))
(- (+nmn) 1))

> Exercise 2.4

Use one-layer thinking to help you correctly fill in the blanks in the following version
of square so that it can square any nonnegative integer:

(define square

(lambda (n)
(if (=n 0)
0
(if (even? n)
(___ (square (/ n 2))

)
(+ (square (- n 1))
(- (+nmn) 1))N)N
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Further Examples

Recursion adds great power to Scheme, and the recursion strategy will be funda-
mental to the remainder of the book. However, if this is your first encounter with
recursion, you may find it confusing. Part of the confusion arises from the fact that
recursion seems “circular.” However, it really involves spiraling down to a firm foun-
dation at the base case (or base cases). Another problem at this point is simply lack
of familiarity. Therefore, we devote this section to various examples of numerical
procedures involving recursion. And the next section applies recursion to quilting.
As our first example, consider the builtin Scheme procedure quotient, which
computes how many times one integer divides another integer. For example,

(quotient 9 3)
3

(quotient 10 3)
3

(quotient 11 3)
3

(quotient 12 3)
4

Even though quotient is built into Scheme, it is instructive to see how it can
be written in terms of a more “elementary” procedure, in this case subtraction.
We'll write a procedure that does the same job as quotient, but we'll call it quot
instead so that the built-in quotient will still be available. (Nothing stops you from
redefining quotient, but then you lose the original until you restart Scheme.) In
order to simplify the discussion, suppose we want to compute (quot n d), where
n=0andd > 0. If n <d, d doesn’t divide n at all, so the result would be 0. If,
however, n = d, d will divide n one more time than it divides n — d. Writing this in
Scheme, we have

(define quot
(lambda (n d)
(if (< n d)
0
(+ 1 (quot (- n d) d)))))

The built-in version of quotient, unlike the quot procedure just shown, allows
either or both of the arguments to be negative. The value when one or both argu-
ments are negative is defined by saying that negating either argument negates the
quotient. For example, because the quotient of 13 and 3 is 4, it follows that the



2.3 Further Examples u 35

quotient of —13 and 3 is —4, and so is the quotient of 13 and —3. Because negating
either argument negates the quotient, negating both of them negates the quotient
twice, or in other words leaves it unchanged. For example, the quotient of —13 and
—3is4.

In order to negate a number in Scheme, we could subtract it from zero; for ex-
ample, to negate the value of n, we could write (= 0 n). However, it is more
idiomatic to instead write (- n), taking advantage of a special feature of the prede-
fined procedure named -, namely, that it performs negation if only given a single
argument. Note that (- n) is quite different in form from -5: The former applies a
procedure to an argument, whereas the latter is a single number. It is permissible to
apply the procedure named - to a number, as in (= 5), but you can’t put a negative
sign on a name the way you would on a number: -n isn’t legal Scheme.

We could build these ideas into our procedure as follows:

(define quot
(lambda (n d)
(if (< d 0)
(- (quot n (- D))
(if (< n 0)
(- (quot (- mn) d))
(if (< n d)
0
(+ 1 (quot (- n d) d))))))

Notice that our first version of quot corresponds to the innermost if; the outer two
if’s deal with negative values for n and d.

This new, more general, quot procedure is our first example of a procedure with
ifs nested within one another so deeply that they jeopardize the readability of the
procedure. Procedures like this can be clarified by using another form of conditional
expression that Scheme offers as an alternative to if: cond. Here is how we can
rewrite quot using cond:

(define quot
(lambda (n d)
(cond ((< d 0) (- (quot n (- d))))
((<n0) (- (quot (- n) A))
((<nd 0)
(else (+ 1 (quot (- n d) d)))N)N

A cond consists of a sequence of parenthesized clauses, each providing one possible
case for how the value might be calculated. Each clause starts with a test expression,
except that the last clause can start with the keyword else. Scheme evaluates each
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test expression in turn until it finds one that evaluates to true, to decide which
clause to use. Once a test evaluates to true, the remainder of that clause is evaluated
to produce the value of the cond expression; the other clauses are ignored. If the
else clause is reached without any true test having been found, the else clause’s
expression is evaluated. If, on the other hand, no test evaluates to true and there is
no else clause, the result is not specified by the Scheme language standard, and
each system is free to give you whatever result it pleases.

P ocie2s

Use addition to write a procedure multiply that calculates the product of two
integers (i.e., write * for integers in terms of +).

Suppose we want to write a procedure that computes the sum of the first n integers,
where n is itself a positive integer. This is a very similar problem to factorial; the
difference is that we are adding up the numbers rather than multiplying them.
Because the base case n = 1 should yield the value 1, we come up with a solution
identical in form to factorial:

(define sum-of-first

(lambda (n)
(if (=n 1)
1
(+ (sum-of-first (- n 1))
n))))

But why should n = 1 be the base case for sum-of-first? In fact, we could
argue that the case n = 0 makes good sense: The sum of the first 0 integers is the
“empty sum,” which could reasonably be interpreted as 0. With this interpretation,
we can extend the allowable argument values as follows:

(define sum-of-first

(lambda (n)
(if (=n 0)
0
(+ (sum-of-first (- n 1))
n))))

This extension is reasonable because it computes the same values as the original
version whenever n = 1. (Why?) A similar extension for factorial would be
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(define factorial

(lambda (n)
(if (= n 0)
1
(x (factorial (- n 1))
n))))

It is not as clear that the “empty product” should be I; however, we've seen empty
products when we talked about exponents (see the sidebar, Exponents). The product
of zero copies of x multiplied together is 1; similarly the product of the first zero
positive integers is also 1. Not coincidentally, this agrees with the mathematical
convention that 0! = 1.

> Exercise 2.6

Let's consider some variants of the basic form common to factorial and
sum-of-first.

a. Describe precisely what the following procedure computes in terms of n:

(define subtract-the-first

(lambda (n)
(if (=n 0)
0
(- (subtract-the-first (- n 1))
n))))

b. Consider what happens when you exchange the order of multiplication in
factorial:

(define factorial?2

(lambda (n)
(if (=n 0)
1
(* n

(factorial2 (- n 1))))))

Experimentation with various values of n should persuade you that this version
computes the same value as did the original factorial. Why is this so? Would
the same be true if you switched the order of addition in sum-of-first?
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c. If you reverse the order of subtraction in subtract-the-first, you will get a
different value in general. Why is this so? How would you precisely describe the
value returned by this new version?

One way to generalize sum-of-first is to sum up the integers between two
specified integers (e.g., from 4 to 9). This would require two parameters and could
be written as follows:

(define sum-integers-from-to
(lambda (low high)
(if (> low high)
0
(+ (sum-integers-from-to low (- high 1))
high))))

Note that this could also be accomplished by increasing low instead of decreasing
high.

P oercie27

Rewrite sum-integers-from-to in this alternative way.

> Exercise 2.8

Another type of generalization of sum-of-first can be obtained by varying what
is being summed, rather than just the range of summation:

a. Write a procedure sum-of-squares that computes the sum of the first n squares,
where n is a nonnegative integer.

b. Write a procedure sum-of-cubes that computes the sum of the first n cubes,
where n is a nonnegative integer.

c. Write a procedure sum-of-powers that has two parameters n and p, both non-
negative integers, such that (sum-of-powers n p) computes 17 + 27 + - - - +n?’.

In the factorial procedure, the argument decreases by 1 at each step. Sometimes,
however, the argument needs to decrease in some other fashion. Consider, for
example, the problem of finding the number of digits in the usual decimal way of
writing an integer. How would we compute the number of digits in n, where n is
a nonnegative integer? If n < 10, the problem is easy; the number of digits would
be 1. On the other hand, if n = 10, the quotient when it is divided by 10 will be all
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but the last digit. For example, the quotient when 1234 is divided by 10 is 123. This

lets us define the number of digits in n in terms of the number of digits in a smaller
number, namely, (quotient n 10). Putting this together, we have

(define num-digits

(lambda (n)
(if (< n 10)
1

(+ 1 (num-digits (quotient n 10))))))
We could extend num-digits to negative integers using cond:

(define num-digits

(lambda (n)
(cond ((< n 0) (num-digits (- n)))
((<n 10) 1)
(else (+ 1 (num-digits (quotient n 10)))))))

If we want to do more with the digits than count how many there are, we need to
find out what each digit is. We can do this using the remainder from the division by
10; for example, when we divide 1234 by 10, the remainder is 4. A built-in proce-
dure called remainder finds the remainder; for example, (remainder 1234 10)
evaluates to 4.

> Exercise 2.9

Wirite a procedure that computes the number of 6s in the decimal representation of
an integer. Generalize this to a procedure that computes the number of d’s, where
d is another argument.

> Exercise 2.10

Wirite a procedure that calculates the number of odd digits in an integer. (Reminder:
There is a built-in predicate called odd?.)

P eecise2.11]

Wirite a procedure that computes the sum of the digits in an integer.
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B eecie2.2

Any positive integer i can be expressed as i = 2"k, where k is odd, that is, as a
power of 2 times an odd number. We call n the exponent of 2 in i. For example, the
exponent of 2 in 40 is 3 (because 40 = 2°5) whereas the exponent of 2 in 42 is 1. If
i itself is odd, then n is zero. If, on the other hand, i is even, that means it can be
divided by 2. Write a procedure for finding the exponent of 2 in its argument.

An Application: Custom-Sized Quilts

At the end of the previous chapter we made some quilts by pinwheeling basic blocks.
The only problem is that the quilts only come in certain sizes: You could make a
single cross by pinwheeling rcross-bb, or a quilt that is two crosses wide and high
by pinwheeling the cross, or four wide and high by pinwheeling that, or.... But we
want a quilt that is four crosses wide and three high. Were not being stubborn; we
have a paying customer whose bed isn’t square. In fact, given that there are lots of
different sizes of beds in the world, it would probably be best if we wrote a general
purpose procedure that could make a quilt any number of crosses wide and any
number high. We know how to make a cross; the challenge is how to replicate an
image a desired number of times.

B eecie2.13

We can often simplify a problem by first considering a one-dimensional version of
it. Here, this means we should look at the problem of stacking a specified number
of copies of an image one on top of another in a vertical column. Write a procedure
stack-copies-of so that, for example, (stack-copies-of 5 rcross-bb) pro-
duces a tall, thin stack of five basic blocks. By the way, the name stack-copies-of
illustrates a useful trick for remembering the order of the arguments. We chose the
name so that it effectively has blanks in it for the arguments to fill in: “stack
copies of 7

Exercise 2.14

Use your stack-copies-of from the previous exercise to define a procedure called
quilt so that (quilt (pinwheel rcross-bb) 4 3) makes our desired quilt. In
general, (quilt image w h) should make a quilt that is w images wide and h
images high. Try this out.

Some quilts have more subtle patterns, such as checkerboard-style alternation of
light and dark regions. Consider, for example, the Blowing in the Wind pattern,
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Figure 2.3 The Blowing in the Wind quilt pattern.

shown in Figure 2.3. This is again made out of pinwheels of a basic block; the basic
block, which we've defined as bitw-bb, is

$

and the result of pinwheeling it is
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Five copies of this pinwheel appear as the white-on-black regions in the corners and
the center of the quilt. The four black-on-white regions of the quilt are occupied by
a black/white reversal of the pinwheel, namely,

This “inverted” version of the pinwheel can be produced using the primitive proce-
dure invert as follows: (invert (pinwheel bitw-bb)).

The trick is to make a checkerboard out of alternating copies of (pinwheel
bitw-bb) and (invert (pinwheel bitw-bb)). We can approach this in many
different ways, because so many algebraic identities are satishied by invert, stack,
and quarter-turn-right. For example, inverting an inverted image gives you the
original image back, and inversion “distributes” over stacking (inverting a stack gives
the same result as stacking the inverses).

Before you write a procedure for alternating inverted and noninverted copies
of an image, you should pin down exactly what alternating means. For example,
you might specify that the image in the lower left corner is noninverted and that
the images within each row and column alternate. Or, you could specify that the
alternation begins with a noninverted image in the upper left, the upper right, or the
lower right. For a three-by-three checkerboard such as is shown here, all of these are
equivalent; only if the width or height is even will it make a difference. Nonetheless,
it is important before you begin to program to be sure you know which version you
are programming.

P ercise2.15

One way or another, develop a procedure checkerboard for producing ar-
bitrarily sized checker-boarded quilts of images. Making a call of the form
(checkerboard (pin-wheel bitw-bb) 3 3) should result in the Blowing in the
Wind pattern of Figure 2.3. The checkerboard procedure also produces an interest-
ing “boxed crosses” pattern if you pinwheel rcross-bb instead of bitw-bb (check
it out), although we hadn’t intended it for that purpose, and it can be used with a
black (or white) image to make a regular checkerboard. You might be interested to
try it on some of your own basic blocks as well.
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Review Problems
I> Exercise 2.16

Consider the following procedure foo:

(define foo
(lambda (x n)
(if (=n 0)
1
(+ (expt x n) (foo x (- n 1))))))

Use induction to prove that (foo x n) terminates with the value

xn+l -1

x—1

for all values of x # 1 and for all integers n = 0. You may assume that expt works
correctly, (i.e., (expt b m) returns b™). Hint: The inductive step will involve some
algebra.

I> Exercise 2.17

Perhaps you have heard the following Christmas song:

On the first day of Christmas
My true love gave to me
A partridge in a pear tree.

On the second day of Christmas
My true love gave to me

Two turtle doves

And a partridge in a pear tree.

On the third day of Christmas
My true love gave to me
Three French hens,

Two turtle doves,

And a partridge in a pear tree.

And so on, through the twelfth day of Christmas. Note that on the first day, my
true love gave me one present, on the second day three presents, on the third day
six presents, and so on. The following procedure determines how many presents I
received from my true love on the nth day of Christmas:
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(define presents-on-day

(lambda (n)
(if (= n 1)
1

(+ n (presents-on-day (- n 1))))))

How many presents did I receive total over the 12 days of Christmas? This can
be generalized by asking how many presents I received in total over the first n
days. Write a procedure called presents-through-day (which may naturally use
presents-on-day) that computes this as a function of n. Thus, (presents-
through-day 1) should return 1, (presents-through-day 2) should return
1 +3 =4, (presents-through-day 3) should return 1 + 3 + 6 = 10, etc.

I> Exercise 2.18

Prove by induction that for every nonnegative integer n the following procedure
computes 2n:

(define f
(lambda (n)
(if (=n 0)
0

+2 (E (-n 1))

[> Exercise 2.19

Prove that for all nonnegative integers n the following procedure computes the value
22",

(define foo
(lambda (n)
(if (=n 0)
2
(expt (foo (- n 1)) 2))))

Hint: You will need to use certain laws of exponents, in particular that (2¢)> = 2

and 292b = 2a%b,

I> Exercise 2.20

Prove that the following procedure computes n/(n+ 1) for any nonnegative integer n.
That is, (£ n) computes n/(n + 1) for any integer n = 0.
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(define f
(lambda (n)
(if (= n 0)
0
+ (£ (-n 1))

(/1 (xn (+n 1))

[::> Exercise 2.21

a. Appendix A describes the predefined procedure stack by saying (among other
things) that (stack image, image;) produces an image, the height of which is
the sum of the heights of image; and image,. How would you describe the height
of the image that is the value of (stack-on-itself image), given the following
definition of stack-on-itself?

(define stack-on-itself
(lambda (image)
(stack image image)))

b. Use induction to prove that given the definition in part a and the following
definition of £, the value of (£ image n) is an image 2" times as high as image,
provided n is a nonnegative integer.

(define f
(lambda (image n)
(if (= n 0)
image
(stack-on-itself (f image (- n 1))))))

[::> Exercise 2.22

Consider the following procedure:

(define foo

(lambda (n)
(if (=n 0)
0

(+ (foo (- n 1))
(/ 1 (- (*x 4 (square n)) 1))
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a. What is the value of (foo 1)? Of (foo 2)? Of (foo 3)?

b. Prove by induction that for every nonnegative integer n, (foo n) computes

n/(2n + 1).

I> Exercise 2.23

Suppose we have made images for each of the digits 0-9, which we name zero-bb,
one-bb, ..., nine-bb. For example, if you evaluate five-bb, you get the following

image:

a. Write a procedure image-of-digit that takes a single parameter d that is an
integer satisfying 0 = d = 9 and returns the image corresponding to d. You
should definitely use a cond, because you would otherwise have to nest the ifs

ridiculously deep.

b. Using the procedure image-of-digit, write another procedure image-of-
number that takes a single parameter n that is a nonnegative integer and returns
the image corresponding to it. Thus, (image-of-number 143) would return the

following image:

Hint: Use the Scheme procedures quotient and remainder to break n apart.
Also, you may use the procedure side-by-side from Exercise 1.9b without

redefining it here.
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CHAPTER THREE

lteration and Invariants

Iteration

In the previous chapter, we used a general problem-solving strategy, namely, recur-
sion: solve a smaller problem first, then do the little bit of work that’s left. Now we’ll
turn to a somewhat different problem-solving strategy, known as iteration:

The iteration strategy: By doinga little bit of work first, transform your problem
into a smaller one with the same solution. Then solve the resulting smaller
problem.

Let’s listen in on a hypothetical student thinking aloud as she uses this strategy to
devise an alternative factorial procedure:

I've got a factorial problem, like 6 X 5 X 4 X 3 X 2 X 1.

Gee, I wonder if I can transform that into a simpler problem with the same
answer? What would make it simpler? Well, the problem I've got is six numbers
multiplied together. Five numbers multiplied together would be simpler. I wonder
if I can find five numbers that when multiplied together give the same result?

6X5X4X3X2X1= X X X X

Well, I can’t just put the numbers I've got into the blanks, because I've got more
numbers than blanks. (That’s the whole point.) Because I have one extra number,
maybe I can put two numbers into one blank. I guess I can’t really get something
for nothing—if I only want to have four multiplications left to do, I better do one of
my five now. If [ multiply two of the numbers together now and put the product in
one of the blanks, that would be a way to get two numbers into one blank. Maybe

48
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I'll multiply the first two together, the 6 and the 5, to get 30. So I have
6X5X4X3X2IX1=30X4X3X2X1

That was great, I got the problem down from a five multiplication problem
to a four multiplication problem. I bet I could transform it the same way into a
three-multiplication problem:

LLo=120XK3X2X1

If T keep going like this, one multiplication at a time, eventually it will all boil
down to a single number:

L.=360X2X1
L.=720X1
...=720

I guess I could call that last step a “zero multiplication” problem. And that’s the
answer to the original problem, because it’s equal to all the preceding problems, all
the way back to the original factorial one.

Now [ want to write a procedure that could solve any problem of this form. What
specifics do I have to give it to tell it which problem of this form to solve? Well, 1
could give it the numbers to multiply together. .... No, that’s silly, there could be
lots of them. I wonder if there is some more concise description of these problems
.... Oh, T see, the numbers after the first are always consecutive, down to 1. So
I could describe the problems by saying “30 times 4 down to 1”7 or “120 times 3
down to 17 or that kind of thing. Oh, in fact the “down to 1”7 part just means it’s a
factorial, so I've got problems like “30 times 4!” or “120 times 3!.” So what I want is
a procedure to multiply some number times some factorial:

(define factorial-product
(lambda (a b) ; compute a * b!
))

What I did with those products was transform them into smaller ones, like this:

(define factorial-product
(lambda (a b) ; compute a * b! as (axb) * (b-1)!
(factorial-product (* a b) (- b 1))))

Of course, I have to stop making the factorial part smaller eventually, when it
can’t get any smaller—let’s see, that's when there were zero multiplications left—
right after multiplying 720 by 1. Because when I had 720 times 1 that was 720 X 11,
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I guess the next step is 720 X 0. I never really thought about 0! before, but it would
make sense; the factorial is just some consecutive numbers to multiply together, and
here there aren’t any, so that’s 0. That means I stop when b is 0:

(define factorial-product
(lambda (a b) ; compute a * b!
(if (=1 0)
a
(factorial-product (* a b) (- b 1)))))

Now I have a general way of solving problems of the form one number times
the factorial of the other number. Wait a second, that wasn’t what I really wanted:
I really wanted just to do factorials. Hmmm ..., I could just trick my procedure
into doing plain factorials by telling it to multiply by 1, because that doesn’t change
anything:

(define factorial
(lambda (n)
(factorial-product 1 n)))

A couple things are worth noticing here. One is that the student changed our
original problem of finding a factorial to the more general problem of finding the
product of a factorial and another number. Our original problem is then just a special
case of this latter problem. This is a good example of what Polya calls “the inventor’s
paradox” in his excellent book on problem solving, How to Solve It. Sometimes, trying
to solve a more general or “harder” problem actually makes the original problem
easier to solve.

Another point to notice is that the student made use of comments (starting
with semicolons) to explain her Scheme program. Her comment identifies what
factorial-product computes (namely, its first argument times the factorial of its
second argument). We'll say more about this comment in a bit; it's an extremely
important kind of comment that you should definitely make a habit of using.

P oecies

At the very beginning of the above design of the iterative factorial, a choice needed
to be made of which two numbers to multiply together, in order to fit the two
of them into one blank. In the version shown above, the decision was made to
multiply together the leftmost two numbers (the 6 and the 5). However, it would
have been equally possible to make some other choice, such as multiplying together
the rightmost two numbers. Redo the design, following this alternative path.



3.1 Iteration L] 51

The iterative way of doing factorials may not seem very different from the recursive
way. In both cases, the multiplications get done one at a time. In both cases, one
multiplication is done explicitly, and the others are implicitly done by the procedure
reinvoking itself. The only difference is whether all but one of the multiplications are
done first and then the remaining one, or whether one multiplication is done first
and then all the rest. However, this is actually an extremely important distinction. It
is the difference between putting the main problem on hold while a subproblem is
solved versus progressively reducing the problem.

The subproblem approach is less efficient because some of the computer’s memory
needs to be used to remember what the main problem was while it is doing the
subproblem. Because the subproblem itself involves a subsubproblem, and so forth,
the recursive approach actually uses more and more memory for remembering what
it was doing at each level as it burrows deeper. This was illustrated by the diagram
of the recursive factorial process shown in Figure 2.1 on page 26. That diagram
had one column for the original problem of evaluating (factorial 3), one for
the subproblem of evaluating (factorial 2), and one for the sub-subproblem of
evaluating (factorial 1). We remarked that a diagram of the recursive evaluation
of (factorial 52) would have had 52 columns. The number of columns in these
diagrams corresponds to the amount of the computer’s memory that is used in the
evaluation process.

By contrast, the iterative approach is only ever solving a single problem—the
problem just changes into an easier one with the same answer, which becomes the
new single problem to solve. Thus, the amount of memory remains fixed, no matter
how many reduction steps the iterative process goes through. If we look at the diagram
in Figure 3.1 (on page 53) of the iterative process of evaluating (factorial 3), we
can see that the computation stays in a single column. (As usual, we've been selective
in showing details.) Even if we were to evaluate (factorial 52), we wouldn’t need
a wider sheet of paper, just a taller one. (The vertical dimension corresponds to time
It would take longer to compute (factorial 52).) The difference between the two
types of processes is less clear if we simply list the computational steps than it is from
the diagrams, but with a practiced eye you can also see the iterative nature of the
process in this more compact form:

(factorial 3)

(factorial-product 1 3)

(if (= 3 0) 1 (factorial-product (* 1 3) (- 3 1)))
(factorial-product (* 1 3) (- 3 1))
(factorial-product 3 2)

(if (= 2 0) 3 (factorial-product (* 3 2) (- 2 1)))
(factorial-product (x 3 2) (- 2 1))
(factorial-product 6 1)

(if (=1 0) 6 (factorial-product (* 6 1) (- 1 1)))
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(factorial-product (* 6 1) (- 1 1))
(factorial-product 6 0)

(if (= 0 0) 6 (factorial-product (*x 6 0) (- 0 1)))
6

If we work through the analogous computational steps for (factorial 6), but this
time leave out some more steps, namely, those involving the ifs and the arithmetic,
the skeleton we're left with mirrors exactly the hypothetical student’s calculation of
6! done at the beginning of this chapter:

(factorial 6) 6!
(factorial-product 1 6) =1X06!
(factorial-product 6 5) =6 X 5!
(factorial-product 30 4) =30 X 4!
(factorial-product 120 3) =120 X 3!
(factorial-product 360 2) = 360 X 2!
(factorial-product 720 1) =720 X 1!
(factorial-product 720 0) =720 X 0!
720 =720

To dramatize the reduced memory consumption of iterative processes, take down
the paper chain that is decorating your room, disassemble it, and reassemble it using
this new process:

= To make a chain of length n,
(a) Bend one strip around and join its ends together.
(b) Ask yourself to link n — 1 more links onto it.
® To link k links onto a chain,
(a) If k =0, you are done. Hang the chain back up in your room.

(b) Otherwise,

i. Slip one strip through an end link of the chain, bend it around, and join
the ends together.

ii. Ask yourself to link ¥ — 1 links onto the chain.

Notice the key difference: You are able to do this one alone, in the privacy of
your own room, without having to invite a whole bunch of friends over to stand
in line. The reason why the recursive process required one person per link is that
you had to stand there with a link in your hand and wait for the rest of the crew
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Problem

(factorial 3)

| (factorial-product 1 3) |

y

(if =3 0)
1
(factorial-product (* 1 3) (- 3 1))

Y

| (factorial-product (* 1 3) (- 3 1)) |

Y

| (factorial-product 3 2) |

Y

(if(=20)
3
(factorial-product (* 3 2) (-2 1))

y

| (factorial-product (* 3 2) (-2 1)) |

y

| (factorial-product 6 1) |

y

(if(=10)
6
(factorial-product (* 6 1) (- 1 1))

y

| (factorial-product (* 6 1) (- 1 1)) |

y

| (factorial-product 6 0) |

Y

(if =00)
6
(factorial-product (* 6 0) (- 0 1))

:

The iterative process of evaluating (factorial 3).

53
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to build the chain of length n — 1 before you could put your link on. Because the
process continued that way, each of your friends in turn wound up having to stand
there waiting to put a link on. With the new iterative version, there’s no waiting for
a subtask to be completed before work can proceed on the main task, so it can all
be done singlehandedly (which in a computer would mean with a fixed amount of
memory).

Just to confuse everybody, procedures such as the ones we've looked at in this
chapter are still called recursive procedures, because they invoke themselves. They
simply don’t generate recursive processes. A recursive procedure is any procedure that
invokes itself (directly or indirectly). If the self-invocation is to solve a subproblem,
where the solution to the subproblem is not the same as the solution to the main
problem, the computational process is a recursive process, as in the prior chapter.
If, on the other hand, the self-invocation is to solve a reduced version of the original
problem (i.e., a simpler version of the problem but with the exact same answer as
the original), the process is an iterative process, as in this chapter.

P ercises |

Write a new procedure for finding the exponent of 2 in a positive integer, as in
Exercise 2.12 on page 40, but this time using an iterative process.

P peciess

3.2

You have one last chance to quilt. (In the next chapter we’ll do something different,
but equally pretty.) Rewrite your procedure for making arbitrary sized quilts so that
it generates an iterative process. Do the same for your procedure for checkerboard
quilts. As before, it helps to start with the one-dimensional case, that is, an iterative
version of stack-copies-of.

Using Invariants

Comments such as the one on the factorial-product procedure—the one that
said what the procedure computed, as a function of the argument values—can be
very handy. A comment such as this one is called an invariant because it describes a
quantity that doesn’t change. Every time around the factorial-product iteration,
b decreases by 1, but a increases by a multiple of the old b, so the product a X b!
remains constant. In fact, that’s another good way to think about the design of such
a procedure: Some parameter keeps moving toward the base case, and some other
parameter changes in a compensatory fashion to keep the invariant quantity fixed.
In this section, we’ll show how invariants can be used to write iterative procedures
and how they can be used to prove a procedure is correct.
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Let’s start with factorial-product. Because the procedure is already written,
we'll prove that it is correct, that is, that it really does compute a X b!, provided b is
a nonnegative integer. (Notice how we're focusing on the invariant.)

Base case: If b = 0, it follows from the way if expressions work that the procedure
terminates with a as its value. Because a X 0! = a X 1 = g, the theorem therefore
holds in this base case.

Induction hypothesis: We will assume that (factorial-product i k) termi-
nates with value i X k! provided that k is in the range 0 = k < b.

Inductive step: Consider the evaluation of (factorial-product a b), with
b > 0. Clearly the procedure will terminate with the same value as the expression
(factorial-product (* a b) (- b 1)), provided that this recursive call ter-
minates. However, because 0 = b — 1 < b, the induction hypothesis allows us to
assume that this call will indeed terminate, with (@ X b) X (b — 1)! as its value.
Because (a X b) X (b — 1)l = a X (b X (b — 1)) = a X bl, we see that the
procedure does indeed terminate with the correct answer in this case, assuming
the induction hypothesis.

Conclusion: ~ Therefore, by mathematical induction, the evaluation of
(factorial-product a b) will terminate with the value a X b! for any non-
negative integer b (and any number a).

Having shown this formal proof by induction, it’s illuminating to look back at the
comments the hypothetical student included in the factorial-product definition.
We already identified the primary comment, that the procedure computes a X b,
as the invariant, which is what the proof is proving. However, note that at a critical
moment in designing the procedure the student amplified it to say that the procedure
“computes a X bl as (a X b) X (b — 1)I.” This can now be recognized as a simplified
version of the inductive step. Proof by induction should be used this way: first as
comments written while you are designing the procedure, that give a bare outline of
the most important ingredients of the proof. Later, if you need to, you can flesh out
the full proof. Of course, leaving the comments in can be helpful to a reader who
needs the same points made explicit as you did.

Next we'll look at writing an iterative version of the power procedure from Ex-
ercise 2.1 on page 28. Finding a power involves doing many multiplications, so
it is somewhat similar to factorial. For that reason, well define power and
power-product analogously to the way we did with factorial and we'll use a
similar invariant:
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(define power-product

(lambda (a b e) ; returns a times b to the e power
(if (= e 0)
(power-product ))))

(define power
(lambda (b e)
(power-product 1 b e)))

If we imagine trying to prove this is correct using induction, filling in the first
blank is connected with the base case of the induction proof. Because we're trying
to prove that a X b” is returned in this case, and because b’ = 1, we should fill in
that first blank with a.

How should we fill in the remaining three blanks? Think about an induction
proof. In order for the induction hypothesis to apply, we've got to fill in the last
blank with something that is a nonnegative integer and is strictly less than e. We
know that e is a positive integer (it was originally only guaranteed to be nonnegative,
but we just handled the case of ¢ = 0 ). This means that e — 1 is a nonnegative
integer, and it is of course less than e. Therefore, we should probably put e — 1
in the last blank. The base goes in the next to last blank. Because we're trying to
multiply e copies of b together, the base should probably remain unchanged as b.
Thus we are left with what to fill in as the first parameter of the recursive call
to power-product. Our invariant comes in handy here. Suppose we put in some
expression, say x, here. According to our invariant (and our induction hypothesis),
this call to power—product will return x - b*"!. On the other hand, this is also the
value that gets returned from the whole procedure when e > 0. But the invariant
says that this value should be a - b°. Thus, we can set up an equation and solve it
for x:

x-bl=q-b°
_a-b°
x= be—l
x=a-b

Putting this all together gives us:

(define power-product
(lambda (a b e) ; returns a times b to the e power
(if (=e 0)
a

(power-product (* a b) b (- e 1)))))
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> Exercise 3.4

Give a formal induction proof that power-product is correct.

P ceie s

If when you did Exercise 3.2, you didn’t write down the invariant for your iterating
procedure, do so now. Next, use induction to prove that your procedure does in fact
compute this invariant quantity.

In our final example, we'll write a procedure that a sixteenth-century mathe-
matician, Pierre Fermat, thought would produce prime numbers. A prime number
is a positive integer with exactly two positive divisors, 1 and itself. Fermat thought
that all numbers produced by squaring 2 any number of times and then adding 1

would be prime. Certainly, the numbers 2 + 1 = 3 (in which 2 isn’t squared at all),
2

241 =5 2 +1=17, (22 +1 =257, and (22))) +1=65537 are
prime numbers (although checking 65,537 does take some effort). We call these the
zeroth through fourth Fermat numbers, corresponding to zero through four squarings.
Unfortunately, the fifth Fermat number, 4,294,967,297, is not a prime, because it
equals 641 X 6,700,417. In fact, the only Fermat numbers known to be prime are the
zeroth through fourth. Many Fermat numbers are known to be composite (i.e., not
prime); the largest of these is the 23,471st Fermat number. On the other hand, no
one knows whether the twenty-fourth Fermat number is prime or composite. (This
is the smallest Fermat number for which the primality is unknown.)

We can translate our definition of Fermat numbers into Scheme:

(define fermat-number ; computes the nth Fermat number
(lambda (n)
(+ (repeatedly-square 2 n) 1)))

Most of the work is done in repeatedly-square, which we can outline as follows:

(define repeatedly-square ; computes b squared n times, where

(lambda (b n) ; n is a nonnegative integer
(if (=n 0)
b ;not squared at all
(repeatedly-square ))))

How do we fill in the blanks? Again, to be able to apply the induction hypothesis,
we've got to fill in the second blank with something that is a nonnegative integer
and is strictly less than n. As before, we’ll try n — 1. This brings us to
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(define repeatedly-square ; computes b squared n times, where
(lambda (b n) ; n is a nonnegative integer
(if (=n 0)
b ; not squared at all
(repeatedly-square (- n 1))

Now, whatever we fill in the remaining blank, we know from the induction hypothesis
that it will be squared n—1 times. We don’t need to think about how it will be squared
n — 1 times; that’s what makes this one-layer thinking. Now the question is, What
should be squared n — 1 times to produce the desired result, b squared n times? The
answer is b%; that is, if we square b once and then n — 1 more times, it will have
been squared n times in all. This leads to

(define repeatedly-square ; computes b squared n times, where
(lambda (b n) ; 0 is a nonnegative integer
(if (=n 0)
b ;not squared at all

(repeatedly-square (square b) (- n 1)))))

We explicitly concern ourselves only with squaring b the first time and trust based
on the induction hypothesis that it will be squared the remaining n — 1 times.

Perfect Numbers, Internal Definitions, and Let

Having seen how iteration works, let's work through an extended example using
iteration, both to solidify our understanding and also to provide opportunity for
learning a few more helpful features of Scheme.

A number is called perfect if the sum of its divisors is twice the number. (Equiv-
alently, a number is perfect if it is equal to the sum of its divisors other than itself.)
Although this is a simple definition, lots of interesting questions concerning perfect
numbers remain unanswered to date; for example, no one knows whether there are
any odd perfect numbers. In this section, we’ll use the computer to search for perfect
numbers.

A good starting point might be to write a simple perfect? predicate, leaving all
the hard part for sum-of-divisors:

(define perfect?
(lambda (n)
(= (sum-of-divisors n) (*x 2 n))))

The simplest way to compute the sum of the divisors of n would be to check each
number from 1 to n, adding it into a running sum if it divides n. This computation
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sounds like an iterative process; as we check each number, the range left to check
gets smaller, and thus transforms the problem into a smaller one. The running sum
changes in a compensatory fashion: Any divisor no longer included in the range to
check is instead included in the running sum. The invariant quantity is the sum of
the divisors still in the range plus the running sum. The following definition is based
on these ideas. Note that divides? needs to be written.

(define sum-of-divisors
(lambda (n)
(define sum-from-plus ; sum of all divisors of n which are
(lambda (low addend) ; >= low, plus addend
(if (> low n)
addend ; no divisors of n are greater than n
(sum-from-plus (+ low 1)
(if (divides? low n)
(+ addend low)
addend)))))
(sum-from-plus 1 0)))

The preceding definition illustrates a useful feature of Scheme: It is possible to
nest a definition inside a lambda expression, at the beginning of the body. This
nesting achieves two results:

® The internally defined name is private to the body in which it appears. This
means that we can’t invoke sum-from-plus directly but rather only by using
sum-of-divisors. It also means that we're able to use a relatively nondescrip-
tive name (it doesn’t specify what it is summing) without fear that we might
accidentally give two procedures the same name. As long as the two definitions
in question are internal to separate bodies, the same name can be used without
problem.

® The sum-from-plus procedure is able to make use of n, without needing to have
it passed as a third argument. This is because a nested procedure can make use
of names from the procedure it is nested inside of (or from yet further out, in the
case of repeated nesting).

Why didn’t we nest sum-of-divisors itself inside of the perfect? procedure?
Although we wrote sum-of-divisors for the sake of perfect?, it could very well
be useful on its own, for other purposes. This is in contrast to sum-from-plus,
which is hard to imagine as a generally useful procedure rather than merely a means
to implement sum-of-divisors.

The only detail remaining before we have a working perfect? test is the predicate
divides?. We can implement it using the primitive procedure remainder:
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(define divides?
(lambda (a b)
(= (remainder b a) 0)))

> Exercise 3.6

Although the method we use for computing the sum of the divisors is straightforward,
it isn’t particularly efficient. Any time we find a divisor d of n, we can infer that n/d
is also a divisor. In particular, all the divisors greater than the square root of n can
be inferred from the divisors less than the square root. Make use of this observation
to write a more efficient version of sum-of-divisors that stops once low’ = n.
Remember that if low? = n, low and n/low are the same divisor, not two different
ones.

If you start testing numbers for perfectness by trying them out one by one with
perfect?, you'll quickly grow bored: It seems almost nothing is perfect. Because
perfect numbers are so few and far between, we should probably automate the search.
The following procedure finds the first perfect number after its argument value:

(define first-perfect-after
(lambda (n)
(if (perfect? (+ n 1))
(+n 1)
(first-perfect-after (+ n 1)))))

Having this start searching with the first number after its argument is convenient
for using it to search for consecutive perfect numbers, like this:

(first-perfect-after 0)
6

(first-perfect-after 6)
28

(first-perfect-after 28)
496

Because the search starts after the number we specify, we can specify each time the
perfect number we just found, and it will find the next. Unfortunately, starting with
the next number causes us to use three copies of the expression (+ n 1), which is
a bit ugly.
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Rather than put up with this, or changing how the procedure is used, we can
make use of another handy Scheme feature, namely, let:

(define first-perfect-after
(lambda (n)
(let ((next (+ n 1)))
(if (perfect? next)
next
(first-perfect-after next)))))

What this means is to first evaluate (+ n 1) and then locally let next be a name
for that value while evaluating the body of the 1et. Not only does this make the
code easier to read, it also means that (+ n 1) only gets evaluated once. There are
two sets of parentheses around next and (+ n 1) because you can have multiple
name/expression pairs. One set of parentheses goes around each name and its cor-
responding value expression, and another set of parentheses goes around the whole
list of pairs. For example,

(define distance
(lambda (x0 yO x1 y1)
(let ((xdiff (- x0 x1))
(ydiff (- yO y1)))
(sqrt (+ (* xdiff xdiff)
(* ydiff ydiff))))))

All the value expressions are evaluated before any of the new names are put into
place. Those new names may then be used only in the body of the let. Note that a
let expression is just like any other expression; in particular, you can use it anywhere
you'd use an expression, not just as the body of a lambda expression.

Iterative Improvement: Approximating the Golden Ratio

One important kind of iterative process is the iterative improvement of an approxima-
tion to some quantity. We start with a crude approximation, successively improve it
to better and better approximations, and stop when we have found one that is good
enough. Recall that our general definition of an iterative process is that it works by
successively transforming the problem into a simpler problem with the same answer.
Here the original problem is to get from a crude approximation to one that is good
enough. This problem is transformed into the simpler problem of getting from a
somewhat less crude approximation to one that is good enough. In other words, our
goal is still to get to the good enough approximation, but we move the starting point
one improvement step closer to that goal. Our general outline, then, is
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(define find-approximation-from
(lambda (starting-point)
(if (good-enough? starting-point)
starting-point
(find-approximation-from (improve starting-point)))))

In this section, well follow this general outline in order to develop one specific
example of an iterative improvement procedure.

Since ancient times, many artists have considered that the most aesthetically
pleasing proportion for a work of art has a ratio of the long side to the short side
that is the same as the ratio of the sum of the sides to the long side, as illustrated in
Figure 3.2. This ratio is called the golden ratio.

Among its many interesting properties (which range from pure mathematics to
aesthetics and biology), the golden ratio is irrational, that is, it is not equal to any ratio
of integers. Real artists, however, are generally satisfied with close approximations.
For example, when we drew the illustration in Figure 3.2, we made it 377 points
wide and 233 points high. (The point is a traditional printer’s unit of distance.) The
ratio 377/233 isn’t exactly the golden ratio, but it is a quite good approximation: It’s
off by less than 1/50,000. How do we know that? Or more to the point, how did we

This box’s dimensions form a proportion that
approximates the golden ratio:
A/B = (A+B)/A

-«

A >

Figure 3.2 An illustration of the golden ratio, said to be the most pleasing proportion.
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set about finding a ratio of integers that was that close? That’s what we’re about to
embark on. Our goal is to write a procedure that, given a maximum tolerable error,
will produce a rational approximation that is at least that close to the golden ratio.
In other words, by the time we're done, you'll be able to get the above answer in the
following way:

(approximate-golden-ratio 1/50000)
377/233

Recall that the definition of the golden ratio is that it is the ratio A/B such
that A/B = (A + B)/A. Doing a little algebra, it follows that A/B = 1 + B/A =
1 + 1/(A/B). In other words, if we take the golden ratio, divide it into 1, and then
add 1, we'll get the golden ratio back again. For brevity, let’s start calling the golden
ratio not A/B but instead ¢, the Greek letter phi, which is in honor of the sculptor
Phidias, who is known to have consciously used the golden ratio in his work. This
makes our equation

1
=14+ =
¢ +d>

Because this is an equation, we can substitute the right-hand side for ¢ anywhere
it occurs. In particular, we can substitute it for the ¢ on the right-hand side of the
same equation:

1

1
I+ 3

We could keep doing this over and over again, and we would get the infinite continued

fraction for ¢:

b =1+

=1+

It turns out that this continued fraction is the key to finding rational approxima-
tions to ¢. All we have to do is calculate some finite part of that infinite tower. In
particular, the following are better and better approximations of ¢:

¢ =1

¢1:1+$
<J[>z:1+qi1
¢z:1+i
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P oecies

Using this technique, write a procedure, improve, that takes one of the approxima-
tions of ¢ and returns then next one. For example, given ¢;, it would return ¢s.

The only remaining problem is to figure out how good each of these approxima-
tions is, so we know when we’ve got a good enough one and can stop. Using some
number theory, it is possible to show that the error of each approximation is less than
1 over the square of its denominator. So, for example, it follows that 377/233 is within
1/233% of ¢p. We can stop when this is less than our acceptable error, or tolerance
as it is called. We'll do this by setting up the overall approximate-golden-ratio
procedure as follows:

(define approximate-golden-ratio
(lambda (tolerance)
(define find-approximation-from
(lambda (starting-point)
(if (good-enough? starting-point)
starting-point
(find-approximation-from (improve starting-point)))))
(define good-enough?
(lambda (approximation)
(< (/ 1 (square (denominator approximation)))
tolerance)))
(find-approximation-from 1)))

The Scheme procedure denominator is used here, which returns the denominator
of a rational number. (To be precise, it computes the denominator the number has
when written in lowest terms; the denominator is always positive, even when the
rational number is negative.)

Exercise 3.8

Presumably any art work needs to be made out of something, and there are only
about 107 electrons, neutrons, and protons in the universe. Therefore, we can
conservatively assume that no artist will ever need to know ¢ to better than one part
in 10", Calculate an approximation that is within a tolerance of 1/107?, which can
also be expressed as 1077, (To calculate this tolerance in Scheme, you could use
the expt procedure, asin (/ 1 (expt 10 79)) or (expt 10 -79).)
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An Application: The Josephus Problem

In the fast-paced world of computing, about the most damning comment you can
make regarding the relevance of a technique is to say that it is of purely historical
interest. At the other extreme of the relevance spectrum, you could say that something
is a matter of life or death. In this section, we'll see an application of iterative processes
that is quite literally both a matter of life or death and of purely historical interest—
because we'll be deciding the life or death fate of people who lived in Galilee nearly
2000 years ago. Our real goal is to provide you with a memorable illustration that
iterative processes operate by progressively reducing a problem to a smaller problem
with the same answer: in this case, the problem will be made smaller by the drastic
means of killing someone.

Josephus was a Jewish general who was in the city of Jotapata, in Galilee, when
it fell after a brutal 47-day siege by the Roman army under Vespasian, in 67 CE.
The Romans massacred the inhabitants of Jotapata, but Josephus initially evaded
capture by hiding (by day) in a cavern. Forty other “persons of distinction” were
already hiding in that cavern. One of these nameless other people was captured
while out and about and revealed the location where Josephus and the others still
hid. The Romans sent word that Josephus was to be captured alive, rather than killed.
Josephus himself was all for this and ready to go over to the Romans. However, the
others with him advocated mass suicide as preferable to enslavement by the Romans.
They were sufficiently angered by Josephus’s preference for surrender that he was
barely able to keep them from killing him themselves. In order to satisty them,
Josephus orchestrated a scheme whereby they all drew lots (Josephus among them)
to determine their order of death and then proceeded to kill themselves, with the
second killing the first, the third the second, etc. However, Josephus managed to be
one of the last two left and convinced the other who was left with him that they
should surrender together.

How did Josephus wind up being one of the two who survived? The Greek version
of Josephus’s account attributes it to fortune or the providence of God. However, the
Slavonic version (which shows some signs of originating from an earlier manuscript
than the Greek) has a more interesting story: “He counted the numbers cunningly,
and so deceived them all.” The Slavonic version also doesn’t specifically mention
the drawing of lots, instead leaving it open exactly how the order was determined in
which the cornered Jews killed one another. Thus, we have a tantalizing suggestion
that Josephus used his mathematical ability to arrange what appeared to be a chance
ordering, but in fact was rigged so that he would be one of the last two.

Out of this historical enigma has come a well-known mathematical puzzle. Sup-
pose this is how Josephus’s group did their self-killing: They stood in a circle and
killed every third person, going around the circle. It is fairly clear who will get killed
early on: the third, sixth, ninth, etc. However, once the process wraps around the
circle, the situation is much less clear, because it will be every third still-surviving
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person who will be killed, skipping over those who are already dead from the previous
round. Can you determine which people will live and which will die?

Our goal is to write a procedure that will determine the fate of a person, given his
or her position in the circle and the total number of people in the circle. Rather than
using any advanced mathematical ideas, we’ll simply simulate the killing process,
stopping when the position we are interested in is either killed or is one of the last
two who are left.

Let’s call the number of people in the circle n and number the positions from
1 to n. We'll assume that the killing of every third person starts with killing the
person in position number 3. That is, we start by skipping over 1 and 2 and killing 3.
We want to write a procedure, survives?, that takes as its arguments the position
number and n and returns #t if the person in that position is one of the last two
survivors; otherwise it returns #£. For example, we've already figured out that position
3 doesn’t survive:

(survives? 3 40)
#t

Recall that Josephus called the killing off when he was left with only one other;
thus we will say that if there are fewer than three people left, everybody remaining
is a survivor:

(define survives?
(lambda (position n)
(if (< n 3)
#t
we still need to write this part)))

On the other hand, if there are three or more people left, we still have some
killing left to do. As we saw above, if the person we care about is in position 3, that
person is the one killed and hence definitely not a survivor:

(define survives?
(lambda (position n)

(if (< n 3)
#t
(if (= position 3)
#f

we still need to write this part))))

Suppose we aren’t interested in the person in position number 3 but rather in
some other person—let’s say J. Doe. The person in position number 3 got killed, so
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Original problem Reduced problem
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O O O
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(survives? 5 8) (survives? 2 7)

Figure 3.3  Determining the fate of ]. Doe, who is initially in position 5 out of 8, can be reduced
to finding the fate of position 2 out of 7.

now we only have n — 1 people left. Of that smaller group of n — 1, there will still be
two survivors, and we still want to know if J. Doe is one of them. In other words, we
have reduced our original problem (Is J. Doe among the survivors from this group of
n?) to a smaller problem (Is J. Doe among the survivors from this group of n — 1?).
We can solve this smaller problem by using survives? again. However, the
survives? procedure assumes that the positions are numbered so that we start by
skipping over positions 1 and 2 and killing the person in position 3. Yet we don’t
really want to start back at position 1 —we want to keep going from where we left
off, skipping over 4 and 5 and killing 6. To solve this problem, we can renumber
all the survivors’ positions. The survivor who was in position 4 (just after the first
victim) will get renumbered to be in position 1, because he is now the first to be
skipped over. The survivor who was in position 5 gets renumbered to position 2,
etc. For example, suppose we are interested in the fate of a specific person, let’s
say J. Doe, who is in position 5 out of a group of 40 people. Then we are initially
interested in (survives? 5 40). Neither of the base cases applies, because 40 = 3
and 5 # 3. Therefore, we reduce the problem size by 1 (by killing off one of ]. Doe’s
companions) and ask (survives? 2 39). The answer to this question will be the
same as the answer to our original question (survives? 5 40), because J. Doe is
now in position number 2 in our new renumbered circle of 39 people. Figure 3.3
illustrates this, but rather than going from 40 to 39 people, it goes from 8§ to 7.

> Exercise 3.9

How about the people who were in positions 1 and 2; what position numbers are
they in after the renumbering?
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> Exercise 3.10

Write a procedure for doing the renumbering. It should take two arguments: the
old position number and the old number of people (n). (It can assume that the old
position number won'’t ever be 3, because that person is killed and hence doesn’t get
renumbered.) It should return the new position number.

P oercie11]

Finish writing the survives? procedure, and carefully test it with a number of cases
that are small enough for you to check by hand but that still cover an interesting
range of situations.

P e .12

Wirite a procedure, analogous to first-perfect-after, that can be used to system-
atically search for surviving positions. What are the two surviving positions starting
from a circle of 40 people? (Presumably Josephus chose one of these two positions.)

Now that you have settled the urgent question of where Josephus should stand,
we can take some time to point out additional features of the Scheme programming
language that would have simplified the procedure a little bit. You may recall that the
overall form of the procedure involved two if expressions. The outer one checked
to see if the killing was over; if it was, then the person we cared about was definitely
a survivor, so the answer was #t. The inner if took care of the case where more
killing was still needed. If our person of interest was in position number 3, and so
was the next to go, the answer was #£. This succession of tests can be reformulated in
a different way. Our person of interest is a survivor if the killing is over (i.e., n < 3)
or we are not interested in position number 3 and the person survives in the reduced
circle of n — 1 people. Writing this in Scheme, we get

(define survives?
(lambda (position n)
(or (< n 3)
(and (not (= position 3))
your part with n — 1 people goes here))))

This procedure illustrates three new features of Scheme: or, and, and not. Of
these, not is just an ordinary procedure, which we could write ourselves, although
it happens to be predefined. If its argument is #£, it returns #t; otherwise it returns
#£. That way, it returns the true/false opposite of its argument. The other two logical



Review Problems L] 69

operations, or and and, are not procedures. They are special language constructs
like if. In fact, you can see their close relationship to if by comparing our new
version of survives? with our old one. In particular, if n < 3, the computation is
immediately over, with the answer of #t; the second part of the or is not evaluated.
Similarly, if we don’t have n < 3, but the position is equal to 3, the computation is
immediately over with the answer of #£; the second part of the and is not evaluated.

The official definitions of or and and are made a bit more complicated by two
factors:

® There needn’t be just two expressions in an or or and. There can be more than
two or even none or one.

= Any value other than #£ counts as true in Scheme, not just #t. Thus we need to
be careful about which true value gets returned.

The resolution to these issues is as follows. The expressions listed inside an or get
evaluated one by one in order. As soon as one that produces a true value is found,
that specific true value is returned as the value of the or expression. If none is found,
the false value produced by the last expression is returned. If there are no expressions
at all, #f is immediately returned. Similarly for and, the expressions are evaluated
one by one in order. As soon as one that produces a false value is found, that false
value is returned as the value of the and expression. If none is found, the specific
true value produced by the last expression is returned. If there are no expressions in
the and, #t is returned as the value.

Review Problems
I> Exercise 3.13

In Exercises 2.12 and 3.2 you saw that any positive integer n can be expressed as 27k
where k is odd, and you wrote a procedure to compute j, the exponent of 2. The
following procedure instead computes k, the odd factor (which is the largest odd
divisor of ). Does it generate a recursive process or an iterative process? Justify your
answer.

(define largest-odd-divisor
(lambda (n)
(if (0dd? n)
n
(largest-odd-divisor (/ n 2)))))
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[> Exercise 3.14

Here is a procedure that finds the largest number k such that b* < n, assuming that n
and b are integers such thatn = 1 and b = 2. For example, (closest-power 2 23)
returns 4:

(define closest-power
(lambda (b n)
(if (< n b)
0
(+ 1 (closest-power b (quotient n b))))))

a. Explain why this procedure generates a recursive process.

b. Write a version of closest-power that generates an iterative process.

I> Exercise 3.15

Consider the following two procedures:

(define f
(lambda (n)
(if (=n 0)
0

(g (-=n DN

(define g
(lambda (n)
(if (=n 0)
1

(f (-n DN

a. Use the substitution model to evaluate each of (f 1), (f 2), and (f 3).

b. Can you predict (£ 4)? (£ 5)? In general, which arguments cause f to return
0 and which cause it to return 1? (You need only consider nonnegative integers.)

c. Is the process generated by £ iterative or recursive? Explain.

I> Exercise 3.16

Consider the following two procedures:
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(define f
(lambda (n)
(if (= n 0)
0

+1 (g (-=n 1))

(define g
(lambda (n)
(if (=n 0)
1

+1 & (-n 1))

a. Use the substitution model to illustrate the evaluation of (f 2), (f 3), and
(f 4).

b. Is the process generated by £ iterative or recursive? Explain.

c¢. Predict the values of (£ 5) and (£ 6).

I> Exercise 3.17

Falling factorial powers are similar to normal powers and also similar to factorials.
We write them as nt and say “n to the k falling.” This means that k consecutive
numbers should be multiplied together, starting with n and working downward.
For example, 7> = 7 X 6 X 5 (i.e., three consecutive numbers from 7 downward
multiplied together).

Wirite a procedure for calculating falling factorial powers that generates an iterative
process.

I> Exercise 3.18

We've already seen how to raise a number to an integer power, provided that the
exponent isn’t negative. We could extend this to allow negative exponents as well by
using the following definition:

1 ifn=0
b'={b"I'Xbh ifn>0
/b ifn<0

a. Using this idea, write a procedure power such that (power b n) raises b to the
n power for any integer n.

b. Use the substitution model to show how (power 2 -3) would be evaluated. (You
can leave out steps that just determine which branch of a cond or if should be
taken.) Does your procedure generate a recursive process or an iterative one?
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[> Exercise 3.19

Prove that, for all nonnegative integers n and numbers a, the following procedure
computes the value 2" X a:

(define foo
(lambda (n a)
(if (= n 0)
a

(foo (-n 1) (+ a a)))))

[> Exercise 3.20

Consider the following two procedures:

(define factorial
(lambda (n)
(product 1 n)))

(define product
(lambda (low high)
(if (> low high)
1
(* low
(product (+ low 1) high)))))

a. Use the substitution model to illustrate the evaluation of (factorial 4).
b. Is the process generated by factorial iterative or recursive? Explain.

c. Describe exactly what product computes in terms of its parameters.
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The way we have used the term invariant is superficially different from the way
most other authors use it, but the notions are closely related. Most authors use
invariant assertions rather than invariant quantities. That is, they focus not on a
numerical quantity that remains constant but rather on a logical assertion such as
a=(b+1)X(b+2)X---Xn,the truth of which remains unchanged from one
iteration to the next. The other difference is that most authors focus on what the
computation has already accomplished rather than on what it is going to compute.
So, although we say that factorial-product will compute a X b!, others say that
when factorial-product is entered, it is already the case that a = (b + 1) X
(b + 2) X +++ X n. The relationship between these two becomes clear when we
recognize that factorial-product is ultimately being used to compute n!. This
gives the equation n! = a X b!, which is equivalenttoa = (b+ 1) X (b+2) X -+ Xn.

Polya’s How to Solve It introduced the phrase “inventor’s paradox” for the idea
that some problems can be made easier to solve by generalizing them [40]. Our
information regarding which Fermat numbers are known to be prime or composite
is from Ribenboim’s The New Book of Prime Number Records [41]. For information on
Fermat numbers, perfect numbers, continued fractions, and rational approximations,
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any good textbook on number theory should do. The classic is Hardy and Wright
[25]. Perhaps the most accessible source of golden-ratio trivia is in Martin Gardner’s
second collection of mathematical recreations [22]. Our source for the number of
subatomic particles in the universe is Davis’s The Lore of Large Numbers [15]. For
the story of Josephus, see his Jewish Wars, Book IlI, for example in the translation
of H. St. J. Thackeray [28] or G. A. Williamson [29]; both these translations have
appendixes pointing out the relevant deviation in the Slavonic version.



CHAPTER FOUR

Orders of Growth
and Tree Recursion

m Orders of Growth

In the previous chapters we’ve concerned ourselves with one aspect of how to design
procedures: making sure that the generated process calculates the desired result.
Although this is clearly important, there are other design considerations as well. If
we compare our work to that of an aspiring automotive designer, we've learned how
to make cars that get from here to there. That’s important, but customers expect
more. In this chapter we’ll focus on considerations more akin to speed and gas
mileage. Along the way we'll also add another style of process to our repertoire,
alongside linear recursion and iteration.

At first glance, comparing the speed of two alternative procedures for solving the
same problem should be easy. Pull out your stopwatch, time how long one takes,
and then time how long the other takes. Nothing to it: one wins, the other loses.
This approach has three primary weaknesses:

I. Tt can’t be used to decide which procedure to run, because it requires running
both. Similarly, you can’t tell in advance that one process is going to take a billion
years, and hence isn’t worth waiting for, whereas the other one will be done
tomorrow if you'll just be patient and wait that long.

2. It doesn’t tell you how long other instances of the same general problem are
going to take or even which procedure will be faster for them. Maybe method A
calculates 52! in 1 millisecond, whereas procedure B takes 5 milliseconds. Now
you want to compute 100!. Which method should you use? Maybe A, maybe B;
sometimes the method that is faster on small problems is slower on large problems,
like a sprinter doing poorly on long-distance races.

75
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3. It doesn’t distinguish performance differences that are flukes of the particular
hardware, Scheme implementation, or programming details from those that are
deeply rooted in the two problem-solving strategies and will persist even if the
details are changed.

Computer scientists use several different techniques to cope with these difficulties,
but the primary one is this:

The asymptotic outlook: Ask not which takes longer, but rather which is more
rapidly taking longer as the problem size increases.

This idea is exceptionally hard to grasp. We are all much more experienced with
feeling what it’s like for something to be slow than we are with feeling something
quickly growing slower. Luckily we have developed a foolproof experiment you can
use to get a gut feeling of a process quickly growing slow.

The idea of this experiment is to compare the speeds of two different methods
for sorting a deck of numbered cards. To get a feeling for which method becomes
slow more rapidly, you will sort decks of different sizes and time yourself. Before you
begin, youll need to get a deck of 32 numbered cards; the web site for this book
has sheets of cards that you can print out and cut up, or you could just make your
own by writing numbers on index cards. Ask a classmate, friend, or helpful stranger
to work with you, because timing your sorting is much easier with a partner. One
of you does the actual sorting of the cards. The other keeps track of the rules of the
sorting method, provides any necessary prompting, and points out erroneous moves.
This kibitzer is also in charge of measuring and recording the time each sort takes
(a stopwatch is really helpful for this).

The two sorting methods, or sorting algorithms, are described in sidebars that
follow. (The word algorithm is essentially synonymous with procedure or method,
with the main technical distinction being that only a procedure that is guaranteed to
terminate may be called an algorithm. The connotation, as with method, is that one
is referring to a general procedure independent of any particular embodiment in a
programming language. This distinguishes algorithms from programs.) Before you
begin, make sure that both you and your partner understand these two algorithms.
You might want to try a practice run using a deck of four cards for selection sorting
and a deck of eight cards for merge sorting, because the pattern of that sort isn’t so
discernible with only four cards.

Now that you're ready to begin, make a deck of four cards by shuffling all the
cards well and then taking the top four as the deck to sort. Sort them using selection
sort, keeping track of how long the sorting took. Do this again using a deck of 8
cards, then a deck of 16 cards, and finally all 32. Be sure to shuffle all the cards
each time. Finally, try sorting decks of 4, §, 16, and 32 cards using the merge sort
algorithm.
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-j’ Selection Sort

You will use three positions for stacks of cards:

destination

source discard

Initially you should put all the cards, face down, on the source stack, with the
other two positions empty. Now do the following steps repeatedly:

1. Take the top card off the source stack and put it face-up on the destination
stack.

2. If that makes the source stack empty, you are done. The destination stack is in
numerical order.

3. Otherwise, do the following steps repeatedly until the source stack is empty:

(a) Take the top card off the source stack and compare it with the top of the
destination stack.

(b) If the source card has a larger number,

i. Take the card on top of the destination stack and put it face down on
the discard stack.

ii. Put the card you took from the source stack face up on the destination
stack.

Otherwise, put the card from the source stack face down on the discard
stack.

4. Slide the discard stack over into the source position, and start again with step 1.
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-j’ Merge Sort

You will need lots of space for this sorting procedure —enough to spread out all
the cards—so it might be best done on the floor. (There are ways to do merge sort
with less space, but they are harder to explain.) The basic skill you will need for
merge sorting is merging two stacks of cards together, so first refer to the sidebar
titled “Merging” (on the following page) for instructions on how to merge. Once
you know how to merge, the actual merge sorting process is comparatively easy.

To do the actual merge sort, lay out the cards face down in a row. We will
consider these to be the initial source “stacks” of cards, even though there is only
one card per stack. The merge sort works by progressively merging pairs of stacks
so that there are fewer stacks but each is larger; at the end, there will be a single
large stack of cards.

destination
1

™

destination
2

™

source
Ta

source
1b

source
2a

source
2b

Repeat the following steps until there is a single stack of cards:

1. Merge the first two face-down stacks of cards.

2. As long as there are at least two face-down stacks, repeat the merging with the
next two stacks.

3. Flip each face-up stack over.

The key question is: Suppose we now asked you to sort sixty-four cards. How would
you feel about doing it using selection sort? We
allowed some space there for you to groan. That’s the feel of a process that is quickly
becoming slow.

Although the most important point was that gut feeling of how quickly selection
sort was becoming a stupid way to sort, we can try extracting some more value from
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BN N Merging

You will have the two sorted stacks of cards to merge side by side, face down. You
will be producing the result stack above the other two, face up:

destination

source a source b

Take the top card off of each source stack—source @ in your left hand, source b
in your right hand. Now do the following repeatedly, until all the cards are on the
destination stack:

1. Compare the two cards you are holding.

2. Place the one with the larger number on it onto the destination stack, face-up.

3. With the hand you just emptied, pick up the next card from the corresponding
source stack and go back to step 1. If there is no next card in the empty hand’s
stack because that stack is empty, put the other card you are holding on the
destination stack face-up and continue flipping the rest of the cards over onto
the destination stack.

all your labor. Make a table showing your timings, or better yet graph them, or best
yet pool them together with timings from everyone else you know and make a graph
that shows the average and range for each time. Figure 4.1 is a graph like that for
ten pairs of our students; the horizontal ticks are the averages, and the vertical bars
represent the range.

If you look very closely at Figure 4.1, you'll notice that the fastest selection sorters
can sort four cards faster than the slowest merge sorters. Therefore, if you only have
four cards to sort, neither method is intrinsically superior: Either method might turn
out faster, depending on the particular skills of the person doing the sorting. On
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Figure 4.1 Times for selection sort and merge sort. The vertical bars indicate the range of times
observed, and the horizontal marks are the averages. The lighter lines with the ranges shown on
the left side are for merge sort, and the darker ones with the ranges shown on the right are for
selection sort.

the other hand, for 32 cards even the clumsiest merge sorter can outdo even the
most nimble-fingered selection sorter. This general phenomenon occurs whenever
two methods get slow at different rates. Any initial disparity in speed, no matter
how great, will always be eventually overcome by the difference in the intrinsic
merits of the algorithms, provided you scale the problem size up far enough. If you
were to race, using your bare hands, against a blazingly fast electronic computer
programmed to use selection sort, you could beat it by using merge sort, provided
the contest involved sorting a large enough data set. (Actually, the necessary data set
would be so large that you would be dead before you won the race. Imagine passing
the race on to a child, grandchild, etc.)

Another thing we can see by looking at the graph is that if we were to fit a curve
through each algorithm’s average times, the shapes would be quite different. Of
course, it’s hard to be very precise, because four points aren’t much to go on, but
the qualitative difference in shape is rather striking. The merge sort numbers seem
to be on a curve that has only a very slight upward bend—almost a straight line.
By contrast, no one could mistake the selection sort numbers for falling on a line;
they clearly are on a curve with a substantial upward curvature. This corresponds to
your gut feeling that doubling the number of cards was going to mean a lot more
work—much more than twice as much.

Gathering any more empirical data would strain the patience of even the most
patient students, so we use another way to describe the shape of these curves. We will
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find a function for each method that describes the relationship between deck size
and the number of steps performed. We concentrate on the number of steps rather
than how long the sorting takes because we don’t know how long each step takes.
Indeed, some may take longer than others, and the length may vary from person to
person. However, doing the steps faster (or slower) simply results in a rescaled curve
and does not change the basic shape of it.

First consider what you did in selection sorting n cards. On the first pass through
the deck, you handled all n cards, once or twice each. On the second pass you
handled only n — 1 of them, on the third pass n — 2 of them, and so forth. So, the
total number of times you handled a card is somewhere betweenn + (n —1) + (n —
2)+---+1and twice that number. How bigis n+(n—1)+(n—2)+- - - + 17 It’s casy
to see that it is no bigger than n?, because n numbers are being added and the largest
of them is n. We can also see that it is at least n?/4, because there are n/2 of the
numbers that are n/2 or larger. Thus we can immediately see that the total number
of times you handled a card is bounded between n?/4 and 2n’. Because both of
these are multiples of n?, it follows that the basic shape of the touches versus n curve
for selection sort must be roughly parabolic. In symbols we say that the number of
times you handle a card is @(n?). (The conventional pronunciation is “big theta
of en squared.”) This means that for all but perhaps finitely many exceptions it is
known to lie between two multiples of n?. (More particularly, between two positive
multiples of n?, or the lower bound would be too easy.)

With a bit more work, we could produce a simple exact formula for the sum
n+(n—1)+ -+ 1. However, this wouldn’t really help any, because we don’t
know how often you only touch a card once in a pass versus twice, and we don'’t
know how long each touch takes. Therefore, we need to be satished with a somewhat
imprecise answer. On the other hand, we can confidently say that you take at least
one hundredth of a second to touch each card, so you take at least n? /400 seconds to
sort n cards, and similarly we can confidently say that you take at most 1000 seconds
to touch each card, so you take at most 2000n* seconds. Thus, the imprecision that
the O notation gives us is exactly the kind we need; were able to say that not only is
the number of touches @(n?) but also the time you take is ®(n?). Our answer, though
imprecise, tells the general shape or order of growth of the function. Presuming that
we do wind up showing merge sort to have a slower order of growth, as the empirical
evidence suggests, the difference in orders of growth would be enough to tell us
which method must be faster for large enough decks of cards.

> Exercise 4.1

Go ahead and figure out exactly what n+ (n— 1)+ - -+ + 2+ 1 is. Do this by adding
the first term to the last, the second to the second from last, and so forth. What does
each pair add up to? How many pairs are there? What does that make the sum?
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Moving on to merge sort, we can similarly analyze how many times you handled
the cards by breaking it down into successive passes. In the first pass you merged
the n initial stacks down to n/2; this involved handling every card. How about the
second pass, where you merged n/2 stacks down to n/4; how many cards did you
handle in that pass? Stop and think about this.

If you've thought about it, you've realized that you handled all n cards in every
pass. This just leaves the question of how many passes there were. The number of
stacks was cut in half each pass, whereas the number of cards per stack doubled.
Initially each card was in a separate stack, but at the end all n were in one stack. So,
the question can be paraphrased as “How many times does 1 need to be doubled to
reach n?” or equivalently as “How many times does n need to be halved to reach 1?”
As the sidebar on logarithms explains, the answer is the logarithm to the base 2 of
n, written log, n, or sometimes just Ign. Putting this together with the fact that you
handled all cards in each round, we discover that you did nlog, n card handlings.
This doesn’t account for the steps flipping the stacks over between each pass, and
of course there is still the issue of how much time each step takes. Therefore, we're
best off again being intentionally imprecise and saying that the time taken to merge
sort n cards is O(nlogn).

One interesting point here is that we left the base off of the logarithm. This
is because inside a @, the base of the logarithm is irrelevant, because changing
from one base to another is equivalent to multiplying by a constant factor, as the
sidebar explains. Remember, saying that the time is big theta of some function
simply means it is between two multiples of that function, without specifying which
particular multiples. The time would be between two multiples of 2n* if and only if

If x* =y, we say that k is the logarithm to the base x of y. That is, k is the exponent
to which x needs to be raised to produce y. For example, 3 is the logarithm to
the base 2 of 8, because you need to multiply three 2s together to produce 8. In
symbols, we would write this as log, 8 = 3. That is, log_y is the symbol for the
logarithm to the base x of y. The formal definition of logarithm specifies its value
even for cases like log, 9, which clearly isn’t an integer, because no number of 2s
multiplied together will yield 9. For our purposes, all that you need to know is
that log, 9 is somewhere between 3 and 4, because 9 is between 2° and 2*.
Because we know that three 2s multiplied together produce 8, and two 8s
multiplied together produce 64, it follows that six 2s multiplied together will
produce 64. In other words, log, 64 = log, 8 X log,64 = 3 X 2 = 6. This
illustrates a general property of logarithms, namely, log, x = log, ¢ X log, x. So,
no matter what x is, its logarithms to the bases b and ¢ differ by the factor log, c.
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it were between two multiples of n?, so we never say @(2n?), only the simpler ®(n?).
This reason is the same as that for leaving the base of the logarithm unspecified.

In conclusion, note that our analytical results are consistent with our empiri-
cal observations. The function nlogn grows just a bit faster than linearly, whereas
quadratics are noticeably more upturned. This difference makes merge sort a decid-
edly superior sorting algorithm; we’ll return to it in Chapter 7, when we have the
apparatus needed to program it in Scheme.

Tree Recursion and Digital Signatures

If you watch someone merge sort cards as described in the previous section, you will
see that the left-hand and the right-hand halves of the cards don’t interact at all until
the very last merge step. At that point, each half of the cards is already sorted, and
all that is needed is to merge the two sorted halves together. Thus, the merge sort
algorithm can be restructured in the following way.

To merge sort a deck of n cards:

1. If n = 1, it must already be in order, so you're done.
2. Otherwise:

a. Merge sort the first /2 cards.

b. Merge sort the other n/2 cards.

c. Merge together the two sorted halves.

When formulated this way, it is clear that the algorithm is recursive; however, it
is not the normal kind of linear recursion we are used to. Rather than first solving a
slightly smaller version of the problem and then doing the little bit of work that is
left, merge sort first solves two much smaller versions of the problem (half the size)
and then finishes up by combining their results. This strategy of dividing the work
into two (or equally well into three or four) subproblems and then combining the
results into the overall solution is known as tree recursion. The reason for this name
is that the main problem branches into subproblems, each of which branches into
sub-subproblems, and so forth, much like the successive branching of the limbs of a
tree.

Sometimes this tree-recursive way of thinking can lead you to an algorithm with
a lower order of growth than you would otherwise have come up with. This reduced
order of growth can be extremely important if you are writing a program designed
to be used on very large inputs. To give an example of this, we are going to consider
the problem of digital signatures.

If you receive a paper document with a signature on it, you can be reasonably
sure it was written (or at least agreed to) by the person whose signature it bears. You
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can also be sure no one has reattached the signature to a different document, at least
as long as each page is individually signed. Finally, you can convince an impartial
third party, such as a judge, of these facts, because you are in no better position to
falsify the signature than anyone else.

Now consider what happens when you get a digital document, such as an elec-
tronic mail message or a file on a disk. How do you know it is authentic? And even if
it is authentic, how do you prevent the writer from reneging on anything he agreed
to, because he can always claim you forged the agreement? Digital signatures are
designed to solve these problems. As such, they are going to be of utmost importance
as we convert to doing business in a comparatively paperless manner.

Digital signature systems have three components: a way to reduce an entire
message down to a single identifying number, a way to sign these numbers, and a
way to verify that any particular signed message is valid. The identifying numbers
are called message digests; they are derived from the messages by a publicly available
digest function. The message digests are of some agreed-upon limited size, perhaps
40 digits long. Although a lot of 40 digit numbers exist, far more possible messages
do; therefore the digest function is necessarily many to one. However, the digest
function must be carefully designed so that it is not feasible to find a message that
will have a particular digest or to find two messages that share the same digest. So
the validity of a message is effectively equivalent to the validity of its digest. Thus, we
have reduced the task of signing messages to the easier mathematical task of signing
40-digit numbers. Although digest functions are interesting in their own right, we’ll
simplify matters by assuming that the messages we're trying to send are themselves
numbers of limited size, so we can skip the digesting step and just sign the message
itself. In other words, our messages will be their own digests.

The second part of a digital signature system is the way to sign messages. Each
person using the system has a private signature function. If you are sending a message,
you can sign it by applying your signature function to the message. Each signature
function is designed so that different messages have different signatures and so that
computing the signature for a particular message is virtually impossible without
knowing the signature function. Because only you, the sender, know the signature
function, no one else could forge your signature. When you send a message, you also
send along the signature for that message. This pair of numbers is called a signed
message.

What happens when you receive a signed message? This is the third part of the
digital signature system. As receiver, you want to verify that the signature is the right
one. To do this you look up the sender’s verification function in a public directory
and apply it to the signature. This will give you a 40-digit number, which should
be equal to the message. Because no one other than the sender can compute the
signature for a particular message, you can be reasonably sure that you received a
valid signed message. Note that the signature and verification functions are closely
related to each other; mathematically speaking, they are inverses. Figure 4.2 shows a
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Figure 4.2 The full digital signature system, including the digest function
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Figure 4.3  Our simplified digital signature system, without a digest function

block diagram of the full version of the digital signature system, including the digest
function, and Figure 4.3 similarly depicts the simplified version we’re using.

One popular signature and verification strategy is based on an idea known as
modular arithmetic, which is explained in the accompanying sidebar. In this system,
each person has a large number called the modulus listed in a public directory under
his or her name. The verification function for that person consists of computing
the remainder when the cube of the signature is divided by that person’s modulus.
The verify procedure below does this in a straightforward way, using the built-in
procedures remainder and expt. Expt raises its first argument to the power specified
by its second argument, just like the power procedure you wrote in Exercise 2.1.

(define verify
(lambda (signature modulus)
(remainder (expt signature 3)
modulus)))
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Note that we have not yet given the signature function that is the inverse of the
verification function above. Before doing that, let us consider an example illustrating
how a given signed message is verified.

Suppose that you get a message purporting to come from the authors of this book
and containing a partial solution to Exercise 3.8 on page 64. You suspect that the
message is actually from a friend playing a prank on you, so you want to check it.
The message says that the numerator of the result of (approximate-golden-ratio
(expt 10 -79)) and its signature are as follows:

(define gold-num 5972304273877744135569338397692020533504)
(define signature 14367622178330772814011855673053282570996235969
51473988726330337289482255409401120915769529658684452651613736161
53020167902900930324840824269164789456142215776895016041636987254
848119449940440885630)

What you need to do is feed that second number into our verification function and
see if you get back the first number. If so, you can be sure the message was genuine,
because nobody but us knows how to arrange for this to be the case (yet; we're going
to give the secret away in a bit). Suppose you looked us up in a directory and found
that our modulus is:

(define modulus 6716294880486034006153652581749856549007659719419
61654084193604750896012182890124354255484422321487634816640987992
31759689309995696195638345433333958485027650558453766363029391294
0840460009374858969)

At this point, you would do the following to find out that we really did send you a
personal hint (only the second expression need be evaluated; we evaluate both so
that you can see the number returned by the verification function):

(verify signature modulus)
5972304273877744135569338397692020533504

(= gold-num
(verify signature modulus))
#t

Having seen how to verify signed messages, we're ready to consider how to generate
the signatures. Recall that the signature and verification functions are inverses of each
other. So the signature of a given message is an integer s such that the remainder
you get when you divide s> by the modulus is the original message. In some sense,
the signature function might be called the “modular cube root.” You should keep in
mind, however, that this is quite different from the ordinary cube root. For example,
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-j’ Modular Arithmetic

The basic operations of arithmetic are +, —, *, and /. These are ordinarily
considered as operating on integers, or more generally, real numbers. There are,
of course, restrictions as to their applicability; for example, the quotient of two
integers is not in general an integer, and division by 0 is not allowed. On the other
hand, these operations satisfy a number of formal properties. For example, we say
that addition and multiplication are commutative, meaning that for all numbers x
and y,

x+y=y+tx
X*y=y*x
Other formal properties are associativity:

x+y)+z=x+(y+2)

(xxy)#z=x*(y*z)
and distributivity:
xx(y+z)=x%y+xkz

Are there other types of number systems whose arithmetic operations satisfy the
properties given above? One such example is modular arithmetic, which might
also be called remainder or clock arithmetic. In modular arithmetic, a specific
positive integer m called the modulus is chosen. For each nonnegative integer
x, we let x mod m denote the remainder of x when divided by m; this is just
(remainder x m) in Scheme. Note that x mod m is the unique integer r satisfy-
ing 0 = r < m and for which there is another integer ¢ such that x = gm +r. The
integer ¢ is the integer quotient of x by m (i.e., (quotient x m) in Scheme).

If two integers differ by a multiple of m, they have the same remainder mod m.
We can use this fact to show that for all integers x and y,

xy mod m = (x mod m)(y mod m) mod m

(x +y) mod m = ((x mod m) + (y mod m)) mod m

To show that these equalities hold, let x = ¢ym + r; and y = ¢om + r,. Then
xy = (qir; + qany + qigam)m + iy and x +y = (g1 + g2)m + (n + 12).
The set of all possible remainders mod m is {0, 1,...,m — 1}. We can define

+,, and *,, on this set by
(Continued)
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-j’ Modular Arithmetic (Continued)

X +py o (x +y) mod m

def
X #*,y = (x*y) mod m

(The symbol & denotes “is defined as.”) In Scheme they would be defined as
follows:

(define mod+
(lambda (x y)
(remainder (+ x y) modulus)))

(define mod*
(lambda (x y)
(remainder (* x y) modulus)))

(We assume modulus has been defined.) It is not hard to show that +,, and *,,
satisfy commutativity, associativity, and distributivity.

Other operations, such as modular subtraction, division, and exponentiation
can be defined in terms of +,, and *,. We'll only consider modular subtrac-
tion here, because exponentiation is investigated in the text and division poses
theoretical difficulties (namely, it can’t always be done).

How should we define modular subtraction? Formally, we would want

x=y=x+ ()

where —y is the additive inverse of y (i.e., the number z such that y +z = 0). Does
such a number exist in modular arithmetic? And if so, is it uniquely determined
for each y? The answer to both of these questions is Yes: The (modular) additive
inverse of y is (m—y) mod m, because that is the unique numberin {0, 1,...,m—1}
whose modular sum with y is 0. For example, if m = 17 and y = 5, then —y = 12
because (5 + 12) mod 17 = 0. This allows us to define modular subtraction as
follows:

(define mod-
(lambda (x y)
(remainder (+ x (- modulus y)) modulus)))
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if the modulus were a smaller number such as 17, the modular cube root of 10
would be 3. (Why?) In particular, the signature must be an integer.

Signature functions use the same mathematical process as verification functions.
The underlying mathematics is somewhat deeper than you have probably encoun-
tered and is partly explained in the notes at the end of this chapter. Briefly, for the
types of moduli used in this strategy, there is an exponent called the signing exponent,
depending on the modulus, that is used to calculate the signature. The signature
of a number is calculated by raising the number to the signing exponent and then
finding the remainder when the result is divided by the modulus. Mathematically,
this means that if m is the modulus, e is the signing exponent, x is the message, and
s Is its signature,

s = x* mod m

x = s’ mod m

The fact that this works follows from the fact that for all choices of nonnegative
integers x < m,

x = (x* mod m)* mod m

Thus, the only difference between signing and verifying is the exponent—that’s our
secret. Only we (so far) know what exponent to use in the signing so that an exponent
of 3 will undo it. In fact, for a 198-digit modulus like ours, no one knows how to find
the signing exponent in any reasonable amount of time, without knowing something
special about how the modulus was chosen.

What is our secret signing exponent? It is

(define signing-exponent 4477529920324022670769101721166571032671
77314627974436056129069833930674788593416236170322948214322483305
17527801279310239221589593147057716354461360014347167979987666468
6423606429437389098641670667)

That’s a big number, in case you didn’t notice (again, 198 digits long). This poses a
bit of a problem. From a strictly mathematical standpoint, all we would have to do
to sign the numerator is

(remainder (expt gold-num signing-exponent) modulus)

However, this isn’t practical, because the result of the exponentiation would be an
extremely large number. We don’t even want to tell you how large it would be by
telling how many digits are in it, because even the number of digits is itself a 200-digit
number. This means that if the computer were to evaluate the expression above, it
couldn’t possibly have enough memory to store the intermediate result produced by
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the exponentiation. Keep in mind that there are only about 107 subatomic particles
in the universe. This means that if each one of those particles was replaced by a
whole universe, complete with 1077 particles of its own, and the computer were to
store a trillion trillion trillion digits of the intermediate result on each of the particles
in this universe of universes, it wouldn’t have enough memory.

Luckily there is an out, based on a property noted in the sidebar on modular
arithmetic. Namely,

xy mod m = (x mod m)(y mod m) mod m

In other words, we are allowed to do the mod operation before the multiplication
as well as after without changing the answer. This is important, because taking a
number mod m reduces it to a number less than m. For exponentiation, the important
point is this: Rather than multiplying together lots of copies of the base and then
taking the result mod m, we can do the mod operation after each step along the
way, so the numbers involved never grow very big. Here is a Scheme procedure that
does this, based on the observations that b° = 1 and b¢ = b*~'b:

(define mod-expt
(lambda (base exponent modulus)
(define modx*
(lambda (x y)
(remainder (* x y) modulus)))
(if (= exponent 0)
1
(mod* (mod-expt base (- exponent 1) modulus)
base))))

We can try this out by using it to reverify the original signature:

(mod-expt signature 3 modulus)
5972304273877744135569338397692020533504

It works. So now we're all set to use it to sign a new message. Let’s sign a nice small
number, like 7:

(mod-expt 7 signing-exponent modulus)
What happens if you try this?
If you tried the above experiment, you probably waited for a while and then got

a message like we did:

;Aborting!: out of memory
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The problem is that the definition given above for mod-expt does one recursive step
for each reduction of the exponent by 1. Because each step takes some amount of
memory to hold the main problem while working on the subproblem, this means
that the total memory consumption is @(e), where e is the exponent. Given that our
signing exponent is nearly 200 digits long, it is hardly surprising that the computer
ran out of memory (again, even all the particles in a universe of universes wouldn’t
be enough). We could fix this problem by switching to a linear iterative version of the
procedure, much as in Section 3.2 where we wrote an iterative version of the power
procedure from Exercise 2.1. This procedure would just keep a running product as
it modularly multiplied the numbers one by one. This would reduce the memory
consumption to O(1) (i.e., constant).

Unfortunately, the time it would take to do the exponentiation would still be
O(e), so even though there would be ample memory, it would all have crumbled
to dust before the computation was over. (In fact, there wouldn’t even be dust left.
The fastest computers that even wild-eyed fanatics dream of would take about 1072
seconds to do a multiplication; there are about 107 seconds in a year. Therefore,
even such an incredibly fast machine would take something like 10' years to do
the calculation. For comparison, the earth itself is only around 10 years old, so
the incredibly fast computer would require roughly a trillion earth-lifetimes for each
particle in our hypothetical universe of universes.)

So, because chipping away at this huge signing exponent isn’t going anywhere
near fast enough, we are motivated to try something drastic, something that will in
one fell swoop dramatically decrease it. Let’s cut it in half, using a tree recursive
strategy. Keep in mind that b° means e b’s multiplied together. Provided that e is
even, we could break that string of multiplications right down the middle into two,
each of which is only half as big:

(define mod-expt
(lambda (base exponent modulus)
(define modx
(lambda (x y)
(remainder (* x y) modulus)))
(if (= exponent 0)
1
(if (even? exponent)
(mod* (mod-expt base (/ exponent 2) modulus)
(mod-expt base (/ exponent 2) modulus))
(mod* (mod-expt base (- exponent 1) modulus)

base)))))

Does this help any? Unfortunately not—although at least this version won’t run
out of memory, because the recursion depth is only ®(loge). Consider what would
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Figure 4.4 A tree recursive exponentiation still does ®(e) multiplications.

happen in the simplest possible case, which is when the exponent is a power of 2,
so it is not only initially even but in fact stays even after each successive division by
2 until reaching 1. The multiplications form a tree, with one multiplication at the
root, two at the next level, four at the next, eight at the next, and so on down to e at
the leaves of the tree. This totals Ze — 1 multiplications when all the levels are added
up; Figure 4.4 illustrates this for e = 8. The details would be slightly different for an
exponent that wasn’t a power of 2, but in any case the number of multiplications is

still O(e).

> Exercise 4.2

In this exercise you will show that this version of mod-expt does ©(e) multiplications,
as we claimed.

a. Use induction to prove each of the following about this latest version of mod-expt:
(1) eisanonnegative integer, (mod-expt b e m) does at least e multiplications.
(2) When e is a positive integer, (mod-expt b e m) does at most Ze — 1 multi-

plications.

b. To show that the number of multiplications is ®(e), it would have sufficed to
show that it lies between e and 2e. However, rather than having you prove that
the number of multiplications was at most 2e, we asked you prove more, namely,
that the number of multiplications is at most 2e — 1. Try using induction to
prove that when e is a positive integer, at most 2Ze multiplications are done. What
goes wrong? Why is it easier to prove more than you need to, when you're using
induction?
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You may be wondering why we went down this blind alley. The reason is that
although the tree-recursive version is not itself an improvement, it serves as a stepping
stone to a better version. You may have already noticed that we compute (mod-expt
base (/ exponent 2) modulus) twice, yet clearly the result is going to be the
same both times. We could instead calculate the result once and use it in both
places. By doing this, we'll only need to do one computation for each level in the
tree, eliminating all the redundancy. We can make use of 1let to allow us to easily
reuse the value:

(define mod-expt
(lambda (base exponent modulus)
(define modx
(lambda (x y)
(remainder (* x y) modulus)))
(if (= exponent 0)
1
(if (even? exponent)
(let ((x (mod-expt base (/ exponent 2) modulus)))
(mod* x x))
(mod* (mod-expt base (- exponent 1) modulus)

base)))))

Although this is only a small change from our original tree-recursive idea, it has a
dramatic impact on the order of growth of the time the algorithm takes, as illustrated
in Figure 4.5. The exponent is cut in half at worst every other step, because 1 less

b8
|
X
b4/// 1
|
X
1
bzifij:’/\:>
. :
>
b1
. 1
/ \ -
b b 4=1+Ig8

Figure 4.5 Eliminating redundant computations makes a big difference.
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than an odd number is an even number. Therefore, the number of steps (and time
taken) is ®(loge). Because a logarithmic function grows much more slowly than a
linear one, the computation of (mod-expt 7 signing-exponent modulus) can
now be done in about 7 seconds on our own modest computer, as opposed to 10180
years on an amazingly fast one. To give you some appreciation for the immense
factor by which the computation has been speeded up, consider that the speed of
a...no, even we are at a loss for a physical analogy this time.

Exercise 4.3

Wirite a procedure that, given the exponent, will compute how many multiplications
this latest version of mod-expt does.

Although we now have a version of mod-expt that takes ®(loge) time and uses
0O(loge) memory, both of which are quite reasonable, we could actually do one better
and reduce the memory consumption to (1) by developing an iterative version of
the procedure that still cuts the problem size in half. In doing so, we'll be straying
even one step further from the original tree-recursive version, which is now serving
as only the most vague source of motivation for the algorithm. To cut the problem
size in half with a recursive process, we observed that when e was even, b¢ = (b*/?)?,
To cut the problem size in half but generate an iterative process, we can instead
observe that when e is even, b* = (b?)*/?. This is the same as recognizing that when
e is even, the string of e b’s multiplied together can be divided into e/2 pairs of b’s
multiplied together, rather than two groups containing e/2 each.

Exercise 4.4

Develop a logarithmic time iterative version of mod-expt based on this concept.

At this point you have seen how an important practical application that involves
very large problem sizes can be turned from impossible to possible by devising an
algorithm with a lower order of growth. In particular, we successively went through
algorithms with the following growth rates:

® O(e) space and time (linear recursion)

m O(1) space and O(e) time (linear iteration)

LINC)

m O(1) space and O(loge) time (logarithmic iteration)

(
(

= O(loge) space and O(e) time (tree recursion)
(loge) space and time (logarithmic recursion)
(
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An Application: Fractal Curves

The tree-recursive mod-expt turned out not to be such a good idea because the two
half-sized problems were identical to one another, so it was redundant to solve each
of them separately. By contrast, the tree-recursive merge sort makes sense, because
the two halfssized problems are distinct, although similar. Both are problems of the
form “sort these n/2 cards,” but the specific cards to sort are different. This typifies
the situation in which tree recursion is natural: when the problem can be broken
into two (or more) equal-sized subproblems that are all of the same general form as
the original but are distinct from one another.

Fractal curves are geometric figures that fit this description; we say that they
possess self-similarity. Fach fractal curve can be subdivided into a certain number
of subcurves, each of which is a smaller version of the given curve. Mathematicians
are interested in the case where this subdividing process continues forever so that
the subcurves are quite literally identical to the original except in size and position.
Because we can’t draw an infinitely detailed picture on the computer screen, we’ll
stop the subdivision at some point and use a simple geometric figure, such as a line
or triangle, as the basis for the curve. We call that basis the level 0 curve; a level 1
curve is composed out of level 0 curves, a level 2 curve is composed out of level 1
curves, and so forth.

As a first example, consider the fractal curve in Figure 4.6, known as Sierpinski’s
gasket. As indicated in Figure 4.7, the gasket contains three equally sized subgaskets,
each of which is a smaller version of the larger gasket. Figure 4.8 shows Sierpinski’s
gaskets of levels 0, 1, and 2.

A level n Sierpinski’s gasket is composed of three smaller Sierpinski’s gaskets of
level n — 1, arranged in a triangular fashion. Furthermore, the level 0 Sierpinski’s
gasket is itself a triangle. Therefore, triangles play two different roles in Sierpinski’s

Figure 4.6 An example of Sierpinski’s gasket.
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Figure 4.7 An example of Sierpinski’s gasket, with the three subgaskets circled.

gasket: the self-similarity (i.e., the composition out of lower-level components) is
triangular, and the basis (i.e., level 0 curve) is also triangular.

In some fractals the self-similarity may differ from the basis. As an example,
consider the so-called c-curve, which is displayed in Figure 4.9 at levels 6 and 10.
The basis of a c-curve is just a straight line. A level n curve is made up of two
level n — 1 c-curves, but the self-similarity is somewhat difficult to detect. We will
describe this self-similarity by writing a procedure that produces c-curves. To write
this procedure, we’ll need to write a procedure that takes five arguments. The first
four are the x and y coordinates of the starting and ending points, the fifth is the level
of the curve. A level 0 c-curve is simply a line from the starting point, say (x0,y0), to

Figure 4.8 Sierpinski’s gaskets of levels 0, 1, and 2.
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Figure 4.9 C-curves of levels 6 and 10.

the ending point, say (x1, yl). This is what the built-in procedure 1ine will produce.
For higher level c-curves, we need to join two subcurves together at a point that
we'll call (xa, ya). Figure 4.10 illustrates the relationship between the three points;
the two subcurves go from point 0 to point a and then from point a to point 1.

(define c-curve
(lambda (x0 yO x1 y1 level)
(if (= level 0)
(line x0 y0 x1 y1)
(let ((xmid (/ (+ x0 x1) 2))
(ymid (/ (+ yO y1) 2))
(dx (- x1 x0))
(dy (- y1 yo)))
(let ((xa (- xzmid (/ dy 2)))
(ya (+ ymid (/ dx 2))))
(overlay (c-curve x0 yO xa ya (- level 1))
(c-curve xa ya x1 y1 (- level 1))))))))

Try out the c-curve procedure with various values for the parameters in order to
gain an understanding of their meaning and the visual effect resulting from changing
their values. Overlaying two or more c-curves can help you understand what is going
on. For example, you might try any (or all) of the following:

(c-curve 0 -1/2 0 1/2 0)
(c-curve 0 -1/2 0 1/2 1)
(c-curve 0 -1/2 0 1/2 2)
(c-curve 0 -1/2 0 1/2 3)
(c-curve 0 -1/2 0 1/2 4)
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x1, y1)

(xa, ya)

(x0, y0)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3)

(overlay (c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)

(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

i

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point @
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

i

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.
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Exercise 4.7

i

See what numbers arise when you evaluate the following:

(length-of-c-curve 0 -1/2 0 1/2 0)
(length-of-c-curve 0 -1/2 0 1/2 1)
(length-of-c-curve 0 -1/2 0 1/2 2)
(length-of-c-curve 0 -1/2 0 1/2 3)
(length-of-c-curve 0 -1/2 0 1/2 4)

Do you see a pattern? Can you mathematically show that this pattern holds?

Exercise 4.8

i

C-curves can be seen as more and more convoluted paths between the two points,
with increasing levels of detours on top of detours. The net effect of any c-curve of
any level still is to connect the two endpoints. Design a new fractal that shares this
property. That is, a level 0 curve should again be a straight line, but a level 1 curve
should be some different shape of detour path of your own choosing that connects
up the two endpoints. What does your curve look like at higher levels?

Exercise 4.9

i

We will now turn to Sierpinski’s gasket. To get this started, write a procedure called
triangle that takes six arguments, namely the x and y coordinates of the triangle’s
three vertices. It should produce an image of the triangle. Test it with various
argument values; (triangle -1 -.756 1 -.75 0 1) should give you a large and
nearly equilateral triangle.

Exercise 4.10

i

Use triangle to write a procedure called sierpinskis-gasket that again takes
six arguments for the vertex coordinates but also takes a seventh argument for the
level of curve.

Review Problems

I> Exercise 4.11

Consider the following procedures:
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(define factorial

(lambda (n)
(if (=n 0)
1

(* n (factorial (- n 1))))))

(define factorial-suml ; returns 1! + 2! + ... + n!
(lambda (n)
(if (=n 0)
0
(+ (factorial n)
(factorial-suml (- n 1))))))

(define factorial-sum2 ; also returns 1! + 2! + ... + n!
(lambda (n)
(define loop
(lambda (k fact-k addend)
(if (> k n)
addend
(loop (+ k 1)
(x fact-k (+ k 1))
(+ addend fact-k)))))
(loop 1 1 0)))

In answering the following, assume that n is a nonnegative integer. Also, justify your
answers.

a. Give a formula for how many multiplications the procedure factorial does as
a function of its argument n.

b. Give a formula for how many multiplications the procedure factorial-sumi
does (implicitly through factorial) as a function of its argument n.

c. Give a formula for how many multiplications the procedure factorial-sum2
does as a function of its argument n.

I> Exercise 4.12

How many ways are there to factor n into two or more numbers (each of which must
be no smaller than 2)? We could generalize this to the problem of finding how many
ways there are to factor n into two or more numbers, each of which is no smaller
than m. That is, we write
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(define ways-to-factor
(lambda (n)
(ways-to-factor-using-no-smaller-than n 2)))

Your job is to write ways-to-factor-using-no-smaller-than. Here are some
questions you can use to guide you:

» [f m> > n, how many ways are there to factor n into two or more numbers each
no smaller than m?

m Otherwise, consider the case that n is not divisible by m. Compare how many
ways are there to factor n into two or more numbers no smaller than m with how
many ways there are to factor n into two or more numbers no smaller than m + 1.
What is the relationship?

= The only remaining case is that m* =< n and n is divisible by m. In this case,
there is at least one way to factor n into numbers no smaller than m. (It can
be factored into m and n/m.) There may, however, be other ways as well. The
ways of factoring n divide into two categories: those using at least one factor of m
and those containing no factor of m. How many factorizations are there in each
category?

I> Exercise 4.13

Consider the following procedure:

(define bar

(lambda (n)
(cond ((=n 0) b5)
((=n 1) 7)

(else (x n (bar (- n 2)))))))

How many multiplications (expressed in © notation) will the computation of
(bar n) do? Justify your answer. You may assume that n is a nonnegative inte-

ger.

I> Exercise 4.14

Consider the following procedures:

(define foo
(lambda (n) ; computes n! + (n!)°n
(+ (factorial n) ; that is, (n! plus n! to the nth power)
(bar n n))))
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(define bar

(lambda (i j) ; computes (i!)~j (i! to the jth power)
Gf (=3 0)
1

(x (factorial i)

(bar i (- j 1))))))

(define factorial

(lambda (n)
(if (=n 0)
1

(* n (factorial (- n 1))))))

How many multiplications (expressed in ® notation) will the computation of
(foo n) do? Justify your answer.

[> Exercise 4.15

Suppose that you have been given n coins that look and feel identical and you've
been told that exactly one of them is fake. The fake coin weighs slightly less than a
real coin. You happen to have a balance scale handy, so you can figure out which
is the fake coin by comparing the weights of various piles of coins. One strategy for
doing this is as follows:

= [f you only have 1 coin, it must be fake.

® [f you have an even number of coins, you divide the coins into two piles (same
number of coins in each pile), compare the weights of the two piles, discard the
heavier pile, and look for the fake coin in the remaining pile.

= [f you have an odd number of coins, you pick one coin out, divide the remaining
coins into two piles, and compare the weights of those two piles. If you're lucky,
the piles weigh the same and the coin you picked out is the fake one. If not,
throw away the heavier pile and the extra coin, and look for the fake coin in the
remaining pile.

Note that if you have one coin, you don’t need to do any weighings. If you have
an even number of coins, the maximum number of weighings is one more than the
maximum number of weighings you’d need to do for half as many coins. If you have
an odd number of coins, the maximum number of weighings is the same as the
maximum number of weighings you'd need for one fewer coins.
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a. Write a procedure that will determine the maximum number of weighings you
need to do to find the fake coin out of n coins using the above strategy.

b. Come up with a fancier (but more efficient) strategy based on dividing the pile of
coins in thirds, rather than in half. (Hint: If you compare two of the thirds, what
are the possible outcomes? What does each signify?)

c. Write a procedure to determine the maximum number of weighings using the
strategy based on dividing the pile in thirds.

[> Exercise 4.16

Perhaps you noticed in Section 4.3 that as you increase the value of the level
parameter in c-curve (while keeping the starting and ending points fixed), the c-
curve gets larger. Not only is the path larger, but the curve extends further to the left,
further to the right, and extends higher and lower. One way to measure this growth
would be to ask how far left it extends (i.e., what its minimum x-value is). This could
be done by defining a procedure called min-x-of-c-curve, taking exactly the same
arguments as c-curve, which returns the minimum x-value of the given c-curve.
One strategy for implementing min-x-of-c-curve is as follows:

m [flevel = 0, the c-curve is just a line from (x0,y0) to (x1,y1), so return the smaller

of x0 and x1.

m If level = 1, the given c-curve is built from two c-curves, each of which has
level — 1 as its level. One goes from (x0,y0) to (xa, ya), and the other from (xa, ya)
to (x1,yl). Therefore, you should return the smaller of the min-x-values of these
two sub-c-curves.

Write the procedure min-x-of-c-curve. As an aid in writing it, note that there is a
built-in procedure min that returns the smaller of its arguments. So we would have

(min 1 3) (min 2 -3) (min 4 4)
1 -3 4

As a hint, note that min-x-of-c-curve can be structured in a manner very similar
to both c-curve and length-of-c-curve.

I> Exercise 4.17

Consider the following enumeration problem: How many ways can you choose k
objects from n distinct objects, assuming of course that 0 = k = n? For example,
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how many different three-topping pizzas can be made if you have six toppings to
choose from?

The number that is the answer to the problem is commonly written as C(n, k).

Here is an algorithm for computing C(n, k):

= As noted above, you may assume that 0 = k = n, because other values don’t

make sense for the problem.

The base cases are k = 0 and k = n. It should not be too hard to convince
yourself that C(n, n) should equal 1, and similar reasoning can be used to show
that C(n,0) = 1 is also the reasonable choice.

The general case is 0 < k < n. Here you might argue as follows: Consider one
of the objects. Either you select it as one of the k objects, or you don’t. If you
do select it, then you must select k — 1 more objects from the remaining n — 1,
presumably a simpler problem that you assume you can do recursively. If on
the other hand you don’t select the first object, you must select k objects from
the remaining n — 1, which is also a simpler problem whose value is computed
recursively. Then the total number of ways to select k objects from these n objects
is the sum of the numbers you get from these two subproblems.

Using this algorithm, write a tree-recursive procedure that calculates the numbers

C(n, k) described above.

I> Exercise 4.18

One way to sum the integers from a up to b is to divide the interval in half, recursively
sum the two halves, and then add the two sums together. Of course, it may not be
possible to divide the interval exactly in half if there are an odd number of integers
in the interval. In this case, the interval can be divided as nearly in half as possible.

a. Write a procedure implementing this idea.

b. Let’s use n as a name for the number of integers in the range from a up to b. What

is the order of growth (in ® notation) of the number of additions your procedure
does, as a function of n? Justify your answer.

[> Exercise 4.19

The following illustration shows a new kind of image, which we call a tri-block:
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What kind of process do you think was used to generate this image (i.e., was it linear
recursive, iterative, or tree recursive)? Write a paragraph carefully explaining why
you think this.

|> Exercise 4.20

Consider the following procedure:

(define foo
(lambda (low high level)
(let ((mid (/ (+ low high) 2)))
(let ((mid-line (line mid O mid (* level .1))))
(if (= level 1)
mid-line
(overlay mid-line
(overlay (foo low mid (- level 1))
(foo mid high (- level 1)))))))))

Examples of the images produced by this procedure are given below:

(foo -1 1 1) (foo -1 1 2) (foo -1 1 3) (foo -1 1 4)
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a. What kind of process does foo generate (i.c., linear recursive, iterative, or tree

recursive)? Justify your answer.

b. Let’s call the number of lines in the image foo produces I(n), where n is the
level. Make a table showing I(n) versus n for n = 1,2, 3,4. Write a mathematical
equation showing how [(n) can be computed from [(n — 1) when n is greater
than 1. Explain how each part of your equation relates to the procedure. What is
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Sidebars

Selection Sort Logarithms

Merge Sort Modular Arithmetic
Merging

The definitive work on sorting algorithms is by Knuth [31]. Knuth reports that merge
sort is apparently the first program written for a stored program computer, in 1945.

Our definition of ® allowed “finitely many exceptions.” Other books normally
specify that any number of exceptions are allowed, provided that they are all less
than some cutoff point. The two definitions are equivalent given our assumption
that n is restricted to be a nonnegative integer. If that restriction is lifted, the more
conventional definition is needed. In any case, the reason for allowing exceptions to
the bounds is to permit the use of bounding functions that are ill-defined for small n.
For example, we showed that merge sort was @(nlogn). When n = 0, the logarithm
is undefined, so we can’t make a claim that the time to sort 0 cards is bounded
between two positive constant multiples of 01og0.

The digital signature method we've described is known as the RSA cryptosystem,
named after the initials of its developers: Ron Rivest, Adi Shamir, and Leonard
Adleman. The way we were able to produce our public modulus and secret signing
key is as follows. We randomly chose two 100-digit primes, which we’ve kept secret;
call them p and g. We made sure (p — 1)(g — 1) wasn’t divisible by 3. Our modulus
is simply the product pg. This means that in principle anyone could discover p
and ¢ by factoring our published modulus. However, no one knows how to factor
a 200-digit number in any reasonable amount of time. Our secret signing exponent
is calculated using p and g. It is the multiplicative inverse of 3 (the verification
exponent), mod (p — 1)(¢ — 1). That is, it is the number that when multiplied by 3
and then divided by (p — 1)(g — 1) leaves a remainder of 1. For an explanation of
why this works, how the inverse is quickly calculated, and how to find large primes,
consult Cormen, Leiserson, and Rivest’s superb Introduction to Algorithms [14]. For
general information on the RSA system, there is a useful publication from RSA
Laboratories by Paul Fahn [16]. We should point out that the use of the RSA system
for digital signatures is probably covered by several patents; however, the relevant
patent holders have indicated that they won'’t prosecute anyone using the system as
an educational exercise. Also, it is worth mentioning that the export from the United
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States of any product employing the RSA system is regulated by the International
Traffic in Arms Regulation.
There has been a recent explosion of books on fractals, aimed at all levels of
audience. Two classics by Mandelbrot, who coined the word fractal, are [36] and [37].
Some aspects of our treatment of fractals, such as the c-curve example and the
length-of-c-curve exercise, are inspired by a programming assignment developed
by Abelson, Sussman, and friends at MIT [1].



CHAPTER FIVE

5.1

Higher-Order Procedures

Procedural Parameters

In the earlier chapters, we twice learned how to stop writing lots of specific expressions
that differed only in details and instead to write one general expression that captured
the commonality:

® [n Chapter 1, we learned how to define procedures. That way when we had several
expressions that differed only in the specific values being operated on, such as
(* 3 3), (x 4 4),and (* 5 5), we could instead define a general procedure:

(define square
(lambda (%)
(x x x)))

This one procedure can be used to do all of the specific calculations just listed;
the procedure specifies what operations to do, and the parameter allows us to vary
which value is being operated on.

= [n Chapter 2, we learned how to generate variable-size computational processes.
That way if we had several procedures that generated processes of the same
form, but differing in size, such as (define square (lambda (x) (* x x)))
and (define cube (lambda (x) (* (* x x) x))), we could instead define
a general procedure:

(define power
(lambda (b e)
(if (= e 1)
b
(* (power b (- e 1)) b))))

109
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This one procedure can be used in place of the more specific procedures listed
previously; the procedure still specifies what operations to do, but the parameters
now specify how many of these operations to do as well as what values to do them
to.

Since learning about these two kinds of variability —variability of values and of
computation size—we’ve concentrated on other issues, such as the amount of time
and memory that a process consumes. In this chapter, we will learn about a third
kind of variability, which, once again, will allow us to replace multiple specific
definitions with a single more general one.

Suppose that you replace the operation name * with stack in the previous
definition of power. By making this one change, you'll have a procedure for stacking
multiple copies of an image instead of doing exponentiation. That is, the general
structure of the two procedures is the same; the only difference is the specific
operation being used. (Of course, it would make the procedure easier to understand
if you also made some cosmetic changes, such as changing the name from power
to stack-copies-of and changing the name and order of the parameters. If you
do this, youll probably wind up with the exact same procedure you wrote for
Exercise 2.13 on page 40.)

This commonality of structure raises an interesting question: Can we write one
general purpose procedure for all computations of this kind and then tell it not only
how many copies we want of what but also how they should be combined? If so, we
could ask it to stack together 3 copies of rcross-bb, to multiply together 5 copies of
2, or .... We might use it like this:

(together-copies-of stack 3 rcross-bb) =

(together-copies-of * 5 2)
32

The first argument is a procedure, which is how we specify the kind of combining we
want done. The names stack and * are evaluated, just like the name rcross-bb
is or any other expression would be. Therefore, the actual argument value is the
procedure itself, not the name.

To start writing the procedure together-copies-of, we give a name for its
procedural parameter in the parameter list, along with the other parameters:

(define together-copies-of
(lambda (combine quantity thing)

Here we have three parameters, called combine, quantity, and thing, filling in the
blanks in “combine together quantity copies of thing.” We chose to use a verb for the
procedural parameter and nouns for the other parameters to remind ourselves how
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they are used. Now we can finish writing the procedure, using the parameter names
in the body wherever we want to have the specifics substituted in. For example,
when we want to check whether the specific quantity requested is 1, we write
(= quantity 1). Similarly, when we want to use the specific combining operation
that was requested, we write (combine ... ...). Here is the resulting procedure:

(define together-copies-of
(lambda (combine quantity thing)
(if (= quantity 1)
thing
(combine (together-copies-of combine
(- quantity 1)
thing)
thing))))

Once we've got this general purpose procedure, we can use it to simplify the
definition of other procedures:

(define stack-copies-of
(lambda (quantity image)
(together-copies-of stack quantity image)))

(define power
(lambda (base exponent)
(together-copies-of * exponent base)))

(define mod-expt
(lambda (base exponent modulus)
(together-copies-of (lambda (x y)
(remainder (* x y) modulus))
exponent base)))

(Notice that we didn’t bother giving a name, such as modx, to the combining proce-
dure used in mod-expt. Typically, using a lambda expression to supply the proce-
dural argument directly is easier than stopping to give it a name with define and
then referring to it by name.)

Together-copies-of is an example of a higher-order procedure. Such proce-
dures have procedural parameters or (as we'll see later) return procedural values. One
great benefit of building a higher-order procedure is that the client procedures such
as stack-copies-of and mod-expt are now completely independent of the process
used for combining copies. All they say is that so many copies of such and such should
be combined with this combiner, without saying how that combining should be orga-
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nized. This means that we can improve the technique used by together-copies-of
and in one fell swoop the performance of stack-copies-of, mod-expt, and any
other client procedures will all be improved.

P crcises |

Write a linear iterative version of together-copies-of.

P oecies2

Write a logarithmic-time version of together-copies-of. You may assume that
the combiner is associative.

P e |

What does the following procedure compute? Also, compare its performance with
cach of the three versions of together-copies-of installed, using relatively large
values for the first argument, perhaps in the ten thousand to a million range.

(define mystery
(lambda (a b)
(together-copies-of + a b)))

For our second example, note that counting the number of times that 6 is a digit
in a number (Exercise 2.9 on page 39) is very similar to counting the number of
odd digits in a number (Exercise 2.10 on page 39). In the former case, you're testing
to see if each digit is equal to 6 and in the latter youre testing to see if each digit
is odd. Thus we can write a general procedure, num-digits-in-satisfying, that
we can use to define both of these procedures. Its second parameter is the particular
test predicate to use on each digit.

(define num-digits-in-satisfying
(lambda (n test?)
(cond ((< n 0)
(num-digits-in-satisfying (- n) test?))
((< n 10)
(if (test? n) 1 0))
((test? (remainder n 10))
(+ (num-digits-in-satisfying (quotient n 10) test?)
1))
(else
(num-digits-in-satisfying (quotient n 10) test?)))))
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We can then define the procedures asked for in Exercises 2.9 and 2.10 as special
cases of the more general procedure num-digits-in-satisfying:

(define num-odd-digits
(lambda (n)
(num-digits-in-satisfying n odd?)))

(define num-6s
(lambda (n)
(num-digits-in-satisfying n (lambda (n) (= n 6)))))

> Exercise 5.4

Use num-digits-in-satisfying to define the procedure num-digits, which was
defined “from scratch” in Section 2.3.

P eecisess

Rewrite num-digits-in-satisfying so that it generates an iterative process.

Another computational pattern that occurs very frequently involves summing the
values of a function over a given range of integers.

> Exercise 5.6

Write a general purpose procedure, that when given two integers, low and high, and
a procedure for computing a function f, will compute f(low) + f (low + 1) + f (low +
2) + -+ -+ f(high). Show how it can be used to sum the squares of the integers from
5 to 10 and to sum the square roots of the integers from 10 to 100.

Uncomputability

Designing general purpose procedures with procedural parameters is an extremely
practical skill. It can save considerable programming, because a procedure can be
written a single time but reused in many contexts. However, despite this practicality,
the single most interesting use of a procedure with a procedural parameter is in a
theoretical proof. In this section we’ll take a look at the history and importance of
this proof.

By now we've seen that procedures are quite powerful. They can be used for
doing arithmetic on 200-digit numbers in order to produce digital signatures, for
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making a variety of complex images, and for looking words up in dictionaries. You
probably know of lots of other things procedures can be used for. There seems
to be no limit to what we can do with them. At the beginning of the twentieth
century, mathematicians addressed exactly that question: whether a procedure could
be found to compute any function that could be precisely mathematically specified.
That question was settled in the 1930s by the discovery of several uncomputable
functions (one of which we’ll examine in this section).

The specific function we’ll prove uncomputable is a higher-order one and is
often called the halting problem. It takes a procedure as an argument and returns a
true/false value telling whether the given procedure generates a terminating process,
as opposed to going into an infinite loop. Now imagine that one of your brilliant
friends gives you a procedure, called halts?, that supposedly computes this function.
You could then use this procedure on the simple procedures return-seven and
loop-forever defined below. Evaluating (halts? return-seven) should result
in #t, whereas (halts? loop-forever) should evaluate to #£.

(define return-seven
(lambda ()
7))

(define loop-forever
(lambda ()
(loop-forever)))

(Return-seven and loop-forever happen to be our first examples of procedures
with no parameters. This is indicated by the empty parentheses.)

Clearly halts? would be a handy procedure to have, if it really worked. To start
with, it could be used to test for a common kind of bug. Never again would you have
to guess whether you'd goofed and accidentally written a nonterminating procedure.
You could tell the difference between a computation that was taking a long time
and one that would never finish.

Above and beyond this, you could answer all sorts of open mathematical questions.
For example, we mentioned earlier that no one knows whether there are any odd
perfect numbers. It would be easy enough to write a procedure that tested all the odd
numbers, one by one, stopping when and if it found one that was perfect. Then all
we’d have to do is apply halts? to it, and we'd have the answer—if we're told that
our search procedure halts, there are odd perfect numbers; otherwise, there aren’t.
This suggests that such a procedure might be a bit too wonderful to exist—it would
make obsolete centuries of mathematicians” hard work. However, this is far from a
proof that it doesn’t exist.

Another related sense in which halts? is a bit too good to be true forms a
suitable basis for a proof that it can’t be a sure-fire way to determine whether a given
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procedure generates a halting process. (In other words, there must be procedures for
which it either gives the wrong answer or fails to give an answer.) Halts? in effect
claims to predict the future: It can tell you now whether a process will terminate or
not at some point arbitrarily far into the future. The way to debunk such a fortune-
teller is to do the exact opposite of what the fortune-teller foretells (provided that the
fortune-teller is willing to give unambiguous answers to any question and that you
believe in free will). This will be the essence of our proof that halts? can’t work as
claimed.

What we want is a procedure that asks halts? whether it is going to stop and
then does the opposite:

(define debunk-halts?
(lambda ()
(if (halts? debunk-halts?)
(loop-forever)
666)))

Debunk-halts? halts if and only if debunk-halts? doesn’t halt—provided the
procedure halts? that it calls upon performs as advertised. But nothing can both
halt and not halt, so there is only one possible conclusion: our assumption that such
a halts? procedure exists must be wrong—there can be no procedure that provides
that functionality.

The way we proved that the halting problem is uncomputable is called a proof
by contradiction. What we did was to assume that it was computable, that is, that a
procedure (halts?) exists that computes it. We then used this procedure to come
up with debunk-halts?, which halts if and only if it doesn’t halt. In other words,
whether we assume that debunk-halts? halts or that it doesn’t halt, we can infer
the opposite; we are stuck with a contradiction either way. Because we arrived at
this self-contradictory situation by assuming that we had a halts? procedure that
correctly solved the halting problem, that assumption must be false; in other words,
the halting problem is uncomputable.

This version of proof by contradiction, where the contradiction is arrived at by
using an alleged universal object to produce the counterexample to its own univer-
sality, is known as a diagonalization proof. Another variation on the theme can be
used to show that most functions can’t even be specified, let alone implemented by
a procedure.

We should point out that we've only given what most mathematicians would call
a “sketch” of the actual proof that the halting problem is uncomputable. In a formal
proof, the notions of what a procedure is, what process that procedure generates,
and whether that process terminates need to be very carefully specified in formal
mathematical terms. This ensures that the function mapping each procedure to a
truth value based on whether or not it generates a terminating process is a well-
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defined mathematical function. The mathematician Alan Turing spent considerable
effort on these careful specifications when he originated the proof that halts? can’t
exist.

The discovery that there are mathematical functions that can be specified but
not computed is one of the wedges that served to split computer science off from
mathematics in the middle of the twentieth century. Of course, this was the same
period when programmable electronic computers were first being designed and built
(by Turing himself, among others). However, we can now see that the fundamental
subject matter of mathematics and computer science are distinct: Mathematicians
study any abstraction that can be formally specified, whereas computer scientists
confine their attention to the smaller realm of the computable. Mathematicians
sometimes are satisfied with an answer to the question “is there a ...,” whereas
computer scientists ask “How do I find it?”

One of the surest signs of genius in a computer scientist is the ability to excel
in both the theoretical and the practical sides of the discipline. All the greatest
computer scientists have had this quality, and most have even gone far beyond the
borders of computer science in their breadth. Given the youth of the discipline,
most of these greats are still alive, still alternating between theory and application,
the computer and the pipe organ. Alan Turing, however, has the dual distinction
of having been one of these greats who passed into legend.

Turing developed one of the first careful theoretical models of the notions of
algorithm and process in the 1930s, basing it on a bare-bones computing machine
that is still an important theoretical model —the Turing machine, as it is called.
He did this as the basis of his careful proof of the uncomputability of the halting
problem, sketched in this section. In so doing he made a contribution of the first
magnitude to the deepest theoretical side of computer science.

During World War 1II, Turing worked in the British code-breaking effort and
successfully designed real-life computing machines dedicated to this purpose.
He is given a considerable portion of the credit for the Allied forces™ decisive
cryptographic edge and in particular for the breaking of the German “Enigma”
ciphers.

After the war Turing led the design of the National Physical Laboratory’s ACE
computer, which was one of the first digital electronic stored-program computers
designed anywhere and the first such project started in England.

During this same post-war period of the late forties Turing returned more se-
riously to a question he had dabbled with for years, the question of artificial

Continued
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-j’ Alan Turing (Continued)

intelligence: whether intelligence is successfully describable as a computational
process, such that a computing machine could be programmed to be intelligent.
He made a lasting contribution to this area of thought by formulating the question
in operational terms. In other words, he made the significant choice not to ask “is
the machine really intelligent inside or just faking” but rather “can the machine
be distinguished from a human, simply by looking at its outward behavior.” He
formulated this in a very specific way: Can a computer be as successful as a man at
convincing an interrogator that it is a woman? He also stipulated that the computer
and the man should both be communicated with only through a textual computer
terminal (or teletype). In the decades since Turing published this idea in 1950, it
has been generalized such that any operational test of intelligence is today referred
to as a “Turing test” Theoretical foundations, applications to code breaking,
computer design, and questions of artificial intelligence weren't all that concerned
Turing, however. He also made an important contribution to theoretical biology.
His famous 1952 paper “T'he Chemical Basis of Morphogenesis” showed how
chemical reactions in an initially homogeneous substance can give rise to large-
scale orderly forms such as are characteristic of life.

Turing’s work on morphogenesis (the origins of form) never reached com-
pletion, however, because he tragically took his own life in 1954, at the age of
42. There is considerable uncertainty about exactly why he did this, or more
generally about his state of mind. It is documented that he had gone through
periods of depression, as well as considerable trauma connected with his sexual
orientation. Turing was rather openly homosexual, at a time when sex between
men was a crime in England, even if in private and with consent. In 1952
Turing was convicted of such behavior, based on his own frank admission. His
lawyer asked the court to put him on probation, rather than sentence him to
prison, on the condition that he undergo experimental medical treatment for his
homosexuality —paradoxically it was considered an illness as well as a crime. The
treatment consisted of large doses of estrogen (female hormones), which caused
impotence, depression, and further stigmatization in the form of enlarged breasts.
The treatment ended in 1953, but there is circumstantial evidence suggesting
that British intelligence agencies kept close tabs on Turing thereafter, including
detaining a foreign lover to prevent a rendezvous. (Apparently they were con-
cerned that Turing might divulge his secret information regarding cryptography
and related fields.) Although there is no clear evidence, this sequence of events
probably played a role in the overall emotional progression leading to Turing’s
suicide, cutting off what could have been the entire second half of his career.
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Since the 1930s, when Turing showed that there could be no procedure that solves
this halting problem, many other functions have been shown to be uncomputable.
Many of these proofs have the form: “If I had this procedure, I could use it in this
clever way to implement halts?. But halts? can't exist, so this procedure must
not either.” This is known as a proof by reduction.

Procedures That Make Procedures

Now we can return to the more practical question of what programming techniques
are made possible by procedures that operate on procedures. (Recall that this is what
higher-order means.) So far we have seen procedures that take other procedures as
parameters, just as they might take numbers or images. However, procedures don’t
just take values in: They also return values as the result of their computations. This
carries over to procedural values as well; higher-order procedures can be used to
compute procedural results. In other words, we can build procedures that will build
procedures. Clearly this could be a very labor-saving device.

How do we get a procedure to return a new procedure? We do it in the same way
that we get a procedure to return a number. Recall that in order to ensure that a
procedure returns a number when it is applied, its body must be an expression that
evaluates to a number. Similarly, for a procedure to create a new procedure when it
is applied, its body must be an expression that evaluates to a procedure. At this point,
we know of only one kind of expression that can evaluate to a new procedure—a
lambda expression. For example, here is a simple “procedure factory” with examples
of its use:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

(define double (make-multiplier 2))
(define triple (make-multiplier 3))

(double 7)
14

(triple 12)
36

When we evaluate the definition of make-multiplier, the outer lambda ex-
pression is evaluated immediately and has as its value the procedure named
make-multiplier. That procedure is waiting to be told what the scaling factor
is. When we evaluate
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(define double (make-multiplier 2))

the body of the procedure named make-multiplier is evaluated, with the value
2 substituted for scaling-factor. In other words, the expression (lambda (x)
(* x scaling-factor)) is evaluated with 2 substituted for scaling-factor.
The result of this evaluation is the procedure that is named double, just as though
the definition had been (define double (lambda (x) (* x 2))). When we
apply double to 7, the procedure (lambda (x) (* x 2)) is applied to 7, and the
result is, of course, 14.

P eecises. 7

Wirite a procedure make-exponentiater that is passed a single parameter e (an
exponent) and returns a function that itself takes a single parameter, which it raises
to the e power. You should use the built-in Scheme procedure expt. As examples,
you could define square and cube as follows:

(define square (make-exponentiater 2))
(define cube (make-exponentiater 3))

(square 4)
16

(cube 4)
64

For another example of a procedure factory, suppose that we want to automate
the production of procedures like repeatedly-square, from Section 3.2. That pro-
cedure took two arguments, the number to square and how many times it should be
squared. We could make a procedure factory called make-repeated-version-of
that would be able to make repeatedly-square out of square:

(define make-repeated-version-of
(lambda (f) ; make a repeated version of f
(define the-repeated-version
(lambda (b n) ; which does f n times to b
(if (=n 0)

b
(the-repeated-version (f b) (- n 1)))))

the-repeated-version))

(define square (lambda (x) (* x x)))
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(define repeatedly-square
(make-repeated-version-of square))

(repeatedly-square 2 3) ; 2 squared squared squared
256

One thing worth noticing in this example is that we used an internal definition
of the-repeated-version to provide a name for the generated procedure. That
way we can refer to it by name where it reinvokes itself to do the n — 1 remaining
repetitions. Having internally defined this name, we then return the procedure it is
a name for.

> Exercise 5.8

Define a procedure that can be used to produce factorial (Section 2.1) or
sum-of-first (Section 2.3). Show how it can be used to define those two pro-
cedures.

> Exercise 5.9

Generalize your solution to the previous exercise so it can also be used to produce
sum-of-squares and sum-of-cubes from Exercise 2.8 on page 38.

An Application: Verifying ID Numbers

Does this scenario sound familiar?

May [ have your credit card number please?
Yes, it's 6011302631452178.

I'm sorry, I must have typed that wrong. Could you please say it again?

How did the sales representative know the number was wrong?

Credit card numbers are one of the most common examples of self-verifying num-
bers. Other examples include the ISBN numbers on books, the UPC (Universal
Product Code) numbers on groceries, the bank numbers on checks, the serial num-
bers on postal money orders, the membership numbers in many organizations, and
the student ID numbers at many universities.

Self-verifying numbers are designed in such a way that any valid number will have
some specific numerical property and so that most simple errors (such as getting two
digits backward or changing the value of one of the digits) result in numbers that
don’t have the property. That way a legitimate number can be distinguished from
one that is in error, even without taking the time to search through the entire list of
valid numbers.
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What interests us about self-verifying numbers is that there are many different
systems in use, but they are almost all of the same general form. Therefore, although
we will need separate procedures for checking the validity of each kind of number,
we can make good use of a higher-order procedure to build all of the verifiers for us.

Suppose we call the rightmost digit of a number d), the second digit from the right
d,, ete. All of the kinds of identifying numbers listed previously possess a property of
the following kind:

F(1,d)) + f(2,do) + f(3,ds) + - - - is divisible by m

All that is different between a credit card and a grocery item, or between a book and
a money order, is the specific function f and the divisor m.

How do we define a procedure factory that will construct verifiers for us? As we did
in Section 5.3, we will first look at one of the procedures that this factory is supposed
to produce. This verifier checks to see whether the sum of the digits is divisible by
17; in other words, the divisor is 17 and the function is just f(i,d;) = d;. To write the
verifier, we'll first write a procedure to add the digits. Recall from Chapter 2 that we
can get at the individual digits in a number by using division by 10. The remainder
when we divide by 10 is the rightmost digit, d;, and the quotient is the rest of the
digits. For example, here is how we could compute the sum of the digits in a number
(as in Exercise 2.11 on page 39) using an iterative process:

(define sum-of-digits
(lambda (n)
(define sum-plus ;(sum of n’s digits) + addend
(lambda (n addend)
(if (=n 0)
addend
(sum-plus (quotient n 10)
(+ addend (remainder n 10))))))

(sum-plus n 0)))

> Exercise 5.10

Wirite a predicate that takes a number and determines whether the sum of its digits

is divisible by 17.

P eecises.1

Wirite a procedure make-verifier, which takes f and m as its two arguments
and returns a procedure capable of checking a number. The argument f is itself a
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procedure, of course. Here is a particularly simple example of a verifier being made
and used:

(define check-isbn (make-verifier * 11))

(check-isbn 0262010771)
#t

The value #t is the “true” value; it indicates that the number is a valid ISBN.

As we just saw, for ISBN numbers the divisor is 11 and the function is simply
f(i,d;) = i X d;. Other kinds of numbers use slightly more complicated functions,
but you will still be able to use make-verifier to make a verifier much more easily
than if you had to start from scratch.

P ercises.12

For UPC codes (the barcodes on grocery items), the divisor is 10, and the function
f(i,d;) is equal to d; itself when i is odd, but to 3d; when i is even. Build a verifier for
UPC codes using make-verifier, and test it on some of your groceries. (The UPC
number consists of all the digits: the one to the left of the bars, the ones underneath
the bars, and the one on the right.) Try making some mistakes, like switching or
changing digits. Does your verifier catch them?

B oercies.s

Credit card numbers also use a divisor of 10 and also use a function that yields d;
itself when i is odd. However, when i is even, the function is a bit fancier: It is 2d; if
d; <5,and 2d; + 1 it d; = 5. Build a verifier for credit card numbers. In the dialog
at the beginning of this section, did the order taker really mistype the number, or
did the customer read it incorrectly?

> Exercise 5.14

The serial number on U.S. postal money orders is self-verifying with a divisor of 9 and
a very simple function: (i, d;) = d;, with only one exception, namely, f(1,d;) = —d,.
Build a verifier for these numbers, and find out which of these two money orders is
mistyped: 48077469777 or 48077462766.

Actually, both of those money order numbers were mistyped. In one case the error
was that a 0 was replaced by a 7, and in the other case two digits were reversed.
Can you figure out which kind of error got caught and which didn’t? Does this help
explain why the other kinds of numbers use fancier functions?
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Review Problems
I> Exercise 5.15

Write a higher-order procedure called make-function-with-exception that takes
two numbers and a procedure as parameters and returns a procedure that has the
same behavior as the procedural argument except when given a special argument.
The two numerical arguments to make-function-with-exception specify what
that exceptional argument is and what the procedure made by make-function-
with-exception should return in that case. For example, the usually-sqrt pro-
cedure that follows behaves like sqrt, except that when given the argument 7, it
returns the result 2:

(define usually-sqrt
(make-function-with-exception 7 2 sqrt))

(usually-sqrt 9)
3

(usually-sqrt 16)
4

(usually-sqrt 7)
2

I> Exercise 5.16

If two procedures f and g are both procedures of a single argument such that the val-
ues produced by g are legal arguments to f, the composition of f and g is defined to be
the procedure that first applies g to its argument and then applies f to the result. Write
a procedure called compose that takes two one-argument procedures and returns
the procedure that is their composition. For example, ((compose sqrt abs) -4)
should compute the square root of the absolute value of —4.

I> Exercise 5.17

Suppose you have a function and you want to find at what integer point in a given
range it has the smallest value. For example, looking at the following graph of the
function f(x) = x> — 2x, you can see that in the range from 0 to 4, this function has
the smallest value at 1.
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-1+

We could write a procedure for answering questions like this; it could be used as
follows for this example:

(integer-in-range-where-smallest (lambda (x)
(- xxx) (x2x)))
0 4)
1

Here is the procedure that does this; fill in the two blanks to complete it:

(define integer-in-range-where-smallest
(lambda (f a b)
(if (= a b)
a
(let ((smallest-place-after-a

)

(if
a
smallest-place-after-a)))))

I> Exercise 5.18

Consider the following definitions:

(define make-scaled
(lambda (scale f)
(lambda (x)
(* scale (f x)))))

(define add-one
(lambda (x)
+ 1 %))
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(define mystery
(make-scaled 3 add-one))

For the following questions, be sure to indicate how you arrived at your answer:

a. What is the value of (mystery 4)?

b. What is the value of the procedural call ((make-scaled 2 (make-scaled
3 add-ome)) 4)?

I> Exercise 5.19

If I and h are integers, with [ < h, we say f is an increasing function on the integer
range from [ to h if f(I) < f(l+ 1) < f(I +2) < --- < f(h). Write a procedure,
increasing-on-integer-range?, that takes f, [, and h as its three arguments and
returns true or false (that is, #t or #f) as appropriate.

[> Exercise 5.20

Suppose the following have been defined:

(define f
(lambda (m b)
(lambda (x) (+ (* m x) b))))

(define g (f 3 2))

For each of the following expressions, indicate whether an error would be signaled,
the value would be a procedure, or the value would be a number. If an error is
signaled, explain briefly the nature of the error. If the value is a procedure, specify
how many arguments the procedure expects. If the value is a number, specify which
number.

a.

b. g

c. (x (£32)7)
d. (g 6

e. (f 6)

f. ((£47)5)
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[> Exercise 5.21

We saw in Section 5.3 the following procedure-generating procedure:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

You were also asked in Exercise 5.7 to write the procedure make-exponentiater.
Notice that these two procedures are quite similar. We could abstract out the

commonality into an even more general procedure make-generator such that we

could then just write:

(define make-multiplier (make-generator *))

(define make-exponentiater (make-generator expt))

Write make-generator.

[> Exercise 5.22

The function halts? was defined as a test of whether a procedure with no parameters
would generate a terminating process. That is, (halts? £) returns true if and
only if the evaluation of (£) would terminate. What about procedures that take
arguments? Suppose we had a procedure halts-on? that tests whether a one-
argument procedure generates a terminating process when given some particular
argument. That is, (halts-on? f x) returns true if and only if the evaluation of
(£ x) would terminate.

a. Use halts-on? in a definition of halts?.

b. What does this tell you about the possibility of halts-on?

I> Exercise 5.23

Consider the following example:

(define double (lambda (x) (* x 2)))

(define square (lambda (x) (* x x)))

(define new-procedure
(make-averaged-procedure double square))
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(new-procedure 4)
12
(new-procedure 6)
24

In the first example, the new-procedure that was made by make-averaged-
procedure returned 12 because 12 is the average of 8 (twice 4) and 16 (4 squared).
In the second example, it returned 24 because 24 is the average of 12 (twice 6)
and 36 (6 squared). In general, new-procedure will return the average of what-
ever double and square return because those two procedures were passed to
make-averaged-procedure when new-procedure was made.

Write the higher-order procedure factory make-averaged-procedure.

I> Exercise 5.24

Consider the following procedure:

(define positive-integer-upto-where-smallest
(lambda (n f) ; return an integer i such that
; 1 <=1 <=n and for all integers j
; in that same range, f(i) <= £(j)
(define loop
(lambda (where-smallest-so-far next-to-try)
(if (> next-to-try n)

where-smallest-so—far

(loop (if (< (f next-to-try)

(f where-smallest-so-far))
next-to-try
where-smallest-so-far)

(+ next-to-try 1)))))
(Loop 1 2)))

a. Write a mathematical formula involving n that tells how many times this proce-
dure uses the procedure it is given as its second argument. Justify your answer.

b. Give a simple O order of growth for the quantity you determined in part a. Justify
your answer.

c. Suppose you were to rewrite this procedure to make it more efficient. What (in
terms of n) is the minimum number of times it can invoke f and still always
determine the correct answer? Justify your answer. (You are not being asked to
actually rewrite the procedure.)
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higher-order procedure
uncomputable function
halting problem

proof by contradiction
diagonalization proof
proof by reduction

Scheme Names Defined in This Chapter

together-copies-of
stack-copies-of

power

mod-expt

mystery
num-digits-in-satisfying
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return-seven
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positive-integer-upto-
where-smallest

Turing’s original proof that halts? can’t exist is in [51]. The standard biography of
Turing is Hodges’s [26], and we heartily recommend it.
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We remarked in passing that diagonalization can also be used to prove that most
functions can’t even be specified, let alone implemented by a procedure. To give
some flavor for this, let’s restrict ourselves to functions mapping positive integers
to positive integers and show that any notational scheme must miss at least one of
them. Consider an infinitely long list of all possible function specifications in the
notational scheme under consideration, arranged in alphabetical order; call the first
one f1, the second one f, etc. Now consider the function f that has the property
that for all n, f(n) = f,(n) + 1. Clearly there is no n for which f is identical to f,,
because it differs from each of them in at least one place (namely, at n). Thus f is a
function that is not on the list.

Our information about the various schemes used for self-verifying numbers is
gleaned in small part from experimentation but primarily from two articles by Gal-
lian, [20] and [19]. Those articles contain more of the mathematical underpinnings
and citations for additional sources. We confess that the ISBN checker we defined as
an example will only work for those ISBNs that consist purely of digits; one-eleventh
of all ISBNs end with an X rather than a digit. This X is treated as though it were a
digit with value 10.






PART 1l

Data Abstraction

n the previous part, we looked at how procedures describe computational

processes. In this part, we will turn our attention to the data that is manip-

ulated by those processes and how it can be structured. There are many
qualitatively dissimilar ways of structuring data. For example, the list of stops for
a bus route bears little resemblance to someone’s family tree. In this part, we'll
focus on a few representative data structures and the collection of operations
that is appropriate to each one.

In Chapter 6, well work through the fundamentals of using and representing
compound data in the relatively simple context of data types with a fixed
number of components. Our focus is on the collection of operations that
forms the interface between the uses of the data type and its representation.
In Chapter 7, we'll show how two-component data structures can actually be
used to represent lists of any length, by treating each nonempty list as having a
first element and a list of the remaining elements. We'll extend this recursive
approach to structuring data to hierarchical, tree-like structures in Chapter 8.
Next we'll examine how a diverse collection of different data representations
can present a single, uniform collection of interface operations. Finally, we’ll
look at programs as themselves being hierarchically composed data (expressions
made of subexpressions) and see how to provide a uniform “evaluate” operation
across the diversity of different expression types. By doing so, we’ll show that
implementing a programming language is really a specific application of the
techniques introduced in this part of the book.






CHAPTER SIX

Compound Data
and Data Abstraction

m Introduction

Up until now, each value passed to one of our procedures as an argument or returned
as a result was a single thing: a number, an image, a truth value, or a procedure.
If we wanted to pass a procedure two numbers, we needed two separate arguments,
because each argument value could only be a single thing. This kind of data is
called atomic data. On the other hand, you can easily think of programs that use
more complex data. For example, a program that plays poker would use hands
of cards. There might be a compare-hands procedure that takes two arguments,
namely, the two hands to compare, and reports which is better. Each argument to
this procedure is a single thing, namely, a hand. Yet we can also select an individual
card from a hand. So, at the same time as the hand is a single thing, it is also a
collection of component cards. How about the cards themselves? Each card is clearly
a single thing, yet we can also treat it as a combination of a suit and a rank. Data
such as this, which we can interpret as both a single entity and also as a collection
of parts, is called compound data.

In order to see how we can get a computer to navigate these strange waters between
singular and plural, consider the following scenario. Suppose you run a mail-order
company and want to start selling custom-knit “socks” for cats’ tails—great for those
cold nights. (You figure you'll have the market all to yourself.) The problem is, your
order form only has space for a single model number, but the customer needs to
specify both the length (to the nearest centimeter) and also whether or not they want
the deluxe (mohair) version. In other words, they need to send you a combination of
a number (the length) and a truth value (whether or not deluxe) but can only send
in one thing—the model number. What do you do? You hire a consulting firm.
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The consulting firm designs three calculator-like gizmos with keypads and dis-
plays. One of them, the constructor, is to be mailed out to your customers along
with their catalogs. It constructs the model number from the length and the deluxe-
ness choice. The other two gizmos, the selectors, are for use at your company. The
deluxeness selector displays “yes” or “no” on its display when you enter a model
number. The length selector displays the length in centimeters when you enter a
model number.

You and your customers can use these devices without needing to know any-
thing about how they work. In particular, you don’t need to know how the
two pieces of information are encoded into the model number. In contrast, the
consultants who designed the gizmos (and who are likely to be the only ones
who get rich on this whole harebrained scheme) need to decide on this encoding.
They need to choose a particular representation of the two pieces of information,
and this same representation needs to be embodied in both the constructor and the
selectors.

This idea, that the representation of data can be exclusively the concern of a
constructor and selectors, rather than of the ultimate creators and users of the data,
is known as data abstraction. In slightly more general terms, data abstraction refers
to separating the way a new type of data is used from the way it is represented.
This means that when we add a new data type, we first decide what operations
(procedures) are necessary to create and manipulate the data values. Then we figure
out a good way of representing the data values using the types that are already part
of our Scheme system. Finally, we find algorithms necessary for implementing the
essential operations. Whenever we use the new data type in another program, we
create and manipulate the data values only by using the essential operations, and
not by accessing the underlying representation of the data.

The self-discipline of data abstraction brings three rewards. First of all, by specify-
ing the basic operations that manipulate the new data type, the programmer needn’t
worry about how the data values are actually represented. This means that she can
work with the abstract model of the data that she has in her head rather than
constantly switching from the model to the underlying representation and back.
(A programmer working in this representation-independent way is said to be using
an abstract data type, or ADT .) Secondly, if we separate the way the data is used
from how it is implemented, the implementation can be developed independently
from the programs using the data. Because of this, we can often break down a
large programming project into pieces that different teams of programmers can work
on simultaneously. Finally, because the application programs access the data only
through the basic operations, we can easily change the way the data is represented
by simply changing these procedures. In particular, if we want to move a large soft-
ware program (such as the Scheme system) from one type of computer to another
(this process is called porting), a lot of the work is restricted to modifying the ADT
implementations.
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In the remainder of this chapter, we illustrate the technique of data abstraction
by writing a program that plays the game of Nim. This is our first example of an
interactive program, thereby introducing the reader to some simple input and output
procedures in Scheme. For most of this chapter, our compound data will have only
two components; however, we show how to create data types with three components
in Section 6.4. This technique can be extended to any (fixed) number of components.
Our application section considers how to use higher-order programming together
with data abstraction to add strategies to the game of Nim.

In later chapters, we consider more complex data structures, such as lists and
hierarchically structured data, that do not restrict the number of components in the
data. We also consider complex “generic” operators that can be used on multiple
data types. Finally, we apply these ideas to one very special kind of compound data,
programs, and a particularly interesting operation, the running of those programs.

Nim

In this section we will start to write the procedures for playing a variation on the
game of Nim. The first appearance of “official” rules for Nim is in a 1901 paper by
Charles Bouton, in which he analyzed the game and presented a winning strategy.
However, like many informal folk games, there are many different ways of playing
Nim. All the variations start with objects of some sort arranged in some way. Two
players alternate removing objects according to certain rules, and the player who
takes the last object is the winner (or the loser, in some variations). We present three
ways to play Nim:

1. The version we'll call three-pile Nim is presented in Bouton’s paper. It is played
using three piles of objects, say coins. When the game starts, the three piles
have different numbers of coins. Two players take turns removing coins. Fach
player must take at least one coin each turn and may take more as long as they
are all from the same pile. The winner is the player who takes the last coin (or
coins). Because finding a winning strategy for this version is relatively easy, Bouton
suggested the variation in which the player who takes the last coin loses the game.

2. Instead of three piles, some other number of piles can be used, each starting
with some arbitrary number of coins in it. The game proceeds exactly as above,
with the winner (or loser) being the last person to remove one or more coins. In
particular, we’ll work with the two-pile version in most of this chapter.

3. The final version is the tastiest one. The game wouldn’t be conceptually any
different if something else were progressively reduced other than the number of
coins in piles. How about the number of rows and the number of columns in a
chocolate bar? You start with the kind of chocolate candy bar that is scored into
rows and columns so that you could break it into small squares. Pretend that the
square in the bottom left-hand corner is poisoned. The players take turns breaking
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the bar into two pieces by breaking along one of the horizontal grooves or one
of the vertical grooves in the bar and then eating the section not containing the
poisoned square. Eventually, one player will be left with just one square, which
is poisoned. That player loses.

How is the last version related to the previous two? In fact it is equivalent to two-
pile Nim. To see this, you need to realize that the candy bar is completely specified
by the number of horizontal and vertical grooves (or scores). If we represent the bar
by two piles, one with a coin for each horizontal score and the other with a coin
for each vertical score, breaking the candy bar along a vertical or horizontal score
corresponds to removing coins from one of the piles, and ending with the poisoned
square corresponds to both piles being empty (because when the bar is down to a
single square, there are no scores left). Breaking the chocolate at the last place it can
be broken is like taking the last coin.

Before we write a program for the computer to play Nim with a human user, we
must first decide which version we want to play. We've chosen to concentrate on
the two-pile version, with the winner being the player who takes the last coin. As
the above discussion suggests, it doesn’t matter whether we actually play with two
piles of coins or, instead, use a chocolate bar. When we play with the computer, we
presumably won’t use either physical piles or a chocolate bar, but rather some third
option better suited to the computer’s capabilities. To get a feel for how to play Nim,
find a partner and play a few games. (We disclaim all responsibility if you choose
the chocolate bar version.) As you play, think about how you might write a program
that could play Nim with you.

What type of data will such a program need? If you think about how you played,
you will see that you and your partner started with a particular configuration of coins
and took turns transforming the current configuration into a new configuration by
making legal moves. The configuration of the coins in the two piles described the
state (or condition) of the game at a given time. For this reason, we will call the
configurations game states; they are our new data type. That is, we will arrange things
so that we can pass a game state into a procedure as an argument or return a game
state as the result of a procedure, just as we can with any other type of value. That
way, the transformation you do in making a move can be a procedure. Game states
can be physically represented by two piles of coins, which we call the first pile and
the second pile.

Next, find a third person to be a gamekeeper and play another game with your
partner. This time, instead of physically removing coins from piles, have the game-
keeper do all the work. The gamekeeper should keep track of the individual game
states; you and your partner will give him directions and ask him questions. As you
play, concentrate on what directions you give the gamekeeper and what questions
you ask. You should discover that you repeatedly ask how many coins there are in a
particular pile of the current game state and that you tell the gamekeeper to change
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to a new game state by removing some number of coins from a particular pile. This
tells us that there are at least two operations we need for our data structure. One tells
us how many coins are in either one of the piles and the other allows us to “remove”
a specified number of coins from a pile, by making a new state with fewer coins in
that pile. In Scheme, we could specify these operations as follows:

(size-of-pile game-state p)
;returns an integer equal to the number of coins in the p-th
;pile of the game-state

(remove-coins-from-pile game-state n p)
;given a Nim game-state, returns a new game state with n
;fewer coins in pile p

We will also need an operation that creates a new game state with a specified number
of coins in each pile. This operation is what is used to set up an initial game state:

(make-game-state n m)
;returns a game state with n coins in the first pile
;and m coins in the second pile

> Exercise 6.1

A fourth version of Nim uses two piles of coins but adds the restriction that a
player can remove at most three coins in any one turn. To implement this ver-
sion, we could use the three operations, make-game-state, size-of-pile, and
remove-coins-from-pile, as before. In this case, whenever we use remove-
coins-from-pile, the parameter indicating how many coins to remove should
have a value of 1, 2, or 3.

Alternatively, we could replace remove-coins-from-pile with the three oper-
ations, remove-one, remove-two, and remove-three, where each of these opera-
tions would have just two parameters: the current game state and the pile to remove
from. With this implementation, we would have five operations instead of three.
Compare these two approaches to implementing this new version of Nim. What are
the advantages and disadvantages of each one? Is one implementation better than
the other?

Are these three operations (make-game-state, size-of-pile, and remove-
coins-from-pile) enough? In other words, if someone else implemented the
abstract data type of game states for us, could we then write the procedures we need
to have the computer play Nim? Let’s try to do this.
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Recall that when you and your partner played Nim, you progressed through
a succession of game states by alternately making moves and that you continued
to do so until all the coins were gone. The game would eventually end, because
every move reduces the total number of coins by at least one. In other words,
each move transforms the game into a smaller game, if we measure the size of
the game in terms of the total number of coins. Therefore, the main game-playing
procedure, which we will call play-with-turns, should repeatedly reduce the
game state by alternately having the computer and the human make a move. We
will have two procedures, human-move and computer-move, to do these separate
reductions. When the game is over (which will be determined by an as yet unwritten
predicate over?, ) the computer should announce the winner; we’ll do that using
the procedure announce-winner.

The procedure play-with-turns will use two new aspects of Scheme: quoted
symbols and the equality predicate equal?. A symbol is a basic Scheme data type
that is simply a name used as itself, rather than as the name of something. You
specify a symbol by putting a single quote mark before it. To illustrate, here is some

Scheme dialog:

’human
human

’x
X

(define x ’y)
X

y

(define z x)
z

y

(define w ’x)
W
X

The quote mark isn’t part of the symbol itself; instead, the combination of the quote
mark and the symbol is an expression, the value of which is the symbol. As this
example shows, the value of the expression ’x is the symbol x, whereas the value of
the expression x is whatever x has been defined as a name for (here, the symbol y).

Because the equality predicate = only works for numbers, we need to use the more
general equality predicate equal? for symbols. Putting this all together, we come up
with the following version of play-with-turns:
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(define play-with-turns ;warning: this is not the final version
(lambda (game-state player)
(cond ((over? game-state)
(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human)))))

We would play a game by evaluating an expression such as
(play-with-turns (make-game-state 5 8) ’human)

There is one major problem with play-with-turns. Consider what would
happen if we attempted to play a game by evaluating the expression (play-
with-turns (make-game-state 5 8) ’humman). Because the symbol humman
is neither human nor computer, and because the game is clearly not over, none
of the conditions in the cond would be met. Thus, the game would not be played
and an undefined value would be returned. Furthermore, the user would have
no idea why nothing happened. One way to fix this is to use an else instead
of (equal? player ’computer); however, this is still unsatisfactory because the
game gets played with the computer having the first turn and the user has no idea
why he didn’t get to go first.

A better strategy is to use the procedure error, which, although not a part of
R*RS Scheme, is predefined in the versions of Scheme that are recommended for
this book. The procedure error stops the normal execution of the program and
notifies the user that an error occurred. In order to tell the user the nature of the
error, we give error a description of the error as an argument, as in

(error "player wasn’t human or computer")

This descriptive argument is a character string, which is written as a sequence of
characters enclosed in double quotes. In this book, we'll generally use character
strings in cases like this, for output. We can also tell the user more about the error by
passing additional arguments to error, which it will display. For example, we can
use

(error "player wasn’t human or computer:" player)

to let the user know what specific unexpected player argument was provided.
We can use error in play-with-turns by adding an else clause to the cond:
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(define play-with-turns
(lambda (game-state player)
(cond ((over? game-state)
(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

Evaluating (play-with-turns (make-game-state 5 8) ’humman) still won't
start the game. However, we'll see the message “player wasn’t human or computer:
humman,” which will give us some explanation of what went wrong, unlike before.

We will write the procedure computer-move so that it uses the very simple
strategy of removing one coin from the first pile. If the first pile is empty, the
computer will remove one coin from the second pile. Note that if both piles are
empty, the computer will still try to remove one coin from the second pile. However,
this can never happen, because if both piles are empty, the game is over:

(define computer-move
(lambda (game-state)
(if (> (size-of-pile game-state 1) 0)
(remove-coins-from-pile game-state 1 1)
(remove-coins-from-pile game-state 1 2))))

Unfortunately, the human player has no way of knowing what strategy the computer
is using and so has no idea what the state of the game is after the computer has
moved. We must therefore add some output statements to tell the human player what
the computer is doing. We will use two built-in Scheme procedures, display and
newline. These procedures are best described by example, but roughly speaking,
display takes a single argument that it immediately prints out as output, and
newline takes no arguments and causes the output to go to the next line.

For example, the following procedure takes a game state and displays it in a
reasonable manner:

(define display-game-state
(lambda (game-state)
(newline)
(newline)
(display " Pile 1: ")
(display (size-of-pile game-state 1))
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(newline)

(display "  Pile 2: ")

(display (size-of-pile game-state 2))
(newline)

(newline)))

Note that in two cases, we passed display a character string, because we wanted
to control exactly what was output, as previously with error. Also, the definition of
the Scheme programming language doesn’t make any guarantees about the value (if
any) returned by display and newline—they are only used for their effect.

How do we incorporate output into our program? Well, the game state should be
displayed before each player makes a move, and the computer should inform the
human player of its move. The first of these goals is most easily accomplished by
adding one line to play-with-turns:

(define play-with-turns
(lambda (game-state player)

(display-game-state game-state) ;<-— output

(cond ((over? game-state)
(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

In order to tell the human player what the computer is doing, we can add
similar output statements. However, the output depends on which pile the com-
puter uses. Because we also need to know which pile to use in the call to
remove-coins-from-pile, we create a local variable by using a let:

(define computer-move
(lambda (game-state)
(let ((pile (if (> (size-of-pile game-state 1) 0)
1
2)))
(display "I take 1 coin from pile ")
(display pile)
(newline)
(remove-coins-from-pile game-state 1 pile))))
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To write the procedure human-move, we need to get some input from the (human)
player. We do this by first writing a procedure, prompt, which takes a “prompting
string” and returns the number entered by the user:

(define prompt
(lambda (prompt-string)
(newline)
(display prompt-string)
(newline)
(read)))

Here we used the basic Scheme input procedure read, which takes no arguments
and returns whatever value the user enters. (The user’s input must have the right
form to be a Scheme value.) We are assuming that the user will type in an appropriate
value, for example, when asked for the pile number, either 1 or 2.

We can use prompt in human-move to prompt for the pile number and the
number of coins. Note that we use enclosing let statements in order to ensure
that the user is always prompted for the pile first and the number of coins second.
Depending on those answers, we remove the appropriate number of coins from the
specified pile:

(define human-move
(lambda (game-state)
(let ((p (prompt "Which pile will you remove from?")))
(let ((n (prompt "How many coins do you want to remove?")))
(remove-coins-from-pile game-state n p)))))

Exercise 6.2

When you played Nim with another person and a gamekeeper, what did the game-
keeper do if you asked her to remove more coins from a pile than she could possibly
remove? (For example, what if you asked her to remove six coins from a pile with
only five coins in it?) If we want our computer version to work in a similar way, we
need to build in some sort of error checking on the part of the input procedures.
What would you modify in order to continue asking the user for another number
if the number selected was illegal (both for coins and pile)? Is it better to do the
error checking in human-move or prompt? Could you use a procedural parameter
to good effect?

Finally, in order to finish the game, we need to be able to determine when the
game is over and have the computer announce who the winner is. Note that we're
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assuming that the players play until the bitter end, so the game is over when both
piles are empty:

(define total-size
(lambda (game-state)
(+ (size-of-pile game-state 1)
(size-of-pile game-state 2))))

(define over?
(lambda (game-state)
(= (total-size game-state) 0)))

(define announce-winner
(lambda (player)
(if (equal? player ’human)
(display "You lose. Better luck next time.")
(display "You win. Congratulations."))))

There is the program. (For your convenience, we include the entire program in a
sidebar. We don’t include display-game-state and total-size, because we con-
sider them to be part of the abstract data type game state.) Without having any idea
of how we are going to represent our game states or implement the three operations
make-game-state, remove-coins-from-pile, and size-of-pile, we've written
all the procedures needed to play Nim. This illustrates one of the main advantages
of data abstraction. We can develop the application of our data type independently
of developing the implementation.

> Exercise 6.3

The version of Nim we have just written designates the winner as the one taking the
last coin. What needs to be changed in order to reverse this, that is, to designate the
one taking the last coin as the loser?

Representations and Implementations

In order to actually use the program in the previous section, we need to implement
the ADT of game states. This means that we need to find some way of representing
game states and we need to figure out the algorithms and write the procedures for the
three operations. To do this, let’s think about physical (as opposed to electronic) ways
of constructing piles. First of all, the fact that we used coins was totally irrelevant
to how we played the game. We could have used packets of sugar, vertical hatch
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-j’ Nim Program

(define play-with-turns
(lambda (game-state player)
(display-game-state game-state)
(cond ((over? game-state)
(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

(define computer-move
(lambda (game-state)
(let ((pile (if (> (size-of-pile game-state 1) 0)
1
2)))
(display "I take 1 coin from pile ")
(display pile)
(newline)
(remove-coins-from-pile game-state 1 pile))))

(define prompt
(lambda (prompt-string)
(newline)
(display prompt-string)
(newline)
(read)))

(define human-move
(lambda (game-state)
(let ((p (prompt "Which pile will you remove from?")))
(let ((n (prompt "How many coins do you want to remove?")))
(remove-coins-from-pile game-state n p)))))

(define over?
(lambda (game-state)
(= (total-size game-state) 0)))

(define announce-winner
(lambda (player)
(if (equal? player ’human)
(display "You lose. Better luck next time.")
(display "You win. Congratulations."))))
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marks, or the horizontal and vertical score lines on a chocolate bar. Similarly, how
we arranged our coins in two piles was also unimportant. We could have made two
heaps, we could have made two neat lines, or we could have arranged the coins
in two separate rectangular arrays. Some arrangements might make counting the
number of coins in a pile easier, but as long as we can determine how many coins
there were in each pile, how we arrange the piles doesn’t matter. What really matters
is the number of coins in each pile. Thus, in order to represent game states in
Scheme, we can use two numbers that we glue together in some way. We consider
four different ways to do so.

The first way of representing game states is based on the fact that, as humans, we
can easily see the separate digits in a numeral. If we add the restriction that there
can’t be more than nine coins in each pile, we can use two-digit numbers to represent
the two piles. The first digit will be the number of coins in the first pile and the
second digit will be the number in the second pile. (For example, a game state of 58
would have five coins in the first pile and eight coins in the second pile.) To create
a game state with n coins in the first pile and m coins in the second, we would just
physically write those two digits together, nm. This number is n X 10 + m. Therefore,
we can implement the operations make-game-state and size-of-pile as follows:

(define make-game-state
;; assumes no more than 9 coins per pile
(lambda (n m) (+ (x 10 n) m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)
(quotient game-state 10)
(remainder game-state 10))))

Removing coins from a pile can be done in two different ways: either taking
advantage of the particular representation we've chosen, or not. If we take advantage
of our particular representation, in which pile 1 is represented by the tens place
and pile 2 by the ones place, we can remove coins from a pile by subtracting the
specified number of either tens or ones:

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(- game-state
(if (= pile-number 1)
(* 10 num-coins)
num-coins))))
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Alternatively, we can have remove-coins-from-pile first select the two pile num-
bers using size-of-pile, then subtract the number of coins from the appropriate
one of them, and finally use make-game-state to glue them back together:

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(if (= pile-number 1)
(make-game-state (- (size-of-pile game-state 1)
num-coins)
(size-of-pile game-state 2))
(make-game-state (size-of-pile game-state 1)
(- (size-of-pile game-state 2)
num-coins)))))

This version of remove-coins-from-pile has the advantage that when we change

representations, all we need to change are the algorithms for make-game-state and
size-of-pile.

Exercise 6.4

i

The restriction that we can only use at most nine coins in each pile is somewhat
unreasonable. A more reasonable one would be to limit the size of the piles to at
most 99 coins. Change the implementation above so that it reflects this restriction.

Exercise 6.5

i

What happens if we try to remove more coins from a pile than are actually in the
pile? For example, what would be the result of evaluating

(remove-coins-from-pile (make-game-state 3 2) 5 1)

Modify remove-coins-from-pile so that such a request would result in just re-
moving all of the coins from the specified pile.

> Exercise 6.6

What are some other ways of coping with errors?

The biggest problem with this way of gluing our two numbers together is that we
must put some arbitrary restriction on the size of the numbers. This approach is fine
when we can reasonably make this restriction, as in two-pile Nim. However, there are
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data types where we can’t reasonably restrict the size of the components, for example,
the budget of the U.S. government. Our second representation (theoretically) gets
around this restriction.

In this representation we will use integers of the form 2" X 3™ where n is the
number of coins in the first pile and m is the number of coins in the second.
Constructing a game state is quite easy, using the built-in procedure expt:

(define make-game-state
(lambda (n m) (* (expt 2 n) (expt 3 m))))

Getting at the component parts of a game state is not so bad either, using the
procedure in the following exercise.

} Exercise 6.7

Look back at the procedures for calculating the exponent of 2 in a number that you
wrote in Exercise 2.12 on page 40 and Exercise 3.2 on page 54. Generalize one of
these to a procedure exponent-of-in such that (exponent-of-in n m) returns
the exponent of the highest power of n that divides evenly into m.

With this procedure, we can easily write size-of-pile:

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)
(exponent-of-in 2 game-state)
(exponent-of-in 3 game-state))))

This implementation has two drawbacks. The first is that accessing the number
of items in a pile does not take constant time. Instead, the time depends linearly on
the size of the pile. The second drawback is that the integers representing the game
states get very big very rapidly. This is not so important when we’re implementing
game states; however, when we implement a data structure where the component
parts are often big numbers, this method would result in representations too large to
fit in the computer’s memory.

The first two implementations use integers to represent the values that a game
state could have. Note that some integers, such as 36, could be used in either
representation. That is, a game state represented by 36 could be either one where
the first pile has three coins and the second has six (in the first representation) or one
where each pile has two coins (in the second representation). In fact, the only way
we know what game state is represented by a specific integer is by knowing which
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representation we’re using. The three operations are what interpret the values for us.
The need for a consistent interpretation is one of the reasons that we use only the
specified operations to manipulate values in an abstract data type.

Our third representation for game states uses procedures instead of integers to
represent the game states. So when we apply make-game-state, the result should
be a procedure, because make-game-state creates game states. Now, a game state
has two observable properties, the number of coins in each of the two piles. Because
the only property that we can observe about a procedure is its return value, the
procedure generated by make-game-state should have two different return values.
Therefore, this procedure should have at least one argument so that we can have
some way of controlling which of the two values should be returned. Because there
is no need for more than one argument, we want (make-game-state n m) to
produce a procedure with one argument that sometimes returns n and sometimes
returns m. What should this procedure be? We have complete freedom to choose. It
could return n when its argument is odd and m when its argument is even; it could
return n for positive values of its argument and m for negative values, or whatever.
For now, let’s arbitrarily decide to use the first option:

(define make-game-state
(lambda (n m)
(lambda (x)
(if (o0dd? x)
n

m))))

Now we need to write the procedure size-of-pile. If we think about how
make-game-state and size-of-pile should work together, we can write two
equations:

(size-of-pile (make-game-state n m) 1) =n

(size-of-pile (make-game-state n m) 2) =m

Because make-game-state produces a procedure that returns n when it gets an odd
argument and m when it gets an even one, and 1 happens to be odd and 2 even,
one way to write size-of-pile is to have it simply apply its game state argument
(which is a procedure) to the pile number argument:

(define size-of-pile
(lambda (game-state pile-number)
(game-state pile-number)))
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> Exercise 6.8

Verify that the two equations relating make-game-state and size-of-pile just
given hold for the procedural representation.

This procedural representation of game states has the advantages of each of the
previous ones, without the corresponding disadvantages. In other words, we don’t
need to restrict the size of the piles, and the procedure size-of-pile will still
generate a constant-time process. We can do little to improve on this representation
(but we still have a fourth representation to present anyway, for reasons that will
become clear).

At this point, having seen two representations of game states as integers and one
as procedures, you may be confused. You may be wondering just what is a game
state? Surely there should be some definite thing that I can look at and say, this is a
game state. There are two answers to this. The first answer is to say, Yes, at any time
there is one kind of thing that is a game state, which depends on which matched
set of constructor and selector definitions has been evaluated. If, for example, you've
evaluated the most recent set, game states are procedures.

However, another, better answer to the question above is: Don’t worry about what
a game state is in that sense. Pretend a game state is a whole new kind of thing. This
new kind of thing is produced by make-game-state, and you can find information
out about it using size-of-pile.

In other words, instead of saying “a game state is an integer” or “a game state
is a procedure,” we'll say “a game state is what make-game-state creates (and
size-of-pile expects).” If the procedures that operate on game states are happy
with something, it is a game state. This is worth highlighting as a general principle:

The data-abstraction principle (or, the operational stance): If it acts like an
X (i.e., is suitable for operations that operate on X’s), it is an X.

One related question that you may have is what if you do a game-state operation
to something that isn’t a game state? Or what if you do some other operation to a
game state, other than those that make sense for game states? For example, what if
you evaluate any of the following?
(size-of-pile (* 6 6) 1)
(size-of-pile sqrt 1)

(sqrt (make-game-state 3 6))

((make-game-state 3 6) 7)
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Again, there are two answers: (1) That depends on the details of which representation
was chosen and how the operations were implemented and (2) Don’t do that. As
unsatisfactory as this second answer may sound, it generally is the more useful one.
We can sum this all up as follows:

The strong data-abstraction principle: Ifitactslike an X, itis an X. Conversely,
if it is an X, only expect it to act in X-like ways.

When we discussed our procedural representation of game states above, we men-
tioned that we’d be hard pressed to improve upon it. So, why then do we still have
a fourth representation up our sleeves? The answer is that although we’'d be hard
pressed to do better, someone else might not be. In particular, whoever designed
your Scheme system might have some slightly more efficient way of gluing two
values together, using behind-the-scenes magic.

So, what we’ll do for our final implementation of game states is turn data abstrac-
tion to our advantage and use a built-in data type in Scheme called pairs. Whoever
built your Scheme system represented pairs as efficiently as they possibly could.
Exactly how they did this might vary from one Scheme system to another. However,
thanks to data abstraction, all we have to know about pairs is what operations produce
them and answer questions about them. The basic operations that Scheme provides
to deal with pairs include a procedure for making a pair, a procedure for determining
what the first element in a pair is, and a procedure for determining what the second
element is. These have extremely weird names:

® cons takes any two objects and glues them together into a pair.
® car takes a pair of objects and returns the first object.
®  cdr (pronounced “could-er”) takes a pair of objects and returns the second object.

The name cons is easy to understand: It is short for constructor, and sure enough,
the procedure called cons is the constructor for pairs. But what about the names
car and cdr, which are the names of the selectors for the pair type? These two
names are reminders that even smart people sometimes make dumb mistakes. The
people who developed an early predecessor of Scheme (at MIT, in the late 1950s)
chose to represent pairs on the IBM 704 computer they were using in such a way
that the selectors could be implemented using low-level features of the IBM 704
hardware that had the acronyms CAR and CDR (for contents of address part of
register and contents of decrement part of register). So, rather than call the selectors
first and second, left and right, or one and the-other, they named them car and
cdr, after how they were implemented on the 704. (One of the implementers later
wrote that “because of an unfortunate temporary lapse of inspiration, we couldn’t
think of any other names.”) In so doing, they were violating the spirit of the strong
data-abstraction principle, by basing the abstract interface to the data type on their
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particular representation. (Of course, in a certain sense, “left” and “right” are just
as representation-specific, because they are based on the way we westerners write
things down on a page.) A few months after the original naming, the perpetrators of
car and cdr tried renaming the operations, but to no avail: Other users were already
accustomed to car and cdr and unwilling to change. At any rate, car and cdr have
survived for over three decades as the names for the two selector operations on pairs,
and so they are likely to survive forever as permanent reminders of how not to name
operations.

As we said before, cons takes two objects and glues them together in a pair. How
do we know which order it uses? In other words, if we use cons to glue a and b
together in a pair, which will be the first object of that pair and which will be the
second? What we're really asking here is how cons, car, and cdr work together.
The answer is best described by two equations:

(car (cons a b)) =a

(cdr (cons a b)) =bH

These say that if you cons two objects together into a pair, the first object becomes
the car of the pair and the second object becomes the cdr of the pair. (We've used
this paragraph to introduce you to the way Schemers talk about pairs. We use cons
as a verb, as in “cons two objects together,” and we talk about the car and cdr of a
pair, instead of the first and second components of it.)

Pairs of this sort are a natural way to implement game states, because a game state
is most easily thought of as a pair of numbers. Thus, our two operations would be

(define make-game-state
(lambda (n m) (cons n m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)
(car game-state)
(cdr game-state))))

Note that in the definition of make-game-state, we simply apply cons to the
two arguments. In other words, make-game-state does exactly the same thing as
cons and hence can simply be the same procedure as cons:

(define make-game-state cons)

The way Scheme displays pairs if left to its own devices is in general quite
confusing. Therefore, when you are using pairs to represent something else, like
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-j’ Game State ADT Implementation

(define make-game-state
(lambda (n m) (cons n m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)
(car game-state)
(cdr game-state))))

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(if (= pile-number 1)
(make-game-state (- (size-of-pile game-state 1)
num-coins)
(size-of-pile game-state 2))
(make-game-state (size-of-pile game-state 1)
(- (size-of-pile game-state 2)
num-coins)))))

(define display-game-state
(lambda (game-state)

(newline)

(newline)

(display " Pile 1: ")

(display (size-of-pile game-state 1))
(newline)

(display " Pile 2: ")

(display (size-of-pile game-state 2))
(newline)

(newline)))

(define total-size
(lambda (game-state)
(+ (size-of-pile game-state 1)
(size-of-pile game-state 2))))
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a game state, you should always look at them using an appropriate procedure like
display-game-state.

Again for your convenience, we include all of the ADT procedures in a sidebar,
using just the pair implementation. Together with the Nim program on page 144,
this is a full, working program. In the next section we examine the changes needed
for three-pile Nim; in the final section we extend the two-pile program so that the
computer can use other strategies for selecting its moves.

m Three-Pile Nim

Now suppose we want to write a program that plays Nim with three piles instead
of two. We'll need to extend the game state ADT so that it uses three piles instead
of two. This means that the procedure make-game-state will get three parameters
instead of two and needs to glue all three together somehow, depending on which
representation we use. If we use one of the numerical representations, the main
change would be to use three-digit numbers instead of two or to use numbers of the
form 2" X 3™ X 5% instead of 2" X 3™. The procedural representation is equally easy
to change: The procedures created by make-game-state must be able to return any
of three values instead of just two. But, at first glance, using pairs seems impossible.
After all, a pair has only two “slots,” whereas we have three numbers, and we can’t
put three things into two slots.

Wait a minute —of course we can put three things into two slots, as long as we put
two of them in one slot and the third in the other slot. How do we put two things
into one slot, though? Each slot is allowed to contain only one thing. But there are
no restrictions on what that one thing could be; for example, it could be another
pair. Thus, in order to make a three-pile game state, we’ll cons together two of the
numbers and cons that together with the remaining one.

Does it matter which order we cons things together? The answer to that is no, sort
of. We can cons the three numbers together in any order we like as long as whenever
we ask for the number of coins in a particular pile, we get back the correct number.
In other words, the procedures make-game-state and size-of-pile need to work
together correctly—the constructors and selectors must agree on the representation,
as usual.

> Exercise 6.9

Write the equations for three-pile game states that correspond to those given earlier
for two-pile game states.

For example, suppose we cons the third pile onto the cons of the first and the
second:
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(define make-game-state
(lambda (n m k) (cons k (cons n m))))

Then how do we pull a game state apart? If we want the size of the third pile,
we just need the first element of the game state (i.e., (car game-state)). But
getting the size of the first or second pile is somewhat trickier, because those two
numbers are bundled together. We can get this pair of first and second piles by
taking (cdr game-state). Then, to get the size of the first pile, say, we need to
take the car of that pair, or (car (cdr game-state)). Similarly, to get the size
of the second pile, we'll need the cdr of that pair, or (cdr (cdr game-state)).
Putting this all together gives

(define size-of-pile

(lambda (game-state pile-number)
(cond ((= pile-number 3)
(car game-state))
((= pile-number 1)

(car (cdr game-state)))

(else ;pile-number must be 2
(cdr (cdr game-state))))))

> Exercise 6.10

Check that this implementation actually works (i.e., that the constructor and selector
actually do agree on the representation).

To help clarify how we get at the components of a three-pile game state, we can
draw some pictures. Evaluating an expression such as (cons 1 2) results in a pair
whose components are the numbers 1 and 2. If we think of that pair as having two
slots that have been filled in with those numbers, the picture that comes to mind is
2]

Similarly, when we evaluate (define gs (cons 3 (cons 1 2))), we know
that gs is a pair whose first component is the number 3 and whose second component
is the pair containing the numbers 1 and 2. Thus our picture would look like this:

N ne

Now to get at that 2 in gs, we need to look at the second component of gs. This

is itself the pair , and so we need to get the second component of this pair.
Therefore we must evaluate (cdr (cdr gs)).
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Although these pictures are quite helpful for understanding data entities that have
three components, they quickly become unwieldy to draw if we start building any
bigger structures. We can solve this problem by drawing the boxes a standard, small
size, putting the contents outside, and using arrows to point to the contents. For a
simple pair such as the value of (cons 1 2), moving the contents out leads to

@3—»2

1

and a pair such as the value of (cons 3 (cons 1 2)) would look like

mEARES

3 1

In addition to solving the problem of unwieldiness, moving the contents out of
the boxes makes it easier to see what portion of a structure is reused or “shared.” For
example, if we evaluate the two definitions:

(define p1 (cons 1 2))
(define p2 (cons 3 pl))

and use our original style of drawing pairs, we get the picture

pl: p2:

72]

o nn

which seems to indicate that there are three pairs—at odds with the fact that cons
was applied only twice. (We know that each time cons is applied, exactly one pair
is created.) In contrast, with our new, improved style of diagram with the contents
moved out of the boxes, we can draw

2: 1:
" MZ

3 1

and now it is clear that only one new pair was produced by each of the two applica-
tions of cons.

> Exercise 6.11

Now that we have the main constructor and selector for the three-pile game state
ADT, we need to change the procedures remove-coins-from-pile, total-size,
and display-game-state appropriately. Do so.
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Exercise 6.12

What will go wrong if we use the existing computer-move with three-pile game
states? Change computer-move so that it works correctly with three-pile game states.

An Application: Adding Strategies to Nim

In this section, we return to the two-pile version of Nim for simplicity’s sake. (Also,
we like playing the chocolate bar version.) Much of what we do here easily ex-
tends to three-pile Nim. However, finding a winning strategy for three piles is more
challenging.

The computer’s strategy of removing one coin from the first nonempty pile is not
very intelligent. Although we might initially enjoy always winning, eventually it gets
rather boring. Is there some way of having the computer use a better strategy? Or
perhaps, could we program several different strategies? In that case, what would a
strategy be?

If you think about it, a strategy is essentially a procedure that, when given a
particular game state, determines how many coins to remove from which pile. In
other words, a strategy should return two numbers, one for the number of coins and
one for the pile number. Because procedures can return just one thing, we have
a real problem here. One way to solve it is to think of these two numbers as an
instruction describing the appropriate move to make. We can create a new data type,
called move instruction, that glues together the number of coins to remove and the
pile number to remove them from. We can then view a strategy as a procedure that
takes a game state and returns the instruction for the next move.

Exercise 6.13

In this exercise, we will construct the move instruction data type and modify our
program appropriately.

a. First, you need to decide what the basic operations for move instructions should
be. There are several ways to do this. You can think about how move instructions
are going to be used—in particular, what information other procedures need
to know about a given move instruction. You can think how you would fully
describe a move instruction to someone. You can model move instructions on
game states. In any case, it should be clear that you will need one constructor
and two selectors. Give a specification for move instructions similar to the one we
gave the game state data type. That is, what is the name of each operation, what
sort of parameters does it take, and what sort of result does it return? (We will
call the move instruction constructor make-move-instruction in the following
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discussion and will assume it takes the number of coins as its first argument and
the pile number as its second argument, so you might want to do the same.) Can
you also write equations that describe how the operations are related?

b. Choose a representation and implement these procedures.

c. We have used the procedure remove-coins-from-pile to progress from one
game state to the next, passing to it the current game state and the two integers
that specify the move. But with our move instruction data type, it makes more
sense to have a procedure that is passed the current game state and the move
instruction and returns the next game state. We could call the procedure just
remove; alternatively, we could call it next-game-state. The latter seems more
descriptive.

Write the procedure next-game-state, which takes two parameters, a game
state and a move instruction, and returns a game state. You will need to change
computer-move and human-move so that they correctly call next-game-state
instead of remove-coins-from-pile. Run your program to make sure every-
thing works as before.

BN W Type Checking

Both game states and move instructions are compound data types with exactly
two components and integers as the values of these components. Let’s suppose
that we've decided to implement both of these types by using Scheme’s pairs. In
this case, the value of the expression (cons 2 1) could represent either a game

state or a move instruction. This can create some havoc in our programs if we're
not careful. For example, suppose you wanted to find the next game state after
taking one coin from pile one, starting in a state with five and eight coins in the
two piles. At first glance, the following looks reasonable:

(display-game-state
(next-game-state (make-move-instruction 1 1)
(make-game-state 5 8)))

However, if you try this, you'll get output like the following:

Pile 1: 1
Pile 2: -4

What went wrong? We got the order of the parameters to next-game-state
backward. Although the principle of data abstraction tells us to think of things

Continued
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-j’ Type Checking (Continued)

as move instructions or game states, rather than as pairs of integers, the Scheme
system regrettably thinks of both as just pairs of integers. Therefore, although we
can see that we got the move instruction and game state backward, the program
got exactly what it expected: two pairs of integers. This kind of error is particularly
hard to catch. One way to find such errors is by doing a process called type
checking. The basic idea is that every piece of data has a particular type, such as
integer, game state, move instruction, etc. The type of a procedure is described
by saying that it is a procedure that takes certain types of arguments and returns
a certain type of result. For example, make-move-instruction is a procedure
that takes two integers and returns a move instruction, wheras next-game-state
takes a game state and a move instruction and returns a game state. We can check
that a procedure application is probably correct by checking that the types of the
arguments are consistent with those expected by the procedure. For example, we
know that (make-move-instruction 1 1) has probably been called correctly,
because its two arguments are integers. Notice that its return value will be a move
instruction. On the other hand, the call

(next-game-state (make-move-instruction 1 1)
(make-game-state 5 8))

is definitely incorrect because next-game-state gets a move instruction and
a game state for arguments when it is supposed to get a game state and a
move instruction. Note that type checking only catches errors that are caused
by using arguments that are the wrong types. It won’t catch the error in
(make-move-instruction 5 6), where the pile number is too big, unless we
use a more refined notion of type, where we can say that the second argument is
“an integer in the range from 1 to 27 rather than just that it is an integer.

If we then view strategies as procedures that, when given a particular game state,

return the instruction for the next move, we could write the simple strategy currently
used by the computer as follows:

(define simple-strategy

(lambda (game-state)
(if (> (size-of-pile game-state 1) 0)
(make-move-instruction 1 1)
(make-move-instruction 1 2))))
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But how do we need to change our program in order to incorporate various
strategies into it? Certainly the procedure computer-move must be changed: In
addition to the game state, it must be passed the strategy to be employed. But this
means play-with-turns must also be changed, because it calls computer-move:
It must have an additional argument that indicates the computer’s strategy. If you do
this correctly, an initial call of the form

(play-with-turns (make-game-state 5 8) ’human simple-strategy)

should play the game as before.

} Exercise 6.14

In this exercise, you will change the procedures computer-move and play-with-
turns as indicated previously. After making these changes, test the program by
making the previous initial call.

a. Modify the procedure computer-move so that it takes an additional parameter
called strategy and uses it appropriately to make the computer’s move. Re-
member that when the strategy is applied to a game state, a move instruction is
returned. This can then be passed on to next-game-state.

b. Modify play-with-turns so that it also has a new parameter (the computer’s
strategy), modifying in particular the call to computer-move so that the strategy
is employed. Note that you must make additional changes to play-with-turns
in order that the strategy gets “passed along” to the next iteration.

Now we can add a variety of different strategies to our program. This amounts to

writing the various strategies and then calling play-with-turns with the strategies
we want. We ask you in the next few exercises to program various strategies.

Exercise 6.15

i

Write a procedure take-all-of-first-nonempty that will return the instruction
for taking all the coins from the first nonempty pile.

Exercise 6.16

i

Wirite a procedure take-one-from-random-pile that implements the following
“random” strategy: randomly select a nonempty pile and then remove one coin from
it. Randomness can be simulated using the random procedure, which should be
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pre-defined in any Scheme used with this book (although it isn’t specified by the
R*RS standard for Scheme). If n is a positive integer, a call of the form (random n)
will return a random integer between 0 and n — 1, inclusive. (Actually, it returns a
so-called pseudo-random integer; pseudo-random integers are produced systematically
and hence are not random, but sequences of consecutive pseudo-random integers
have many of the same statistical properties that sequences of random integers do.)

Exercise 6.17

i

Take the previous exercise one step further by writing a procedure that, when given
a particular game state, will return a move instruction where both components are
chosen at random. Remember to ensure that the move instruction returned is a valid
one. In particular, it should not suggest a move that takes coins from an empty pile.

Exercise 6.18

i

If we consider the chocolate bar version of Nim, we can describe a strategy that
allows you to win whenever possible. Remember that in this version, the players
alternate breaking off pieces of the bar along a horizontal or a vertical line, and
the person who gets the last square of chocolate loses (so the person who makes
the last possible break wins, just as the person who takes the last coin wins). If it’s
your turn and the chocolate bar is not square, you can always break off a piece
that makes the bar into a square. If you do so, your opponent must make it into
a nonsquare. If you always hand your opponent a square, he will get smaller and
smaller squares, leading eventually to the minimal square (i.e., the poisoned square).
Wirite a procedure which implements this strategy in two-pile Nim. What action
should it take if presented with (the equivalent of) a square chocolate bar?

Exercise 6.19

Suppose you want to randomly intermingle two different strategies. How can
this be done? The answer is with higher-order programming. Write a procedure
random-mix-of that takes two strategies as arguments and returns the strategy that
randomly chooses between these two procedures each turn. Thus, a call of the form

(play-with-turns (make-game-state 5 8)
>human
(random-mix-of simple-strategy
take-all-of-first-nonempty))

would randomly choose at each turn between taking one coin or all the coins from
the first nonempty pile.
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Exercise 6.20

i

Those of us with a perverse sense of humor enjoy the idea of the computer playing
games with itself. How would you modify play-with-turns so that instead of having
the computer play against a human, it plays against itself, using any combination of
strategies?

Exercise 6.21

i

By adding an “ask the human” strategy, the introverted version of play-with-turns
from the preceding exercise can be made to be sociable again. In fact, it can even be
turned into a gamekeeper for two human players. Demonstrate these possibilities.

Review Problems
I> Exercise 6.22

Suppose we decide to implement an ADT called Interval that has one constructor
make-interval and two selectors upper-endpoint and lower-endpoint. For
example,

(define my-interval (make-interval 3 7))

(upper-endpoint my-interval)
7

defines my-interval to be the interval [3,7] and then returns the upper endpoint
of my-interval.

Note that we are saying nothing about how Interval is implemented. Your work
below should only use the constructor and selectors.

a. Write a procedure mid-point that gets an interval as an argument and returns
the midpoint of that interval. For example, supposing that my-interval is as just

defined:

(mid-point my-interval)
5

b. Write a procedure right-half that gets an interval as an argument and returns
the right half of that interval. Again supposing that my-interval is as just defined:
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(right-half my-interval)

returns the interval [5,7].

[> Exercise 6.23

A three-dimensional (3D) vector has x, y, and z coordinates, which are numbers. 3D
vectors can be constructed and accessed using the following abstract interface:

(make-3D-vector x y z)
(x-coord vector)
(y-coord vector)
(z-coord vector)

a. Using this abstract interface, define procedures for adding two vectors, finding
the dot-product of two vectors, and scaling a vector by a numerical scaling factor.
(The sum of two vectors is computed by adding each coordinate independently.
The dot-product of the vectors (x1,y1,z1) and (x2,y2,22) is x1x2 + y1y2 + z122. To
scale a vector, you multiply each coordinate by the scaling factor.)

b. Choose a representation for vectors and implement make-3D-vector, x-coord,
y-coord, and z-coord.

[> Exercise 6.24

Suppose we wished to keep track of which classrooms are being used at which hours
for which classes. We would want to have a compound data structure consisting of
three parts:

® A classroom designation (e.g. OH321)
® A course designation (e.g. MC27)
A time (e.g. 1230)

Assume that rooms and courses are to be represented by symbols and the times are
to be represented as numbers. The interface is to look like this:

(make-schedule-item ’0H321 ’MC27 1230)

(room (make-schedule-item ’0H321 ’MC27 1230))
OH321

(course (make-schedule-item ’0H321 ’MC27 1230))
MC27
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(time (make-schedule-item ’0H321 ’MC27 1230))
1230

Use a procedural representation to write a constructor and three selectors for this
schedule-item data type.

I> Exercise 6.25

We previously said that each move in Nim “transforms the game into a smaller
game, if we measure the size of the game in terms of the total number of coins.”
This raises the possibility that we could define a predicate game-state-< that would
compare two game states and determine whether the first is smaller (in the sense of
having a smaller total number of coins). Similarly, we could define game-state->,
game-state-=, game-state-<=, etc. Define a general purpose procedure called
make-game-state-comparator for making procedures like those just described,
given the numerical comparison procedure (e.g., <) to use. Here are some examples
of its use, together with examples using the comparators it makes:

(define game-state-< (make-game-state-comparator <))

(game-state-< (make-game-state 3 7) (make-game-state 1 12))
#t

(define game-state-> (make-game-state-comparator >))

(game-state-> (make-game-state 3 7) (make-game-state 1 12))
#1

(game-state-> (make-game-state 13 7) (make-game-state 1 12))
#t

I> Exercise 6.26

Recall that when you worked with fractals in Section 4.3, many of the procedures
required parameters that represented the x and y coordinates of points in an image;
for example, the built-in procedure line required coordinates for the starting point
and the ending point, and the procedure triangle required coordinates for the
triangle’s three vertices.

a. Use cons-pairs to implement a point ADT. You should write a constructor
make-point, that takes two arguments representing the x and y coordinates and
returns the corresponding point and two selectors x-coord and y-coord that
take a point and return the corresponding coordinate.
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b. Write a procedure distance that takes two points and returns the distance be-
tween them. Use the selectors x-coord and y-coord rather than relying on the
specific representation from part a. For example, you should see the following
interaction:

(define pt-1 (make-point -1 -1))
(define pt-2 (make-point -1 1))

(distance pt-1 pt-2)
2

Remember: The distance between the points with coordinates (x1,y;) and (x2,y2) is

Vi —x)? + (2 — )%
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Bouton’s seminal article on Nim is [§]. The chocolate-bar version of the game was
presented as a puzzle by Dr. lan Stewart on the Canadian Broadcasting Company’s
program “Quirks and Quarks” [10].

The history of the names car and cdr is told by Steve Russell (one of the
originators of those names) in [45].

The idea of augmenting a game with strategy procedures and higher-order strate-
gies comes from a lunar lander programming assignment developed by Abelson,

Sussman, and friends at MI'T' [1].



CHAPTER SEVEN

7.1

Lists

The Definition of a List

In Chapter 6, we learned how to construct abstract data types where any element of
the type had the same number of components as any other. Sometimes, however,
the individual data will have varying sizes. One example is lists. In this chapter, we
first give a formal definition of lists. Then we show how this definition is used to
construct lists, and we explore common list-processing idioms.

Exactly what is a list? We could start thinking of some concrete examples of lists
by having everyone in our class make a list of the classes he or she attended yesterday.
Some people may have relatively long lists, and others may have been to just one
or two classes. Some people may have not have attended any classes at all. (If today
is Monday, perhaps everyone is in this situation.) Lists can be written in a variety of
ways as well. Some people might write lists in a column, others might use rows, and
still others may come up with more creative ways of doing it. No matter how the
lists are written, those lists that have at least one element have some inherent order
(i.e., each list can be written to start with the first class of the day and work its way
forward from there). Thus we could define a list as being a collection of 0 or more
elements, written in some particular order.

Now imagine that we need to write a computer program to deal with lists of some
sort of elements, say, integers for simplicity. Our first job is to decide what procedures
we need to define the abstract data type of integer lists. The definition we gave in
the foregoing is not much of a guide. Clearly, we are going to be implementing
compound data, because some of our lists may have quite a few components. But
how many components are we going to need? With the abstract data types that we
considered in Chapter 6, each individual piece of data had exactly the same number
of components as any other piece. Different lists, on the other hand, could have
wildly different sizes. So what do we do?

167
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Let’s think about this question a little more. In Chapter 6 we learned how to
construct abstract data types where all values belonging to a particular type had the
same number of components as each other. Now we want to have values of varying
sizes belong to a single type. This parallels what happened moving from Chapter 1
to Chapter 2. In Chapter 1 we wrote procedures where all processes generated by
a particular procedure were of the same size as each other. In Chapter 2 we asked
how to have a single procedure generate processes of varying size. There the answer
was recursion.

We also learned in Chapter 6 that the best way to define an abstract data type is
to first concentrate on how the type is used. We can illustrate how lists are used by
looking at the example of grocery lists. One of the authors usually constructs grocery
lists so that the items are ordered by their positions in the grocery store. The list is
then used by finding the first thing on it, putting that item into the cart, and crossing
it off the list. This gives us a new grocery list (with one less item) that is used to
continue the grocery shopping. Eventually, there is only one item left on the list
(the chocolate candy bar located just before the checkout counter). After putting this
item into the cart and crossing it off the list, the grocery list is empty. This means
that it is time to check out and pay for the groceries.

This grocery list example has a strong recursive flavor to it, and so we can use it
as a model for a recursive definition of lists. We will need a “base case” that defines
the smallest possible list, and we will need some way of defining larger lists in terms
of smaller lists. The base case is easy—there is a special list, called the empty list,
which has no elements in it. The general case is hinted at in the grocery list example
above: a nonempty list has two parts, one of which is an element (the first item in
the list), and the other is a list, namely, the list of all the other items in the whole
list. We can put this more succinctly:

The two-part list viewpoint: A list is either empty or it consists of two parts:
the first item in the list and the list of its remaining items.

The first element of a nonempty list is often called the head of the list, whereas the
list of remaining elements is called the tail. The two-part list viewpoint is one of the
things that distinguish a computer scientist from a normal person. Normal people
think lists can have any number of components (the items on the list), whereas
computer scientists think that all nonempty lists have two components (the head
and the tail). The tail isn’t one item that’s on the list; it’s a whole list of items itself.

How can we implement lists in Scheme? Given that most lists have two parts,
it would be natural to use pairs: Let the car of the pair be the first element of the
list, and let the cdr of the pair be the tail. However, because a list may be empty
and would therefore not have two parts, we need to account for empty lists as well.
Scheme does so by having a special type of value called the empty list, which we
explain in the next section, and a predicate null? that tests whether a given list is
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empty. Using null? in conjunction with the pair operators cons, car, and cdr, we
can implement the list ADT in Scheme by adopting the following conventions:

(cons elt Ist) Given an element elt and a list Ist, cons returns the list whose
head is elt and whose tail is Ist.

(car Ist) 1If Ist is a nonempty list, car returns its head.
(cdr Ist) If Ist is a nonempty list, cdr returns its tail.

(null? Ist) Null? returns true if and only if Ist is the empty list.

Of course, a better data-abstraction practice would be to define a separate set of
procedures, perhaps called make-1ist, head, tail, and empty-1ist?, that would
keep the separation between the list abstraction and the particular representation
using pairs. However, because this particular representation of lists is such a long-
established tradition, Scheme programmers normally just use the pair operations as
though they were also list operations. For example, the car and cdr selectors of
the pair data type are traditionally used as though they were also the head and tail
selectors of the list data type. You can always define head and tail and use them
in your programming, if you'd rather, but you’ll be in a small minority.

Note that these procedures do what is described above only when all parameters
that need to be lists have themselves been constructed using these conventions.
Furthermore, one common mistake to avoid is applying car or cdr to the empty
list.

A number of the procedures we will write are actually built into Scheme. We're
going to write them anyway because they provide excellent examples of list processing
techniques. Furthermore, by writing them, you should gain a better understanding
of what the built-in procedures do.

Constructing Lists

How do we make lists in Scheme? Fundamentally, all nonempty lists are made by
using the pair-constructor cons. However, rather than using cons directly, we can
also use some other procedure that itself uses cons. For example, Scheme has a
built-in procedure, 1ist, that you can use to build a list if you know exactly what
elements you want to be in your list. You pass the list elements into 1ist as its
arguments:

(list 1 2 3)
(1 2 3)

Note that we let Scheme display the resulting list value by itself and that the
displayed value consisted of the elements of the list in order, separated by spaces and
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surrounded by a pair of parentheses. The fact that we allowed Scheme to display
the list is one exception to the general rule stated in the preceding chapter, where
we said that the way Scheme displays pairs is confusing, and therefore you should
write special purpose display procedures, such as display-game-state. In the case
where pairs are used to represent lists, the way Scheme displays them is simple and
natural, so there is no need to write something like display-1list ourselves.

Another thing to note is that the stuff that gets printed out when a list is displayed
is not an expression that will evaluate to the list. Just as you can’t make a game state
by evaluating the output from display-game-state, namely, something like “Pile
1: 5 Pile 2: 8, so too you can’t make a list by evaluating (1 2 3). If you were to
evaluate that, it would try to apply 1 as a procedure to 2 and 3, which fails because
1 isn’t a procedure. This particular list was displayed in a way that looked like an
erroneous Scheme expression. Other lists are displayed in ways that look like valid
Scheme expressions; for example, if the first element of the list were the symbol +
rather than the number 1, the list would display as (+ 2 3). Even evaluating this
expression won'’t produce the list (+ 2 3). (From this past sentence onward, we will
take a shortcut and say things like “the list (+ 2 3)” when what we really mean is
“the list that, when displayed, looks like (+ 2 3).”)

P e 7.

You also can’t get the list (+ 2 3) by evaluating (1ist + 2 3).

a. What do you get if you evaluate that expression? Explain why.

b. What expression can you evaluate that will produce the list (+ 2 3), which starts
with the symbol +?

We've seen that when you want the list (+ 2 3), you can’t just type in (+ 2 3).
For example, you couldn’t find the cdr of this list by evaluating (cdr (+ 2 3)),
because that would try to find the cdr of 5. One option would be to get some
procedure to build the list you want for you, instead of typing it in. For example,
you could use 1ist. There is one other option, however, that lets you type in a list
as itself. You can use the same quoting mechanism that you use to type in symbols.
For example,

(cdr (1 2 3))
2 3)

Lists and symbols both need quoting for the same reason: They look like expressions,
but we want the name itself or the list itself, not the result of evaluating the name
or list. Quote also gives us a way to get the empty list, namely, as the value of the
expression ’ ().
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What if we want to construct a list that is too long to type? For example, suppose we
needed the list of integers from 1 to 2000. Rather than tediously typing in the whole
list, or typing in all 2000 arguments to the 1ist procedure, we should automate
the process by writing a procedure to do it for us. As in the factorial example in the
second chapter, it makes sense to write a general purpose procedure that produces
the list of integers from low to high and then use it on 1 and 2000. To see how to
write such a procedure, let’s first construct some fairly short lists, using cons. We'll
also draw a box and pointer diagram of each of these lists, using the technique from
Section 6.4, to illustrate the structure of lists:

(cons 1 °()) }_,()
(1)

1

(cons 1 (cons 2 °>())) M()
(1 2)

1 2

(cons 1 (cons 2 (cons 3 ()))) ‘ “ H | ‘ H | ‘ {_,()
Y Y Y
1 2 3

(1 2 3)

Note that to get the list of integers from 1 to 3, we consed 1 to the list of integers
from 2 to 3, which shows us how to write the general procedure:

(define integers-from-to
(lambda (low high)
(if (> low high)
0
(cons low
(integers-from-to (+ 1 low) high)))))

Such lists can then be created by making calls like the following one:

(integers-from-to 1 7)
(1 234567)

This technique of using cons to recursively construct a list is often called consing
up a list.

P cecise 72

What do you get if you evaluate (integers—-from-to 7 1)? Exactly which integers
will be included in the list that is the value of (integers-from-to low high)?
More precisely, describe exactly when a given integer k will be included in the list
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that is the value of (integers-from-to low high). (You can do so by describ-
ing how k, low, and high are related to each other.) Do you think the result of
integers-from-to needs to be more carefully specified (for example, in a com-
ment) than the implicit specification via the procedure’s name? Or do you think the
behavior of the procedure should be changed? Discuss.

P e 73 |

Write a procedure that will generate the list of even integers from a to b.

> Exercise 7.4

We could rewrite integers-from-to so that it generates an iterative process. Con-
sider the following attempt at this:

(define integers-from-to ; faulty version
(lambda (low high)
(define iter
(lambda (low 1lst)
(if (> low high)
1st
(iter (+ 1 low)
(cons low 1st)))))
(iter low > ())))

What happens when we evaluate (integers-from-to 2 7)? Why? Rewrite this
procedure so that it generates the correct list.

Basic List Processing Techniques

Suppose we need to write a procedure that counts the number of elements in a list.
We can use the recursive definition of lists to help us define exactly what we mean
by the number of elements in a list. Recall that a list is either empty or it has two
parts, a first element and the list of its remaining elements. When a list is empty,
the number of elements in it is zero. When it isn’t empty, the number of elements
is one more than the number of elements in its tail. We can write this in Scheme as

(define length
(lambda (1st)
(if (null? 1st)
0
(+ 1 (length (cdr 1st))))))
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Similarly, to write a procedure that finds the sum of a list of integers, we would
do the following:

(define sum
(lambda (1st)
(if (null? 1st)
0
(+ (car 1st) (sum (cdr 1st))))))

Notice how similar these procedures are to recursive procedures with integer
parameters, such as factorial. The base case in length and sum occurs when
the list is empty, just as the base case in factorial is when the integer is 0. In
factorial we reduced our integer by subtracting 1, and in length and sum, we
reduce our list by taking its cdr. Procedures that traverse a list by working on the cdr
in this manner are said to edr down a list.

P ceiers

Generalize sum to a higher-order procedure that can accumulate together the ele-
ments of a list in an arbitrary fashion by using a combining procedure (such as +)
specified by a procedural parameter. When the list is empty, sum returned 0, but this
result isn’t appropriate for other combining procedures. For example, if the com-
bining procedure is *, 1 would be the appropriate value for an empty list. (Why?)
Following are two possible approaches to this problem:

a. Write the higher-order procedure so that it only works for nonempty lists. That
way, the base case can be for one-element lists, in which case the one element
can be returned.

b. Write the higher-order procedure so that it takes an additional argument, beyond
the list and the combining procedure, that specifies the value to return for an
empty list.

> Exercise 7.6

a. Write a procedure that will count the number of times a particular element occurs
in a given list.

b. Generalize this procedure to one that will count the number of elements in a
given list that satisty a given predicate.
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P ocier

In addition to the procedure length, Scheme has a built-in procedure list-ref
that returns a specified element of a list. More precisely, a call of the form
(list-ref 1st n) will return the (n + 1)st element of Ist, because by convention
n = 0 returns the first element, n = 1 returns the second, etc. Try this procedure
for various parameter values. Write this procedure yourself.

> Exercise 7.8

Here are some more exercises in cdring down a list:

a. Write a predicate that will determine whether or not a particular element is in a
list.

b. Generalize this to a predicate that will determine whether any element of a list
satisfies a given predicate.

c. Write a procedure that will find and return the first element of a list that satisfies
a given predicate.

d. Write a procedure that will determine whether all elements of a list satisty a given
predicate.

e. Write a procedure that will find the position of a particular element in a list. For
example,

(position 50 ’ (10 20 30 40 50 3 2 1))
4

Notice that we are using the same convention for position as is used in 1ist-ref,
namely, the first position is 0, etc. What should be returned if the element is not
in the listt What should be returned if the element appears more than once in
the list?

f. Write a procedure that will find the largest element in a nonempty list.

g. Write a procedure that will find the position of the largest element in a nonempty
list. Specify how you are breaking ties.

> Exercise 7.9

This exercise involves cdring down two lists.

a. Write a procedure that gets two lists of integers of the same size and returns true
when each element in the first list is less than the corresponding element in the
second list. For example,
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(list-< ’(1 2 3 4) (2 3 4 5))
#t

What should happen if the lists are not the same size?

b. Generalize this procedure to one called 1ists-compare?. This procedure should
get three arguments; the first is a predicate that takes two arguments (such as <)
and the other two are lists. It returns true if and only if the predicate always
returns true on corresponding elements of the lists. We could redefine 1ist-<in
the following manner:

(define list-<
(lambda (11 12)
(lists-compare? < 11 12)))

We frequently will use lists to build other lists, in which case we c¢dr down one list
while consing up the other. To illustrate what we mean, here is a simple procedure
that selects those elements of a given list that satisfy a given predicate:

(define filter
(lambda (ok? 1st)
(cond ((null? 1st)
>())
((ok? (car 1lst))
(cons (car 1st) (filter ok? (cdr 1st))))
(else
(filter ok? (cdr 1st))))))

(filter odd? (integers-from-to 1 15))
(1 3579 11 13 15)

At this point, we've seen enough isolated examples of list processing procedures.
Let's embark on a larger-scale project that will naturally involve list-processing.
Consider the following remarkable fact: After doing a certain small number of
“perfect shuffles” on a 52 card deck, the deck always returns to its original order. (By
a perfect shuffle, we mean that the deck is divided into two equal parts, which are
then combined in a strictly alternating fashion starting with the first card in the first
half.) How many perfect shuffles are required to return a 52 card deck to its original
order?

We can represent our original deck as a list of the numbers 1 to 52 using the
procedure integers-from-to. How do we divide the deck into two equal halves?
We can write two general purpose procedures, one to get the first however many
elements of a list and the other to get the remaining elements.
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Let’s first write the procedure that will construct a list of the first n elements of a
given list. This procedure is very similar to the procedure 1ist-ref in Exercise 7.7:

(define first-elements-of
(lambda (n list)
(if (= n 0)
>0
(cons (car list)
(first-elements-of (- n 1)
(cdr 1ist))))))

Exercise 7.10

Write the procedure list-tail, that gets a list and an integer n and returns the
list of all but the first n elements in the original list. (List-tail is actually already
built into Scheme.)

For any given value of n in the range 0 = n = (length 1st), the procedures
first-elements-of and list-tail can be used to split 1st into two parts.

Once we've cut our deck into two halves, we still need to combine those halves
into the shuffled deck. We combine them by using the procedure interleave,
which takes two lists and combines them into a single list in an alternating manner:

(define interleave ; interleaves 1stl and 1lst2, starting with
(lambda (1stl 1st2) ; the first element of 1lstl (if any)
(if (null? 1st1)
1st2
(cons (car 1stl)
(interleave 1st2 (cdr 1st1))))))

To see why interleave works correctly, focus on the comment, which says that the
first element in the result is going to be the first element from 1st1 (i.e., the first
element of the first argument). What does the rest of the result look like, after that
first element? If you interleave a stack of red cards with a stack of black cards, so that
the top card is red, what does the rest of it look like? Well, the rest (under that top
red card) will start with a black card and then will alternate colors. It will include
all of the black cards and all the rest of the red cards. In other words, it is the result
of interleaving the black cards with the rest of the red cards. This explains why in
the recursive call to interleave, we pass in 1st2 as the first argument (so that the
first element from 1st2 winds up right after the first element of 1st1 in the result)
and then the cdr of 1st1.
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Combining interleave, list-tail, and first-elements-of, we can now
define the procedure shuffle, which takes as arguments the deck as well as its size:

(define shuffle
(lambda (deck size)
(let ((half (quotient (+ size 1) 2)))
(interleave (first-elements-of half deck)
(list-tail deck half)))))

The purpose of the parameter size is efficiency —otherwise we would need to use the
procedure length. We write (quotient (+ size 1) 2) instead of the more natu-
ral (quotient size 2) in order to ensure that when size is odd, the first half of the
deck has the extra card. Notice that when size = 52, (quotient (+ size 1) 2)
= 26.

In order to find out how many shuffles are needed, we write the following proce-
dure, which automates multiple shuffles:

(define multiple-shuffle
(lambda (deck size times)
(if (= times 0)
deck
(multiple-shuffle (shuffle deck size)
size (- times 1)))))

We can then find out how many shuffles are needed by making calls as follows:

(multiple-shuffle (integers-from-to 1 52) 52 1)

(1 27 228329430531 6327338349 3510361137 12
38 13 39 14 40 15 41 16 42 17 43 18 44 19 45 20 46 21 47 22 48
23 49 24 50 25 51 26 52)

(multiple-shuffle (integers-from-to 1 52) 52 2)

(1 14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31 44 6 19
32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 49 11 24 37 50
12 25 38 51 13 26 39 52)

(multiple-shuffle (integers-from-to 1 52) 52 8)

(1 23456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52)

Thus, eight perfect shuffles return the deck to its original order.
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P eecie 711

We have written shuffle so that it can operate on decks of any size. In fact, decks
of all sizes have the property that after a certain number of perfect shuffles, the
deck is returned to its original order. In this exercise you will write procedures that
will automate the process of finding the number of shuffles, which we call the
shuffle-number, required for a deck of a given size.

a. Given that you start with an ordered deck, the first thing you will need is a
predicate, called in-order?, that determines whether a list of integers is in
increasing order. Write this procedure.

b. Using in-order?, write a procedure shuffle-number that, when passed a pos-
itive integer n, returns the shufflenumber for n. You should start off with an
ordered deck of size n and repeatedly shuffle until the deck is in order.

P pecier.12]

Throughout this section on perfect shuffles, we've been passing in the size of the
deck as well as the list representing the deck itself in order to avoid computing the
length of the list when we already knew it. Another approach would be to create a
new compound data type for decks, with two selectors: one to get the list of elements
and the other to get the length. That way we could pass in just a single thing,
the deck, but could still find the length without counting. Flesh out the remaining
details of this idea, implement it, and try it out.

We end this section with another example of using higher-order programming with
lists. Suppose you wanted to find the shuffle-number for decks of size 1, 2, 3, ..., 100
so that you could look at them all and see if there seemed to be any pattern. Rather
than manually applying your shuffle-number procedure to each of the integers
from 1 to 100, you could get a list of those integers, using integers-from-to, and
then use some general purpose higher-order procedure to map each element of that
list into its shuffle-number. A procedure called map that is built into Scheme does
this mapping. Its first argument is the procedure to use for the mapping, and its
second argument is the list of values that should be mapped. So in order to get the
shuffle numbers for decks ranging in size from 1 to 100, we could do the following:

(map shuffle-number (integers-from-to 1 100))
Or, we could find the squares of 5, 12, and 13 by evaluating

(map (lambda (x) (* x x)) ’(5 12 13))
(25 144 169)
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The procedure map is extraordinarily handy for creating lists of all sorts. Each of the
following problems can be solved by using map.

a. Write a procedure that, when given a positive integer n, returns a list of the first
n perfect squares.

b. Write a procedure that, when given a positive integer n, returns a list of the first
n even integers.

c. Write a procedure called sevens that, when given a positive integer n, returns a
list of n sevens. For example:

(sevens 5)
(77 777)

d. Write a procedure that, when given a list of positive integers, returns a list of lists
of integers. Each of these lists should be the positive integers from 1 to whatever
was in the original list. For example,

(list-of-1lists ’(1 5 3))
((1) (1 2345) (123))

> Exercise 7.14

Even though map is built into Scheme, it is a good exercise to write it yourself. Do so.

List Processing and Iteration

A palindrome is a word, such as madam, that stays unchanged when you write the
letters in reverse order. Sometimes, entire sentences are palindromes, if you ignore
spaces and punctuation; one of the classic examples is “Madam, 'm Adam.” In this
section, we'll test lists of symbols to see whether they are palindromes when viewed
symbol by symbol rather than letter by letter. What we mean by this is that reversing
the order of the elements of the list leaves it unchanged. For example, the list (m a
d a m) is a palindrome and so is (record my record).

We can determine whether or not a list of symbols is a palindrome by reversing
it and seeing if the result is equal to the original list. We can do the equality testing
using equal? but need to figure out how to reverse the list. Actually, as so often,
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there is a procedure built into Scheme called reverse that does just what we need.
But in the best of no-pain/no-gain tradition, we’ll write it ourselves.

Reversing an empty list is quite easy. To reverse a nonempty list, one approach
is to first reverse the cdr of the list and then to stick the car onto the end of this
reversed cdr. The major obstacle is that we don’t have any procedure currently in our
toolbox for tacking an element onto the end of a list. What we want is a procedure
add-to-end such that (add-to-end ’(1 2 3) 4) would evaluate to the list (1
2 3 4). We can write this procedure in our usual recursive way, cdring down the
list and consing up the result:

(define add-to-end
(lambda (1st elt)
(if (null? 1st) ; adding to an empty list
(cons elt ’()) ; makes a one-element list
(cons (car 1st)
(add-to-end (cdr 1lst)
elt)))))

Given this, we can write reverse as follows:

(define reverse
(lambda (1st)
(if (null? 1st)
>0
(add-to-end (reverse (cdr 1lst))
(car 1st)))))

This way of reversing a list is very time consuming because of the call to
add-to-end. A good way to measure how much time it takes is to count up the
number of times cons is called. Adding to the end of a k-element list will make k+ 1
calls to cons. Suppose we use R(n) to denote the number of conses that reverse
does (indirectly, by way of add-to-end) when reversing a list of size n. Then we
know that R(0) = 0 because reverse simply returns the empty list when its argu-
ment is empty. When the argument to reverse is a nonempty list, the number of
calls to cons will be however many are done by reversing the cdr of the list plus
however many are done by adding to the end of this reversed cdr. Thus,

Rn)=Rn—1D+((n—-1)+1)=Rn—-1)+n
But by the same argument

Rn—1)=Rn—-2)+(n-2)+1)=Rn-2)+n—1)
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so we get

=RO)+1+2+3+---+n—-2)+(n—1)+n
=0+1+2+3+---+n—-2)+(n—1)+n

_ nn+1)
2

Therefore the number of conses done by this version of reverse is @(n?). (The
last equation, expressing the sum as n(n + 1)/2, is from the solution to Exercise 4.1
on page 81. Even without it you could figure out that the sum was @(n?) using
the reasoning given in Section 4.1.) We can expect the time taken to similarly be
0O(n?), which implies that as lists get longer, reversing them will slow down more
than proportionately quickly. A 200-element list is likely to take 4 times as long to
reverse as a 100-element list, rather than only twice as long.

There must be a better way of reversing a list. In fact, if you remember Exercise 7.4,
our initial attempt to write an iterative procedure that generates the list of integers
from a to b produced a list with the right numbers but in reverse order. Although
that was a mistake there, it suggests an iterative strategy for reversing a list.

Before trying to write an iterative reverse, a concrete example might be helpful.
Put a stack of cards on the table face up in front of you and reverse the order of
them, leaving them face up. Chances are you did it by taking the first card off of top
of the stack and setting it down elsewhere on the table, then moving the next card
from the top of the original stack to the top of the new stack, etc., until all the cards
had been moved. If you interrupt this process somewhere in the middle and turn
the rest of the job over to someone else, you might tell them to “reverse the rest of
these cards onto this other stack.”

In terms of our Scheme procedure, we can reduce the problem of reversing
(1 2 3 4) to the smaller problem of putting the elements of (2 3 4) in reverse
order onto the front of (1), which in turn reduces to putting the elements of (3 4)
in reverse order onto the front of (2 1), etc.:

(define reverse
(lambda (1st)
(define reverse-onto ; return a list of the elements of 1lstil
(lambda (1stl 1st2) ; in reverse order followed by the
; elements of 1lst2
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(if (null? 1st1)
1st2
(reverse-onto (cdr 1stil)
(cons (car 1lsti)
1st2)))))

(reverse-onto 1lst ’())))

The internally defined procedure reverse-onto does one cons for each element
in the list, as it moves it from the front of Ist] to the front of Ist2. Notice that the
total number of conses is equal to the total number of cdrs; if we use n to denote
the size of the list Ist, the number of conses is n. Thus we have reduced a @(n?)
process to a ®(n) one.

Now we have all the procedures that we need to determine whether or not a list
is actually a palindrome:

(define palindrome?
(lambda (1st)
(equal? 1st (reverse 1st))))

(palindrome? (mad amimadam))
#t

Tree Recursion and Lists

In this section, we will look at two examples of using tree recursion with lists. The
first example is a merge sort procedure roughly paralleling what you did by hand in
Chapter 4. The basic approach to merge sorting a list is to separate the list into two
smaller lists, merge sort each of them, and then merge the two sorted lists together.
We can only separate a list into two shorter lists if it has at least two elements,
but luckily all empty and one-element lists are already sorted. Thus our merge sort
procedure would look something like the following:

(define merge-sort
(lambda (1st)
(cond ((null? 1lst)
0]
((null? (cdr 1st))
1st)
(else
(merge (merge-sort (one-part 1lst))
(merge-sort (the-other-part 1st)))))))
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We still have to do most of the programming, namely, writing merge and figuring
out some way to break the list into two parts, which for efficiency should be of equal
size or at least as close to equal size as possible.

We start with the procedure merge. Here we have two lists of numbers, where
each list is in order from the smallest to the largest. We want to produce a third
list, that consists of all of the elements of both of the original lists and that is still
in order. Notice that we have essentially two base cases, which occur when either
one of the original lists is empty. In each case, the result that we want to return
is the other (possibly nonempty) list. We additionally have three recursive cases,
depending on how the first elements of the two lists compare to each other. We
always want to cons the smaller number onto the result of merging the cdr of the list
this number came from with the other list. What happens if both lists have the same
number as their first element? The answer depends on why we’re merging the two
lists. There are some applications where we want to keep only one of the duplicated
number, and some applications where we want to keep both duplicates. Here, we've
arbitrarily decided to keep only one of the duplicated element. This will result in a
merge-sort that eliminates duplicates as it sorts:

(define merge
(lambda (1stl 1st2)

(cond ((null? 1sti1) 1st2)
((null? 1st2) 1stl)
((< (car 1st1) (car 1st2))
(cons (car 1stl) (merge (cdr 1lstl) 1st2)))
((= (car 1st1) (car 1st2))
(cons (car 1stl) (merge (cdr 1stl) (cdr 1st2))))
(else
(cons (car 1st2) (merge 1stl (cdr 1st2)))))))

What about breaking the list into two halves? One way of doing so would be to
use the procedures first-elements-of and list-tail as we did in the perfect
shuffle problem. The problem with this approach is that we would need to know
how long the list is that we're trying to sort. True, we can use length to determine
this. But instead we’ll show off a different way of separating the list into parts, which
is roughly the opposite of interleaving. In other words, if we think of our list as a
deck of cards, we could separate it into halves by dealing the cards to two people.
One person would get the first, third, fifth, ... cards, and the other would get the
second, fourth, sixth, ... cards. We'll call the resulting two hands of cards the odd
part and the even part.

To write the procedures odd-part and even-part, think about how you deal
a deck of cards to two people, let us say Alice and Bob. You start out facing Alice
and are going to give her the odd part and Bob the even part. In other words, you
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are going to give the odd-numbered cards to the person you are facing. You start by
dealing Alice the first card. Now you turn and face Bob, holding the rest of the cards
in your hand. At this moment, the situation is exactly as it was at the beginning,
except that you are facing Bob and have one fewer card. You are about to give Bob
the first, third, etc., of the remaining cards, and Alice the even-numbered ones. So,
all in all, Alice’s hand of cards (the odd part of the deck) consists of the first card
and then the even part of the remaining cards. Meanwhile, Bob’s hand of cards (the
even part of the deck) consists of the odd part of what's left of the deck after dealing
out the first card. The odd-part and even-part procedures therefore provide an
interesting example of mutual recursion, because we can most easily define them in
terms of each other:

(define odd-part
(lambda (1st)
(if (null? 1st)
0]
(cons (car 1st) (even-part (cdr 1st))))))

(define even-part
(lambda (1st)
(if (null? 1st)
70
(odd-part (cdr 1st)))))

Now all we need to do to make merge-sort work is

(define one-part odd-part)
(define the-other-part even-part)

Our second example of using tree recursion comes from a family outing. One
day, we took our sons (aged 3 and 4) to the local video arcade to play a game
called Whacky Gator. Fach child won several tickets that could be exchanged for
“prizes” at the main counter. Fach kind of prize has a price attached. Some prizes
are worth ten tickets, some are worth nine tickets, and so on down to the plastic
bugs, which are only worth one ticket. The older child had won ten tickets and
wanted to know what prizes he could get. Obviously, he could get only one of the
ten ticket prizes. Alternatively, he could get one nine-ticket prize and one one-ticket
prize or one eight-ticket prize and two one-ticket prizes or one eight-ticket prize and
one two-ticket prize or .... As the child’s mother started enumerating the different
combinations that he could get, we whipped out our pocket Scheme systems and
discovered that there are 1778 possible combinations of prizes that the child had to
choose from, given the number of different prizes there were. (See Table 7.1.)
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TABLE 7.1 The low-value prizes at our local video arcade

Value in tickets Number of distinct prizes

10
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How did we do that? First, we decided to write a general procedure for figuring out
how many prize combinations there were. To see how we developed that procedure,
let’s consider a much smaller problem. Suppose that there are only two kinds of
one-ticket prizes, plastic spiders and plastic beetles. Then there are plastic worms
that are worth three tickets and little magnifying glasses that are worth five tickets. If
the child has five tickets, he can either get a magnifying glass or not. If he doesn’t
get a magnifying glass, he needs to get some combination of the rest of the prizes
that adds up to 5. If he does get the magnifying glass, he’s used up all his tickets
and there’s only one combination of additional prizes worth the remaining 0 tickets,
(i.e., the empty combination).

This approach gives us a way of reducing our problem to smaller problems.
Suppose the prizes are represented by a list of their values. In our small example
above, we would use the list (6 3 1 1) to represent the magnifying glasses, the
worms, the beetles, and the spiders. In this case, if a child has a certain amount of
tickets, she can get a combination of prizes that includes the first item in the list
or one that doesn’t include the first item. If she chooses the first item, we need to
count the number of combinations that she can get for the amount of tickets minus
the value of the first item. If she doesn’t choose the first item, we need to count how
many combinations of items she can get for the amount of tickets using only the rest
of the list. Thus, our recursive call would look like

(define count-combos
(lambda (prize-list amount)

(+ (count-combos prize-list (- amount (car prize-list)))
(count-combos (cdr prize-list) amount))))
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What are the base cases? To figure these out, note that our problem gets smaller in
one of two ways: either the prize list gets smaller or the amount of tickets decreases,
because all of the prizes have positive prices. Thus the process should halt when the
amount is 0, when it is less than 0, or when the prize list is null.

P oercie 7.5

What values should be returned in each of these cases? Using your answer, finish
writing the procedure count-combos.

To check to see if there really were 1778 possible combinations worth 10 tickets,
we need to enter a list of 37 numbers. Alternatively, we could write a procedure that
will generate that list for us, given the data. What is the best way to give the data?
One way would be to give it as a list of pairs, where the first number in each pair is
the value and the second number is the number of distinct prizes worth that value.
Another way would be to give the data by giving the value of the most expensive
prize and then giving the list of numbers of different prizes, with the first number
representing the number of different prizes for the most expensive prize, the second
number representing the number of distinct prizes worth one ticket less than the
most expensive prize, and so on.

> S E A L)

Which representation is best? Why? Can you think of any other, better way of
representing the data? Think about what the corresponding procedures would look
like as well as entering the data.

B oecie 717

Write the procedure that would generate the list needed for count-combos given
the data in Table 7.1. Check to see that there really are 1778 possible combinations
of prizes that are worth 10 tickets.

> Exercise 7.18

One of our children has learned that he doesn’t need to spend all of his tickets
because he can save them up for his next trip. Thus, instead of finding the number
of combinations that he can get with one particular amount he would like to know
the number of combinations that he can get for any amount that is less than or equal
to the number of tickets he has. Write a procedure that is given a prize list and a
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maximum amount and returns the number of combinations of prizes that you can
buy using no more than than the maximum amount of tickets.

> Exercise 7.19

When our children started bringing home dozens of cheap plastic spiders, we asked
them to restrict themselves to getting only one of each kind of prize. Write a pro-
cedure that is given the prize list and amount and computes the number of prize
combinations that you can buy using exactly that amount and assuming that you
can’t get more than one of any particular prize.

> Exercise 7.20

Write another procedure that will determine the number of combinations you can
buy using no more than a maximum amount of tickets while still insisting that you
can have at most one of each kind of prize.

P eecise 721

7.6

A similar problem to this is to imagine that you have an unlimited amount of quarters,
dimes, nickels, and pennies and that you need to come up with a combination of
these coins to make a certain amount. How many different ways can you do this?
Write a procedure that will count the number of ways to make change for a given
amount using only quarters, dimes, nickels, and pennies.

An Application: A Movie Query System

Have you ever gone to a video store to rent a movie, only to be confronted with
so many movies that you couldn’t find one you wanted to see? Perhaps you were
interested in seeing a movie by a given director, but you didn’t know which ones
they were, and the movies weren’t organized by director anyway. Or perhaps you
wanted to know which movies were directed by the person, whose name you forgot,
who directed some favorite movie? What if you didn’t know the name of the movie,
but you knew that it was made in the mid to late 1980s and Dennis Quaid starred
in it?

Being able to answer such questions would go a long ways toward finding a movie.
One possibility would be to ask the store personnel, but perhaps they are busy or
unfriendly or only like slasher movies. Another possibility would be to take some
movie expert, say Roger Ebert, along with you to the store, but that is probably
unrealistic. Wouldn'’t it be nice if the video store provided a computer that had a
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program you could ask such questions? Perhaps it could even tell you which movies
were currently available at the store.

Let’s imagine how this program might be structured. First, it must have access
to the database of movies owned by the store. Second, it should have the ability to
search through the database in various ways. Finally, the user should be able to use
these search procedures flexibly and intuitively. Perhaps the user could carry on a
dialog with the computer that looks much like an ordinary English conversation.
Such a feature is called a natural language query system.

We will write a small version of such a program in this section. The database will
simply be a list of movie records. Next we will write procedures to search through
this list in various ways. Finally, we provide a query system for the program by using
pattern-matching on the user’s queries.

So let’s first create the database. For the individual movies, we need to define
a compound ADT with four components: the title of the movie, the name of its
director, the year the movie was made, and a list of the actors in it. For simplicity’s
sake, we assume that the year is a number and that names (of movies and of people)
are lists of symbols. We could construct movie records in a manner similar to how
we constructed three-pile game states in Chapter 6; alternatively, we could simply
put everything into a list. Because this alternative is easily done using the built-in
procedure list, we'll represent movie records as lists:

(define make-movie
(lambda (title director year-made actors)
(list title director year-made actors)))

(define movie-title car)
(define movie-director cadr)
(define movie-year-made caddr)
(define movie-actors cadddr)

(These definitions take advantage of the fact that cadr, caddr, and cadddr are
built into Scheme as procedures for selecting the second, third, and fourth ele-
ment of a list. The names stand for “the car of the cdr,” etc.) We can then define
our-movie-database to be a list of such records as follows:

(define our-movie-database
(list (make-movie ’ (amarcord)
’(federico fellini)
1974
’((magali noel) (bruno zanin)
(pupella maggio)
(armando drancia)))
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(make-movie ’(the big easy)
>(jim mcbride)
1987
>((dennis quaid) (ellen barkin)
(ned beatty)
(lisa jane persky)
(john goodman)
(charles ludlam)))
(make-movie ’(the godfather)
> (francis ford coppola)
1972
> ((marlon brando) (al pacino)
(james caan)
(robert duvall)
(diane keaton)))
(make-movie ’(boyz n the hood)
’(john singleton)
1991
’((cuba gooding jr.) (ice cube)
(larry fishburne)
(tyra ferrell)
(morris chestnut)))))

This example is of course a very small database. In the software on the web site for
this book, we include a more extensive database, also called our-movie-database,
that you can use for experimentation.

What types of database search procedures will we want to implement? We might
want to find all the movies by a given director or all of the movies that were made
in a given year or all the movies that have a particular actor in them.

P pecise 722

We can use the procedure filter defined in Section 7.3 to do any one of these
searches. For example, to find all the movies that were made in 1974, we would
evaluate

(filter (lambda (movie) (= (movie-year-made movie) 1974))
our-movie-database)

a. Write a procedure called movies-made-in-year that takes two parameters, the
list of movies and a year, and finds all the movies that were made in that year.
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b. Use the procedure filter to find all the movies that were directed by John
Singleton.

c. Write a procedure called movies-directed-by that takes two parameters, the
list of movies and the name of a director, and finds all of the movies that were
directed by that director.

d. Write a procedure called movies-with-actor that takes two parameters, a list
of the movies and the name of an actor, and finds all the movies that have that
actor in them. You could use the Scheme predicate member, which tests to see
whether its first argument is equal to any element of its second argument (which
must be a list).

B oecie 723

The biggest problem with the previous procedures is that they return a list of the
actual movie records, when we often would prefer just a list of the titles of the
movies. Write a procedure called titles-of-movies-satisfying that takes two
arguments, a list of movies and a predicate, and returns a list of the titles of the
movies satisfying the predicate argument. For example, evaluating the expression

(titles-of-movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie)
1974)))

would give the list of titles of movies made in 1974. Hint: Use the procedure map
described in Section 7.3.

> Exercise 7.24

Sometimes we want some attribute other than the title when we’re searching for the
movies that satisfy a given property. Generalize titles-of-movies-satisfying
to a procedure movies-satisfying that takes three arguments: a list of movie
records, a predicate, and a selector. Evaluating the expression

(movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie) 1974))
movie-title)

should have the same result as the previous exercise.
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Now that we have procedures to search through our database, we need to consider
the people who use the system. Typical video store patrons are not going to be
willing to deal with the kind of Scheme expressions that we’ve been evaluating to
find answers to their questions, and so we need to build a query system (i.e., an
interface that allows them to ask questions more easily).

The goal of the query system is to handle the user’s questions, causing the ap-
propriate database searching procedures to be called and the results reported to the
user. We will construct a query system that at least superficially simulates an English
dialog between the program and the user; such an interface is often called a natural
language interface. (Natural in this context refers to a naturally occurring human
language like English as opposed to a computer language such as Scheme; interface
refers to the fact that it is the point of contact between the user and the internals of
the program.) Thus, the task of this query system will be to read the user’s questions,
interpret them as requesting specific actions, and perform and report the results of
those actions.

Let's be as concrete as possible. Suppose that we have a procedure called
query-loop that repeatedly reads and responds to the user’s questions. We would
like to have an interaction something like the following; the first line is a Scheme
expression, which is evaluated to start the loop, and the remaining lines are the
interaction with the loop:

(query-loop)

(who was the director of amarcord)
(federico fellini)

(who were the actors in the big easy)
((dennis quaid)

(ellen barkin)

(ned beatty)

(lisa jane persky)

(john goodman)

(charles ludlam))

(what movies were made in 1991)
((boyz n the hood) (dead again))

(what movies were made between 1985 and 1990)
((the big easy))

(what movies were made in 1921)
(i do not know)

(why is the sky blue)
(i do not understand)
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(so long)
(see you later)

Some observations are

® The user’s questions are English sentences without punctuation and enclosed in

parenthesis; our program views them as lists of symbols.

® The program displays the list of answers to the user’s query. If no answer is found,

it responds with (1 do not know); if it can’t interpret the question, it responds
with (i do not understand).

= The movie database we used for this sample interaction is slightly larger than the

one given above.

How can we program such an interaction? Remember the query loop repeatedly
reads a question, interprets that question as a request for some specific action, per-
forms that action, and reports the result. Not all questions can be interpreted. How-
ever, those that can be interpreted typically match one of a small set of patterns. For
example, the questions (who was the director of amarcord) and (who was
the director of the big easy) both have the form (who was the director
of ...). The key idea to programming the query loop is to use an abstract data
type called pattern/action pairs. Roughly speaking, a pattern specifies one possible
form that questions can have, whereas the corresponding action is the procedure for
answering questions of that form. The procedure query-loop will use a list of these
pattern/action pairs to respond to the user and will terminate if the user’s question
appears in a list of the ways of quitting the program. (This test for quitting is done in
the exit? procedure using the predefined procedure member, which tests whether
its first argument is equal to any element of its second argument. We introduced
member in Fxercise 7.22d.)

(define query-loop
(lambda ()

(newline)

(newline)

(let ((query (read)))

(cond ((exit? query) (display ’(see you later)))
;; movie-p/a-list is the list of the
;3 pattern/action pairs
(else (answer-by-pattern query movie-p/a-list)
(query-loop))))))

(define exit?
(lambda (query)
(member query ’ ((bye)
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(quit)

(exit)

(so long)
(farewell)))))

All of the real work in query-loop gets done by the procedure answer-
by-pattern. How does this procedure work? The idea is that each of the questions
that the program can answer must match one of the patterns in the pattern/action list.
The action corresponding to the matching pattern is an actual Scheme procedure
that does what needs to be done in order to answer the given question. In order
to apply this action, we figure out what particular information must be substituted
into the blanks in the general pattern to make it match the specific question. These
substitutions are the arguments to the action procedure. Our answer-by-pattern
procedure will use two (as yet unwritten) procedures: matches?, which determines
if a question matches a given pattern, and substitutions-in-to-match, which
determines the necessary substitutions.

What should answer-by-pattern display? By looking at query-loop, we
know that the output should be a list that answers the user’s question. Thus,
if the question matched none of the patterns, the answer should be the list
(i do not understand). On the other hand, if the user’s question did match
one of the patterns, answer-by-pattern applies an action procedure that causes
our database to be searched. The value of this expression will be a list of answers. If
that list of answers is nonempty, we can simply display it; if it is empty, no answers
were found. In this case we should display the list (i do not know), indicating
that we could not find the movie or movies the user was looking for.

(define answer-by-pattern
(lambda (query p/a-list)
(cond ((null? p/a-list)
(display ’(i do not understand)))
((matches? (pattern (car p/a-list)) query)
(let ((subs (substitutions-in-to-match
(pattern (car p/a-list))
query)))
(let ((result (apply (action (car p/a-list))
subs)))
(if (null? result)
(display ’(i do not know))
(display result)))))
(else
(answer-by-pattern query
(cdr p/a-1list))))))
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This procedure cdrs down the list of pattern/action pairs until it finds a pattern
matching the query. It then uses substitutions-in-to-match to get the substi-
tutions from the query and applies the appropriate action to those substitutions. We
are using the built-in Scheme procedure apply to apply the action procedure to its
arguments. To illustrate how apply works, consider the following interaction:

(apply + ’(1 4))
5

(apply * ’(2 3))
6

(apply (lambda (x) (* x x)) ’(3))
9

(apply movies-satisfying
(list our-movie-database
(lambda (movie) (= (movie-year-made movie) 1974))
movie-title))
((amarcord))

Notice that the first argument to apply is a procedure and the second argument is
the list of arguments to which the procedure is applied. Therefore, when we make
the following call in answer-by-pattern,

(apply (action (car p/a-list))
subs)

we are applying the action procedure in the first pattern/action pair to the list
consisting of the substitutions we got from the pattern match.

To get our query system working, we need to do three things. We need to construct
an ADT for pattern/action pairs, we need to start building the list of these pairs, and
we need to write the procedures matches? and substitutions-in-to-match. Do-
ing these things depends on understanding what patterns are. Consider the following
possible questions:

(who is the director of amarcord)
(who is the director of the big easy)
(who is the director of boyz n the hood)

The common pattern of these three questions is clear. If we use ellipsis points (... )
to represent the title, we can write this pattern as

(who is the director of ...)
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The ellipsis points are sometimes called a wild card, because they can stand in for
any title.

What action should correspond to this pattern? As we said before, an action
is simply a procedure. After determining that (who is the director of the
big easy) matches this pattern, we will need to apply our action to the title
(the big easy), because we would substitute the title for the ... wild card to
make the question match the pattern. Thus, this particular action should be a
procedure that takes a title, finds the movie in our movie database that has this title,
and returns the director of that movie:

(lambda (title)
(movies-satisfying our-movie-database
(lambda (movie)
(equal? (movie-title movie) title))
movie-director))

Constructing the pattern/action ADT and building a list of pattern/action pairs is
straightforward. We define the pattern/action ADT much as we defined game states
in Chapter 6:

(define make-pattern/action
(lambda (pattern action)
(cons pattern action)))

(define pattern car)
(define action cdr)

We start building our list of pattern/action pairs by constructing a list with just one
pair:

(define movie-p/a-list
(1ist (make-pattern/action

>(who is the director of ...)

(lambda (title)
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))))

We will be extending this list throughout the rest of the section.
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P oecie 725

Add a pattern of the form (who acted in ...) to your program by adding the
appropriate pattern/action pair to movie-p/a-1list and reevaluating this definition.
What other patterns can you add?

To make answer-by-pattern work, we still need to write the procedures
matches? and substitutions-in-to-match. To begin with, suppose that all of
our patterns have the same form as (who is the director of ...) or (who
acted in ...). Therefore, a pattern would be a list of symbols; the last symbol
(and only the last) could be the . .. wild card. For a pattern to match a question, all
non-wild card symbols in the pattern must be equal to the corresponding symbols in
the question. Beyond these equal symbols, if the pattern ends with the . . . wild card,
there must be one or more additional symbols at the end of the question. Thus, to
write matches?, we need to cdr down both the pattern and the question, checking
that the cars are equal. We should stop if either of the two lists is empty, if the ... wild
card is the car of the pattern list, or if the two cars are not equal:

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))
((null? question) #f)
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)
(cdr question)))
(else #£))))

The procedure substitutions-in-to-match will be very similar to matches?
in that it will get two arguments, a pattern and a question. However, substi-
tutions-in-to-match will be called only when these two lists match. It needs
to return a list of the substitutions for the wild cards in the pattern that will
make it match the question. Currently, we are assuming that there will only
be one substitution, which is the list of symbols that are matched by the ...
wild card. However, we will soon extend the definitions of both matches? and
substitutions-in-to-match so that patterns can contain more than one wild
card. Thus, your substitutions-in-to-match should return a one-element list,
where the one element is the list of symbols that matches the . .. wild card, as follows:

(substitutions-in-to-match ’(foo ...)
> (foo bar baz))
((bar baz))



7.6 An Application: A Movie Query System " 197

> Exercise 7.26

Write the procedure substitutions-in-to-match. Be sure to return a list con-
taining the list of symbols that are matched by the ... symbol. Note: You needn’t
use the whole query system to test whether substitutions-in-to-match works.
Instead, you could check whether you have interactions like the preceding one.
This note applies as well to later exercises that ask you to extend matches? and
substitutions-in-to-match.

P eecise 727

Test the whole query system by evaluating the expression (query-loop).
At this point, a typical question/answer might look like

(who is the director of amarcord)
((federico fellini))

Note that the answer is a list containing the director’s name, which is itself a list.
This is because movies-satisfying is finding the director of each of the movies
called amarcord, even though there’s only one. Asking for the actors in a particular
movie is even uglier; you get a list containing the list of the actors” names, which
are themselves lists.

We can get better looking output by writing a procedure called the-only-
element-in and changing the action for finding the director of a movie to

(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))

The procedure the-only-element-in has a single parameter, which should be
a list. If this list has only one element in it, the-only-element-in returns that
element.

> Exercise 7.28

What should it return if there are no elements in the list? What if there are two or
more? Write this procedure, and use it to modify the action for finding the actors of
a particular movie.
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Now that our program can recognize very simple patterns, we can start adding

more complicated ones. The next pattern we add to our list is typified by the following
sentences:

(what movies were made in 1955)
(what movie was made in 1964)

What is the common pattern for these two queries? By using an extended pattern

language, we could write it as follows:

(what (movie movies) (was were) made in _)

We have extended our pattern language in two ways:

1.

The symbol _ stands for a single-word wild card (as opposed to the multiword
wild card . . .). Note that we can have as many _’s as we want; each one matches
a single word. Unlike with the ... wild card, the _ wild cards need not appear at

the end of the pattern.

. List wild cards such as (movie movies) and (was were) in the pattern are

more restricted versions of the _ wild card. A wild card of either type must be
matched by a single word. However, the _ wild card can be matched by any word
at all, whereas a list wild card can be matched only by one of its elements. Thus,

the wild card (movie movies) can only match movie or movies.

Here’s how we can extend matches? to account for the second extension to our
pattern language. We use the Scheme predicate 1ist?, which returns true if the
argument is a list, and also once again use member to test for list membership:

(define matches?

(lambda (pattern question)
(cond ((null? pattern) (null? question))
((null? question) #f)
((1ist? (car pattern))
(if (member (car question) (car pattern))
(matches? (cdr pattern)
(cdr question))
#£))
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)
(cdr question)))
(else #£))))
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Exercise 7.29

i

Fxtend matches? so that it also checks for the _ wild card. Remember that this is a
wild card for a single word. Also, remember that there can be more than one _ in a
single pattern and that they need not be at the end of the pattern.

Exercise 7.30

i

Extend substitutions-in-to-match to account for both of these extensions. It
should return the list of substitutions, one for each wild card.

Using these extended versions, we can redefine movie-p/a-1list as follows:

(define movie-p/a-list
(1ist (make-pattern/action
>(who is the director of ...)
(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director))))
(make-pattern/action
’(what (movie movies) (was were) made in _)
(lambda (noun verb year)
(movies-satisfying
our-movie-database
(lambda (movie) (= (movie-year-made movie) year))
movie-title)))))

Note that the action for this new pattern totally ignores the first two substitutions.
The substitutions for the first two wild cards in (what (movie movies) (was
were) made in _) are often called noise words because they are not used in the
corresponding action. Not all list wild cards are used for noise words, however.
Suppose that instead of the pattern (what (movie movies) (was were) made
in _), we used (what (movie movies) (was were) made (in before after
since) _). The corresponding action would still ignore those first two noise words,
but it would need to know the substitution for the third wild card in order to know
which comparison operator to use.



200

Chapter 7 Lists

P oecie 731

What would the action corresponding to (what (movie movies) (was were)
made (in before after since) _) be? Remember, because the pattern con-
tains four wild cards, the action procedure should get four arguments. It ignores the
first two of these and uses the third and fourth to construct a predicate. Note that
the third argument is a symbol; you will need to use that symbol to decide which
comparison to do.

P oecie 732

Add a pattern/action for the pattern

(what (movie movies) (was were) made between _ and _)

P ercise 733

What if the user asks for the director of “Godfather,” which is listed in our database
as “The Godfather”? As it stands, the program will respond that it doesn’t know, even
though it really does have the movie in its database. The point is that the symbol
the rarely contributes significant information as to the movie’s title. Similarly the
symbols a and an add little significant information.

Write a predicate that compares two titles but ignores any articles in either title.
Where would you use this predicate in the interface?

} Exercise 7.34

It would be nice if we could add patterns of the form

(when was the godfather made)
(when was amarcord made)

The pattern could be (when was ... made), but unfortunately, matches? and
substitutions-in-to-match require that the ... wild card occur at the end of
the pattern, because as written, the . .. absorbs the remainder of the sentence.

Extend matches? and substitutions-in-to-match to allow for patterns hav-
ing only one occurrence of the ... wild card but where that occurrence need not
be at the end of the pattern. Hint: If the pattern starts with ... and is of length n,
and the sentence is of length m, and there can be no additional ... wild cards in
the rest of the pattern, then how many words must the ... match up with?
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Using these extended versions, add a pattern/action for the pattern

(when was ... made)

It you allow more than one ... in the same pattern, there can be more than one
set of substitutions that makes the pattern match a sentence. For example, if the
pattern is (do you have ... in ...), and the sentence is (do you have boyz

in the hood in the store), the pattern will match not only if you substitute
“boyz in the hood” for the first wild card and “the store” for the second but also
if you substitute “boyz” for the first wild card and “the hood in the store” for the
second wild card.

Redesign substitutions-in-to-match so it returns a list of all the possible
sets of substitutions that make the pattern match the sentence, rather than just one
set. Allow multiple instances of . .. in the same pattern. You'll need to make other
changes in the way the program uses substitutions-in-to-match. You can also
redesign the program to eliminate matches?, because a pattern matches if there are
one or more sets of substitutions that make it match.

> Exercise 7.36

Add pattern/action pairs that allow the user to ask other questions of your own
choosing. Try to make the patterns as general as possible, for example, by allowing
singular and plural as well as past and present tenses. Also allow for the various ways
the user might pose the query.

P eecise 737

Earlier, we said that the query system reads the user’s questions as lists of symbols.
We were stretching the truth, as illustrated by the query:

(what movie was made in 1951)

The last element of that question is not a symbol; it’s the number 1951. This raises
an interesting point. Because it is a number, it can be compared to other numbers
using the = operator. However, consider what would happen if we had the question

(what movie was made in Barcelona)

In this case, the action procedure attempts to compare the symbol Barcelona with
the year each movie was made using the = operator, and because Barcelona isn't a



202 u Chapter 7 Lists

number, an error is signaled. The whole problem here is that the _ is too general; it
will match anything at all and not just a number. Change the pattern language (and
the query system) to allow wild cards that are predicates such as number?.

> Exercise 7.38

The pattern (what (movie movies) (was were) made in _) would match
questions such as (what movie were made in 1967). To enforce grammatical
correctness, we would need to change our pattern language so that it would allow
wild cards that provide a choice among alternative lists of words rather than simply
among single words. One example of this would be the pattern

(what ((movie was) (movies were)) made in _)

Make the appropriate changes in the query system to allow for patterns of this type.

q’ Is There More to Intelligence Than the Appearance of Intelligence?

The natural language interface presented in this section is quite clearly unintelli-
gent. It has no real understanding of the sentences it accepts as input or produces
as output—it is just mechanically matching patterns and spitting out canned re-
sponses. Yet if you ignore little things like punctuation and capitalization (which
are easy, but uninteresting, to fix), the dialog between the system and the user
could easily be mistaken for one between two humans.

Of course, the illusion only holds up as long as the input sentences are well
suited to the patterns and actions that are available. However, as we add more
patterns, the range of coverage gets larger. What if we also added progressively
more and more sophisticated kinds of pattern-matching, and stored data about

more and more topics? Presumably it would get harder and harder to distinguish
the system from an intelligent being—yet it would still be every bit as much
a mechanical “symbol pusher” as the current system. What if this progression
were taken to such extremes that no one could tell the difference between the
system’s behavior and that of a human? Even if no one ever achieves this feat of
programming, the hypothetical question has already provoked much philosophical
debate.

Some people, including most mainstream computer scientists, apply the op-
erational stance to intelligence: If it acts intelligent, it is intelligent. The idea
that an intelligent entity could be (at least hypothetically) the endpoint in a

(Continued)
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-j’ Is There More to Intelligence Than the Appearance of Intelligence?

progression of progressively fancier mechanistic symbol pushers isn’t bothersome
to these people. There is no inherent contradiction between “mechanistic” and
“intelligent” because one refers to how the behavior is produced, and the other
refers to the nature of the behavior. Perhaps no mechanistic symbol-pushing
system could ever produce behavior that matched that of humans—after all, not
all kinds of mechanisms can be used to produce all kinds of results. But, these
people argue, if such a system ever did produce behavior like that of humans,
we would have no choice but to accept it as intelligent—after all, what else
could “intelligent” mean other than “behaving intelligently”? This operational
stance regarding intelligence was subscribed to by Alan Turing, among others,
as described in the biographical sketch of him in Chapter 5, and is frequently
referred to as the Turing test definition of intelligence.

On the other hand, some people (of whom the most well known is the philoso-
pher John Searle) say that if every program in our progression is a mechanical
symbol pusher, every one of them is operating on tokens that to us may bring
real things like people and movies to mind, but to the program are completely
content-free groupings of letters. The only sense in which the sentences can be
said to be “about movies” is that we humans can successfully associate them with
movies. To the computer, there is nothing but the words themselves. This is every
bit as true for the hypothetical endpoint of our evolution, which is indistinguish-
able in its behavior from a human as it is for the crude version presented in this
section. Even flawless conversation “about movies” is only truly “about movies”
for us humans, this group of philosophers would argue —to the computer, even
the hypothetical flawless conversation is just a string of words. Because Searle
made this point using a story about being locked in a room following precise
rules for processing things that were to him just squiggles, but to certain outsiders
made sense as Chinese text, this argument against the Turing test definition of
intelligence is frequently called the Chinese room argument.

A related point, which has also been persuasively argued by Searle, is that we
humans can do things in our minds, such as liking a movie, whether or not we
choose to utter the string of words that conventionally expresses this state, whereas
there is no particular reason to assume that some mechanical system that utters
“I like Boyz N the Hood” really does like the movie or even is the kind of thing
that is capable of liking. When other people state their likes, we may or may not
trust them to have honestly done so, but at least we accept that they can have
likes because we have likes and the other people are similar to us. For a dissimilar
thing, such as a computer program, we don’t have any reason to believe there are
truly any likes inside the shell of statements about likes. We have no reason to

(Continued)
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-j’ Is there more to intelligence? (Continued)

suppose the program is the kind that could lie about its likes, any more than that
it could tell the truth, because there is nothing we can presume the existence of
that would form the standard against which a purported like would be judged. In
a fellow human, on the other hand, we presume that there are “real likes” and
other mental states inside because we feel them in ourselves.

In short, Turing prefers to define intelligence in terms of behavior we can
observe, whereas Searle would prefer to define it in terms of internal mental
states. Searle presumes that a mute, paralyzed human being has such states and
reserves judgment on flawlessly communicating computer programs.

Review Problems
I> Exercise 7.39

Prove using induction on n that the following procedure produces a list of length n.

(define sevens
(lambda (n)
(if (=n 0)
> ()
(cons 7

(sevens (- n 1))))))

I> Exercise 7.40

Suppose that f1,f,. .., f, are all functions from real numbers to real numbers. The
functional sum of f1,f,...,f, is the function that, when given a number x, returns
the value fi(x) + fa(x) + - - - + f,(x). Write a procedure function-sum that takes a
list of functions and returns the functional sum of those functions. For example

(define square
(lambda (x) (¢ x x)))

(define cube
(lambda (x) (* x (* x x))))

((function-sum (list square cube)) 2)
12
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[> Exercise 7.41

Wirite an iterative version of the following procedure:

(define square-sum
(lambda (1st)
(if (null? 1st)
0

(+ (square (car 1lst))

(square-sum (cdr 1st))))))
I> Exercise 7.42

Write a procedure called apply-all that, when given a list of functions and a

number, will produce the list of the values of the functions when applied to the
number. For example,

(apply-all (list sqrt square cube) 4)
(2 16 64)

[> Exercise 7.43

Prove by induction on n that the following procedure produces a list of 2n seventeens:

(define seventeens
(lambda (n)
(if (= n 0)
>0

(cons 17 (cons 17 (seventeens (- n 1)))))))

I> Exercise 7.44

Consider the following two procedures. The procedure last selects the last element
from a list, which must be nonempty. It uses length to find the length of the list.

(define last
(lambda (1st)
(if (= (length 1st) 1)
(car 1st)
(last (cdr 1st)))))
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(define length
(lambda (1st)
(if (null? 1st)
0
(+ 1 (length (cdr 1st))))))

a. How many cdrs does (length Ist) do when Ist has n elements?
b. How many calls to length does (last [st) make when Ist has n elements?

c. Express in O notation the total number of cdrs done by (last Ist), including
cdrs done by length, again assuming that Ist has n elements.

d. Give an exact formula for the total number of cdrs done by (1ast Ist), including
cdrs done by length, again assuming that Ist has n elements.

[> Exercise 7.45

Lists are collections of data accessible by position. That is, we can ask for the first
element in a list, the second, ..., the last. Sometimes, however, we'd prefer to have
a collection of data accessible by size. In other words, we’d like to be able to ask for
the largest element, the second largest, ..., the smallest.

In this problem, we’ll simplify this goal by restricting ourselves to collections
containing exactly two real numbers. Thus the two selectors will select the smaller
and larger of the two numbers. Here are some examples of this data abstraction
in use; the constructor is called make-couple. Note that the order in which the
argument values are given to the constructor is irrelevant, because selection is based
on their relative size.

(define x (make-couple 2 7))
(define y (make-couple 5 3))
(define z (make-couple 4 4))

(smaller x) (larger x)
2 7
(smaller y) (larger y)
3 5
(smaller z) (larger z)
4 4

Write two versions of make-couple, smaller, and larger. One version should
have make-couple compare the two numbers, and the other version should leave
that to smaller and larger.
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[> Exercise 7.46

Write a higher-order procedure make-1list-scaler that takes a single number scale
and returns a procedure that, when applied to a list Ist of numbers, will return the

list obtained by multiplying each element of Ist by scale. Thus, you might have the
following interaction:

(define scale-by-5 (make-list-scaler 5))

(scale-by-5 (1 2 3 4))
(5 10 15 20)

I> Exercise 7.47

Write a procedure map-2 that takes a procedure and two lists as arguments and
returns the list obtained by mapping the procedure over the two lists, drawing the
two arguments from the two lists. For example, it would yield the following results:

(map-2 + (1 2 3) ’(2 0 -5))
(32 -2

(map-2 * (1 2 3) (2 0 -5))
(2 0 -15)

Wirite this procedure map-2. You may assume that the lists have the same length.

I> Exercise 7.48

Given the following procedure:

(define subl-each
(lambda (nums)
(define help
(lambda (nums results)
(if (null? nums)
(reverse results)
(help (cdr nums)

(cons (- (car nums) 1) results)))))
(help nums ’>())))

Evaluate the expression (subl-each ’(5 4 3)) using the substitution model of
evaluation. Assume reverse operates in a single “black-box” step, but otherwise
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show each step in the evolution of the process. What kind of process is generated by
this procedure?

[> Exercise 7.49

Given a predicate that tests a single item, such as positive?, we can construct an
“all are” version of it for testing a list; an example is a predicate that tests whether all
elements of a list are positive. Define a procedure all-are that does this; that is, it
should be possible to use it in ways like the following:

((all-are positive?) ’(1 2 3 4))
#t

((all-are even?) (2 4 5 6 8))
#t

[> Exercise 7.50

Consider the following procedure (together with two sample calls):

(define repeat
(lambda (num times)
(if (= times 0)
> ()

(cons num (repeat num (- times 1))))))

(repeat 3 2)
(3 3

(repeat 17 5)
(17 17 17 17 17)

a. Explain why repeat generates a recursive process.
b. Write an iterative version of repeat.

I> Exercise 7.51

If a list contains multiple copies of the same element in succession, the list can be
stored more compactly using run length encoding, in which the repeated element is
given just once, preceded by the number of times it is repeated. The expand proce-
dure given here is designed to decompress a run-length-encoded list; for example, it
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could be used as follows to expand to full size some 1950s lyrics we got from Abelson
and Sussman’s text:

(expand ’(get a job sha 8 na get a job sha 8 na wah 8 yip sha
boom))

(get a job sha na na na na na na na na get a job sha na na na na

na na na na wah yip yip yip yip yip yip yip yip sha boom)

a. Given the following definition of the expand procedure, show the key steps in
evaluating (expand ’ (3 ho merry-xzmas)) using the substitution model.

b. Does this procedure generate an iterative or recursive process? Justify your answer.

(define expand
(lambda (1st)
(cond ((null? 1st) 1st)
((number? (car 1st))
(cons (cadr 1st)
(expand (if (= (car 1lst) 1)
(cddr 1st)
(cons (- (car 1st) 1)
(cdr 1st))))))

(else
(cons (car 1lst)
(expand (cdr 1st)))))))

[::> Exercise 7.52

Suppose you have a two-argument procedure, such as + or *, and you want to apply
it elementwise to two lists. For example, the procedures 1ist+ and list* would
apply + and *, respectively, to the corresponding elements of two lists as follows:

(1ist+ (1 2 3) (2 4 6))
(36 9)

(1ist* (1 2 3) (2 4 6))
(2 8 18)

Because the two procedures 1ist+ and list* are so similar in form, it makes
sense to write the higher-order procedure “factory” make-1list-combiner that gen-
erates the two procedures 1ist+ and listx* as follows:
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(define list+
(make-list-combiner +))

(define list*
(make-list-combiner *))

Wirite the procedure make-1ist-combiner. You may assume that the two list argu-
ments have the same length.
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For more information about perfect shuffles, including their applications in magic
and computing, see Morris [38].

Turing’s operational definition of intelligence is given in [52], and Searle’s
Chinese-room argument, in [47]. Searle has more recently (and more persuasively)
made the case for mental states in his book The Rediscovery of the Mind [48].




CHAPTER EIGHT

Trees

Binary Search Trees

Joe S. Franksen, one of the co-owners of the video store that uses your query system,
has been getting a lot of customer complaints that searching for a video by director
takes too long. Now he’s hired us to try to fix the problem. The problem doesn’t
appear to be in the query-matching part of our system. Therefore, we will need to
look at the procedures we used for looking up a particular director or video.

Recall that we used a list of video records, and in Exercise 7.22¢ you wrote a
procedure for searching for the ones by a given director. This procedure has to
search through the entire list of movies, even if the ones by the specified director
happen to be near the front, because it has no way of knowing that there aren’t any
more movies by the same director later in the list. When Franksen’s video rental
business was only a small part of his gas station/convenience store, this was no big
deal because he only had about a hundred videos. But now that he’s expanded his
business and acquired 10,000 videos, the time it takes to find one becomes noticeably
long.

Are there better ways to structure the list of videos so that finding those by a
particular director won’t take so long? One idea would be to sort the list, say,
alphabetically by the director’s name. When we search for a particular director, we
can stop when we reach the first video by a director alphabetically “greater than” the
one we're searching for.

Is this approach any better? A lot depends on the name of the director. If we're
searching for videos directed by Alfred Hitchcock, the search will be relatively quick

212
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(because this name begins with an A), whereas if we're looking for videos directed
by Woody Allen, we will still need to search through essentially the entire list to get
to W. We can show that, on the average, using a sorted list will take about half the
time that using an unsorted one would. From an asymptotic point of view, this is not
a significant improvement.

We can find things in a sorted list much faster using what's called a divide and
conquer approach. The main idea is to divide the list of records were searching
through in half at each point in our search. We start by looking in the middle of
the list. If the record we're looking for is the same as the middle element of the
list, we are done. If it's smaller than the middle record, we only need to look in
the first half of the list, and if it's bigger, we only need to look in the second half.
This way of searching for something is often called binary search. Because each pass
of binary search at worst splits the search space in half, we would expect the time
taken to be at worst a multiple of log(n), where n is the size of the list. (In symbols
we say that the time is O(log(n)), pronounced “big oh of log en,” which means
that for all but perhaps finitely many exceptions, it is known to lie below a constant
multiple of log(n).) For large values of n, this is an enormous improvement because,
for example, log,(1,000,000) = 20, a speed-up factor of 1,000,000/20 = 50,000.

But we run into trouble when we try to code this up because we can’t get to the
middle of a list quickly. In fact, the time it takes to get that middle element is long
enough to make the binary search algorithm as slow as doing the straightforward
linear search that constituted our first and second approaches. Can we do something
to our list that is more drastic than just sorting it? In other words, can we somehow
arrange the video records so that we could efficiently implement the binary search
algorithm? We would need to be able to easily access the middle element (i.e.,
the one where half the remaining records are larger than it and half are smaller).
We would also need to be able to access the records that are smaller than the
middle record, as well as those which are larger. Furthermore, both halves should
be structured in exactly the same way as the whole set of video records, so we can
search the relevant half in the same way.

How do we create such a structure? The answer is to use a data structure based on
the above description. Our new data type will have three elements: one movie record
(the “middle” one) and two collections of movie records (those that are smaller and
those that are larger). This way, we can get at any of the three parts we need by just
using the appropriate selector.

This type of structure is called a binary search tree. There is the hint of a recur-
sive definition in the preceding discussion: Most binary search trees have a middle
element and two subtrees, which are also binary search trees. We need to make this
more precise. First, we skipped over the base case: an empty tree. Secondly, we need
to define what we mean by a middle element. This is simply one that is greater than
every element in one subtree and less than every element in the other subtree. Thus
we can make the following definition:
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Binary search tree: A binary search tree is either empty or it consists of three
parts: the root, the left subtree, and the right subtree. The left and right subtrees
are themselves binary search trees. The root is an element that is greater than or
equal to each of the elements in the left subtree and less than or equal to each of
the elements in the right subtree.

Notice that there is no guarantee in this definition that the root is the median
element (i.e., that half of the elements in the tree are less than it and half are greater
than it). When the root of a tree is the median, and similarly for the roots of the
subtrees, sub-subtrees, etc., the tree will be as short as possible. We will see in the
next section that such trees are the binary search trees that are most efficient for
searching.

For the remainder of this section, we will work with two kinds of binary search
trees, ones that have numbers as their elements and ones that have video records.
Because trees with numbers are easier to conceptualize, we will write procedures
that work with them first. Then we can easily modify these procedures to work with
trees of video records.

In the numerical trees, we will assume that there are no duplicate items. In this
case, we say that the tree is strictly ordered. In the video record trees, there are
probably lots of “duplicates.” Recall that we compare two records by comparing their
directors. Because some people direct many videos, we would expect to see one entry
for each of these videos in the tree.

Binary search trees can be represented visually by diagrams in which each tree is a
box. Empty trees are represented by empty boxes, and nonempty trees are represented
by boxes containing the root value and the boxes for the two subtrees. For example,
a small binary search tree with seven elements looks like the following:

Note that the root of the tree, which is 4, is at the top, and the subtrees branch
downward. For some obscure reason, mathematicians and computer scientists almost
always draw their trees so that they grow upside down. The left subtree of this example
tree has 2 for its root. Notice that this subtree is a box much like the outer one, and
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so we can talk about its subtrees in turn (with roots 1 and 3), just as we talked about
the subtrees of the original tree.

This sort of boxes-within-boxes diagram is probably the best way to think of a tree
because it emphasizes the recursive three-part structure. However, another style of
diagram is so traditional that it is worth getting used to as well. In this traditional
style of tree diagram, the same binary search tree would look like the following:

Here you have to mentally recognize the whole collection of seven “nodes” as a
single tree, with the top node as the root, the three nodes on the left grouped
together in your mind as one subtree, and the three nodes on the right similarly
grouped together as the other subtree. You also have to remember that the “leaves”
at the bottom of the tree (1, 3, 5, and 7) are really roots of trees with empty subtrees
that are invisible in this style of diagram.

We can implement binary search trees by using lists with three elements. Using
the convention that the first element is the root, and the second and third elements
are the left and right subtrees, respectively, the list representation of the preceding
tree would be

4 2000 0)@O 0wk Oo o) aooion
Its tree structure is much easier to see if we write it on several different lines:

(4
(2
a0 O
CHONODD)
(6
G O O)
T O O

What sort of operations do we need to implement binary search trees? We use
two constructors:
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(define make-empty-tree
(lambda (O *()))

(define make-nonempty-tree
(lambda (root left-subtree right-subtree)
(1ist root left-subtree right-subtree)))

and four selectors:

(define empty-tree? null?)
(define root car)
(define left-subtree cadr)

(define right-subtree caddr)

These procedures are all we need to implement the binary search algorithm
given above. Initially, we assume that we're dealing with a binary search tree that
has numerical elements and does not have duplicate entries:

(define in?
(lambda (value tree)

(cond

((empty-tree? tree) #f)

((= value (root tree)) #t)

((< value (root tree)) (in? value (left-subtree tree)))
(else ; the value must be greater than the root
(in? value (right-subtree tree))))))

Notice how closely this procedure follows the definition of binary search trees. If
the tree is empty, the value can’t be in the tree. On the other hand, if the tree is not
empty, the value is either equal to the root or it’s in one of the subtrees. Furthermore,
we can tell which subtree it’s in by how it compares to the root.

There are two related points worth noting here because they will crop up time
and time again. One is the parallelism between the recursive structure of the data
and that of the procedure that operates on it. The other is that our one-layer thinking
about the design of the procedure goes along with a one-layer perspective on the
structure of the data. We don’t think about searching through a succession of values
in the tree, but rather about looking at the root and then one or the other subtree.
Similarly, we don’t view the tree as composed of a bunch of values, but rather of
a root and two subtrees. We can summarize these points as a general principle for
future reference:
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The one-layer data structure principle: Hierarchical data structures should not
be thought of in their entirety but rather in a one-layer fashion, as a recursive
composition of substructures. This one-layer thinking guides one to write recursive
procedures that naturally parallel the recursive structure of the data.

Exercise 8.1

i

Wirite a procedure called minimum that will find the smallest element in a nonempty
binary search tree of numbers.

Exercise 8.2

i

Write a procedure called number-of-nodes that will count the number of elements
in a binary search tree.

In the video catalog example, we will want a version of in? that returns a list
of all the videos directed by a given person. Therefore, we will need a procedure
that takes a video record and a director’s name and determines how the name of
the director of the video compares alphabetically to the given name. The director
field of the video record is often called the key field; the particular name that we're
searching for is called the key value. Now, any two names could be identical, the
first one could come before the second in alphabetical order, or the first one could
come after the second. Therefore we’ll assume our comparison procedure returns
one of three symbols, =, <, or >.

(define compare-by-director
(lambda (video-record name)
; Returns one of the symbols <, =, or > according to how the
; director in video-record compares alphabetically to name.
; For example, if video-record’s director alphabetically
; precedes name, < would be returned.
the code implementing this would go here))

We're now in a position to modify in? so that it can list all of the videos in a
binary search tree that are directed by a given person. The basic idea is to traverse
the tree looking for a node whose director is the same as the given key value. Once
we find such a subtree, we must still search both halves of it, looking for all of the
other records that match the key value. This may seem to defeat the efficiency of
the procedure. However, it can be shown that so long as the tree isn’t unnecessarily
tall and skinny, this search method is in fact very efficient.

To make our procedure work generally, and not just for the director, let’s suppose
that we have a general comparison operator (such as compare-by-director). Such
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a procedure takes a video record and a key value, compares the appropriate field of
the record to the key value, and returns exactly one of the symbols =, <, or >. We can
then write a procedure that returns the list of records matching a given key value as
follows:

(define list-by-key
(lambda (key-value comparator tree)
(if (empty-tree? tree)
»O
(let ((comparison-result (comparator (root tree)
key-value)))
(cond
((equal? comparison-result ’=)
(cons (root tree)
(append (list-by-key key-value comparator
(left-subtree tree))
(1ist-by-key key-value comparator
(right-subtree tree)))))
((equal? comparison-result ’<)
(1ist-by-key key-value comparator
(right-subtree tree)))
(else ;it must be the symbol >
(1ist-by-key key-value comparator
(left-subtree tree))))))))

Of course, because we haven’t explained how to do alphabetical comparison,
youre not in a very good position to complete the compare-by-director pro-
cedure above. You could, of course, try list-by-key out with an analogous
compare-by-year instead, or alternatively consult a Scheme reference manual to
learn how to do alphabetical comparisons. However, our main point was to illustrate
the nature of accessing a binary search tree, not to get into the details of the specific
kind of comparison used.

The procedure 1ist-by-key typifies a process called tree traversal. We call it a
preorder traversal because we consider the root of the tree first and then the left and
right subtrees, in that order. When the root of the tree should be included in the
result, it is consed on in front of the elements from the left and right subtrees. The
lists from the left and right subtrees are appended together using a built-in procedure
we haven’t seen before, append. Here is a simpler example of append:

(append ’(a b c) (1 2 3 4))
(abcl234)

We can use this idea of preorder traversal with cons and append to produce a list
of all the nodes in the tree:
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(define preorder
(lambda (tree)
(if (empty-tree? tree)
>0
(cons (root tree)
(append (preorder (left-subtree tree))
(preorder (right-subtree tree)))))))

The append in this procedure can be avoided if we generalize to a preorder-
onto procedure that conses the tree’s nodes onto the front of a specified list. This is
analogous to our definition of reverse in terms of reverse-onto and is motivated
by the same concern: efficiency.

(define preorder
(lambda (tree)
(preorder-onto tree ’())))

(define preorder-onto
(lambda (tree list)
(if (empty-tree? tree)
list
(cons (root tree)
(preorder-onto (left-subtree tree)
(preorder-onto (right-subtree tree)

list))))))

> Exercise 8.3

Use this technique to eliminate the append from list-by-key.

One of the problems with preorder is that the list it produces is not sorted. We
can get a list of the nodes that’s sorted by doing what’s called an in order traversal of
the tree. The “in” refers to the fact that you include the root of the tree in between
the left and right subtrees:

(define inorder
(lambda (tree)
(if (empty-tree? tree)
*O
(append (inorder (left-subtree tree))
(cons (root tree)
(inorder (right-subtree tree)))))))
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Now when we call inorder on a binary search tree, the resulting list has the elements
in it listed in increasing order.

Exercise 8.4

i

Again, eliminate append by using an “onto” parameter.
b J

Exercise 8.5

i

The third standard way of traversing a tree is called a postorder traversal. Here, you
enumerate the left subtree, then the right subtree, and finally the root. Write a
procedure that takes a binary search tree and produces the list of nodes that describe
a postorder traversal of the tree.

Exercise 8.6

i

Suppose we want to create a new binary search tree by adding another element to
an already existing binary search tree. Where is the easiest place to add such an
element? Write a procedure called insert that takes a number and a binary search
tree of numbers and returns a new binary search tree whose elements consist of the
given number together with all of the elements of the binary search tree. You may
assume that the given number isn’t already in the tree.

Exercise 8.7

i

8.2

Using the procedure insert, write a procedure called 1ist->bstree that takes a
list of numbers and returns a binary tree whose elements are those numbers. Try this
on several different lists and draw the corresponding tree diagrams. What kind of list
gives you a short bushy tree? What kind of list gives a tall skinny tree?

Efficiency Issues with Binary Search Trees

Now that we have some experience with binary search trees, we need to ask if they
really are a better structure for storing our catalog of videos than sorted lists. In
order to do that, we first look at a general binary tree and get some estimates on the
number of nodes in a tree. We start with some definitions.

If we ignore the ordering properties that are part of a binary search tree’s definition,
we get something called a binary tree. More precisely,
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Binary tree: A binary tree is either empty or it consists of three parts: the root,
the left subtree, and the right subtree. The left and right subtrees are themselves
binary trees.

Needless to say, binary search trees are special cases of binary trees. Furthermore, we
set up the basic constructors and selectors for binary search trees so that they work
equally well for implementing binary trees.

There is an enormous amount of terminology commonly used with binary trees.
The elements that make up roots of binary trees (or roots of subtrees of binary trees)
are called the nodes of the tree. In the graphical representation of a tree, the nodes
are often represented by circles with values inside them. If a particular node in a
binary tree is the root of a subtree that has two empty subtrees, that node is called
a leaf. On the other hand, if a node is the root of a subtree that has at least one
nonempty subtree, that node is called an internal node. If you look at the graphical
representation, the leaves of a tree are the nodes at the very bottom of the tree and
all of the rest of the nodes are internal ones. Of course, if we drew out trees with
the root at the bottom of the diagram, the leaves would correspond more closely to
real leaves on real trees. The two subtrees of a binary tree are often labeled as the
left subtree and the right subtree. Sometimes these subtrees are called the left child
or the right child. More commonly, we define a parent-child relationship between
nodes. If an internal node has a nonempty left subtree, the root of that left subtree
is called the left child of the node. The right child is similarly defined. The internal
node is the parent node of its children. The parent-child relationship is indicated
graphically by drawing an edge between the two nodes. The root of the whole tree
has no parent, all internal nodes have at least one and at most two children, and the
leaves in a tree have no children at all.

Imagine traveling through a binary tree starting at the root. At each point, we
make a choice to go either left or right. If we only travel downward (i.e., without
backing up), there is a unique path from the root to any given node. The depth of a
node is the length of the path from the root to that node, where we define the length
of a path to be the number of edges that we passed along. For example, if we travel
from 7 to 2 to 3 in the tree
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we take a path of length 2. The height of a tree is the length of the longest path
from the root down to a leaf without any doubling back. In other words, it is the
maximum depth of the nodes in the tree. Thus, the height of the above tree is 2
because every path from the root to a leaf has length 2. According to our definition,
a tree having a single node will have height 0. The height of an empty tree is
undefined; in the remainder of this section, we'll assume all the trees we're talking
about are nonempty.

Exercise 8.8

i

Write a predicate that will return true if the root node of a tree is a leaf (i.e., the tree
has only one node).

Exercise 8.9

i

Write a procedure that will compute the height of a tree.

Suppose we have a binary tree of height h. What is the maximum number of
nodes that it can have? What is the maximum number of leaves that it can have?
These maximum values occur for complete trees, where a complete tree of height h is
one where all of the leaves occur at depth h and all of the internal nodes have exactly
two children. (Why is the number of leaves maximum then?) Let’s let leaves(h) and
nodes(h), respectively, denote the maximum number of leaves and nodes of a tree
of height h and look at a few small examples to see if we can determine a general
formula. A tree of height 0 has one node and one leaf. A tree of height 1 can have at
most two leaves, and those plus the root make a total of three nodes. A tree of height
2 can have at most four leaves, and those plus the three above make a maximum of
seven nodes.

In general, the maximum number of leaves doubles each time h is increased by 1.
This combined with the fact that leaves(0) = 1 implies that leaves(h) = 2". On the
other hand, because every node in a complete tree is either a leaf or a node that
would remain were the tree shortened by 1, the maximum number of nodes of a tree
of height h > 0 is equal to the maximum number of leaves of a tree of height h plus
the maximum number of nodes of a tree of height h — 1. Thus, we have derived the
following recursive formula, or recurrence relation:

des(h) = 1 ith=0
nodes leaves(h) + nodes(h — 1) ifth>0
If we take the second part of this recurrence relation, nodes(h) = leaves(h) +

nodes(h — 1), and substitute in our earlier knowledge that leaves(h) = 2", it follows
that when h is positive, nodes(h) = 2" + nodes(h — 1). Similarly, for h > 1, we could
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show that nodes(h—1) = 2"~ +nodes(h—2), so nodes(h) = 2"+ 2" +nodes(h—2).
Continuing this substitution process until we reach the base case of nodes(0) = 1,
we find that nodes(h) = 2" + 21 + 272 + .- + 4 + 2 + 1. This sum can be
simplified by taking advantage of the fact that multiplying it by 2 effectively shifts it
all over by one position, that is, 2 X nodes(h) = 2! + 2" + 20"l 4+ ... + 8§+ 4 + 2,
The payoff comes if we now subtract nodes(h) from this:

2 X nodes(h) = 21 + 20 + 2h 1o 4 4 42
—  nodes(h) = 2h b=l . 4144941
nodes(h) = 21 1

Exercise 8.10

i

You can also use the recurrence relation together with induction to prove that
nodes(h) = 2" — 1. Do so.

Exercise 8.11

i

In many applications, binary trees aren’t sufficient because we need more than two
subtrees. An m-ary tree is a tree that is either empty or has a root and m subtrees,
each of which is an m-ary tree. Generalize the previous results to m-ary trees.

Now suppose we have a binary tree that has n nodes total. What could the height
of the tree be? In the worst-case scenario, each internal node has one nonempty
child and one empty child. For example, imagine a tree where the left subtree of
every node is empty (i.e., it branches only to the right). (This will happen with a
binary search tree if the root at each level is always the smallest element.) In this
case, the resulting tree is essentially just a list. Thus the maximum height of a tree
with n nodes is n — 1.

What about the minimum height? We saw that a tree of height h can accommodate
up to 2"*1 — 1 nodes. On the other hand, if there are fewer than 2" nodes, even
a tree of height h — 1 would suffice to hold them all. Therefore, for h to be the
minimum height of any tree with n nodes, we must have 2" = n < 2"*1.If we take
the logarithm base 2 of this inequality, we find that

h=log,(n)<h+1

In other words, the minimum height of a tree with n nodes is [log,(n)]. (The
expression [log,(n)] is pronounced “the floor of log en.” In general, the floor of a
real number is the greatest integer that is less than or equal to that real number.)
Because searching for an element in a binary search tree amounts to finding a
path from the root node to a node containing that element, we will clearly prefer
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trees of minimum height for the given number of nodes. In some sense, such trees
will be as short and bushy as possible. There are several ways to guarantee that a tree
with n nodes has minimum height. One is given in Exercise 8.12. In Chapter 13
we'll consider the alternative of settling for trees that are no more than 4 times the
minimum height.

We now have all of the mathematical tools we need to discuss why and when
binary search trees are an improvement over straightforward lists. We will consider the
procedure in? because it is somewhat simpler than 1ist-by-key. However, similar
considerations apply to the efficiency of 1ist-by-key, just with more technical
difficulties. Remember that with the in? procedure, we are only concerned with
whether or not a given element is in a binary search tree, whereas with 1ist-by-key
we want to return the list of all records matching a given key.

Let’s consider the time taken by the procedure in? on a tree of height h having n
nodes. Searching for an element that isn’t in the tree is equivalent to traveling from
the root of the tree to one of its leaves. In this case, we will pass through at most
h + 1 nodes. If we're searching for an element that is in the tree, we will encounter
it somewhere along a path from the root to a leaf. Because the number of operations
performed by in? is proportional to the number of nodes encountered, we conclude
that in either case, searching for an element in the tree takes O(h) time. If the tree
has minimum height, this translates to O(log(n)). In the worst case, where the height
of the tree is n — 1, this becomes O(n).

Exercise 8.12

In Exercise 8.7, you wrote a procedure list->bstree that created a binary search
tree from a list by successively inserting the elements into the tree. This procedure
can lead to trees that are far from minimum height—surprisingly, the worst case oc-
curs if the list is in sorted order. However, if you know the list is already in sorted order,
you can do much better: Write a procedure sorted-list->min-height-bstree
that creates a minimum height binary search tree from a sorted list of numbers. Hint:
If the list has more than one element, split it into three parts: the middle element, the
elements before the middle element, and the elements after. Construct the whole
tree by making the appropriate recursive calls on these sublists and combining the
results.

> Exercise 8.13

Using sorted-list->min-height-bstree and inorder (which constructs a
sorted list from a binary search tree), write a procedure optimize-bstree that
optimizes a binary search tree. That is, when given an arbitrary binary search tree, it
should produce a minimum-height binary search tree containing the same nodes.
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Exercise 8.14

i

Using list->bstree and inorder, write a procedure sort that sorts a given list.

d’ Privacy Issues

How would you feel if you registered as a child at a chain ice-cream parlor for
their “birthday club” by providing name, address, and birth date, only to find
years later the Selective Service using that information to remind you of your
legal obligation to register for the draft?

This case isn’t a hypothetical one: It is one of many real examples of personal
data voluntarily given to one organization for one purpose being used by a different
organization for a different purpose.

Some very difficult social, ethical, and legal questions occur here. For example,
did the ice-cream chain “own” the data it collected and hence have a right to
sell it as it pleased? Did the the government step outside of the Bill of Rights
restrictions on indiscriminate “dragnet” searches? Did the social good of catching
draft evaders justify the means? How about if it had been tax or welfare cheats or
fathers delinquent in paying child support? (All of the above have been tracked
by computerized matching of records.) Should the computing professionals who
wrote the “matching” program have refused to do so?

The material we have covered on binary search trees may help you to define
ethcient structures to store and retrieve data. However, because many information
storage and retrieval systems are used to store personal information, we urge you
to also take the following to heart when and if you undertake such a design.
The Code of Ethics and Professional Conduct of the Association for Computing
Machinery, or ACM (which is the major computing professional society) contains
as General Moral Imperative 1.7:

Respect the privacy of others

Computing and communication technology enables the collection and exchange of
personal information on a scale unprecedented in the history of civilization. Thus
there is increased potential for violating the privacy of individuals and groups. It is the
responsibility of professionals to maintain the privacy and integrity of data describing
individuals. This includes taking precautions to ensure the accuracy of data, as well
as protecting it from unauthorized access or accidental disclosure to inappropriate
individuals. Furthermore, procedures must be established to allow individuals to
review their records and correct inaccuracies.

(Continued)
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This imperative implies that only the necessary amount of personal information be
collected in a system, that retention and disposal periods for that information be
clearly defined and enforced, and that personal information gathered for a specific
purpose not be used for other purposes without consent of the individual(s). These
principles apply to electronic communications, including electronic mail, and pro-
hibit procedures that capture or monitor electronic user data, including messages,
without the permission of users or bona fide authorization related to system operation
and maintenance. User data observed during the normal duties of system operation
and maintenance must be treated with strictest confidentiality, except in cases where
it is evidence for the violation of law, organizational regulations, or this Code. In
these cases, the nature or contents of that information must be disclosed only to proper
authorities.

Expression Trees

So far, we've used binary trees and binary search trees as a way of storing a collection
of numbers or records. What makes these trees different from lists is the way we
can access the elements. A list has one special element, the first element, and all
the rest of the elements are clumped together into another list. Binary trees also
have a special element, the root, but they divide the rest of the elements into two
subtrees, instead of just one, which gives a hierarchical structure that is useful in
many different settings. In this section we’ll look at another kind of tree that uses this
hierarchical structure to represent arithmetical expressions. In these trees, the way a
tree is structured indicates the operands for each operation in the expression.

Consider an arithmetic expression, such as the one we’d write in Scheme notation
as (+ 1 (* 2 (- 3 5))). We can think of this as being a tree-like structure with
numbers at the leaves and operators at the other nodes:
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Such a structure is often called an expression tree. As we did with binary trees, we
can define an expression tree more precisely:

Expression tree: An expression tree is either a number or it has three parts, the
name of an operator, a left operand and a right operand. Both the left and right
operands are themselves expression trees.

There are several things to notice about this definition:

m  We are restricting ourselves to expressions that have binary operators (i.e., operators
that take exactly two operands).

m We are also restricting ourselves to having numbers as our atomic expressions. In
general, expression trees also include other kinds of constants and variable names
as well.

m There is nothing in the definition that says an expression tree must be written in
prefix order, that is, with the name of the operator preceding the two operands.
Indeed, most people would find infix order more natural. An infix expression has
the name of the operator in between the two operands.

How do we implement expression trees? We will do it in much the same way that
we implemented binary trees, except that we will follow the idea of the last note in
the preceeding list and list the parts of an expression in infix order:

(define make-constant
(lambda (x) x))

(define constant? number?)

(define make-expr
(lambda (left-operand operator right-operand)
(list left-operand operator right-operand)))

(define operator cadr)
(define left-operand car)

(define right-operand caddr)

Now that we have a way of creating expressions, we can write the procedures
necessary to evaluate them using the definition to help us decide how to structure our
code. To buy ourselves some flexibility, we'll use a procedure called look-up-value
to map an operator name into the corresponding operator procedure. Then the main
evaluate procedure just needs to apply that operator procedure to the values of the
operands:
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(define evaluate
(lambda (expr)
(cond ((constant? expr) expr)
(else ((look-up-value (operator expr))
(evaluate (left-operand expr))
(evaluate (right-operand expr)))))))

(define look-up-value
(lambda (name)
(cond ((equal? name ’+) +)
((equal? name ’*) *)
((equal? name ’-) -)
((equal? name ’/) /)
(else (error "Unrecognized name" name)))))

With these definitions, we would have the following interaction:

(evaluate (1 + (2 * (3 - 5))))

-3
> Exercise 8.15

In the preceding example, we've “cheated” by using a quoted list as the expression to
evaluate. This method relied on our knowledge of the representation of expression
trees. How could the example be rewritten to use the constructors to form the
expression?

We can do more with expression trees than just finding their values. For example,
we could modify the procedure for doing a postorder traversal of a binary search tree
so that it works on expression trees instead. In this case, our base case will be when
we have a constant, or a leaf, instead of an empty tree:

(define post-order
(lambda (tree)
(define post-order-onto
(lambda (tree list)
(if (constant? tree)
(cons tree list)
(post-order-onto (left-operand tree)
(post-order-onto
(right-operand tree)
(cons (operator tree) list))))))
(post-order-onto tree ’())))
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If we do a postorder traversal of the last tree shown, we get:

(post-order ’(1 + (2 * (3 - 5))))
(1 235 -x*+)

This result is exactly the sequence of keys that you would need to punch into a

Hewlett-Packard calculator in order to evaluate the expression. Such an expression
is said to be a postfix expression.

Exercise 8.16

i

Define a procedure for determining which operators are used in an expression.

Exercise 8.17

i

Define a procedure for counting how many operations an expression contains.

Note that all of the operators in our expressions were binary operators, and thus
we needed nodes with two children to represent them; we say the operator nodes
all have degree 2. If we had operators that took m expressions instead of just two, we
would need nodes with degree m (i.e., trees that have m subtrees).

The kind of tree we've been using in this section differs subtly from the binary
and m-ary trees we saw earlier in the chapter. In those positional trees, it was possible
to have a node with a right child but no left child, for example. In the ordered trees
were using for expressions, on the other hand, there can’t be a second operand
unless there is a first operand. Other kinds of trees exist as well, for example, trees
in which no distinction is made among the children—none is first or second, left or
right; they are all just children. Most of the techniques and terminology carry over
for all kinds of trees.

m An Application: Automated Phone Books

Have you ever called a university’s information service to get the phone number of a
friend and, instead of talking to a human operator, found yourself following instruc-
tions given by a computer? Perhaps you were even able to look up the friend’s phone
number using the numbers on the telephone keypad. Such automated telephone
directory systems are becoming more common. In this section we will explore one
version of how such a directory might be implemented.

In this version, a user looks up the telephone number of a person by spelling
the person’s name using the numbers on the telephone keypad. When the user has
entered enough numbers to identify the person, the system returns the telephone
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number. Can we rephrase this problem in a form that we can treat using Scheme?
Suppose that we have a collection of pairs, where each pair consists of a person’s
name and phone number. How could we store the pairs so that we can easily retrieve
a person’s phone number by giving the sequence of digits (from 2 to 9) corresponding
to the name? Perhaps our system might do even more: For example, we could have
our program repeatedly take input from the user until the identity of the desired
person is determined, at which point the person’s name and phone number is given.

Notice the similarity between this problem and the video catalog problem con-
sidered in Section 8.1. There we wanted to store the videos in a way that allowed us
to efficiently find all videos with a given director. Our desire to implement binary
search led us to develop the binary search tree ADT. Searching was accomplished
by choosing the correct child of each subtree and therefore amounted to finding the
path from the root node to the node storing the desired value.

We are also searching for things with the automated phone book, but the difference
is the method of retrieval: we want to retrieve a phone number by successively giving
the digits corresponding to the letters in the person’s name. How should we structure
our data in a way that facilitates this type of retrieval? Suppose we use a tree to store
the phone numbers. What type of tree would lend itself to such a search?

If we are going to search by the sequence of digits corresponding to the person’s
name, then these digits could describe the path from the root node to the node
storing the desired value. FEach new digit would get us closer to our goal. The easiest
way to accomplish this is to have the subtrees of a given node labeled (indexed) by
the digits themselves. Then the sequence of digits would exactly describe the path
to the desired node because we would always choose the subtree labeled by the next
digit in our sequence. Such a tree is called a trie. This name is derived from the
word retrieval, though the conventional pronunciation has become “try” rather than
the logical but confusing “tree.” More precisely,

Trie: A trie is either empty or it consists of two parts: a list of root values and a
list of subtries, which are indexed by labels. Each subtrie is itself a trie.

Because we have the eight digits from 2 to 9 as labels in our example, our tries
will be 8-ary trees. The first child of a node will be implicitly labeled as the “2” child,
the second as the “3” child, etc. In other words, the digits the user enters describe a
path starting from the root node. If the user types a 2, we move to the first child of
the root node. If the user types a 3 next, we then move to the second child of that
node.

The values stored at a particular node are those corresponding to the path from
the root of the trie to that node. If anyone had an empty name (i.e., zero letters
long), that name and number would be stored on the root node of the trie. Anyone
with the one-letter name A, B, or C would be on the first child of the root (the one
for the digit 2 on the phone keypad, which is also labeled ABC). Anyone with the
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Children of each node, left to right:
2=ABC 3=DEF 4=GHI 5=JKL 6=MNO 7=PQRS 8=TUV 9=WXYZ

Figure 8.1 An example phone trie, with Ben'’s position indicated

one-letter name D, E, or F would be on the second child of the root. Anyone with
any of the two-letter names Ad, Ae, Af, Bd, Be, Bf, Cd, Ce, or Cf would be on the
second child of the first child of the root. For example, the trie in Figure 8.1 shows
where the name and number of someone named Ben would be stored.

Note that a given node may or may not store a value: In our example, the nodes
encountered on the way to Ben’s node don’t have any values because no one has
an empty name, the one-letter name A, B, or C, or any of the 9 two-letter names
listed above. Not all the values need be at leaf nodes, however. For example, Ben’s
name corresponds on a phone to the digits 2-3-5. However, these are also the first
three digits in the name Benjamin, and in fact even the first three digits in the name
Adonis, because B and A share a phone digit, as do E and D and also N and O.
Therefore, the node in our trie that stores the value Ben may also be encountered
along a path to a deeper node that stores Benjamin or Adonis.

We must also allow more than one value to be stored at a given node, because,
for example, Jim and Kim would be specified by the same sequence of digits (5-4-6)
on the telephone. Therefore, we have a list of root values in our definition.

How can we implement tries? As described above, we will implement them as
8-ary trees, where every tree has exactly eight subtrees, even if some (or all) of them
are empty. These subtrees correspond to the digits 2 through 9, which have letters
on a phone keypad. We call these digits 2 through 9 the “labels” of the subtrees and
define a selector called subtrie-with-label that returns the subtrie of a nonempty
trie that corresponds to a given label:

(define make-empty-trie
(lambda O > 0))
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(define make-nonempty-trie
(lambda (root-values ordered-subtries)
(list root-values ordered-subtries)))

(define empty-trie? null?)
(define root-values car)
(define subtries cadr)

(define subtrie-with-label
(lambda (trie label)
(list-ref (subtries trie) (- label 2))))

Note that the constructor make-nonempty-trie assumes that the subtries are given
to it in order (including possibly some empty subtries). Constructing a specific phone
trie is a somewhat difficult task that we will consider later in this section. In fact,
we will write a procedure values->trie that takes a list of values (people’s names
and phone numbers) and returns the trie containing those values. Note also that
the procedure subtrie-with-label must subtract 2 from the label because list
convention refers to the first element (corresponding to the digit 2) as element
number zero.

The values in our automated phone book are the phone numbers of various
people. In order to store the person’s name and phone number together, we create
a simple record-structured ADT called person:

(define make-person
(lambda (name phone-number)
(1ist name phone-number)))

(define name car)

(define phone-number cadr)

How do we construct the trie itself? As we said in the preceeding, we will do this
later in the section by writing a procedure values->trie that creates a trie from a
list of values. For example, a definition of the form:

(define phone-trie

(values->trie (list (make-person ’lindt 7483)
(make-person ’cadbury 7464)
(make-person ’wilbur 7466)

(make-person ’hershey 7482)
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(make-person ’spruengli 7009)
(make-person ’merkens 7469)
(make-person ’baker 7465)
(make-person ’ghiradelli T476)
(make-person ’tobler 7481)
(make-person ’suchard 7654)
(make-person ’callebaut 7480)
(make-person ’ritter T7479)
(make-person ’maillard TATT)
(make-person ’see 7463)
(make-person ’perugina 7007))))

will define phone-trie to be the trie containing the given people, which can then
be used to look up phone numbers. You can work on other exercises involving tries
before we write values—->trie because we've included an alternate definition on
the web site for this book, which simply defines phone-trie as a quoted list.

Using what we have already developed, we can implement a simple automated
phone book as follows:

(define look-up-with-menu
(lambda (phone-trie)
(menu)
(look-up-phone-number phone-trie)))

(define menu
(lambda ()
(newline)
(display "Enter the name, one digit at a time.")
(newline)
(display "Indicate you are done by 0.")
(newline)))

(define look-up-phone-number
(lambda (phone-trie)
(newline)
(if (empty-trie? phone-trie)
(display "Sorry we can’t find that name.")
(let ((user-input (read)))
(if (= user-input 0)
(display-phone-numbers (root-values phone-trie))
(look-up-phone-number (subtrie-with-label
phone-trie
user-input)))))))
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(define display-phone-numbers
(lambda (people)
(define display-loop
(lambda (people)
(cond ((null? people) ’done)
(else (newline)
(display (name (car people)))
(display "’s phone number is ")
(display (phone-number (car people)))
(display-loop (cdr people))))))
(if (null? people)
(display "Sorry we can’t find that name.")
(display-loop people))))

Here is how you could use 1look-up-with-menu to look up the telephone number
of Spruengli, for example:

(look-up-with-menu phone-trie)
Enter the name, one digit at a time.
Indicate you are done with 0.

O P OO W o NN

spruengli’s phone number is 7009

This method is certainly progress, but it is also somewhat clunky. After all, in our
example Spruengli is already determined by the first two digits (7 and 7). It seems
silly to require the user to enter more digits than are necessary to specify the desired
person. We could make our program better if we had a procedure that tells us when
we have exactly one remaining value in a trie, and another procedure that returns
that value.

We can write more general versions of both of these procedures; one would return
the number of values in a trie and the other the list of values. Notice that these two
procedures are quite similar. In either case you can compute the answer by taking
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the number of values (respectively, the list of values) at the root node and adding
that to the number of values (respectively, the list of values) in each of the subtries.
The difference is that in the former case you add the numbers by regular addition,
whereas in the latter case you add by appending the various lists.

Exercise 8.18

i

Write the procedure number-in-trie that calculates the total number of values
in a trie. Hint: In the general case, you can compute the list of numbers in the
various subtries by using number-in-trie in conjunction with the built-in Scheme
procedure map. The total number of values in all the subtries can then be gotten
by applying the sum procedure from Section 7.3. Of course, you have to take into
account the values that are at the root node of the trie.

Exercise 8.19

i

Write the procedure values-in-trie that returns the list of all values stored in a
given trie. It should be very similar in form to number-in-trie. You may find your
solution to Exercise 7.5 on page 173 useful. In fact, if you rewrote number-in-trie
to use Exercise 7.5’s solution in place of sum, values-in-trie would be nearly
identical in form to number-in-trie.

Exercise 8.20

i

Let’s use these procedures to improve what is done in the procedure look-up-
phone-number.

a. Use number-in-trie to determine if there are fewer than two values in phone-
trie and immediately report the appropriate answer if so, using values-in-trie
and display-phone-numbers.

b. Further modify 1ook-up-phone-number so that if the user enters 1, the names
of all the people in the current trie will be reported, but the procedure
look-up-phone-number will continue to read input from the user. You will
also want to make appropriate changes to menu.

We now confront the question of how these tries we have been working with
can be created in the first place. As we indicated earlier, we will write a procedure
values->trie that will take a list of values (i.e., people) and will return the trie
containing them. First some remarks on vocabulary: Because we have so many
different data types floating around (and we will soon define one more), we need to
be careful about the words we use to describe them. A value is a single data item (in
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our case a person, that is, name and phone number) being stored in a trie. A label is
in our case a digit from 2 to 9; it is what is used to select a subtrie. Plurals will always
indicate lists; for example, values will mean a list of values and labels will mean a
list of labels. This may seem trivial, but it will prove very useful for understanding
the meanings of the following procedures and their parameters.

Exercise 8.21

i

Write a procedure letter->number that takes a letter (i.e., a one-letter symbol) and
returns the number corresponding to it on the telephone keypad. For ¢ and z use 7
and 9, respectively. Hint: The easiest way to do this exercise is to use a cond together
with the list membership predicate member we introduced in the previous chapter.

Exercise 8.22

i

To break a symbol up into a list of one-character symbols, we need to use
some features of Scheme that we'd rather not talk about just now. The follow-
ing explode-symbol procedure uses these magic features of Scheme so that
(explode-symbol ’ritter) would evaluate to the list of one-letter symbols
(rit t e r),for example:

(define explode-symbol
(lambda (sym)
(map string->symbol
(map string
(string->list (symbol->string sym))))))

Use this together with letter->number to write a procedure name->labels that
takes a name (symbol) and returns the list of numbers corresponding to the name.
You should see the following interaction:

(name->labels ’ritter)
(7 48837)

To make a trie from a list of values, we will need to work with the labels associated
with each of the values. One way is to define a simple ADT called labeled-value that
packages these together. This could be done as follows:

(define make-labeled-value
(lambda (labels value)
(1ist labels value)))
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(define labels car)
(define value cadr)
Because we will use this abstraction to construct tries, we will need some procedures

that allow us to manipulate labeled values.

Exercise 8.23

i

Write a procedure empty-labels? that takes a labeled value and returns true if and
only if its list of labels is empty.

Exercise 8.24

i

Write a procedure first-label that takes a labeled value and returns the first label
in its list of labels.

Exercise 8.25

i

Write a procedure strip-one-label that takes a labeled value and returns the
labeled value with one label removed. For example, you would have the following
interaction:

(define labeled-ritter
(make-labeled-value (7 4 8 8 3 7)
(make-person ’ritter 7479)))

(labels (strip-one-label labeled-ritter))
(4 8837)

(name (value (strip-one-label labeled-ritter)))
ritter

(phone-number (value (strip-one-label labeled-ritter)))
7479

} Exercise 8.26

Write a procedure value->labeled-value that takes a value (person) and re-
turns the labeled value corresponding to it. You must of course use the procedure
name->labels.
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We can now write values->trie in terms of a yet to be written procedure that
operates on labeled values:

(define values->trie
(lambda (values)
(labeled-values->trie (map value->labeled-value
values))))

How do we write labeled-values->trie? The argument to this procedure is a
list of labeled values, and we must clearly use the labels in the trie construction. If
a given labeled value has the empty list of labels (in other words, we have gotten
to the point in the recursion where all of the labels have been used), the associated
value should be one of the values at the trie’s root node. We can easily isolate these
labeled values using the filter procedure from Section 7.3, as in:

(filter empty-labels? labeled-values)

We can similarly isolate those with nonempty labels, which belong in the subtries;
the first label of each labeled value determines which subtrie it goes in.

> Exercise 8.27

Write a procedure values-with-first-label that takes a list of labeled values and
a label and returns a list of those labeled values that have the given first label, but with
that first label removed. You may assume that none of the labeled values has an empty
list of labels. Thus, the call (values-with-first-label labeled-values 4)
should return the list of those labeled values in 1abeled-values with a first label
of 4, but with the 4 removed from the front of their lists of labels. (This would only
be legal assuming each labeled value in labeled-values has a nonempty list of
labels.) Stripping off the first label makes sense because it was used to select out the
relevant labeled values, which will form one subtrie of the overall trie. Within the
subtrie, that first label no longer plays a role.

Exercise 8.28

Using the procedure values-with-first-label, write a procedure categorize-
by-first-label that takes a list of labeled values, each with a nonempty list of
labels, and returns a list of lists of labeled values. The first list in the list of lists should
contain all those labeled values with first label 2, the next list, those that start with
3, etc. (If there are no labeled values with a particular first label, the corresponding
list will be empty. There will always be eight lists, one for each possible first label,
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Case 1, labeled-values is empty

make an
empty trie >

Case 2, labeled-values is nonempty

select out
turn each make a
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Figure 8.2 'The design of the 1abeled-values->trie procedure

ranging from 2 to 9.) Each labeled value should have its first label stripped off, which
values-with-first-label takes care of. (Thus the labeled values in the first list,
for example, no longer have the label of 2 on the front.)

> Exercise 8.29

Finally, write the procedure labeled-values->trie. If the list of labeled values
is empty, you can just use make-empty-trie. On the other hand, if the list is
not empty, you can isolate those labeled values with empty labels and those with
nonempty labels, as indicated above. You can turn the ones with empty labels into
the root values by applying value to each of them. You can turn the ones with
nonempty labels into the subtries by using categorize-by-first-label, map,
and labeled-values->trie. Once you have the root values and the subtries, you
can use make-nonempty-trie to create the trie. Figure 8.2 illustrates this design.

Review Problems
[> Exercise 8.30

Fill in the following definition of the procedure successor-of-in-or. This pro-
cedure should take three arguments: a value (value), a binary search tree (bst), and
a value to return if no element of the tree is larger than value (if-none). If there is
any element, x, of bst such that x > value, the smallest such element should be
returned. Otherwise, if-none should be returned.
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(define successor-of-in-or
(lambda (value bst if-none)
(cond ((empty-tree? bst)

)
((<= (root bst) value)
(successor-of-in-or

)

(else
(successor-of-in-or

2))))

I> Exercise 8.31

Wirite a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and counts how many elements of the tree are greater
than or equal to the lower bound and less than or equal to the upper bound. Assume
that the tree may contain duplicate elements. Make sure your procedure doesn’t
examine more of the tree than is necessary.

I> Exercise 8.32

Write a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and returns an ordered list of those elements of the tree
that are greater than or equal to the lower bound and less than or equal to the upper
bound. Assume that the tree may contain duplicate elements. Use the technique of
an “onto” parameter to avoid unnecessary appending of lists, and make sure your
procedure doesn’t examine more of the tree than is necessary.
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Association for Computing
Machinery (ACM)
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atomic expression
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postfix

degree
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person
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sort
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constant?
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make-person

name

phone-number
phone-trie
look-up-with-menu
menu
look-up-phone-number
display-phone—-numbers
number-in-trie
values-in-trie
letter->number
explode-symbol

Sidebars

Privacy Issues

name->labels
make-labeled-value
labels

value

empty-labels?
first-label
strip-one-label
value->labeled-value
labeled-values->trie
values-with-first-label
categorize-by-first-label
successor-of-in-or

As with ® in Chapter 4, the conventional definition of O allows any number of
exceptions up to some cutoff point, rather than finitely many exceptions as we
do. Again, so long as n is restricted to the nonnegative integers, our definition is
equivalent.

The example of personal information divulged to an ice-cream parlor “birthday
club” winding up in the hands of the Selective Service is reported in [24].

The ACM Code of Ethics and Professional Conduct can be found in [17]; a set
of illustrative case studies accompanies it in [4].

Regarding the pronunciation of “trie,” we've had to take Aho and Ullman’s word
for it—none of us can recall ever having heard “trie” said aloud. Aho and Ullman
should know, though and they write on page 217 of their Foundations of Computer
Science [3] that “it was originally intended to be pronounced ‘tree.” Fortunately,
common parlance has switched to the distinguishing pronunciation ‘try.””



CHAPTER NINE

Generic Operations

m Introduction

We described data abstraction in Chapter 6 as a barrier between the way a data
type is used and the way it is represented. There are a number of reasons to use
data abstraction, but perhaps its greatest advantage is that the programmer can rely
on an abstract mental model of the data rather than worrying about such mundane
details as how the data is represented. For example, we can view the game-state
ADT from Chapter 6 as a snapshot picture of an evolving Nim game and can view
lists as finite sequences of objects. The simplification resulting from using abstract
models is essential for many of the complicated problems programmers confront.
In this chapter we will exploit and extend data abstraction by introducing generic
operations, which are procedures that can operate on several different data types.
We rely on our mental model of an ADT when pondering how it might be used
in a program. To actually work with the data, however, we need procedures that
can manipulate it; these procedures are sometimes called the ADT’s interface. For
example, all of the procedures Scheme provides for manipulating lists comprise
the list type’s interface. The barrier between an ADT’s use and its implementation
results directly from the programming discipline of using the interface procedures
instead of explicitly referring to the underlying representation. The interface must
give us adequate power to manipulate the data as we would expect, given our mental
model of the data, but we still have some flexibility in how the interface is specified.
On the other hand, once we have specified the interface, we can easily imagine
that some of the interface procedures would be appropriate for other data types.
For example, most ADTs could benefit from a type-specific display procedure, if
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only for debugging purposes; such a procedure should “do the right thing” for its
data, regardless of how the data is represented. Generic operators allow us to share
common operators among several different data types.

Another advantage of generic operators is that they can be used to maintain a
uniform interface over similar data types that have entirely different representations.
One example of this occurs when a data type can be represented in significantly
different ways. For instance, suppose we wish to implement an ADT date to represent
the date (i.e., the day, month, and year) when something occurs. One way to do
this would be by using a three-part data structure containing integers representing
the day, month, and year in the obvious manner (e.g., May 17, 1905, would be
represented by the triple (17,5,1905)). An altogether different way would be to
represent a date by the integer that equals the number of days that date fell after
January 1, 1900 (January 1, 1901, would be represented by 365 and May 17, 1905, by
1962). Which representation we use can have a significant impact on performance.
For example, if we want to determine whether a given date occurs in the month
of May, that would be easier to do using the first representation than the second.
On the other hand, if we want to find the number of days between two dates, the
relative difficulty would be reversed. Of course we can convert between the two
representations, but the formula would be quite messy in this case and in general
might entail significant computational complexity.

When forced to decide between significantly different representations, the pro-
grammer must make a judgment based on how the ADT is likely to be used. However,
in this chapter we’ll discover another option open to the programmer: allow mul-
tiple representations for the same abstract data type to coexist simultaneously. There
are cases where this proves advantageous. We work through the details of such an
example in Section 9.2.

More generally, it is not hard to imagine distinct data types that nonetheless share
some commonality of form or purpose. For example, a library catalog will contain
records of various kinds of items, say, books, movies, journals, and CDs. To a greater
or lesser extent, all of these types of catalog items share some common attributes
such as title, year of publication, and author (respectively, director, editor, and artist).
Each kind of catalog item might have a separate interface (such as the interface we
described for the movie ADT in Chapter 7). When combining the various types of
catalog items into a common database, however, it would be greatly advantageous
if they shared a common interface. We work through the details of this example in
Section 9.3.

Multiple Representations

Scheme represents lists of values by explicitly consing together the elements in the
list. Therefore there will be one cons pair per element in the list, which potentially
requires a considerable amount of computer memory. Other lists can be represented



9.2 Multiple Representations = 245

more efficiently, however, especially if the lists have some regularity in them. For
example, if we know that a list consists of increasing consecutive integers in a given
range (for example, 3 through 100), rather than storing the list (3 4 5 ... 100),
we could instead store the first and last elements of the range (3 and 100). Note
that the standard list procedures can be easily computed in terms of the first and last
elements. For example, the length of the example listis 100—3+1 = 98 and its “cdr”
is the increasing consecutive list with first element 4 and last element 100. In this
section, we’ll show how we can allow this new representation to coexist seamlessly
with regular Scheme lists. To avoid confusion, we’ll think of both representations as
implementations of sequences and use the term [list to mean Scheme lists. Similarly,
we'll reserve the normal list notation, such as (1 2 3), for genuine Scheme lists,
and when we want to write down the elements of a sequence, we will do so as
(1,2,3), for example.

Let’s step back a moment to consider how Scheme deals with lists. We remarked
in Chapter 7 that the choice of cons, car, cdr, and null? as the basic constructor
and selectors for lists ran counter to good data-abstraction practice because they don’t
sufficiently separate the use of lists from their representation. Even if we used more
descriptive names like make-1ist, head, tail, and empty-1ist?, the underlying
representation would be obscured but not fully hidden—head and tail are after all
the two components of the underlying representation (the “two-part list viewpoint”).
We will use more descriptive names like head and tail in our implementation of
sequences, but these two procedures will not have the same “core” status as they do
with Scheme lists.

In general, at least some of an ADT’s interface procedures must have direct access
to the underlying representation, whereas others might well be implemented in
terms of this basic set without direct reference to the underlying representation. For
example, we indicated in Chapter 7 how cons, car, cdr, and null? formed such
an essential set by showing how other list procedures such as length, list-ref,
and map could be written in terms of them. However, Scheme itself may have
a more complex representation that allows the other interface procedures to be
more efficiently implemented. For example, the representation might keep track
of the list’s length so that the length doesn’t have to be recalculated each time
by cdring down the list. To allow our implementation of sequences to provide all
operations as efficiently as possible, there will be no designated minimal set of core
procedures. Instead, we will view the AD'T sequence as being specified by its entire
interface. That interface is implemented separately in terms of each underlying
representation.

So how do we implement sequences in a manner that allows these two (and
perhaps other) representations to coexist in a transparent manner? To start out, let’s
suppose that we will have a variety of constructors (at least one for each representa-
tion) but will limit ourselves to the following selectors, which are modeled after the
corresponding list procedures:
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(head sequence)
; returns the first element of sequence, provided sequence is
; nonempty

(tail sequence)
; returns all but the first element of sequence as a
; sequence, provided sequence is nonempty

(empty-sequence? sequence)
; returns true if and only if sequence is empty

(sequence-length sequence)
; returns the length of sequence

We will implement sequences using a style of programming called message-passing,
which exploits the fact that procedures are first-class data objects in Scheme. The
data objects representing our sequences will not be passive: They will instead be
procedures that respond appropriately to “messages,” which are symbols representing
the various interface operations.

For example, we could write a procedure sequence-from-to that returns an
increasing sequence of consecutive integers in a given range as follows:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
(else (error "illegal sequence operation" op))))))

In this code, op is a symbol (the “message”) that represents the desired operator.
After evaluating the procedure above, we might then have the following interaction:

(define seq-1 (sequence-from-to 3 100))

(seq-1 ’head)
3
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(seq-1 ’sequence-length)
98

(seq-1 ’tail)
#<procedure>

((seq-1 ’tail) ’head)
4

Although this style of programming will probably appear quite odd the first few
times you see it, a number of programming languages (notably Smalltalk and other
object-oriented languages) successfully exploit the message-passing approach. Nev-
ertheless, we can layer the more traditional interface on top of message-passing by
defining the interface procedures as follows:

(define head
(lambda (sequence)
(sequence ’head)))

(define tail
(lambda (sequence)
(sequence ’tail)))

(define empty-sequence?
(lambda (sequence)
(sequence ’empty-sequence?)))

(define sequence-length
(lambda (sequence)
(sequence ’sequence-length)))

Our earlier interaction would then contain the following more familiar code:

(head seq-1)
3

(sequence-length seq-1)
98

(head (tail seq-1))
4
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Exercise 9.1

As is evident from the the output given above, we would be better able to check our
procedures if we could easily display the sequences we construct. Instead of writing
an ADT display procedure for sequences, an easier approach is to write a procedure
sequence->1ist that converts a sequence to the corresponding Scheme list, which
can then be directly displayed. Write this procedure, accessing the sequence only
through the interface procedures head, tail, and empty-sequence?.

> Exercise 9.2

The sequences we just described are restricted to consecutive increasing sequences
of integers (more precisely, to increasing arithmetic sequences where consecutive
elements differ by 1). We can easily imagine similar but more general sequences
such as (6,5,4,3,2) or (5,5.1,5.2,5.3,5.4,5.5)—in other words, general arithmetic
sequences of a given length, starting value, and increment (with decreasing sequences
having a negative increment value).

a. Write a procedure sequence-with-from-by that takes as arguments a length,
a starting value, and an increment and returns the corresponding arithmetic se-
quence. Thus, (sequence-with-from-by 5 6 -1) would return the first and
(sequence-with-from-by 6 5 .1) would return the second of the two pre-
ceding sequences. Remember that sequences are represented as procedures, so
your new sequence constructor will need to produce a procedural result.

b. The procedure sequence-from-to can now be rewritten as a simple call to
sequence-with-from-by. The original sequence-from-to procedure made
an empty sequence if its first argument was greater than its second, but you
should make the new version so that you can get both increasing and de-
creasing sequences of consecutive integers. Thus, (sequence-from-to 3 8)
should return (3,4, 5,6,7, 8), whereas (sequence-from-to 5 1) should return
(5,4,3,2,1).

c. Write a procedure sequence-from-to-with that takes a starting value,
an ending value, and a length and returns the corresponding arithmetic
sequence. For example, (sequence-from-to-with 5 11 4) should return

(5,7,9,11).

Having given constructors for arithmetic sequences, we can add sequences rep-
resented by traditional Scheme lists by writing a procedure 1list->sequence that
returns the sequence corresponding to a given list:
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(define list->sequence
(lambda (1st)
(lambda (op)
(cond ((equal? op ’empty-sequence?)
(null? 1st))
((equal? op ’head)
(car 1st))
((equal? op ’tail)
(1ist->sequence (cdr 1lst)))
((equal? op ’sequence-length)
(length 1st))
(else (error "illegal sequence operation" op))))))

In essence, we are off-loading each of the sequence procedures to the corresponding
list procedure. Note that to the user, the various representations of sequences work
together seamlessly and transparently:

(define seq-2 (sequence-with-from-by 6 5 -1))
(define seq-3 (list->sequence ’(4 3 7 9)))

(head seq-2)
5

(head seq-3)
4
In a sense, each of the interface procedures triggers a representation-specific behavior

that knows how to “do the right thing” for its representation.

Exercise 9.3

i

Use list->sequence to write a procedure empty-sequence that takes no argu-
ments and returns an empty sequence.

Exercise 9.4

i

One disadvantage with the preceding version of 1ist->sequence is that the Scheme
procedure length normally has linear complexity in the list's length (unless the
version of Scheme you use does something like the trick we will now describe that
reduces sequence-length to constant complexity).
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a. Modify 1ist->sequence so that it has a let expression that computes the list’s
length once at sequence construction time and then uses that value when asked
for the sequence’s length.

b. The problem with the solution in part a is that the tail’s length is computed each
time you return the tail. Because the complexity of calculating a list’s length is
proportional to the length, if you do the equivalent of cdring down the sequence,
the resulting complexity is quadratic in the list-sequence’s length, certainly an
undesirable consequence.

One solution to this problem is to write an auxiliary procedure list-
of-length->sequence that is passed both a list and its length and re-
turns the corresponding sequence. This procedure can efficiently compute
its tail, and list->sequence can be reimplemented as a call to list-
of-length->sequence. Carry out this strategy.

This solution seems to nicely accomplish our goal of seamlessly incorporating
different underlying representations, but because we have only implemented the
four selectors head, tail, empty-sequence?, and sequence-length, we have not
really tested the limits of this approach. To do so, let’s attempt to add the selector
and constructors corresponding to 1list-ref, cons, map, and append.

The selector that corresponds to list-ref differs significantly from the other
selectors we've seen so far. Each of those takes only one parameter (the sequence)
and, as a result, always returns the same value for a given sequence. In contrast,
sequence-ref will take two parameters, a sequence and an integer index, and the
value returned will depend on both the sequence and the index. Consequently,
the cond branch corresponding to sequence reference in sequence-from-to or
list->sequence should be a procedure that takes an integer index n and returns
the nth number in the sequence. To see how this works, here is the expanded version
of sequence-from-to that includes a branch for sequence reference:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
;; (continued)
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((equal? op ’sequence-ref)

(lambda (n)
(if (and (<= 0 n) (<= n (- high low)))
(+ low n)
(error "sequence-from-to: index out of range"

n))>)>)))))
We can then implement sequence-ref as follows:

(define sequence-ref
(lambda (sequence n)
((sequence ’sequence-ref) n)))

> Exercise 9.5

Rewrite 1ist->sequence so that it has a branch for sequence reference.

The remaining three operators we will add to sequences correspond to the
list operators cons, map, and append; for simplicity, we will call these operators
sequence-cons, sequence-map, and sequence-append. Note that all three of
these operators are in fact constructors, because their agenda is to create a new se-
quence from the given data. Therefore, rather than being implemented as branches
of the conds of the other sequence constructors, we should simply write a new
sequence constructor for each of these operators.

Consider sequence-cons, which is passed an element (to become the head) and
an already-constructed sequence (to become the tail). Following is an implemen-
tation of sequence-cons that uses a let in order to calculate its length once and

for all:

(define sequence-cons
(lambda (head tail)
(let ((new-length (+ 1 (sequence-length tail))))
(lambda (op)
(cond ((equal? op ’empty-sequence?)
#£)
((equal? op ’head)
head)
((equal? op ’tail)
tail)
((equal? op ’sequence-length)
new-length)
;; (continued)
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((equal? op ’sequence-ref)
(lambda (n)
(if (=n 0)
head
(sequence-ref tail (- n 1)))))
(else (error "illegal sequence operation" op)))))))

Note that we need not worry what “kind” of sequence tail is, because we are assured
that whichever representation tail uses, it knows how to appropriately calculate
sequence-length and sequence-ref. In particular, we can be sure that compu-
tational efficiencies constructed into tail (for example, in sequence-length) are
maintained in sequence-cons.

> Exercise 9.6

Write the sequence constructor sequence-map, that outwardly acts like the list
procedure map. However unlike map, which applies the procedural argument to all
the list elements, sequence-map should not apply the procedural argument at all
yet. Instead, when an element of the resulting sequence (such as its head) is accessed,
that is when the procedural argument should be applied.

We finally arrive at the sequence constructor sequence-append. Just as we've
shown how append can be used to append together two lists, we'll write
sequence-append such that it can append together any two sequences:

(define sequence-append
(lambda (seq-1 seq-2)
(cond ((empty-sequence? seq-1) seq-2)
((empty-sequence? seq-2) seq-1)
(else
(let ((seq-1-length (sequence-length seq-1))
(seq-2-length (sequence-length seq-2)))
(lambda (op)
(cond ((equal? op ’empty-sequence?)
#1)
((equal? op ’head)
(head seq-1))
((equal? op ’tail)
(sequence-append (tail seq-1) seq-2))
((equal? op ’sequence-length)
(+ seq-1-length seq-2-length))
;; (continued)
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((equal? op ’sequence-ref)
(lambda (n)
(cond ((< n seq-1-length)

(sequence-ref seq-1 n))

(else

(sequence-ref seq-2

(- n seq-1-length))))))

(else (error "illegal sequence operation"

op)))))NN)

As with sequence-cons, the let expression is used primarily for efficiency. Note,
however, that the length of the first subsequence is also used in sequence-ref to
determine which subsequence to reference at what index.

Exploiting Commonality

Imagine that you have parlayed the movie query system from Chapter 7 into such
an enormous success that it is currently being used by three major video store chains
(not to mention the pirated versions being used by less honorable dealers). You have
extended the natural language interface of your program (which you nicknamed
Roger) to such an extent that many people think of Roger as a friend, and a few
even consult him about their love life and other such befuddling aspects of their
existence.

You were recently contacted by the owner of the Twilight Coffechouse/Bookstore,
who, in addition to selling books, also sells compact discs and rents obscure but
interesting videos. She is very interested in extending Roger so that he could be
consulted about books and CDs as well as videos. She already has two database
programs, one for her books and and one for her CDs (surprisingly, done in Scheme
as well), but she prefers the Roger interface. What she would like to do is to combine
these two databases and your video database into one large database. A tantalizing
idea indeed, but how could it be done?

Combining the three databases involves more than just gluing the lists of records
together; you also need to provide procedures that operate on the individual records
in this new database. But there’s a catch here: Each of those individual records could
represent a book, a video, or a CD. Books, videos, and CDs have many properties in
common; for example, each has a title and a year released. Also, the book’s author
more or less corresponds to the movie’s director and the CD’s recording artist. On
the other hand, some attributes do not have obvious correlates from one data type
to another (e.g., the actors in a movie have no obvious analogue in books or CDs).
Ideally, we would like to have an interface that is as uniform as possible across the
three underlying data types.
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But speaking of an interface seems premature. After all, we defined an interface as
the set of procedures that operate on an ADT, and we do not yet have a single ADT.
From the point of view of generic operations, we can get around this problem by
hypothesizing an ADT catalog-item that captures the commonality among the three
underlying ADTs. Any given catalog-item will in fact be a movie, book, or CD (or
any other catalog-item-like type we might later add), so movies, for example, might
be called a “class” of catalog items. (We are essentially introducing here a form of
class hierarchy that is a core concept in object-oriented programming, which we will
describe in detail in Chapter 14.)

In order to fully specify the interface for catalog items, let’s write down the
operations for each of the databases, grouping together those that are similar. Thus,
we have three different operations for finding a title, three different operations for
finding the year in which an object was made, and so on. The result is the table
in Figure 9.1. The individual entries of the table are the procedures that operate
on data of the given type. The columns of the table organize the operations by
type, and the rows of the table group the analogous operations among the three
types under a generic name indicating what is being done. In some cases (title,
year-made, and display-item) there are obvious correlates for each of the three
types. In other cases, such as actors, there are no obvious correlates, which leads
to blanks in the table. In some cases, however, there are close analogues that we
wrote in the table under more generic names (creator and company). Note that
company applies to only two of the three data types because our movie database
didn’t contain information about movies’ distributors. The names of the rows are
precisely the generic operators we want to implement as the interface for catalog
items.

We are left with the question of how we actually implement these generic oper-
ators. (Note that we are assuming that the three underlying types are already fully
implemented, and our goal is to combine them in as transparent a manner as pos-
sible.) One method of accomplishing this would be to use the message-passing style
of Section 9.2; we choose not to do it that way, mainly because we will take this
opportunity to introduce another approach to genericity that involves tagging the

movie book cd
title movie-title book-title cd-title
year-made | movie-year-made | book-year-made cd-year-made
display-item display-movie display-book display-cd
creator | movie-director book-author cd-artist
company book-publisher | cd-record-company
actors movie-actors

Figure 9.1  Operation table for Movies, Books, and CDs
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data with its type. In addition to allowing us to explore a new technique, this lat-
ter approach is slightly more suited to the integration of already-existing types than
message-passing. We will work through two variants of this type-tagging approach.

Generic Operations through Symbolic Type Tags

Our first variant of the type-tagging approach involves attaching a symbolic tag, or
label, to each piece of data that indicates whether the datum is a book, video, or
CD. Then, when we write a generic procedure, we take a tagged datum, look at its
tag, and use that to determine which operation to apply.

Tagging data is fairly simple. We need to create an ADT that binds together each
datum with its tag. For example, we can do the following:

(define tagged-datum
(lambda (type value)
(cons type value)))

(define type car)
(define contents cdr)

The type argument could in general be various things; for now it will be a symbol
that “names” the given type.

> Exercise 9.7

Write a procedure 1list->tagged-1list that takes a list of untagged elements and
a type and returns the corresponding list where each element has been tagged by
the given type tag. Thus, if movies is a list of movie records, you can define a
(symbolically) tagged list of movie records by evaluating:

(define tagged-movies
(1ist->tagged-list movies ’movie))

If our three databases are lists called movies, books, and cds, then we could create
the combined database as follows:

(define database
(append (list->tagged-list movies ’movie)
(list->tagged-list books ’book)
(list->tagged-list cds ‘cd)))
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How can we implement the generic operations? Probably the most obvious way
is to do so one operation at a time. Viewed in terms of the table in Figure 9.1, we
are filling out the table row by row. Assume that the data has been tagged as in
Exercise 9.7, with each element tagged with one of the symbols movie, book, or cd.
We can then easily test the type of a given item by using the following predicates:

(define movie?
(lambda (%)
(equal? (type x) ’movie)))

(define book?
(lambda (x)
(equal? (type x) ’book)))

(define cd?
(lambda (x)
(equal? (type x) ’cd)))

Using these predicates, the generic operations become easy to write. For example,
here is title:

(define title
(lambda (x)
(cond ((movie? x) (movie-title (contents x)))
((book? x) (book-title (contents x)))
((cd? x) (cd-title (contents x)))
(else (error "unknown object in title" x)))))

> Exercise 9.8

In the course of integrating databases, some of the operations that seem analogous
between types might have some annoying differences. For example, suppose that the
movie directors and actors have their names stored as lists with the family names last,
whereas for books and CDs the authors’ and artists’ names are stored with family
names first. Suppose that you decide for consistency’s sake and ease of display to
have all of the generic procedures return the names with the family name last.

a. Write a procedure family-name-last that takes a name (as a list of symbols)
with family name first and returns the corresponding list with family name last.

b. Use family-name-last to write a generic operation creator that returns the
name with the family name last in all cases.
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Implementing generic operations becomes somewhat more delicate when an op-
eration doesn’t apply across the three types, say, for example, actors. One possibility
would be to signal an error when this occurs. For example, we could handle the
operation actors by using error:

(define actors
(lambda (x)
(cond ((movie? x) (movie-actors (contents x)))
(else (error "Cannot find the actors of the given type"

(type x))))))

If we choose this approach, we must modify the query system appropriately. For
example, suppose Roger were asked the following question:

(what films was randy quaid in)

Then the action matching this pattern must not apply the operation actors to all
items in the database because otherwise it will signal an error. This means that in
this case the database must first be filtered by the predicate movie?. In general,
patterns that clearly indicate the type of the desired records should first filter the
database by the type’s predicate.

Exercise 9.9

i

An alternative approach to this problem is to return a testable value, for example,
the empty list, if there is no procedure for the given operation and type. Discuss this
approach, especially as it pertains to Roger.

Exercise 9.10

i

Because we have posed our problem in terms of integrating databases, we should
not assume that the result will be the last word in entertainment databases. After
all, we might add a new type (say magazines), a new piece of information (perhaps
the cost for rental or purchase), or some other increased functionality. Let’s consider
how difficult these tasks would be using the current approach to generic operations.

a. Discuss what you would need to do to integrate a magazine database into the
current one consisting of movies, books, and CDs. What changes would you have
to make to the generic operations you have already written?

b. Discuss what you would need to do to add a new generic operation, for example,
the cost for rental or purchase of the given item.
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c. Discuss what you would need to do to add a single entry to the operation table,
for example, adding a way of finding a movie’s distributor to the “company” row

of the table.

Operation Tables as Type Tags

In the variant of the type-tagging approach described above, we symbolically tagged
the data as being of a given type and wrote the generic operations using a cond
that branched on the allowable types for the operation. Viewed in terms of the
operation table of Figure 9.1, this approach fills the table out row by row, which is
to say operation by operation. One could argue that there would be advantages to
an approach that more directly mirrors how the individual databases were originally
constructed, namely, type by type. If we had used message-passing as suggested at
the beginning of this section, we would have had a separate constructor for each
underlying type, precisely this desired approach. But there would also be a great deal
of redundancy in the message-passing implementation: After all, each of the movies
contains a variant of the same general method for responding to the operations;
individual movies only differ in their “content” data. You might well argue that this
is precisely the point, and you would be correct. But somehow or other, these general
methods of responding seem more appropriately associated with the type than with
each of the separate data objects.

[s there some way to combine the two approaches? One way to do this would be to
tag the data as in the preceding subsection but let the type tags provide the general
procedures for performing the operations instead of merely being symbolic type
names. In other words, the tags would correspond to the columns of the operation
table. In effect, each type would be a one-dimensional table that stores the particular
procedure to be used for each of the various generic operations.

Let’s implement a type ADT, which contains the name of the type as well as the
operation table, because it will prove useful to know the name of the type when
reporting errors:

(define make-type
(lambda (name operation-table)
(cons name operation-table)))
(define type-name car)
(define type-operation-table cdr)
We implement one-dimensional tables (the columns of the full operation table) as

an abstract data type with a constructor make-table that will make a table from a
list of the symbols denoting the operations and a list of the corresponding procedures
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to be used for those operations on the given type. For example, we would define the
type movie as

(define movie
(make-type ’movie
(make-table
’(title year-made director actors creator display-item)
(list movie-title movie-year-made movie-director
movie-actors movie-director display-movie))))

Having defined the types book and cd as well, we could then define our tagged
database as follows:

(define database
(append (list->tagged-list movies movie)
(list->tagged-list books book)
(list->tagged-list cds cd)))

Notice that the tags are no longer simply symbols but are instead type objects that
also contain the column of the operation table corresponding to the type of the
tagged data item.

At this point each data object includes not only its particular component values
but also has access to the column of the operation table that tells how to do the
various operations. What we need now is a procedure, which we will call operate,
that when given the name of an operation and a tagged data value, looks up the
appropriate procedure in the data value’s operation table and applies that procedure
to the contents of the (tagged) data value. Thus we could use operate to define the
generic operation title as follows:

(define title
(lambda (tagged-datum)
(operate ’title tagged-datum)))

How do we define operate? Clearly we must look up the operation name in the
operation table and apply the corresponding procedure (if it exists) to the contents of
the given data object. If no such procedure is found for the given operation, an error
should be reported. This process is complicated. It would probably be best to have
operate spin the table-searching tasks off onto another more general table-lookup
procedure, to which it passes the necessary arguments. We will define a procedure
table-find, which is passed the operation table, the name of the operation, a
procedure that describes what to do if the operation is found in the given table,



260 " Chapter 9 Generic Operations

and a procedure that describes what to do if it is not found. Thus, we would call
table-find as follows:

(define operate
(lambda (operation-name value)
(table-find (type-operation-table (type value))
operation-name
(lambda (procedure) ; use this if found
(procedure (contents value)))
(lambda () ; use this if not found
(error "No way of doing operation on type"
operation-name
(type-name (type value)))))))

Note that the procedure that operate supplies to table-find for use if the table
lookup is successful takes one argument, namely, the procedure that was found in
the table. In contrast, the procedure that operate supplies to table-find for the
not-found case takes no arguments; it simply reports the error that occurred.

At this point, we need to define the table ADT, with its make-table and
table-find operations. There are many plausible representations for tables; here,
we'll opt for simplicity and just cons together into a pair the list of keys and the list
of values:

(define make-table
(lambda (keys values)
(cons keys values)))

The procedure table-find simply cdrs down the two lists, looking in the list of
keys for the desired key, (i.e., the operation name):

(define table-find
(lambda (table key what-if-found what-if-not)
(define loop
(lambda (keys values)
(cond ((null? keys) (what-if-not))

((equal? key (car keys))
(what-if-found (car values)))
(else
(loop (cdr keys) (cdr values))))))

(loop (car table) (cdr table))))
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Exercise 9.11

i

How would you implement the type predicates such as movie? using this represen-
tation with type tags containing operation tables?

Exercise 9.12

i

Discuss the questions from Exercise 9.10 in terms of the operation-table type-tag
representation.

Exercise 9.13

i

Through this entire section, we've been glossing over a minor difficulty, namely, that
many books are coauthored. Thus, it would be more likely that the book database
actually supported a book-authors operation, which returns a list of authors, rather
than the book-author operation we've been presuming. The primary difficulty this
would cause is that we’d wind up with a creator generic operation that returns a
single director for a movie, but a list of authors for a book. If we were processing a
query like (what do you have by John Doe), we would have to in some cases
test for equality between (John Doe) and the creator and in other cases test for
membership of (John Doe) in the creator list.

a. How would you arrange, at database integration time, for there to be a creators
generic operation that returned a list of creators for any type of object, even
a movie? Assume that the movie database is unchanged, so there is still just
a singular director, whereas the book database is now presumed to have the
book-authors operation. (Which assumption seems more plausible for CDs?)

b. An alternative would be to change the movie database to directly support a list
of directors, rather than a single director, for each movie. What are the relative
advantages and disadvantages of the two approaches?

In the next section youll have an opportunity to apply the technology of generic
operations; we also use it as a tool while covering other topics in the next two
chapters. We'll return to our consideration of generic operations as a topic of study
in its own right in Chapter 14, which discusses object-oriented programming. The
implementation technique we use there is a variant of the “operation tables as type
tags” theme, with techniques we’ll encounter in the meantime used to improve the
efficiency of the table lookup.
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An Application: Computer Graphics

In this section, we’ll look inside graphics operations like those used in Chapters 1
through 4. We'll show how to use the message-passing technique to implement those
graphics operations in terms of lower-level ones. In fact, we'll serve up a double
helping of generic operations because there are two different abstract data types we'll
use:

®  Drawing media, on which we can perform the basic graphics operations of drawing
lines and filled triangles

® [mages, which can be arbitrarily complex assemblies so long as they know how to
draw themselves onto a medium

First, let's consider why we want to treat images as an abstract data type with
generic operations that can be used across multiple implementations. We have lots
of different kinds of images from simple ones such as lines and filled triangles to
more complex images such as pinwheeled quilts and c-curve fractals. Nonetheless,
there are certain operations we want to perform on any image, without needing
to know what kind of image it is. For example, we should be able to find the
width and height of any image. If nothing else, this information is needed for error
checking when we perform stacking and overlaying operations. (Only images of the
same width can be stacked, and only images of the same width and height can be
overlaid.) We also want to be able to draw an image onto a drawing medium in a
single simple operation, without concerning ourselves with what conglomeration of
lines and triangles may need to be drawn.

The situation with drawing media is a bit more interesting. First, there can be
multiple forms of graphics output. For example, we can draw onto an on-screen
window, or we can “draw” by writing to a file stored in some graphics file format,
for later use. Thus we can foresee having at least two kinds of drawing media:
windows and files. We can perform the same basic operations of drawing lines
and filled triangles in either case but with different results depending on the kind
of medium we are drawing on. Because we’ll use generic operations to uniformly
access any medium, we’ll be able to construct complex images that know how to
“draw themselves” on any medium, without the images needing to be aware of the
different kinds of media. Additionally, we will show how we can layer a new “virtual
medium” on top of an existing medium. We do this layering to make it easy to
perform a transformation, such as turning an image.

Before we begin looking closely at images and drawing media, we need to take
care of two details. First, both images and drawing media use a two-dimensional
coordinate system. For example, if we wanted to create an image with a line, we
would specify the two coordinates for each of the line’s two endpoints. Now that
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we've learned how to make compound data, we can make a point ADT. We define
the constructor and selectors for points as follows:

(define make-point cons)
(define x-coord car)

(define y-coord cdr)

We'll use the convention that x coordinates increase from left to right and y co-
ordinates increase from bottom to top. This is mathematically conventional but not
in agreement with all computer systems” conventions. On some computer systems,
the y coordinates in a window start with 0 at the top and increase as you go down
the screen. On such a system, the low-level type of drawing medium for drawing on
windows will need to take care of reversing the y coordinates.

We will, however, use two different ranges of coordinate values. One range is for
images and so will be used for the arguments the user provides to the constructors of
fundamental images, make-1line and make-filled-triangle. For convenience
and consistency with earlier chapters, these two constructors expect points with
coordinates in the range from —1 to 1.

Our other range of coordinates will be used for doing the actual drawing on
drawing media. For this drawing, we’ll use coordinates that range from 0 up to the
width or height of the medium. What units do we use to measure the width and
height? We do not specify the unit of measure, but one reasonable unit for images
displayed on a computer screen would be the size of a pixel, that is, one of the little
dots that the computer can individually light up. For example, a 100 X 200 medium
might be drawing to a window of those dimensions so that valid x coordinates for
drawing on the medium range from 0 at the far left to 100 at the far right, whereas
the valid y coordinates range from 0 at the bottom to 200 at the top. We chose this
coordinate system, with the origin in the lower left-hand corner rather than in the
center, because it will simplify the calculations needed to stack images.

The second detail we need to take care of is providing an interface that hides our
decision to use the message-passing style. That is, each image or drawing medium
will be represented as a procedure that can perform the various operations when
passed an appropriate symbolic message indicating the desired operation. However,
our users will be thinking that various operations are performed on the images. Thus,
we'll define the following interface procedures:

;; Interface to image operations

(define width
(lambda (image)
(image ’width)))
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(define height
(lambda (image)
(image ’height)))

(define draw-on
(lambda (image medium)
((image ’draw-on) medium)))

;3 Interface to drawing medium operations

(define draw-line-on
(lambda (pointO pointl medium)
((medium ’draw-line) pointO pointil)))

(define draw-filled-triangle-on
(lambda (point0 pointl point2 medium)
((medium ’draw-filled-triangle) point0O pointl point2)))

At this point, we know what operations we can invoke on an image or a medium,
even though we don’t have any images or media on which to invoke those oper-
ations. Conversely, we know what operations any image or medium we construct
will need to support. By putting these two kinds of information together, we can
begin to write some constructors. We'll start with the constructors for two funda-
mental images, make-line and make-filled-triangle. (We've chosen to call
these procedures make-line and make-filled-triangle, rather than line and
filled-triangle, to help you distinguish the procedures we're writing in this sec-
tion from the predefined ones we used in the earlier chapters. We'll similarly avoid re-
using other names.) These images support the draw-on operation for drawing them-
selves on a medium by using the draw-1ine-on and draw-filled-triangle-on
interface operations specified above for media.

We'll need to make a rather arbitrary choice of size for these two fundamental
images. (Other images, formed by stacking, turning, etc., will have sizes that derive
from this basic image size.) The best choice depends on where the medium is doing
its drawing; for example, if the medium is drawing on your computer screen, the
best choice depends on such issues as the size of your computer’s screen. However,
the following value is probably in a plausible range:

(define basic-image-size 100)

Recall that make-1ine and make-filled-triangle need to convert from the user’s
coordinate range of —1 to 1 into the drawing medium’s coordinate range, which will
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be from 0 to basic-image-size. We can convert a point from one range to the
other using the following procedure:

(define transform-point ; from -1 to 1 into O to basic-image-size
(lambda (point)
(define transform-coord
(lambda (coord)
(x (/ (+ coord 1) 2) ; fraction of the way to top or right
basic-image-size)))
(make-point (transform-coord (x-coord point))
(transform-coord (y-coord point)))))

With these preliminaries in place, we can write our first image constructor:

(define make-line
(lambda (point0O pointl)
(lambda (op)
(cond
((equal? op ’width) basic-image-size)
((equal? op ’height) basic-image-size)
((equal? op ’draw-on)
(lambda (medium)

(draw-line-on (transform-point pointO)
(transform-point pointl)
medium)))

(else (error "unknown operation on line" op))))))

As you can see, a line responds to queries about its width and height by reporting
our basic-image-size, and it draws itself on a medium in the obvious way, by
drawing a single line on that medium. So far, the image hasn’t added any interesting
functionality to that provided by the drawing medium itself. But remember, images
can be more complex. For example, we could have an image that was a c-curve
fractal of level 10. When we invoke its draw-on operation to draw it on a medium,
1024 draw-1line-on operations will be performed on the medium for us.

So that you can test the preceding line constructor, we need to give you some
way of making a drawing medium that actually displays an image on your screen.
Later in this section we’ll show how drawing media can be constructed, by working
through the example of a type of drawing medium that writes a particular graphics
file format. Meanwhile, you can use a procedure called show that’s provided on
the web site for this book. We provide specific versions of show for various different
computer systems. You apply show to an image that needs to be shown, as in the call

(show (make-line (make-point O 0) (make-point 1 1)))
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The show procedure is more than just a drawing medium, however. First, show
takes care of some system-dependent matters, such as opening a window that is the
same size as the image. Then show constructs a drawing medium for drawing on
that window (in some system-dependent way) and passes it to the image’s draw-on
procedure. When the drawing is all done, show takes care of any system-dependent
wrap-up that needs to be done, such as notifying the system that the window is
complete.

In the earlier chapters, we assumed that images constructed using the predefined
image procedures were automatically shown, without needing to explicitly use a
procedure such as show. The way this is implemented is that the Scheme system
itself applies show when the value of a computation is an image, just as when the
value is a number, it displays the digits representing the number. Thus show (or an
analogue) was really at work behind the scenes. In this chapter we make it explicit.

We mentioned above that the images can be much more complex, like that 1024-
line level-10 c-curve. However, before we move on to how these complex images are
constructed, one other image type directly reflects the abilities of drawing media.

Exercise 9.14

Wirite the make-filled-triangle image constructor. It should take three points as
arguments, each with coordinates in the —1 to I range. It should produce an image
with the basic-image-size as its width and height, drawn on a medium as a filled
triangle.

Now we are ready to consider how to build more complex images. We'll start
with overlaying two images, because that is all we need to construct our c-curve
example. Such an image should be able to report its height or width and should be
able to draw itself. The size issue is fairly simple to deal with, but how do we get an
overlaid image to draw itself? The answer is to use the fact that an overlaid image is
a composite of two other images. When the overlaid image is asked to draw itself on
a medium, it simply passes the buck to its two constituent images by asking them to
draw themselves on that medium. This leads to the following constructor:

(define make-overlaid-image
(lambda (imagel image2)
(if (not (and (= (width imagel) (width image2))
(= (height imagel) (height image2))))
(error "can’t overlay images of different sizes")
(lambda (op)
(cond ((equal? op ’width) (width imagel))
((equal? op ’height) (height imagel))
;; (continued)
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((equal? op ’draw-on)
(lambda (medium)
(draw-on imagel medium)
(draw-on image2 medium)))
(else
(error "unknown operation on overlaid image"

op)))))))

Notice that this is both a producer and a consumer of the interface we specified for
images. Because what it produces is an image, the result needs to provide the width,
height, and draw-on operations. Because that composite image is built from two
preexisting images, it can count on imagel and image2 to be able to report their
own width and height and to draw themselves appropriately. That way we don’t need
to care what sort of images are being overlaid.

You can try out the code thus far by using the c-curve procedure, rewritten in
terms of our new constructors:

(define c-curve
(lambda (x0 yO x1 y1 level)
(if (= level 0)
(make-line (make-point x0 y0) (make-point x1 y1))
(let ((xmid (/ (+ x0 x1) 2))
(ymid (/ (+ yO y1) 2))
(dx (- x1 x0))
(dy (- y1 yO)))
(let ((xa (- xmid (/ dy 2)))
(ya (+ ymid (/ dx 2))))
(make-overlaid-image
(c-curve x0 yO xa ya (- level 1))
(c-curve xa ya x1 y1 (- level 1))))))))

With this definition in place, and using the show procedure we mentioned earlier to
provide an appropriate on-screen drawing medium, you could do (show (c-curve
0 -1/2 0 1/2 8)) to sce a level-8 c-curve.

Let’s now consider the example of turning an image a quarter turn to the right,
as we did in designing quilt covers. We can use the ability to have different kinds
of drawing media to great advantage here. When we want a turned image to draw
itself on a particular medium, the turned image will create a new “virtual” medium
layered on top of the given medium. This new medium takes care of doing the
turning. In other words, when a turned image is asked to draw itself onto a base
medium, it will pass the buck to the original image by asking it to draw itself on the
virtual medium. The original image then asks the virtual medium to draw some lines



268

Chapter 9 Generic Operations

and/or triangles. The virtual medium responds to each of these requests by asking
the base medium to draw a rotated version of the requested line or triangle.

How does the virtual medium turn the lines and triangles? The key to this turning
is that we really only need to move the endpoints of the lines or the vertices of the
triangle. A point that is near the left end of the medium’s top edge will need to
transformed to a point near the top of the righthand edge of the base medium, and
a point at the center of the left edge will be transformed to a point at the center top.
To turn a line connecting these two points, the virtual medium simply transforms
each of the points and then asks the base medium to draw a line connecting the two
transformed points.

When we write the constructor for this virtual medium, we’ll assume that we have
a transform procedure that can take care of transforming one point. That is, if we
apply transform to the top center point, we get the center point of the right edge
back. Given this point transformer, we can build the transformed medium using the
following constructor:

(define make-transformed-medium
(lambda (transform base-medium)
(lambda (op)
(cond
((equal? op ’draw-line)
(lambda (point0 pointl)
(draw-line-on (transform pointO) (transform pointl)
base-medium)))
((equal? op ’draw-filled-triangle)
(lambda (point0 pointl point2)
(draw-filled-triangle-on (transform point0)
(transform pointl)
(transform point2)
base-medium)))
(else
(error "unknown operation on transformed medium"

op))))))

Just as make-overlaid-image was both a producer and a consumer of the image
interface, so too is make-transformed-medium both a producer and a consumer of
the drawing medium interface. It constructs the new medium as a “wrapper” around
the old medium—all operations on the new medium are translated into operations
on the old medium.

For the specific problem of turning an image a quarter turn to the right, consider
the quarter turn illustrated in Figure 9.2. Clearly the width and height are inter-
changed in the turned image, and the x coordinate of a transformed point is the
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Figure 9.2 Illustration of what happens to the width, height, and a point (x,y) when an image is
turned. The turned point has coordinates (y, w — x) where w is the width of the base image.

original point’s y coordinate. (In our earlier example, this explains why a point on
the top edge maps into a point on the right-hand edge.) Furthermore, we can obtain
the transformed point’s y coordinate by subtracting the original point’s x coordinate
from the new height, which is the old width. This leads to the following code:

(define make-turned-image ; quarter turn to the right
(lambda (base-image)
(define turn-point
(lambda (point)
;5 y becomes x, and the old width minus x becomes y
(make-point (y-coord point)
(- (width base-image) (x-coord point)))))
(lambda (op)
(cond
((equal? op ’width) (height base-image))
((equal? op ’height) (width base-image))
((equal? op ’draw-on)
(lambda (medium)
(draw-on base-image
(make-transformed-medium turn-point medium))))
(else (error "unknown operation on turned image" op))))))

You could test this out using lines, but if you've written make-filled-triangle,
you can also try quarter turns out in their familiar context of quilting basic blocks,
such as the two below:
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(define test-bb
(make-filled-triangle (make-point 0 1)
(make-point 0 -1)
(make-point 1 -1)))

(define nova-bb

(make-overlaid-image

(make-filled-triangle (make-point 0 1)
(make-point 0 0)
(make-point -1/2 0))

(make-filled-triangle (make-point O 0)
(make-point 0 1/2)
(make-point 1 0))))

Of course, we don’t have to limit ourselves to just explicating the kind of image
operations we used in earlier chapters. We can also add some new operations to our
repertory.

Exercise 9.15

i

Wirite a make-mirrored-image constructor. It should take a single image as an
argument, like make-turned-image does. The image it produces should be the
same size as the original but should be flipped around the vertical axis so that what
was on the left of the original image is on the right of the mirrored image, and vice
versa, as though the original image had been viewed in a mirror.

Exercise 9.16

i

Write a make-scaled-image constructor. It should take a real number and an
image as its arguments. The image it makes should be a magnified or shrunken
version of the original image, under the control of the numeric scale argument.
For example, (make-scaled-image 2 test-Dbb) should make an image twice a
big as test-bb, whereas (make-scaled-image 1/4 test-bb) should make one
one-quarter as big as test-bb. (Of course, you can scale other images, like c-curves,
as well.) Don’t just scale the image’s width and height; you also need to arrange for
the scaling when the image is drawn.

To get full quilt covers, we also still need a way of stacking one image on top
of another, making a new image with the combined heights. This is rather similar
to make-overlaid-image, except that the top image will need to be fooled into
drawing higher up on the drawing medium than it normally would so that its drawing
goes above that of the bottom image. This can be achieved by giving it a transformed
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medium to draw on. It will draw on that transformed medium using y coordinates that
start at 0, but the transformed medium will translate that into drawing commands
on the base medium that have larger y coordinate values.

> Exercise 9.17

Using this approach, write a make-stacked-image constructor that takes the top
and bottom images as its arguments. You should initially test out your constructor
by doing such simple evaluations as (make-stacked-image test-bb nova-bb).
Once it seems to work, you can make fancier quilt patterns as described below.

Using your make-stacked-image procedure along with our earlier make-
turned-image procedure, the pinwheel procedure can be rewritten as follows:

(define pinwheel
(lambda (image)
(let ((turned (make-turned-image image)))
(let ((half (make-turned-image (make-stacked-image turned
image))))
(make-stacked-image half
(make-turned-image
(make-turned-image half)))))))

With this in hand, you can make quilt covers by doing evaluations such as (show
(pinwheel (pinwheel nova-bb))). For large covers, you probably will want to
show scaled-down versions made using make-scaled-image.

You may be feeling a bit ripped off because so far we haven’t shown how a “real”
drawing medium can be constructed, that is, one that doesn’t just pass the buck in
some transformed way to an underlying base medium. If you look on the web site
for this book, you can find several system-dependent versions of the show procedure,
each of which constructs some particular kind of on-screen drawing medium. At this
point, we'll take a look at constructing a drawing medium that “draws” by writing
to a file. This further highlights the benefits of generic operations. All of the image
constructors we defined above are just as good for producing a graphical file as they
are for drawing on the screen. That’s because each of them draws on an arbitrary
drawing medium, using the specified interface that all drawing media share.

The file format we’ll write is one known as Encapsulated PostScript, or EPS. It
is a popular format, which on many systems you'll be able to preview on-screen
or include as illustrations in documents. (For example, you could write a c-curve
or quilt pattern to an EPS file and then include that EPS file in a word-processed
report. We used this technique to make illustrations for this book.) In addition to
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the EPS format’s popularity and versatility, it has the advantage of being a relatively
straightforward textual format. For example, to draw a line from (0, 0) to (100, 100),
we would put the following into the EPS file:

0 0 moveto 100 100 lineto stroke

Similarly, to draw a filled triangle with vertices (0,0), (100,0), and (50, 100), we
would put the following line into the file:

0 0 moveto 100 O lineto 50 100 lineto closepath fill

Although this notation is likely to be unfamiliar to you, at least it is readable, unlike
some other graphics file formats.

By using the display and newline procedures, we could write the EPS output
to your computer’s screen for you to see. That is, you'd wind up seeing a bunch of
textual descriptions of graphical objects, like the examples given above. However,
doing so would not be very useful. Instead, we’ll write the EPS output into a file
stored on your computer, ready for you to view using a previewer program or to
incorporate into a word-processed document. To write this output to a file, we'll
use a predefined Scheme procedure called with-output-to-file. It reroutes the
output produced by procedures like display and newline so that they go into the
file instead of to your screen. For example,

(with-output-to-file "foo"
(lambda ()
(display "hello, world")
(newline)))

would create a one-line file called foo containing the message hello, world.

We'll write a procedure called image->eps that writes an EPS version of a given
image into a file with a given filename. Just like show, this procedure will take care
of some start-up details before asking the image to draw itself. The procedure first
writes a bit of header information to the file, including the information about how
big the image is. Then, image->eps asks the image to draw itself on a specially
constructed drawing medium called eps-medium that outputs the EPS commands
for drawing the lines or filled triangles.

(define image->eps
(lambda (image filename)
(with-output-to-file filename
(lambda ()
(display "%!PS-Adobe-3.0 EPSF-3.0")
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(newline)

(display "%%BoundingBox: 0 0 ")

;; We need to make sure the bounding box is expressed
;; using only exact integers, as required by PostScript.
;3 Therefore we process the width and height of the

;3 lmage using round and then inexact->exact. The

;3 round procedure would convert 10.8 into the inexact
;; integer 11., which the inexact->exact then converts
;; to the exact integer 11

(display (inexact->exact (round (width image))))
(display " ")

(display (inexact->exact (round (height image))))
(newline)

;; Now do the drawing

(draw-on image eps-medium)))))

How does eps-medium work? It simply needs to draw lines and filled triangles in
the EPS manner illustrated earlier, which leads to the following definition:

(define eps-medium
(lambda (op)
(cond ((equal? op ’draw-line)
(lambda (point0O pointl)

(display-eps-point point0)
(display "moveto")
(display-eps-point pointl)
(display "lineto stroke")
(newline)))

((equal? op ’draw-filled-triangle)

(lambda (pointO pointl point2)

(display-eps-point point0)
(display "moveto")
(display-eps-point point1l)
(display "lineto")
(display-eps-point point2)
(display "lineto closepath fill")
(newline)))

(else

(error "unknown operation on EPS medium"

op)))))
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The display-eps-point procedure this uses simply writes out the x and y coor-
dinates in a format suitable for PostScript. In particular, PostScript can’t handle a
fraction written with a slash, such as 1/2. Therefore, we use the predefined proce-
dure exact->inexact to convert numbers that aren’t integers into their “inexact”
form, which gets displayed as .5 (for example) rather than 1/2. (The procedure
exact->inexact returns unchanged any number that is already inexact.)

(define display-eps-point
(lambda (point)
(define display-coord
(lambda (coord)
(if (integer? coord)
(display coord)
(display (exact->inexact coord)))))
(display " ")
(display-coord (x-coord point))
(display " ")
(display-coord (y-coord point))
(display " ")))

Exercise 9.18

i

Wirite a procedure summarize-image that takes an image as its argument and uses
display to give you a summary of that image as follows. For each line segment the
image contains, a letter 1 should be displayed, and for each filled triangle, a letter t.
For example, if you evaluate (summarize-image (c-curve 0 -1/2 0 1/2 3)),
you should see eight 1’s because the level-3 c-curve is constituted out of eight line
segments.

Review Problems

[> Exercise 9.19

You are hired to supervise a team of programmers working on a computerized
geometry system. It is necessary to manipulate various geometric figures in standard
ways. As project manager, you have to select an organizational strategy that will allow
all different shapes of geometric figures to be be accessed using generic selectors for
such information as the x and y coordinates of the figure and the area.

State which strategy you have chosen and briefly justify your choice (e.g., use one
to three sentences). For your programmers’ benefit, illustrate how your choice would
be used to implement constructors make-square and make-circle and generic
selectors center-x, center-y, and area. The two constructors each take three
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arguments; in both cases, the first two are the x and y coordinates of the center of
the figure. The third argument specifies the length of the side for a square and the
radius for a circle. The selectors should be able to take either a square or a circle as
their argument and return the appropriate numerical value.

I> Exercise 9.20

Global Amalgamations Corp. has just acquired yet another smaller company and is
busily integrating the data processing operations of the acquired company with that of
the parent corporation. Luckily, both companies are using Scheme, and both have set
up their operations to tolerate multiple representations. Unfortunately, one company
uses operation tables as type tags, and the other uses procedural representations (i.e.,
message passing). Thus, not only are multiple representations now co-existing, but
some of them are type-tagged data and others are message-passing procedures. You
have been called in as a consultant to untangle this situation.

What is the minimum that needs to be done to make the two kinds of rep-
resentation happily coexist? Illustrate your suggestion concretely using Scheme as
appropriate. You may want to know that there is a built-in predicate pair? that tests
whether its argument is a pair, and a similar one, procedure?, that tests whether its
argument is a procedure.

[> Exercise 9.21

One way we can represent a set is as a predicate (i.e., a procedure that returns true
or false). The idea is that to test whether a particular item is in the set, we pass it to
the procedure, which provides the answer. For example, using this representation,
the builtin procedure number? could be used to represent the (infinite) set of all
numbers.

a. Implement element-of-set? for this representation. It takes two arguments, an
element and a set, and returns true or false depending on whether the element is
in the set or not.

b. Implement add-to-set for this representation. It takes two arguments, an ele-
ment and a set, and returns a new set that contains the specified element as well
as everything the specified set contained. Hint: Remember that a set is represented
as a procedure.

c. Implement union-set for this representation. It takes two arguments—two sets —
and returns a new set that contains anything that either of the provided sets
contains.

d. Write a paragraph explaining why you think the authors included this exercise in
this chapter rather than elsewhere in the book.
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[> Exercise 9.22

Assume that infinity has been defined as a special number that is greater than
all normal (finite) numbers and that when added to any finite number or to itself,
it yields itself. (In some Scheme systems you can define it as follows: (define
infinity (/ 1.0 0.0)).) Now there is no reason why sequences need to be of
finite length. Write a constructor for some interesting kind of infinite sequence.

I> Exercise 9.23

Show how the movie, book, and CD databases could be combined using message-
passing instead of type-tagging.
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CHAPTER TEN

10.1

Implementing Programming
Languages

Introduction

The Scheme system you've been using as you work through this book is itself a
program, one that repeatedly reads in an expression, evaluates it, and prints out the
value. The main procedure in this system is a read-eval-print loop. In this chapter,
we'll see how such a system could have been written by building a read-eval-print
loop for a somewhat stripped down version of Scheme we call Micro-Scheme.

The previous paragraph announced without any fanfare one of the deepest truths
of computer science: The fully general ability to perform any computation what-
soever is itself one specific computation. The read-eval-print loop, like any other
procedure, performs the one specialized task it has been programmed to do. How-
ever, its specific task is to do whatever it is told, including carrying out any other
procedure. It exemplifies the universality principle:

The universality principle: There exist universal procedures (such as the read-
eval-print loop) that can perform the work of any other procedure. Like any
other procedure, they are specialized, but what they specialize in is being fully
general.

In the next section, we'll first describe exactly what Micro-Scheme expressions
look like by using a special notation called Extended Backus-Naur Form. In the third
section, we'll build the read-eval-print loop for Micro-Scheme. Because definitions
are among the features of Scheme missing from Micro-Scheme, there is no con-
venient way to create recursive procedures. To overcome this, in the fourth section

278
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we'll add global definitions to Micro-Scheme, resulting in Mini-Scheme. Finally,
in the application section at the end of the chapter you'll have the opportunity to
modify the Mini-Scheme system so that it prints out each of the steps involved in
evaluating the main problem, each subproblem, sub-subproblem, etc., much like
the diagrams from the early chapters. That way, you'll have a useful tool for helping
to understand Scheme evaluation.

Before launching into the development of Micro-Scheme, let’s consider why we
would want to build a Scheme system when we already have one available:

® As mentioned in the preceding paragraph, in the application section you’ll add

explanatory output that is helpful in understanding Scheme evaluation. Adding
this output to the Scheme system you've been using would probably not be as
casy.

= [n fact, even without adding any explanatory output, you'll probably come to

understand Scheme evaluation better, simply by getting an insider’s perspective
on it.

= You'll also be able to experiment with changes in the design of the programming

language. For example, if you have been wishing that Scheme had some feature,
now you’ll have the opportunity to add it.

® You'll even be in a good position to implement a whole new programming lan-

guage that isn’t a variant of Scheme at all. Many of the general ideas of program-
ming language implementation are independent of the specific language being
implemented. The main reason why this chapter is focused on the nearly circu-
lar implementation of Mini-Scheme in Scheme is simply to avoid introducing
another language for you to understand.

Syntax

The read-eval-print loop for Micro-Scheme uses many of the ideas from the movie
query application in Section 7.6. There, we had a procedure, query-1loop, that read
in a query, matched it to one of a variety of patterns, took the appropriate action, and
printed the result. Here, we have a loop that reads in an expression and uses a similar
matching algorithm to determine what kind of expression it has. This information is
then used to compute and print the value of the expression.

Recall that in the query loop, we knew that there would be some queries that
didn’t match any of the patterns in our database. Similarly, in the Micro-Scheme
loop, there will be expressions that don’t match any of the valid forms for Micro-
Scheme expressions. For example, the expression (if (not (= x 0)) (/ 2 x)
(display "tried to divide by 0") 17) is not a valid Micro-Scheme expres-
sion because there are four expressions following the symbol if and only three are
allowed. Expressions that don’t have a valid form are said to be syntactically incorrect;
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those that are well formed are, of course, syntactically correct. Note that the em-
phasis is on form; for example, the expression (3 2) is syntactically correct because
2 and 3 are both valid expressions, and any collection of one or more valid expres-
sions surrounded by parentheses is also a valid expression. However, that expression
doesn’t have any meaning or value. Such an error is called a semantic error.

The input to the movie query system was fairly easy to specify—it was a list of
symbols—but the input to the Micro-Scheme read-eval-print loop has considerably
more structure. Micro-Scheme is just a stripped down version of Scheme; essentially
it has all the features of Scheme that we've seen up until now except define, cond,
let, and, or, and most of the built-in Scheme procedures. This means that a Micro-
Scheme expression could be a symbol, a constant (i.e., a number, boolean, or string),
or a list of Micro-Scheme expressions and keywords. The keywords are the special
symbols if, lambda, and quote; we'll say more about quote, which you haven'’t
previously seen, in a bit. Not everything a Micro-Scheme user types in is going to be
a valid Micro-Scheme expression, so we'll call each input to the read-eval-print loop
a potential Micro-Scheme expression, or PMSE for short. We can give a recursive
definition of a PMSE:

PMSE: A PMSE is a symbol, a number, a string, a boolean, or a list of PMSEs.

The main task of this section is to describe which PMSEs are actually Micro-
Scheme expressions. To do this, we’ll use a concise notation called EBNF that is
commonly used for defining the syntax of formal languages, such as programming
languages. The name EBNF stands for Extended Backus-Naur Form, because this
notation is an extension to a form of syntax definition that John Backus developed and
Peter Naur popularized by using it in the published definition of the programming
language Algol, which he edited.

EBNF is one example of a notation for language grammars, which specify how
syntactic categories are recursively structured. The basic idea is to be able to say
things like “any collection of one or more expressions surrounded by parentheses is
also an expression,” which is an inherently recursive statement. The only difference
is that rather than saying it in English, we have a notation for saying it that is both
more precise and more concise. Regarding precision, notice that the English version
could be misread as saying that each of the individual expressions is surrounded
by parentheses, rather than the whole collection. Regarding concision, here is the
EBNF version:

(expression) — ({expression)™)
This collection of symbols with an arrow in it is called a production of the grammar.

The arrow separates the production into two sides, the lefthand and the right-hand
sides. The word (expression) with the angle brackets around it is a syntactic category
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name or nonterminal. A grammar is a collection of productions that is used to define
one specific syntactic category; for Micro-Scheme it would be {expression). However,
along the way we may want to define other syntactic categories, such as (conditional).
The meaning of a production is that the righthand side specifies one form that is
permissible for the syntactic category listed on the left-hand side. For example, the
above production gives one form that an {(expression) can have.

The parentheses in the example production’s right-hand side are necessary symbols
that must appear in any (expression) of that form; these are called terminal symbols.
For another example, the production

(expression) — (if (expression) (expression) (expression))

contains the keyword if as a terminal symbol as well as the parentheses.

At this point we have two productions for {expression), because we have given
two different forms that (expression)s can have. This is normal; many syntactic
categories will be specified by a collection of productions specifying alternative
forms the category can have. The grammar is easier to read if all the productions for
a particular category are grouped together; a notational shorthand is generally used
for this. In the case of our two productions for {expression), this shorthand notation
would be as follows:

(expression) — ({expression)™)
| (if (expression) (expression) (expression))

The vertical bar is used to indicate that another production for the same left-hand
side follows. Any number of productions can be grouped together in this way. If the
right-hand sides are short, they can be listed on the same line, as follows:

(digity — o 1]2]3]4]|5]6]7]8]9

Note, incidentally, that none of these productions for (digit) contains any nonter-
minal symbols on the right-hand side. Every grammar must have some productions
like that to provide the base case for the recursion inherent in grammars.

The first production given for {(expression) had a superscript plus sign in its
right-hand side; this is a special notation that means “one or more.” In particular,
(expression) ™ is the EBNF way to say “one or more {expression)s,” which was used
to say that one form an (expression) can have is a pair of parentheses surrounding
one or more {expressions)s.

There is another very similar notation that can be used to say “zero or more.” For
example, suppose we want to specify the syntax of lambda expressions. We'll limit
the body to a single {expression) but will allow the parameter list to have zero or
more {(name)s in it so that we can have procedures with any number of parameters,
including parameterless procedures. This would be expressed as follows:
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(expression) — (lambda ({name)*) (expression))

The general rule is that a syntactic category name with a superscript asterisk indicates
zero or more instances of the category, whereas a syntactic category name with a
superscript plus sign indicates one or more instances of the category.

Now that we have the basics of EBNF, we can use it to describe all of Micro-
Scheme. Recall that Micro-Scheme is a stripped-down version of Scheme; specifi-
cally, it includes many of the features of Scheme that we've seen up until now. The
basic syntactic category in Micro-Scheme is the expression.

(expression) — (name) | (constant) | {conditional) | (abstraction)
| (application)

(constant) — (literal) | (quotation)

(literal) — (number) | (boolean) | (string)

(conditional) — (if (expression) (expression) (expression))
(abstraction) — (lambda ({name)*) (expression))
(quotation) — (quote (datum))

(application) — ({expression)*)

(name) — any symbol allowed by the underlying Scheme except 1ambda, quote,
and if

(number) — any number allowed by the underlying Scheme

(string) — any string allowed by the underlying Scheme

(boolean) — any boolean allowed by the underlying Scheme

(datum) — any datum allowed by the underlying Scheme

You will notice that there are five syntactic categories at the end of the grammar
that are defined in terms of the underlying Scheme. The last one, (datum), includes
the other four as well as lists and a couple other Scheme types we have not yet
discussed; specifically, (datum) consists of everything that Scheme will successfully
read using the built-in read procedure. In fact, the main reason that we describe
(name)s, (number)s, (string)s, (boolean)s, and (datum)s in terms of the underlying
Scheme is that were using the built-in read procedure for reading in the PMSEs.
Once we've read in a PMSE, the underlying Scheme has it all nicely packaged for
us so we can tell if it’s a symbol, a number, a boolean, a string, a list, or none of the
above simply by using predicates such as symbol?, number?, and so on.
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Our grammar provides two ways to specify a (constant). One is as a (literal), such
as 31, #t, or "hello". The other way is as a (quotation), such as (quote x) or
(quote (1 2)). In normal Scheme, you are used to seeing quotations written a
different way, as *x or > (1 2), which is really just a shorthand notation; when the
read procedure sees ’x in the input, it returns the list (quote x).

Finally, you'll notice that we used an unfamiliar name for the syntactic category
of lambda expressions: We called them (abstraction)s. We didn’t want to name
the syntactic category (lambda-expression) because that would be naming it after
the keyword occurring in it—naming it after what the expressions look like rather
than after their meaning. (An analogy would be if we had named (application)s
“parenthesized expressions” because they have parentheses around them, rather
than focusing on the fact that they represent the application of a procedure to its
arguments.) We didn’t want to call these expressions (procedure)s either because a
procedure is the value that results from evaluating such an expression, and we want
to distinguish the expression from the value. There is a long tradition of calling this
kind of expression an abstraction, so we adopted this name.

> Exercise 10.1

The categories (number), (string), and (boolean) are directly testable by the corre-
sponding Scheme procedures number?, string?, and boolean?, but (name) does
not have an exact Scheme correlate. You will write one in this exercise.

a. Recall that the symbols lambda, quote, and if that are disallowed as names
because of their special usage in Micro-Scheme are called keywords. Write a
predicate keyword? that tests whether its argument is a keyword.

b. Write the predicate name?. You will need to use the built-in Scheme procedure
symbol?.

> Exercise 10.2

Even when a category is directly testable by Scheme, using EBNF to express it at a
more primitive level can help you appreciate the expressive power of EBNF. In this
exercise you will use EBNF to describe certain kinds of numbers—a small subset of
those allowed by Scheme.

a. Write a production for {unsigned-integer). You can use the productions for (digit)
given above.

b. Next write productions for {integer); an (integer) may start with a - sign, a + sign,
or neither.

c. Finally, write productions for (real-number), which are (possibly) signed numbers
that may have a decimal point. Note that if the real number has a decimal point,
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there must be at least one digit to the left or to the right (or both) of the decimal
point. Thus, —43., .43, 43, +43.21, and 43.0 are all valid real numbers.

> Exercise 10.3

In Section 8.3 we considered expression trees for simple arithmetic expressions.
All such expressions are either numbers or lists having an operator (one of +, -,
*, or /) and two operands. Actually, there are three important variants, depending
on where the operator occurs: in the first position (prefix or Scheme notation),
the second position (infix or standard notation), or the third position (postfix, also
known as Reverse Polish notation, or RPN). Let’s consider how such expressions can

be specified using EBNF.

a. Write productions for (arithmetic-prefix-expression).
b. Write productions for (arithmetic-infix-expression).
c¢. Write productions for (arithmetic-postfix-expression).

d. As noted in Section 8.3, a postorder traversal of an expression tree re-
sults in a list of the nodes that is identical to the language specified by
(arithmetic-postfix-expression), except that subexpressions are not parenthesized.
Revise the productions for (arithmetic-postfix-expression) so that subexpressions
are not parenthesized. (The overall top-level expression needn’t be parenthesized
either.)

> Exercise 10.4

Let’s consider two possible additions to our Micro-Scheme grammar involving regular
Scheme expressions.

a. Write a production for let expressions. Remember that 1et expressions allow zero
or more bindings (i.e., parenthesized name/expression pairs), and the body of the
let contains one or more expressions. You should define a separate syntactic
category for (binding).

b. Write productions for cond expressions. Remember that cond expressions allow
one or more branches, the last of which may be an else, and each branch has
one or more expressions following the test condition.

> Exercise 10.5

Our grammar for Micro-Scheme says that an (application) is of the form
({expression) ™). Some authors prefer to instead say that it is of the form ({expression)
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(expression)®), even though this is longer and is equivalent. Speculate why it might
be preferred.

We can use the productions for (expression) to determine whether or not (+ 2 3)
is a syntactically valid Micro-Scheme expression. Because it matches the production
for an (application), it will be a valid Micro-Scheme expression if and only if +,
2, and 3 are valid. Now, + is a symbol in Scheme and not a keyword, so it is a

-:) The Expressiveness of EBNF

If we weren't allowed to use the superscript asterisk and plus sign in EBNF, we
wouldn’t lose anything in terms of the power of the notation: We could still
represent all the same language constructs, just using recursion. For example,
rather than

(application) — ({expression)™)
we could write
(application) — ({expressions))

(expressions) — (expression)
| (expressions) (expression)

As the above example shows, although the superscripted asterisk and plus sign
don’t add anything to the range of languages the EBNF notation can describe,
they do contribute to keeping our grammars short and easy to understand.

Having seen what happens if we eliminate the “repetition” constructs and rely
only on recursion, now let’s consider the reverse. Suppose we forbid all use of
recursion in EBNF but allow the superscript asterisk and plus sign. We have to
be clear what it means to rule out recursion: Not only are we forbidding syntactic
categories from being directly defined in terms of themselves (as {(expressions)
is in the preceding), but we are also forbidding indirect recursions, such as the
definition of {expression) in terms of {application), which is itself defined in terms
of {expression). This restriction cuts into the range of languages that is specifiable.
For example, consider the language specified by the following recursive EBNF
grammar:

(parens) — ()
| ({parens))

(Continued)
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-j’ The Expressiveness of EBNF (Continued)

Any string of one or more left parentheses followed by the same number of

right parentheses is a (parens). Suppose we have a nonrecursive grammar that
also matches all these strings (but possibly others as well). Consider a very long
string of left parentheses followed by the same number of right parentheses. If
the string is long relative to the size of the nonrecursive grammar, the only
way this can happen is if the asterisk or plus sign is being used at some point to
match a repeated substring. The part being repeated has to contain either only left
parentheses or only right parentheses because otherwise its repetition would cause
a right parenthesis to come before a left parenthesis. However, if the repeated part
contains only one kind of parenthesis, and if we simply repeat that part more times
(which the asterisk or plus sign allows), we’ll wind up with an imbalance between
the number of left and right parentheses. Thus the nonrecursive grammar, if it
matches all the strings that (parens) does, must match some other strings as well
that (parens) doesn’t; in other words, we've got a language that can be specified
using a recursive grammar but not a nonrecursive one.

Even with recursion allowed, EBNF isn’t the ultimate in language specification;
it can’t specify some very simple languages. For example, suppose we want the
language to allow any number of left parentheses followed by the same number
of letter a’s followed by the same number of right parentheses. For example, (a)
and ((aa)) would be legal but ((a)) and ((aa) wouldn’t be. There is no way
to specify this language using EBNF. Even sketching the proof of this would go
beyond the scope of this book, but you'll see it in a course on formal languages
and automata theory. Such courses, also sometimes called “mathematical theory
of computation” or “foundations of computation,” go into more details on the
other issues we covered in this sidebar and cover related topics as well.

(name) in Micro-Scheme, and thus + is a valid Micro-Scheme expression. Similarly,
2 and 3 are numbers, so they are Micro-Scheme (constant)s. Thus, they too are valid
Micro-Scheme expressions. Hence, the whole expression (+ 2 3) is also valid.

> Exercise 10.6

Determine which of the following PMSEs are syntactically valid Micro-Scheme
expressions and explain why.

a. (if 3 1 5)
b. (lambda x (+ x 2))
c. (((a ((M))) c))
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d. (lambda (lambda) 3)

e. (lambda () lambda)

f. (lambda (x) (if G x 0) x (- x) 0))
g. (lambda () x)

h. (lambda )

i (/)

j. (#t #£f)

As you did the exercise above, you probably matched a PMSE against the pro-
ductions for a Micro-Scheme (expression). Whenever you found a match, you took
the various parts of the PMSE and checked to see whether they were valid as well.
Note that this is a form of pattern-matching similar to what you did in Section 7.6
to determine the form of a query in the movie query system.

We can use the pattern-matching mechanism from Section 7.6 to determine
whether or not a PMSE is a syntactically correct Micro-Scheme expression. In par-
ticular, we’ll use the procedures matches? and substitutions-in-to-match,
together with a pattern/action list appropriate for Micro-Scheme. This list will
have one pattern/action pair for each kind of compound expression —(conditional),
(abstraction), and (application). The matching will determine whether or not a
PMSE has the correct number of “sub-PMSEs” in the correct places, and the ac-
tions will check to see if these sub-PMSEs are valid expressions. The pattern/action
list will also take care of (quotation)s, whereas we’ll have to use separate checks
to determine whether or not we have one of the simplest kinds of Micro-Scheme
expressions, (name) and (literal), neither of which has any sub-PMSE.

Here, then, is the code for a syntax checking predicate syntax-ok?, together
with the pattern/action list. The procedure all-are is a higher-order procedure
from Exercise 7.49 on page 208. It takes a predicate, such as name? or syntax-ok?,
and returns a procedure that determines whether or not everything in a list satisfies
the original predicate. Thus, for example, the action for the pattern starting with
lambda includes a check that all of the parameters are really names.

(define syntax-ok?
(lambda (pmse)
(define loop ;main procedure is on next page
(lambda (p/a-list)
(cond ((null? p/a-list) #f)
((matches? (pattern (car p/a-list)) pmse)
(apply (action (car p/a-list))

(substitutions-in-to-match
(pattern (car p/a-list))
pmse)))

(else (loop (cdr p/a-list)))))) ;end of loop
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(cond ((or (number? pmse) ;main syntax-ok? procedure

(string? pmse)
(boolean? pmse)) ;pmse is a literal

#t)

((name? pmse) #t)

((1list? pmse) ;try matching it against the patterns

(loop micro-scheme-syntax-ok?-p/a-list))

(else #£))))

(define micro-scheme-syntax-ok?-p/a-list
(list
(make-pattern/action ’(if _ _ _)
(lambda (test if-true if-false)
(and (syntax-ok? test)
(syntax-ok? if-true)
(syntax-ok? if-false))))
(make-pattern/action ’(lambda _ _)
(lambda (parameters body)
(and (1list? parameters)
((all-are name?) parameters)
(syntax-ok? body))))
(make-pattern/action ’(quote _)
(lambda (datum) #t))
(make-pattern/action ’(...) ; note that this *must* come last
(lambda (pmses)
((all-are syntax-ok?) pmses)))))

Let’s look at what happens if we call syntax-ok? on a liststructured PMSE,
say, (if 3 1 5). This PMSE will match the first pattern in the pattern/action list
because (if 3 1 5) is a list with four elements and the first element is the symbol
if. The last three elements in the PMSE are the test expression, the expression to
evaluate if the test expression is true, and the expression to evaluate if the test is false.
The action that corresponds to this pattern is to recursively check to see if all three
of these expressions are really well-formed Micro-Scheme expressions by using the
procedure syntax-ok? and the special form and.

In the example above a mutual recursion occurs between syntax-ok? and the
action procedures, much like with even-part and odd-part in Section 7.5. That
is, syntax-ok? doesn’t directly invoke itself to check the validity of sub-PMSEs
but rather invokes an action procedure that in turn invokes syntax-ok? on the
sub-PMSEs. Because this will in general result in more than one recursive call
to syntax-ok? (for example, conditionals result in three recursive calls), the net
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result is tree recursion. Micro-Scheme expressions have a tree-like structure similar
to the expression trees in Section 8.3. The tree recursion resulting from a call to
syntax-ok? exactly parallels the tree-like structure of the given PMSE.

Exercise 10.7

i

Why does the mutual recursion between syntax-ok? and the action procedures
eventually stop when we check the syntax of (if 3 1 5)? Why will it eventually
stop on any liststructured PMSE?

Exercise 10.8

i

10.3

What happens if the PMSE being checked is the empty list?

Note that there are plenty of syntactically valid Micro-Scheme expressions that are
nevertheless completely nonsensical: consider, for example, (1 5). This expression
is a syntactically valid Micro-Scheme expression (and a syntactically valid Scheme
one, too), but it doesn’t have a value, because the value of 1 is the number 1, not a
procedure. The point is that this expression has the correct form for Micro-Scheme
expressions, and form is the only thing that EBNF specifies. The big gain with EBNF
is that the productions for a language translate fairly simply into a syntax checker
such as syntax-ok?. In the next section, we'll see that the same productions can
also serve as the basis for categorizing expressions and identifying their parts in
preparation for evaluating them.

Finally, we make one important remark concerning the structure of the pat-
tern/action list. Note that the first three patterns in the pattern/action list describe
list-structured PMSEs that can be identified by their size and their first element.
Because of the way the pattern/action list is structured, any other nonempty list is
considered to be an application. When we extend Micro-Scheme by adding new
productions, we will want to maintain this property by keeping the pattern for appli-
cations at the end of the pattern/action list.

Micro-Scheme

Now that we know the syntax for Micro-Scheme, we can build a read-eval-print loop
for it. The Micro-Scheme read-eval-print loop itself is quite straightforward:

(define read-eval-print-loop
(lambda ()
(display ";Enter Micro-Scheme expression:")
(newline)
; ; (continued)
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(let ((expression (read)))
(let ((value (evaluate (parse expression))))
(display ";Micro-Scheme value: ")
(write value)
(newline)))
(read-eval-print-loop)))
Each expression is read in with read, then parsed and evaluated, and finally the value
is written back out using write, with some frills provided by newline and display.
(The built-in procedure write is just like display except for some details such as
providing double quote marks around strings. That way you can see the difference
between the string "foo" and the symbol foo, unlike when they are displayed.)

The core of this read-eval-print loop is a two-step process that uses the two proce-
dures parse and evaluate. In order to understand the separate tasks of these two
procedures, let’s first consider the arithmetic expressions described in Exercise 10.3.
No matter which way we denote arithmetic expressions (infix, prefix, and postfix),
each expression gives rise to a unique expression tree, as described in Section 8.3.
Parsing is the process of converting an actual expression to the corresponding ex-
pression tree. But why should we go through this intermediate stage (the expression
tree) rather than simply evaluating the expression directly? Separating the parsing
from the evaluation allows us to make changes in the superficial form or syntax of
expressions (such as whether we write our arithmetic expressions in prefix, infix, or
postfix) without needing to change the evaluation procedure. Furthermore, evalua-
tion itself is made easier, because the expression tree data type can be designed for
ease of evaluation rather than for ease of human writing.

Arithmetic expressions are considerably simpler than Micro-Scheme expressions
in one sense, however. Namely, there were only two kinds of nodes in our expression
trees: constants, which were leaves, and operators, which were internal nodes. We
needed to distinguish between constants and operators in Section 8.3’s evaluate
procedure, but all internal nodes were treated the same way: by looking up and
applying the specified Scheme procedure.

If you think instead about how Micro-Scheme works, it would be natural for
expression trees to have two kinds of leaves, corresponding to the syntactic categories
(name) and {(constant). Fach of these will need to be evaluated differently. Similarly,
there are three natural candidates for kinds of internal nodes, corresponding to
(conditional), {abstraction), and (application), because these syntactic categories have
subexpressions that would correspond to subtrees. Again, the way each of these
expressions is evaluated depends on what kind of expression it is. For example, think
about the difference between the way (+ (square 2) (square 3)) is evaluated
and the way (if (= x 0) 1 (/ 5 x)) is. Because we need to know what kind
of expression we have in order to evaluate it, parsing must identify and mark what
sort of expression it is considering and break it down into its component parts. In
our example above, the expression (+ (square 2) (square 3)) isan application,
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whose operator is + and whose operands are (square 2) and (square 3). Each
of these operands is itself an application with an operator, which is square, and an
operand, which is either 2 or 3.

So, the value of parse will be a tree-structured data type, which is typically called
an Abstract Syntax Tree, or AST. The AST for an expression indicates what kind
of expression it is and what its components are. Furthermore, the components are
themselves typically ASTs. The evaluation process itself can be carried out on the
AST rather than the original expression; as described above, this approach has the
advantage that if the language is redesigned in ways that change only the superficial
syntax of expressions, only parse (not evaluate) needs to be changed.

ASTs are an abstract data type, which means we shouldn’t worry too much for
now about how they are represented (what they “look like”) so long as they provide
the appropriate operations, notably the evaluate operation. However, it is easier
to think about ASTs if you have something concrete you can think about, so we
will present here a pictorial version of AST's that you can use when working through
examples with paper and pencil. Each AST is visually represented as a tree whose root
node has a label indicating what kind of AST it is. The leaf nodes, which correspond
to the syntactic categories (name) and (constant), are fairly simple. For example,

Name Constant
\7—\,”5‘”"6: * ] is the name AST corresponding to the name +, and |_value:2

is the constant AST corresponding to 2. Note that in addition to the labels (that
designate their syntactic categories Name and Constant), both of these AST's contain
information specifying which particular name or constant they represent (name: +
and value: 2).

The other three syntactic categories ({conditional), (abstraction), and
(application)) correspond to internal nodes because they each contain subexpressions
that themselves result in ASTs. In contrast to the expression trees in Section 8.3,
which always had exactly two children, the number of children of an internal node
in these ASTs will vary. This number depends partially on the syntactic category;
for example, the root node corresponding to the category (conditional) will always
have three children: one each for the test, if-true, and if-false subexpressions. On the
other hand, the number of children of the root node corresponding to the category
(application) varies: The operator is one child, and the operands are the others.

First consider the (application) category. If we parse the Micro-Scheme expression
(+ 2 3), we get the following application AST:

|/ Application —|

Name Constant Constant
|/name: +‘| |/ value: 2 -I |/ value: 3 -I
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The three children are the ASTs corresponding to the three subexpressions of the
expression. The leftmost child corresponds to the operator +, which is a name AST,
and the other children correspond to the two operands; we put a curved line in
the diagram to indicate that these latter subtrees are grouped together as a list of
operands. As noted above, the number of subtrees varies with the application; for
example, parsing the expression (+ 2 3 4) would result in the following application

AST:

Application

Name Constant Constant Constant
rname: + T ( value: 2 —‘ ( value: 3 —‘ ( value: 4 —‘

We have two other kinds of ASTs: conditional ASTs, which result from
parsing if expressions, and abstraction ASTs, which result from parsing lambda
expressions. The conditional AST resulting from the expression (if (= x 0)
1 (/ 5 x)) is diagrammed in Figure 10.1, and the abstraction AST resulting from
the expression (lambda (x) (* x x)) is diagrammed in Figure 10.2. Notice that
the abstraction AST contains the list of parameter names and has a single sub-AST,
corresponding to the body of the abstraction.

Recall that we are doing evaluation in a two-step process: first parse the expression,
then evaluate the resulting AST. Thus, if we use A as a name for the first application
AST shown above, the Scheme (not Micro-Scheme) expression (parse ’(+ 2 3))
has A as its value, and the Scheme expression (evaluate A) has 5 as its value.
Those are the two steps that the Micro-Scheme read-eval-print loop goes through
after reading in (+ 2 3): It first parses it into the AST A, and then evaluates the
AST A to get 5, which it writes back out.

What do we gain by using this two-step evaluation process? As we said at the
outset, part of the gain is the decoupling of the superficial syntax (parse’s concern)

Conditional

Application Constant Application
T (value: 1 —‘ T
Name Name Constant Name Constant Name
mee: :T I_name: X_I ( value: 0 —‘ ﬁame: /T ( value: 5 —‘ rname: X—‘

Figure 10.1  Conditional AST parsed from (if (= x 0) 1 (/ 5 x))
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Abstraction
rparameters: x)

f Application T

Name Name Name
ﬁame: *T Fname: XT Tname: X

Figure 10.2  Abstraction AST parsed from (lambda (x) (* x x))

from the deeper structure (evaluate’s concern). Perhaps more important, however,
is the other advantage we mentioned: The tree structure of ASTs greatly facilitates
the evaluation process. ASTs are made to be evaluated. Now that we have seen AST
diagrams, we can understand why this is. First, each AST has an explicit type, which
controls how it is evaluated. For example, consider the two kinds of leaf nodes, name
ASTs and constant ASTs. Evaluating a constant AST is trivial, because we simply
return the value that it stores. Evaluating a name AST is slightly more complicated
but only requires looking up its name somewhere.

As for the more complicated ASTSs, their recursive structure guides the evaluation.
Let’s just consider how we might evaluate a conditional AST, for example, the one
in Figure 10.1. In evaluating such an AST, the left child gets evaluated first, and
depending on whether its value is true or false, either the second or third child
is evaluated and its value is returned. The evaluation of the sub-ASTs is done
recursively; how precisely a given sub-AST is evaluated depends on which kind of
AST it is.

Before we start worrying about how to implement the data type of ASTs,
we'll first write the procedure parse, assuming that we have all the constructors
(make-abstraction-ast, make-application-ast, etc.) we need.

The procedure parse will look almost the same as the procedure syntax-ok?
in that we need to look at the expression and see if it matches one of the forms of
the expressions in our language. The only difference is that instead of returning a
boolean indicating whether the syntax is okay, parse will return an AST. Here is
the code for parse, together with a new pattern/action list:

(define parse
(lambda (expression)
(define loop
(lambda (p/a-list)
(cond ((null? p/a-list)
(error "invalid expression" expression))
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((matches? (pattern (car p/a-list)) expression)
(apply (action (car p/a-list))
(substitutions-in-to-match
(pattern (car p/a-list))
expression)))
(else (loop (cdr p/a-list)))))) ;end of loop
(cond ((name? expression) ;start of main parse procedure
(make-name-ast expression))
((or (number? expression)
(string? expression)
(boolean? expression))
(make-constant-ast expression))
((1ist? expression)
(loop micro-scheme-parsing-p/a-list))
(else (error "invalid expression" expression)))))

(define micro-scheme-parsing-p/a-list
(1list
(make-pattern/action ’(if _ _ _)
(lambda (test if-true if-false)
(make-conditional-ast (parse test)
(parse if-true)
(parse if-false))))
(make-pattern/action ’(lambda _ _)
(lambda (parameters body)
(if (and (1list? parameters)
((all-are name?) parameters))
(make-abstraction-ast parameters
(parse body))
(error "invalid expression"
(1ist ’lambda
parameters body)))))
(make-pattern/action ’(quote _)
(lambda (value)
(make-constant-ast value)))
(make-pattern/action ’(...) ; note that this *must* come last
(lambda (operator&operands)
(let ((asts (map parse
operator&operands)))
(make-application-ast (car asts)

(cdr asts)))))))
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> Exercise 10.9

The action for ifs parses all three subexpressions into ASTs and passes the three
resulting AST's to make-conditional-ast. Similarly, the action for lambda expres-
sions parses the body. However, it doesn’t parse the parameters. Why not?

Our next task, then, is to implement the AST data structure. How are we going
to do this? Although the various make-. . .-ast procedures make lots of different
kinds of ASTs (one for each kind of expression), we want to be able to apply one
operation to any one of them: evaluate. Thus, to implement ASTs we need to do
so in a way that accommodates generic operations. We choose to use procedural
representations, leading to the following definition of evaluate:

(define evaluate
(lambda (ast)
(ast ’evaluate)))

We'll evaluate expressions much the way we showed in Chapter 1, using the sub-
stitution model, which means that when a procedure is applied to arguments, the
argument values are substituted into the procedure’s body where the parameters
appear, and then the result is evaluated. This process leads us to need an additional
generic operator for ASTs, one that substitutes a value for a name in an AST:

(define substitute-for-in
(lambda (value name ast)
((ast ’substitute-for) value name)))

Note that we've set this up so that when the AST is given the message
substitute-for, it replies with a procedure to apply to the value and the name.
That way ASTs can always expect to be given a single argument, the message
(evaluate or substitute-for), even though in one case there are two more
arguments to follow.

Let’s look at the evaluation process and see how substitution fits into it, using our
pictorial version of ASTs. We'll introduce one minor new element into our pictures,
additional labels on the ASTs so that we can more easily refer to them. For example,
when we talk about the AST A, in Figure 10.3, we mean the AST whose root node
has the naming label A;, in other words, the abstraction AST that is the full AST’s
first child. Suppose we parse the Micro-Scheme expression ((lambda (x) (¥ x
x)) (+ 2 3)), which results in the AST A} shown in Figure 10.3. Now let’s look
in detail at what happens when we evaluate A;.

Because A is an application AST, evaluating it involves first evaluating the opera-
tor AST, Ay, and the operand ASTs, of which there is only one, A7. Because A; is an
abstraction AST, evaluating it creates an actual procedure; let’s call that procedure
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Application

Abstraction Application

Aj:
parameters : (x)

Ag: Application Ag: Name Ag: Constant Aot Constant

name: + value: 2 value: 3
Ag Name As: Name Ag: Name
name: * name: X name: X

Figure 10.3 The AST corresponding to ((lambda (x) (* x x)) (+ 2 3)).

P, for reference. The procedure Py has a parameter list that contains only x and
has the AST As as its body. Next we need to evaluate the operand, A7, to find out
what value P; should be applied to. Because A; is again an application AST, its
evaluation proceeds similarly to that of Aj; we need to evaluate its operator AST, Ag,
and its operand ASTs, Ag and Ajy. Because Ag is a name AST, evaluating it simply
involves looking up what the name + is a name for. The answer is that it is a name
for the built-in addition procedure, which we can call P,. Evaluating Ag and Ay is
even simpler, because they are constant ASTs. Each evaluates to the value shown
in the AST itself: 2 for Ag and 3 for Ajg. Now that A;’s operator and operands have
been evaluated, we can finish off evaluating A7 by applying P; to 2 and 3. Doing
so produces 5, because P; is the built-in addition procedure. Now we know that
Ay’s value is the procedure P and that A;’s value is 5. Thus we can finish off the
evaluation of A; by applying P; to 5.

Because P; is not a built-in procedure (unlike P;), but rather is one that the user
wrote in Micro-Scheme, we need to use the substitution model. We take P;’s body,
which is the AST As, and replace each name AST that is an occurrence of the
parameter name, x, by a constant AST containing the argument value, 5. We can do
this task as (substitute-for-in 5 ’x Aj3). The result of this substitution is the
AST Ajy shown in Figure 10.4. Notice that the AST A4, which was the operator AST

Application

Aqo: Constant A.:[ Constant
12° 13°
I_value: 5 ] I_value: 5 -|

Figure 10.4 The AST resulting from (substitute-for-in 5 ’x As). Note that the circled
A4 indicates that an already existing AST, Ay, is being reused here.
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of As, is also serving as the operator AST of our new Ay, which is what the circled
A4 indicates. Also, notice that each place where the value 5 was substituted for the
name x, it was packaged into a constant AST; this resulted in ASTs Aj; and Ajs.
This packaging is necessary because we can’t use a naked value where a sub-AST is
expected. Next we evaluate Aj), which involves evaluating its operator AST, A4, and
its operand ASTs, Aj; and Ajs. A4 evaluates to the builtin multiplication procedure,
and Aj; and Ajs each evaluate to 5. Finally, the built-in multiplication procedure
can be applied to 5 and 5, producing the final answer of 25. This process can be
shown in a diagram, as in Figure 10.5. Of course, this can also be abbreviated, for
example, by leaving out the details of how substituting 5 for x in Ajs results in Aj;.

We can evaluate conditional ASTs similarly to what is shown in the foregoing, but
there is a bit of a twist because we first evaluate the test AST and then depending on
whether its value is true or false, evaluate one of the other two sub-ASTs to provide
the conditional AST’s value. This process is illustrated in Figure 10.6, which shows
the evaluation of an AST (Ay4) that results from parsing (if #f 1 2).

> Exercise 10.10

Draw a diagram showing the AST resulting from parsing ((lambda (x) (if (>
x 0) x 0)) (- 0 3)). Now step through the process of evaluating that AST,
analogously to the above evaluations of A} and Aj4.

Now we're in a position to start writing the various AST constructors, each with its
own method of evaluating and substituting. We start with the simplest ASTs, names
and constants.

Names can be evaluated using the look-up-value procedure from Chapter 8;
substituting a value for a name in a name AST is either a nonevent or a real
substitution, depending on whether the two names are equal or not:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) (look-up-value name))
((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)
(make-constant-ast value)
the-ast)))
(else (error "unknown operation on a name AST"
message)))))
the-ast))
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< evaluate A
E evaluate A,
Py (parameters x, body As3)
< evaluate A5
E evaluate Ag
P (addition)
evaluate Ag
2

E evaluate Aq
3

— apply Py to2and 3
> 5

— apply P to 5
r<C substitute 5 for x in A3

substitute 5 for x in Ay
A
substitute 5 for x in Ag

A1 2 (new constant 5)

substitute 5 for x in Ag
A13 (new constant 5)

> A1 (new appplication with A4 and A1, and Aq3)
— evaluate Aqq

evaluate Ay
P3 (multiplication)

E evaluate Aq9
5

E evaluate Aqg
5

— apply P3 to5and 5
> 25

Figure 10.5 The process of evaluating the AST A,
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. Conditional
A
evaluate Ay

E evaluate Aqg
#f

o Constant . Constant o Constant
15° A6 17¢ evaluate A7y
value: #f value: 1 value: 2 5

Figure 10.6  The process of evaluating a conditional AST

Exercise 10.11

i

Extend look-up-value to include all your other favorite Scheme predefined names
so that they are available in Micro-Scheme as well.

Exercise 10.12

i

Further extend 1ook-up-value so that some useful names are predefined in Micro-
Scheme that aren’t predefined in Scheme.

Constants are the ASTs that have the most straightforward implementation:

(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) value)
((equal? message ’substitute-for)
(lambda (value name)
the-ast))
(else (error "unknown operation on a constant AST"
message)))))
the-ast))

The compound ASTs are much more interesting to implement, mostly because
evaluating them usually involves evaluating one or more of their components. Here
is the ASTT for conditional expressions (ifs):

(define make-conditional-ast
(lambda (test-ast if-true-ast if-false-ast)
(lambda (message)
(cond ((equal? message ’evaluate)
; ; (continued)
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(if (evaluate test-ast)
(evaluate if-true-ast)
(evaluate if-false-ast)))
((equal? message ’substitute-for)
(lambda (value name)
(make-conditional-ast
(substitute-for-in value name test-ast)
(substitute-for-in value name if-true-ast)
(substitute-for-in value name if-false-ast))))
(else (error "unknown operation on a conditional AST"

message))))))

This code follows a very simple pattern: Evaluating the conditional AST involves
evaluating component ASTs (first the test and then one of the others based on
the result of that first evaluation), and similarly, substituting into the AST involves
substituting into the constituent AST components.

Evaluating an application is similar to evaluating a conditional. First, we need
to evaluate the operator and each of the operands. Then we should apply the
operator’s value to the values of the operands, using the built-in procedure apply,
which assumes that an operator’s value is actually a Scheme procedure. Doing a
substitution on an application involves substituting into the operator and each of the
operands. Therefore, in Scheme, we have

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’evaluate)
(let ((procedure (evaluate operator-ast))
(arguments (map evaluate operand-asts)))
(apply procedure arguments)))
((equal? message ’substitute-for)
(lambda (value name)
(make-application-ast
(substitute-for-in value name operator-ast)
(map (lambda (operand-ast)
(substitute-for-in value name operand-ast))
operand-asts))))
(else (error "unknown operation on an application AST"
message))))))

The most complicated ASTs are probably those for abstractions (1ambda expres-
sions). As we mentioned previously, the result of evaluating an abstraction AST
should be an actual Scheme procedure; we’ll ignore that for now by assuming that
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we can write a procedure called make-procedure that will make this Scheme
procedure for us. The method for handling substitutions is worth looking at closely:

(define make-abstraction-ast
(lambda (parameters body-ast)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate)
(make-procedure parameters body-ast))
((equal? message ’substitute-for)
(lambda (value name)
(if (member name parameters)
the-ast
(make-abstraction-ast
parameters
(substitute-for-in value name body-ast)))))
(else (error "unknown operation on an abstraction AST"
message)))))
the-ast))

You should have noticed that if a substitution is performed where the name being
substituted for is one of the parameters, the AST is returned unchanged. Only if the
name isn’t one of the parameters is the substitution done in the body. In other words,
if we substitute 3 for x in (lambda (x) (+ x y)), we get (lambda (x) (+ x y))
back unchanged, but if we substitute 3 for y in (lambda (x) (+ x y)), we get
(lambda (x) (+ x 3)). This rule is what is called only substituting for free oc-
currences of the name rather than also bound occurrences. This limited form of
substitution is the right thing to do because when we are evaluating an expression

like

((1lambda (x)
(+ x
((lambda (x) (* x %))
5)))
3)

we want to substitute the 3 only for the outer x, not the inner one, which will later
have 5 substituted for it. That way we get 28 rather than 12.

> Exercise 10.13

Draw the pictorial form of the AST that would result from parsing the above ex-
pression, and carefully step through its evaluation, showing how the value of 28 is
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arrived at. As additional checks on your work, the parsing step should result in 13
ASTs (the main AST with 12 descendant ASTs below it), and six more ASTs should
be created in the course of the evaluation so that if you sequentially number the
ASTs, the last one will be numbered 19. Be sure you have enough space to work in;
it is also helpful to do this exercise with a partner so that you can catch each other’s
slips because it requires so much attention to detail.

All that is left at this point to have a working Micro-Scheme system is the
make-procedure procedure:

(define make-procedure
(lambda (parameters body-ast)
(lambda arguments
(define loop
(lambda (parameters arguments body-ast)
(cond ((null? parameters)
(if (null? arguments)
(evaluate body-ast)
(error "too many arguments")))
((null? arguments)
(error "too few arguments"))
(else
(loop (cdr parameters) (cdr arguments)
(substitute-for-in (car arguments)
(car parameters)
body-ast))))))
(loop parameters arguments body-ast))))

One minor new feature of Scheme is shown off in the above procedure, where
it has (lambda arguments ...) instead of the usual (lambda (...) ...).This
expression makes a procedure that will accept any number of arguments; they get
packaged together into a list, and that list is called arguments.

> Exercise 10.14

Suppose we define (in Scheme, not Micro-Scheme) the procedure foo as follows:
(define foo (lambda x x))

What predefined Scheme procedure behaves exactly like foo?
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Now that we have a working Micro-Scheme system, we can extend it either in
ways that make it more similar to Scheme or in ways that make it less similar.

Exercise 10.15

i

Add let expressions to Micro-Scheme, like those in Scheme.

Exercise 10.16

i

Add a with expression to Micro-Scheme that can be used like this:

;Enter Micro-Scheme expression:
(with x = (+ 2 1) compute (* x x))
;Micro-Scheme value: 9

The meaning is the same as (et ((x (+ 2 1))) (x x x)) in Scheme; unlike
let, only a single name and a single body expression are allowed.

> Exercise 10.17

Add some other Scheme feature of your choice to Micro-Scheme.

} Exercise 10.18

Add some other non-Scheme feature of your choice to Micro-Scheme.

I[IZ W Global Definitions: Turning Micro-Scheme into Mini-Scheme

Using the Micro-Scheme language you can make procedures and apply them to
arguments. For example, we can make a squaring procedure and apply it to 3 as
follows:

((lambda (x) (* x x))
3)

You can also give names to procedures, which will be easiest if you've added let
expressions to Micro-Scheme, as in Exercise 10.15. In that case, you can write

(let ((square (lambda (x) (* x x))))
(square 3))
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You can even build up a succession of procedures, where later procedures make
use of earlier ones. For example,

(let ((square (lambda (x) (* x x))))
(let ((cylinder-volume (lambda (radius height)
(* (* 3.1415927 (square radius))
height))))
(cylinder-volume 5 4)))

However, all is not well. With the language as it stands, there is no easy way to
write recursive procedures (i.e., procedures that use themselves), which is a major
problem, considering all the use we’ve been making of recursive procedures.

To resolve this problem, we’ll add definitions to our language so that we can say
things like

(define factorial

(lambda (n)
(if (=n 1)
1
(x (factorial (- n 1))
n))))

To keep matters simple, we’ll stick with global or top-level definitions that are given
directly to the read-eval-print loop. We won’t add internal definitions nested inside
other procedures. Even with only global definitions, our language suddenly becomes
much more practical, so we'll rename it Mini-Scheme to distinguish it from the
nearly useless Micro-Scheme.

To support global definitions and recursive procedures, we need to introduce the
notion of a global environment. A global environment is a collection of name/value
associations that reflects the global definitions that have been entered up to some
point. The read-eval-print loop starts out with an initial global environment that
contains the predefined names, such as +. Every time the read-eval-print loop is
given a new global definition, a new global environment is formed that reflects that
new definition as well as all prior ones. When the read-eval-print loop is given an
expression, it is evaluated in the current global environment rather than simply being
evaluated. We need to talk about evaluating in a global environment, rather than just
evaluating, because evaluating (factorial 5) is quite different after factorial
has been defined than it is before. Here is the Mini-Scheme read-eval-print loop that
reflects these considerations:
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(define read-eval-print-loop
(lambda ()
(define loop
(lambda (global-environment)
(display ";Enter Mini-Scheme expr. or definition:")
(newline)
(let ((expression-or-definition (read)))
(if (definition? expression-or-definition)
(let ((name (definition-name
expression-or-definition))
(value (evaluate-in
(parse (definition-expression
expression-or-definition))
global-environment)))
(display ";Mini-scheme defined: ")
(write name)
(newline)
(loop (extend-global-environment-with-naming
global-environment
name value)))
(let ((value (evaluate-in
(parse expression-or-definition)
global-environment)))
(display ";Mini-scheme value: ")
(write value)
(newline)
(loop global-environment))))))
(loop (make-initial-global-environment))))

This new read-eval-print loop distinguishes between definitions and expressions using
the predicate definition? and selects out the two components of a definition using
definition-name and definition-expression. Before we move onto the more
meaty issues surrounding global environments, here are simple definitions of these
more superficial procedures:

(define definition?
(lambda (x)
(and (1list? x)
(matches? ’(define _ _) x))))

(define definition-name cadr)

(define definition-expression caddr)
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Returning to global environments, we now have a good start on con-
sidering them operationally, as an abstract data type. We have seen
that we need two constructors, make-initial-global-environment and
extend-global-environment-with-naming. The former produces a global en-
vironment that contains the predefined names, and the latter makes a new global
environment that is the same as a preexisting global environment except for one new
name/value association. What about selectors? We'll need a 1ook-up-value-in se-
lector, which when given a name and a global environment finds the value associated
with that name in that global environment.

To see how this selector winds up getting used, we need to consider evaluate-in,
which is the Mini-Scheme analog of Micro-Scheme’s evaluate:

(define evaluate-in
(lambda (ast global-environment)
((ast ’evaluate-in) global-environment)))

As before, the actual knowledge regarding how to evaluate is localized within each
kind of AST. The only difference is that now an evaluate-in operation, rather
than evaluate, is provided by each kind of AST. This new operation is applied to
the global environment in which the evaluation is to occur.

When we look at name ASTs, we see the key difference between the Mini-
Scheme evaluate-in operation, which looks up the name in the specified global
environment, and the old Micro-Scheme evaluate:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)
(lambda (global-environment)
(look-up-value-in name global-environment)))
((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)
(make-constant-ast value)
the-ast)))
(else (error "unknown operation on a name AST"
message)))))
the-ast))

Constant ASTs can be implemented in a way that is very similar to Micro-Scheme,
because the global environment is completely irrelevant to their evaluation:
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(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)
(lambda (global-environment)
value))
((equal? message ’substitute-for)
(lambda (value name)
the-ast))
(else (error "unknown operation on a constant AST"
message)))))
the-ast))

For conditional ASTs (i.e., if expressions), the global environment information
is simply passed down to the evaluations of subexpression ASTs:

(define make-conditional-ast
(lambda (test-ast if-true-ast if-false-ast)
(lambda (message)
(cond ((equal? message ’evaluate-in)
(lambda (global-environment)
(if (evaluate-in test-ast global-environment)
(evaluate-in if-true-ast global-environment)
(evaluate-in if-false-ast global-environment))))
((equal? message ’substitute-for)
(lambda (value name)
(make-conditional-ast
(substitute-for-in value name test-ast)
(substitute-for-in value name if-true-ast)
(substitute-for-in value name if-false-ast))))
(else (error "unknown operation on a conditional AST"
message))))))

As with the constant ASTs, the global environment is irrelevant to the evaluation
of abstraction ASTs (i.e., lambda expressions):

(define make-abstraction-ast
(lambda (parameters body-ast)
(define the-ast
(lambda (message)
;; (continued)
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(cond ((equal? message ’evaluate-in)
(lambda (global-environment)
(make-procedure parameters body-ast)))
((equal? message ’substitute-for)
(lambda (value name)
(if (member name parameters)
the-ast
(make-abstraction-ast
parameters
(substitute-for-in value name body-ast)))))
(else (error "unknown operation on an abstraction AST"

message)))))
the-ast))

The last AST to consider is the application AST. When a procedure is applied,
its body is evaluated (with appropriate parameter substitutions done) in the current
global environment. Thus, we need to keep track of that global environment. In
order to do this, we'll pass in the global environment as an extra argument to the
Mini-Scheme procedure, before the real ones:

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’evaluate-in)
(lambda (global-environment)
(let ((procedure (evaluate-in operator-ast
global-environment))
(arguments (map (lambda (ast)
(evaluate-in
ast
global-environment))
operand-asts)))
(apply procedure
(cons global-environment arguments)))))
((equal? message ’substitute-for)
(lambda (value name)
(make-application-ast
(substitute-for-in value name operator-ast)
;; (continued)
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(map (lambda (operand-ast)
(substitute-for-in value
name
operand-ast))
operand-asts))))
(else (error "unknown operation on an application AST"
message))))))

Of course, we'll have to change make-procedure so that it expects this extra first
argument and uses it appropriately:

(define make-procedure
(lambda (parameters body-ast)
(lambda global-environment&arguments
(let ((global-environment (car global-environment&arguments))
(arguments (cdr global-environment&arguments)))
(define loop
(lambda (parameters arguments body-ast)
(cond ((null? parameters)
(if (null? arguments)
(evaluate-in body-ast global-environment)
(error "too many arguments")))
((null? arguments)
(error "too few arguments"))
(else
(loop (cdr parameters) (cdr arguments)
(substitute-for-in (car arguments)
(car parameters)
body-ast))))))
(loop parameters arguments body-ast)))))

> Exercise 10.19

Look up lambda expressions in the R'RS (available from the web site for
this book) and figure out how to rewrite make-procedure so that it has
(lambda (global-environment . arguments) ...) where the above version
has (lambda global-environment&arguments ...).

Finally, we need to implement global environments. Because global environments
are used to find a value when given a name, one simple implementation is to use
procedures. Thus a global environment is a procedure that takes a name as its
parameter and returns the corresponding value
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(define look-up-value-in
(lambda (name global-environment)
(global-environment name)))

(define make-initial-global-environment
(lambda ()
(lambda (name)
return the built-in procedure called name)))

(define extend-global-environment-with-naming
(lambda (old-environment name value)
(lambda (n)
(if (equal? n name)
value
(old-environment n)))))

As you can see, we still need to finish writing make-initial-global-
environment. The procedure it produces, for converting a name (such as +) to
a builtin procedure (such as the addition procedure), is very similar to look-up-
value. However, there is one important difference. In Micro-Scheme, we could
directly use the builtin procedures (such as addition) from normal Scheme; thus,
look-up-value could return these procedures, such as the Scheme procedure
called +. However, in Mini-Scheme this is no longer the case. In Mini-Scheme,
the evaluation of an application AST no longer applies the procedure to just its
arguments. Instead, it slips in the global environment as an extra argument before
the real ones. Thus, if we were to use normal Scheme’s + as Mini-Scheme’s +, when
we tried doing even something as simple as (+ 2 2), we'd get an error message
because the Scheme addition procedure would be applied to three arguments: a
global environment, the number 2, and the number 2 again.

To work around this problem, we’ll make a Mini-Scheme version of + and of all
the other built-in procedures. The Mini-Scheme version will simply ignore its first
argument, the global environment. We can make a Mini-Scheme version of any
Scheme procedure using the following converter:

(define make-mini-scheme-version-of
(lambda (procedure)
(lambda global-environment&arguments
(let ((global-environment (car global-environment&arguments))
(arguments (cdr global-environment&arguments)))
(apply procedure arguments)))))

For example, this procedure could be used as follows:
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(define ms+ (make-mini-scheme-version-of +))

(ms+ (make-initial-global-environment) 2 2)
4

Now, we can finish writing make-initial-global-environment:

(define make-initial-global-environment
(lambda ()
(let ((ms+ (make-mini-scheme-version-of +))
(ms- (make-mini-scheme-version-of -))
;; the rest get similarly converted in here
)
(lambda (name)
(cond ((equal? name ’+) ms+)
((equal? name ’-) ms-)
;; the rest get similarly selected in here
(else (error "Unrecognized name" name)))))))

Exercise 10.20

Flesh out make-initial-global-environment.

Exercise 10.21

Extend your solution of Exercise 10.19 to make-mini-scheme-version-of.

An Application: Adding Explanatory Output to Mini-Scheme

In this section, you'll modify the Mini-Scheme implementation so that each ex-
pression being evaluated is displayed. You'll then further modify the system so that
varying indentation is used to show whether an expression is being evaluated as the
main problem, a subproblem, a sub-subproblem, etc. You'll also modify the system
to display the value resulting from each evaluation.

To display each expression as it is evaluated, we can modify the evaluate-in
procedure. At first you might think something like the following would work:

(define evaluate-in ; Warning: this version doesn’t work
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write ast)
(newline)
((ast ’evaluate-in) global-environment)))
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Unfortunately, this code displays the AST being evaluated, and what the user

would really like to see is the corresponding expression. Therefore, we’ll instead
define evaluate-in as follows:

(define evaluate-in
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write (unparse ast))
(newline)
((ast ’evaluate-in) global-environment)))

This code uses a new generic operation on ASTs, unparse. This operation should
recreate the expression corresponding to an AST. The unparse procedure itself looks
much like any generic operation:

(define unparse
(lambda (ast)
(ast ’unparse)))

Now we have to modify each AST constructor to provide the unparse operation.
Here, for example is make-application-ast:

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’unparse)
(cons (unparse operator-ast)
(map unparse operand-asts)))
((equal? message ’evaluate-in)
unchanged)
((equal? message ’substitute-for)
unchanged)
(else (error "unknown operation on an application AST"
message))))))

> Exercise 10.22

Add the unparse operation to each of the other AST constructors. When you add
unparse to make-constant-ast, keep in mind that some constants will need to be
expressed as quotations. For example, a constant with the value 3 can be unparsed
into 3, but a constant that has the symbol x as its value will need to be unparsed
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into (quote x). You can look at the parse procedure to see what kinds of values
can serve as constant expressions without being wrapped in a quotation.

> Exercise 10.23

Adding the unparse operation has rather unfortunately destroyed the separation
of concerns between parse and the AST types. It used to be that only parse
needed to know what each kind of expression looked like. In fact, most of the
knowledge regarding the superficial appearance of expressions was concentrated in
the parsing pattern/action list. Now that same knowledge is being duplicated in
the implementation of the unparse operation. Suggest some possible approaches
to recentralizing the knowledge of expression appearance. You need only outline
some options; actually implementing any good approach is likely to be somewhat
challenging.

At this point, you should be able to do evaluations (even fairly complex ones, like
(factorial 5))and get a running stream of output from Mini-Scheme explaining
what it is evaluating. However, no distinction is made between evaluations that are
stages in the evolution of the main problem and those that are subproblems (or sub-
subproblems or ... ), which makes the output relatively hard to understand. We can
rectify this problem by replacing evaluate-in with evaluate-in-at, which takes
not only an expression to evaluate and a global environment to evaluate it in, but
also a subproblem nesting level at which to do the evaluation. The actual evaluation
is no different at one level than at another, but the explanatory output is indented
differently:

(define evaluate-in-at
(lambda (ast global-environment level)
(display ";Mini-Scheme evaluating:")

(display-times " " level)
(write (unparse ast))
(newline)

((ast ’evaluate-in-at) global-environment level)))

(define display-times
(lambda (output count)
(if (= count 0)
’done
(begin (display output)
(display-times output (- count 1))))))



314

m  Chapter 10 Implementing Programming Languages

The AST constructors also need to be modified to accommodate this new
evaluate-in-at operation. Here’s the new make-application-ast, which eval-
uates the operator and each operand at one subproblem nesting level deeper:

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’unparse)
unchanged)
((equal? message ’evaluate-in-at)
(lambda (global-environment level)
(let ((procedure (evaluate-in-at operator-ast
global-environment
(+ level 1)))
(arguments (map (lambda (ast)
(evaluate-in-at
ast
global-environment
(+ level 1)))
operand-asts)))
(apply procedure
(cons global-environment
arguments)))))
((equal? message ’substitute-for)
unchanged)
(else (error "unknown operation on an application AST"
message))))))

> Exercise 10.24

Modify the other AST constructors to support the evaluate-in-at operation. For
conditionals, the test should be evaluated one nesting level deeper than the overall
conditional, but the if-true or if-false part should be evaluated at the same level as
the overall conditional. (This distinction is because the value of the test is not the
value of the overall conditional, so it is a subproblem, but the value of the if-true or
if-false part is the value of the conditional, so whichever part is selected is simply a
later stage in the evolution of the same problem rather than being a subproblem.
This reasoning is illustrated in Figure 1.2 on page 14 and Figure 10.6.)
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Exercise 10.25

i

Modify the read-eval-print-loop so that it does its evaluations at subproblem
nesting level 1.

Exercise 10.26

i

Modify make-procedure so that the procedures it makes expect to receive an extra
level argument after the global environment argument, before the real arguments.
The procedure body (after substitutions) should then be evaluated at this level.
You'll also need to change make-application-ast to supply this extra argument
and change make-mini-scheme-version-of to produce procedures that expect
(and ignore) this extra argument.

At this point, if you try doing some evaluations in Mini-Scheme, you’ll get output
like the following:

;Enter Mini-Scheme expr. or definition:

(+ (* 35) (x67))

;Mini-Scheme evaluating: (+ (* 3 5) (¥ 6 7))
;Mini-Scheme evaluating: +

;Mini-Scheme evaluating: (* 3 5)

;Mini-Scheme evaluating: *
;Mini-Scheme evaluating: 3
;Mini-Scheme evaluating: 5
;Mini-Scheme evaluating: (* 6 7)
;Mini-Scheme evaluating: *
;Mini—-Scheme evaluating: 6
;Mini-Scheme evaluating: 7

;Mini-scheme value: 57

On the positive side, it is now possible to see the various subproblem nesting levels.
For example, +, (* 3 5),and (* 6 7) are subproblems of the main problem, and
*, 3, 5, * (again), 6, and 7 are sub-subproblems. On the negative side, this output is
still lacking any indication of the values resulting from the various nested problems
(other than the final value shown for the main problem). For example, we can’t see
that the two multiplications produced 15 and 42 as their values. We can arrange
for the value produced by each evaluation to be displayed, indented to match the
“Mini-Scheme evaluating” line:
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(define evaluate-in-at
(lambda (ast global-environment level)

(display ";Mini-Scheme evaluating:")

(display-times " " level)

(write (unparse ast))

(newline)

(let ((value ((ast ’evaluate-in-at) global-environment level)))
(display ";Mini-Scheme value ")
(display-times " " level)

(write value)
(newline)
value)))

With this change, we can see the values of the two multiplication subproblems as
well as the addition problem. However, as you can see below, the result is such a
muddled mess as to make it questionable whether we’ve made progress:

;Enter Mini—-Scheme expr. or definition:

(+ (x* 35) (x67))

;Mini-Scheme evaluating: (+ (*x 3 5) (*x 6 7))
;Mini-Scheme evaluating: +

;Mini-Scheme value :  #<procedure>
;Mini-Scheme evaluating: (* 3 5)
;Mini-Scheme evaluating: *
;Mini-Scheme value : #<procedure>
;Mini-Scheme evaluating: 3
;Mini-Scheme value : 3
;Mini-Scheme evaluating: 5
;Mini-Scheme value : 5
;Mini-Scheme value ;15
;Mini-Scheme evaluating: (¥ 6 7)
;Mini-Scheme evaluating: *
;Mini-Scheme value : #<procedure>
;Mini-Scheme evaluating: 6
;Mini-Scheme value : 6
;Mini-Scheme evaluating: 7
;Mini-Scheme value : 7
;Mini-Scheme value o 42
;Mini-Scheme value 0 57

;Mini-scheme value: 57
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This explanatory output is so impenetrable that we clearly are going to have to
find a more visually comprehensible format. We'll design an idealized version of
our format first, without regard to how we are going to actually produce that output.
While we are at it, we can also solve another problem with our existing output:
We don’t currently have any way of explicitly showing that an evaluation problem
is converted into another problem of the same level with the same value. Instead,
the new and old problems are treated independently, and the value is shown for
each (identically). For an iterative process, we'll see the same value over and over
again. For example, if we computed the factorial of 5 iteratively, we'd get shown the
value 120 not only as our final value but also as the value of each of the equivalent
problems, such as 1 X 515X 4!, 20 X 3!, etc. Yet we'd really like to see each problem
converted into the next with a single answer at the bottom.

An example of our idealized format is shown in Figure 10.7; as you can see, it is
closely based on the diagrams we used to explain AST evaluation. Notice that we

< *35(67)

+
E #<procedure>

<(*35)

%
E #<procedure>

e
s

> 15

< (*67)
E #<procedure>
E 6
6
E 7
7

42

» 57

Figure 10.7 An idealized example of explanatory output
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are still using indentation to show the subproblem nesting levels, but now we are
also using lines with arrowheads to show the connection between each expression
and its value. We can also use a similar format to show several expressions sharing
the same value, as in Figure 10.8. Here three expressions all share the value 9. The
first is an application expression, and the second results from it by substituting the

= ((lambda (x) (if (=x 0) 5 (* x x))) (+ 2 1))

E (lambda (x) (if (=x 0) 5 (* x x)))
#<procedure>
< (+21)
E +
#<procedure>
E 2
2
E 1
1

>» 3

— (if(=30)5(*33)

< (=30)
E #<procedure>
E 3
3
E 0
0

> #f

= (*33)
*
E #<procedure>
E 3
3
E 3
3

> 9

Figure 10.8 Another idealized example of explanatory output, with three equivalent problems
sharing the value 9
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argument value, 3, into the procedure body in place of the parameter name, x. The
resulting conditional expression, (if (= 3 0) 5 (* 3 3)), is in turn converted
into the third equivalent expression, (* 3 3), because the condition evaluates to a
false value.

If we want to approximate these diagrams, but do so using the normal Scheme
display procedure, which produces textual output, we’ll have to settle for using
characters to approximate the lines and arrowheads. Our two examples are shown in

this form in Figures 10.9 and 10.10.

<(+ (*35) (x67))

+-< +
+-> #<procedure>

#<procedure>

—> #<procedure>

-
|
|
|
|
|
|
|
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
|
|
|
|
|

+_

> b7

Figure 10.9 Explanatory output with lines and arrowheads approximated using characters
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-< ((lambda (x) (if (=x0) 5 (x x x))) (+ 2 1))

+-< (lambda (x) (if (= x 0) 5 (* x x)))
+-> #<procedure>

+
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
|
|

+-- (if (=3 0) 5 (x 3 3))

+ - —— — — — — — — %

+-= (x 3 3)
|

+-< %
+-> #<procedure>
-< 3
3

+ +
v A

vV A
w

|
I
|
|
I
|
|+
|+
|
+-> 9

Figure 10.10  Second example of explanatory output using characters
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In the character-based version of the explanatory output, there are two kinds of
lines: lines that have something on them, like

| +-< (+ 2 1)

or

| +-> 3

or

+-- (x 3 3)

and those that are blank aside from the vertical connecting lines, such as

We can use two procedures for producing these two kinds of line. For the ones that
have content, we need to specify the thing to write (which might be an expression
or a value), the “indicator” that shows what kind of line this is (< or > or =), and the
nesting level. For blank lines, only the nesting level is needed:

(define write-with-at
(lambda (thing indicator level)
(display-times "| " (- level 1))
(display "+-")
(display indicator)
(display " ")
(write thing)
(newline)))

(define blank-line-at
(lambda (level)
(display-times "| " level)
(newline)))

Now we have to insert the appropriate calls to these procedures into our evaluator.
We'll need to differentiate between two kinds of evaluations: those that should have
lines with leftward pointing arrowheads (initial evaluations) and those that should
have arrowheadless connecting lines (additional evaluations sharing the same ulti-
mate value). The additional evaluations, with the arrowheadless line, originate from
two sources: evaluating the body of a procedure with the argument values sub-
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stituted in and evaluating one or the other alternative of a conditional. Both are
shown in our example of evaluating ((lambda (x) (if (= x 0) 5 (* x x)))
(+ 2 1)). We can handle initial and additional evaluations differently by using two
separate procedures. For initial evaluations we’ll use our existing evaluate-in-at,
which provides the left-arrow line and also is responsible for the right-arrow line at
the end with the value. We'll use a new procedure, evaluate-additional-in-at,
for the additional evaluations, which just “hook into” the existing evaluation’s line:

(define evaluate-in-at
(lambda (ast global-environment level)
(blank-line-at (- level 1))
(write-with-at (unparse ast) "<" level)
(let ((value ((ast ’evaluate-in-at) global-environment level)))
(write-with-at value ">" level)
value)))

(define evaluate-additional-in-at
(lambda (ast global-environment level)
(blank-line-at level)
(write-with-at (unparse ast) "-" level)
((ast ’evaluate-in-at) global-environment level)))

Exercise 10.27

i

Three calls to evaluate-in-at need to be changed to evaluate-additional-
in-at. Change them.

Exercise 10.28

i

To make the output look as shown, it is also necessary to provide a blank line before
the value of a built-in procedure. Put the appropriate call to blank-line-at into
the procedures generated by make-mini-scheme-version-of.

Exercise 10.29

i

When an application expression is evaluated, it might be desirable to explicitly show
that a procedure is being applied and what argument values it is being applied to,
after the operator and operands have been evaluated. Figure 10.11 shows an example
of this. Add this feature.
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<+ (35 (67)

¥
E#<procedure>

<(*35)

%
E #<procedure>
E 3

3
E 5

5

— apply #<procedure> to 3 and 5

> 15

< (*67)

E #<procedure>
E 6

6
E 7

7

— apply #<procedure> to 6 and 7
> 42

— apply #<procedure> to 15 and 42
> 57

Figure 10.11  Explanatory output with applications shown

Exercise 10.30

i

Decide what further improvements you'd like to have in the explanatory output and
make the necessary changes.

Review Problems
[> Exercise 10.31

Use EBNF to write a grammar for the language of all strings of one or more digits
that simultaneously meet both of the following requirements:

a. The digits alternate between even and odd, starting with either.
b. The string of digits is the same backward as forward (i.e., is palindromic).
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Your grammar may define more than one syntactic category name (nonterminal),
but be sure to specify which one generates the language described above.

I> Exercise 10.32

Suppose the following Micro-Scheme expression is parsed:
((lambda (x) x) (if (+ 2 3) + 3))

a. Draw the AST that would result.

b. If this AST were evaluated, two of the ASTs it contains (as sub-AST's or sub-sub-
ASTs, etc.) would not wind up getting evaluated. Indicate these two by circling
them, and explain for each of them why it doesn’t get evaluated.

I> Exercise 10.33

In Scheme, Micro-Scheme, and Mini-Scheme, it is an error to evaluate ((+ 2 3)
(* 5 7) 16) because this will try to apply 5 to 35 and 16, and 5 isn’t a procedure.
It would be possible to change the language so that instead of this construction being
an error, it would evaluate to the three-element list (5 35 16). That is, when the
“operator” subexpression of an “application” expression turns out not to evaluate to
a procedure, a list of that value and the “operand” values is produced.

a. Change Micro-Scheme or Mini-Scheme to have this new feature.
b. Argue that this is an improvement to the language.

c. Argue that it makes the language worse.

I> Exercise 10.34

Suppose that the Micro-Scheme make-conditional-ast were changed to the
following:

(define make-conditional-ast
(lambda (test-ast if-true-ast if-false-ast)
(lambda (message)
(cond ((equal? message ’evaluate)
(let ((test-value (evaluate test-ast))
(if-true-value (evaluate if-true-ast))
(if-false-value (evaluate if-false-ast)))
;; (continued)
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(if test-value
if-true-value
if-false-value)))
((equal? message ’substitute-for)
(lambda (value name)
(make-conditional-ast
(substitute-for-in value name test-ast)
(substitute-for-in value name if-true-ast)
(substitute-for-in value name if-false-ast))))
(else (error "unknown operation on a conditional AST"

message))))))

a. Give an example of a conditional expression where this new version of
make-conditional-ast would produce an AST that evaluates to the same value
as the old version would.

b. Give an example of a conditional expression where evaluating the AST con-
structed by the new version would produce different results from evaluating the
AST produced by the old version.

c. Is this change a good idea or a bad one? Explain.

I> Exercise 10.35

Rewrite look-up-value to use a table of names and their corresponding values,
rather than a large cond.

I> Exercise 10.36

Replace the global-environment ADT implementation with an alternative represen-
tation based on a list of name/value pairs.

I> Exercise 10.37

Some programming languages have a so-called arithmetic-if expression that is
similar to Scheme’s if expression, except that instead of having a boolean test
condition and two other subexpressions (the if-true and if-false subexpressions), it
has a numerical test expression and three other subexpressions (the if-negative, the if-
zero, and the if-positive subexpressions). To evaluate an arithmetic-if expression,
you first evaluate the test expression, and then, depending upon whether that value is
negative, zero, or positive, the corresponding subexpression is evaluated. For example,
if you wanted to define an expt procedure that appropriately dealt with both positive
and negative integers, you could write
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(define expt
(lambda (b n)
(arithmetic-if n
(/ 1 (expt b (- n)))
1
(* b (expt b (- n 1))))))

You will work through the details of adding arithmetic-if’s to Mini-Scheme
in this problem. To get you started, let’s choose to implement arithmetic-ifs
using a new AST constructor make-arithmetic-if-ast. The skeleton for

make-arithmetic-if-ast, with the important code left out, is as follows (note
that all subexpressions are passed in parsed):

(define make-arithmetic-if-ast

(lambda (test-value-ast if-neg-ast if-zero-ast if-pos-ast)
(lambda (message)

(cond ((equal? message ’evaluate-in)
(lambda (global-environment)

code for evaluate-in ))

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for ))

(else (error "unknown operation on a conditional AST"

message))))))

a. Add the code for evaluate-in.
b. Add the code for substitute-for.

c. Add the appropriate pattern/action to the micro-scheme-parsing-p/a-list.

I> Exercise 10.38

Suppose we add a new kind of expression to the Micro-Scheme language, the uncons
expression. The EBNF for it is as follows:
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(uncons (expression) into (name) and (name) in (expression))
This kind of expression is evaluated as follows:

m The first (expression) is evaluated. Its value must be a pair (such as cons produces);
otherwise, an error is signaled.

® The car of that pair is substituted for the first (name), and the cdr for the second
(name), in the second (expression).

m  After these substitutions have been made, the second (expression) (as modified by
the substitutions) is then evaluated. Its value is the value of the overall uncons
expression.

For a simple (and stupid) example, the expression
(uncons (cons 3 5) into x and y in (+ x y))

would evaluate to 8.

Parsing an uncons expression involves parsing the constituent expressions, which
we can call the pair-expression and the body-expression. The resulting two ASTs,
which we can call the pair-ast and body-ast, get passed into the make-uncons-ast
constructor, along with the two names, which we can call the car-name and cdr-
name. Here is the outline of make-uncons-ast; write the two missing pieces of
code.

(define make-uncons-ast
(lambda (pair-ast body-ast car-name cdr-name)
(lambda (message)
(cond ((equal? message ’evaluate)

code for evaluate )

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for )

(else (error "unknown operation on a for AST"
message))))))
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We motivated Mini-Scheme with the remark that Micro-Scheme provides no easy
way to express recursive procedures. As an example of the notso-easy ways of ex-
pressing recursion that are possible even in Micro-Scheme, we offer the following:

;3 factorial-maker makes factorial when given factorial-maker

(let ((factorial-maker

(lambda (factorial-maker)

(lambda (n)
(if (= n 0)
1

(let ((factorial

(factorial-maker factorial-maker)))
(* (factorial (- n 1))

n)))))))

(let ((factorial (factorial-maker factorial-maker)))

(factorial 52)))






PART 1l

Abstractions of State

n the previous part, we characterized each type of data by the collection

of operations that could be performed on data of that type. However, there

were only two fundamental kinds of operations: those that constructed new
things and those that asked questions about existing things. In this part, we’ll add
a third, fundamentally different, kind of operation, one that modifies an existing
object. This kind of operation also raises the possibility that two concurrently
active computations will interact because one can modify an object the other
is using. Therefore, at the conclusion of this part we’ll examine concurrent,
interacting computations.

We will lead into our discussion of changeable objects by looking at how
computers are organized and how they carry out computations. The relevance
of this discussion is that the storage locations in a computer’s memory consti-
tute the fundamental changeable object. We'll look next at how numerically
indexed storage locations, like a computer’s memory, can be used to make
some computational processes dramatically more efficient by eliminating re-
dundant recomputations of subproblem results. Then we’ll look at other forms
of modifiable objects, where the operations don’t reflect the computer’s num-
bered storage locations but rather reflect application-specific concerns. We'll
then build this technique into object-oriented programming by blending in
the idea that multiple concrete kinds of objects can share a common inter-
face of generic operations. Finally, we will show how to transplant these same
ideas into another programming language, Java, that we will use to introduce
programs that have concurrent, interacting components.






CHAPTER ELEVEN

Computers with Memory

Introduction

In the first two parts of the book we looked at computational processes from the
perspective of the procedures and the data on which those procedures describe
operations, but we've not yet discussed the computer that does the processing. In
this chapter, we'll look at the overall structure of a typical present-day computer
and see how such a computer is actually able to carry out a procedurally specified
computational process.

One of the most noteworthy components we’ll see that computers have is memory
(specifically, Random Access Memory or RAM). What makes memory so interesting
is that it is unlike anything we've seen thus far—it is not a process or a procedure
for carrying out a process, and it is also not simply a value or a collection of values.
Rather, it is a collection of locations in which values can be stored; each location
has a particular value at any one time, but the value can be changed so that the
location contains a different value than it used to.

After seeing collections of memory locations as a component of computers, we'll
see how they are also available for our use when programming in Scheme, as
so-called vectors. In this chapter, we introduce vectors and use them to build a
computer simulator in Scheme. In the following chapters we look at ways in which
these locations can be used to improve the efficiency of computational processes
and to construct software systems that are modular and naturally reflect the structure
of noncomputational systems that the software models.

An Example Computer Architecture

In this section, we will attempt to “open the hood” of a computer like the one
you have been using while working through this book. However, because so many

333
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different types of computers exist, and because actual computers are highly complex
machines involving many engineering design decisions, we will make two simplifi-
cations. First, rather than choosing any one real computer to explain, we’ve made up
our own simple, yet representative, computer, the Super-Lean Instruction Machine,
also known as SLIM. Second, rather than presenting the design of SLIM in detail,
we describe it at the architectural level. By architecture we mean the overall structure
of the computer system to the extent it is relevant to the computer’s ability to execute
a program.

You might well wonder whether an actual SLIM computer exists that meets the
specifications of our architectural design. To our knowledge, no such computer does
exist, although in principle one could be fabricated. (Before construction could
begin, the specifications would need to be made more complete than the version we
present here.) Because you are unlikely to find a real SLIM, we provide a simulated
SLIM computer on the web site for this book; we will say more about this simulated
computer in the next section. In fact, this chapter’s application section involves
writing another simulator for SLIM.

Even at the architectural level, we have many options open to us as computer
designers. We use the SLIM architecture to focus on a single representative set of
choices rather than illustrating the entire range of options. These choices were made
to be as simple as possible while still remaining broadly similar to what is typical
of today’s architectures. We point out a few specific areas where alternative choices
are common, but you should keep in mind that the entire architecture consists
of nothing but decisions, none of which is universal. A good successor course on
computer organization and architecture will not only show you the options we’re
omitting but will also explain how a designer can choose among those options to
rationally balance price and performance.

SLIM is a stored program computer. By this we mean that its behavior consists
of performing a sequence of operations determined by a program, which is a list of
instructions. The set of possible instructions, called the computer’s instruction set,
enumerates the computer’s basic capabilities. Each instruction manipulates certain
objects in the computer—for example, reading input from the keyboard, storing
some value in a memory location, or adding the values in two memory locations and
putting the result into a third. The way that an actual computer accomplishes these
tasks is a very interesting story but not one we will pursue here. Viewing SLIM as a
stored program computer allows us to focus on the computational core of computers.

You might well ask, “How does this information relate to my computer? I don’t
recall ever specifically telling my computer to run through a list of instructions.”
In fact, you probably have done so, regardless of how primitive or advanced your
computer is. Turning on (or “booting up”) the computer implicitly loads in and starts
running an initial program known as an operating system, part of whose task is to
make it easy to run other programs. The applications you use on your computer (such
as your Scheme system) are programs stored in the computer’s memory. When you
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Figure 11.1  High-level view of SLIM

invoke one of these applications, perhaps by using a mouse to click on an icon, you
are causing the operating system to load the application program into the computer’s
instruction memory and start execution at the program’s first instruction.

We start with a structural description of SLIM: Figure 11.1 shows a high-level,
coarse-grained view of its architecture. The boxes in this diagram represent SLIM’s
functional units, and the arrows show paths for the flow of data between these units.
Our structural description will involve describing the tasks of the functional units,
successively “opening them up” to reveal their functional subunits and internal data
paths. We will stop at a level detailed enough to give an understanding of how a
stored program works rather than continuing to open each unit until we get to the
level of the electrical circuits that implement it. In the next section we will turn our
attention to an operational understanding of the architecture, and will enumerate
the instructions it can execute.

The computer core is an organizing concept referring to those parts of SLIM except
its input and output devices—imagine it as your computer minus its keyboard, mouse,
monitor, and disk drive. Because SLIM is a stored program computer, the task of
the computer is to run (or execute) a program, which takes in input and produces
output. Instead of considering all of the possible input and output devices enumerated
in the diagram, we will make the simplifying assumption that input comes from the
keyboard and output goes to the monitor screen.

The processor performs the operations that constitute the execution of a program,
using the data memory to store values as needed for the program. When a processor
operation requires that values be stored into or retrieved from memory, it sends
to the memory unit the address (described below) of the memory location. The
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memory unit remembers what value was most recently stored by the processor into
each location. When the processor then asks the memory to retrieve a value from
a particular location, the memory returns to the processor that most recently stored
value, leaving it in the location so that the same value can be retrieved again. The
processor can also consume input and produce output.

Even at this very crude level, our architecture for SLIM already embodies im-
portant decisions. For example, we've decided not to have multiple independently
operating processors, all storing to and retrieving from a single shared memory.
Yet in practice, such shared-memory multiprocessor systems are becoming relatively
common at the time of this writing. Similarly, for simplicity we've connected the
input and output devices only to the processor in SLIM, yet real architectures to-
day commonly include Direct Memory Access (DMA), in which input can flow into
memory and output can be retrieved directly from memory without passing through
the processor.

Now we need to examine each of the boxes in the computer core more closely.
The memory component is the simpler one. Conceptually, it is a long sequence
of “slots” (or “boxes”) that are the individual memory locations. In order to allow
the processor to uniquely specify each location, the slots are sequentially numbered
starting at 0. The number corresponding to a given slot is called its address. When
the processor asks the memory to store 7 at address 13, the memory unit throws away
the value that is in the slot numbered 13 and puts a 7 into that slot, as shown in
Figure 11.2. At any later time, as long as no other store into location 13 has been
done in the meantime, the processor can ask the memory to retrieve the value from
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Figure 11.2  Memory, with 7 stored at address 13
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address 13 and get the 7 back. (Note that the location numbered 13 is actually the
fourteenth location because the first address is 0.)

The processor has considerably more internal structure than the memory because
it needs to

m Keep track of what it is supposed to do next as it steps through the instructions
that constitute the program

m [ocally store a limited number of values that are actively being used so that it
doesn’t need to send store and retrieve requests to the memory so frequently

® Do the actual arithmetic operations, such as addition

The three subcomponents of the processor responsible for these three activities
are called the control unit, the registers, and the arithmetic logical unit (or ALU),
respectively. Figure 11.3 illustrates these three units and the main data paths between
them. As you can see, in SLIM everything goes to or from the registers. (Registers are
locations, like those in the memory: They can be stored into and retrieved from.) The
ALU receives the operands for its arithmetic operations from registers and stores the
result back in a register. If values stored in memory are to be operated on, they first
have to be loaded into registers. Then the arithmetic operation can be performed,
and the result will be stored in a register. Finally, the result can be stored in memory,
if desired, by copying it from the register.

In addition to the data paths shown in the diagram, additional paths lead out
of the control unit to the other units that allow the control unit to tell the ALU
which arithmetic operation to do (addition, subtraction, multiplication, ... ), to tell
the register set which specific registers’ values are to be retrieved or stored, and to
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Figure 11.3  SLIM'’s processor
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tell the memory whether a value is to be stored into the specified address or retrieved
from it. We don’t show these control paths because they complicate the diagram.
Keep in mind, however, that whenever we describe some capability of one of the
units, we are implicitly telling you that there is a connection from the control unit to
the unit in question that allows the control unit to cause that capability to be used.
For example, when we tell you that the ALU can add, we are telling you that there
is a path leading from the control unit to the ALU that carries the information about
whether the control unit wishes the ALU to add. From the operational viewpoint of
the next section, therefore, an add instruction is in SLIM’s instruction set.

Zooming in another level of detail, we examine each of the boxes shown in
the processor diagram more closely, starting with the registers. The registers unit is
just like the memory, a numbered collection of locations, except that it is much
smaller and more intimately connected with the rest of the processor. SLIM has 32
registers, a typi