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International Thomson Publishing GmbH
Königswinterer Strasse 418
53227 Bonn
Germany

International Thomson Publishing Asia
221 Henderson Road
#05–10 Henderson Building
Singapore 0315

International Thomson Publishing Japan
Hirakawacho Kyowa Building, 3F
2-2-1 Hirakawacho
Chiyoda-ku, Tokyo 102
Japan

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any
means— electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher,
Brooks/Cole Publishing Company, Pacific Grove, California 93950.

Printed in Canada

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data
Hailperin, Max.

Concrete abstractions : an introduction to computer science using
Scheme / Max Hailperin, Barbara Kaiser, Karl Knight.

p. cm.
ISBN 0-534-95211-9 (alk. paper)
1. Computer science. 2. Abstract data types (Computer science)

I. Kaiser, Barbara (Barbara K.). II. Knight, Karl (Karl
W.). III. Title.
QA76.H296 1997
005.13 ′3—dc21 98-34080

CIP

T
H

IS
 B

OOK IS PRINTED O
N

A
C

ID
-FREE RECYCLED P

A
P

E
R

Out of print; available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



Contents

Preface ix

PART I Procedural Abstraction
CHAPTER 1
Computer Science and Programming 3

1.1 What’s It All About? / 3
Sidebar: Responsible Computer Use / 5

1.2 Programming in Scheme / 5
1.3 An Application: Quilting / 15

CHAPTER 2
Recursion and Induction 22

2.1 Recursion / 22
Sidebar: Exponents / 28

2.2 Induction / 28
2.3 Further Examples / 34
2.4 An Application: Custom-Sized Quilts / 40

CHAPTER 3
Iteration and Invariants 48

3.1 Iteration / 48
3.2 Using Invariants / 54
3.3 Perfect Numbers, Internal Definitions, and Let / 58
3.4 Iterative Improvement: Approximating the Golden Ratio / 61
3.5 An Application: The Josephus Problem / 65

v

Out of print; available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



vi Contents

CHAPTER 4
Orders of Growth and Tree Recursion 75

4.1 Orders of Growth / 75
Sidebar: Selection Sort / 77
Sidebar: Merge Sort / 78
Sidebar: Merging / 79
Sidebar: Logarithms / 82

4.2 Tree Recursion and Digital Signatures / 83
Sidebar: Modular Arithmetic / 87

4.3 An Application: Fractal Curves / 95

CHAPTER 5
Higher-Order Procedures 109

5.1 Procedural Parameters / 109
5.2 Uncomputability / 113

Sidebar: Alan Turing / 116
5.3 Procedures That Make Procedures / 118
5.4 An Application: Verifying ID Numbers / 120

PART II Data Abstraction

CHAPTER 6
Compound Data and Data Abstraction 133

6.1 Introduction / 133
6.2 Nim / 135
6.3 Representations and Implementations / 143

Sidebar: Nim Program / 144
Sidebar: Game State ADT Implementation / 152

6.4 Three-Pile Nim / 153
6.5 An Application: Adding Strategies to Nim / 156

Sidebar: Type Checking / 157

CHAPTER 7
Lists 167

7.1 The Definition of a List / 167
7.2 Constructing Lists / 169
7.3 Basic List Processing Techniques / 172
7.4 List Processing and Iteration / 179
7.5 Tree Recursion and Lists / 182



Contents vii

7.6 An Application: A Movie Query System / 187
Sidebar: Is There More to Intelligence Than the Appearance of
Intelligence? / 202

CHAPTER 8
Trees 212

8.1 Binary Search Trees / 212
8.2 Efficiency Issues with Binary Search Trees / 220

Sidebar: Privacy Issues / 225
8.3 Expression Trees / 226
8.4 An Application: Automated Phone Books / 229

CHAPTER 9
Generic Operations 243

9.1 Introduction / 243
9.2 Multiple Representations / 244
9.3 Exploiting Commonality / 253
9.4 An Application: Computer Graphics / 262

CHAPTER 10
Implementing Programming Languages 278

10.1 Introduction / 278
10.2 Syntax / 279

Sidebar: The Expressiveness of EBNF / 285
10.3 Micro-Scheme / 289
10.4 Global Definitions: Mini-Scheme / 303
10.5 An Application: Adding Explanatory Output / 311

PART III Abstractions of State
CHAPTER 11
Computers with Memory 333

11.1 Introduction / 333
11.2 An Example Computer Architecture / 333
11.3 Programming the SLIM / 340

Sidebar: What Can Be Stored in a Location? / 342
Sidebar: SLIM’s Instruction Set / 348

11.4 Iteration in Assembly Language / 349
11.5 Recursion in Assembly Language / 357
11.6 Memory in Scheme: Vectors / 361
11.7 An Application: A Simulator for SLIM / 367



viii Contents

CHAPTER 12
Dynamic Programming 379

12.1 Introduction / 379
12.2 Revisiting Tree Recursion / 380
12.3 Memoization / 388
12.4 Dynamic Programming / 398
12.5 Comparing Memoization and Dynamic Programming / 406
12.6 An Application: Formatting Paragraphs / 406

CHAPTER 13
Object-based Abstractions 420

13.1 Introduction / 420
13.2 Arithmetic Expressions Revisited / 421
13.3 RA-Stack Implementations and Representation Invariants / 432

Sidebar: Strings and Characters / 433
13.4 Queues / 446
13.5 Binary Search Trees Revisited / 453
13.6 Dictionaries / 472

CHAPTER 14
Object-oriented Programming 486

14.1 Introduction / 486
14.2 An Object-oriented Program / 487
14.3 Extensions and Variations / 511
14.4 Implementing an Object-oriented Prog. System / 517
14.5 An Application: Adventures in the Land of Gack / 543

CHAPTER 15
Java, Applets, and Concurrency 577

15.1 Introduction / 577
15.2 Java / 578
15.3 Event-Driven Graphical User Interfaces in Applets / 599
15.4 Concurrency / 616

Sidebar: Nested Calls to Synchronized Methods and Deadlock / 625
15.5 An Application: Simulating Compound Interest / 632

APPENDIX Nonstandard Extensions to Scheme 645

Bibliography 649

Index 653



Preface

At first glance, the title of this book is an oxymoron. After all, the term abstraction
refers to an idea or general description, divorced from physical objects. On the other
hand, something is concrete when it is a particular object, perhaps something that
you can manipulate with your hands and look at with your eyes. Yet you often deal
with concrete abstractions. Consider, for example, a word processor. When you use
a word processor, you probably think that you have really entered a document into
the computer and that the computer is a machine which physically manipulates the
words in the document. But in actuality, when you “enter” the document, there
is nothing new inside the computer—there are just different patterns of activity of
electrical charges bouncing back and forth. Moreover, when the word processor
“manipulates” the words in the document, those manipulations are really just more
patterns of electrical activity. Even the program that you call a “word processor” is an
abstraction—it’s the way we humans choose to talk about what is, in reality, yet more
electrical charges. Still, although these abstractions such as “word processors” and
“documents” are merely convenient ways of describing patterns of electrical activity,
they are also things that we can buy, sell, copy, and use.

As you read through this book, we will introduce several abstract ideas in as
concrete a way as possible. As you become familiar and comfortable with these
ideas, you will begin to think of the abstractions as actual concrete objects. Having
already gone through this process ourselves, we’ve chosen to call computer science
“the discipline of concrete abstractions”; if that seems too peculiar to fathom, we
invite you to read the book and then reconsider the notion.

This book is divided into three parts, dealing with procedural abstractions, data
abstractions, and abstractions of state. A procedure is a way of abstracting what’s
called a computational process. Roughly speaking, a process is a dynamic succession
of events—a happening. When your computer is busy doing something, a process

ix



x Preface

is going on inside it. When we call a process a computational process, we mean
that we are ignoring the physical nature of the process and instead focusing on
the information content. For example, consider the problem of conveying some
information to a bunch of other people. If you think about writing the message
on paper airplanes and tossing it at the other people, and find yourself considering
whether the airplanes have enough lift to fly far enough, then you are considering a
mechanical process rather than a computational one. Similarly, if you think about
using the phone, and find yourself worrying about the current carrying capacity of the
copper wire, you are considering an electrical process rather than a computational
one. On the other hand, if you find yourself considering the alternative of sending
your message (whether by phone or paper airplane) to two people, each of whom
send it to two more, each of whom send it to two more, and so forth, rather than
directly sending the message to all the recipients, then you are thinking about a
computational process.

What do computer scientists do with processes? First of all, they write descriptions
of them. Such descriptions are often written in a particular programming language
and are called procedures. These procedures can then be used to make the processes
happen. Procedures can also be analyzed to see if they have been correctly written
or to predict how long the corresponding processes will take. This analysis can then
be used to improve the performance or accuracy of the procedures.

In the second part of the book, we look at various types of data. Data is the
information processed by computational processes, not only the externally visible
information, but also the internal information structures used within the processes.
First, we explore exactly what we mean by the term data, concentrating on how
we use data and what we can do with it. Then we consider various ways of gluing
small pieces of atomic data (such as words) into larger, compound pieces of data
(such as sentences). Because of our computational viewpoint, we write procedures
to manipulate our data, and so we analyze how the structure of the data affects the
processes that manipulate it. We describe some common data structures that are
used in the discipline, and show how to allow disparate structures to be operated on
uniformly in a mix-and-match fashion. We end this part of the book by looking at
programs in a programming language as data structures. That way, carrying out the
computational processes that a program describes is itself a process operating on a
data structure, namely the program.

We start the third part of the book by looking at computational processes from
the perspective of the computer performing the computation. This shows how pro-
cedurally described computations actually come to life, and it also naturally calls
attention to the computer’s memory, and hence to the main topic of this part, state.
State is anything that can be changed by one part of a computation in order to
have an effect on a later part of the computation. We show several important uses
for state: making processes model real-world phenomena more naturally, making
processes that are more efficient than without state, and making certain programs
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divide into modules focused on separate concerns more cleanly. We combine the
new material on state with the prior material on procedural and data abstraction
to present object-oriented programming, an approach to constructing highly modular
programs with state. Finally, we use the objects’ state to mediate interactions between
concurrently active subprocesses.

In summary, this book is designed to introduce you to how computer scientists
think and work. We assume that as a reader, you become actively involved in reading
and that you like to play with things. We have provided a variety of activities that
involve hands-on manipulation of concrete objects such as paper chains, numbered
cards, and chocolate candy bars. The many programming exercises encourage you to
experiment with the procedures and data structures we describe. And we have posed
a number of problems that allow you to play with the abstract ideas we introduce.

Our major emphasis is on how computer scientists think, as opposed to what they
think about. Our applications and examples are chosen to illustrate various problem-
solving strategies, to introduce some of the major themes in the discipline, and to
give you a good feel for the subject. We use sidebars to expand on various topics in
computer science, to give some historical background, and to describe some of the
ethical issues that arise.

Audience

This book is primarily intended as the text for a first (and possibly only) undergraduate
course in computer science. We believe that every college student should have a
trial experience of what it’s like to think abstractly, the way mathematicians and
computer scientists think. We hope that the tangible nature of the computer scientist’s
abstractions will attract some of the students who choose to avoid math courses.
Because of this, we don’t require that our readers have taken a college-level math
course. On the other hand, mathematics is used in computer science in much the
same way it is used in biology, chemistry, and physics. Thus we do assume that our
readers have a knowledge of high school algebra.

Although we’ve tried to reach a broad audience, this is not a watered-down text
unsuitable for serious students planning to major in computer science. We reject
the notion than an introduction for majors should be different from an introduction
for non-majors. Beyond the obvious difficulty that most students will not have any
reasonable basis for categorizing themselves without having taken even a single
course, we feel strongly that the most important need of a prospective major is the
same as that of a non-major: a representative trial experience of what it is like to
think the computer science way. Those who part company with us after this book
will have an appreciation for what we do; those who stay with us will know what lies
ahead for them.

Like most introductory college-level books, we make some assumptions about the
readers’ backgrounds. As we have said before, we assume that the readers understand
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the material that is typically taught in a high school algebra course. We also make
some assumptions about the readers’ attitudes towards mathematics; in short, they
should be willing to use mathematics as a tool for analyzing and solving problems.
We occasionally use some mathematical tools that aren’t typically taught in high
school. When we do this, we present the relevant material in the text and the
students need to be willing to learn this material on the fly.

Similarly, we also assume that our readers may not have had much computing or
programming experience, beyond playing an occasional computer game or using a
word processor. However, we do not describe how to start a computer, how to use a
Scheme programming environment, or similar mechanics. This kind of information
varies greatly from machine to machine and is best taught by a person rather than a
book. Again, keeping an open mind about learning is probably more important than
any prior experience.

Additionally, we assume that students have had some experience in writing. When
we teach a course based on this book, we rely heavily on writing assignments.
Students are expected to be able to write descriptions of what their procedures do
and need to be able to articulate clearly the problems they may have in order to
get help in solving them. Most of our students find that their writing skill improves
considerably over the semester.

Finally, although we attempt to be reasonably gentle toward those with little
prior mathematical or computer programming experience, in our experience even
those students who think of themselves as experts find much here that is not only
unfamiliar, but also challenging and interesting.

In short: this is an introduction for everyone.

Technical Assumptions

To make full use of this book, you will need access to a computer with an implemen-
tation of the Scheme programming language; for the final chapter, you will also need
an implementation of the JavaTM programming language, version 1.1 or later. Most
of our examples should work on essentially any modern Scheme, since we have used
constructs identified in the so-called “R4RS” standard for Scheme—the Revised4

Report on the Algorithmic Language Scheme, which is available on the web site for
this book, located at http://www.pws.com/compsci/authors/hailperin. The
following materials are available:

all code shown in this text, together with some additional supporting code;
information on obtaining various Scheme implementations and using them with
this text;
Java applets that provide instructional support, such as simulations;
manipulatives (i.e., physical materials to experiment with);
the Scheme language specification;
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bug-reporting forms and author contact information;
a list of errata; and
tips for instructors.

One notable exception is that we use graphics, even though there are no graphics
operations defined in R4RS. Nearly every modern Scheme will have some form of
graphics, but the details vary considerably. We have provided “library” files on our
web site for each of several popular Scheme systems, so that if you load the library
in before you begin work, the graphics operations we presume in this book will be
available to you. The nonstandard Scheme features, such as graphics, that we use in
the book are explained in the Appendix, as well as being identified where they are
first used.

Teaching with This Book

Enough material is here to cover somewhere in the range from two quarters to
two semesters, depending on your pace. If you want to cut material to fit a shorter
format, the dependencies among the chapters allow for a number of possibilities
beyond simply truncating at some point:

Chapter 10 has only weak ties to the later chapters, so it can be omitted easily.
Chapter 11 is primarily concerned with computer organization and assembly
language programming; however, there is also a section introducing Scheme’s
vectors. It would be possible to skip the machine-level material and cover just the
vectors with only minor adverse impact.
Chapter 12 can be omitted without serious impact on the later chapters.
Chapter 13 divides roughly into two halves: elementary data structures (stacks and
queues) and an advanced data structure (red-black trees). You can stop after the
queues section if you don’t want the more advanced material.
Chapter 14 has a large section on how object-oriented programming is imple-
mented, which can be omitted without loss of continuity.
You can skip straight from Chapter 7 to the vector material in Chapter 11,
provided you stop after the queues section in Chapter 13. (Chapter 8 is crucial for
the red-black tree material in Chapter 13, and Chapter 9 is crucial for Chapter
14.)

All exercises, other than those in the separate “review problems” section at the
end of each chapter, are an integral part of the text. In many cases skipping over
them will cause loss of continuity, or omission of some idea or language feature
introduced in the exercise. Thus as a general rule, even when you don’t assign the
exercises, you should consider them part of the reading.
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P A R T I

Procedural Abstraction

C omputer scientists study the processing of information. In this first part
of the book, we will focus our attention on specifying the nature of
that processing, rather than on the nature of the information being

processed. (The latter is the focus of Parts II and III.) For this part of the book,
we will look at procedures for processing only a few simple kinds of data, such
as numbers and images; in the final chapter of Part I, we will look at procedures
for processing other procedures.

We’ll examine procedures from several different viewpoints, focusing on the
connection between the form of the procedure and the form of the process
that results from carrying it out. We’ll see how to design procedures so that
they have a desired effect and how to prove that they indeed have that effect.
We’ll see various ways to make procedures generate “expansible” processes that
can grow to accommodate arbitrarily large instances of a general problem and
see how the form of the procedure and process influences the efficiency of this
growth. We’ll look at techniques for capturing common processing strategies in
general form, for example, by writing procedures that can write any of a family
of similar procedures for us.





C H A P T E R O N E

Computer Science
and Programming

1.1 What’s It All About?

Computer science revolves around computational processes, which are also called in-
formation processes or simply processes. A process is a dynamic succession of events—a
happening. When your computer is busy doing something, a process is going on in-
side it. What differentiates a computational process from some other kind of process
(e.g., a chemical process)? Although computing originally referred to doing arith-
metic, that isn’t the essence of a computational process: For our purposes, a word, for
example, enjoys the same status as a number, and looking up the word in a dictionary
is as much a computational process as adding numbers. Nor does the process need
to go on inside a computer for it to be a computational process—it could go on in
an old-fashioned library, where a patron turns the pages of a dictionary by hand.

What makes the process a computational process is that we study it in ways that
ignore its physical nature. If we chose to study how the library patron turns the
pages, perhaps by bending them to a certain point and then letting gravity flop them
down, we would be looking at a mechanical process rather than a computational
one. Here, on the other hand, is a computational description of the library patron’s
actions in looking up fiduciary:

1. Because fiduciary starts with an f , she uses the dictionary’s index tabs to locate
the f section.

2. Next, because the second letter (i) is about a third of the way through the alphabet,
she opens to a point roughly a third of the way into the f section.

3. Finding herself slightly later in the alphabet (fjord), she then scans backward in a
straightforward way, without any jumping about, until she finds fiduciary.

3



4 Chapter 1 Computer Science and Programming

Notice that although there are some apparently physical terms in this description
(index tab and section), the interesting thing about index tabs for the purposes of this
process description is not that they are tabs but that they allow one to zoom in on
those entries of the dictionary that have a particular initial letter. If the dictionary
were stored in a computer, it could still have index tabs in the sense of some structure
that allowed this operation, and essentially the same process could be used.

There are lots of questions one can ask about computational processes, such as

1. How do we describe one or specify which one we want carried out?
2. How do we prove that a process has a particular effect?
3. How do we choose a process from among several that achieve the same effect?
4. Are there effects we can’t achieve no matter what process we specify?
5. How do we build a machine that automatically carries out a process we’ve speci-

fied?
6. What processes in the natural world are fruitfully analyzed in computational

terms?

We’ll touch on all these questions in this book, although the level of detail varies
from several chapters down to a sentence or two. Our main goal, however, is not
so much to answer the questions computer scientists face as to give a feel for the
manner in which they formulate and approach those questions.

Because we’ll be talking about processes so much, we’ll need a notation for
describing them. We call our descriptions programs, and the notation a programming
language. For most of this book we’ll be using a programming language called
Scheme. (Two chapters near the end of the book use other programming languages
for specialized purposes: assembly language, to illustrate at a detailed level how
computers actually carry out computations, and Java, to illustrate how computational
processes can interact with other, concurrently active processes.) One advantage of
Scheme is that its structure is easy to learn; we will describe its basic structure in
Section 1.2. As your understanding of computational processes and the data on
which they operate grows, so too will your understanding of how those processes and
data can be notated in Scheme.

An added benefit of Scheme (as with most useful programming languages) is that
it allows us to make processes happen, because there are machines that can read our
notation and carry out the processes they describe. The fact that our descriptions of
abstract processes can result in their being concretely realized is a gratifying aspect
of computer science and reflects one side of this book’s title. It also means that
computer science is to some extent an experimental science.

However, computer science is not purely experimental, because we can apply
mathematical tools to analyze computational processes. Fundamental to this analysis
is a way of modeling these evolving processes; we describe the so-called substitution
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Responsible Computer Use

If you are using a shared computer system, there are some issues you should think
about regarding the social acceptability of your behavior.

The most important point to keep in mind is that the feasibility of an action
and its acceptability are quite different matters. You may well be technically cap-
able of rummaging through other people’s computer files without their approval.
However, this act is generally considered to be like going down the street turning
doorknobs and going inside if you find one unlocked.

Sometimes you won’t know what is acceptable. If you have any doubts about
whether a particular course of action is legal, ethical, and socially acceptable, err
on the side of caution. Ask a responsible system administrator or faculty member
first.

model in Section 1.2. This abstract model of a concrete process reflects another side
of the book’s title as it bears on the computational process itself.

As was mentioned above, computational processes do not only deal with numbers.
The final section of this chapter applies the concepts of this chapter to an example
involving building quilt-cover patterns out of more basic images. We will continue
this convention of having the last section of each chapter be an application of that
chapter’s concepts. Following this application section, each chapter concludes with
a collection of review problems, an inventory of the material introduced in the
chapter, and notes on reference sources.

1.2 Programming in Scheme

The simplest possible Scheme program is a single number. If you ask the Scheme
system to process such a program, it will simply return the number to you as its
answer. We call what the Scheme system does finding the value of the expression you
provide, or more simply evaluation. Exactly how this looks will vary from one version
of Scheme to another; in our book, we’ll show it as follows, with dark, upright
type for your input and light, slanted type for the computer’s output:

12
12

The first line here was typed by a human, whereas the second line was the com-
puter’s response. Other kinds of numbers also work: negative numbers, fractions, and
decimals:

-7
-7
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1/3
1/3

3.1415927
3.1415927

In Scheme, decimals are used for inexact approximations (as in the above approxi-
mation to p), and fractions are used for exact rational numbers.

Other kinds of expressions are less boring to evaluate. For example, the value of
a name is whatever it is a name for. In a moment we’ll see how we can name things
ourselves, but there are many names already in place when we start up Scheme.
Most are names for procedures; for example, the name sqrt names a procedure, as
does the name +. If we evaluate either of them, we’ll see a printed representation of
the corresponding procedure:

sqrt
#<procedure>

+
#<procedure>

The appearance of procedures varies from one version of Scheme to another; in this
book, we’ll show them as #<procedure>, but you may see something different on
your computer. However, this difference generally doesn’t matter because procedures
aren’t meant to be looked at; they’re meant to be used.

The way we use a procedure is to apply it to some values. For example, the
procedure named sqrt can be applied to a single number to take its square root,
and the procedure named + can be applied to two numbers to add them. The way
we apply a procedure to values is as follows:

(sqrt 9)
3

(+ 3 6)
9

In every case, an application consists of a parenthesized list of expressions, separated
by spaces. The first expression’s value is the procedure to apply; the values of the
remaining expressions are what the procedure should be applied to. Applications are
themselves expressions, so they can be nested:

(sqrt (+ 3 6))
3
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Here the value of the expression (+ 3 6) is 9, and that is the value to which the
procedure named sqrt is applied. (More succinctly, we say that 9 is the argument
to the sqrt procedure.)

There are any number of other useful procedures that already have names, such
as * for multiplying, - for subtracting, and / for dividing.

Exercise 1.1

What is the value of each of the following expressions? You should be able to do
them in your head, but checking your answers using a Scheme system will be a good
way to get comfortable with the mechanics of using your particular system.

a. (* 3 4)

b. (* (+ 5 3) (- 5 3))

c. (/ (+ (* (- 17 14) 5) 6) 7)

It is customary to break complex expressions, such as in Exercise 1.1c, into several
lines with indentation that clarifies the structure, as follows:

(/ (+ (* (- 17 14)
5)

6)
7)

This arrangement helps make clear what’s being multiplied, what’s being added, and
what’s being divided.

Now that we’ve gained some experience using those things for which we already
have names, we should learn how to name things ourselves. In Scheme, we do this
with a definition, such as the following:

(define ark-volume (* (* 300 50) 30))

Scheme first evaluates the expression (* (* 300 50) 30) and gets 450000; it then
remembers that ark-volume is henceforth to be a name for that value. You may
get a response from the computer indicating that the definition has been performed;
whether you do and what it is varies from system to system. In this book, we’ll show
no response. The name you defined can now be used as an expression, either on its
own or in a larger expression:

ark-volume
450000
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(/ ark-volume 8)
56250

Although naming allows us to capture and reuse the results of computations, it
isn’t sufficient for capturing reusable methods of computation. Suppose, for example,
we want to compute the total cost, including a 5 percent sales tax, of several different
items. We could take the price of each item, compute the sales tax, and add that tax
to the original price:

(+ 1.29 (* 5/100 1.29))
1.3545

(+ 2.40 (* 5/100 2.40))
2.52
...

Alternatively, we could define a procedure that takes the price of an item (such as
$1.29 or $2.40) and returns the total cost of that item, much as sqrt takes a number
and returns its square root. To define such a total cost procedure we need to specify
how the computation is done and give it a name.

We can specify a method of computation by using a lambda expression. In our
sales tax example, the lambda expression would be as follows:

(lambda (x) (+ x (* 5/100 x)))

Other than the identifying keyword lambda, a lambda expression has two parts: a
parameter list and a body. The parameter list in the example is (x) and the body is
(+ x (* 5/100 x)). The value of a lambda expression is a procedure:

(lambda (x) (+ x (* 5/100 x)))
#<procedure>

Normally, however, we don’t evaluate lambda expressions in isolation. Instead, we
apply the resulting procedure to one or more argument values:

((lambda (x) (+ x (* 5/100 x))) 1.29)
1.3545

((lambda (x) (+ x (* 5/100 x))) 2.40)
2.52
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When the procedure is applied to a value (such as 1.29), the body is evaluated, but
with the parameter (x in this example) replaced by the argument value (1.29). In our
example, when we apply (lambda (x) (+ x (* 5/100 x))) to 1.29, the compu-
tation done is (+ 1.29 (* 5/100 1.29)). When we apply the same procedure to
2.40, the computation done is (+ 2.40 (* 5/100 2.40)), and so on.

Including the lambda expression explicitly each time it is applied is unwieldy, so
we usually use a lambda expression as part of a definition. The lambda expression
produces a procedure, and define simply associates a name with that procedure.
This process is similar to what mathematicians do when they say “let f (x) 5 x 3 x”.
In this case, the parameter is x, the body is x 3 x, and the name is f . In Scheme we
would write

(define f (lambda (x) (* x x)))

or more descriptively

(define square
(lambda (x) (* x x)))

Now, whenever we need to square a number, we could just use square:

(square 3)
9

(square -10)
100

Exercise 1.2

a. Create a name for the tax example by using define to name the procedure
(lambda (x) (+ x (* 5/100 x))).

b. Use your named procedure to calculate the total price with tax of items costing
$1.29 and $2.40.

Exercise 1.3

a. In the text example, we defined f and square in exactly the same way. What
happens if we redefine f? Does the procedure associated with square change
also?

b. Suppose we wrote:

(define f (lambda (x) (* x x)))
(define square f)
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Fill in the missing values:

(f 7)

(square 7)

(define f (lambda (x) (+ x 2)))

(f 7)

(square 7)

Here is another example of defining and using a procedure. Its parameter list is
(radius height), which means it is intended to be applied to two values. The
first should be substituted where radius appears in the body, and the second where
height appears:

(define cylinder-volume
(lambda (radius height)
(* (* 3.1415927 (square radius))

height)))

(cylinder-volume 5 4)
314.15927

Notice that because we had already given the name square to our procedure for
squaring a number, we were then able to simply use it by name in defining another
procedure. In fact, it doesn’t matter which order the two definitions are done in as
long as both are in place before an attempt is made to apply the cylinder-volume
procedure.

We can model how the computer produced the result 314.15927 by consulting
Figure 1.1. In this diagram, the vertical arrows represent the conversion of a problem
to an equivalent one, that is, one with the same answer. Alternatively, the same
process can be more compactly represented by the following list of steps leading
from the original expression to its value:
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(cylinder-volume 5 4)
(* (* 3.1415927 (square 5)) 4)
(* (* 3.1415927 (* 5 5)) 4)
(* (* 3.1415927 25) 4)
(* 78.5398175 4)
314.15927

Whether we depict the evaluation process using a diagram or a sequence of expres-
sions, we say we’re using the substitution model of evaluation. We use this name
because of the way we handle procedure application: The argument values are sub-

(* (* 3.1415927 (square 5))
     4)

(* 3.1415927 (square 5))

(* 3.1415927 25)

(* 78.5398175
    4)

(cylinder-volume 5 4)

(square 5)

314.15927

Problem Subproblem Sub-subproblem

(* 5 5)

25

78.5398175

Figure 1.1 The process of evaluating (cylinder-volume 5 4)
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stituted into the procedure body in place of the parameter names and then the
resulting expression is evaluated.

Exercise 1.4

According to the Joy of Cooking, candy syrups should be cooked 1 degree cooler than
listed in the recipe for each 500 feet of elevation above sea level.

a. Define candy-temperature to be a procedure that takes two arguments: the
recipe’s temperature in degrees and the elevation in feet. It should calculate the
temperature to use at that elevation. The recipe for Chocolate Caramels calls for
a temperature of 244 degrees; suppose you wanted to make them in Denver, the
“mile high city.” (One mile equals 5280 feet.) Use your procedure to find the
temperature for making the syrup.

b. Candy thermometers are usually calibrated only in integer degrees, so it would be
handy if the candy-temperature procedure would give an answer rounded to
the nearest degree. Rounding can be done using the predefined procedure called
round. For example, (round 7/3) and (round 5/3) both evaluate to 2. Insert
an application of round at the appropriate place in your procedure definition and
test it again.

Procedures give us a way of doing the same computation to different values.
Sometimes, however, we have a computation we want to do to different values,
but not exactly in the same way with each. Instead, we want to choose a particular
computation based on the circumstances. For example, consider a simplified income
tax, which is a flat 20 percent of income; however, those earning under $10,000 don’t
have to pay any tax at all. We can write a procedure for calculating this tax as follows:

(define tax
(lambda (income)
(if (< income 10000)

0
(* 20/100 income))))

Two things are new in this example. The first is the procedure named <. Unlike
the procedures we’ve seen so far, it doesn’t calculate a number. Instead it calculates a
boolean or truth value—i.e., either true or false. It’s what we call a test or predicate: a
procedure that determines whether some fact is true or not. (In this case, it determines
whether the income is less than $10,000.) The other new thing is the if expression,
which uses the truth value to decide which of the remaining two expressions to
evaluate. (As you may have guessed, there are other predefined predicates, including
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>, =, <=, >=, even?, odd?, and many others. Of those we mentioned, only <= and
>= are perhaps not self-explanatory; they correspond to the mathematical symbols #
and $ respectively.)

We can trace through the steps the computer would take in evaluating (tax
30000) as follows:

(tax 30000)
(if (< 30000 10000) 0 (* 20/100 30000))
(if #f 0 (* 20/100 30000))
(* 20/100 30000)
6000

In going from the second to the third line, the expression (< 30000 10000) is
evaluated to the false value, which is written #f. (Correspondingly, the true value is
written #t.) Because the if’s test evaluated to false, the second subexpression (the
0) is ignored and the third subexpression (the (* 20/100 30000)) is evaluated. We
can again show the computational process in a diagram, as in Figure 1.2.

Exercise 1.5

The preceding tax example has (at least) one undesirable property, illustrated by the
following: if you earn $9999, you pay no taxes, so your net income is also $9999.
However, if you earn $10,000, you pay $2000 in taxes, resulting in a net income of
$8000. Thus, earning $1 more results in a net loss of $1999!

The U.S. tax code deals with this potential inequity by using what is called a
marginal tax rate. This policy means roughly that each additional dollar of income
is taxed at a given percentage rate, but that rate varies according to what income
level the dollar represents. In the case of our simple tax, this would mean that the
first $10,000 of a person’s income is not taxed at all, but the amount above $10,000
is taxed at 20 percent. For example, if you earned $12,500, the first $10,000 would
be untaxed, but the amount over $10,000 would be taxed at 20 percent, yielding a
tax bill of 20% 3 ($12, 500 2 $10, 000) 5 $500. Rewrite the procedure tax to reflect
this better strategy.

Exercise 1.6

The Joy of Cooking suggests that to figure out how many people a turkey will serve,
you should allow 36 4 of a pound per person for turkeys up to 12 pounds in weight, but
only 16 2 pound per person for larger turkeys. Write a procedure, turkey-servings,
that when given a turkey weight in pounds will calculate the number of people it
serves.
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(if (< 30000 10000)
    0
    (* 20/100 30000))

(if #f
    0
    (* 20/100 30000))

(tax 30000)

(< 30000 10000)

Problem Subproblem

#f

(* 20/100 30000)

6000

Figure 1.2 The process of evaluating (tax 30000)

Exercise 1.7

Write a succinct English description of the effect of each of the following procedures.
Try to express what each calculates, not how it calculates that.

a. (define puzzle1
(lambda (a b c)
(+ a (if (> b c)

b
c))))

b. (define puzzle2
(lambda (x)
((if (< x 0)

-
+)

0 x)))
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Figure 1.3 A sample of the Repeating Crosses quilt

1.3 An Application: Quilting

Now we turn our attention to building procedures that operate on rectangular im-
ages, rather than numbers. Using these procedures we can produce geometric quilt
patterns, such as the Repeating Crosses pattern shown in Figure 1.3.

In doing numeric computations, the raw materials are numbers you type in and
some primitive numeric procedures, such as +. (By primitive procedures, we mean
the fundamental predefined procedures that are built into the Scheme system.) The
situation here is similar. We will build our images out of smaller images, and we will
build our image procedures out of a few primitive image procedures that are built
into our Scheme system. Unfortunately, image procedures are not as standardized as
numeric procedures, so you can’t count on these procedures to work in all versions
of Scheme; any Scheme used with this book, however, should have the procedures
we use here. There is also the problem of how to input the basic building-block
images that are to be manipulated. Graphic input varies a great deal from computer
to computer, so rather than tell you how to do it, we’ve provided a file on the web
site for this book that you can load into Scheme to define some sample images.
Loading that file defines each of the names shown in Figure 1.4 as a name for the
corresponding image. (Exercise 1.11 at the end of this section explains how these
blocks are produced.)

We’ll build our quilts by piecing together small square images called basic blocks.
The four examples in Figure 1.4 are all basic blocks; the one called rcross-bb was
used to make the Repeating Crosses quilt. The quilt was made by piecing together
copies of the basic block, with some of them turned.

To make the Repeating Crosses quilt, we need at least two primitive procedures:
one that will produce an image by piecing together two smaller images and one
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rcross-bb corner-bb test-bb nova-bb
Figure 1.4 Predefined images

that will turn an image a quarter turn to the right. These procedures, which are
built into the Scheme systems recommended for this book, are called stack and
quarter-turn-right.

Exercise 1.8

Try evaluating the following expressions:

(stack rcross-bb corner-bb)
(quarter-turn-right test-bb)

What happens if you nest several expressions, such as in the following:

(stack (stack rcross-bb corner-bb) test-bb)
(stack (stack rcross-bb corner-bb)

(stack (quarter-turn-right test-bb) test-bb))

Can you describe the effect of each primitive?

Exercise 1.9

Before undertaking anything so ambitious as making an actual quilt, it may pay to
have a few more tools in our kit. For example, it would be nice if we could turn an
image to the left, or half way around, as well as to the right. Similarly, it would be
desirable to be able to join two images side by side as well as stacking them on top
of one another.

a. Define procedures half-turn and quarter-turn-left that do as their names
suggest. Both procedures take a single argument, namely, the image to turn. You
will naturally need to use the built-in procedure quarter-turn-right.

b. Define a procedure side-by-side that takes two images as arguments and creates
a composite image having the first image on the left and the second image on
the right.



1.3 An Application: Quilting 17

If you don’t see how to build the three additional procedures out of quarter-
turn-right and stack, you may want to play more with combinations of those
two. Alternatively, try playing with paper squares with basic blocks drawn on them.
(The web site for this book has some basic blocks you can print out, but hand-drawn
ones work just as well.)

Exercise 1.10

Each dark cross in the repeating crosses pattern is formed by joining together four
copies of the basic block, each facing a different way. We can call this operation
pinwheeling the basic block; here is an example of the same operation performed on
the image test-bb:

(pinwheel ) ⇒

Define the pinwheel procedure and show how you can use it to make a cross out
of the basic block.

Now try pinwheeling the cross—you should get a sample of the quilt, with four
dark crosses, as shown at the beginning of the section. If you pinwheel that, how big
is the quilt you get?

Try making other pinwheeled quilts in the same way, but using the other basic
blocks. What do the designs look like?

Although you have succeeded (through the exercises) in making the Repeating
Crosses quilt described at the beginning of this section, there are at least two ques-
tions you may have. First, how are the basic blocks constructed in the first place? And
second, how could we create quilts that aren’t pinwheels of pinwheels? This latter
question will be dealt with in the next two chapters, which introduce new program-
ming techniques called recursion and iteration. The former question is addressed in
the following exercise.

Exercise 1.11

All four basic blocks shown previously can be produced using two primitive graphics
procedures supported by all the Scheme systems recommended for this book. The
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first of these procedures, filled-triangle, takes six arguments, which are the x
and y coordinates of the corners of the triangle that is to be filled in. The coordinate
system runs from 21 to 1 in both dimensions. For example, here is the definition of
test-bb:

(define test-bb
(filled-triangle 0 1 0 -1 1 -1))

The second of these procedures, overlay, combines images. To understand how it
works, imagine having two images on sheets of transparent plastic laid one on top of
the other so that you see the two images together. For example, here is the definition
of nova-bb, which is made out of two triangles:

(define nova-bb
(overlay (filled-triangle 0 1 0 0 -1/2 0)

(filled-triangle 0 0 0 1/2 1 0)))

a. Use these primitive graphics procedures to define the other two basic blocks from
Figure 1.4.

b. Now that you know how it is done, be inventive. Come up with some basic blocks
of your own and make pinwheeled quilts out of them. Of course, if your system
supports direct graphical input, you can also experiment with freehand images,
or images from nature. You might find it interesting to try experiments such as
overlaying rotated versions of an image on one another.

Review Problems

Exercise 1.12

Find two integers such that applying f to them will produce 16 as the value, given
that f is defined as follows:

(define f
(lambda (x y)
(if (even? x)

7
(* x y))))

Exercise 1.13

Write a Scheme expression with no multidigit numbers in it that has 173 as its value.
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Exercise 1.14

Write a procedure that takes two arguments and computes their average.

Exercise 1.15

What could be filled into the blank in the following procedure to ensure that no
division by zero occurs when the procedure is applied? Give several different answers.

(define foo
(lambda (x y)
(if

(+ x y)
(/ x y))))

Exercise 1.16

A 10-foot-long ladder leans against a wall, with its base 6 feet away from the bottom
of the wall. How high on the wall does it reach? This question can be answered by
evaluating (ladder-height 10 6) after entering the following definition. Make a
diagram such as the one in Figure 1.1 showing the evaluation of (ladder-height
10 6) in the context of this definition:

(define ladder-height
(lambda (ladder-length base-distance)
(sqrt (- (square ladder-length)

(square base-distance)))))
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New Predefined Scheme Names

The dagger symbol (†) indicates a name that is not part of the R4RS standard for
Scheme.

sqrt
+
*
-
/
round
<
>
=

<=
>=
even?
odd?
stack†
quarter-turn-right†
filled-triangle†
overlay†

New Scheme Syntax

number
name
application
definition
lambda expression

parameter list
body
if expression
#f
#t

Scheme Names Defined in This Chapter

ark-volume
square
cylinder-volume
candy-temperature
tax
turkey-servings
puzzle1
puzzle2
rcross-bb

corner-bb
test-bb
nova-bb
half-turn
quarter-turn-left
side-by-side
pinwheel
ladder-height

Sidebars

Responsible Computer Use

Notes

The identifying keyword lambda, which indicates that a procedure should be created,
has a singularly twisted history. This keyword originated in the late 1950s in a
programming language (an early version of Lisp) that was a direct predecessor to
Scheme. Why? Because it was the name of the Greek letter l, which Church
had used in the 1930s to abstract mathematical functions from formulas [12]. For
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example, where we write (lambda (x) (* x x)), Church might have written
lx.x 3 x. Because the computers of the 1950s had no Greek letters, the l needed
to be spelled out as lambda. This development wasn’t the first time that typographic
considerations played a part in the history of lambda. Barendregt [6] tells “what
seems to be the story” of how Church came to use the letter l. Apparently Church
had originally intended to write x̂.x 3 x, with a circumflex or “hat” over the x. (This
notation was inspired by a similar one that Whitehead and Russell used in their
Principia Mathematica [53].) However, the typesetter of Church’s work was unable
to center the hat over the top of the x and so placed it before the x, resulting in

ˆx.x 3 x instead of x̂.x 3 x; a later typesetter then turned that hat with nothing under
it into a l, presumably based on the visual resemblance.

The formula for candy-making temperatures at higher elevations, the recipe for
chocolate caramels, and the formula for turkey servings are all from the Joy of Cooking
[42]. The actual suggested formula for turkey servings gives a range of serving sizes
for each class of turkeys; we’ve chosen to use the low end of each range, because
we’ve never had a shortage of turkey.

The quilting application is rather similar to the “Little Quilt” language of Sethi
[49]. The Repeating Crosses pattern is by Helen Whitson Rose [43].



C H A P T E R T W O

Recursion and Induction

2.1 Recursion

We have used Scheme to write procedures that describe how certain computational
processes can be carried out. All the procedures we’ve discussed so far generate
processes of a fixed size. For example, the process generated by the procedure
square always does exactly one multiplication no matter how big or how small the
number we’re squaring is. Similarly, the procedure pinwheel generates a process
that will do exactly the same number of stack and turn operations when we use
it on a basic block as it will when we use it on a huge quilt that’s 128 basic blocks
long and 128 basic blocks wide. Furthermore, the size of the procedure (that is,
the size of the procedure’s text) is a good indicator of the size of the processes it
generates: Small procedures generate small processes and large procedures generate
large processes.

On the other hand, there are procedures of a fixed size that generate computa-
tional processes of varying sizes, depending on the values of their parameters, using
a technique called recursion. To illustrate this, the following is a small, fixed-size
procedure for making paper chains that can still make chains of arbitrary length—
it has a parameter n for the desired length. You’ll need a bunch of long, thin
strips of paper and some way of joining the ends of a strip to make a loop. You
can use tape, a stapler, or if you use slitted strips of cardstock that look like this

, you can just slip the slits together. You’ll need some
classmates, friends, or helpful strangers to do this with, all of whom have to be willing
to follow the same procedure as you. You will need to stand in a line.

22
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To make a chain of length n:

1. If n 5 1,
(a) Bend a strip around to bring the two ends together, and join them.
(b) Proudly deliver to your customer a chain of length 1.

2. Otherwise,
(a) Pick up a strip.
(b) Ask the person next in line to please make you a chain of length n 2 1.
(c) Slip your strip through one of the end links of that chain, bend it around,

and join the ends together.
(d) Proudly deliver to your customer a chain of length n.

Now you know all there is to know about recursion, you have met a bunch of
new people, and if you were ambitious enough to make a long chain, you even
have a nice decoration to drape around your room. Despite all these advantages, it
is generally preferable to program a computer rather than a person. In particular,
using this same recursive technique with a computer comes in very handy if you
have a long, tedious calculation to do that you’d rather not do by hand or even ask
your friends to do.

For example, imagine that you want to compute how many different outcomes
there are of shuffling a deck of cards. In other words, how many different orderings (or
permutations) of the 52 cards are there? Well, 52 possibilities exist for which card is on
top, and for each of those 51 possibilities exist for which card is next, or 52 351 total
possibilities for what the top two cards are. This pattern continues similarly on down
the deck, leading to a total number of possibilities of 52 3 51 3 50 3 ? ? ? 3 3 3 2 3 1,
which is the number that is conventionally called 52 factorial and written 52!. To
compute 52! we could do a lot of tedious typing, spelling out the 51 multiplications of
the numbers from 52 down to 1. Alternatively, we could write a general procedure for
computing any factorial, which uses its argument to determine which multiplications
to do, and then apply this procedure to 52.

To write this procedure, we can reuse the ideas behind the paper chain procedure.
One of these is the following very important general strategy:

The recursion strategy: Do nearly all the work first; then there will only be a
little left to do.

Although it sounds silly, it describes perfectly what happened with the paper chain:
You (or rather your friends) did most of the work first (making a chain of length
n 2 1), which left only one link for you to do.

Here we’re faced with the problem of multiplying 52 numbers together, which
will take 51 multiplications. One way to apply the recursion principle is this: Once
50 of the multiplications have been done, only 1 is left to do.
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We have many possible choices for which 50 multiplications to do first versus
which one to save for last. Almost any choice can be made to work, but some may
make us work a bit harder than others. One choice would be to initially multiply
together the 51 largest numbers and then be left with multiplying the result by the
smallest number. Another possibility would be to initially multiply together the 51
smallest numbers, which would just leave the largest number to multiply in. Which
approach will make our life easier? Stop and think about this for a while.

We start out with the problem of multiplying together the numbers from 52
down to 1. To do this, we’re going to write a general factorial procedure, which can
multiply together the numbers from anything down to 1. Fifty-two down to 1 is just
one special case; the procedure will be equally capable of multiplying 105 down to
1, or 73 down to 1, or 51 down to 1.

This observation is important; if we make the choice to leave the largest number
as the one left to multiply in at the end, the “nearly all the work” that we need to do
first is itself a factorial problem, and so we can use the same procedure. To compute
52!, we first compute 51!, and then we multiply by 52. In general, to compute n!,
for any number n, we’ll compute (n 2 1)! and then multiply by n. Writing this in
Scheme, we get:

(define factorial
(lambda (n)
(* (factorial (- n 1))

n)))

The strategy of choosing the subproblem to be of the same form as the main
problem is probably worth having a name for:

The self-similarity strategy: Rather than breaking off some arbitrary big chunk
of a problem to do as a subproblem, break off a chunk that is of the same form
as the original.

Will this procedure for computing factorials work? No. It computes the factorial of
any number by first computing the factorial of the previous number. That works up
to a point; 52! can be computed by first computing 51!, and 51! can be computed by
first computing 50!. But, if we keep going like that, we’ll never stop. Every factorial
will be computed by first computing a smaller one. Therefore 1! will be computed
in terms of 0!, which will be computed in terms of (21)!, which will be computed
in terms of (22)!, and so on.

When we have a lot of multiplications to do, it makes sense to do all but one and
then the one that’s left. Even if we only have one multiplication to do, we could
do all but one (none) and then the one that’s left. But what if we don’t have any
multiplications at all to do? Then we can’t do all but one and then the one that’s
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left—there isn’t one to leave for last. The fundamental problem with this procedure
is, it tries to always leave one multiplication for last, even when there are none to be
done.

Computing 1! doesn’t require any multiplications; the answer is simply 1. What
we can do is treat this base case specially, using if, just like in the human program
for making chains:

(define factorial
(lambda (n)
(if (= n 1)

1
(* (factorial (- n 1))

n))))

(factorial 52)
80658175170943878571660636856403766975289505440883277824000000000

000

Thus, base cases are treated separately in recursive procedures. In particular, they
result in no further recursive calls. But we also need to guarantee that the recursion
will always eventually end in a base case. This is so important that we give it the
following name:

The base case imperative: In a recursive procedure, all roads must lead to a
base case.

This procedure generates what is called a recursive process; a similar but smaller
computation is done as a subgoal of solving the main problem. In particular, cases
like this with a single subproblem that is smaller by a fixed amount, are called linear
recursions because the total number of computational steps is a linear function of the
problem size. We can see the recursive nature of the process clearly in Figure 2.1,
which shows how the evaluation of (factorial 3) involves as a subproblem com-
puting (factorial 2), which in turn involves computing (factorial 1) as a
sub-subproblem. If the original problem had been (factorial 52), the diagram
would be 52 columns wide instead of only 3.

This diagram isn’t complete—the evaluation of the if expression with its equality
test isn’t explicitly shown and neither is the subtraction of one. These omissions were
made to simplify the diagram, leaving the essential information more apparent. If we
included all the details, the first three steps (leading from the problem (factorial
3) to the subproblem (factorial 2)) would expand into the ten steps shown in
Figure 2.2.
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(* 1 2)

(* 2 3)

(* (factorial 2) 3)

(* (factorial 1) 2)

(factorial 3)

(factorial 2)

(factorial 1)

1

2

6

Problem Subproblem Sub-subproblem

Figure 2.1 The recursive process of evaluating (factorial 3).

Although the recursive nature of the process is most evident in the original
diagram, we can as usual save space by instead listing the evaluation steps. If we do
this with the same details omitted, we get

(factorial 3)
(* (factorial 2) 3)
(* (* (factorial 1) 2) 3)
(* (* 1 2) 3)
(* 2 3)
6
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(if (= 3 1)
   1
    (* (factorial (- 3 1))
         3))

(if #f
   1
    (* (factorial (- 3 1))
         3))

(* (factorial (- 3 1))
    3)

(factorial (- 3 1))

(factorial 2)

(factorial 3)

(= 3 1)

Problem Subproblem Sub-subproblem

#f

(- 3 1)

2

Figure 2.2 Details of the recursive process of evaluating (factorial 3).

Let’s sum up what we’ve done in both the paper chain example and the factorial
example. In both, we had to solve a problem by doing something repeatedly, either
assembling links or multiplying numbers. We broke off a big chunk of each problem
(the recursion principle) that was just like the original problem (the self-similarity
principle) except that it was smaller. After that chunk was finished, we only had a
little work left to do, either by putting in one more link or multiplying by one more
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Exponents

In this book, when we use an exponent, such as the k in xk, it will almost always
be either a positive integer or zero. When k is a positive integer, xk just means
k copies of x multiplied together. That is, xk 5 x 3 x 3 ? ? ? 3 x, with k of the
x’s. What about when the exponent is zero? We could equally well have said that
xk 5 1 3 x 3 x 3 ? ? ? 3 x with k of the x’s. For example, x3 5 1 3 x 3 x 3 x,
x2 5 1 3 x 3 x, and x1 5 1 3 x. If we continue this progression with one fewer x,
we see that x0 5 1.

number. In each case, the smaller subproblems must invariably lead to a problem
so small that it could be made no smaller (the base case imperative), that is, when
we needed to make a chain of length 1 or when we had to compute 1!, which is
handled separately.

Exercise 2.1

Write a procedure called power such that (power base exponent) raises base to the
exponent power, where exponent is a nonnegative integer. As explained in the sidebar
on exponents, you can do this by multiplying together exponent copies of base. (You
can compare results with Scheme’s built-in procedure called expt. However, do not
use expt in power. Expt computes the same values as power, except that it also
works for exponents that are negative or not integers.)

2.2 Induction

Do you believe us that the factorial procedure really computes factorials? Proba-
bly. That’s because once we explained the reasoning behind it, there isn’t much to
it. (Of course, you may also have tried it out on a Scheme system—but that doesn’t
explain why you believe it works in the cases you didn’t try.)

Sometimes, however, it is a bit trickier to convince someone that a procedure
generates the right answer. For example, here’s another procedure for squaring a
number that is rather different from the first one:

(define square
(lambda (n)
(if (= n 0)

0
(+ (square (- n 1))

(- (+ n n) 1)))))
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Just because it is called square doesn’t necessarily mean that it actually squares
its argument; we might be trying to trick you. After all, we can give any name we
want to anything. Why should you believe us? The answer is: You shouldn’t, yet,
because we haven’t explained our reasoning to you. It is not your job as the reader of
a procedure to figure it out; it is the job of the writer of a procedure to accompany
it with adequate explanation. Right now, that means that we have our work cut out
for us. But it also means that when it becomes your turn to write procedures, you
are going to have to similarly justify your reasoning.

Earlier we said that the procedure was “for squaring a number.” Now that we’re
trying to back up that claim, we discover we need to be a bit more precise: This
procedure squares any nonnegative integer. Certainly it correctly squares 0, because
it immediately yields 0 as the answer in that case, and 02 5 0. The real issue is with
the positive integers.

We’re assuming that - subtracts and + adds, so (- n 1) evaluates to n 2 1, and
(- (+ n n) 1) evaluates to (n 1 n) 2 1 or 2n 2 1. What if we went one step
further and assumed that where square is applied to n 2 1, it squares it, resulting
in the value (n 2 1)2? In that case, the overall value computed by the procedure is
(n21)2 12n21. With a little bit of algebra, we can show that (n21)2 12n21 5 n2,
and so in fact the end result is n2, just like we said it was.

But wait, not so fast: To show that square actually squares n, we had to assume
that it actually squares n 2 1; we seem to need to know that the procedure works
in order to show that it works. This apparently circular reasoning isn’t, however,
truly circular: it is more like a spiral. To show that square correctly squares some
particular positive integer, we need to assume that it correctly squares some smaller
particular integer. For example, to show that it squares 10, we need to assume that
it can square 9. If we wanted to, though, we could show that it correctly squares
9, based on the assumption that it correctly squares 8. Where does this chain of
reasoning end? It ends when we show that (square 1) really computes 12, based
on the fact that (square 0) really computes 02. At that point, the spiraling stops,
because we’ve known since the very beginning that square could square 0.

The key point that makes this spiral reasoning work is that the chain of reasoning
leads inexorably down to the base case of zero. We only defined square in terms
of smaller squares, so there is a steady progression toward the base case. By contrast,
even though it is equally true that n2 5 (n 1 1)2 2 (2n 1 1), the following procedure
does not correctly compute the square of any positive integer:

(define square ; This version doesn’t work.
(lambda (n)
(if (= n 0)

0
(- (square (+ n 1))

(+ (+ n n) 1)))))
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The reason why this procedure doesn’t correctly compute the square of any positive
integer isn’t that it computes some incorrect answer instead. Rather, it computes
no answer at all, because it works its way further and further from the base case,
stopping only when the computer runs out of memory and reports failure. We say
that the computational process doesn’t terminate.

We’ve also used this procedure to introduce another feature of the Scheme pro-
gramming language: comments. Any text from a semicolon to the end of the line is
ignored by the Scheme system and instead is for use by human readers.

The reasoning technique we’ve been using is so generally useful that it has a name:
mathematical induction. Some standard terminology is also used to make arguments
of this form more brief. The justification that the base case of the procedure works is
called the base case of the proof. The assumption that the procedure works correctly
for smaller argument values is called the induction hypothesis. The reasoning that
leads from the induction hypothesis to the conclusion of correct operation is called
the inductive step. Note that the inductive step only applies to those cases where the
base case doesn’t apply. For square, we only reasoned from n 2 1 to n in the case
where n was positive, not in the case where it was zero.

Putting this all together, we can write an inductive proof of square’s correctness
in a reasonably conventional format:

Base case: (square 0) terminates with the value 0 because of the evaluation
rule for if. Because 0 5 02, (square 0) computes the correct value.

Induction hypothesis: Assume that (square k) terminates with the value k2 for
all k in the range 0 # k , n.

Inductive step: Consider evaluating (square n), with n . 0. This will ter-
minate if the evaluation of (square (- n 1)) does and will have the same
value as (+ (square (- n 1)) (- (+ n n) 1)). Because (- n 1) evaluates
to n 2 1 and 0 # n 2 1 , n, we can therefore assume by our induction hypoth-
esis that (square (- n 1)) does terminate, with the value (n 2 1)2. Therefore
(+ (square (- n 1)) (- (+ n n) 1)) evaluates to (n 2 1)2 1 2n 2 1. Be-
cause (n 2 1)2 1 2n 2 1 5 n2, we see that (square n) does terminate with the
correct value for any arbitrary positive n, under the inductive hypothesis of correct
operation for smaller arguments.

Conclusion: Therefore, by mathematical induction on n, (square n) termi-
nates with the value n2 for any nonnegative integer n.

If you have trouble understanding this, one useful trick is to think of proving one
special case of the theorem each day. The first day you prove the base case. On any
subsequent day, you prove the next case, making use only of results you’ve previously
proven. There is no particular case that you won’t eventually show to be true—so
the theorem must hold in general.
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We wish to point out two things about this proof. First, the proof is relative
in the sense that it assumes that other operations (such as + and -) operate as
advertised. But this is an assumption you must make, because you were not there
when the people who implemented your Scheme system were doing their work.
Second, an important part of verifying that a procedure computes the correct value
is showing that it actually terminates for all permissible argument values. After all, if
the computation doesn’t terminate, it computes no value at all and hence certainly
doesn’t compute the correct value. This need for termination explains our enjoinder
in the base case imperative given earlier.

Exercise 2.2

Write a similarly detailed proof of the factorial procedure’s correctness. What are
the permissible argument values for which you should show that it works?

Proving is also useful when you are trying to debug a procedure that doesn’t work
correctly, that is, when you are trying to figure out what is wrong and how to fix it.
For example, look at the incorrect version of square given earlier. If we were trying
to prove that this works by induction, the base case and the inductive hypothesis
would be exactly the same as in the proof above. But look at what happens in the
inductive step:

Inductive step: Consider evaluating (square n), with n . 0. This will termi-
nate if the evaluation of (square (+ n 1)) does and will have the same value as
(- (square (+ n 1)) (+ (+ n n) 1)). Because (+ n 1) evaluates to n 1 1
and 0 # n 1 1 , n . . . Oops . . .

The next time you have a procedure that doesn’t work, try proving that it does
work. See where you run into trouble constructing the proof—that should point you
toward the bug (error) in the procedure.

Exercise 2.3

Here’s an example of a procedure with a tricky bug you can find by trying to do
an induction proof. Try to prove the following procedure also computes n2 for any
nonnegative integer n. Where does the proof run into trouble? What’s the bug?

(define square ; another version that doesn’t work
(lambda (n)
(if (= n 0)

0
(+ (square (- n 2))

(- (* 4 n) 4)))))
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The most important thing to take away from this encounter with induction is a
new way of thinking, which we can call one-layer thinking. To illustrate what we
mean by this, contrast two ways of thinking about what the square procedure does
in computing 42:

1. You can try thinking about all the layers upon layers of squares, with requests
going down through the layers and results coming back up. On the way down,
42 requests 32 requests 22 requests 12 requests 02. On the way back up, 0 gets
1 1 1 2 1 added to it yielding 1, which gets 2 1 2 2 1 added to it yielding 4, which
gets 3 1 3 2 1 added to it yielding 9, which gets 4 1 4 2 1 added to it yielding
16, which is the answer.

2. Alternatively, you can just stick with one layer. The computation of 42 requests 32

and presumably gets back 9, because that’s what 32 is. The 9 then gets 4 1 4 2 1
(or 7) added to it, yielding the answer 16.

This is really just an informal version of relying on an induction hypothesis—that’s
what we were doing when we said “. . . and presumably gets back 9, because that’s
what 32 is.” It saves us having to worry about how the whole rest of the computation
is done.

One-layer thinking is much better suited to the limited capacities of human brains.
You only have to think about a little bit of the process, instead of the entire arbitrarily
large process that you’ve really got. Plunging down through a whole bunch of layers
and then trying to find your way back up through them is a good way to get hopelessly
confused. We sum this up as follows:

The one-layer thinking maxim: Don’t try to think recursively about a recursive
process.

One-layer thinking is more than just a way to think about the process a procedure
will generate; it is also the key to writing the procedure in the first place. For example,
when we presented our recursive version of square at the beginning of this section,
you may well have wondered where we got such a strange procedure. The answer is
that we started with the idea of computing squares recursively, using smaller squares.
We knew we would need to have a base case, which would probably be when n 5 0.
We also knew that we had to relate the square of n to the square of some smaller
number. This led to the following template:

(define square
(lambda (n)
(if (= n 0)

0
( (square )

))))
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We knew that the argument to square would have to be less than n for the induction
hypothesis to apply; on the other hand, it would still need to be a nonnegative integer.
The simplest way to arrange this is to use (- n 1); thus we have

(define square
(lambda (n)
(if (= n 0)

0
( (square (- n 1))

))))

At this point, our one-layer thinking tells us not to worry about the specific computa-
tional process involved in evaluating (square (- n 1)). Instead, we assume that
the value will be (n 2 1)2. Thus the only remaining question is, What do we need
to do to (n 2 1)2 to get n2? Because (n 2 1)2 5 n2 2 2n 1 1, it becomes clear that
we need to add 2n 2 1. This lets us fill in the remaining two blanks, arriving at our
procedure:

(define square
(lambda (n)
(if (= n 0)

0
(+ (square (- n 1))

(- (+ n n) 1)))))

Exercise 2.4

Use one-layer thinking to help you correctly fill in the blanks in the following version
of square so that it can square any nonnegative integer:

(define square
(lambda (n)
(if (= n 0)

0
(if (even? n)

( (square (/ n 2))
)

(+ (square (- n 1))
(- (+ n n) 1))))))
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2.3 Further Examples

Recursion adds great power to Scheme, and the recursion strategy will be funda-
mental to the remainder of the book. However, if this is your first encounter with
recursion, you may find it confusing. Part of the confusion arises from the fact that
recursion seems “circular.” However, it really involves spiraling down to a firm foun-
dation at the base case (or base cases). Another problem at this point is simply lack
of familiarity. Therefore, we devote this section to various examples of numerical
procedures involving recursion. And the next section applies recursion to quilting.

As our first example, consider the built-in Scheme procedure quotient, which
computes how many times one integer divides another integer. For example,

(quotient 9 3)
3

(quotient 10 3)
3

(quotient 11 3)
3

(quotient 12 3)
4

Even though quotient is built into Scheme, it is instructive to see how it can
be written in terms of a more “elementary” procedure, in this case subtraction.
We’ll write a procedure that does the same job as quotient, but we’ll call it quot
instead so that the built-in quotient will still be available. (Nothing stops you from
redefining quotient, but then you lose the original until you restart Scheme.) In
order to simplify the discussion, suppose we want to compute (quot n d), where
n $ 0 and d . 0. If n , d, d doesn’t divide n at all, so the result would be 0. If,
however, n $ d, d will divide n one more time than it divides n 2 d. Writing this in
Scheme, we have

(define quot
(lambda (n d)
(if (< n d)

0
(+ 1 (quot (- n d) d)))))

The built-in version of quotient, unlike the quot procedure just shown, allows
either or both of the arguments to be negative. The value when one or both argu-
ments are negative is defined by saying that negating either argument negates the
quotient. For example, because the quotient of 13 and 3 is 4, it follows that the
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quotient of 213 and 3 is 24, and so is the quotient of 13 and 23. Because negating
either argument negates the quotient, negating both of them negates the quotient
twice, or in other words leaves it unchanged. For example, the quotient of 213 and
23 is 4.

In order to negate a number in Scheme, we could subtract it from zero; for ex-
ample, to negate the value of n, we could write (- 0 n). However, it is more
idiomatic to instead write (- n), taking advantage of a special feature of the prede-
fined procedure named -, namely, that it performs negation if only given a single
argument. Note that (- n) is quite different in form from -5: The former applies a
procedure to an argument, whereas the latter is a single number. It is permissible to
apply the procedure named - to a number, as in (- 5), but you can’t put a negative
sign on a name the way you would on a number: -n isn’t legal Scheme.

We could build these ideas into our procedure as follows:

(define quot
(lambda (n d)
(if (< d 0)

(- (quot n (- d)))
(if (< n 0)

(- (quot (- n) d))
(if (< n d)

0
(+ 1 (quot (- n d) d)))))))

Notice that our first version of quot corresponds to the innermost if; the outer two
if’s deal with negative values for n and d.

This new, more general, quot procedure is our first example of a procedure with
ifs nested within one another so deeply that they jeopardize the readability of the
procedure. Procedures like this can be clarified by using another form of conditional
expression that Scheme offers as an alternative to if: cond. Here is how we can
rewrite quot using cond:

(define quot
(lambda (n d)
(cond ((< d 0) (- (quot n (- d))))

((< n 0) (- (quot (- n) d)))
((< n d) 0)
(else (+ 1 (quot (- n d) d))))))

A cond consists of a sequence of parenthesized clauses, each providing one possible
case for how the value might be calculated. Each clause starts with a test expression,
except that the last clause can start with the keyword else. Scheme evaluates each



36 Chapter 2 Recursion and Induction

test expression in turn until it finds one that evaluates to true, to decide which
clause to use. Once a test evaluates to true, the remainder of that clause is evaluated
to produce the value of the cond expression; the other clauses are ignored. If the
else clause is reached without any true test having been found, the else clause’s
expression is evaluated. If, on the other hand, no test evaluates to true and there is
no else clause, the result is not specified by the Scheme language standard, and
each system is free to give you whatever result it pleases.

Exercise 2.5

Use addition to write a procedure multiply that calculates the product of two
integers (i.e., write * for integers in terms of +).

Suppose we want to write a procedure that computes the sum of the first n integers,
where n is itself a positive integer. This is a very similar problem to factorial; the
difference is that we are adding up the numbers rather than multiplying them.
Because the base case n 5 1 should yield the value 1, we come up with a solution
identical in form to factorial:

(define sum-of-first
(lambda (n)
(if (= n 1)

1
(+ (sum-of-first (- n 1))

n))))

But why should n 5 1 be the base case for sum-of-first? In fact, we could
argue that the case n 5 0 makes good sense: The sum of the first 0 integers is the
“empty sum,” which could reasonably be interpreted as 0. With this interpretation,
we can extend the allowable argument values as follows:

(define sum-of-first
(lambda (n)
(if (= n 0)

0
(+ (sum-of-first (- n 1))

n))))

This extension is reasonable because it computes the same values as the original
version whenever n $ 1. (Why?) A similar extension for factorial would be
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(define factorial
(lambda (n)
(if (= n 0)

1
(* (factorial (- n 1))

n))))

It is not as clear that the “empty product” should be 1; however, we’ve seen empty
products when we talked about exponents (see the sidebar, Exponents). The product
of zero copies of x multiplied together is 1; similarly the product of the first zero
positive integers is also 1. Not coincidentally, this agrees with the mathematical
convention that 0! 5 1.

Exercise 2.6

Let’s consider some variants of the basic form common to factorial and
sum-of-first.

a. Describe precisely what the following procedure computes in terms of n:

(define subtract-the-first
(lambda (n)
(if (= n 0)

0
(- (subtract-the-first (- n 1))

n))))

b. Consider what happens when you exchange the order of multiplication in
factorial:

(define factorial2
(lambda (n)
(if (= n 0)

1
(* n

(factorial2 (- n 1))))))

Experimentation with various values of n should persuade you that this version
computes the same value as did the original factorial. Why is this so? Would
the same be true if you switched the order of addition in sum-of-first?
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c. If you reverse the order of subtraction in subtract-the-first, you will get a
different value in general. Why is this so? How would you precisely describe the
value returned by this new version?

One way to generalize sum-of-first is to sum up the integers between two
specified integers (e.g., from 4 to 9). This would require two parameters and could
be written as follows:

(define sum-integers-from-to
(lambda (low high)
(if (> low high)

0
(+ (sum-integers-from-to low (- high 1))

high))))

Note that this could also be accomplished by increasing low instead of decreasing
high.

Exercise 2.7

Rewrite sum-integers-from-to in this alternative way.

Exercise 2.8

Another type of generalization of sum-of-first can be obtained by varying what
is being summed, rather than just the range of summation:

a. Write a procedure sum-of-squares that computes the sum of the first n squares,
where n is a nonnegative integer.

b. Write a procedure sum-of-cubes that computes the sum of the first n cubes,
where n is a nonnegative integer.

c. Write a procedure sum-of-powers that has two parameters n and p, both non-
negative integers, such that (sum-of-powers n p) computes 1p 12p 1? ? ?1np.

In the factorial procedure, the argument decreases by 1 at each step. Sometimes,
however, the argument needs to decrease in some other fashion. Consider, for
example, the problem of finding the number of digits in the usual decimal way of
writing an integer. How would we compute the number of digits in n, where n is
a nonnegative integer? If n , 10, the problem is easy; the number of digits would
be 1. On the other hand, if n $ 10, the quotient when it is divided by 10 will be all
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but the last digit. For example, the quotient when 1234 is divided by 10 is 123. This
lets us define the number of digits in n in terms of the number of digits in a smaller
number, namely, (quotient n 10). Putting this together, we have

(define num-digits
(lambda (n)
(if (< n 10)

1
(+ 1 (num-digits (quotient n 10))))))

We could extend num-digits to negative integers using cond:

(define num-digits
(lambda (n)
(cond ((< n 0) (num-digits (- n)))

((< n 10) 1)
(else (+ 1 (num-digits (quotient n 10)))))))

If we want to do more with the digits than count how many there are, we need to
find out what each digit is. We can do this using the remainder from the division by
10; for example, when we divide 1234 by 10, the remainder is 4. A built-in proce-
dure called remainder finds the remainder; for example, (remainder 1234 10)
evaluates to 4.

Exercise 2.9

Write a procedure that computes the number of 6s in the decimal representation of
an integer. Generalize this to a procedure that computes the number of d’s, where
d is another argument.

Exercise 2.10

Write a procedure that calculates the number of odd digits in an integer. (Reminder:
There is a built-in predicate called odd?.)

Exercise 2.11

Write a procedure that computes the sum of the digits in an integer.
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Exercise 2.12

Any positive integer i can be expressed as i 5 2nk, where k is odd, that is, as a
power of 2 times an odd number. We call n the exponent of 2 in i. For example, the
exponent of 2 in 40 is 3 (because 40 5 235) whereas the exponent of 2 in 42 is 1. If
i itself is odd, then n is zero. If, on the other hand, i is even, that means it can be
divided by 2. Write a procedure for finding the exponent of 2 in its argument.

2.4 An Application: Custom-Sized Quilts

At the end of the previous chapter we made some quilts by pinwheeling basic blocks.
The only problem is that the quilts only come in certain sizes: You could make a
single cross by pinwheeling rcross-bb, or a quilt that is two crosses wide and high
by pinwheeling the cross, or four wide and high by pinwheeling that, or . . . . But we
want a quilt that is four crosses wide and three high. We’re not being stubborn; we
have a paying customer whose bed isn’t square. In fact, given that there are lots of
different sizes of beds in the world, it would probably be best if we wrote a general
purpose procedure that could make a quilt any number of crosses wide and any
number high. We know how to make a cross; the challenge is how to replicate an
image a desired number of times.

Exercise 2.13

We can often simplify a problem by first considering a one-dimensional version of
it. Here, this means we should look at the problem of stacking a specified number
of copies of an image one on top of another in a vertical column. Write a procedure
stack-copies-of so that, for example, (stack-copies-of 5 rcross-bb) pro-
duces a tall, thin stack of five basic blocks. By the way, the name stack-copies-of
illustrates a useful trick for remembering the order of the arguments. We chose the
name so that it effectively has blanks in it for the arguments to fill in: “stack
copies of .”

Exercise 2.14

Use your stack-copies-of from the previous exercise to define a procedure called
quilt so that (quilt (pinwheel rcross-bb) 4 3) makes our desired quilt. In
general, (quilt image w h) should make a quilt that is w images wide and h
images high. Try this out.

Some quilts have more subtle patterns, such as checkerboard-style alternation of
light and dark regions. Consider, for example, the Blowing in the Wind pattern,
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Figure 2.3 The Blowing in the Wind quilt pattern.

shown in Figure 2.3. This is again made out of pinwheels of a basic block; the basic
block, which we’ve defined as bitw-bb, is

and the result of pinwheeling it is

.
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Five copies of this pinwheel appear as the white-on-black regions in the corners and
the center of the quilt. The four black-on-white regions of the quilt are occupied by
a black/white reversal of the pinwheel, namely,

.

This “inverted” version of the pinwheel can be produced using the primitive proce-
dure invert as follows: (invert (pinwheel bitw-bb)).

The trick is to make a checkerboard out of alternating copies of (pinwheel
bitw-bb) and (invert (pinwheel bitw-bb)). We can approach this in many
different ways, because so many algebraic identities are satisfied by invert, stack,
and quarter-turn-right. For example, inverting an inverted image gives you the
original image back, and inversion “distributes” over stacking (inverting a stack gives
the same result as stacking the inverses).

Before you write a procedure for alternating inverted and noninverted copies
of an image, you should pin down exactly what alternating means. For example,
you might specify that the image in the lower left corner is noninverted and that
the images within each row and column alternate. Or, you could specify that the
alternation begins with a noninverted image in the upper left, the upper right, or the
lower right. For a three-by-three checkerboard such as is shown here, all of these are
equivalent; only if the width or height is even will it make a difference. Nonetheless,
it is important before you begin to program to be sure you know which version you
are programming.

Exercise 2.15

One way or another, develop a procedure checkerboard for producing ar-
bitrarily sized checker-boarded quilts of images. Making a call of the form
(checkerboard (pin-wheel bitw-bb) 3 3) should result in the Blowing in the
Wind pattern of Figure 2.3. The checkerboard procedure also produces an interest-
ing “boxed crosses” pattern if you pinwheel rcross-bb instead of bitw-bb (check
it out), although we hadn’t intended it for that purpose, and it can be used with a
black (or white) image to make a regular checkerboard. You might be interested to
try it on some of your own basic blocks as well.
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Review Problems

Exercise 2.16

Consider the following procedure foo:

(define foo
(lambda (x n)
(if (= n 0)

1
(+ (expt x n) (foo x (- n 1))))))

Use induction to prove that (foo x n) terminates with the value

xn11 2 1
x 2 1

for all values of x Þ 1 and for all integers n $ 0. You may assume that expt works
correctly, (i.e., (expt b m) returns bm). Hint: The inductive step will involve some
algebra.

Exercise 2.17

Perhaps you have heard the following Christmas song:

On the first day of Christmas
My true love gave to me
A partridge in a pear tree.

On the second day of Christmas
My true love gave to me
Two turtle doves
And a partridge in a pear tree.

On the third day of Christmas
My true love gave to me
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

And so on, through the twelfth day of Christmas. Note that on the first day, my
true love gave me one present, on the second day three presents, on the third day
six presents, and so on. The following procedure determines how many presents I
received from my true love on the nth day of Christmas:
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(define presents-on-day
(lambda (n)
(if (= n 1)

1
(+ n (presents-on-day (- n 1))))))

How many presents did I receive total over the 12 days of Christmas? This can
be generalized by asking how many presents I received in total over the first n
days. Write a procedure called presents-through-day (which may naturally use
presents-on-day) that computes this as a function of n. Thus, (presents-
through-day 1) should return 1, (presents-through-day 2) should return
1 1 3 5 4, (presents-through-day 3) should return 1 1 3 1 6 5 10, etc.

Exercise 2.18

Prove by induction that for every nonnegative integer n the following procedure
computes 2n:

(define f
(lambda (n)
(if (= n 0)

0
(+ 2 (f (- n 1))))))

Exercise 2.19

Prove that for all nonnegative integers n the following procedure computes the value
2(2n):

(define foo
(lambda (n)
(if (= n 0)

2
(expt (foo (- n 1)) 2))))

Hint: You will need to use certain laws of exponents, in particular that (2a)b 5 2ab

and 2a2b 5 2a1b.

Exercise 2.20

Prove that the following procedure computes n6 (n11) for any nonnegative integer n.
That is, (f n) computes n6 (n 1 1) for any integer n $ 0.
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(define f
(lambda (n)
(if (= n 0)

0
(+ (f (- n 1))

(/ 1 (* n (+ n 1)))))))

Exercise 2.21

a. Appendix A describes the predefined procedure stack by saying (among other
things) that (stack image1 image2) produces an image, the height of which is
the sum of the heights of image1 and image2. How would you describe the height
of the image that is the value of (stack-on-itself image), given the following
definition of stack-on-itself?

(define stack-on-itself
(lambda (image)
(stack image image)))

b. Use induction to prove that given the definition in part a and the following
definition of f, the value of (f image n) is an image 2n times as high as image,
provided n is a nonnegative integer.

(define f
(lambda (image n)
(if (= n 0)

image
(stack-on-itself (f image (- n 1))))))

Exercise 2.22

Consider the following procedure:

(define foo
(lambda (n)
(if (= n 0)

0
(+ (foo (- n 1))

(/ 1 (- (* 4 (square n)) 1))))))
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a. What is the value of (foo 1)? Of (foo 2)? Of (foo 3)?
b. Prove by induction that for every nonnegative integer n, (foo n) computes

n6 (2n 1 1).

Exercise 2.23

Suppose we have made images for each of the digits 0–9, which we name zero-bb,
one-bb, . . . , nine-bb. For example, if you evaluate five-bb, you get the following
image:

a. Write a procedure image-of-digit that takes a single parameter d that is an
integer satisfying 0 # d # 9 and returns the image corresponding to d. You
should definitely use a cond, because you would otherwise have to nest the ifs
ridiculously deep.

b. Using the procedure image-of-digit, write another procedure image-of-
number that takes a single parameter n that is a nonnegative integer and returns
the image corresponding to it. Thus, (image-of-number 143) would return the
following image:

Hint: Use the Scheme procedures quotient and remainder to break n apart.
Also, you may use the procedure side-by-side from Exercise 1.9b without
redefining it here.
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Iteration and Invariants

3.1 Iteration

In the previous chapter, we used a general problem-solving strategy, namely, recur-
sion: solve a smaller problem first, then do the little bit of work that’s left. Now we’ll
turn to a somewhat different problem-solving strategy, known as iteration:

The iteration strategy: By doing a little bit of work first, transform your problem
into a smaller one with the same solution. Then solve the resulting smaller
problem.

Let’s listen in on a hypothetical student thinking aloud as she uses this strategy to
devise an alternative factorial procedure:

I’ve got a factorial problem, like 6 3 5 3 4 3 3 3 2 3 1.
Gee, I wonder if I can transform that into a simpler problem with the same

answer? What would make it simpler? Well, the problem I’ve got is six numbers
multiplied together. Five numbers multiplied together would be simpler. I wonder
if I can find five numbers that when multiplied together give the same result?

6 3 5 3 4 3 3 3 2 3 1 5 3 3 3 3

Well, I can’t just put the numbers I’ve got into the blanks, because I’ve got more
numbers than blanks. (That’s the whole point.) Because I have one extra number,
maybe I can put two numbers into one blank. I guess I can’t really get something
for nothing—if I only want to have four multiplications left to do, I better do one of
my five now. If I multiply two of the numbers together now and put the product in
one of the blanks, that would be a way to get two numbers into one blank. Maybe

48
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I’ll multiply the first two together, the 6 and the 5, to get 30. So I have

6 3 5 3 4 3 3 3 2 3 1 5 30 3 4 3 3 3 2 3 1

That was great, I got the problem down from a five multiplication problem
to a four multiplication problem. I bet I could transform it the same way into a
three-multiplication problem:

. . . 5 120 3 3 3 2 3 1

If I keep going like this, one multiplication at a time, eventually it will all boil
down to a single number:

. . . 5 360 3 2 3 1

. . . 5 720 3 1

. . . 5 720

I guess I could call that last step a “zero multiplication” problem. And that’s the
answer to the original problem, because it’s equal to all the preceding problems, all
the way back to the original factorial one.

Now I want to write a procedure that could solve any problem of this form. What
specifics do I have to give it to tell it which problem of this form to solve? Well, I
could give it the numbers to multiply together. . . . . No, that’s silly, there could be
lots of them. I wonder if there is some more concise description of these problems
. . . . Oh, I see, the numbers after the first are always consecutive, down to 1. So
I could describe the problems by saying “30 times 4 down to 1” or “120 times 3
down to 1” or that kind of thing. Oh, in fact the “down to 1” part just means it’s a
factorial, so I’ve got problems like “30 times 4!” or “120 times 3!.” So what I want is
a procedure to multiply some number times some factorial:

(define factorial-product
(lambda (a b) ; compute a * b!
))

What I did with those products was transform them into smaller ones, like this:

(define factorial-product
(lambda (a b) ; compute a * b! as (a*b) * (b-1)!
(factorial-product (* a b) (- b 1))))

Of course, I have to stop making the factorial part smaller eventually, when it
can’t get any smaller—let’s see, that’s when there were zero multiplications left—
right after multiplying 720 by 1. Because when I had 720 times 1 that was 720 3 1!,
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I guess the next step is 720 3 0!. I never really thought about 0! before, but it would
make sense; the factorial is just some consecutive numbers to multiply together, and
here there aren’t any, so that’s 0!. That means I stop when b is 0:

(define factorial-product
(lambda (a b) ; compute a * b!
(if (= b 0)

a
(factorial-product (* a b) (- b 1)))))

Now I have a general way of solving problems of the form one number times
the factorial of the other number. Wait a second, that wasn’t what I really wanted:
I really wanted just to do factorials. Hmmm . . . , I could just trick my procedure
into doing plain factorials by telling it to multiply by 1, because that doesn’t change
anything:

(define factorial
(lambda (n)
(factorial-product 1 n)))

A couple things are worth noticing here. One is that the student changed our
original problem of finding a factorial to the more general problem of finding the
product of a factorial and another number. Our original problem is then just a special
case of this latter problem. This is a good example of what Polya calls “the inventor’s
paradox” in his excellent book on problem solving, How to Solve It. Sometimes, trying
to solve a more general or “harder” problem actually makes the original problem
easier to solve.

Another point to notice is that the student made use of comments (starting
with semicolons) to explain her Scheme program. Her comment identifies what
factorial-product computes (namely, its first argument times the factorial of its
second argument). We’ll say more about this comment in a bit; it’s an extremely
important kind of comment that you should definitely make a habit of using.

Exercise 3.1

At the very beginning of the above design of the iterative factorial, a choice needed
to be made of which two numbers to multiply together, in order to fit the two
of them into one blank. In the version shown above, the decision was made to
multiply together the leftmost two numbers (the 6 and the 5). However, it would
have been equally possible to make some other choice, such as multiplying together
the rightmost two numbers. Redo the design, following this alternative path.
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The iterative way of doing factorials may not seem very different from the recursive
way. In both cases, the multiplications get done one at a time. In both cases, one
multiplication is done explicitly, and the others are implicitly done by the procedure
reinvoking itself. The only difference is whether all but one of the multiplications are
done first and then the remaining one, or whether one multiplication is done first
and then all the rest. However, this is actually an extremely important distinction. It
is the difference between putting the main problem on hold while a subproblem is
solved versus progressively reducing the problem.

The subproblem approach is less efficient because some of the computer’s memory
needs to be used to remember what the main problem was while it is doing the
subproblem. Because the subproblem itself involves a subsubproblem, and so forth,
the recursive approach actually uses more and more memory for remembering what
it was doing at each level as it burrows deeper. This was illustrated by the diagram
of the recursive factorial process shown in Figure 2.1 on page 26. That diagram
had one column for the original problem of evaluating (factorial 3), one for
the subproblem of evaluating (factorial 2), and one for the sub-subproblem of
evaluating (factorial 1). We remarked that a diagram of the recursive evaluation
of (factorial 52) would have had 52 columns. The number of columns in these
diagrams corresponds to the amount of the computer’s memory that is used in the
evaluation process.

By contrast, the iterative approach is only ever solving a single problem—the
problem just changes into an easier one with the same answer, which becomes the
new single problem to solve. Thus, the amount of memory remains fixed, no matter
how many reduction steps the iterative process goes through. If we look at the diagram
in Figure 3.1 (on page 53) of the iterative process of evaluating (factorial 3), we
can see that the computation stays in a single column. (As usual, we’ve been selective
in showing details.) Even if we were to evaluate (factorial 52), we wouldn’t need
a wider sheet of paper, just a taller one. (The vertical dimension corresponds to time:
It would take longer to compute (factorial 52).) The difference between the two
types of processes is less clear if we simply list the computational steps than it is from
the diagrams, but with a practiced eye you can also see the iterative nature of the
process in this more compact form:

(factorial 3)
(factorial-product 1 3)
(if (= 3 0) 1 (factorial-product (* 1 3) (- 3 1)))
(factorial-product (* 1 3) (- 3 1))
(factorial-product 3 2)
(if (= 2 0) 3 (factorial-product (* 3 2) (- 2 1)))
(factorial-product (* 3 2) (- 2 1))
(factorial-product 6 1)
(if (= 1 0) 6 (factorial-product (* 6 1) (- 1 1)))
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(factorial-product (* 6 1) (- 1 1))
(factorial-product 6 0)
(if (= 0 0) 6 (factorial-product (* 6 0) (- 0 1)))
6

If we work through the analogous computational steps for (factorial 6), but this
time leave out some more steps, namely, those involving the ifs and the arithmetic,
the skeleton we’re left with mirrors exactly the hypothetical student’s calculation of
6! done at the beginning of this chapter:

(factorial 6) 6!
(factorial-product 1 6) 5 1 3 6!
(factorial-product 6 5) 5 6 3 5!
(factorial-product 30 4) 5 30 3 4!
(factorial-product 120 3) 5 120 3 3!
(factorial-product 360 2) 5 360 3 2!
(factorial-product 720 1) 5 720 3 1!
(factorial-product 720 0) 5 720 3 0!
720 5 720

To dramatize the reduced memory consumption of iterative processes, take down
the paper chain that is decorating your room, disassemble it, and reassemble it using
this new process:

To make a chain of length n,
(a) Bend one strip around and join its ends together.
(b) Ask yourself to link n 2 1 more links onto it.
To link k links onto a chain,
(a) If k 5 0, you are done. Hang the chain back up in your room.
(b) Otherwise,

i. Slip one strip through an end link of the chain, bend it around, and join
the ends together.

ii. Ask yourself to link k 2 1 links onto the chain.

Notice the key difference: You are able to do this one alone, in the privacy of
your own room, without having to invite a whole bunch of friends over to stand
in line. The reason why the recursive process required one person per link is that
you had to stand there with a link in your hand and wait for the rest of the crew
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(factorial-product 1 3)

(factorial 3)

6

Problem

(if (= 3 0)
    1
    (factorial-product (* 1 3) (- 3 1))

(factorial-product (* 1 3) (- 3 1))

(factorial-product 3 2)

(if (= 2 0)
    3
    (factorial-product (* 3 2) (- 2 1))

(factorial-product (* 3 2) (- 2 1))

(factorial-product 6 1)

(if (= 1 0)
    6
    (factorial-product (* 6 1) (- 1 1))

(factorial-product (* 6 1) (- 1 1))

(factorial-product 6 0)

(if (= 0 0)
    6
    (factorial-product (* 6 0) (- 0 1))

Figure 3.1 The iterative process of evaluating (factorial 3).
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to build the chain of length n 2 1 before you could put your link on. Because the
process continued that way, each of your friends in turn wound up having to stand
there waiting to put a link on. With the new iterative version, there’s no waiting for
a subtask to be completed before work can proceed on the main task, so it can all
be done singlehandedly (which in a computer would mean with a fixed amount of
memory).

Just to confuse everybody, procedures such as the ones we’ve looked at in this
chapter are still called recursive procedures, because they invoke themselves. They
simply don’t generate recursive processes. A recursive procedure is any procedure that
invokes itself (directly or indirectly). If the self-invocation is to solve a subproblem,
where the solution to the subproblem is not the same as the solution to the main
problem, the computational process is a recursive process, as in the prior chapter.
If, on the other hand, the self-invocation is to solve a reduced version of the original
problem (i.e., a simpler version of the problem but with the exact same answer as
the original), the process is an iterative process, as in this chapter.

Exercise 3.2

Write a new procedure for finding the exponent of 2 in a positive integer, as in
Exercise 2.12 on page 40, but this time using an iterative process.

Exercise 3.3

You have one last chance to quilt. (In the next chapter we’ll do something different,
but equally pretty.) Rewrite your procedure for making arbitrary sized quilts so that
it generates an iterative process. Do the same for your procedure for checkerboard
quilts. As before, it helps to start with the one-dimensional case, that is, an iterative
version of stack-copies-of.

3.2 Using Invariants

Comments such as the one on the factorial-product procedure—the one that
said what the procedure computed, as a function of the argument values—can be
very handy. A comment such as this one is called an invariant because it describes a
quantity that doesn’t change. Every time around the factorial-product iteration,
b decreases by 1, but a increases by a multiple of the old b, so the product a 3 b!
remains constant. In fact, that’s another good way to think about the design of such
a procedure: Some parameter keeps moving toward the base case, and some other
parameter changes in a compensatory fashion to keep the invariant quantity fixed.
In this section, we’ll show how invariants can be used to write iterative procedures
and how they can be used to prove a procedure is correct.
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Let’s start with factorial-product. Because the procedure is already written,
we’ll prove that it is correct, that is, that it really does compute a 3 b!, provided b is
a nonnegative integer. (Notice how we’re focusing on the invariant.)

Base case: If b 5 0, it follows from the way if expressions work that the procedure
terminates with a as its value. Because a 3 0! 5 a 3 1 5 a, the theorem therefore
holds in this base case.

Induction hypothesis: We will assume that (factorial-product i k) termi-
nates with value i 3 k! provided that k is in the range 0 # k , b.

Inductive step: Consider the evaluation of (factorial-product a b), with
b . 0. Clearly the procedure will terminate with the same value as the expression
(factorial-product (* a b) (- b 1)), provided that this recursive call ter-
minates. However, because 0 # b 2 1 , b, the induction hypothesis allows us to
assume that this call will indeed terminate, with (a 3 b) 3 (b 2 1)! as its value.
Because (a 3 b) 3 (b 2 1)! 5 a 3 (b 3 (b 2 1)!) 5 a 3 b!, we see that the
procedure does indeed terminate with the correct answer in this case, assuming
the induction hypothesis.

Conclusion: Therefore, by mathematical induction, the evaluation of
(factorial-product a b) will terminate with the value a 3 b! for any non-
negative integer b (and any number a).

Having shown this formal proof by induction, it’s illuminating to look back at the
comments the hypothetical student included in the factorial-product definition.
We already identified the primary comment, that the procedure computes a 3 b!,
as the invariant, which is what the proof is proving. However, note that at a critical
moment in designing the procedure the student amplified it to say that the procedure
“computes a 3 b! as (a 3 b) 3 (b 2 1)!.” This can now be recognized as a simplified
version of the inductive step. Proof by induction should be used this way: first as
comments written while you are designing the procedure, that give a bare outline of
the most important ingredients of the proof. Later, if you need to, you can flesh out
the full proof. Of course, leaving the comments in can be helpful to a reader who
needs the same points made explicit as you did.

Next we’ll look at writing an iterative version of the power procedure from Ex-
ercise 2.1 on page 28. Finding a power involves doing many multiplications, so
it is somewhat similar to factorial. For that reason, we’ll define power and
power-product analogously to the way we did with factorial and we’ll use a
similar invariant:
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(define power-product
(lambda (a b e) ; returns a times b to the e power
(if (= e 0)

(power-product ))))

(define power
(lambda (b e)
(power-product 1 b e)))

If we imagine trying to prove this is correct using induction, filling in the first
blank is connected with the base case of the induction proof. Because we’re trying
to prove that a 3 b0 is returned in this case, and because b0 5 1, we should fill in
that first blank with a.

How should we fill in the remaining three blanks? Think about an induction
proof. In order for the induction hypothesis to apply, we’ve got to fill in the last
blank with something that is a nonnegative integer and is strictly less than e. We
know that e is a positive integer (it was originally only guaranteed to be nonnegative,
but we just handled the case of e 5 0 ). This means that e 2 1 is a nonnegative
integer, and it is of course less than e. Therefore, we should probably put e 2 1
in the last blank. The base goes in the next to last blank. Because we’re trying to
multiply e copies of b together, the base should probably remain unchanged as b.
Thus we are left with what to fill in as the first parameter of the recursive call
to power-product. Our invariant comes in handy here. Suppose we put in some
expression, say x, here. According to our invariant (and our induction hypothesis),
this call to power-product will return x ? be21. On the other hand, this is also the
value that gets returned from the whole procedure when e . 0. But the invariant
says that this value should be a ? be. Thus, we can set up an equation and solve it
for x:

x ? be21 5 a ? be

x 5
a ? be

be21

x 5 a ? b

Putting this all together gives us:

(define power-product
(lambda (a b e) ; returns a times b to the e power
(if (= e 0)

a
(power-product (* a b) b (- e 1)))))
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Exercise 3.4

Give a formal induction proof that power-product is correct.

Exercise 3.5

If when you did Exercise 3.2, you didn’t write down the invariant for your iterating
procedure, do so now. Next, use induction to prove that your procedure does in fact
compute this invariant quantity.

In our final example, we’ll write a procedure that a sixteenth-century mathe-
matician, Pierre Fermat, thought would produce prime numbers. A prime number
is a positive integer with exactly two positive divisors, 1 and itself. Fermat thought
that all numbers produced by squaring 2 any number of times and then adding 1
would be prime. Certainly, the numbers 2 1 1 5 3 (in which 2 isn’t squared at all),

22 1 1 5 5, (22)2
1 1 5 17, ((22)2)

2
1 1 5 257, and (((22)2)

2
)
2

1 1 5 65,537 are
prime numbers (although checking 65,537 does take some effort). We call these the
zeroth through fourth Fermat numbers, corresponding to zero through four squarings.
Unfortunately, the fifth Fermat number, 4,294,967,297, is not a prime, because it
equals 641 36,700,417. In fact, the only Fermat numbers known to be prime are the
zeroth through fourth. Many Fermat numbers are known to be composite (i.e., not
prime); the largest of these is the 23,471st Fermat number. On the other hand, no
one knows whether the twenty-fourth Fermat number is prime or composite. (This
is the smallest Fermat number for which the primality is unknown.)

We can translate our definition of Fermat numbers into Scheme:

(define fermat-number ; computes the nth Fermat number
(lambda (n)
(+ (repeatedly-square 2 n) 1)))

Most of the work is done in repeatedly-square, which we can outline as follows:

(define repeatedly-square ; computes b squared n times, where
(lambda (b n) ; n is a nonnegative integer
(if (= n 0)

b ;not squared at all
(repeatedly-square ))))

How do we fill in the blanks? Again, to be able to apply the induction hypothesis,
we’ve got to fill in the second blank with something that is a nonnegative integer
and is strictly less than n. As before, we’ll try n 2 1. This brings us to
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(define repeatedly-square ; computes b squared n times, where
(lambda (b n) ; n is a nonnegative integer
(if (= n 0)

b ; not squared at all
(repeatedly-square (- n 1)))))

Now, whatever we fill in the remaining blank, we know from the induction hypothesis
that it will be squared n21 times. We don’t need to think about how it will be squared
n 2 1 times; that’s what makes this one-layer thinking. Now the question is, What
should be squared n 2 1 times to produce the desired result, b squared n times? The
answer is b2; that is, if we square b once and then n 2 1 more times, it will have
been squared n times in all. This leads to

(define repeatedly-square ; computes b squared n times, where
(lambda (b n) ; n is a nonnegative integer
(if (= n 0)

b ;not squared at all
(repeatedly-square (square b) (- n 1)))))

We explicitly concern ourselves only with squaring b the first time and trust based
on the induction hypothesis that it will be squared the remaining n 2 1 times.

3.3 Perfect Numbers, Internal Definitions, and Let

Having seen how iteration works, let’s work through an extended example using
iteration, both to solidify our understanding and also to provide opportunity for
learning a few more helpful features of Scheme.

A number is called perfect if the sum of its divisors is twice the number. (Equiv-
alently, a number is perfect if it is equal to the sum of its divisors other than itself.)
Although this is a simple definition, lots of interesting questions concerning perfect
numbers remain unanswered to date; for example, no one knows whether there are
any odd perfect numbers. In this section, we’ll use the computer to search for perfect
numbers.

A good starting point might be to write a simple perfect? predicate, leaving all
the hard part for sum-of-divisors:

(define perfect?
(lambda (n)
(= (sum-of-divisors n) (* 2 n))))

The simplest way to compute the sum of the divisors of n would be to check each
number from 1 to n, adding it into a running sum if it divides n. This computation
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sounds like an iterative process; as we check each number, the range left to check
gets smaller, and thus transforms the problem into a smaller one. The running sum
changes in a compensatory fashion: Any divisor no longer included in the range to
check is instead included in the running sum. The invariant quantity is the sum of
the divisors still in the range plus the running sum. The following definition is based
on these ideas. Note that divides? needs to be written.

(define sum-of-divisors
(lambda (n)
(define sum-from-plus ; sum of all divisors of n which are
(lambda (low addend) ; >= low, plus addend
(if (> low n)

addend ; no divisors of n are greater than n
(sum-from-plus (+ low 1)

(if (divides? low n)
(+ addend low)
addend)))))

(sum-from-plus 1 0)))

The preceding definition illustrates a useful feature of Scheme: It is possible to
nest a definition inside a lambda expression, at the beginning of the body. This
nesting achieves two results:

The internally defined name is private to the body in which it appears. This
means that we can’t invoke sum-from-plus directly but rather only by using
sum-of-divisors. It also means that we’re able to use a relatively nondescrip-
tive name (it doesn’t specify what it is summing) without fear that we might
accidentally give two procedures the same name. As long as the two definitions
in question are internal to separate bodies, the same name can be used without
problem.
The sum-from-plus procedure is able to make use of n, without needing to have
it passed as a third argument. This is because a nested procedure can make use
of names from the procedure it is nested inside of (or from yet further out, in the
case of repeated nesting).

Why didn’t we nest sum-of-divisors itself inside of the perfect? procedure?
Although we wrote sum-of-divisors for the sake of perfect?, it could very well
be useful on its own, for other purposes. This is in contrast to sum-from-plus,
which is hard to imagine as a generally useful procedure rather than merely a means
to implement sum-of-divisors.

The only detail remaining before we have a working perfect? test is the predicate
divides?. We can implement it using the primitive procedure remainder:



60 Chapter 3 Iteration and Invariants

(define divides?
(lambda (a b)
(= (remainder b a) 0)))

Exercise 3.6

Although the method we use for computing the sum of the divisors is straightforward,
it isn’t particularly efficient. Any time we find a divisor d of n, we can infer that n6 d
is also a divisor. In particular, all the divisors greater than the square root of n can
be inferred from the divisors less than the square root. Make use of this observation
to write a more efficient version of sum-of-divisors that stops once low2 $ n.
Remember that if low2 5 n, low and n6 low are the same divisor, not two different
ones.

If you start testing numbers for perfectness by trying them out one by one with
perfect?, you’ll quickly grow bored: It seems almost nothing is perfect. Because
perfect numbers are so few and far between, we should probably automate the search.
The following procedure finds the first perfect number after its argument value:

(define first-perfect-after
(lambda (n)
(if (perfect? (+ n 1))

(+ n 1)
(first-perfect-after (+ n 1)))))

Having this start searching with the first number after its argument is convenient
for using it to search for consecutive perfect numbers, like this:

(first-perfect-after 0)
6

(first-perfect-after 6)
28

(first-perfect-after 28)
496

Because the search starts after the number we specify, we can specify each time the
perfect number we just found, and it will find the next. Unfortunately, starting with
the next number causes us to use three copies of the expression (+ n 1), which is
a bit ugly.
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Rather than put up with this, or changing how the procedure is used, we can
make use of another handy Scheme feature, namely, let:

(define first-perfect-after
(lambda (n)
(let ((next (+ n 1)))
(if (perfect? next)

next
(first-perfect-after next)))))

What this means is to first evaluate (+ n 1) and then locally let next be a name
for that value while evaluating the body of the let. Not only does this make the
code easier to read, it also means that (+ n 1) only gets evaluated once. There are
two sets of parentheses around next and (+ n 1) because you can have multiple
name/expression pairs. One set of parentheses goes around each name and its cor-
responding value expression, and another set of parentheses goes around the whole
list of pairs. For example,

(define distance
(lambda (x0 y0 x1 y1)
(let ((xdiff (- x0 x1))

(ydiff (- y0 y1)))
(sqrt (+ (* xdiff xdiff)

(* ydiff ydiff))))))

All the value expressions are evaluated before any of the new names are put into
place. Those new names may then be used only in the body of the let. Note that a
let expression is just like any other expression; in particular, you can use it anywhere
you’d use an expression, not just as the body of a lambda expression.

3.4 Iterative Improvement: Approximating the Golden Ratio

One important kind of iterative process is the iterative improvement of an approxima-
tion to some quantity. We start with a crude approximation, successively improve it
to better and better approximations, and stop when we have found one that is good
enough. Recall that our general definition of an iterative process is that it works by
successively transforming the problem into a simpler problem with the same answer.
Here the original problem is to get from a crude approximation to one that is good
enough. This problem is transformed into the simpler problem of getting from a
somewhat less crude approximation to one that is good enough. In other words, our
goal is still to get to the good enough approximation, but we move the starting point
one improvement step closer to that goal. Our general outline, then, is
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(define find-approximation-from
(lambda (starting-point)
(if (good-enough? starting-point)

starting-point
(find-approximation-from (improve starting-point)))))

In this section, we’ll follow this general outline in order to develop one specific
example of an iterative improvement procedure.

Since ancient times, many artists have considered that the most aesthetically
pleasing proportion for a work of art has a ratio of the long side to the short side
that is the same as the ratio of the sum of the sides to the long side, as illustrated in
Figure 3.2. This ratio is called the golden ratio.

Among its many interesting properties (which range from pure mathematics to
aesthetics and biology), the golden ratio is irrational, that is, it is not equal to any ratio
of integers. Real artists, however, are generally satisfied with close approximations.
For example, when we drew the illustration in Figure 3.2, we made it 377 points
wide and 233 points high. (The point is a traditional printer’s unit of distance.) The
ratio 377 6 233 isn’t exactly the golden ratio, but it is a quite good approximation: It’s
off by less than 16 50,000. How do we know that? Or more to the point, how did we

B

A

This box’s dimensions form a proportion that
approximates the golden ratio:
   A/B = (A+B)/A

This box’s dimensions form a proportion that
approximates the golden ratio:
   A/B = (A+B)/A

Figure 3.2 An illustration of the golden ratio, said to be the most pleasing proportion.
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set about finding a ratio of integers that was that close? That’s what we’re about to
embark on. Our goal is to write a procedure that, given a maximum tolerable error,
will produce a rational approximation that is at least that close to the golden ratio.
In other words, by the time we’re done, you’ll be able to get the above answer in the
following way:

(approximate-golden-ratio 1/50000)
377/233

Recall that the definition of the golden ratio is that it is the ratio A6 B such
that A6 B 5 (A 1 B)6 A. Doing a little algebra, it follows that A6 B 5 1 1 B6 A 5
1 1 16 (A6 B). In other words, if we take the golden ratio, divide it into 1, and then
add 1, we’ll get the golden ratio back again. For brevity, let’s start calling the golden
ratio not A6 B but instead f , the Greek letter phi, which is in honor of the sculptor
Phidias, who is known to have consciously used the golden ratio in his work. This
makes our equation

f 5 1 1
1
f

Because this is an equation, we can substitute the right-hand side for f anywhere
it occurs. In particular, we can substitute it for the f on the right-hand side of the
same equation:

f 5 1 1
1

1 1 1
f

We could keep doing this over and over again, and we would get the infinite continued
fraction for f :

f 5 1 1
1

1 1 1
11 1

...
It turns out that this continued fraction is the key to finding rational approxima-

tions to f . All we have to do is calculate some finite part of that infinite tower. In
particular, the following are better and better approximations of f :

f0 5 1

f1 5 1 1
1
f0

f2 5 1 1
1
f1

f3 5 1 1
1
f2

...
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Exercise 3.7

Using this technique, write a procedure, improve, that takes one of the approxima-
tions of f and returns then next one. For example, given f2, it would return f3.

The only remaining problem is to figure out how good each of these approxima-
tions is, so we know when we’ve got a good enough one and can stop. Using some
number theory, it is possible to show that the error of each approximation is less than
1 over the square of its denominator. So, for example, it follows that 3776 233 is within
16 2332 of f . We can stop when this is less than our acceptable error, or tolerance
as it is called. We’ll do this by setting up the overall approximate-golden-ratio
procedure as follows:

(define approximate-golden-ratio
(lambda (tolerance)
(define find-approximation-from
(lambda (starting-point)
(if (good-enough? starting-point)

starting-point
(find-approximation-from (improve starting-point)))))

(define good-enough?
(lambda (approximation)
(< (/ 1 (square (denominator approximation)))

tolerance)))
(find-approximation-from 1)))

The Scheme procedure denominator is used here, which returns the denominator
of a rational number. (To be precise, it computes the denominator the number has
when written in lowest terms; the denominator is always positive, even when the
rational number is negative.)

Exercise 3.8

Presumably any art work needs to be made out of something, and there are only
about 1079 electrons, neutrons, and protons in the universe. Therefore, we can
conservatively assume that no artist will ever need to know f to better than one part
in 1079. Calculate an approximation that is within a tolerance of 16 1079, which can
also be expressed as 10279. (To calculate this tolerance in Scheme, you could use
the expt procedure, as in (/ 1 (expt 10 79)) or (expt 10 -79).)
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3.5 An Application: The Josephus Problem

In the fast-paced world of computing, about the most damning comment you can
make regarding the relevance of a technique is to say that it is of purely historical
interest. At the other extreme of the relevance spectrum, you could say that something
is a matter of life or death. In this section, we’ll see an application of iterative processes
that is quite literally both a matter of life or death and of purely historical interest—
because we’ll be deciding the life or death fate of people who lived in Galilee nearly
2000 years ago. Our real goal is to provide you with a memorable illustration that
iterative processes operate by progressively reducing a problem to a smaller problem
with the same answer: in this case, the problem will be made smaller by the drastic
means of killing someone.

Josephus was a Jewish general who was in the city of Jotapata, in Galilee, when
it fell after a brutal 47-day siege by the Roman army under Vespasian, in 67 CE.
The Romans massacred the inhabitants of Jotapata, but Josephus initially evaded
capture by hiding (by day) in a cavern. Forty other “persons of distinction” were
already hiding in that cavern. One of these nameless other people was captured
while out and about and revealed the location where Josephus and the others still
hid. The Romans sent word that Josephus was to be captured alive, rather than killed.
Josephus himself was all for this and ready to go over to the Romans. However, the
others with him advocated mass suicide as preferable to enslavement by the Romans.
They were sufficiently angered by Josephus’s preference for surrender that he was
barely able to keep them from killing him themselves. In order to satisfy them,
Josephus orchestrated a scheme whereby they all drew lots (Josephus among them)
to determine their order of death and then proceeded to kill themselves, with the
second killing the first, the third the second, etc. However, Josephus managed to be
one of the last two left and convinced the other who was left with him that they
should surrender together.

How did Josephus wind up being one of the two who survived? The Greek version
of Josephus’s account attributes it to fortune or the providence of God. However, the
Slavonic version (which shows some signs of originating from an earlier manuscript
than the Greek) has a more interesting story: “He counted the numbers cunningly,
and so deceived them all.” The Slavonic version also doesn’t specifically mention
the drawing of lots, instead leaving it open exactly how the order was determined in
which the cornered Jews killed one another. Thus, we have a tantalizing suggestion
that Josephus used his mathematical ability to arrange what appeared to be a chance
ordering, but in fact was rigged so that he would be one of the last two.

Out of this historical enigma has come a well-known mathematical puzzle. Sup-
pose this is how Josephus’s group did their self-killing: They stood in a circle and
killed every third person, going around the circle. It is fairly clear who will get killed
early on: the third, sixth, ninth, etc. However, once the process wraps around the
circle, the situation is much less clear, because it will be every third still-surviving
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person who will be killed, skipping over those who are already dead from the previous
round. Can you determine which people will live and which will die?

Our goal is to write a procedure that will determine the fate of a person, given his
or her position in the circle and the total number of people in the circle. Rather than
using any advanced mathematical ideas, we’ll simply simulate the killing process,
stopping when the position we are interested in is either killed or is one of the last
two who are left.

Let’s call the number of people in the circle n and number the positions from
1 to n. We’ll assume that the killing of every third person starts with killing the
person in position number 3. That is, we start by skipping over 1 and 2 and killing 3.
We want to write a procedure, survives?, that takes as its arguments the position
number and n and returns #t if the person in that position is one of the last two
survivors; otherwise it returns #f. For example, we’ve already figured out that position
3 doesn’t survive:

(survives? 3 40)
#f

Recall that Josephus called the killing off when he was left with only one other;
thus we will say that if there are fewer than three people left, everybody remaining
is a survivor:

(define survives?
(lambda (position n)
(if (< n 3)

#t
we still need to write this part)))

On the other hand, if there are three or more people left, we still have some
killing left to do. As we saw above, if the person we care about is in position 3, that
person is the one killed and hence definitely not a survivor:

(define survives?
(lambda (position n)
(if (< n 3)

#t
(if (= position 3)

#f
we still need to write this part))))

Suppose we aren’t interested in the person in position number 3 but rather in
some other person—let’s say J. Doe. The person in position number 3 got killed, so
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3

(survives? 5 8)

1

2

4

5

6

7

8

JD

Original problem

(survives? 2 7)

6

7

1

2

3

4

5

JD

Reduced problem

Figure 3.3 Determining the fate of J. Doe, who is initially in position 5 out of 8, can be reduced
to finding the fate of position 2 out of 7.

now we only have n 2 1 people left. Of that smaller group of n 2 1, there will still be
two survivors, and we still want to know if J. Doe is one of them. In other words, we
have reduced our original problem (Is J. Doe among the survivors from this group of
n?) to a smaller problem (Is J. Doe among the survivors from this group of n 2 1?).

We can solve this smaller problem by using survives? again. However, the
survives? procedure assumes that the positions are numbered so that we start by
skipping over positions 1 and 2 and killing the person in position 3. Yet we don’t
really want to start back at position 1—we want to keep going from where we left
off, skipping over 4 and 5 and killing 6. To solve this problem, we can renumber
all the survivors’ positions. The survivor who was in position 4 (just after the first
victim) will get renumbered to be in position 1, because he is now the first to be
skipped over. The survivor who was in position 5 gets renumbered to position 2,
etc. For example, suppose we are interested in the fate of a specific person, let’s
say J. Doe, who is in position 5 out of a group of 40 people. Then we are initially
interested in (survives? 5 40). Neither of the base cases applies, because 40 $ 3
and 5 Þ 3. Therefore, we reduce the problem size by 1 (by killing off one of J. Doe’s
companions) and ask (survives? 2 39). The answer to this question will be the
same as the answer to our original question (survives? 5 40), because J. Doe is
now in position number 2 in our new renumbered circle of 39 people. Figure 3.3
illustrates this, but rather than going from 40 to 39 people, it goes from 8 to 7.

Exercise 3.9

How about the people who were in positions 1 and 2; what position numbers are
they in after the renumbering?
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Exercise 3.10

Write a procedure for doing the renumbering. It should take two arguments: the
old position number and the old number of people (n). (It can assume that the old
position number won’t ever be 3, because that person is killed and hence doesn’t get
renumbered.) It should return the new position number.

Exercise 3.11

Finish writing the survives? procedure, and carefully test it with a number of cases
that are small enough for you to check by hand but that still cover an interesting
range of situations.

Exercise 3.12

Write a procedure, analogous to first-perfect-after, that can be used to system-
atically search for surviving positions. What are the two surviving positions starting
from a circle of 40 people? (Presumably Josephus chose one of these two positions.)

Now that you have settled the urgent question of where Josephus should stand,
we can take some time to point out additional features of the Scheme programming
language that would have simplified the procedure a little bit. You may recall that the
overall form of the procedure involved two if expressions. The outer one checked
to see if the killing was over; if it was, then the person we cared about was definitely
a survivor, so the answer was #t. The inner if took care of the case where more
killing was still needed. If our person of interest was in position number 3, and so
was the next to go, the answer was #f. This succession of tests can be reformulated in
a different way. Our person of interest is a survivor if the killing is over (i.e., n , 3)
or we are not interested in position number 3 and the person survives in the reduced
circle of n 2 1 people. Writing this in Scheme, we get

(define survives?
(lambda (position n)
(or (< n 3)

(and (not (= position 3))
your part with n 2 1 people goes here))))

This procedure illustrates three new features of Scheme: or, and, and not. Of
these, not is just an ordinary procedure, which we could write ourselves, although
it happens to be predefined. If its argument is #f, it returns #t; otherwise it returns
#f. That way, it returns the true/false opposite of its argument. The other two logical
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operations, or and and, are not procedures. They are special language constructs
like if. In fact, you can see their close relationship to if by comparing our new
version of survives? with our old one. In particular, if n , 3, the computation is
immediately over, with the answer of #t; the second part of the or is not evaluated.
Similarly, if we don’t have n , 3, but the position is equal to 3, the computation is
immediately over with the answer of #f; the second part of the and is not evaluated.

The official definitions of or and and are made a bit more complicated by two
factors:

There needn’t be just two expressions in an or or and. There can be more than
two or even none or one.

Any value other than #f counts as true in Scheme, not just #t. Thus we need to
be careful about which true value gets returned.

The resolution to these issues is as follows. The expressions listed inside an or get
evaluated one by one in order. As soon as one that produces a true value is found,
that specific true value is returned as the value of the or expression. If none is found,
the false value produced by the last expression is returned. If there are no expressions
at all, #f is immediately returned. Similarly for and, the expressions are evaluated
one by one in order. As soon as one that produces a false value is found, that false
value is returned as the value of the and expression. If none is found, the specific
true value produced by the last expression is returned. If there are no expressions in
the and, #t is returned as the value.

Review Problems

Exercise 3.13

In Exercises 2.12 and 3.2 you saw that any positive integer n can be expressed as 2jk
where k is odd, and you wrote a procedure to compute j, the exponent of 2. The
following procedure instead computes k, the odd factor (which is the largest odd
divisor of n). Does it generate a recursive process or an iterative process? Justify your
answer.

(define largest-odd-divisor
(lambda (n)
(if (odd? n)

n
(largest-odd-divisor (/ n 2)))))
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Exercise 3.14

Here is a procedure that finds the largest number k such that bk # n, assuming that n
and b are integers such that n $ 1 and b $ 2. For example, (closest-power 2 23)
returns 4:

(define closest-power
(lambda (b n)
(if (< n b)

0
(+ 1 (closest-power b (quotient n b))))))

a. Explain why this procedure generates a recursive process.
b. Write a version of closest-power that generates an iterative process.

Exercise 3.15

Consider the following two procedures:

(define f
(lambda (n)
(if (= n 0)

0
(g (- n 1)))))

(define g
(lambda (n)
(if (= n 0)

1
(f (- n 1)))))

a. Use the substitution model to evaluate each of (f 1), (f 2), and (f 3).
b. Can you predict (f 4)? (f 5)? In general, which arguments cause f to return

0 and which cause it to return 1? (You need only consider nonnegative integers.)
c. Is the process generated by f iterative or recursive? Explain.

Exercise 3.16

Consider the following two procedures:
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(define f
(lambda (n)
(if (= n 0)

0
(+ 1 (g (- n 1))))))

(define g
(lambda (n)
(if (= n 0)

1
(+ 1 (f (- n 1))))))

a. Use the substitution model to illustrate the evaluation of (f 2), (f 3), and
(f 4).

b. Is the process generated by f iterative or recursive? Explain.
c. Predict the values of (f 5) and (f 6).

Exercise 3.17

Falling factorial powers are similar to normal powers and also similar to factorials.
We write them as nk and say “n to the k falling.” This means that k consecutive
numbers should be multiplied together, starting with n and working downward.
For example, 73 5 7 3 6 3 5 (i.e., three consecutive numbers from 7 downward
multiplied together).

Write a procedure for calculating falling factorial powers that generates an iterative
process.

Exercise 3.18

We’ve already seen how to raise a number to an integer power, provided that the
exponent isn’t negative. We could extend this to allow negative exponents as well by
using the following definition:

bn 5


1 if n 5 0
bn21 3 b if n . 0
bn11 6 b if n , 0

a. Using this idea, write a procedure power such that (power b n) raises b to the
n power for any integer n.

b. Use the substitution model to show how (power 2 -3) would be evaluated. (You
can leave out steps that just determine which branch of a cond or if should be
taken.) Does your procedure generate a recursive process or an iterative one?
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Exercise 3.19

Prove that, for all nonnegative integers n and numbers a, the following procedure
computes the value 2n 3 a:

(define foo
(lambda (n a)
(if (= n 0)

a
(foo (- n 1) (+ a a)))))

Exercise 3.20

Consider the following two procedures:

(define factorial
(lambda (n)
(product 1 n)))

(define product
(lambda (low high)
(if (> low high)

1
(* low

(product (+ low 1) high)))))

a. Use the substitution model to illustrate the evaluation of (factorial 4).
b. Is the process generated by factorial iterative or recursive? Explain.
c. Describe exactly what product computes in terms of its parameters.
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Notes

The way we have used the term invariant is superficially different from the way
most other authors use it, but the notions are closely related. Most authors use
invariant assertions rather than invariant quantities. That is, they focus not on a
numerical quantity that remains constant but rather on a logical assertion such as
a 5 (b 1 1) 3 (b 1 2) 3 ? ? ? 3 n, the truth of which remains unchanged from one
iteration to the next. The other difference is that most authors focus on what the
computation has already accomplished rather than on what it is going to compute.
So, although we say that factorial-product will compute a 3 b!, others say that
when factorial-product is entered, it is already the case that a 5 (b 1 1) 3
(b 1 2) 3 ? ? ? 3 n. The relationship between these two becomes clear when we
recognize that factorial-product is ultimately being used to compute n!. This
gives the equation n! 5 a3b!, which is equivalent to a 5 (b11)3 (b12)3? ? ?3n.

Polya’s How to Solve It introduced the phrase “inventor’s paradox” for the idea
that some problems can be made easier to solve by generalizing them [40]. Our
information regarding which Fermat numbers are known to be prime or composite
is from Ribenboim’s The New Book of Prime Number Records [41]. For information on
Fermat numbers, perfect numbers, continued fractions, and rational approximations,
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any good textbook on number theory should do. The classic is Hardy and Wright
[25]. Perhaps the most accessible source of golden-ratio trivia is in Martin Gardner’s
second collection of mathematical recreations [22]. Our source for the number of
subatomic particles in the universe is Davis’s The Lore of Large Numbers [15]. For
the story of Josephus, see his Jewish Wars, Book III, for example in the translation
of H. St. J. Thackeray [28] or G. A. Williamson [29]; both these translations have
appendixes pointing out the relevant deviation in the Slavonic version.



C H A P T E R F O U R

Orders of Growth
and Tree Recursion

4.1 Orders of Growth

In the previous chapters we’ve concerned ourselves with one aspect of how to design
procedures: making sure that the generated process calculates the desired result.
Although this is clearly important, there are other design considerations as well. If
we compare our work to that of an aspiring automotive designer, we’ve learned how
to make cars that get from here to there. That’s important, but customers expect
more. In this chapter we’ll focus on considerations more akin to speed and gas
mileage. Along the way we’ll also add another style of process to our repertoire,
alongside linear recursion and iteration.

At first glance, comparing the speed of two alternative procedures for solving the
same problem should be easy. Pull out your stopwatch, time how long one takes,
and then time how long the other takes. Nothing to it: one wins, the other loses.
This approach has three primary weaknesses:

1. It can’t be used to decide which procedure to run, because it requires running
both. Similarly, you can’t tell in advance that one process is going to take a billion
years, and hence isn’t worth waiting for, whereas the other one will be done
tomorrow if you’ll just be patient and wait that long.

2. It doesn’t tell you how long other instances of the same general problem are
going to take or even which procedure will be faster for them. Maybe method A
calculates 52! in 1 millisecond, whereas procedure B takes 5 milliseconds. Now
you want to compute 100!. Which method should you use? Maybe A, maybe B;
sometimes the method that is faster on small problems is slower on large problems,
like a sprinter doing poorly on long-distance races.

75
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3. It doesn’t distinguish performance differences that are flukes of the particular
hardware, Scheme implementation, or programming details from those that are
deeply rooted in the two problem-solving strategies and will persist even if the
details are changed.

Computer scientists use several different techniques to cope with these difficulties,
but the primary one is this:

The asymptotic outlook: Ask not which takes longer, but rather which is more
rapidly taking longer as the problem size increases.

This idea is exceptionally hard to grasp. We are all much more experienced with
feeling what it’s like for something to be slow than we are with feeling something
quickly growing slower. Luckily we have developed a foolproof experiment you can
use to get a gut feeling of a process quickly growing slow.

The idea of this experiment is to compare the speeds of two different methods
for sorting a deck of numbered cards. To get a feeling for which method becomes
slow more rapidly, you will sort decks of different sizes and time yourself. Before you
begin, you’ll need to get a deck of 32 numbered cards; the web site for this book
has sheets of cards that you can print out and cut up, or you could just make your
own by writing numbers on index cards. Ask a classmate, friend, or helpful stranger
to work with you, because timing your sorting is much easier with a partner. One
of you does the actual sorting of the cards. The other keeps track of the rules of the
sorting method, provides any necessary prompting, and points out erroneous moves.
This kibitzer is also in charge of measuring and recording the time each sort takes
(a stopwatch is really helpful for this).

The two sorting methods, or sorting algorithms, are described in sidebars that
follow. (The word algorithm is essentially synonymous with procedure or method,
with the main technical distinction being that only a procedure that is guaranteed to
terminate may be called an algorithm. The connotation, as with method, is that one
is referring to a general procedure independent of any particular embodiment in a
programming language. This distinguishes algorithms from programs.) Before you
begin, make sure that both you and your partner understand these two algorithms.
You might want to try a practice run using a deck of four cards for selection sorting
and a deck of eight cards for merge sorting, because the pattern of that sort isn’t so
discernible with only four cards.

Now that you’re ready to begin, make a deck of four cards by shuffling all the
cards well and then taking the top four as the deck to sort. Sort them using selection
sort, keeping track of how long the sorting took. Do this again using a deck of 8
cards, then a deck of 16 cards, and finally all 32. Be sure to shuffle all the cards
each time. Finally, try sorting decks of 4, 8, 16, and 32 cards using the merge sort
algorithm.



4.1 Orders of Growth 77

Selection Sort

You will use three positions for stacks of cards:

destination

source discard

Initially you should put all the cards, face down, on the source stack, with the
other two positions empty. Now do the following steps repeatedly:

1. Take the top card off the source stack and put it face-up on the destination
stack.

2. If that makes the source stack empty, you are done. The destination stack is in
numerical order.

3. Otherwise, do the following steps repeatedly until the source stack is empty:
(a) Take the top card off the source stack and compare it with the top of the

destination stack.
(b) If the source card has a larger number,

i. Take the card on top of the destination stack and put it face down on
the discard stack.

ii. Put the card you took from the source stack face up on the destination
stack.

Otherwise, put the card from the source stack face down on the discard
stack.

4. Slide the discard stack over into the source position, and start again with step 1.



78 Chapter 4 Orders of Growth and Tree Recursion

Merge Sort

You will need lots of space for this sorting procedure—enough to spread out all
the cards—so it might be best done on the floor. (There are ways to do merge sort
with less space, but they are harder to explain.) The basic skill you will need for
merge sorting is merging two stacks of cards together, so first refer to the sidebar
titled “Merging” (on the following page) for instructions on how to merge. Once
you know how to merge, the actual merge sorting process is comparatively easy.

To do the actual merge sort, lay out the cards face down in a row. We will
consider these to be the initial source “stacks” of cards, even though there is only
one card per stack. The merge sort works by progressively merging pairs of stacks
so that there are fewer stacks but each is larger; at the end, there will be a single
large stack of cards.

destination
1

source
1a

source
1b

destination
2

source
2a

source
2b . . .

. . .

source
2a

Repeat the following steps until there is a single stack of cards:

1. Merge the first two face-down stacks of cards.
2. As long as there are at least two face-down stacks, repeat the merging with the

next two stacks.
3. Flip each face-up stack over.

The key question is: Suppose we now asked you to sort sixty-four cards. How would
you feel about doing it using selection sort? We
allowed some space there for you to groan. That’s the feel of a process that is quickly
becoming slow.

Although the most important point was that gut feeling of how quickly selection
sort was becoming a stupid way to sort, we can try extracting some more value from
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Merging

You will have the two sorted stacks of cards to merge side by side, face down. You
will be producing the result stack above the other two, face up:

destination

source a source b

Take the top card off of each source stack—source a in your left hand, source b
in your right hand. Now do the following repeatedly, until all the cards are on the
destination stack:

1. Compare the two cards you are holding.
2. Place the one with the larger number on it onto the destination stack, face-up.
3. With the hand you just emptied, pick up the next card from the corresponding

source stack and go back to step 1. If there is no next card in the empty hand’s
stack because that stack is empty, put the other card you are holding on the
destination stack face-up and continue flipping the rest of the cards over onto
the destination stack.

all your labor. Make a table showing your timings, or better yet graph them, or best
yet pool them together with timings from everyone else you know and make a graph
that shows the average and range for each time. Figure 4.1 is a graph like that for
ten pairs of our students; the horizontal ticks are the averages, and the vertical bars
represent the range.

If you look very closely at Figure 4.1, you’ll notice that the fastest selection sorters
can sort four cards faster than the slowest merge sorters. Therefore, if you only have
four cards to sort, neither method is intrinsically superior: Either method might turn
out faster, depending on the particular skills of the person doing the sorting. On
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Figure 4.1 Times for selection sort and merge sort. The vertical bars indicate the range of times
observed, and the horizontal marks are the averages. The lighter lines with the ranges shown on
the left side are for merge sort, and the darker ones with the ranges shown on the right are for
selection sort.

the other hand, for 32 cards even the clumsiest merge sorter can outdo even the
most nimble-fingered selection sorter. This general phenomenon occurs whenever
two methods get slow at different rates. Any initial disparity in speed, no matter
how great, will always be eventually overcome by the difference in the intrinsic
merits of the algorithms, provided you scale the problem size up far enough. If you
were to race, using your bare hands, against a blazingly fast electronic computer
programmed to use selection sort, you could beat it by using merge sort, provided
the contest involved sorting a large enough data set. (Actually, the necessary data set
would be so large that you would be dead before you won the race. Imagine passing
the race on to a child, grandchild, etc.)

Another thing we can see by looking at the graph is that if we were to fit a curve
through each algorithm’s average times, the shapes would be quite different. Of
course, it’s hard to be very precise, because four points aren’t much to go on, but
the qualitative difference in shape is rather striking. The merge sort numbers seem
to be on a curve that has only a very slight upward bend—almost a straight line.
By contrast, no one could mistake the selection sort numbers for falling on a line;
they clearly are on a curve with a substantial upward curvature. This corresponds to
your gut feeling that doubling the number of cards was going to mean a lot more
work—much more than twice as much.

Gathering any more empirical data would strain the patience of even the most
patient students, so we use another way to describe the shape of these curves. We will
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find a function for each method that describes the relationship between deck size
and the number of steps performed. We concentrate on the number of steps rather
than how long the sorting takes because we don’t know how long each step takes.
Indeed, some may take longer than others, and the length may vary from person to
person. However, doing the steps faster (or slower) simply results in a rescaled curve
and does not change the basic shape of it.

First consider what you did in selection sorting n cards. On the first pass through
the deck, you handled all n cards, once or twice each. On the second pass you
handled only n 2 1 of them, on the third pass n 2 2 of them, and so forth. So, the
total number of times you handled a card is somewhere between n 1 (n 2 1) 1 (n 2
2)1? ? ?11 and twice that number. How big is n1(n21)1(n22)1? ? ?11? It’s easy
to see that it is no bigger than n2, because n numbers are being added and the largest
of them is n. We can also see that it is at least n2 6 4, because there are n6 2 of the
numbers that are n6 2 or larger. Thus we can immediately see that the total number
of times you handled a card is bounded between n2 6 4 and 2n2. Because both of
these are multiples of n2, it follows that the basic shape of the touches versus n curve
for selection sort must be roughly parabolic. In symbols we say that the number of
times you handle a card is Q(n2). (The conventional pronunciation is “big theta
of en squared.”) This means that for all but perhaps finitely many exceptions it is
known to lie between two multiples of n2. (More particularly, between two positive
multiples of n2, or the lower bound would be too easy.)

With a bit more work, we could produce a simple exact formula for the sum
n 1 (n 2 1) 1 ? ? ? 1 1. However, this wouldn’t really help any, because we don’t
know how often you only touch a card once in a pass versus twice, and we don’t
know how long each touch takes. Therefore, we need to be satisfied with a somewhat
imprecise answer. On the other hand, we can confidently say that you take at least
one hundredth of a second to touch each card, so you take at least n2 6 400 seconds to
sort n cards, and similarly we can confidently say that you take at most 1000 seconds
to touch each card, so you take at most 2000n2 seconds. Thus, the imprecision that
the Q notation gives us is exactly the kind we need; we’re able to say that not only is
the number of touches Q(n2) but also the time you take is Q(n2). Our answer, though
imprecise, tells the general shape or order of growth of the function. Presuming that
we do wind up showing merge sort to have a slower order of growth, as the empirical
evidence suggests, the difference in orders of growth would be enough to tell us
which method must be faster for large enough decks of cards.

Exercise 4.1

Go ahead and figure out exactly what n 1 (n 2 1) 1 ? ? ? 1 2 1 1 is. Do this by adding
the first term to the last, the second to the second from last, and so forth. What does
each pair add up to? How many pairs are there? What does that make the sum?
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Moving on to merge sort, we can similarly analyze how many times you handled
the cards by breaking it down into successive passes. In the first pass you merged
the n initial stacks down to n6 2; this involved handling every card. How about the
second pass, where you merged n6 2 stacks down to n6 4; how many cards did you
handle in that pass? Stop and think about this.

If you’ve thought about it, you’ve realized that you handled all n cards in every
pass. This just leaves the question of how many passes there were. The number of
stacks was cut in half each pass, whereas the number of cards per stack doubled.
Initially each card was in a separate stack, but at the end all n were in one stack. So,
the question can be paraphrased as “How many times does 1 need to be doubled to
reach n?” or equivalently as “How many times does n need to be halved to reach 1?”
As the sidebar on logarithms explains, the answer is the logarithm to the base 2 of
n, written log2 n, or sometimes just lg n. Putting this together with the fact that you
handled all cards in each round, we discover that you did n log2 n card handlings.
This doesn’t account for the steps flipping the stacks over between each pass, and
of course there is still the issue of how much time each step takes. Therefore, we’re
best off again being intentionally imprecise and saying that the time taken to merge
sort n cards is Q(n log n).

One interesting point here is that we left the base off of the logarithm. This
is because inside a Q, the base of the logarithm is irrelevant, because changing
from one base to another is equivalent to multiplying by a constant factor, as the
sidebar explains. Remember, saying that the time is big theta of some function
simply means it is between two multiples of that function, without specifying which
particular multiples. The time would be between two multiples of 2n2 if and only if

Logarithms

If xk 5 y, we say that k is the logarithm to the base x of y. That is, k is the exponent
to which x needs to be raised to produce y. For example, 3 is the logarithm to
the base 2 of 8, because you need to multiply three 2s together to produce 8. In
symbols, we would write this as log2 8 5 3. That is, logx y is the symbol for the
logarithm to the base x of y. The formal definition of logarithm specifies its value
even for cases like log2 9, which clearly isn’t an integer, because no number of 2s
multiplied together will yield 9. For our purposes, all that you need to know is
that log2 9 is somewhere between 3 and 4, because 9 is between 23 and 24.

Because we know that three 2s multiplied together produce 8, and two 8s
multiplied together produce 64, it follows that six 2s multiplied together will
produce 64. In other words, log2 64 5 log2 8 3 log8 64 5 3 3 2 5 6. This
illustrates a general property of logarithms, namely, logb x 5 logb c 3 logc x. So,
no matter what x is, its logarithms to the bases b and c differ by the factor logb c.
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it were between two multiples of n2, so we never say Q(2n2), only the simpler Q(n2).
This reason is the same as that for leaving the base of the logarithm unspecified.

In conclusion, note that our analytical results are consistent with our empiri-
cal observations. The function n log n grows just a bit faster than linearly, whereas
quadratics are noticeably more upturned. This difference makes merge sort a decid-
edly superior sorting algorithm; we’ll return to it in Chapter 7, when we have the
apparatus needed to program it in Scheme.

4.2 Tree Recursion and Digital Signatures

If you watch someone merge sort cards as described in the previous section, you will
see that the left-hand and the right-hand halves of the cards don’t interact at all until
the very last merge step. At that point, each half of the cards is already sorted, and
all that is needed is to merge the two sorted halves together. Thus, the merge sort
algorithm can be restructured in the following way.

To merge sort a deck of n cards:

1. If n 5 1, it must already be in order, so you’re done.
2. Otherwise:

a. Merge sort the first n6 2 cards.
b. Merge sort the other n6 2 cards.
c. Merge together the two sorted halves.

When formulated this way, it is clear that the algorithm is recursive; however, it
is not the normal kind of linear recursion we are used to. Rather than first solving a
slightly smaller version of the problem and then doing the little bit of work that is
left, merge sort first solves two much smaller versions of the problem (half the size)
and then finishes up by combining their results. This strategy of dividing the work
into two (or equally well into three or four) subproblems and then combining the
results into the overall solution is known as tree recursion. The reason for this name
is that the main problem branches into subproblems, each of which branches into
sub-subproblems, and so forth, much like the successive branching of the limbs of a
tree.

Sometimes this tree-recursive way of thinking can lead you to an algorithm with
a lower order of growth than you would otherwise have come up with. This reduced
order of growth can be extremely important if you are writing a program designed
to be used on very large inputs. To give an example of this, we are going to consider
the problem of digital signatures.

If you receive a paper document with a signature on it, you can be reasonably
sure it was written (or at least agreed to) by the person whose signature it bears. You
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can also be sure no one has reattached the signature to a different document, at least
as long as each page is individually signed. Finally, you can convince an impartial
third party, such as a judge, of these facts, because you are in no better position to
falsify the signature than anyone else.

Now consider what happens when you get a digital document, such as an elec-
tronic mail message or a file on a disk. How do you know it is authentic? And even if
it is authentic, how do you prevent the writer from reneging on anything he agreed
to, because he can always claim you forged the agreement? Digital signatures are
designed to solve these problems. As such, they are going to be of utmost importance
as we convert to doing business in a comparatively paperless manner.

Digital signature systems have three components: a way to reduce an entire
message down to a single identifying number, a way to sign these numbers, and a
way to verify that any particular signed message is valid. The identifying numbers
are called message digests; they are derived from the messages by a publicly available
digest function. The message digests are of some agreed-upon limited size, perhaps
40 digits long. Although a lot of 40 digit numbers exist, far more possible messages
do; therefore the digest function is necessarily many to one. However, the digest
function must be carefully designed so that it is not feasible to find a message that
will have a particular digest or to find two messages that share the same digest. So
the validity of a message is effectively equivalent to the validity of its digest. Thus, we
have reduced the task of signing messages to the easier mathematical task of signing
40-digit numbers. Although digest functions are interesting in their own right, we’ll
simplify matters by assuming that the messages we’re trying to send are themselves
numbers of limited size, so we can skip the digesting step and just sign the message
itself. In other words, our messages will be their own digests.

The second part of a digital signature system is the way to sign messages. Each
person using the system has a private signature function. If you are sending a message,
you can sign it by applying your signature function to the message. Each signature
function is designed so that different messages have different signatures and so that
computing the signature for a particular message is virtually impossible without
knowing the signature function. Because only you, the sender, know the signature
function, no one else could forge your signature. When you send a message, you also
send along the signature for that message. This pair of numbers is called a signed
message.

What happens when you receive a signed message? This is the third part of the
digital signature system. As receiver, you want to verify that the signature is the right
one. To do this you look up the sender’s verification function in a public directory
and apply it to the signature. This will give you a 40-digit number, which should
be equal to the message. Because no one other than the sender can compute the
signature for a particular message, you can be reasonably sure that you received a
valid signed message. Note that the signature and verification functions are closely
related to each other; mathematically speaking, they are inverses. Figure 4.2 shows a
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Figure 4.2 The full digital signature system, including the digest function

message

validity

signing
function

verification
function

=?
signature

sender recipient

Figure 4.3 Our simplified digital signature system, without a digest function

block diagram of the full version of the digital signature system, including the digest
function, and Figure 4.3 similarly depicts the simplified version we’re using.

One popular signature and verification strategy is based on an idea known as
modular arithmetic, which is explained in the accompanying sidebar. In this system,
each person has a large number called the modulus listed in a public directory under
his or her name. The verification function for that person consists of computing
the remainder when the cube of the signature is divided by that person’s modulus.
The verify procedure below does this in a straightforward way, using the built-in
procedures remainder and expt. Expt raises its first argument to the power specified
by its second argument, just like the power procedure you wrote in Exercise 2.1.

(define verify
(lambda (signature modulus)
(remainder (expt signature 3)

modulus)))
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Note that we have not yet given the signature function that is the inverse of the
verification function above. Before doing that, let us consider an example illustrating
how a given signed message is verified.

Suppose that you get a message purporting to come from the authors of this book
and containing a partial solution to Exercise 3.8 on page 64. You suspect that the
message is actually from a friend playing a prank on you, so you want to check it.
The message says that the numerator of the result of (approximate-golden-ratio
(expt 10 -79)) and its signature are as follows:

(define gold-num 5972304273877744135569338397692020533504)
(define signature 14367622178330772814011855673053282570996235969
51473988726330337289482255409401120915769529658684452651613736161
53020167902900930324840824269164789456142215776895016041636987254
848119449940440885630)

What you need to do is feed that second number into our verification function and
see if you get back the first number. If so, you can be sure the message was genuine,
because nobody but us knows how to arrange for this to be the case (yet; we’re going
to give the secret away in a bit). Suppose you looked us up in a directory and found
that our modulus is:

(define modulus 6716294880486034006153652581749856549007659719419
61654084193604750896012182890124354255484422321487634816640987992
31759689309995696195638345433333958485027650558453766363029391294
0840460009374858969)

At this point, you would do the following to find out that we really did send you a
personal hint (only the second expression need be evaluated; we evaluate both so
that you can see the number returned by the verification function):

(verify signature modulus)
5972304273877744135569338397692020533504

(= gold-num
(verify signature modulus))

#t

Having seen how to verify signed messages, we’re ready to consider how to generate
the signatures. Recall that the signature and verification functions are inverses of each
other. So the signature of a given message is an integer s such that the remainder
you get when you divide s3 by the modulus is the original message. In some sense,
the signature function might be called the “modular cube root.” You should keep in
mind, however, that this is quite different from the ordinary cube root. For example,
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Modular Arithmetic

The basic operations of arithmetic are 1, 2, p, and 6 . These are ordinarily
considered as operating on integers, or more generally, real numbers. There are,
of course, restrictions as to their applicability; for example, the quotient of two
integers is not in general an integer, and division by 0 is not allowed. On the other
hand, these operations satisfy a number of formal properties. For example, we say
that addition and multiplication are commutative, meaning that for all numbers x
and y,

x 1 y 5 y 1 x

x p y 5 y p x

Other formal properties are associativity:

(x 1 y) 1 z 5 x 1 (y 1 z)

(x p y) p z 5 x p (y p z)

and distributivity:

x p (y 1 z) 5 x p y 1 x p z

Are there other types of number systems whose arithmetic operations satisfy the
properties given above? One such example is modular arithmetic, which might
also be called remainder or clock arithmetic. In modular arithmetic, a specific
positive integer m called the modulus is chosen. For each nonnegative integer
x, we let x mod m denote the remainder of x when divided by m; this is just
(remainder x m) in Scheme. Note that x mod m is the unique integer r satisfy-
ing 0 # r , m and for which there is another integer q such that x 5 qm1 r. The
integer q is the integer quotient of x by m (i.e., (quotient x m) in Scheme).

If two integers differ by a multiple of m, they have the same remainder mod m.
We can use this fact to show that for all integers x and y,

xy mod m 5 (x mod m)(y mod m) mod m

(x 1 y) mod m 5 ((x mod m) 1 (y mod m)) mod m

To show that these equalities hold, let x 5 q1m 1 r1 and y 5 q2m 1 r2. Then
xy 5 (q1r2 1 q2r1 1 q1q2m)m 1 r1r2 and x 1 y 5 (q1 1 q2)m 1 (r1 1 r2).

The set of all possible remainders mod m is h0, 1, . . . , m 2 1j. We can define
1m and pm on this set by

(Continued)
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Modular Arithmetic (Continued)

x 1m y
def
5 (x 1 y) mod m

x pm y
def
5 (x p y) mod m

(The symbol
def
5 denotes “is defined as.”) In Scheme they would be defined as

follows:

(define mod+
(lambda (x y)
(remainder (+ x y) modulus)))

(define mod*
(lambda (x y)
(remainder (* x y) modulus)))

(We assume modulus has been defined.) It is not hard to show that 1m and pm

satisfy commutativity, associativity, and distributivity.
Other operations, such as modular subtraction, division, and exponentiation

can be defined in terms of 1m and pm. We’ll only consider modular subtrac-
tion here, because exponentiation is investigated in the text and division poses
theoretical difficulties (namely, it can’t always be done).

How should we define modular subtraction? Formally, we would want

x 2 y 5 x 1 (2y)

where 2y is the additive inverse of y (i.e., the number z such that y1z 5 0). Does
such a number exist in modular arithmetic? And if so, is it uniquely determined
for each y? The answer to both of these questions is Yes: The (modular) additive
inverse of y is (m2y) mod m, because that is the unique number in h0, 1, . . . , m21j
whose modular sum with y is 0. For example, if m 5 17 and y 5 5, then 2y 5 12
because (5 1 12) mod 17 5 0. This allows us to define modular subtraction as
follows:

(define mod-
(lambda (x y)
(remainder (+ x (- modulus y)) modulus)))
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if the modulus were a smaller number such as 17, the modular cube root of 10
would be 3. (Why?) In particular, the signature must be an integer.

Signature functions use the same mathematical process as verification functions.
The underlying mathematics is somewhat deeper than you have probably encoun-
tered and is partly explained in the notes at the end of this chapter. Briefly, for the
types of moduli used in this strategy, there is an exponent called the signing exponent,
depending on the modulus, that is used to calculate the signature. The signature
of a number is calculated by raising the number to the signing exponent and then
finding the remainder when the result is divided by the modulus. Mathematically,
this means that if m is the modulus, e is the signing exponent, x is the message, and
s is its signature,

s 5 xe mod m

x 5 s3 mod m

The fact that this works follows from the fact that for all choices of nonnegative
integers x , m,

x 5 (xe mod m)3 mod m

Thus, the only difference between signing and verifying is the exponent—that’s our
secret. Only we (so far) know what exponent to use in the signing so that an exponent
of 3 will undo it. In fact, for a 198-digit modulus like ours, no one knows how to find
the signing exponent in any reasonable amount of time, without knowing something
special about how the modulus was chosen.

What is our secret signing exponent? It is

(define signing-exponent 4477529920324022670769101721166571032671
77314627974436056129069833930674788593416236170322948214322483305
17527801279310239221589593147057716354461360014347167979987666468
6423606429437389098641670667)

That’s a big number, in case you didn’t notice (again, 198 digits long). This poses a
bit of a problem. From a strictly mathematical standpoint, all we would have to do
to sign the numerator is

(remainder (expt gold-num signing-exponent) modulus)

However, this isn’t practical, because the result of the exponentiation would be an
extremely large number. We don’t even want to tell you how large it would be by
telling how many digits are in it, because even the number of digits is itself a 200-digit
number. This means that if the computer were to evaluate the expression above, it
couldn’t possibly have enough memory to store the intermediate result produced by
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the exponentiation. Keep in mind that there are only about 1079 subatomic particles
in the universe. This means that if each one of those particles was replaced by a
whole universe, complete with 1079 particles of its own, and the computer were to
store a trillion trillion trillion digits of the intermediate result on each of the particles
in this universe of universes, it wouldn’t have enough memory.

Luckily there is an out, based on a property noted in the sidebar on modular
arithmetic. Namely,

xy mod m 5 (x mod m)(y mod m) mod m

In other words, we are allowed to do the mod operation before the multiplication
as well as after without changing the answer. This is important, because taking a
number mod m reduces it to a number less than m. For exponentiation, the important
point is this: Rather than multiplying together lots of copies of the base and then
taking the result mod m, we can do the mod operation after each step along the
way, so the numbers involved never grow very big. Here is a Scheme procedure that
does this, based on the observations that b0 5 1 and be 5 be21b:

(define mod-expt
(lambda (base exponent modulus)
(define mod*
(lambda (x y)
(remainder (* x y) modulus)))

(if (= exponent 0)
1
(mod* (mod-expt base (- exponent 1) modulus)

base))))

We can try this out by using it to reverify the original signature:

(mod-expt signature 3 modulus)
5972304273877744135569338397692020533504

It works. So now we’re all set to use it to sign a new message. Let’s sign a nice small
number, like 7:

(mod-expt 7 signing-exponent modulus)

What happens if you try this?
If you tried the above experiment, you probably waited for a while and then got

a message like we did:

;Aborting!: out of memory
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The problem is that the definition given above for mod-expt does one recursive step
for each reduction of the exponent by 1. Because each step takes some amount of
memory to hold the main problem while working on the subproblem, this means
that the total memory consumption is Q(e), where e is the exponent. Given that our
signing exponent is nearly 200 digits long, it is hardly surprising that the computer
ran out of memory (again, even all the particles in a universe of universes wouldn’t
be enough). We could fix this problem by switching to a linear iterative version of the
procedure, much as in Section 3.2 where we wrote an iterative version of the power
procedure from Exercise 2.1. This procedure would just keep a running product as
it modularly multiplied the numbers one by one. This would reduce the memory
consumption to Q(1) (i.e., constant).

Unfortunately, the time it would take to do the exponentiation would still be
Q(e), so even though there would be ample memory, it would all have crumbled
to dust before the computation was over. (In fact, there wouldn’t even be dust left.
The fastest computers that even wild-eyed fanatics dream of would take about 10212

seconds to do a multiplication; there are about 107 seconds in a year. Therefore,
even such an incredibly fast machine would take something like 10180 years to do
the calculation. For comparison, the earth itself is only around 109 years old, so
the incredibly fast computer would require roughly a trillion earth-lifetimes for each
particle in our hypothetical universe of universes.)

So, because chipping away at this huge signing exponent isn’t going anywhere
near fast enough, we are motivated to try something drastic, something that will in
one fell swoop dramatically decrease it. Let’s cut it in half, using a tree recursive
strategy. Keep in mind that be means e b’s multiplied together. Provided that e is
even, we could break that string of multiplications right down the middle into two,
each of which is only half as big:

(define mod-expt
(lambda (base exponent modulus)
(define mod*
(lambda (x y)
(remainder (* x y) modulus)))

(if (= exponent 0)
1
(if (even? exponent)

(mod* (mod-expt base (/ exponent 2) modulus)
(mod-expt base (/ exponent 2) modulus))

(mod* (mod-expt base (- exponent 1) modulus)
base)))))

Does this help any? Unfortunately not—although at least this version won’t run
out of memory, because the recursion depth is only Q(log e). Consider what would
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Figure 4.4 A tree recursive exponentiation still does Q(e) multiplications.

happen in the simplest possible case, which is when the exponent is a power of 2,
so it is not only initially even but in fact stays even after each successive division by
2 until reaching 1. The multiplications form a tree, with one multiplication at the
root, two at the next level, four at the next, eight at the next, and so on down to e at
the leaves of the tree. This totals 2e 2 1 multiplications when all the levels are added
up; Figure 4.4 illustrates this for e 5 8. The details would be slightly different for an
exponent that wasn’t a power of 2, but in any case the number of multiplications is
still Q(e).

Exercise 4.2

In this exercise you will show that this version of mod-expt does Q(e) multiplications,
as we claimed.

a. Use induction to prove each of the following about this latest version of mod-expt:
(1) e is a nonnegative integer, (mod-expt b e m) does at least e multiplications.
(2) When e is a positive integer, (mod-expt b e m) does at most 2e 2 1 multi-

plications.
b. To show that the number of multiplications is Q(e), it would have sufficed to

show that it lies between e and 2e. However, rather than having you prove that
the number of multiplications was at most 2e, we asked you prove more, namely,
that the number of multiplications is at most 2e 2 1. Try using induction to
prove that when e is a positive integer, at most 2e multiplications are done. What
goes wrong? Why is it easier to prove more than you need to, when you’re using
induction?
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You may be wondering why we went down this blind alley. The reason is that
although the tree-recursive version is not itself an improvement, it serves as a stepping
stone to a better version. You may have already noticed that we compute (mod-expt
base (/ exponent 2) modulus) twice, yet clearly the result is going to be the
same both times. We could instead calculate the result once and use it in both
places. By doing this, we’ll only need to do one computation for each level in the
tree, eliminating all the redundancy. We can make use of let to allow us to easily
reuse the value:

(define mod-expt
(lambda (base exponent modulus)
(define mod*
(lambda (x y)
(remainder (* x y) modulus)))

(if (= exponent 0)
1
(if (even? exponent)

(let ((x (mod-expt base (/ exponent 2) modulus)))
(mod* x x))

(mod* (mod-expt base (- exponent 1) modulus)
base)))))

Although this is only a small change from our original tree-recursive idea, it has a
dramatic impact on the order of growth of the time the algorithm takes, as illustrated
in Figure 4.5. The exponent is cut in half at worst every other step, because 1 less
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× 1
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1

1
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×
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×
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Figure 4.5 Eliminating redundant computations makes a big difference.
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than an odd number is an even number. Therefore, the number of steps (and time
taken) is Q(log e). Because a logarithmic function grows much more slowly than a
linear one, the computation of (mod-expt 7 signing-exponent modulus) can
now be done in about 7 seconds on our own modest computer, as opposed to 10180

years on an amazingly fast one. To give you some appreciation for the immense
factor by which the computation has been speeded up, consider that the speed of
a . . . no, even we are at a loss for a physical analogy this time.

Exercise 4.3

Write a procedure that, given the exponent, will compute how many multiplications
this latest version of mod-expt does.

Although we now have a version of mod-expt that takes Q(log e) time and uses
Q(log e) memory, both of which are quite reasonable, we could actually do one better
and reduce the memory consumption to Q(1) by developing an iterative version of
the procedure that still cuts the problem size in half. In doing so, we’ll be straying
even one step further from the original tree-recursive version, which is now serving
as only the most vague source of motivation for the algorithm. To cut the problem
size in half with a recursive process, we observed that when e was even, be 5 (be6 2)2.
To cut the problem size in half but generate an iterative process, we can instead
observe that when e is even, be 5 (b2)e6 2. This is the same as recognizing that when
e is even, the string of e b’s multiplied together can be divided into e6 2 pairs of b’s
multiplied together, rather than two groups containing e6 2 each.

Exercise 4.4

Develop a logarithmic time iterative version of mod-expt based on this concept.

At this point you have seen how an important practical application that involves
very large problem sizes can be turned from impossible to possible by devising an
algorithm with a lower order of growth. In particular, we successively went through
algorithms with the following growth rates:

Q(e) space and time (linear recursion)
Q(1) space and Q(e) time (linear iteration)
Q(log e) space and Q(e) time (tree recursion)
Q(log e) space and time (logarithmic recursion)
Q(1) space and Q(log e) time (logarithmic iteration)
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4.3 An Application: Fractal Curves

The tree-recursive mod-expt turned out not to be such a good idea because the two
half-sized problems were identical to one another, so it was redundant to solve each
of them separately. By contrast, the tree-recursive merge sort makes sense, because
the two half-sized problems are distinct, although similar. Both are problems of the
form “sort these n/2 cards,” but the specific cards to sort are different. This typifies
the situation in which tree recursion is natural: when the problem can be broken
into two (or more) equal-sized subproblems that are all of the same general form as
the original but are distinct from one another.

Fractal curves are geometric figures that fit this description; we say that they
possess self-similarity. Each fractal curve can be subdivided into a certain number
of subcurves, each of which is a smaller version of the given curve. Mathematicians
are interested in the case where this subdividing process continues forever so that
the subcurves are quite literally identical to the original except in size and position.
Because we can’t draw an infinitely detailed picture on the computer screen, we’ll
stop the subdivision at some point and use a simple geometric figure, such as a line
or triangle, as the basis for the curve. We call that basis the level 0 curve; a level 1
curve is composed out of level 0 curves, a level 2 curve is composed out of level 1
curves, and so forth.

As a first example, consider the fractal curve in Figure 4.6, known as Sierpinski’s
gasket. As indicated in Figure 4.7, the gasket contains three equally sized subgaskets,
each of which is a smaller version of the larger gasket. Figure 4.8 shows Sierpinski’s
gaskets of levels 0, 1, and 2.

A level n Sierpinski’s gasket is composed of three smaller Sierpinski’s gaskets of
level n 2 1, arranged in a triangular fashion. Furthermore, the level 0 Sierpinski’s
gasket is itself a triangle. Therefore, triangles play two different roles in Sierpinski’s

Figure 4.6 An example of Sierpinski’s gasket.
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Figure 4.7 An example of Sierpinski’s gasket, with the three subgaskets circled.

gasket: the self-similarity (i.e., the composition out of lower-level components) is
triangular, and the basis (i.e., level 0 curve) is also triangular.

In some fractals the self-similarity may differ from the basis. As an example,
consider the so-called c-curve, which is displayed in Figure 4.9 at levels 6 and 10.
The basis of a c-curve is just a straight line. A level n curve is made up of two
level n 2 1 c-curves, but the self-similarity is somewhat difficult to detect. We will
describe this self-similarity by writing a procedure that produces c-curves. To write
this procedure, we’ll need to write a procedure that takes five arguments. The first
four are the x and y coordinates of the starting and ending points, the fifth is the level
of the curve. A level 0 c-curve is simply a line from the starting point, say (x0, y0), to

Figure 4.8 Sierpinski’s gaskets of levels 0, 1, and 2.
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Figure 4.9 C-curves of levels 6 and 10.

the ending point, say (x1, y1). This is what the built-in procedure line will produce.
For higher level c-curves, we need to join two subcurves together at a point that
we’ll call (xa, ya). Figure 4.10 illustrates the relationship between the three points;
the two subcurves go from point 0 to point a and then from point a to point 1.

(define c-curve
(lambda (x0 y0 x1 y1 level)
(if (= level 0)

(line x0 y0 x1 y1)
(let ((xmid (/ (+ x0 x1) 2))

(ymid (/ (+ y0 y1) 2))
(dx (- x1 x0))
(dy (- y1 y0)))

(let ((xa (- xmid (/ dy 2)))
(ya (+ ymid (/ dx 2))))

(overlay (c-curve x0 y0 xa ya (- level 1))
(c-curve xa ya x1 y1 (- level 1))))))))

Try out the c-curve procedure with various values for the parameters in order to
gain an understanding of their meaning and the visual effect resulting from changing
their values. Overlaying two or more c-curves can help you understand what is going
on. For example, you might try any (or all) of the following:

(c-curve 0 -1/2 0 1/2 0)
(c-curve 0 -1/2 0 1/2 1)
(c-curve 0 -1/2 0 1/2 2)
(c-curve 0 -1/2 0 1/2 3)
(c-curve 0 -1/2 0 1/2 4)
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(x0, y0)

(x1, y1)

(xa, ya)

Figure 4.10 The three key points in a c-curve of level greater than zero.

(c-curve -1/2 0 0 1/2 3)
(c-curve 0 -1/2 -1/2 0 3)
(overlay (c-curve -1/2 0 0 1/2 3)

(c-curve 0 -1/2 -1/2 0 3))

(c-curve 0 -1/2 0 1/2 6)
(c-curve 0 -1/2 0 1/2 10)

(c-curve 0 0 1/2 1/2 0)
(c-curve 0 0 1/2 1/2 4)
(c-curve 1/2 1/2 0 0 4)

Exercise 4.5

A c-curve from point 0 to point 1 is composed of c-curves from point 0 to point a
and from point a to point 1. What happens if you define a d-curve similarly but with
the direction of the second half reversed, so the second half is a d-curve from point
1 to point a instead?

Exercise 4.6

Using the procedure c-curve as a model, define a procedure called length-
of-c-curve that, when given the same arguments as c-curve, returns the length
of the path that would be traversed by a pen drawing the c-curve specified.
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Exercise 4.7

See what numbers arise when you evaluate the following:

(length-of-c-curve 0 -1/2 0 1/2 0)
(length-of-c-curve 0 -1/2 0 1/2 1)
(length-of-c-curve 0 -1/2 0 1/2 2)
(length-of-c-curve 0 -1/2 0 1/2 3)
(length-of-c-curve 0 -1/2 0 1/2 4)

Do you see a pattern? Can you mathematically show that this pattern holds?

Exercise 4.8

C-curves can be seen as more and more convoluted paths between the two points,
with increasing levels of detours on top of detours. The net effect of any c-curve of
any level still is to connect the two endpoints. Design a new fractal that shares this
property. That is, a level 0 curve should again be a straight line, but a level 1 curve
should be some different shape of detour path of your own choosing that connects
up the two endpoints. What does your curve look like at higher levels?

Exercise 4.9

We will now turn to Sierpinski’s gasket. To get this started, write a procedure called
triangle that takes six arguments, namely the x and y coordinates of the triangle’s
three vertices. It should produce an image of the triangle. Test it with various
argument values; (triangle -1 -.75 1 -.75 0 1) should give you a large and
nearly equilateral triangle.

Exercise 4.10

Use triangle to write a procedure called sierpinskis-gasket that again takes
six arguments for the vertex coordinates but also takes a seventh argument for the
level of curve.

Review Problems

Exercise 4.11

Consider the following procedures:



100 Chapter 4 Orders of Growth and Tree Recursion

(define factorial
(lambda (n)
(if (= n 0)

1
(* n (factorial (- n 1))))))

(define factorial-sum1 ; returns 1! + 2! + ... + n!
(lambda (n)
(if (= n 0)

0
(+ (factorial n)

(factorial-sum1 (- n 1))))))

(define factorial-sum2 ; also returns 1! + 2! + ... + n!
(lambda (n)
(define loop
(lambda (k fact-k addend)
(if (> k n)

addend
(loop (+ k 1)

(* fact-k (+ k 1))
(+ addend fact-k)))))

(loop 1 1 0)))

In answering the following, assume that n is a nonnegative integer. Also, justify your
answers.

a. Give a formula for how many multiplications the procedure factorial does as
a function of its argument n.

b. Give a formula for how many multiplications the procedure factorial-sum1
does (implicitly through factorial) as a function of its argument n.

c. Give a formula for how many multiplications the procedure factorial-sum2
does as a function of its argument n.

Exercise 4.12

How many ways are there to factor n into two or more numbers (each of which must
be no smaller than 2)? We could generalize this to the problem of finding how many
ways there are to factor n into two or more numbers, each of which is no smaller
than m. That is, we write



Review Problems 101

(define ways-to-factor
(lambda (n)
(ways-to-factor-using-no-smaller-than n 2)))

Your job is to write ways-to-factor-using-no-smaller-than. Here are some
questions you can use to guide you:

If m2 . n, how many ways are there to factor n into two or more numbers each
no smaller than m?
Otherwise, consider the case that n is not divisible by m. Compare how many
ways are there to factor n into two or more numbers no smaller than m with how
many ways there are to factor n into two or more numbers no smaller than m 1 1.
What is the relationship?
The only remaining case is that m2 # n and n is divisible by m. In this case,
there is at least one way to factor n into numbers no smaller than m. (It can
be factored into m and n6 m.) There may, however, be other ways as well. The
ways of factoring n divide into two categories: those using at least one factor of m
and those containing no factor of m. How many factorizations are there in each
category?

Exercise 4.13

Consider the following procedure:

(define bar
(lambda (n)
(cond ((= n 0) 5)

((= n 1) 7)
(else (* n (bar (- n 2)))))))

How many multiplications (expressed in Q notation) will the computation of
(bar n) do? Justify your answer. You may assume that n is a nonnegative inte-
ger.

Exercise 4.14

Consider the following procedures:

(define foo
(lambda (n) ; computes n! + (n!)^n
(+ (factorial n) ; that is, (n! plus n! to the nth power)

(bar n n))))
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(define bar
(lambda (i j) ; computes (i!)^j (i! to the jth power)
(if (= j 0)

1
(* (factorial i)

(bar i (- j 1))))))

(define factorial
(lambda (n)
(if (= n 0)

1
(* n (factorial (- n 1))))))

How many multiplications (expressed in Q notation) will the computation of
(foo n) do? Justify your answer.

Exercise 4.15

Suppose that you have been given n coins that look and feel identical and you’ve
been told that exactly one of them is fake. The fake coin weighs slightly less than a
real coin. You happen to have a balance scale handy, so you can figure out which
is the fake coin by comparing the weights of various piles of coins. One strategy for
doing this is as follows:

If you only have 1 coin, it must be fake.

If you have an even number of coins, you divide the coins into two piles (same
number of coins in each pile), compare the weights of the two piles, discard the
heavier pile, and look for the fake coin in the remaining pile.

If you have an odd number of coins, you pick one coin out, divide the remaining
coins into two piles, and compare the weights of those two piles. If you’re lucky,
the piles weigh the same and the coin you picked out is the fake one. If not,
throw away the heavier pile and the extra coin, and look for the fake coin in the
remaining pile.

Note that if you have one coin, you don’t need to do any weighings. If you have
an even number of coins, the maximum number of weighings is one more than the
maximum number of weighings you’d need to do for half as many coins. If you have
an odd number of coins, the maximum number of weighings is the same as the
maximum number of weighings you’d need for one fewer coins.
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a. Write a procedure that will determine the maximum number of weighings you
need to do to find the fake coin out of n coins using the above strategy.

b. Come up with a fancier (but more efficient) strategy based on dividing the pile of
coins in thirds, rather than in half. (Hint: If you compare two of the thirds, what
are the possible outcomes? What does each signify?)

c. Write a procedure to determine the maximum number of weighings using the
strategy based on dividing the pile in thirds.

Exercise 4.16

Perhaps you noticed in Section 4.3 that as you increase the value of the level
parameter in c-curve (while keeping the starting and ending points fixed), the c-
curve gets larger. Not only is the path larger, but the curve extends further to the left,
further to the right, and extends higher and lower. One way to measure this growth
would be to ask how far left it extends (i.e., what its minimum x-value is). This could
be done by defining a procedure called min-x-of-c-curve, taking exactly the same
arguments as c-curve, which returns the minimum x-value of the given c-curve.

One strategy for implementing min-x-of-c-curve is as follows:

If level 5 0, the c-curve is just a line from (x0, y0) to (x1, y1), so return the smaller
of x0 and x1.
If level $ 1, the given c-curve is built from two c-curves, each of which has
level 2 1 as its level. One goes from (x0, y0) to (xa, ya), and the other from (xa, ya)
to (x1, y1). Therefore, you should return the smaller of the min-x-values of these
two sub-c-curves.

Write the procedure min-x-of-c-curve. As an aid in writing it, note that there is a
built-in procedure min that returns the smaller of its arguments. So we would have

(min 1 3) (min 2 -3) (min 4 4)
1 -3 4

As a hint, note that min-x-of-c-curve can be structured in a manner very similar
to both c-curve and length-of-c-curve.

Exercise 4.17

Consider the following enumeration problem: How many ways can you choose k
objects from n distinct objects, assuming of course that 0 # k # n? For example,
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how many different three-topping pizzas can be made if you have six toppings to
choose from?

The number that is the answer to the problem is commonly written as C(n, k).
Here is an algorithm for computing C(n, k):

As noted above, you may assume that 0 # k # n, because other values don’t
make sense for the problem.

The base cases are k 5 0 and k 5 n. It should not be too hard to convince
yourself that C(n, n) should equal 1, and similar reasoning can be used to show
that C(n, 0) 5 1 is also the reasonable choice.

The general case is 0 , k , n. Here you might argue as follows: Consider one
of the objects. Either you select it as one of the k objects, or you don’t. If you
do select it, then you must select k 2 1 more objects from the remaining n 2 1,
presumably a simpler problem that you assume you can do recursively. If on
the other hand you don’t select the first object, you must select k objects from
the remaining n 2 1, which is also a simpler problem whose value is computed
recursively. Then the total number of ways to select k objects from these n objects
is the sum of the numbers you get from these two subproblems.

Using this algorithm, write a tree-recursive procedure that calculates the numbers
C(n, k) described above.

Exercise 4.18

One way to sum the integers from a up to b is to divide the interval in half, recursively
sum the two halves, and then add the two sums together. Of course, it may not be
possible to divide the interval exactly in half if there are an odd number of integers
in the interval. In this case, the interval can be divided as nearly in half as possible.

a. Write a procedure implementing this idea.

b. Let’s use n as a name for the number of integers in the range from a up to b. What
is the order of growth (in Q notation) of the number of additions your procedure
does, as a function of n? Justify your answer.

Exercise 4.19

The following illustration shows a new kind of image, which we call a tri-block:
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What kind of process do you think was used to generate this image (i.e., was it linear
recursive, iterative, or tree recursive)? Write a paragraph carefully explaining why
you think this.

Exercise 4.20

Consider the following procedure:

(define foo
(lambda (low high level)
(let ((mid (/ (+ low high) 2)))
(let ((mid-line (line mid 0 mid (* level .1))))
(if (= level 1)

mid-line
(overlay mid-line

(overlay (foo low mid (- level 1))
(foo mid high (- level 1)))))))))

Examples of the images produced by this procedure are given below:

(foo -1 1 1) (foo -1 1 2) (foo -1 1 3) (foo -1 1 4)
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a. What kind of process does foo generate (i.e., linear recursive, iterative, or tree
recursive)? Justify your answer.

b. Let’s call the number of lines in the image foo produces l(n), where n is the
level. Make a table showing l(n) versus n for n 5 1, 2, 3, 4. Write a mathematical
equation showing how l(n) can be computed from l(n 2 1) when n is greater
than 1. Explain how each part of your equation relates to the procedure. What is
l(5)?
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Notes

The definitive work on sorting algorithms is by Knuth [31]. Knuth reports that merge
sort is apparently the first program written for a stored program computer, in 1945.

Our definition of Q allowed “finitely many exceptions.” Other books normally
specify that any number of exceptions are allowed, provided that they are all less
than some cutoff point. The two definitions are equivalent given our assumption
that n is restricted to be a nonnegative integer. If that restriction is lifted, the more
conventional definition is needed. In any case, the reason for allowing exceptions to
the bounds is to permit the use of bounding functions that are ill-defined for small n.
For example, we showed that merge sort was Q(n log n). When n 5 0, the logarithm
is undefined, so we can’t make a claim that the time to sort 0 cards is bounded
between two positive constant multiples of 0 log 0.

The digital signature method we’ve described is known as the RSA cryptosystem,
named after the initials of its developers: Ron Rivest, Adi Shamir, and Leonard
Adleman. The way we were able to produce our public modulus and secret signing
key is as follows. We randomly chose two 100-digit primes, which we’ve kept secret;
call them p and q. We made sure (p 2 1)(q 2 1) wasn’t divisible by 3. Our modulus
is simply the product pq. This means that in principle anyone could discover p
and q by factoring our published modulus. However, no one knows how to factor
a 200-digit number in any reasonable amount of time. Our secret signing exponent
is calculated using p and q. It is the multiplicative inverse of 3 (the verification
exponent), mod (p 2 1)(q 2 1). That is, it is the number that when multiplied by 3
and then divided by (p 2 1)(q 2 1) leaves a remainder of 1. For an explanation of
why this works, how the inverse is quickly calculated, and how to find large primes,
consult Cormen, Leiserson, and Rivest’s superb Introduction to Algorithms [14]. For
general information on the RSA system, there is a useful publication from RSA
Laboratories by Paul Fahn [16]. We should point out that the use of the RSA system
for digital signatures is probably covered by several patents; however, the relevant
patent holders have indicated that they won’t prosecute anyone using the system as
an educational exercise. Also, it is worth mentioning that the export from the United
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States of any product employing the RSA system is regulated by the International
Traffic in Arms Regulation.

There has been a recent explosion of books on fractals, aimed at all levels of
audience. Two classics by Mandelbrot, who coined the word fractal, are [36] and [37].

Some aspects of our treatment of fractals, such as the c-curve example and the
length-of-c-curve exercise, are inspired by a programming assignment developed
by Abelson, Sussman, and friends at MIT [1].
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Higher-Order Procedures

5.1 Procedural Parameters

In the earlier chapters, we twice learned how to stop writing lots of specific expressions
that differed only in details and instead to write one general expression that captured
the commonality:

In Chapter 1, we learned how to define procedures. That way when we had several
expressions that differed only in the specific values being operated on, such as
(* 3 3), (* 4 4), and (* 5 5), we could instead define a general procedure:

(define square
(lambda (x)
(* x x)))

This one procedure can be used to do all of the specific calculations just listed;
the procedure specifies what operations to do, and the parameter allows us to vary
which value is being operated on.
In Chapter 2, we learned how to generate variable-size computational processes.
That way if we had several procedures that generated processes of the same
form, but differing in size, such as (define square (lambda (x) (* x x)))
and (define cube (lambda (x) (* (* x x) x))), we could instead define
a general procedure:

(define power
(lambda (b e)
(if (= e 1)

b
(* (power b (- e 1)) b))))

109
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This one procedure can be used in place of the more specific procedures listed
previously; the procedure still specifies what operations to do, but the parameters
now specify how many of these operations to do as well as what values to do them
to.

Since learning about these two kinds of variability—variability of values and of
computation size—we’ve concentrated on other issues, such as the amount of time
and memory that a process consumes. In this chapter, we will learn about a third
kind of variability, which, once again, will allow us to replace multiple specific
definitions with a single more general one.

Suppose that you replace the operation name * with stack in the previous
definition of power. By making this one change, you’ll have a procedure for stacking
multiple copies of an image instead of doing exponentiation. That is, the general
structure of the two procedures is the same; the only difference is the specific
operation being used. (Of course, it would make the procedure easier to understand
if you also made some cosmetic changes, such as changing the name from power
to stack-copies-of and changing the name and order of the parameters. If you
do this, you’ll probably wind up with the exact same procedure you wrote for
Exercise 2.13 on page 40.)

This commonality of structure raises an interesting question: Can we write one
general purpose procedure for all computations of this kind and then tell it not only
how many copies we want of what but also how they should be combined? If so, we
could ask it to stack together 3 copies of rcross-bb, to multiply together 5 copies of
2, or . . . . We might use it like this:

(together-copies-of stack 3 rcross-bb) ⇒

(together-copies-of * 5 2)
32

The first argument is a procedure, which is how we specify the kind of combining we
want done. The names stack and * are evaluated, just like the name rcross-bb
is or any other expression would be. Therefore, the actual argument value is the
procedure itself, not the name.

To start writing the procedure together-copies-of, we give a name for its
procedural parameter in the parameter list, along with the other parameters:

(define together-copies-of
(lambda (combine quantity thing)

Here we have three parameters, called combine, quantity, and thing, filling in the
blanks in “combine together quantity copies of thing.” We chose to use a verb for the
procedural parameter and nouns for the other parameters to remind ourselves how
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they are used. Now we can finish writing the procedure, using the parameter names
in the body wherever we want to have the specifics substituted in. For example,
when we want to check whether the specific quantity requested is 1, we write
(= quantity 1). Similarly, when we want to use the specific combining operation
that was requested, we write (combine ... ...). Here is the resulting procedure:

(define together-copies-of
(lambda (combine quantity thing)
(if (= quantity 1)

thing
(combine (together-copies-of combine

(- quantity 1)
thing)

thing))))

Once we’ve got this general purpose procedure, we can use it to simplify the
definition of other procedures:

(define stack-copies-of
(lambda (quantity image)
(together-copies-of stack quantity image)))

(define power
(lambda (base exponent)
(together-copies-of * exponent base)))

(define mod-expt
(lambda (base exponent modulus)
(together-copies-of (lambda (x y)

(remainder (* x y) modulus))
exponent base)))

(Notice that we didn’t bother giving a name, such as mod*, to the combining proce-
dure used in mod-expt. Typically, using a lambda expression to supply the proce-
dural argument directly is easier than stopping to give it a name with define and
then referring to it by name.)

Together-copies-of is an example of a higher-order procedure. Such proce-
dures have procedural parameters or (as we’ll see later) return procedural values. One
great benefit of building a higher-order procedure is that the client procedures such
as stack-copies-of and mod-expt are now completely independent of the process
used for combining copies. All they say is that so many copies of such and such should
be combined with this combiner, without saying how that combining should be orga-
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nized. This means that we can improve the technique used by together-copies-of
and in one fell swoop the performance of stack-copies-of, mod-expt, and any
other client procedures will all be improved.

Exercise 5.1

Write a linear iterative version of together-copies-of.

Exercise 5.2

Write a logarithmic-time version of together-copies-of. You may assume that
the combiner is associative.

Exercise 5.3

What does the following procedure compute? Also, compare its performance with
each of the three versions of together-copies-of installed, using relatively large
values for the first argument, perhaps in the ten thousand to a million range.

(define mystery
(lambda (a b)
(together-copies-of + a b)))

For our second example, note that counting the number of times that 6 is a digit
in a number (Exercise 2.9 on page 39) is very similar to counting the number of
odd digits in a number (Exercise 2.10 on page 39). In the former case, you’re testing
to see if each digit is equal to 6 and in the latter you’re testing to see if each digit
is odd. Thus we can write a general procedure, num-digits-in-satisfying, that
we can use to define both of these procedures. Its second parameter is the particular
test predicate to use on each digit.

(define num-digits-in-satisfying
(lambda (n test?)
(cond ((< n 0)

(num-digits-in-satisfying (- n) test?))
((< n 10)
(if (test? n) 1 0))
((test? (remainder n 10))
(+ (num-digits-in-satisfying (quotient n 10) test?)

1))
(else
(num-digits-in-satisfying (quotient n 10) test?)))))
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We can then define the procedures asked for in Exercises 2.9 and 2.10 as special
cases of the more general procedure num-digits-in-satisfying:

(define num-odd-digits
(lambda (n)
(num-digits-in-satisfying n odd?)))

(define num-6s
(lambda (n)
(num-digits-in-satisfying n (lambda (n) (= n 6)))))

Exercise 5.4

Use num-digits-in-satisfying to define the procedure num-digits, which was
defined “from scratch” in Section 2.3.

Exercise 5.5

Rewrite num-digits-in-satisfying so that it generates an iterative process.

Another computational pattern that occurs very frequently involves summing the
values of a function over a given range of integers.

Exercise 5.6

Write a general purpose procedure, that when given two integers, low and high, and
a procedure for computing a function f , will compute f (low) 1 f (low 1 1) 1 f (low 1
2) 1 ? ? ? 1 f (high). Show how it can be used to sum the squares of the integers from
5 to 10 and to sum the square roots of the integers from 10 to 100.

5.2 Uncomputability

Designing general purpose procedures with procedural parameters is an extremely
practical skill. It can save considerable programming, because a procedure can be
written a single time but reused in many contexts. However, despite this practicality,
the single most interesting use of a procedure with a procedural parameter is in a
theoretical proof. In this section we’ll take a look at the history and importance of
this proof.

By now we’ve seen that procedures are quite powerful. They can be used for
doing arithmetic on 200-digit numbers in order to produce digital signatures, for
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making a variety of complex images, and for looking words up in dictionaries. You
probably know of lots of other things procedures can be used for. There seems
to be no limit to what we can do with them. At the beginning of the twentieth
century, mathematicians addressed exactly that question: whether a procedure could
be found to compute any function that could be precisely mathematically specified.
That question was settled in the 1930s by the discovery of several uncomputable
functions (one of which we’ll examine in this section).

The specific function we’ll prove uncomputable is a higher-order one and is
often called the halting problem. It takes a procedure as an argument and returns a
true/false value telling whether the given procedure generates a terminating process,
as opposed to going into an infinite loop. Now imagine that one of your brilliant
friends gives you a procedure, called halts?, that supposedly computes this function.
You could then use this procedure on the simple procedures return-seven and
loop-forever defined below. Evaluating (halts? return-seven) should result
in #t, whereas (halts? loop-forever) should evaluate to #f.

(define return-seven
(lambda ()
7))

(define loop-forever
(lambda ()
(loop-forever)))

(Return-seven and loop-forever happen to be our first examples of procedures
with no parameters. This is indicated by the empty parentheses.)

Clearly halts? would be a handy procedure to have, if it really worked. To start
with, it could be used to test for a common kind of bug. Never again would you have
to guess whether you’d goofed and accidentally written a nonterminating procedure.
You could tell the difference between a computation that was taking a long time
and one that would never finish.

Above and beyond this, you could answer all sorts of open mathematical questions.
For example, we mentioned earlier that no one knows whether there are any odd
perfect numbers. It would be easy enough to write a procedure that tested all the odd
numbers, one by one, stopping when and if it found one that was perfect. Then all
we’d have to do is apply halts? to it, and we’d have the answer—if we’re told that
our search procedure halts, there are odd perfect numbers; otherwise, there aren’t.
This suggests that such a procedure might be a bit too wonderful to exist—it would
make obsolete centuries of mathematicians’ hard work. However, this is far from a
proof that it doesn’t exist.

Another related sense in which halts? is a bit too good to be true forms a
suitable basis for a proof that it can’t be a sure-fire way to determine whether a given



5.2 Uncomputability 115

procedure generates a halting process. (In other words, there must be procedures for
which it either gives the wrong answer or fails to give an answer.) Halts? in effect
claims to predict the future: It can tell you now whether a process will terminate or
not at some point arbitrarily far into the future. The way to debunk such a fortune-
teller is to do the exact opposite of what the fortune-teller foretells (provided that the
fortune-teller is willing to give unambiguous answers to any question and that you
believe in free will). This will be the essence of our proof that halts? can’t work as
claimed.

What we want is a procedure that asks halts? whether it is going to stop and
then does the opposite:

(define debunk-halts?
(lambda ()
(if (halts? debunk-halts?)

(loop-forever)
666)))

Debunk-halts? halts if and only if debunk-halts? doesn’t halt—provided the
procedure halts? that it calls upon performs as advertised. But nothing can both
halt and not halt, so there is only one possible conclusion: our assumption that such
a halts? procedure exists must be wrong—there can be no procedure that provides
that functionality.

The way we proved that the halting problem is uncomputable is called a proof
by contradiction. What we did was to assume that it was computable, that is, that a
procedure (halts?) exists that computes it. We then used this procedure to come
up with debunk-halts?, which halts if and only if it doesn’t halt. In other words,
whether we assume that debunk-halts? halts or that it doesn’t halt, we can infer
the opposite; we are stuck with a contradiction either way. Because we arrived at
this self-contradictory situation by assuming that we had a halts? procedure that
correctly solved the halting problem, that assumption must be false; in other words,
the halting problem is uncomputable.

This version of proof by contradiction, where the contradiction is arrived at by
using an alleged universal object to produce the counterexample to its own univer-
sality, is known as a diagonalization proof. Another variation on the theme can be
used to show that most functions can’t even be specified, let alone implemented by
a procedure.

We should point out that we’ve only given what most mathematicians would call
a “sketch” of the actual proof that the halting problem is uncomputable. In a formal
proof, the notions of what a procedure is, what process that procedure generates,
and whether that process terminates need to be very carefully specified in formal
mathematical terms. This ensures that the function mapping each procedure to a
truth value based on whether or not it generates a terminating process is a well-
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defined mathematical function. The mathematician Alan Turing spent considerable
effort on these careful specifications when he originated the proof that halts? can’t
exist.

The discovery that there are mathematical functions that can be specified but
not computed is one of the wedges that served to split computer science off from
mathematics in the middle of the twentieth century. Of course, this was the same
period when programmable electronic computers were first being designed and built
(by Turing himself, among others). However, we can now see that the fundamental
subject matter of mathematics and computer science are distinct: Mathematicians
study any abstraction that can be formally specified, whereas computer scientists
confine their attention to the smaller realm of the computable. Mathematicians
sometimes are satisfied with an answer to the question “is there a . . . ,” whereas
computer scientists ask “How do I find it?”

Alan Turing

One of the surest signs of genius in a computer scientist is the ability to excel
in both the theoretical and the practical sides of the discipline. All the greatest
computer scientists have had this quality, and most have even gone far beyond the
borders of computer science in their breadth. Given the youth of the discipline,
most of these greats are still alive, still alternating between theory and application,
the computer and the pipe organ. Alan Turing, however, has the dual distinction
of having been one of these greats who passed into legend.

Turing developed one of the first careful theoretical models of the notions of
algorithm and process in the 1930s, basing it on a bare-bones computing machine
that is still an important theoretical model—the Turing machine, as it is called.
He did this as the basis of his careful proof of the uncomputability of the halting
problem, sketched in this section. In so doing he made a contribution of the first
magnitude to the deepest theoretical side of computer science.

During World War II, Turing worked in the British code-breaking effort and
successfully designed real-life computing machines dedicated to this purpose.
He is given a considerable portion of the credit for the Allied forces’ decisive
cryptographic edge and in particular for the breaking of the German “Enigma”
ciphers.

After the war Turing led the design of the National Physical Laboratory’s ACE
computer, which was one of the first digital electronic stored-program computers
designed anywhere and the first such project started in England.

During this same post-war period of the late forties Turing returned more se-
riously to a question he had dabbled with for years, the question of artificial

Continued
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Alan Turing (Continued)

intelligence: whether intelligence is successfully describable as a computational
process, such that a computing machine could be programmed to be intelligent.
He made a lasting contribution to this area of thought by formulating the question
in operational terms. In other words, he made the significant choice not to ask “is
the machine really intelligent inside or just faking” but rather “can the machine
be distinguished from a human, simply by looking at its outward behavior.” He
formulated this in a very specific way: Can a computer be as successful as a man at
convincing an interrogator that it is a woman? He also stipulated that the computer
and the man should both be communicated with only through a textual computer
terminal (or teletype). In the decades since Turing published this idea in 1950, it
has been generalized such that any operational test of intelligence is today referred
to as a “Turing test.” Theoretical foundations, applications to code breaking,
computer design, and questions of artificial intelligence weren’t all that concerned
Turing, however. He also made an important contribution to theoretical biology.
His famous 1952 paper “The Chemical Basis of Morphogenesis” showed how
chemical reactions in an initially homogeneous substance can give rise to large-
scale orderly forms such as are characteristic of life.

Turing’s work on morphogenesis (the origins of form) never reached com-
pletion, however, because he tragically took his own life in 1954, at the age of
42. There is considerable uncertainty about exactly why he did this, or more
generally about his state of mind. It is documented that he had gone through
periods of depression, as well as considerable trauma connected with his sexual
orientation. Turing was rather openly homosexual, at a time when sex between
men was a crime in England, even if in private and with consent. In 1952
Turing was convicted of such behavior, based on his own frank admission. His
lawyer asked the court to put him on probation, rather than sentence him to
prison, on the condition that he undergo experimental medical treatment for his
homosexuality—paradoxically it was considered an illness as well as a crime. The
treatment consisted of large doses of estrogen (female hormones), which caused
impotence, depression, and further stigmatization in the form of enlarged breasts.
The treatment ended in 1953, but there is circumstantial evidence suggesting
that British intelligence agencies kept close tabs on Turing thereafter, including
detaining a foreign lover to prevent a rendezvous. (Apparently they were con-
cerned that Turing might divulge his secret information regarding cryptography
and related fields.) Although there is no clear evidence, this sequence of events
probably played a role in the overall emotional progression leading to Turing’s
suicide, cutting off what could have been the entire second half of his career.
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Since the 1930s, when Turing showed that there could be no procedure that solves
this halting problem, many other functions have been shown to be uncomputable.
Many of these proofs have the form: “If I had this procedure, I could use it in this
clever way to implement halts?. But halts? can’t exist, so this procedure must
not either.” This is known as a proof by reduction.

5.3 Procedures That Make Procedures

Now we can return to the more practical question of what programming techniques
are made possible by procedures that operate on procedures. (Recall that this is what
higher-order means.) So far we have seen procedures that take other procedures as
parameters, just as they might take numbers or images. However, procedures don’t
just take values in: They also return values as the result of their computations. This
carries over to procedural values as well; higher-order procedures can be used to
compute procedural results. In other words, we can build procedures that will build
procedures. Clearly this could be a very labor-saving device.

How do we get a procedure to return a new procedure? We do it in the same way
that we get a procedure to return a number. Recall that in order to ensure that a
procedure returns a number when it is applied, its body must be an expression that
evaluates to a number. Similarly, for a procedure to create a new procedure when it
is applied, its body must be an expression that evaluates to a procedure. At this point,
we know of only one kind of expression that can evaluate to a new procedure—a
lambda expression. For example, here is a simple “procedure factory” with examples
of its use:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

(define double (make-multiplier 2))

(define triple (make-multiplier 3))

(double 7)
14

(triple 12)
36

When we evaluate the definition of make-multiplier, the outer lambda ex-
pression is evaluated immediately and has as its value the procedure named
make-multiplier. That procedure is waiting to be told what the scaling factor
is. When we evaluate
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(define double (make-multiplier 2))

the body of the procedure named make-multiplier is evaluated, with the value
2 substituted for scaling-factor. In other words, the expression (lambda (x)
(* x scaling-factor)) is evaluated with 2 substituted for scaling-factor.
The result of this evaluation is the procedure that is named double, just as though
the definition had been (define double (lambda (x) (* x 2))). When we
apply double to 7, the procedure (lambda (x) (* x 2)) is applied to 7, and the
result is, of course, 14.

Exercise 5.7

Write a procedure make-exponentiater that is passed a single parameter e (an
exponent) and returns a function that itself takes a single parameter, which it raises
to the e power. You should use the built-in Scheme procedure expt. As examples,
you could define square and cube as follows:

(define square (make-exponentiater 2))

(define cube (make-exponentiater 3))

(square 4)
16

(cube 4)
64

For another example of a procedure factory, suppose that we want to automate
the production of procedures like repeatedly-square, from Section 3.2. That pro-
cedure took two arguments, the number to square and how many times it should be
squared. We could make a procedure factory called make-repeated-version-of
that would be able to make repeatedly-square out of square:

(define make-repeated-version-of
(lambda (f) ; make a repeated version of f
(define the-repeated-version
(lambda (b n) ; which does f n times to b
(if (= n 0)

b
(the-repeated-version (f b) (- n 1)))))

the-repeated-version))

(define square (lambda (x) (* x x)))
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(define repeatedly-square
(make-repeated-version-of square))

(repeatedly-square 2 3) ; 2 squared squared squared
256

One thing worth noticing in this example is that we used an internal definition
of the-repeated-version to provide a name for the generated procedure. That
way we can refer to it by name where it reinvokes itself to do the n 2 1 remaining
repetitions. Having internally defined this name, we then return the procedure it is
a name for.

Exercise 5.8

Define a procedure that can be used to produce factorial (Section 2.1) or
sum-of-first (Section 2.3). Show how it can be used to define those two pro-
cedures.

Exercise 5.9

Generalize your solution to the previous exercise so it can also be used to produce
sum-of-squares and sum-of-cubes from Exercise 2.8 on page 38.

5.4 An Application: Verifying ID Numbers

Does this scenario sound familiar?

May I have your credit card number please?
Yes, it’s 6011302631452178.
I’m sorry, I must have typed that wrong. Could you please say it again?

How did the sales representative know the number was wrong?
Credit card numbers are one of the most common examples of self-verifying num-

bers. Other examples include the ISBN numbers on books, the UPC (Universal
Product Code) numbers on groceries, the bank numbers on checks, the serial num-
bers on postal money orders, the membership numbers in many organizations, and
the student ID numbers at many universities.

Self-verifying numbers are designed in such a way that any valid number will have
some specific numerical property and so that most simple errors (such as getting two
digits backward or changing the value of one of the digits) result in numbers that
don’t have the property. That way a legitimate number can be distinguished from
one that is in error, even without taking the time to search through the entire list of
valid numbers.
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What interests us about self-verifying numbers is that there are many different
systems in use, but they are almost all of the same general form. Therefore, although
we will need separate procedures for checking the validity of each kind of number,
we can make good use of a higher-order procedure to build all of the verifiers for us.

Suppose we call the rightmost digit of a number d1, the second digit from the right
d2, etc. All of the kinds of identifying numbers listed previously possess a property of
the following kind:

f (1, d1) 1 f (2, d2) 1 f (3, d3) 1 ? ? ? is divisible by m

All that is different between a credit card and a grocery item, or between a book and
a money order, is the specific function f and the divisor m.

How do we define a procedure factory that will construct verifiers for us? As we did
in Section 5.3, we will first look at one of the procedures that this factory is supposed
to produce. This verifier checks to see whether the sum of the digits is divisible by
17; in other words, the divisor is 17 and the function is just f (i, di) 5 di. To write the
verifier, we’ll first write a procedure to add the digits. Recall from Chapter 2 that we
can get at the individual digits in a number by using division by 10. The remainder
when we divide by 10 is the rightmost digit, d1, and the quotient is the rest of the
digits. For example, here is how we could compute the sum of the digits in a number
(as in Exercise 2.11 on page 39) using an iterative process:

(define sum-of-digits
(lambda (n)
(define sum-plus ;(sum of n’s digits) + addend
(lambda (n addend)
(if (= n 0)

addend
(sum-plus (quotient n 10)

(+ addend (remainder n 10))))))
(sum-plus n 0)))

Exercise 5.10

Write a predicate that takes a number and determines whether the sum of its digits
is divisible by 17.

Exercise 5.11

Write a procedure make-verifier, which takes f and m as its two arguments
and returns a procedure capable of checking a number. The argument f is itself a
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procedure, of course. Here is a particularly simple example of a verifier being made
and used:

(define check-isbn (make-verifier * 11))

(check-isbn 0262010771)
#t

The value #t is the “true” value; it indicates that the number is a valid ISBN.

As we just saw, for ISBN numbers the divisor is 11 and the function is simply
f (i, di) 5 i 3 di. Other kinds of numbers use slightly more complicated functions,
but you will still be able to use make-verifier to make a verifier much more easily
than if you had to start from scratch.

Exercise 5.12

For UPC codes (the barcodes on grocery items), the divisor is 10, and the function
f (i, di) is equal to di itself when i is odd, but to 3di when i is even. Build a verifier for
UPC codes using make-verifier, and test it on some of your groceries. (The UPC
number consists of all the digits: the one to the left of the bars, the ones underneath
the bars, and the one on the right.) Try making some mistakes, like switching or
changing digits. Does your verifier catch them?

Exercise 5.13

Credit card numbers also use a divisor of 10 and also use a function that yields di

itself when i is odd. However, when i is even, the function is a bit fancier: It is 2di if
di , 5, and 2di 1 1 if di $ 5. Build a verifier for credit card numbers. In the dialog
at the beginning of this section, did the order taker really mistype the number, or
did the customer read it incorrectly?

Exercise 5.14

The serial number on U.S. postal money orders is self-verifying with a divisor of 9 and
a very simple function: f (i, di) 5 di, with only one exception, namely, f (1, d1) 5 2d1.
Build a verifier for these numbers, and find out which of these two money orders is
mistyped: 48077469777 or 48077462766.

Actually, both of those money order numbers were mistyped. In one case the error
was that a 0 was replaced by a 7, and in the other case two digits were reversed.
Can you figure out which kind of error got caught and which didn’t? Does this help
explain why the other kinds of numbers use fancier functions?
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Review Problems

Exercise 5.15

Write a higher-order procedure called make-function-with-exception that takes
two numbers and a procedure as parameters and returns a procedure that has the
same behavior as the procedural argument except when given a special argument.
The two numerical arguments to make-function-with-exception specify what
that exceptional argument is and what the procedure made by make-function-
with-exception should return in that case. For example, the usually-sqrt pro-
cedure that follows behaves like sqrt, except that when given the argument 7, it
returns the result 2:

(define usually-sqrt
(make-function-with-exception 7 2 sqrt))

(usually-sqrt 9)
3

(usually-sqrt 16)
4

(usually-sqrt 7)
2

Exercise 5.16

If two procedures f and g are both procedures of a single argument such that the val-
ues produced by g are legal arguments to f , the composition of f and g is defined to be
the procedure that first applies g to its argument and then applies f to the result. Write
a procedure called compose that takes two one-argument procedures and returns
the procedure that is their composition. For example, ((compose sqrt abs) -4)
should compute the square root of the absolute value of 24.

Exercise 5.17

Suppose you have a function and you want to find at what integer point in a given
range it has the smallest value. For example, looking at the following graph of the
function f (x) 5 x2 2 2x, you can see that in the range from 0 to 4, this function has
the smallest value at 1.
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1 2 3 4

–1

1

2

3

4

We could write a procedure for answering questions like this; it could be used as
follows for this example:

(integer-in-range-where-smallest (lambda (x)
(- (* x x) (* 2 x)))

0 4)
1

Here is the procedure that does this; fill in the two blanks to complete it:

(define integer-in-range-where-smallest
(lambda (f a b)
(if (= a b)

a
(let ((smallest-place-after-a

))
(if

a
smallest-place-after-a)))))

Exercise 5.18

Consider the following definitions:

(define make-scaled
(lambda (scale f)
(lambda (x)
(* scale (f x)))))

(define add-one
(lambda (x)
(+ 1 x)))
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(define mystery
(make-scaled 3 add-one))

For the following questions, be sure to indicate how you arrived at your answer:

a. What is the value of (mystery 4)?
b. What is the value of the procedural call ((make-scaled 2 (make-scaled

3 add-one)) 4)?

Exercise 5.19

If l and h are integers, with l , h, we say f is an increasing function on the integer
range from l to h if f (l) , f (l 1 1) , f (l 1 2) , ? ? ? , f (h). Write a procedure,
increasing-on-integer-range?, that takes f , l, and h as its three arguments and
returns true or false (that is, #t or #f) as appropriate.

Exercise 5.20

Suppose the following have been defined:

(define f
(lambda (m b)
(lambda (x) (+ (* m x) b))))

(define g (f 3 2))

For each of the following expressions, indicate whether an error would be signaled,
the value would be a procedure, or the value would be a number. If an error is
signaled, explain briefly the nature of the error. If the value is a procedure, specify
how many arguments the procedure expects. If the value is a number, specify which
number.

a. f
b. g
c. (* (f 3 2) 7)

d. (g 6)

e. (f 6)

f. ((f 4 7) 5)
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Exercise 5.21

We saw in Section 5.3 the following procedure-generating procedure:

(define make-multiplier
(lambda (scaling-factor)
(lambda (x)
(* x scaling-factor))))

You were also asked in Exercise 5.7 to write the procedure make-exponentiater.
Notice that these two procedures are quite similar. We could abstract out the

commonality into an even more general procedure make-generator such that we
could then just write:

(define make-multiplier (make-generator *))

(define make-exponentiater (make-generator expt))

Write make-generator.

Exercise 5.22

The function halts? was defined as a test of whether a procedure with no parameters
would generate a terminating process. That is, (halts? f) returns true if and
only if the evaluation of (f) would terminate. What about procedures that take
arguments? Suppose we had a procedure halts-on? that tests whether a one-
argument procedure generates a terminating process when given some particular
argument. That is, (halts-on? f x) returns true if and only if the evaluation of
(f x) would terminate.

a. Use halts-on? in a definition of halts?.
b. What does this tell you about the possibility of halts-on?

Exercise 5.23

Consider the following example:

(define double (lambda (x) (* x 2)))
(define square (lambda (x) (* x x)))
(define new-procedure
(make-averaged-procedure double square))
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(new-procedure 4)
12

(new-procedure 6)
24

In the first example, the new-procedure that was made by make-averaged-
procedure returned 12 because 12 is the average of 8 (twice 4) and 16 (4 squared).
In the second example, it returned 24 because 24 is the average of 12 (twice 6)
and 36 (6 squared). In general, new-procedure will return the average of what-
ever double and square return because those two procedures were passed to
make-averaged-procedure when new-procedure was made.

Write the higher-order procedure factory make-averaged-procedure.

Exercise 5.24

Consider the following procedure:

(define positive-integer-upto-where-smallest
(lambda (n f) ; return an integer i such that

; 1 <= i <= n and for all integers j
; in that same range, f(i) <= f(j)

(define loop
(lambda (where-smallest-so-far next-to-try)
(if (> next-to-try n)

where-smallest-so-far
(loop (if (< (f next-to-try)

(f where-smallest-so-far))
next-to-try
where-smallest-so-far)

(+ next-to-try 1)))))
(loop 1 2)))

a. Write a mathematical formula involving n that tells how many times this proce-
dure uses the procedure it is given as its second argument. Justify your answer.

b. Give a simple Q order of growth for the quantity you determined in part a. Justify
your answer.

c. Suppose you were to rewrite this procedure to make it more efficient. What (in
terms of n) is the minimum number of times it can invoke f and still always
determine the correct answer? Justify your answer. (You are not being asked to
actually rewrite the procedure.)
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We remarked in passing that diagonalization can also be used to prove that most
functions can’t even be specified, let alone implemented by a procedure. To give
some flavor for this, let’s restrict ourselves to functions mapping positive integers
to positive integers and show that any notational scheme must miss at least one of
them. Consider an infinitely long list of all possible function specifications in the
notational scheme under consideration, arranged in alphabetical order; call the first
one f1, the second one f2, etc. Now consider the function f that has the property
that for all n, f (n) 5 fn(n) 1 1. Clearly there is no n for which f is identical to fn,
because it differs from each of them in at least one place (namely, at n). Thus f is a
function that is not on the list.

Our information about the various schemes used for self-verifying numbers is
gleaned in small part from experimentation but primarily from two articles by Gal-
lian, [20] and [19]. Those articles contain more of the mathematical underpinnings
and citations for additional sources. We confess that the ISBN checker we defined as
an example will only work for those ISBNs that consist purely of digits; one-eleventh
of all ISBNs end with an X rather than a digit. This X is treated as though it were a
digit with value 10.
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Data Abstraction

I n the previous part, we looked at how procedures describe computational
processes. In this part, we will turn our attention to the data that is manip-
ulated by those processes and how it can be structured. There are many

qualitatively dissimilar ways of structuring data. For example, the list of stops for
a bus route bears little resemblance to someone’s family tree. In this part, we’ll
focus on a few representative data structures and the collection of operations
that is appropriate to each one.
In Chapter 6, we’ll work through the fundamentals of using and representing

compound data in the relatively simple context of data types with a fixed
number of components. Our focus is on the collection of operations that
forms the interface between the uses of the data type and its representation.
In Chapter 7, we’ll show how two-component data structures can actually be
used to represent lists of any length, by treating each nonempty list as having a
first element and a list of the remaining elements. We’ll extend this recursive
approach to structuring data to hierarchical, tree-like structures in Chapter 8.
Next we’ll examine how a diverse collection of different data representations
can present a single, uniform collection of interface operations. Finally, we’ll
look at programs as themselves being hierarchically composed data (expressions
made of subexpressions) and see how to provide a uniform “evaluate” operation
across the diversity of different expression types. By doing so, we’ll show that
implementing a programming language is really a specific application of the
techniques introduced in this part of the book.





C H A P T E R S I X

Compound Data
and Data Abstraction

6.1 Introduction

Up until now, each value passed to one of our procedures as an argument or returned
as a result was a single thing: a number, an image, a truth value, or a procedure.
If we wanted to pass a procedure two numbers, we needed two separate arguments,
because each argument value could only be a single thing. This kind of data is
called atomic data. On the other hand, you can easily think of programs that use
more complex data. For example, a program that plays poker would use hands
of cards. There might be a compare-hands procedure that takes two arguments,
namely, the two hands to compare, and reports which is better. Each argument to
this procedure is a single thing, namely, a hand. Yet we can also select an individual
card from a hand. So, at the same time as the hand is a single thing, it is also a
collection of component cards. How about the cards themselves? Each card is clearly
a single thing, yet we can also treat it as a combination of a suit and a rank. Data
such as this, which we can interpret as both a single entity and also as a collection
of parts, is called compound data.
In order to see how we can get a computer to navigate these strange waters between

singular and plural, consider the following scenario. Suppose you run a mail-order
company and want to start selling custom-knit “socks” for cats’ tails—great for those
cold nights. (You figure you’ll have the market all to yourself.) The problem is, your
order form only has space for a single model number, but the customer needs to
specify both the length (to the nearest centimeter) and also whether or not they want
the deluxe (mohair) version. In other words, they need to send you a combination of
a number (the length) and a truth value (whether or not deluxe) but can only send
in one thing—the model number. What do you do? You hire a consulting firm.

133
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The consulting firm designs three calculator-like gizmos with keypads and dis-
plays. One of them, the constructor, is to be mailed out to your customers along
with their catalogs. It constructs the model number from the length and the deluxe-
ness choice. The other two gizmos, the selectors, are for use at your company. The
deluxeness selector displays “yes” or “no” on its display when you enter a model
number. The length selector displays the length in centimeters when you enter a
model number.
You and your customers can use these devices without needing to know any-

thing about how they work. In particular, you don’t need to know how the
two pieces of information are encoded into the model number. In contrast, the
consultants who designed the gizmos (and who are likely to be the only ones
who get rich on this whole harebrained scheme) need to decide on this encoding.
They need to choose a particular representation of the two pieces of information,
and this same representation needs to be embodied in both the constructor and the
selectors.
This idea, that the representation of data can be exclusively the concern of a

constructor and selectors, rather than of the ultimate creators and users of the data,
is known as data abstraction. In slightly more general terms, data abstraction refers
to separating the way a new type of data is used from the way it is represented.
This means that when we add a new data type, we first decide what operations
(procedures) are necessary to create and manipulate the data values. Then we figure
out a good way of representing the data values using the types that are already part
of our Scheme system. Finally, we find algorithms necessary for implementing the
essential operations. Whenever we use the new data type in another program, we
create and manipulate the data values only by using the essential operations, and
not by accessing the underlying representation of the data.
The self-discipline of data abstraction brings three rewards. First of all, by specify-

ing the basic operations that manipulate the new data type, the programmer needn’t
worry about how the data values are actually represented. This means that she can
work with the abstract model of the data that she has in her head rather than
constantly switching from the model to the underlying representation and back.
(A programmer working in this representation-independent way is said to be using
an abstract data type, or ADT .) Secondly, if we separate the way the data is used
from how it is implemented, the implementation can be developed independently
from the programs using the data. Because of this, we can often break down a
large programming project into pieces that different teams of programmers can work
on simultaneously. Finally, because the application programs access the data only
through the basic operations, we can easily change the way the data is represented
by simply changing these procedures. In particular, if we want to move a large soft-
ware program (such as the Scheme system) from one type of computer to another
(this process is called porting), a lot of the work is restricted to modifying the ADT
implementations.
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In the remainder of this chapter, we illustrate the technique of data abstraction
by writing a program that plays the game of Nim. This is our first example of an
interactive program, thereby introducing the reader to some simple input and output
procedures in Scheme. For most of this chapter, our compound data will have only
two components; however, we show how to create data types with three components
in Section 6.4. This technique can be extended to any (fixed) number of components.
Our application section considers how to use higher-order programming together
with data abstraction to add strategies to the game of Nim.
In later chapters, we consider more complex data structures, such as lists and

hierarchically structured data, that do not restrict the number of components in the
data. We also consider complex “generic” operators that can be used on multiple
data types. Finally, we apply these ideas to one very special kind of compound data,
programs, and a particularly interesting operation, the running of those programs.

6.2 Nim

In this section we will start to write the procedures for playing a variation on the
game of Nim. The first appearance of “official” rules for Nim is in a 1901 paper by
Charles Bouton, in which he analyzed the game and presented a winning strategy.
However, like many informal folk games, there are many different ways of playing
Nim. All the variations start with objects of some sort arranged in some way. Two
players alternate removing objects according to certain rules, and the player who
takes the last object is the winner (or the loser, in some variations). We present three
ways to play Nim:

1. The version we’ll call three-pile Nim is presented in Bouton’s paper. It is played
using three piles of objects, say coins. When the game starts, the three piles
have different numbers of coins. Two players take turns removing coins. Each
player must take at least one coin each turn and may take more as long as they
are all from the same pile. The winner is the player who takes the last coin (or
coins). Because finding a winning strategy for this version is relatively easy, Bouton
suggested the variation in which the player who takes the last coin loses the game.

2. Instead of three piles, some other number of piles can be used, each starting
with some arbitrary number of coins in it. The game proceeds exactly as above,
with the winner (or loser) being the last person to remove one or more coins. In
particular, we’ll work with the two-pile version in most of this chapter.

3. The final version is the tastiest one. The game wouldn’t be conceptually any
different if something else were progressively reduced other than the number of
coins in piles. How about the number of rows and the number of columns in a
chocolate bar? You start with the kind of chocolate candy bar that is scored into
rows and columns so that you could break it into small squares. Pretend that the
square in the bottom left-hand corner is poisoned. The players take turns breaking
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the bar into two pieces by breaking along one of the horizontal grooves or one
of the vertical grooves in the bar and then eating the section not containing the
poisoned square. Eventually, one player will be left with just one square, which
is poisoned. That player loses.

How is the last version related to the previous two? In fact it is equivalent to two-
pile Nim. To see this, you need to realize that the candy bar is completely specified
by the number of horizontal and vertical grooves (or scores). If we represent the bar
by two piles, one with a coin for each horizontal score and the other with a coin
for each vertical score, breaking the candy bar along a vertical or horizontal score
corresponds to removing coins from one of the piles, and ending with the poisoned
square corresponds to both piles being empty (because when the bar is down to a
single square, there are no scores left). Breaking the chocolate at the last place it can
be broken is like taking the last coin.
Before we write a program for the computer to play Nim with a human user, we

must first decide which version we want to play. We’ve chosen to concentrate on
the two-pile version, with the winner being the player who takes the last coin. As
the above discussion suggests, it doesn’t matter whether we actually play with two
piles of coins or, instead, use a chocolate bar. When we play with the computer, we
presumably won’t use either physical piles or a chocolate bar, but rather some third
option better suited to the computer’s capabilities. To get a feel for how to play Nim,
find a partner and play a few games. (We disclaim all responsibility if you choose
the chocolate bar version.) As you play, think about how you might write a program
that could play Nim with you.
What type of data will such a program need? If you think about how you played,

you will see that you and your partner started with a particular configuration of coins
and took turns transforming the current configuration into a new configuration by
making legal moves. The configuration of the coins in the two piles described the
state (or condition) of the game at a given time. For this reason, we will call the
configurations game states; they are our new data type. That is, we will arrange things
so that we can pass a game state into a procedure as an argument or return a game
state as the result of a procedure, just as we can with any other type of value. That
way, the transformation you do in making a move can be a procedure. Game states
can be physically represented by two piles of coins, which we call the first pile and
the second pile.
Next, find a third person to be a gamekeeper and play another game with your

partner. This time, instead of physically removing coins from piles, have the game-
keeper do all the work. The gamekeeper should keep track of the individual game
states; you and your partner will give him directions and ask him questions. As you
play, concentrate on what directions you give the gamekeeper and what questions
you ask. You should discover that you repeatedly ask how many coins there are in a
particular pile of the current game state and that you tell the gamekeeper to change
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to a new game state by removing some number of coins from a particular pile. This
tells us that there are at least two operations we need for our data structure. One tells
us how many coins are in either one of the piles and the other allows us to “remove”
a specified number of coins from a pile, by making a new state with fewer coins in
that pile. In Scheme, we could specify these operations as follows:

(size-of-pile game-state p)
;returns an integer equal to the number of coins in the p-th
;pile of the game-state

(remove-coins-from-pile game-state n p)
;given a Nim game-state, returns a new game state with n
;fewer coins in pile p

We will also need an operation that creates a new game state with a specified number
of coins in each pile. This operation is what is used to set up an initial game state:

(make-game-state n m)
;returns a game state with n coins in the first pile
;and m coins in the second pile

Exercise 6.1

A fourth version of Nim uses two piles of coins but adds the restriction that a
player can remove at most three coins in any one turn. To implement this ver-
sion, we could use the three operations, make-game-state, size-of-pile, and
remove-coins-from-pile, as before. In this case, whenever we use remove-
coins-from-pile, the parameter indicating how many coins to remove should
have a value of 1, 2, or 3.
Alternatively, we could replace remove-coins-from-pile with the three oper-

ations, remove-one, remove-two, and remove-three, where each of these opera-
tions would have just two parameters: the current game state and the pile to remove
from. With this implementation, we would have five operations instead of three.
Compare these two approaches to implementing this new version of Nim. What are
the advantages and disadvantages of each one? Is one implementation better than
the other?

Are these three operations (make-game-state, size-of-pile, and remove-
coins-from-pile) enough? In other words, if someone else implemented the
abstract data type of game states for us, could we then write the procedures we need
to have the computer play Nim? Let’s try to do this.
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Recall that when you and your partner played Nim, you progressed through
a succession of game states by alternately making moves and that you continued
to do so until all the coins were gone. The game would eventually end, because
every move reduces the total number of coins by at least one. In other words,
each move transforms the game into a smaller game, if we measure the size of
the game in terms of the total number of coins. Therefore, the main game-playing
procedure, which we will call play-with-turns, should repeatedly reduce the
game state by alternately having the computer and the human make a move. We
will have two procedures, human-move and computer-move, to do these separate
reductions. When the game is over (which will be determined by an as yet unwritten
predicate over?, ) the computer should announce the winner; we’ll do that using
the procedure announce-winner.
The procedure play-with-turns will use two new aspects of Scheme: quoted

symbols and the equality predicate equal?. A symbol is a basic Scheme data type
that is simply a name used as itself, rather than as the name of something. You
specify a symbol by putting a single quote mark before it. To illustrate, here is some
Scheme dialog:

’human
human

’x
x

(define x ’y)
x
y

(define z x)
z
y

(define w ’x)
w
x

The quote mark isn’t part of the symbol itself; instead, the combination of the quote
mark and the symbol is an expression, the value of which is the symbol. As this
example shows, the value of the expression ’x is the symbol x, whereas the value of
the expression x is whatever x has been defined as a name for (here, the symbol y).
Because the equality predicate = only works for numbers, we need to use the more

general equality predicate equal? for symbols. Putting this all together, we come up
with the following version of play-with-turns:
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(define play-with-turns ;warning: this is not the final version

(lambda (game-state player)
(cond ((over? game-state)

(announce-winner player))

((equal? player ’human)

(play-with-turns (human-move game-state) ’computer))

((equal? player ’computer)

(play-with-turns (computer-move game-state) ’human)))))

We would play a game by evaluating an expression such as

(play-with-turns (make-game-state 5 8) ’human)

There is one major problem with play-with-turns. Consider what would
happen if we attempted to play a game by evaluating the expression (play-
with-turns (make-game-state 5 8) ’humman). Because the symbol humman
is neither human nor computer, and because the game is clearly not over, none
of the conditions in the cond would be met. Thus, the game would not be played
and an undefined value would be returned. Furthermore, the user would have
no idea why nothing happened. One way to fix this is to use an else instead
of (equal? player ’computer); however, this is still unsatisfactory because the
game gets played with the computer having the first turn and the user has no idea
why he didn’t get to go first.
A better strategy is to use the procedure error, which, although not a part of

R4RS Scheme, is predefined in the versions of Scheme that are recommended for
this book. The procedure error stops the normal execution of the program and
notifies the user that an error occurred. In order to tell the user the nature of the
error, we give error a description of the error as an argument, as in

(error "player wasn’t human or computer")

This descriptive argument is a character string, which is written as a sequence of
characters enclosed in double quotes. In this book, we’ll generally use character
strings in cases like this, for output. We can also tell the user more about the error by
passing additional arguments to error, which it will display. For example, we can
use

(error "player wasn’t human or computer:" player)

to let the user know what specific unexpected player argument was provided.
We can use error in play-with-turns by adding an else clause to the cond:
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(define play-with-turns
(lambda (game-state player)
(cond ((over? game-state)

(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

Evaluating (play-with-turns (make-game-state 5 8) ’humman) still won’t
start the game. However, we’ll see the message “player wasn’t human or computer:
humman,” which will give us some explanation of what went wrong, unlike before.
We will write the procedure computer-move so that it uses the very simple

strategy of removing one coin from the first pile. If the first pile is empty, the
computer will remove one coin from the second pile. Note that if both piles are
empty, the computer will still try to remove one coin from the second pile. However,
this can never happen, because if both piles are empty, the game is over:

(define computer-move
(lambda (game-state)
(if (> (size-of-pile game-state 1) 0)

(remove-coins-from-pile game-state 1 1)
(remove-coins-from-pile game-state 1 2))))

Unfortunately, the human player has no way of knowing what strategy the computer
is using and so has no idea what the state of the game is after the computer has
moved. We must therefore add some output statements to tell the human player what
the computer is doing. We will use two built-in Scheme procedures, display and
newline. These procedures are best described by example, but roughly speaking,
display takes a single argument that it immediately prints out as output, and
newline takes no arguments and causes the output to go to the next line.
For example, the following procedure takes a game state and displays it in a

reasonable manner:

(define display-game-state
(lambda (game-state)
(newline)
(newline)
(display " Pile 1: ")
(display (size-of-pile game-state 1))
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(newline)
(display " Pile 2: ")
(display (size-of-pile game-state 2))
(newline)
(newline)))

Note that in two cases, we passed display a character string, because we wanted
to control exactly what was output, as previously with error. Also, the definition of
the Scheme programming language doesn’t make any guarantees about the value (if
any) returned by display and newline—they are only used for their effect.
How do we incorporate output into our program? Well, the game state should be

displayed before each player makes a move, and the computer should inform the
human player of its move. The first of these goals is most easily accomplished by
adding one line to play-with-turns:

(define play-with-turns
(lambda (game-state player)
(display-game-state game-state) ;<-- output
(cond ((over? game-state)

(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

In order to tell the human player what the computer is doing, we can add
similar output statements. However, the output depends on which pile the com-
puter uses. Because we also need to know which pile to use in the call to
remove-coins-from-pile, we create a local variable by using a let:

(define computer-move
(lambda (game-state)
(let ((pile (if (> (size-of-pile game-state 1) 0)

1
2)))

(display "I take 1 coin from pile ")
(display pile)
(newline)
(remove-coins-from-pile game-state 1 pile))))
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To write the procedure human-move, we need to get some input from the (human)
player. We do this by first writing a procedure, prompt, which takes a “prompting
string” and returns the number entered by the user:

(define prompt
(lambda (prompt-string)
(newline)
(display prompt-string)
(newline)
(read)))

Here we used the basic Scheme input procedure read, which takes no arguments
and returns whatever value the user enters. (The user’s input must have the right
form to be a Scheme value.) We are assuming that the user will type in an appropriate
value, for example, when asked for the pile number, either 1 or 2.
We can use prompt in human-move to prompt for the pile number and the

number of coins. Note that we use enclosing let statements in order to ensure
that the user is always prompted for the pile first and the number of coins second.
Depending on those answers, we remove the appropriate number of coins from the
specified pile:

(define human-move
(lambda (game-state)
(let ((p (prompt "Which pile will you remove from?")))
(let ((n (prompt "How many coins do you want to remove?")))
(remove-coins-from-pile game-state n p)))))

Exercise 6.2

When you played Nim with another person and a gamekeeper, what did the game-
keeper do if you asked her to remove more coins from a pile than she could possibly
remove? (For example, what if you asked her to remove six coins from a pile with
only five coins in it?) If we want our computer version to work in a similar way, we
need to build in some sort of error checking on the part of the input procedures.
What would you modify in order to continue asking the user for another number
if the number selected was illegal (both for coins and pile)? Is it better to do the
error checking in human-move or prompt? Could you use a procedural parameter
to good effect?

Finally, in order to finish the game, we need to be able to determine when the
game is over and have the computer announce who the winner is. Note that we’re



6.3 Representations and Implementations 143

assuming that the players play until the bitter end, so the game is over when both
piles are empty:

(define total-size
(lambda (game-state)
(+ (size-of-pile game-state 1)

(size-of-pile game-state 2))))

(define over?
(lambda (game-state)
(= (total-size game-state) 0)))

(define announce-winner
(lambda (player)
(if (equal? player ’human)

(display "You lose. Better luck next time.")
(display "You win. Congratulations."))))

There is the program. (For your convenience, we include the entire program in a
sidebar. We don’t include display-game-state and total-size, because we con-
sider them to be part of the abstract data type game state.) Without having any idea
of how we are going to represent our game states or implement the three operations
make-game-state, remove-coins-from-pile, and size-of-pile, we’ve written
all the procedures needed to play Nim. This illustrates one of the main advantages
of data abstraction. We can develop the application of our data type independently
of developing the implementation.

Exercise 6.3

The version of Nim we have just written designates the winner as the one taking the
last coin. What needs to be changed in order to reverse this, that is, to designate the
one taking the last coin as the loser?

6.3 Representations and Implementations

In order to actually use the program in the previous section, we need to implement
the ADT of game states. This means that we need to find some way of representing
game states and we need to figure out the algorithms and write the procedures for the
three operations. To do this, let’s think about physical (as opposed to electronic) ways
of constructing piles. First of all, the fact that we used coins was totally irrelevant
to how we played the game. We could have used packets of sugar, vertical hatch
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Nim Program

(define play-with-turns
(lambda (game-state player)
(display-game-state game-state)
(cond ((over? game-state)

(announce-winner player))
((equal? player ’human)
(play-with-turns (human-move game-state) ’computer))
((equal? player ’computer)
(play-with-turns (computer-move game-state) ’human))
(else
(error "player wasn’t human or computer:" player)))))

(define computer-move
(lambda (game-state)
(let ((pile (if (> (size-of-pile game-state 1) 0)

1
2)))

(display "I take 1 coin from pile ")
(display pile)
(newline)
(remove-coins-from-pile game-state 1 pile))))

(define prompt
(lambda (prompt-string)
(newline)
(display prompt-string)
(newline)
(read)))

(define human-move
(lambda (game-state)
(let ((p (prompt "Which pile will you remove from?")))
(let ((n (prompt "How many coins do you want to remove?")))
(remove-coins-from-pile game-state n p)))))

(define over?
(lambda (game-state)
(= (total-size game-state) 0)))

(define announce-winner
(lambda (player)
(if (equal? player ’human)

(display "You lose. Better luck next time.")
(display "You win. Congratulations."))))
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marks, or the horizontal and vertical score lines on a chocolate bar. Similarly, how
we arranged our coins in two piles was also unimportant. We could have made two
heaps, we could have made two neat lines, or we could have arranged the coins
in two separate rectangular arrays. Some arrangements might make counting the
number of coins in a pile easier, but as long as we can determine how many coins
there were in each pile, how we arrange the piles doesn’t matter. What really matters
is the number of coins in each pile. Thus, in order to represent game states in
Scheme, we can use two numbers that we glue together in some way. We consider
four different ways to do so.
The first way of representing game states is based on the fact that, as humans, we

can easily see the separate digits in a numeral. If we add the restriction that there
can’t be more than nine coins in each pile, we can use two-digit numbers to represent
the two piles. The first digit will be the number of coins in the first pile and the
second digit will be the number in the second pile. (For example, a game state of 58
would have five coins in the first pile and eight coins in the second pile.) To create
a game state with n coins in the first pile and m coins in the second, we would just
physically write those two digits together, nm. This number is n�10�m. Therefore,
we can implement the operations make-game-state and size-of-pile as follows:

(define make-game-state
;; assumes no more than 9 coins per pile
(lambda (n m) (+ (* 10 n) m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)

(quotient game-state 10)
(remainder game-state 10))))

Removing coins from a pile can be done in two different ways: either taking
advantage of the particular representation we’ve chosen, or not. If we take advantage
of our particular representation, in which pile 1 is represented by the tens place
and pile 2 by the ones place, we can remove coins from a pile by subtracting the
specified number of either tens or ones:

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(- game-state

(if (= pile-number 1)
(* 10 num-coins)
num-coins))))
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Alternatively, we can have remove-coins-from-pile first select the two pile num-
bers using size-of-pile, then subtract the number of coins from the appropriate
one of them, and finally use make-game-state to glue them back together:

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(if (= pile-number 1)

(make-game-state (- (size-of-pile game-state 1)
num-coins)

(size-of-pile game-state 2))
(make-game-state (size-of-pile game-state 1)

(- (size-of-pile game-state 2)
num-coins)))))

This version of remove-coins-from-pile has the advantage that when we change
representations, all we need to change are the algorithms for make-game-state and
size-of-pile.

Exercise 6.4

The restriction that we can only use at most nine coins in each pile is somewhat
unreasonable. A more reasonable one would be to limit the size of the piles to at
most 99 coins. Change the implementation above so that it reflects this restriction.

Exercise 6.5

What happens if we try to remove more coins from a pile than are actually in the
pile? For example, what would be the result of evaluating

(remove-coins-from-pile (make-game-state 3 2) 5 1)

Modify remove-coins-from-pile so that such a request would result in just re-
moving all of the coins from the specified pile.

Exercise 6.6

What are some other ways of coping with errors?

The biggest problem with this way of gluing our two numbers together is that we
must put some arbitrary restriction on the size of the numbers. This approach is fine
when we can reasonably make this restriction, as in two-pile Nim. However, there are
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data types where we can’t reasonably restrict the size of the components, for example,
the budget of the U.S. government. Our second representation (theoretically) gets
around this restriction.
In this representation we will use integers of the form 2n � 3m, where n is the

number of coins in the first pile and m is the number of coins in the second.
Constructing a game state is quite easy, using the built-in procedure expt:

(define make-game-state
(lambda (n m) (* (expt 2 n) (expt 3 m))))

Getting at the component parts of a game state is not so bad either, using the
procedure in the following exercise.

Exercise 6.7

Look back at the procedures for calculating the exponent of 2 in a number that you
wrote in Exercise 2.12 on page 40 and Exercise 3.2 on page 54. Generalize one of
these to a procedure exponent-of-in such that (exponent-of-in n m) returns
the exponent of the highest power of n that divides evenly into m.

With this procedure, we can easily write size-of-pile:

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)

(exponent-of-in 2 game-state)
(exponent-of-in 3 game-state))))

This implementation has two drawbacks. The first is that accessing the number
of items in a pile does not take constant time. Instead, the time depends linearly on
the size of the pile. The second drawback is that the integers representing the game
states get very big very rapidly. This is not so important when we’re implementing
game states; however, when we implement a data structure where the component
parts are often big numbers, this method would result in representations too large to
fit in the computer’s memory.
The first two implementations use integers to represent the values that a game

state could have. Note that some integers, such as 36, could be used in either
representation. That is, a game state represented by 36 could be either one where
the first pile has three coins and the second has six (in the first representation) or one
where each pile has two coins (in the second representation). In fact, the only way
we know what game state is represented by a specific integer is by knowing which



148 Chapter 6 Compound Data and Data Abstraction

representation we’re using. The three operations are what interpret the values for us.
The need for a consistent interpretation is one of the reasons that we use only the
specified operations to manipulate values in an abstract data type.
Our third representation for game states uses procedures instead of integers to

represent the game states. So when we apply make-game-state, the result should
be a procedure, because make-game-state creates game states. Now, a game state
has two observable properties, the number of coins in each of the two piles. Because
the only property that we can observe about a procedure is its return value, the
procedure generated by make-game-state should have two different return values.
Therefore, this procedure should have at least one argument so that we can have
some way of controlling which of the two values should be returned. Because there
is no need for more than one argument, we want (make-game-state n m) to
produce a procedure with one argument that sometimes returns n and sometimes
returns m. What should this procedure be? We have complete freedom to choose. It
could return n when its argument is odd and m when its argument is even; it could
return n for positive values of its argument and m for negative values, or whatever.
For now, let’s arbitrarily decide to use the first option:

(define make-game-state
(lambda (n m)
(lambda (x)
(if (odd? x)

n
m))))

Now we need to write the procedure size-of-pile. If we think about how
make-game-state and size-of-pile should work together, we can write two
equations:

(size-of-pile (make-game-state n m) 1) � n

(size-of-pile (make-game-state n m) 2) � m

Because make-game-state produces a procedure that returns n when it gets an odd
argument and m when it gets an even one, and 1 happens to be odd and 2 even,
one way to write size-of-pile is to have it simply apply its game state argument
(which is a procedure) to the pile number argument:

(define size-of-pile
(lambda (game-state pile-number)
(game-state pile-number)))
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Exercise 6.8

Verify that the two equations relating make-game-state and size-of-pile just
given hold for the procedural representation.

This procedural representation of game states has the advantages of each of the
previous ones, without the corresponding disadvantages. In other words, we don’t
need to restrict the size of the piles, and the procedure size-of-pile will still
generate a constant-time process. We can do little to improve on this representation
(but we still have a fourth representation to present anyway, for reasons that will
become clear).
At this point, having seen two representations of game states as integers and one

as procedures, you may be confused. You may be wondering just what is a game
state? Surely there should be some definite thing that I can look at and say, this is a
game state. There are two answers to this. The first answer is to say, Yes, at any time
there is one kind of thing that is a game state, which depends on which matched
set of constructor and selector definitions has been evaluated. If, for example, you’ve
evaluated the most recent set, game states are procedures.
However, another, better answer to the question above is: Don’t worry about what

a game state is in that sense. Pretend a game state is a whole new kind of thing. This
new kind of thing is produced by make-game-state, and you can find information
out about it using size-of-pile.
In other words, instead of saying “a game state is an integer” or “a game state

is a procedure,” we’ll say “a game state is what make-game-state creates (and
size-of-pile expects).” If the procedures that operate on game states are happy
with something, it is a game state. This is worth highlighting as a general principle:

The data-abstraction principle (or, the operational stance): If it acts like an
X (i.e., is suitable for operations that operate on X’s), it is an X.

One related question that you may have is what if you do a game-state operation
to something that isn’t a game state? Or what if you do some other operation to a
game state, other than those that make sense for game states? For example, what if
you evaluate any of the following?

(size-of-pile (* 6 6) 1)

(size-of-pile sqrt 1)

(sqrt (make-game-state 3 6))

((make-game-state 3 6) 7)
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Again, there are two answers: (1) That depends on the details of which representation
was chosen and how the operations were implemented and (2) Don’t do that. As
unsatisfactory as this second answer may sound, it generally is the more useful one.
We can sum this all up as follows:

The strong data-abstraction principle: If it acts like an X, it is an X. Conversely,
if it is an X, only expect it to act in X-like ways.

When we discussed our procedural representation of game states above, we men-
tioned that we’d be hard pressed to improve upon it. So, why then do we still have
a fourth representation up our sleeves? The answer is that although we’d be hard
pressed to do better, someone else might not be. In particular, whoever designed
your Scheme system might have some slightly more efficient way of gluing two
values together, using behind-the-scenes magic.
So, what we’ll do for our final implementation of game states is turn data abstrac-

tion to our advantage and use a built-in data type in Scheme called pairs. Whoever
built your Scheme system represented pairs as efficiently as they possibly could.
Exactly how they did this might vary from one Scheme system to another. However,
thanks to data abstraction, all we have to know about pairs is what operations produce
them and answer questions about them. The basic operations that Scheme provides
to deal with pairs include a procedure for making a pair, a procedure for determining
what the first element in a pair is, and a procedure for determining what the second
element is. These have extremely weird names:

cons takes any two objects and glues them together into a pair.
car takes a pair of objects and returns the first object.
cdr (pronounced “could-er”) takes a pair of objects and returns the second object.

The name cons is easy to understand: It is short for constructor, and sure enough,
the procedure called cons is the constructor for pairs. But what about the names
car and cdr, which are the names of the selectors for the pair type? These two
names are reminders that even smart people sometimes make dumb mistakes. The
people who developed an early predecessor of Scheme (at MIT, in the late 1950s)
chose to represent pairs on the IBM 704 computer they were using in such a way
that the selectors could be implemented using low-level features of the IBM 704
hardware that had the acronyms CAR and CDR (for contents of address part of
register and contents of decrement part of register). So, rather than call the selectors
first and second, left and right, or one and the-other, they named them car and
cdr, after how they were implemented on the 704. (One of the implementers later
wrote that “because of an unfortunate temporary lapse of inspiration, we couldn’t
think of any other names.”) In so doing, they were violating the spirit of the strong
data-abstraction principle, by basing the abstract interface to the data type on their
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particular representation. (Of course, in a certain sense, “left” and “right” are just
as representation-specific, because they are based on the way we westerners write
things down on a page.) A few months after the original naming, the perpetrators of
car and cdr tried renaming the operations, but to no avail: Other users were already
accustomed to car and cdr and unwilling to change. At any rate, car and cdr have
survived for over three decades as the names for the two selector operations on pairs,
and so they are likely to survive forever as permanent reminders of how not to name
operations.
As we said before, cons takes two objects and glues them together in a pair. How

do we know which order it uses? In other words, if we use cons to glue a and b
together in a pair, which will be the first object of that pair and which will be the
second? What we’re really asking here is how cons, car, and cdr work together.
The answer is best described by two equations:

(car (cons a b)) � a

(cdr (cons a b)) � b

These say that if you cons two objects together into a pair, the first object becomes
the car of the pair and the second object becomes the cdr of the pair. (We’ve used
this paragraph to introduce you to the way Schemers talk about pairs. We use cons
as a verb, as in “cons two objects together,” and we talk about the car and cdr of a
pair, instead of the first and second components of it.)
Pairs of this sort are a natural way to implement game states, because a game state

is most easily thought of as a pair of numbers. Thus, our two operations would be

(define make-game-state
(lambda (n m) (cons n m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)

(car game-state)
(cdr game-state))))

Note that in the definition of make-game-state, we simply apply cons to the
two arguments. In other words, make-game-state does exactly the same thing as
cons and hence can simply be the same procedure as cons:

(define make-game-state cons)

The way Scheme displays pairs if left to its own devices is in general quite
confusing. Therefore, when you are using pairs to represent something else, like
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Game State ADT Implementation

(define make-game-state
(lambda (n m) (cons n m)))

(define size-of-pile
(lambda (game-state pile-number)
(if (= pile-number 1)

(car game-state)
(cdr game-state))))

(define remove-coins-from-pile
(lambda (game-state num-coins pile-number)
(if (= pile-number 1)

(make-game-state (- (size-of-pile game-state 1)
num-coins)

(size-of-pile game-state 2))
(make-game-state (size-of-pile game-state 1)

(- (size-of-pile game-state 2)
num-coins)))))

(define display-game-state
(lambda (game-state)
(newline)
(newline)
(display " Pile 1: ")
(display (size-of-pile game-state 1))
(newline)
(display " Pile 2: ")
(display (size-of-pile game-state 2))
(newline)
(newline)))

(define total-size
(lambda (game-state)
(+ (size-of-pile game-state 1)

(size-of-pile game-state 2))))
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a game state, you should always look at them using an appropriate procedure like
display-game-state.
Again for your convenience, we include all of the ADT procedures in a sidebar,

using just the pair implementation. Together with the Nim program on page 144,
this is a full, working program. In the next section we examine the changes needed
for three-pile Nim; in the final section we extend the two-pile program so that the
computer can use other strategies for selecting its moves.

6.4 Three-Pile Nim

Now suppose we want to write a program that plays Nim with three piles instead
of two. We’ll need to extend the game state ADT so that it uses three piles instead
of two. This means that the procedure make-game-state will get three parameters
instead of two and needs to glue all three together somehow, depending on which
representation we use. If we use one of the numerical representations, the main
change would be to use three-digit numbers instead of two or to use numbers of the
form 2n � 3m � 5k instead of 2n � 3m. The procedural representation is equally easy
to change: The procedures created by make-game-statemust be able to return any
of three values instead of just two. But, at first glance, using pairs seems impossible.
After all, a pair has only two “slots,” whereas we have three numbers, and we can’t
put three things into two slots.
Wait a minute—of course we can put three things into two slots, as long as we put

two of them in one slot and the third in the other slot. How do we put two things
into one slot, though? Each slot is allowed to contain only one thing. But there are
no restrictions on what that one thing could be; for example, it could be another
pair. Thus, in order to make a three-pile game state, we’ll cons together two of the
numbers and cons that together with the remaining one.
Does it matter which order we cons things together? The answer to that is no, sort

of. We can cons the three numbers together in any order we like as long as whenever
we ask for the number of coins in a particular pile, we get back the correct number.
In other words, the procedures make-game-state and size-of-pile need to work
together correctly—the constructors and selectors must agree on the representation,
as usual.

Exercise 6.9

Write the equations for three-pile game states that correspond to those given earlier
for two-pile game states.

For example, suppose we cons the third pile onto the cons of the first and the
second:
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(define make-game-state
(lambda (n m k) (cons k (cons n m))))

Then how do we pull a game state apart? If we want the size of the third pile,
we just need the first element of the game state (i.e., (car game-state)). But
getting the size of the first or second pile is somewhat trickier, because those two
numbers are bundled together. We can get this pair of first and second piles by
taking (cdr game-state). Then, to get the size of the first pile, say, we need to
take the car of that pair, or (car (cdr game-state)). Similarly, to get the size
of the second pile, we’ll need the cdr of that pair, or (cdr (cdr game-state)).
Putting this all together gives

(define size-of-pile
(lambda (game-state pile-number)
(cond ((= pile-number 3)

(car game-state))
((= pile-number 1)
(car (cdr game-state)))
(else ;pile-number must be 2
(cdr (cdr game-state))))))

Exercise 6.10

Check that this implementation actually works (i.e., that the constructor and selector
actually do agree on the representation).

To help clarify how we get at the components of a three-pile game state, we can
draw some pictures. Evaluating an expression such as (cons 1 2) results in a pair
whose components are the numbers 1 and 2. If we think of that pair as having two
slots that have been filled in with those numbers, the picture that comes to mind is

1 2 .
Similarly, when we evaluate (define gs (cons 3 (cons 1 2))), we know

that gs is a pair whose first component is the number 3 and whose second component
is the pair containing the numbers 1 and 2. Thus our picture would look like this:

1 23

Now to get at that 2 in gs, we need to look at the second component of gs. This

is itself the pair 1 2 , and so we need to get the second component of this pair.
Therefore we must evaluate (cdr (cdr gs)).
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Although these pictures are quite helpful for understanding data entities that have
three components, they quickly become unwieldy to draw if we start building any
bigger structures. We can solve this problem by drawing the boxes a standard, small
size, putting the contents outside, and using arrows to point to the contents. For a
simple pair such as the value of (cons 1 2), moving the contents out leads to

1

2

and a pair such as the value of (cons 3 (cons 1 2)) would look like

3 1

2

In addition to solving the problem of unwieldiness, moving the contents out of
the boxes makes it easier to see what portion of a structure is reused or “shared.” For
example, if we evaluate the two definitions:

(define p1 (cons 1 2))
(define p2 (cons 3 p1))

and use our original style of drawing pairs, we get the picture

1 23

p2:
21

p1:

which seems to indicate that there are three pairs—at odds with the fact that cons
was applied only twice. (We know that each time cons is applied, exactly one pair
is created.) In contrast, with our new, improved style of diagram with the contents
moved out of the boxes, we can draw

3 1

2
p1:p2:

and now it is clear that only one new pair was produced by each of the two applica-
tions of cons.

Exercise 6.11

Now that we have the main constructor and selector for the three-pile game state
ADT, we need to change the procedures remove-coins-from-pile, total-size,
and display-game-state appropriately. Do so.
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Exercise 6.12

What will go wrong if we use the existing computer-move with three-pile game
states? Change computer-move so that it works correctly with three-pile game states.

6.5 An Application: Adding Strategies to Nim

In this section, we return to the two-pile version of Nim for simplicity’s sake. (Also,
we like playing the chocolate bar version.) Much of what we do here easily ex-
tends to three-pile Nim. However, finding a winning strategy for three piles is more
challenging.
The computer’s strategy of removing one coin from the first nonempty pile is not

very intelligent. Although we might initially enjoy always winning, eventually it gets
rather boring. Is there some way of having the computer use a better strategy? Or
perhaps, could we program several different strategies? In that case, what would a
strategy be?
If you think about it, a strategy is essentially a procedure that, when given a

particular game state, determines how many coins to remove from which pile. In
other words, a strategy should return two numbers, one for the number of coins and
one for the pile number. Because procedures can return just one thing, we have
a real problem here. One way to solve it is to think of these two numbers as an
instruction describing the appropriate move to make. We can create a new data type,
called move instruction, that glues together the number of coins to remove and the
pile number to remove them from. We can then view a strategy as a procedure that
takes a game state and returns the instruction for the next move.

Exercise 6.13

In this exercise, we will construct the move instruction data type and modify our
program appropriately.

a. First, you need to decide what the basic operations for move instructions should
be. There are several ways to do this. You can think about how move instructions
are going to be used—in particular, what information other procedures need
to know about a given move instruction. You can think how you would fully
describe a move instruction to someone. You can model move instructions on
game states. In any case, it should be clear that you will need one constructor
and two selectors. Give a specification for move instructions similar to the one we
gave the game state data type. That is, what is the name of each operation, what
sort of parameters does it take, and what sort of result does it return? (We will
call the move instruction constructor make-move-instruction in the following
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discussion and will assume it takes the number of coins as its first argument and
the pile number as its second argument, so you might want to do the same.) Can
you also write equations that describe how the operations are related?

b. Choose a representation and implement these procedures.
c. We have used the procedure remove-coins-from-pile to progress from one
game state to the next, passing to it the current game state and the two integers
that specify the move. But with our move instruction data type, it makes more
sense to have a procedure that is passed the current game state and the move
instruction and returns the next game state. We could call the procedure just
remove; alternatively, we could call it next-game-state. The latter seems more
descriptive.
Write the procedure next-game-state, which takes two parameters, a game

state and a move instruction, and returns a game state. You will need to change
computer-move and human-move so that they correctly call next-game-state
instead of remove-coins-from-pile. Run your program to make sure every-
thing works as before.

Type Checking

Both game states and move instructions are compound data types with exactly
two components and integers as the values of these components. Let’s suppose
that we’ve decided to implement both of these types by using Scheme’s pairs. In
this case, the value of the expression (cons 2 1) could represent either a game
state or a move instruction. This can create some havoc in our programs if we’re
not careful. For example, suppose you wanted to find the next game state after
taking one coin from pile one, starting in a state with five and eight coins in the
two piles. At first glance, the following looks reasonable:

(display-game-state
(next-game-state (make-move-instruction 1 1)

(make-game-state 5 8)))

However, if you try this, you’ll get output like the following:

Pile 1: 1

Pile 2: -4

What went wrong? We got the order of the parameters to next-game-state
backward. Although the principle of data abstraction tells us to think of things

Continued
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Type Checking (Continued)

as move instructions or game states, rather than as pairs of integers, the Scheme
system regrettably thinks of both as just pairs of integers. Therefore, although we
can see that we got the move instruction and game state backward, the program
got exactly what it expected: two pairs of integers. This kind of error is particularly
hard to catch. One way to find such errors is by doing a process called type
checking. The basic idea is that every piece of data has a particular type, such as
integer, game state, move instruction, etc. The type of a procedure is described
by saying that it is a procedure that takes certain types of arguments and returns
a certain type of result. For example, make-move-instruction is a procedure
that takes two integers and returns a move instruction, wheras next-game-state
takes a game state and a move instruction and returns a game state. We can check
that a procedure application is probably correct by checking that the types of the
arguments are consistent with those expected by the procedure. For example, we
know that (make-move-instruction 1 1) has probably been called correctly,
because its two arguments are integers. Notice that its return value will be a move
instruction. On the other hand, the call

(next-game-state (make-move-instruction 1 1)
(make-game-state 5 8))

is definitely incorrect because next-game-state gets a move instruction and
a game state for arguments when it is supposed to get a game state and a
move instruction. Note that type checking only catches errors that are caused
by using arguments that are the wrong types. It won’t catch the error in
(make-move-instruction 5 6), where the pile number is too big, unless we
use a more refined notion of type, where we can say that the second argument is
“an integer in the range from 1 to 2” rather than just that it is an integer.

If we then view strategies as procedures that, when given a particular game state,
return the instruction for the next move, we could write the simple strategy currently
used by the computer as follows:

(define simple-strategy
(lambda (game-state)
(if (> (size-of-pile game-state 1) 0)

(make-move-instruction 1 1)
(make-move-instruction 1 2))))
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But how do we need to change our program in order to incorporate various
strategies into it? Certainly the procedure computer-move must be changed: In
addition to the game state, it must be passed the strategy to be employed. But this
means play-with-turns must also be changed, because it calls computer-move:
It must have an additional argument that indicates the computer’s strategy. If you do
this correctly, an initial call of the form

(play-with-turns (make-game-state 5 8) ’human simple-strategy)

should play the game as before.

Exercise 6.14

In this exercise, you will change the procedures computer-move and play-with-
turns as indicated previously. After making these changes, test the program by
making the previous initial call.

a. Modify the procedure computer-move so that it takes an additional parameter
called strategy and uses it appropriately to make the computer’s move. Re-
member that when the strategy is applied to a game state, a move instruction is
returned. This can then be passed on to next-game-state.

b. Modify play-with-turns so that it also has a new parameter (the computer’s
strategy), modifying in particular the call to computer-move so that the strategy
is employed. Note that you must make additional changes to play-with-turns
in order that the strategy gets “passed along” to the next iteration.

Now we can add a variety of different strategies to our program. This amounts to
writing the various strategies and then calling play-with-turns with the strategies
we want. We ask you in the next few exercises to program various strategies.

Exercise 6.15

Write a procedure take-all-of-first-nonempty that will return the instruction
for taking all the coins from the first nonempty pile.

Exercise 6.16

Write a procedure take-one-from-random-pile that implements the following
“random” strategy: randomly select a nonempty pile and then remove one coin from
it. Randomness can be simulated using the random procedure, which should be
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pre-defined in any Scheme used with this book (although it isn’t specified by the
R4RS standard for Scheme). If n is a positive integer, a call of the form (random n)
will return a random integer between 0 and n 2 1, inclusive. (Actually, it returns a
so-called pseudo-random integer; pseudo-random integers are produced systematically
and hence are not random, but sequences of consecutive pseudo-random integers
have many of the same statistical properties that sequences of random integers do.)

Exercise 6.17

Take the previous exercise one step further by writing a procedure that, when given
a particular game state, will return a move instruction where both components are
chosen at random. Remember to ensure that the move instruction returned is a valid
one. In particular, it should not suggest a move that takes coins from an empty pile.

Exercise 6.18

If we consider the chocolate bar version of Nim, we can describe a strategy that
allows you to win whenever possible. Remember that in this version, the players
alternate breaking off pieces of the bar along a horizontal or a vertical line, and
the person who gets the last square of chocolate loses (so the person who makes
the last possible break wins, just as the person who takes the last coin wins). If it’s
your turn and the chocolate bar is not square, you can always break off a piece
that makes the bar into a square. If you do so, your opponent must make it into
a nonsquare. If you always hand your opponent a square, he will get smaller and
smaller squares, leading eventually to the minimal square (i.e., the poisoned square).
Write a procedure which implements this strategy in two-pile Nim. What action
should it take if presented with (the equivalent of) a square chocolate bar?

Exercise 6.19

Suppose you want to randomly intermingle two different strategies. How can
this be done? The answer is with higher-order programming. Write a procedure
random-mix-of that takes two strategies as arguments and returns the strategy that
randomly chooses between these two procedures each turn. Thus, a call of the form

(play-with-turns (make-game-state 5 8)
’human
(random-mix-of simple-strategy

take-all-of-first-nonempty))

would randomly choose at each turn between taking one coin or all the coins from
the first nonempty pile.
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Exercise 6.20

Those of us with a perverse sense of humor enjoy the idea of the computer playing
games with itself. How would you modify play-with-turns so that instead of having
the computer play against a human, it plays against itself, using any combination of
strategies?

Exercise 6.21

By adding an “ask the human” strategy, the introverted version of play-with-turns
from the preceding exercise can be made to be sociable again. In fact, it can even be
turned into a gamekeeper for two human players. Demonstrate these possibilities.

Review Problems

Exercise 6.22

Suppose we decide to implement an ADT called Interval that has one constructor
make-interval and two selectors upper-endpoint and lower-endpoint. For
example,

(define my-interval (make-interval 3 7))

(upper-endpoint my-interval)
7

defines my-interval to be the interval [3, 7] and then returns the upper endpoint
of my-interval.

Note that we are saying nothing about how Interval is implemented. Your work
below should only use the constructor and selectors.

a. Write a procedure mid-point that gets an interval as an argument and returns
the midpoint of that interval. For example, supposing that my-interval is as just
defined:

(mid-point my-interval)
5

b. Write a procedure right-half that gets an interval as an argument and returns
the right half of that interval. Again supposing that my-interval is as just defined:
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(right-half my-interval)

returns the interval [5, 7].

Exercise 6.23

A three-dimensional (3D) vector has x, y, and z coordinates, which are numbers. 3D
vectors can be constructed and accessed using the following abstract interface:

(make-3D-vector x y z)
(x-coord vector)
(y-coord vector)
(z-coord vector)

a. Using this abstract interface, define procedures for adding two vectors, finding
the dot-product of two vectors, and scaling a vector by a numerical scaling factor.
(The sum of two vectors is computed by adding each coordinate independently.
The dot-product of the vectors (x1, y1, z1) and (x2, y2, z2) is x1x2 1 y1y2 1 z1z2. To
scale a vector, you multiply each coordinate by the scaling factor.)

b. Choose a representation for vectors and implement make-3D-vector, x-coord,
y-coord, and z-coord.

Exercise 6.24

Suppose we wished to keep track of which classrooms are being used at which hours
for which classes. We would want to have a compound data structure consisting of
three parts:

A classroom designation (e.g. OH321)
A course designation (e.g. MC27)
A time (e.g. 1230)

Assume that rooms and courses are to be represented by symbols and the times are
to be represented as numbers. The interface is to look like this:

(make-schedule-item ’OH321 ’MC27 1230)

(room (make-schedule-item ’OH321 ’MC27 1230))
OH321

(course (make-schedule-item ’OH321 ’MC27 1230))
MC27
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(time (make-schedule-item ’OH321 ’MC27 1230))
1230

Use a procedural representation to write a constructor and three selectors for this
schedule-item data type.

Exercise 6.25

We previously said that each move in Nim “transforms the game into a smaller
game, if we measure the size of the game in terms of the total number of coins.”
This raises the possibility that we could define a predicate game-state-< that would
compare two game states and determine whether the first is smaller (in the sense of
having a smaller total number of coins). Similarly, we could define game-state->,
game-state-=, game-state-<=, etc. Define a general purpose procedure called
make-game-state-comparator for making procedures like those just described,
given the numerical comparison procedure (e.g., <) to use. Here are some examples
of its use, together with examples using the comparators it makes:

(define game-state-< (make-game-state-comparator <))

(game-state-< (make-game-state 3 7) (make-game-state 1 12))
#t

(define game-state-> (make-game-state-comparator >))

(game-state-> (make-game-state 3 7) (make-game-state 1 12))
#f

(game-state-> (make-game-state 13 7) (make-game-state 1 12))
#t

Exercise 6.26

Recall that when you worked with fractals in Section 4.3, many of the procedures
required parameters that represented the x and y coordinates of points in an image;
for example, the built-in procedure line required coordinates for the starting point
and the ending point, and the procedure triangle required coordinates for the
triangle’s three vertices.

a. Use cons-pairs to implement a point ADT. You should write a constructor
make-point, that takes two arguments representing the x and y coordinates and
returns the corresponding point and two selectors x-coord and y-coord that
take a point and return the corresponding coordinate.



164 Chapter 6 Compound Data and Data Abstraction

b. Write a procedure distance that takes two points and returns the distance be-
tween them. Use the selectors x-coord and y-coord rather than relying on the
specific representation from part a. For example, you should see the following
interaction:

(define pt-1 (make-point -1 -1))

(define pt-2 (make-point -1 1))

(distance pt-1 pt-2)
2

Remember: The distance between the points with coordinates (x1, y1) and (x2, y2) is√
(x2 2 x1)2 1 (y2 2 y1)2.

Chapter Inventory

Vocabulary

atomic data
compound data
constructor
selector
representation
data abstraction

abstract data type (ADT)
porting
procedural representation
pseudo-random integer
type checking

Slogans

The data abstraction principle
(or, the operational stance)

The strong data-abstraction principle

Abstract Data Types

game states
move instructions
pairs
intervals

3D vectors
schedule items
points



Chapter Inventory 165

New Predefined Scheme Names

The dagger symbol (†) indicates a name that is not part of the R4RS standard for
Scheme.

equal?
error†
display
newline
read

cons
car
cdr
random†

New Scheme Syntax

symbols
quote mark
character strings

Scheme Names Defined in This Chapter

size-of-pile
remove-coins-from-pile
make-game-state
play-with-turns
computer-move
human-move
over?
announce-winner
display-game-state
prompt
total-size
exponent-of-in
make-move-instruction
next-game-state
simple-strategy
take-all-of-first-nonempty
take-one-from-random-pile
random-mix-of
make-interval

upper-endpoint
lower-endpoint
mid-point
right-half
make-3D-vector
x-coord
y-coord
z-coord
make-schedule-item
room
course
time
game-state-<
game-state->
game-state-=
game-state-<=
make-game-state-comparator
make-point
distance

Sidebars

Nim Program
Game State ADT Implementation
Type Checking



166 Chapter 6 Compound Data and Data Abstraction

Notes

Bouton’s seminal article on Nim is [8]. The chocolate-bar version of the game was
presented as a puzzle by Dr. Ian Stewart on the Canadian Broadcasting Company’s
program “Quirks and Quarks” [10].

The history of the names car and cdr is told by Steve Russell (one of the
originators of those names) in [45].

The idea of augmenting a game with strategy procedures and higher-order strate-
gies comes from a lunar lander programming assignment developed by Abelson,
Sussman, and friends at MIT [1].
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Lists

7.1 The Definition of a List

In Chapter 6, we learned how to construct abstract data types where any element of
the type had the same number of components as any other. Sometimes, however,
the individual data will have varying sizes. One example is lists. In this chapter, we
first give a formal definition of lists. Then we show how this definition is used to
construct lists, and we explore common list-processing idioms.

Exactly what is a list? We could start thinking of some concrete examples of lists
by having everyone in our class make a list of the classes he or she attended yesterday.
Some people may have relatively long lists, and others may have been to just one
or two classes. Some people may have not have attended any classes at all. (If today
is Monday, perhaps everyone is in this situation.) Lists can be written in a variety of
ways as well. Some people might write lists in a column, others might use rows, and
still others may come up with more creative ways of doing it. No matter how the
lists are written, those lists that have at least one element have some inherent order
(i.e., each list can be written to start with the first class of the day and work its way
forward from there). Thus we could define a list as being a collection of 0 or more
elements, written in some particular order.

Now imagine that we need to write a computer program to deal with lists of some
sort of elements, say, integers for simplicity. Our first job is to decide what procedures
we need to define the abstract data type of integer lists. The definition we gave in
the foregoing is not much of a guide. Clearly, we are going to be implementing
compound data, because some of our lists may have quite a few components. But
how many components are we going to need? With the abstract data types that we
considered in Chapter 6, each individual piece of data had exactly the same number
of components as any other piece. Different lists, on the other hand, could have
wildly different sizes. So what do we do?

167
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Let’s think about this question a little more. In Chapter 6 we learned how to
construct abstract data types where all values belonging to a particular type had the
same number of components as each other. Now we want to have values of varying
sizes belong to a single type. This parallels what happened moving from Chapter 1
to Chapter 2. In Chapter 1 we wrote procedures where all processes generated by
a particular procedure were of the same size as each other. In Chapter 2 we asked
how to have a single procedure generate processes of varying size. There the answer
was recursion.

We also learned in Chapter 6 that the best way to define an abstract data type is
to first concentrate on how the type is used. We can illustrate how lists are used by
looking at the example of grocery lists. One of the authors usually constructs grocery
lists so that the items are ordered by their positions in the grocery store. The list is
then used by finding the first thing on it, putting that item into the cart, and crossing
it off the list. This gives us a new grocery list (with one less item) that is used to
continue the grocery shopping. Eventually, there is only one item left on the list
(the chocolate candy bar located just before the checkout counter). After putting this
item into the cart and crossing it off the list, the grocery list is empty. This means
that it is time to check out and pay for the groceries.

This grocery list example has a strong recursive flavor to it, and so we can use it
as a model for a recursive definition of lists. We will need a “base case” that defines
the smallest possible list, and we will need some way of defining larger lists in terms
of smaller lists. The base case is easy—there is a special list, called the empty list,
which has no elements in it. The general case is hinted at in the grocery list example
above: a nonempty list has two parts, one of which is an element (the first item in
the list), and the other is a list, namely, the list of all the other items in the whole
list. We can put this more succinctly:

The two-part list viewpoint: A list is either empty or it consists of two parts:
the first item in the list and the list of its remaining items.

The first element of a nonempty list is often called the head of the list, whereas the
list of remaining elements is called the tail. The two-part list viewpoint is one of the
things that distinguish a computer scientist from a normal person. Normal people
think lists can have any number of components (the items on the list), whereas
computer scientists think that all nonempty lists have two components (the head
and the tail). The tail isn’t one item that’s on the list; it’s a whole list of items itself.

How can we implement lists in Scheme? Given that most lists have two parts,
it would be natural to use pairs: Let the car of the pair be the first element of the
list, and let the cdr of the pair be the tail. However, because a list may be empty
and would therefore not have two parts, we need to account for empty lists as well.
Scheme does so by having a special type of value called the empty list, which we
explain in the next section, and a predicate null? that tests whether a given list is
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empty. Using null? in conjunction with the pair operators cons, car, and cdr, we
can implement the list ADT in Scheme by adopting the following conventions:

(cons elt lst) Given an element elt and a list lst, cons returns the list whose
head is elt and whose tail is lst.

(car lst) If lst is a nonempty list, car returns its head.

(cdr lst) If lst is a nonempty list, cdr returns its tail.

(null? lst) Null? returns true if and only if lst is the empty list.

Of course, a better data-abstraction practice would be to define a separate set of
procedures, perhaps called make-list, head, tail, and empty-list?, that would
keep the separation between the list abstraction and the particular representation
using pairs. However, because this particular representation of lists is such a long-
established tradition, Scheme programmers normally just use the pair operations as
though they were also list operations. For example, the car and cdr selectors of
the pair data type are traditionally used as though they were also the head and tail
selectors of the list data type. You can always define head and tail and use them
in your programming, if you’d rather, but you’ll be in a small minority.

Note that these procedures do what is described above only when all parameters
that need to be lists have themselves been constructed using these conventions.
Furthermore, one common mistake to avoid is applying car or cdr to the empty
list.

A number of the procedures we will write are actually built into Scheme. We’re
going to write them anyway because they provide excellent examples of list processing
techniques. Furthermore, by writing them, you should gain a better understanding
of what the built-in procedures do.

7.2 Constructing Lists

How do we make lists in Scheme? Fundamentally, all nonempty lists are made by
using the pair-constructor cons. However, rather than using cons directly, we can
also use some other procedure that itself uses cons. For example, Scheme has a
built-in procedure, list, that you can use to build a list if you know exactly what
elements you want to be in your list. You pass the list elements into list as its
arguments:

(list 1 2 3)
(1 2 3)

Note that we let Scheme display the resulting list value by itself and that the
displayed value consisted of the elements of the list in order, separated by spaces and
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surrounded by a pair of parentheses. The fact that we allowed Scheme to display
the list is one exception to the general rule stated in the preceding chapter, where
we said that the way Scheme displays pairs is confusing, and therefore you should
write special purpose display procedures, such as display-game-state. In the case
where pairs are used to represent lists, the way Scheme displays them is simple and
natural, so there is no need to write something like display-list ourselves.

Another thing to note is that the stuff that gets printed out when a list is displayed
is not an expression that will evaluate to the list. Just as you can’t make a game state
by evaluating the output from display-game-state, namely, something like “Pile
1: 5 Pile 2: 8,” so too you can’t make a list by evaluating (1 2 3). If you were to
evaluate that, it would try to apply 1 as a procedure to 2 and 3, which fails because
1 isn’t a procedure. This particular list was displayed in a way that looked like an
erroneous Scheme expression. Other lists are displayed in ways that look like valid
Scheme expressions; for example, if the first element of the list were the symbol +
rather than the number 1, the list would display as (+ 2 3). Even evaluating this
expression won’t produce the list (+ 2 3). (From this past sentence onward, we will
take a shortcut and say things like “the list (+ 2 3)” when what we really mean is
“the list that, when displayed, looks like (+ 2 3).”)

Exercise 7.1

You also can’t get the list (+ 2 3) by evaluating (list + 2 3).

a. What do you get if you evaluate that expression? Explain why.
b. What expression can you evaluate that will produce the list (+ 2 3), which starts

with the symbol +?

We’ve seen that when you want the list (+ 2 3), you can’t just type in (+ 2 3).
For example, you couldn’t find the cdr of this list by evaluating (cdr (+ 2 3)),
because that would try to find the cdr of 5. One option would be to get some
procedure to build the list you want for you, instead of typing it in. For example,
you could use list. There is one other option, however, that lets you type in a list
as itself. You can use the same quoting mechanism that you use to type in symbols.
For example,

(cdr ’(1 2 3))
(2 3)

Lists and symbols both need quoting for the same reason: They look like expressions,
but we want the name itself or the list itself, not the result of evaluating the name
or list. Quote also gives us a way to get the empty list, namely, as the value of the
expression ’().
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What if we want to construct a list that is too long to type? For example, suppose we
needed the list of integers from 1 to 2000. Rather than tediously typing in the whole
list, or typing in all 2000 arguments to the list procedure, we should automate
the process by writing a procedure to do it for us. As in the factorial example in the
second chapter, it makes sense to write a general purpose procedure that produces
the list of integers from low to high and then use it on 1 and 2000. To see how to
write such a procedure, let’s first construct some fairly short lists, using cons. We’ll
also draw a box and pointer diagram of each of these lists, using the technique from
Section 6.4, to illustrate the structure of lists:

(cons 1 ’())
(1)

1

( )

(cons 1 (cons 2 ’()))
(1 2)

1 2

( )

(cons 1 (cons 2 (cons 3 ’())))
(1 2 3)

1 2 3

( )

Note that to get the list of integers from 1 to 3, we consed 1 to the list of integers
from 2 to 3, which shows us how to write the general procedure:

(define integers-from-to
(lambda (low high)
(if (> low high)

’()
(cons low

(integers-from-to (+ 1 low) high)))))

Such lists can then be created by making calls like the following one:

(integers-from-to 1 7)
(1 2 3 4 5 6 7)

This technique of using cons to recursively construct a list is often called consing
up a list.

Exercise 7.2

What do you get if you evaluate (integers-from-to 7 1)? Exactly which integers
will be included in the list that is the value of (integers-from-to low high)?
More precisely, describe exactly when a given integer k will be included in the list
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that is the value of (integers-from-to low high). (You can do so by describ-
ing how k, low, and high are related to each other.) Do you think the result of
integers-from-to needs to be more carefully specified (for example, in a com-
ment) than the implicit specification via the procedure’s name? Or do you think the
behavior of the procedure should be changed? Discuss.

Exercise 7.3

Write a procedure that will generate the list of even integers from a to b.

Exercise 7.4

We could rewrite integers-from-to so that it generates an iterative process. Con-
sider the following attempt at this:

(define integers-from-to ; faulty version
(lambda (low high)
(define iter
(lambda (low lst)
(if (> low high)

lst
(iter (+ 1 low)

(cons low lst)))))
(iter low ’())))

What happens when we evaluate (integers-from-to 2 7)? Why? Rewrite this
procedure so that it generates the correct list.

7.3 Basic List Processing Techniques

Suppose we need to write a procedure that counts the number of elements in a list.
We can use the recursive definition of lists to help us define exactly what we mean
by the number of elements in a list. Recall that a list is either empty or it has two
parts, a first element and the list of its remaining elements. When a list is empty,
the number of elements in it is zero. When it isn’t empty, the number of elements
is one more than the number of elements in its tail. We can write this in Scheme as

(define length
(lambda (lst)
(if (null? lst)

0
(+ 1 (length (cdr lst))))))
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Similarly, to write a procedure that finds the sum of a list of integers, we would
do the following:

(define sum
(lambda (lst)
(if (null? lst)

0
(+ (car lst) (sum (cdr lst))))))

Notice how similar these procedures are to recursive procedures with integer
parameters, such as factorial. The base case in length and sum occurs when
the list is empty, just as the base case in factorial is when the integer is 0. In
factorial we reduced our integer by subtracting 1, and in length and sum, we
reduce our list by taking its cdr. Procedures that traverse a list by working on the cdr
in this manner are said to cdr down a list.

Exercise 7.5

Generalize sum to a higher-order procedure that can accumulate together the ele-
ments of a list in an arbitrary fashion by using a combining procedure (such as +)
specified by a procedural parameter. When the list is empty, sum returned 0, but this
result isn’t appropriate for other combining procedures. For example, if the com-
bining procedure is *, 1 would be the appropriate value for an empty list. (Why?)
Following are two possible approaches to this problem:

a. Write the higher-order procedure so that it only works for nonempty lists. That
way, the base case can be for one-element lists, in which case the one element
can be returned.

b. Write the higher-order procedure so that it takes an additional argument, beyond
the list and the combining procedure, that specifies the value to return for an
empty list.

Exercise 7.6

a. Write a procedure that will count the number of times a particular element occurs
in a given list.

b. Generalize this procedure to one that will count the number of elements in a
given list that satisfy a given predicate.



174 Chapter 7 Lists

Exercise 7.7

In addition to the procedure length, Scheme has a built-in procedure list-ref
that returns a specified element of a list. More precisely, a call of the form
(list-ref lst n) will return the (n 1 1)st element of lst, because by convention
n 5 0 returns the first element, n 5 1 returns the second, etc. Try this procedure
for various parameter values. Write this procedure yourself.

Exercise 7.8

Here are some more exercises in cdring down a list:

a. Write a predicate that will determine whether or not a particular element is in a
list.

b. Generalize this to a predicate that will determine whether any element of a list
satisfies a given predicate.

c. Write a procedure that will find and return the first element of a list that satisfies
a given predicate.

d. Write a procedure that will determine whether all elements of a list satisfy a given
predicate.

e. Write a procedure that will find the position of a particular element in a list. For
example,

(position 50 ’(10 20 30 40 50 3 2 1))
4

Notice that we are using the same convention for position as is used in list-ref,
namely, the first position is 0, etc. What should be returned if the element is not
in the list? What should be returned if the element appears more than once in
the list?

f. Write a procedure that will find the largest element in a nonempty list.
g. Write a procedure that will find the position of the largest element in a nonempty

list. Specify how you are breaking ties.

Exercise 7.9

This exercise involves cdring down two lists.

a. Write a procedure that gets two lists of integers of the same size and returns true
when each element in the first list is less than the corresponding element in the
second list. For example,
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(list-< ’(1 2 3 4) ’(2 3 4 5))
#t

What should happen if the lists are not the same size?
b. Generalize this procedure to one called lists-compare?. This procedure should

get three arguments; the first is a predicate that takes two arguments (such as <)
and the other two are lists. It returns true if and only if the predicate always
returns true on corresponding elements of the lists. We could redefine list-< in
the following manner:

(define list-<
(lambda (l1 l2)
(lists-compare? < l1 l2)))

We frequently will use lists to build other lists, in which case we cdr down one list
while consing up the other. To illustrate what we mean, here is a simple procedure
that selects those elements of a given list that satisfy a given predicate:

(define filter
(lambda (ok? lst)
(cond ((null? lst)

’())
((ok? (car lst))
(cons (car lst) (filter ok? (cdr lst))))
(else
(filter ok? (cdr lst))))))

(filter odd? (integers-from-to 1 15))
(1 3 5 7 9 11 13 15)

At this point, we’ve seen enough isolated examples of list processing procedures.
Let’s embark on a larger-scale project that will naturally involve list-processing.
Consider the following remarkable fact: After doing a certain small number of
“perfect shuffles” on a 52 card deck, the deck always returns to its original order. (By
a perfect shuffle, we mean that the deck is divided into two equal parts, which are
then combined in a strictly alternating fashion starting with the first card in the first
half.) How many perfect shuffles are required to return a 52 card deck to its original
order?

We can represent our original deck as a list of the numbers 1 to 52 using the
procedure integers-from-to. How do we divide the deck into two equal halves?
We can write two general purpose procedures, one to get the first however many
elements of a list and the other to get the remaining elements.
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Let’s first write the procedure that will construct a list of the first n elements of a
given list. This procedure is very similar to the procedure list-ref in Exercise 7.7:

(define first-elements-of
(lambda (n list)
(if (= n 0)

’()
(cons (car list)

(first-elements-of (- n 1)
(cdr list))))))

Exercise 7.10

Write the procedure list-tail, that gets a list and an integer n and returns the
list of all but the first n elements in the original list. (List-tail is actually already
built into Scheme.)

For any given value of n in the range 0 # n # (length lst), the procedures
first-elements-of and list-tail can be used to split lst into two parts.

Once we’ve cut our deck into two halves, we still need to combine those halves
into the shuffled deck. We combine them by using the procedure interleave,
which takes two lists and combines them into a single list in an alternating manner:

(define interleave ; interleaves lst1 and lst2, starting with
(lambda (lst1 lst2) ; the first element of lst1 (if any)
(if (null? lst1)

lst2
(cons (car lst1)

(interleave lst2 (cdr lst1))))))

To see why interleave works correctly, focus on the comment, which says that the
first element in the result is going to be the first element from lst1 (i.e., the first
element of the first argument). What does the rest of the result look like, after that
first element? If you interleave a stack of red cards with a stack of black cards, so that
the top card is red, what does the rest of it look like? Well, the rest (under that top
red card) will start with a black card and then will alternate colors. It will include
all of the black cards and all the rest of the red cards. In other words, it is the result
of interleaving the black cards with the rest of the red cards. This explains why in
the recursive call to interleave, we pass in lst2 as the first argument (so that the
first element from lst2 winds up right after the first element of lst1 in the result)
and then the cdr of lst1.
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Combining interleave, list-tail, and first-elements-of, we can now
define the procedure shuffle, which takes as arguments the deck as well as its size:

(define shuffle
(lambda (deck size)
(let ((half (quotient (+ size 1) 2)))
(interleave (first-elements-of half deck)

(list-tail deck half)))))

The purpose of the parameter size is efficiency—otherwise we would need to use the
procedure length. We write (quotient (+ size 1) 2) instead of the more natu-
ral (quotient size 2) in order to ensure that when size is odd, the first half of the
deck has the extra card. Notice that when size 5 52, (quotient (+ size 1) 2)
5 26.

In order to find out how many shuffles are needed, we write the following proce-
dure, which automates multiple shuffles:

(define multiple-shuffle
(lambda (deck size times)
(if (= times 0)

deck
(multiple-shuffle (shuffle deck size)

size (- times 1)))))

We can then find out how many shuffles are needed by making calls as follows:

(multiple-shuffle (integers-from-to 1 52) 52 1)
(1 27 2 28 3 29 4 30 5 31 6 32 7 33 8 34 9 35 10 36 11 37 12

38 13 39 14 40 15 41 16 42 17 43 18 44 19 45 20 46 21 47 22 48

23 49 24 50 25 51 26 52)

(multiple-shuffle (integers-from-to 1 52) 52 2)
(1 14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31 44 6 19

32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 49 11 24 37 50

12 25 38 51 13 26 39 52)

...

(multiple-shuffle (integers-from-to 1 52) 52 8)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52)

Thus, eight perfect shuffles return the deck to its original order.
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Exercise 7.11

We have written shuffle so that it can operate on decks of any size. In fact, decks
of all sizes have the property that after a certain number of perfect shuffles, the
deck is returned to its original order. In this exercise you will write procedures that
will automate the process of finding the number of shuffles, which we call the
shuffle-number, required for a deck of a given size.

a. Given that you start with an ordered deck, the first thing you will need is a
predicate, called in-order?, that determines whether a list of integers is in
increasing order. Write this procedure.

b. Using in-order?, write a procedure shuffle-number that, when passed a pos-
itive integer n, returns the shuffle-number for n. You should start off with an
ordered deck of size n and repeatedly shuffle until the deck is in order.

Exercise 7.12

Throughout this section on perfect shuffles, we’ve been passing in the size of the
deck as well as the list representing the deck itself in order to avoid computing the
length of the list when we already knew it. Another approach would be to create a
new compound data type for decks, with two selectors: one to get the list of elements
and the other to get the length. That way we could pass in just a single thing,
the deck, but could still find the length without counting. Flesh out the remaining
details of this idea, implement it, and try it out.

We end this section with another example of using higher-order programming with
lists. Suppose you wanted to find the shuffle-number for decks of size 1, 2, 3, . . . , 100
so that you could look at them all and see if there seemed to be any pattern. Rather
than manually applying your shuffle-number procedure to each of the integers
from 1 to 100, you could get a list of those integers, using integers-from-to, and
then use some general purpose higher-order procedure to map each element of that
list into its shuffle-number. A procedure called map that is built into Scheme does
this mapping. Its first argument is the procedure to use for the mapping, and its
second argument is the list of values that should be mapped. So in order to get the
shuffle numbers for decks ranging in size from 1 to 100, we could do the following:

(map shuffle-number (integers-from-to 1 100))

Or, we could find the squares of 5, 12, and 13 by evaluating

(map (lambda (x) (* x x)) ’(5 12 13))
(25 144 169)
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Exercise 7.13

The procedure map is extraordinarily handy for creating lists of all sorts. Each of the
following problems can be solved by using map.

a. Write a procedure that, when given a positive integer n, returns a list of the first
n perfect squares.

b. Write a procedure that, when given a positive integer n, returns a list of the first
n even integers.

c. Write a procedure called sevens that, when given a positive integer n, returns a
list of n sevens. For example:

(sevens 5)
(7 7 7 7 7)

d. Write a procedure that, when given a list of positive integers, returns a list of lists
of integers. Each of these lists should be the positive integers from 1 to whatever
was in the original list. For example,

(list-of-lists ’(1 5 3))
((1) (1 2 3 4 5) (1 2 3))

Exercise 7.14

Even though map is built into Scheme, it is a good exercise to write it yourself. Do so.

7.4 List Processing and Iteration

A palindrome is a word, such as madam, that stays unchanged when you write the
letters in reverse order. Sometimes, entire sentences are palindromes, if you ignore
spaces and punctuation; one of the classic examples is “Madam, I’m Adam.” In this
section, we’ll test lists of symbols to see whether they are palindromes when viewed
symbol by symbol rather than letter by letter. What we mean by this is that reversing
the order of the elements of the list leaves it unchanged. For example, the list (m a
d a m) is a palindrome and so is (record my record).

We can determine whether or not a list of symbols is a palindrome by reversing
it and seeing if the result is equal to the original list. We can do the equality testing
using equal? but need to figure out how to reverse the list. Actually, as so often,
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there is a procedure built into Scheme called reverse that does just what we need.
But in the best of no-pain/no-gain tradition, we’ll write it ourselves.

Reversing an empty list is quite easy. To reverse a nonempty list, one approach
is to first reverse the cdr of the list and then to stick the car onto the end of this
reversed cdr. The major obstacle is that we don’t have any procedure currently in our
toolbox for tacking an element onto the end of a list. What we want is a procedure
add-to-end such that (add-to-end ’(1 2 3) 4) would evaluate to the list (1
2 3 4). We can write this procedure in our usual recursive way, cdring down the
list and consing up the result:

(define add-to-end
(lambda (lst elt)
(if (null? lst) ; adding to an empty list

(cons elt ’()) ; makes a one-element list
(cons (car lst)

(add-to-end (cdr lst)
elt)))))

Given this, we can write reverse as follows:

(define reverse
(lambda (lst)
(if (null? lst)

’()
(add-to-end (reverse (cdr lst))

(car lst)))))

This way of reversing a list is very time consuming because of the call to
add-to-end. A good way to measure how much time it takes is to count up the
number of times cons is called. Adding to the end of a k-element list will make k11
calls to cons. Suppose we use R(n) to denote the number of conses that reverse
does (indirectly, by way of add-to-end) when reversing a list of size n. Then we
know that R(0) 5 0 because reverse simply returns the empty list when its argu-
ment is empty. When the argument to reverse is a nonempty list, the number of
calls to cons will be however many are done by reversing the cdr of the list plus
however many are done by adding to the end of this reversed cdr. Thus,

R(n) 5 R(n 2 1) 1 ((n 2 1) 1 1) 5 R(n 2 1) 1 n

But by the same argument

R(n 2 1) 5 R(n 2 2) 1 ((n 2 2) 1 1) 5 R(n 2 2) 1 (n 2 1)
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so we get

R(n) 5 R(n 2 1) 1 n

5 R(n 2 2) 1 (n 2 1) 1 n

...

5 R(0) 1 1 1 2 1 3 1 ? ? ? 1 (n 2 2) 1 (n 2 1) 1 n

5 0 1 1 1 2 1 3 1 ? ? ? 1 (n 2 2) 1 (n 2 1) 1 n

5
n(n 1 1)

2

Therefore the number of conses done by this version of reverse is Q(n2). (The
last equation, expressing the sum as n(n 1 1)6 2, is from the solution to Exercise 4.1
on page 81. Even without it you could figure out that the sum was Q(n2) using
the reasoning given in Section 4.1.) We can expect the time taken to similarly be
Q(n2), which implies that as lists get longer, reversing them will slow down more
than proportionately quickly. A 200-element list is likely to take 4 times as long to
reverse as a 100-element list, rather than only twice as long.

There must be a better way of reversing a list. In fact, if you remember Exercise 7.4,
our initial attempt to write an iterative procedure that generates the list of integers
from a to b produced a list with the right numbers but in reverse order. Although
that was a mistake there, it suggests an iterative strategy for reversing a list.

Before trying to write an iterative reverse, a concrete example might be helpful.
Put a stack of cards on the table face up in front of you and reverse the order of
them, leaving them face up. Chances are you did it by taking the first card off of top
of the stack and setting it down elsewhere on the table, then moving the next card
from the top of the original stack to the top of the new stack, etc., until all the cards
had been moved. If you interrupt this process somewhere in the middle and turn
the rest of the job over to someone else, you might tell them to “reverse the rest of
these cards onto this other stack.”

In terms of our Scheme procedure, we can reduce the problem of reversing
(1 2 3 4) to the smaller problem of putting the elements of (2 3 4) in reverse
order onto the front of (1), which in turn reduces to putting the elements of (3 4)
in reverse order onto the front of (2 1), etc.:

(define reverse
(lambda (lst)
(define reverse-onto ; return a list of the elements of lst1
(lambda (lst1 lst2) ; in reverse order followed by the

; elements of lst2
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(if (null? lst1)
lst2
(reverse-onto (cdr lst1)

(cons (car lst1)
lst2)))))

(reverse-onto lst ’())))

The internally defined procedure reverse-onto does one cons for each element
in the list, as it moves it from the front of lst1 to the front of lst2. Notice that the
total number of conses is equal to the total number of cdrs; if we use n to denote
the size of the list lst, the number of conses is n. Thus we have reduced a Q(n2)
process to a Q(n) one.

Now we have all the procedures that we need to determine whether or not a list
is actually a palindrome:

(define palindrome?
(lambda (lst)
(equal? lst (reverse lst))))

(palindrome? ’(m a d a m i m a d a m))
#t

7.5 Tree Recursion and Lists

In this section, we will look at two examples of using tree recursion with lists. The
first example is a merge sort procedure roughly paralleling what you did by hand in
Chapter 4. The basic approach to merge sorting a list is to separate the list into two
smaller lists, merge sort each of them, and then merge the two sorted lists together.
We can only separate a list into two shorter lists if it has at least two elements,
but luckily all empty and one-element lists are already sorted. Thus our merge sort
procedure would look something like the following:

(define merge-sort
(lambda (lst)
(cond ((null? lst)

’())
((null? (cdr lst))
lst)
(else
(merge (merge-sort (one-part lst))

(merge-sort (the-other-part lst)))))))
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We still have to do most of the programming, namely, writing merge and figuring
out some way to break the list into two parts, which for efficiency should be of equal
size or at least as close to equal size as possible.

We start with the procedure merge. Here we have two lists of numbers, where
each list is in order from the smallest to the largest. We want to produce a third
list, that consists of all of the elements of both of the original lists and that is still
in order. Notice that we have essentially two base cases, which occur when either
one of the original lists is empty. In each case, the result that we want to return
is the other (possibly nonempty) list. We additionally have three recursive cases,
depending on how the first elements of the two lists compare to each other. We
always want to cons the smaller number onto the result of merging the cdr of the list
this number came from with the other list. What happens if both lists have the same
number as their first element? The answer depends on why we’re merging the two
lists. There are some applications where we want to keep only one of the duplicated
number, and some applications where we want to keep both duplicates. Here, we’ve
arbitrarily decided to keep only one of the duplicated element. This will result in a
merge-sort that eliminates duplicates as it sorts:

(define merge
(lambda (lst1 lst2)
(cond ((null? lst1) lst2)

((null? lst2) lst1)
((< (car lst1) (car lst2))
(cons (car lst1) (merge (cdr lst1) lst2)))
((= (car lst1) (car lst2))
(cons (car lst1) (merge (cdr lst1) (cdr lst2))))
(else
(cons (car lst2) (merge lst1 (cdr lst2)))))))

What about breaking the list into two halves? One way of doing so would be to
use the procedures first-elements-of and list-tail as we did in the perfect
shuffle problem. The problem with this approach is that we would need to know
how long the list is that we’re trying to sort. True, we can use length to determine
this. But instead we’ll show off a different way of separating the list into parts, which
is roughly the opposite of interleaving. In other words, if we think of our list as a
deck of cards, we could separate it into halves by dealing the cards to two people.
One person would get the first, third, fifth, . . . cards, and the other would get the
second, fourth, sixth, . . . cards. We’ll call the resulting two hands of cards the odd
part and the even part.

To write the procedures odd-part and even-part, think about how you deal
a deck of cards to two people, let us say Alice and Bob. You start out facing Alice
and are going to give her the odd part and Bob the even part. In other words, you



184 Chapter 7 Lists

are going to give the odd-numbered cards to the person you are facing. You start by
dealing Alice the first card. Now you turn and face Bob, holding the rest of the cards
in your hand. At this moment, the situation is exactly as it was at the beginning,
except that you are facing Bob and have one fewer card. You are about to give Bob
the first, third, etc., of the remaining cards, and Alice the even-numbered ones. So,
all in all, Alice’s hand of cards (the odd part of the deck) consists of the first card
and then the even part of the remaining cards. Meanwhile, Bob’s hand of cards (the
even part of the deck) consists of the odd part of what’s left of the deck after dealing
out the first card. The odd-part and even-part procedures therefore provide an
interesting example of mutual recursion, because we can most easily define them in
terms of each other:

(define odd-part
(lambda (lst)
(if (null? lst)

’()
(cons (car lst) (even-part (cdr lst))))))

(define even-part
(lambda (lst)
(if (null? lst)

’()
(odd-part (cdr lst)))))

Now all we need to do to make merge-sort work is

(define one-part odd-part)
(define the-other-part even-part)

Our second example of using tree recursion comes from a family outing. One
day, we took our sons (aged 3 and 4) to the local video arcade to play a game
called Whacky Gator. Each child won several tickets that could be exchanged for
“prizes” at the main counter. Each kind of prize has a price attached. Some prizes
are worth ten tickets, some are worth nine tickets, and so on down to the plastic
bugs, which are only worth one ticket. The older child had won ten tickets and
wanted to know what prizes he could get. Obviously, he could get only one of the
ten ticket prizes. Alternatively, he could get one nine-ticket prize and one one-ticket
prize or one eight-ticket prize and two one-ticket prizes or one eight-ticket prize and
one two-ticket prize or . . .. As the child’s mother started enumerating the different
combinations that he could get, we whipped out our pocket Scheme systems and
discovered that there are 1778 possible combinations of prizes that the child had to
choose from, given the number of different prizes there were. (See Table 7.1.)
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TABLE 7.1 The low-value prizes at our local video arcade

Value in tickets Number of distinct prizes

10 9
9 3
8 2
7 4
6 3
5 4
4 3
3 3
2 4
1 2

How did we do that? First, we decided to write a general procedure for figuring out
how many prize combinations there were. To see how we developed that procedure,
let’s consider a much smaller problem. Suppose that there are only two kinds of
one-ticket prizes, plastic spiders and plastic beetles. Then there are plastic worms
that are worth three tickets and little magnifying glasses that are worth five tickets. If
the child has five tickets, he can either get a magnifying glass or not. If he doesn’t
get a magnifying glass, he needs to get some combination of the rest of the prizes
that adds up to 5. If he does get the magnifying glass, he’s used up all his tickets
and there’s only one combination of additional prizes worth the remaining 0 tickets,
(i.e., the empty combination).

This approach gives us a way of reducing our problem to smaller problems.
Suppose the prizes are represented by a list of their values. In our small example
above, we would use the list (5 3 1 1) to represent the magnifying glasses, the
worms, the beetles, and the spiders. In this case, if a child has a certain amount of
tickets, she can get a combination of prizes that includes the first item in the list
or one that doesn’t include the first item. If she chooses the first item, we need to
count the number of combinations that she can get for the amount of tickets minus
the value of the first item. If she doesn’t choose the first item, we need to count how
many combinations of items she can get for the amount of tickets using only the rest
of the list. Thus, our recursive call would look like

(define count-combos
(lambda (prize-list amount)
.
.
.
(+ (count-combos prize-list (- amount (car prize-list)))

(count-combos (cdr prize-list) amount))))
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What are the base cases? To figure these out, note that our problem gets smaller in
one of two ways: either the prize list gets smaller or the amount of tickets decreases,
because all of the prizes have positive prices. Thus the process should halt when the
amount is 0, when it is less than 0, or when the prize list is null.

Exercise 7.15

What values should be returned in each of these cases? Using your answer, finish
writing the procedure count-combos.

To check to see if there really were 1778 possible combinations worth 10 tickets,
we need to enter a list of 37 numbers. Alternatively, we could write a procedure that
will generate that list for us, given the data. What is the best way to give the data?
One way would be to give it as a list of pairs, where the first number in each pair is
the value and the second number is the number of distinct prizes worth that value.
Another way would be to give the data by giving the value of the most expensive
prize and then giving the list of numbers of different prizes, with the first number
representing the number of different prizes for the most expensive prize, the second
number representing the number of distinct prizes worth one ticket less than the
most expensive prize, and so on.

Exercise 7.16

Which representation is best? Why? Can you think of any other, better way of
representing the data? Think about what the corresponding procedures would look
like as well as entering the data.

Exercise 7.17

Write the procedure that would generate the list needed for count-combos given
the data in Table 7.1. Check to see that there really are 1778 possible combinations
of prizes that are worth 10 tickets.

Exercise 7.18

One of our children has learned that he doesn’t need to spend all of his tickets
because he can save them up for his next trip. Thus, instead of finding the number
of combinations that he can get with one particular amount he would like to know
the number of combinations that he can get for any amount that is less than or equal
to the number of tickets he has. Write a procedure that is given a prize list and a
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maximum amount and returns the number of combinations of prizes that you can
buy using no more than than the maximum amount of tickets.

Exercise 7.19

When our children started bringing home dozens of cheap plastic spiders, we asked
them to restrict themselves to getting only one of each kind of prize. Write a pro-
cedure that is given the prize list and amount and computes the number of prize
combinations that you can buy using exactly that amount and assuming that you
can’t get more than one of any particular prize.

Exercise 7.20

Write another procedure that will determine the number of combinations you can
buy using no more than a maximum amount of tickets while still insisting that you
can have at most one of each kind of prize.

Exercise 7.21

A similar problem to this is to imagine that you have an unlimited amount of quarters,
dimes, nickels, and pennies and that you need to come up with a combination of
these coins to make a certain amount. How many different ways can you do this?
Write a procedure that will count the number of ways to make change for a given
amount using only quarters, dimes, nickels, and pennies.

7.6 An Application: A Movie Query System

Have you ever gone to a video store to rent a movie, only to be confronted with
so many movies that you couldn’t find one you wanted to see? Perhaps you were
interested in seeing a movie by a given director, but you didn’t know which ones
they were, and the movies weren’t organized by director anyway. Or perhaps you
wanted to know which movies were directed by the person, whose name you forgot,
who directed some favorite movie? What if you didn’t know the name of the movie,
but you knew that it was made in the mid to late 1980s and Dennis Quaid starred
in it?

Being able to answer such questions would go a long ways toward finding a movie.
One possibility would be to ask the store personnel, but perhaps they are busy or
unfriendly or only like slasher movies. Another possibility would be to take some
movie expert, say Roger Ebert, along with you to the store, but that is probably
unrealistic. Wouldn’t it be nice if the video store provided a computer that had a
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program you could ask such questions? Perhaps it could even tell you which movies
were currently available at the store.

Let’s imagine how this program might be structured. First, it must have access
to the database of movies owned by the store. Second, it should have the ability to
search through the database in various ways. Finally, the user should be able to use
these search procedures flexibly and intuitively. Perhaps the user could carry on a
dialog with the computer that looks much like an ordinary English conversation.
Such a feature is called a natural language query system.

We will write a small version of such a program in this section. The database will
simply be a list of movie records. Next we will write procedures to search through
this list in various ways. Finally, we provide a query system for the program by using
pattern-matching on the user’s queries.

So let’s first create the database. For the individual movies, we need to define
a compound ADT with four components: the title of the movie, the name of its
director, the year the movie was made, and a list of the actors in it. For simplicity’s
sake, we assume that the year is a number and that names (of movies and of people)
are lists of symbols. We could construct movie records in a manner similar to how
we constructed three-pile game states in Chapter 6; alternatively, we could simply
put everything into a list. Because this alternative is easily done using the built-in
procedure list, we’ll represent movie records as lists:

(define make-movie
(lambda (title director year-made actors)
(list title director year-made actors)))

(define movie-title car)
(define movie-director cadr)
(define movie-year-made caddr)
(define movie-actors cadddr)

(These definitions take advantage of the fact that cadr, caddr, and cadddr are
built into Scheme as procedures for selecting the second, third, and fourth ele-
ment of a list. The names stand for “the car of the cdr,” etc.) We can then define
our-movie-database to be a list of such records as follows:

(define our-movie-database
(list (make-movie ’(amarcord)

’(federico fellini)
1974
’((magali noel) (bruno zanin)

(pupella maggio)
(armando drancia)))
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(make-movie ’(the big easy)
’(jim mcbride)
1987
’((dennis quaid) (ellen barkin)

(ned beatty)
(lisa jane persky)
(john goodman)
(charles ludlam)))

(make-movie ’(the godfather)
’(francis ford coppola)
1972
’((marlon brando) (al pacino)

(james caan)
(robert duvall)
(diane keaton)))

(make-movie ’(boyz n the hood)
’(john singleton)
1991
’((cuba gooding jr.) (ice cube)

(larry fishburne)
(tyra ferrell)
(morris chestnut)))))

This example is of course a very small database. In the software on the web site for
this book, we include a more extensive database, also called our-movie-database,
that you can use for experimentation.

What types of database search procedures will we want to implement? We might
want to find all the movies by a given director or all of the movies that were made
in a given year or all the movies that have a particular actor in them.

Exercise 7.22

We can use the procedure filter defined in Section 7.3 to do any one of these
searches. For example, to find all the movies that were made in 1974, we would
evaluate

(filter (lambda (movie) (= (movie-year-made movie) 1974))
our-movie-database)

a. Write a procedure called movies-made-in-year that takes two parameters, the
list of movies and a year, and finds all the movies that were made in that year.
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b. Use the procedure filter to find all the movies that were directed by John
Singleton.

c. Write a procedure called movies-directed-by that takes two parameters, the
list of movies and the name of a director, and finds all of the movies that were
directed by that director.

d. Write a procedure called movies-with-actor that takes two parameters, a list
of the movies and the name of an actor, and finds all the movies that have that
actor in them. You could use the Scheme predicate member, which tests to see
whether its first argument is equal to any element of its second argument (which
must be a list).

Exercise 7.23

The biggest problem with the previous procedures is that they return a list of the
actual movie records, when we often would prefer just a list of the titles of the
movies. Write a procedure called titles-of-movies-satisfying that takes two
arguments, a list of movies and a predicate, and returns a list of the titles of the
movies satisfying the predicate argument. For example, evaluating the expression

(titles-of-movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie)

1974)))

would give the list of titles of movies made in 1974. Hint: Use the procedure map
described in Section 7.3.

Exercise 7.24

Sometimes we want some attribute other than the title when we’re searching for the
movies that satisfy a given property. Generalize titles-of-movies-satisfying
to a procedure movies-satisfying that takes three arguments: a list of movie
records, a predicate, and a selector. Evaluating the expression

(movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie) 1974))

movie-title)

should have the same result as the previous exercise.
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Now that we have procedures to search through our database, we need to consider
the people who use the system. Typical video store patrons are not going to be
willing to deal with the kind of Scheme expressions that we’ve been evaluating to
find answers to their questions, and so we need to build a query system (i.e., an
interface that allows them to ask questions more easily).

The goal of the query system is to handle the user’s questions, causing the ap-
propriate database searching procedures to be called and the results reported to the
user. We will construct a query system that at least superficially simulates an English
dialog between the program and the user; such an interface is often called a natural
language interface. (Natural in this context refers to a naturally occurring human
language like English as opposed to a computer language such as Scheme; interface
refers to the fact that it is the point of contact between the user and the internals of
the program.) Thus, the task of this query system will be to read the user’s questions,
interpret them as requesting specific actions, and perform and report the results of
those actions.

Let’s be as concrete as possible. Suppose that we have a procedure called
query-loop that repeatedly reads and responds to the user’s questions. We would
like to have an interaction something like the following; the first line is a Scheme
expression, which is evaluated to start the loop, and the remaining lines are the
interaction with the loop:

(query-loop)

(who was the director of amarcord)
(federico fellini)

(who were the actors in the big easy)
((dennis quaid)

(ellen barkin)

(ned beatty)

(lisa jane persky)

(john goodman)

(charles ludlam))

(what movies were made in 1991)
((boyz n the hood) (dead again))

(what movies were made between 1985 and 1990)
((the big easy))

(what movies were made in 1921)
(i do not know)

(why is the sky blue)
(i do not understand)
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(so long)
(see you later)

Some observations are

The user’s questions are English sentences without punctuation and enclosed in
parenthesis; our program views them as lists of symbols.
The program displays the list of answers to the user’s query. If no answer is found,
it responds with (i do not know); if it can’t interpret the question, it responds
with (i do not understand).
The movie database we used for this sample interaction is slightly larger than the
one given above.

How can we program such an interaction? Remember the query loop repeatedly
reads a question, interprets that question as a request for some specific action, per-
forms that action, and reports the result. Not all questions can be interpreted. How-
ever, those that can be interpreted typically match one of a small set of patterns. For
example, the questions (who was the director of amarcord) and (who was
the director of the big easy) both have the form (who was the director
of ...). The key idea to programming the query loop is to use an abstract data
type called pattern/action pairs. Roughly speaking, a pattern specifies one possible
form that questions can have, whereas the corresponding action is the procedure for
answering questions of that form. The procedure query-loop will use a list of these
pattern/action pairs to respond to the user and will terminate if the user’s question
appears in a list of the ways of quitting the program. (This test for quitting is done in
the exit? procedure using the predefined procedure member, which tests whether
its first argument is equal to any element of its second argument. We introduced
member in Exercise 7.22d.)

(define query-loop
(lambda ()
(newline)
(newline)
(let ((query (read)))
(cond ((exit? query) (display ’(see you later)))

;; movie-p/a-list is the list of the
;; pattern/action pairs
(else (answer-by-pattern query movie-p/a-list)

(query-loop))))))

(define exit?
(lambda (query)
(member query ’((bye)
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(quit)
(exit)
(so long)
(farewell)))))

All of the real work in query-loop gets done by the procedure answer-
by-pattern. How does this procedure work? The idea is that each of the questions
that the program can answer must match one of the patterns in the pattern/action list.
The action corresponding to the matching pattern is an actual Scheme procedure
that does what needs to be done in order to answer the given question. In order
to apply this action, we figure out what particular information must be substituted
into the blanks in the general pattern to make it match the specific question. These
substitutions are the arguments to the action procedure. Our answer-by-pattern
procedure will use two (as yet unwritten) procedures: matches?, which determines
if a question matches a given pattern, and substitutions-in-to-match, which
determines the necessary substitutions.

What should answer-by-pattern display? By looking at query-loop, we
know that the output should be a list that answers the user’s question. Thus,
if the question matched none of the patterns, the answer should be the list
(i do not understand). On the other hand, if the user’s question did match
one of the patterns, answer-by-pattern applies an action procedure that causes
our database to be searched. The value of this expression will be a list of answers. If
that list of answers is nonempty, we can simply display it; if it is empty, no answers
were found. In this case we should display the list (i do not know), indicating
that we could not find the movie or movies the user was looking for.

(define answer-by-pattern
(lambda (query p/a-list)
(cond ((null? p/a-list)

(display ’(i do not understand)))
((matches? (pattern (car p/a-list)) query)
(let ((subs (substitutions-in-to-match

(pattern (car p/a-list))
query)))

(let ((result (apply (action (car p/a-list))
subs)))

(if (null? result)
(display ’(i do not know))
(display result)))))

(else
(answer-by-pattern query

(cdr p/a-list))))))
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This procedure cdrs down the list of pattern/action pairs until it finds a pattern
matching the query. It then uses substitutions-in-to-match to get the substi-
tutions from the query and applies the appropriate action to those substitutions. We
are using the built-in Scheme procedure apply to apply the action procedure to its
arguments. To illustrate how apply works, consider the following interaction:

(apply + ’(1 4))
5

(apply * ’(2 3))
6

(apply (lambda (x) (* x x)) ’(3))
9

(apply movies-satisfying
(list our-movie-database

(lambda (movie) (= (movie-year-made movie) 1974))
movie-title))

((amarcord))

Notice that the first argument to apply is a procedure and the second argument is
the list of arguments to which the procedure is applied. Therefore, when we make
the following call in answer-by-pattern,

(apply (action (car p/a-list))
subs)

we are applying the action procedure in the first pattern/action pair to the list
consisting of the substitutions we got from the pattern match.

To get our query system working, we need to do three things. We need to construct
an ADT for pattern/action pairs, we need to start building the list of these pairs, and
we need to write the procedures matches? and substitutions-in-to-match. Do-
ing these things depends on understanding what patterns are. Consider the following
possible questions:

(who is the director of amarcord)
(who is the director of the big easy)
(who is the director of boyz n the hood)

The common pattern of these three questions is clear. If we use ellipsis points (. . . )
to represent the title, we can write this pattern as

(who is the director of ...)
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The ellipsis points are sometimes called a wild card, because they can stand in for
any title.

What action should correspond to this pattern? As we said before, an action
is simply a procedure. After determining that (who is the director of the
big easy) matches this pattern, we will need to apply our action to the title
(the big easy), because we would substitute the title for the ... wild card to
make the question match the pattern. Thus, this particular action should be a
procedure that takes a title, finds the movie in our movie database that has this title,
and returns the director of that movie:

(lambda (title)
(movies-satisfying our-movie-database

(lambda (movie)
(equal? (movie-title movie) title))

movie-director))

Constructing the pattern/action ADT and building a list of pattern/action pairs is
straightforward. We define the pattern/action ADT much as we defined game states
in Chapter 6:

(define make-pattern/action
(lambda (pattern action)
(cons pattern action)))

(define pattern car)
(define action cdr)

We start building our list of pattern/action pairs by constructing a list with just one
pair:

(define movie-p/a-list
(list (make-pattern/action

’(who is the director of ...)
(lambda (title)
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))))

We will be extending this list throughout the rest of the section.
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Exercise 7.25

Add a pattern of the form (who acted in ...) to your program by adding the
appropriate pattern/action pair to movie-p/a-list and reevaluating this definition.
What other patterns can you add?

To make answer-by-pattern work, we still need to write the procedures
matches? and substitutions-in-to-match. To begin with, suppose that all of
our patterns have the same form as (who is the director of ...) or (who
acted in ...). Therefore, a pattern would be a list of symbols; the last symbol
(and only the last) could be the ... wild card. For a pattern to match a question, all
non-wild card symbols in the pattern must be equal to the corresponding symbols in
the question. Beyond these equal symbols, if the pattern ends with the ... wild card,
there must be one or more additional symbols at the end of the question. Thus, to
write matches?, we need to cdr down both the pattern and the question, checking
that the cars are equal. We should stop if either of the two lists is empty, if the . . . wild
card is the car of the pattern list, or if the two cars are not equal:

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((null? question) #f)
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
(else #f))))

The procedure substitutions-in-to-match will be very similar to matches?
in that it will get two arguments, a pattern and a question. However, substi-
tutions-in-to-match will be called only when these two lists match. It needs
to return a list of the substitutions for the wild cards in the pattern that will
make it match the question. Currently, we are assuming that there will only
be one substitution, which is the list of symbols that are matched by the ...
wild card. However, we will soon extend the definitions of both matches? and
substitutions-in-to-match so that patterns can contain more than one wild
card. Thus, your substitutions-in-to-match should return a one-element list,
where the one element is the list of symbols that matches the . . . wild card, as follows:

(substitutions-in-to-match ’(foo ...)
’(foo bar baz))

((bar baz))
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Exercise 7.26

Write the procedure substitutions-in-to-match. Be sure to return a list con-
taining the list of symbols that are matched by the ... symbol. Note: You needn’t
use the whole query system to test whether substitutions-in-to-match works.
Instead, you could check whether you have interactions like the preceding one.
This note applies as well to later exercises that ask you to extend matches? and
substitutions-in-to-match.

Exercise 7.27

Test the whole query system by evaluating the expression (query-loop).

At this point, a typical question/answer might look like

(who is the director of amarcord)
((federico fellini))

Note that the answer is a list containing the director’s name, which is itself a list.
This is because movies-satisfying is finding the director of each of the movies
called amarcord, even though there’s only one. Asking for the actors in a particular
movie is even uglier; you get a list containing the list of the actors’ names, which
are themselves lists.

We can get better looking output by writing a procedure called the-only-
element-in and changing the action for finding the director of a movie to

(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))

The procedure the-only-element-in has a single parameter, which should be
a list. If this list has only one element in it, the-only-element-in returns that
element.

Exercise 7.28

What should it return if there are no elements in the list? What if there are two or
more? Write this procedure, and use it to modify the action for finding the actors of
a particular movie.
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Now that our program can recognize very simple patterns, we can start adding
more complicated ones. The next pattern we add to our list is typified by the following
sentences:

(what movies were made in 1955)
(what movie was made in 1964)

What is the common pattern for these two queries? By using an extended pattern
language, we could write it as follows:

(what (movie movies) (was were) made in _)

We have extended our pattern language in two ways:

1. The symbol _ stands for a single-word wild card (as opposed to the multiword
wild card ...). Note that we can have as many _’s as we want; each one matches
a single word. Unlike with the ... wild card, the _ wild cards need not appear at
the end of the pattern.

2. List wild cards such as (movie movies) and (was were) in the pattern are
more restricted versions of the _ wild card. A wild card of either type must be
matched by a single word. However, the _ wild card can be matched by any word
at all, whereas a list wild card can be matched only by one of its elements. Thus,
the wild card (movie movies) can only match movie or movies.

Here’s how we can extend matches? to account for the second extension to our
pattern language. We use the Scheme predicate list?, which returns true if the
argument is a list, and also once again use member to test for list membership:

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((null? question) #f)
((list? (car pattern))
(if (member (car question) (car pattern))

(matches? (cdr pattern)
(cdr question))

#f))
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
(else #f))))
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Exercise 7.29

Extend matches? so that it also checks for the _ wild card. Remember that this is a
wild card for a single word. Also, remember that there can be more than one _ in a
single pattern and that they need not be at the end of the pattern.

Exercise 7.30

Extend substitutions-in-to-match to account for both of these extensions. It
should return the list of substitutions, one for each wild card.

Using these extended versions, we can redefine movie-p/a-list as follows:

(define movie-p/a-list
(list (make-pattern/action

’(who is the director of ...)
(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director))))

(make-pattern/action
’(what (movie movies) (was were) made in _)
(lambda (noun verb year)
(movies-satisfying
our-movie-database
(lambda (movie) (= (movie-year-made movie) year))
movie-title)))))

Note that the action for this new pattern totally ignores the first two substitutions.
The substitutions for the first two wild cards in (what (movie movies) (was
were) made in ) are often called noise words because they are not used in the
corresponding action. Not all list wild cards are used for noise words, however.
Suppose that instead of the pattern (what (movie movies) (was were) made
in ), we used (what (movie movies) (was were) made (in before after
since) ). The corresponding action would still ignore those first two noise words,
but it would need to know the substitution for the third wild card in order to know
which comparison operator to use.
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Exercise 7.31

What would the action corresponding to (what (movie movies) (was were)
made (in before after since) ) be? Remember, because the pattern con-
tains four wild cards, the action procedure should get four arguments. It ignores the
first two of these and uses the third and fourth to construct a predicate. Note that
the third argument is a symbol; you will need to use that symbol to decide which
comparison to do.

Exercise 7.32

Add a pattern/action for the pattern

(what (movie movies) (was were) made between _ and _)

Exercise 7.33

What if the user asks for the director of “Godfather,” which is listed in our database
as “The Godfather”? As it stands, the program will respond that it doesn’t know, even
though it really does have the movie in its database. The point is that the symbol
the rarely contributes significant information as to the movie’s title. Similarly the
symbols a and an add little significant information.

Write a predicate that compares two titles but ignores any articles in either title.
Where would you use this predicate in the interface?

Exercise 7.34

It would be nice if we could add patterns of the form

(when was the godfather made)
(when was amarcord made)

The pattern could be (when was ... made), but unfortunately, matches? and
substitutions-in-to-match require that the ... wild card occur at the end of
the pattern, because as written, the ... absorbs the remainder of the sentence.

Extend matches? and substitutions-in-to-match to allow for patterns hav-
ing only one occurrence of the ... wild card but where that occurrence need not
be at the end of the pattern. Hint: If the pattern starts with ... and is of length n,
and the sentence is of length m, and there can be no additional ... wild cards in
the rest of the pattern, then how many words must the ... match up with?
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Using these extended versions, add a pattern/action for the pattern

(when was ... made)

Exercise 7.35

If you allow more than one ... in the same pattern, there can be more than one
set of substitutions that makes the pattern match a sentence. For example, if the
pattern is (do you have ... in ...), and the sentence is (do you have boyz
in the hood in the store), the pattern will match not only if you substitute
“boyz in the hood” for the first wild card and “the store” for the second but also
if you substitute “boyz” for the first wild card and “the hood in the store” for the
second wild card.

Redesign substitutions-in-to-match so it returns a list of all the possible
sets of substitutions that make the pattern match the sentence, rather than just one
set. Allow multiple instances of ... in the same pattern. You’ll need to make other
changes in the way the program uses substitutions-in-to-match. You can also
redesign the program to eliminate matches?, because a pattern matches if there are
one or more sets of substitutions that make it match.

Exercise 7.36

Add pattern/action pairs that allow the user to ask other questions of your own
choosing. Try to make the patterns as general as possible, for example, by allowing
singular and plural as well as past and present tenses. Also allow for the various ways
the user might pose the query.

Exercise 7.37

Earlier, we said that the query system reads the user’s questions as lists of symbols.
We were stretching the truth, as illustrated by the query:

(what movie was made in 1951)

The last element of that question is not a symbol; it’s the number 1951. This raises
an interesting point. Because it is a number, it can be compared to other numbers
using the = operator. However, consider what would happen if we had the question

(what movie was made in Barcelona)

In this case, the action procedure attempts to compare the symbol Barcelona with
the year each movie was made using the = operator, and because Barcelona isn’t a
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number, an error is signaled. The whole problem here is that the _ is too general; it
will match anything at all and not just a number. Change the pattern language (and
the query system) to allow wild cards that are predicates such as number?.

Exercise 7.38

The pattern (what (movie movies) (was were) made in ) would match
questions such as (what movie were made in 1967). To enforce grammatical
correctness, we would need to change our pattern language so that it would allow
wild cards that provide a choice among alternative lists of words rather than simply
among single words. One example of this would be the pattern

(what ((movie was) (movies were)) made in _)

Make the appropriate changes in the query system to allow for patterns of this type.

Is There More to Intelligence Than the Appearance of Intelligence?

The natural language interface presented in this section is quite clearly unintelli-
gent. It has no real understanding of the sentences it accepts as input or produces
as output—it is just mechanically matching patterns and spitting out canned re-
sponses. Yet if you ignore little things like punctuation and capitalization (which
are easy, but uninteresting, to fix), the dialog between the system and the user
could easily be mistaken for one between two humans.

Of course, the illusion only holds up as long as the input sentences are well
suited to the patterns and actions that are available. However, as we add more
patterns, the range of coverage gets larger. What if we also added progressively
more and more sophisticated kinds of pattern-matching, and stored data about
more and more topics? Presumably it would get harder and harder to distinguish
the system from an intelligent being—yet it would still be every bit as much
a mechanical “symbol pusher” as the current system. What if this progression
were taken to such extremes that no one could tell the difference between the
system’s behavior and that of a human? Even if no one ever achieves this feat of
programming, the hypothetical question has already provoked much philosophical
debate.

Some people, including most mainstream computer scientists, apply the op-
erational stance to intelligence: If it acts intelligent, it is intelligent. The idea
that an intelligent entity could be (at least hypothetically) the endpoint in a

(Continued)
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Is There More to Intelligence Than the Appearance of Intelligence?

progression of progressively fancier mechanistic symbol pushers isn’t bothersome
to these people. There is no inherent contradiction between “mechanistic” and
“intelligent” because one refers to how the behavior is produced, and the other
refers to the nature of the behavior. Perhaps no mechanistic symbol-pushing
system could ever produce behavior that matched that of humans—after all, not
all kinds of mechanisms can be used to produce all kinds of results. But, these
people argue, if such a system ever did produce behavior like that of humans,
we would have no choice but to accept it as intelligent—after all, what else
could “intelligent” mean other than “behaving intelligently”? This operational
stance regarding intelligence was subscribed to by Alan Turing, among others,
as described in the biographical sketch of him in Chapter 5, and is frequently
referred to as the Turing test definition of intelligence.

On the other hand, some people (of whom the most well known is the philoso-
pher John Searle) say that if every program in our progression is a mechanical
symbol pusher, every one of them is operating on tokens that to us may bring
real things like people and movies to mind, but to the program are completely
content-free groupings of letters. The only sense in which the sentences can be
said to be “about movies” is that we humans can successfully associate them with
movies. To the computer, there is nothing but the words themselves. This is every
bit as true for the hypothetical endpoint of our evolution, which is indistinguish-
able in its behavior from a human as it is for the crude version presented in this
section. Even flawless conversation “about movies” is only truly “about movies”
for us humans, this group of philosophers would argue—to the computer, even
the hypothetical flawless conversation is just a string of words. Because Searle
made this point using a story about being locked in a room following precise
rules for processing things that were to him just squiggles, but to certain outsiders
made sense as Chinese text, this argument against the Turing test definition of
intelligence is frequently called the Chinese room argument.

A related point, which has also been persuasively argued by Searle, is that we
humans can do things in our minds, such as liking a movie, whether or not we
choose to utter the string of words that conventionally expresses this state, whereas
there is no particular reason to assume that some mechanical system that utters
“I like Boyz N the Hood” really does like the movie or even is the kind of thing
that is capable of liking. When other people state their likes, we may or may not
trust them to have honestly done so, but at least we accept that they can have
likes because we have likes and the other people are similar to us. For a dissimilar
thing, such as a computer program, we don’t have any reason to believe there are
truly any likes inside the shell of statements about likes. We have no reason to

(Continued)
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Is there more to intelligence? (Continued)

suppose the program is the kind that could lie about its likes, any more than that
it could tell the truth, because there is nothing we can presume the existence of
that would form the standard against which a purported like would be judged. In
a fellow human, on the other hand, we presume that there are “real likes” and
other mental states inside because we feel them in ourselves.

In short, Turing prefers to define intelligence in terms of behavior we can
observe, whereas Searle would prefer to define it in terms of internal mental
states. Searle presumes that a mute, paralyzed human being has such states and
reserves judgment on flawlessly communicating computer programs.

Review Problems

Exercise 7.39

Prove using induction on n that the following procedure produces a list of length n.

(define sevens
(lambda (n)
(if (= n 0)

’()
(cons 7

(sevens (- n 1))))))

Exercise 7.40

Suppose that f1, f2, . . . , fn are all functions from real numbers to real numbers. The
functional sum of f1, f2, . . . , fn is the function that, when given a number x, returns
the value f1(x) 1 f2(x) 1 ? ? ? 1 fn(x). Write a procedure function-sum that takes a
list of functions and returns the functional sum of those functions. For example

(define square
(lambda (x) (* x x)))

(define cube
(lambda (x) (* x (* x x))))

((function-sum (list square cube)) 2)
12
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Exercise 7.41

Write an iterative version of the following procedure:

(define square-sum
(lambda (lst)
(if (null? lst)

0
(+ (square (car lst))

(square-sum (cdr lst))))))

Exercise 7.42

Write a procedure called apply-all that, when given a list of functions and a
number, will produce the list of the values of the functions when applied to the
number. For example,

(apply-all (list sqrt square cube) 4)
(2 16 64)

Exercise 7.43

Prove by induction on n that the following procedure produces a list of 2n seventeens:

(define seventeens
(lambda (n)
(if (= n 0)

’()
(cons 17 (cons 17 (seventeens (- n 1)))))))

Exercise 7.44

Consider the following two procedures. The procedure last selects the last element
from a list, which must be nonempty. It uses length to find the length of the list.

(define last
(lambda (lst)
(if (= (length lst) 1)

(car lst)
(last (cdr lst)))))
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(define length
(lambda (lst)
(if (null? lst)

0
(+ 1 (length (cdr lst))))))

a. How many cdrs does (length lst) do when lst has n elements?
b. How many calls to length does (last lst) make when lst has n elements?
c. Express in Q notation the total number of cdrs done by (last lst), including

cdrs done by length, again assuming that lst has n elements.
d. Give an exact formula for the total number of cdrs done by (last lst), including

cdrs done by length, again assuming that lst has n elements.

Exercise 7.45

Lists are collections of data accessible by position. That is, we can ask for the first
element in a list, the second, . . . , the last. Sometimes, however, we’d prefer to have
a collection of data accessible by size. In other words, we’d like to be able to ask for
the largest element, the second largest, . . . , the smallest.

In this problem, we’ll simplify this goal by restricting ourselves to collections
containing exactly two real numbers. Thus the two selectors will select the smaller
and larger of the two numbers. Here are some examples of this data abstraction
in use; the constructor is called make-couple. Note that the order in which the
argument values are given to the constructor is irrelevant, because selection is based
on their relative size.

(define x (make-couple 2 7))
(define y (make-couple 5 3))
(define z (make-couple 4 4))

(smaller x) (larger x)
2 7

(smaller y) (larger y)
3 5

(smaller z) (larger z)
4 4

Write two versions of make-couple, smaller, and larger. One version should
have make-couple compare the two numbers, and the other version should leave
that to smaller and larger.
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Exercise 7.46

Write a higher-order procedure make-list-scaler that takes a single number scale
and returns a procedure that, when applied to a list lst of numbers, will return the
list obtained by multiplying each element of lst by scale. Thus, you might have the
following interaction:

(define scale-by-5 (make-list-scaler 5))

(scale-by-5 ’(1 2 3 4))
(5 10 15 20)

Exercise 7.47

Write a procedure map-2 that takes a procedure and two lists as arguments and
returns the list obtained by mapping the procedure over the two lists, drawing the
two arguments from the two lists. For example, it would yield the following results:

(map-2 + ’(1 2 3) ’(2 0 -5))
(3 2 -2)

(map-2 * ’(1 2 3) ’(2 0 -5))
(2 0 -15)

Write this procedure map-2. You may assume that the lists have the same length.

Exercise 7.48

Given the following procedure:

(define sub1-each
(lambda (nums)
(define help
(lambda (nums results)
(if (null? nums)

(reverse results)
(help (cdr nums)

(cons (- (car nums) 1) results)))))
(help nums ’())))

Evaluate the expression (sub1-each ’(5 4 3)) using the substitution model of
evaluation. Assume reverse operates in a single “black-box” step, but otherwise
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show each step in the evolution of the process. What kind of process is generated by
this procedure?

Exercise 7.49

Given a predicate that tests a single item, such as positive?, we can construct an
“all are” version of it for testing a list; an example is a predicate that tests whether all
elements of a list are positive. Define a procedure all-are that does this; that is, it
should be possible to use it in ways like the following:

((all-are positive?) ’(1 2 3 4))
#t

((all-are even?) ’(2 4 5 6 8))
#f

Exercise 7.50

Consider the following procedure (together with two sample calls):

(define repeat
(lambda (num times)
(if (= times 0)

’()
(cons num (repeat num (- times 1))))))

(repeat 3 2)
(3 3)

(repeat 17 5)
(17 17 17 17 17)

a. Explain why repeat generates a recursive process.
b. Write an iterative version of repeat.

Exercise 7.51

If a list contains multiple copies of the same element in succession, the list can be
stored more compactly using run length encoding, in which the repeated element is
given just once, preceded by the number of times it is repeated. The expand proce-
dure given here is designed to decompress a run-length-encoded list; for example, it
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could be used as follows to expand to full size some 1950s lyrics we got from Abelson
and Sussman’s text:

(expand ’(get a job sha 8 na get a job sha 8 na wah 8 yip sha
boom))

(get a job sha na na na na na na na na get a job sha na na na na

na na na na wah yip yip yip yip yip yip yip yip sha boom)

a. Given the following definition of the expand procedure, show the key steps in
evaluating (expand ’(3 ho merry-xmas)) using the substitution model.

b. Does this procedure generate an iterative or recursive process? Justify your answer.

(define expand
(lambda (lst)
(cond ((null? lst) lst)

((number? (car lst))
(cons (cadr lst)

(expand (if (= (car lst) 1)
(cddr lst)
(cons (- (car lst) 1)

(cdr lst))))))
(else
(cons (car lst)

(expand (cdr lst)))))))

Exercise 7.52

Suppose you have a two-argument procedure, such as + or *, and you want to apply
it elementwise to two lists. For example, the procedures list+ and list* would
apply + and *, respectively, to the corresponding elements of two lists as follows:

(list+ ’(1 2 3) ’(2 4 6))
(3 6 9)

(list* ’(1 2 3) ’(2 4 6))
(2 8 18)

Because the two procedures list+ and list* are so similar in form, it makes
sense to write the higher-order procedure “factory” make-list-combiner that gen-
erates the two procedures list+ and list* as follows:
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(define list+
(make-list-combiner +))

(define list*
(make-list-combiner *))

Write the procedure make-list-combiner. You may assume that the two list argu-
ments have the same length.
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Trees

8.1 Binary Search Trees

Joe S. Franksen, one of the co-owners of the video store that uses your query system,
has been getting a lot of customer complaints that searching for a video by director
takes too long. Now he’s hired us to try to fix the problem. The problem doesn’t
appear to be in the query-matching part of our system. Therefore, we will need to
look at the procedures we used for looking up a particular director or video.

Recall that we used a list of video records, and in Exercise 7.22c you wrote a
procedure for searching for the ones by a given director. This procedure has to
search through the entire list of movies, even if the ones by the specified director
happen to be near the front, because it has no way of knowing that there aren’t any
more movies by the same director later in the list. When Franksen’s video rental
business was only a small part of his gas station/convenience store, this was no big
deal because he only had about a hundred videos. But now that he’s expanded his
business and acquired 10,000 videos, the time it takes to find one becomes noticeably
long.

Are there better ways to structure the list of videos so that finding those by a
particular director won’t take so long? One idea would be to sort the list, say,
alphabetically by the director’s name. When we search for a particular director, we
can stop when we reach the first video by a director alphabetically “greater than” the
one we’re searching for.

Is this approach any better? A lot depends on the name of the director. If we’re
searching for videos directed by Alfred Hitchcock, the search will be relatively quick

212
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(because this name begins with an A), whereas if we’re looking for videos directed
by Woody Allen, we will still need to search through essentially the entire list to get
to W. We can show that, on the average, using a sorted list will take about half the
time that using an unsorted one would. From an asymptotic point of view, this is not
a significant improvement.

We can find things in a sorted list much faster using what’s called a divide and
conquer approach. The main idea is to divide the list of records we’re searching
through in half at each point in our search. We start by looking in the middle of
the list. If the record we’re looking for is the same as the middle element of the
list, we are done. If it’s smaller than the middle record, we only need to look in
the first half of the list, and if it’s bigger, we only need to look in the second half.
This way of searching for something is often called binary search. Because each pass
of binary search at worst splits the search space in half, we would expect the time
taken to be at worst a multiple of log(n), where n is the size of the list. (In symbols
we say that the time is O(log(n)), pronounced “big oh of log en,” which means
that for all but perhaps finitely many exceptions, it is known to lie below a constant
multiple of log(n).) For large values of n, this is an enormous improvement because,
for example, log2(1,000,000) < 20, a speed-up factor of 1,000,0006 20 5 50,000.

But we run into trouble when we try to code this up because we can’t get to the
middle of a list quickly. In fact, the time it takes to get that middle element is long
enough to make the binary search algorithm as slow as doing the straightforward
linear search that constituted our first and second approaches. Can we do something
to our list that is more drastic than just sorting it? In other words, can we somehow
arrange the video records so that we could efficiently implement the binary search
algorithm? We would need to be able to easily access the middle element (i.e.,
the one where half the remaining records are larger than it and half are smaller).
We would also need to be able to access the records that are smaller than the
middle record, as well as those which are larger. Furthermore, both halves should
be structured in exactly the same way as the whole set of video records, so we can
search the relevant half in the same way.

How do we create such a structure? The answer is to use a data structure based on
the above description. Our new data type will have three elements: one movie record
(the “middle” one) and two collections of movie records (those that are smaller and
those that are larger). This way, we can get at any of the three parts we need by just
using the appropriate selector.

This type of structure is called a binary search tree. There is the hint of a recur-
sive definition in the preceding discussion: Most binary search trees have a middle
element and two subtrees, which are also binary search trees. We need to make this
more precise. First, we skipped over the base case: an empty tree. Secondly, we need
to define what we mean by a middle element. This is simply one that is greater than
every element in one subtree and less than every element in the other subtree. Thus
we can make the following definition:
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Binary search tree: A binary search tree is either empty or it consists of three
parts: the root, the left subtree, and the right subtree. The left and right subtrees
are themselves binary search trees. The root is an element that is greater than or
equal to each of the elements in the left subtree and less than or equal to each of
the elements in the right subtree.

Notice that there is no guarantee in this definition that the root is the median
element (i.e., that half of the elements in the tree are less than it and half are greater
than it). When the root of a tree is the median, and similarly for the roots of the
subtrees, sub-subtrees, etc., the tree will be as short as possible. We will see in the
next section that such trees are the binary search trees that are most efficient for
searching.

For the remainder of this section, we will work with two kinds of binary search
trees, ones that have numbers as their elements and ones that have video records.
Because trees with numbers are easier to conceptualize, we will write procedures
that work with them first. Then we can easily modify these procedures to work with
trees of video records.

In the numerical trees, we will assume that there are no duplicate items. In this
case, we say that the tree is strictly ordered. In the video record trees, there are
probably lots of “duplicates.” Recall that we compare two records by comparing their
directors. Because some people direct many videos, we would expect to see one entry
for each of these videos in the tree.

Binary search trees can be represented visually by diagrams in which each tree is a
box. Empty trees are represented by empty boxes, and nonempty trees are represented
by boxes containing the root value and the boxes for the two subtrees. For example,
a small binary search tree with seven elements looks like the following:

1 3

2

5 7

6

4

Note that the root of the tree, which is 4, is at the top, and the subtrees branch
downward. For some obscure reason, mathematicians and computer scientists almost
always draw their trees so that they grow upside down. The left subtree of this example
tree has 2 for its root. Notice that this subtree is a box much like the outer one, and
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so we can talk about its subtrees in turn (with roots 1 and 3), just as we talked about
the subtrees of the original tree.

This sort of boxes-within-boxes diagram is probably the best way to think of a tree
because it emphasizes the recursive three-part structure. However, another style of
diagram is so traditional that it is worth getting used to as well. In this traditional
style of tree diagram, the same binary search tree would look like the following:

4

2 6

1 3 5 7

Here you have to mentally recognize the whole collection of seven “nodes” as a
single tree, with the top node as the root, the three nodes on the left grouped
together in your mind as one subtree, and the three nodes on the right similarly
grouped together as the other subtree. You also have to remember that the “leaves”
at the bottom of the tree (1, 3, 5, and 7) are really roots of trees with empty subtrees
that are invisible in this style of diagram.

We can implement binary search trees by using lists with three elements. Using
the convention that the first element is the root, and the second and third elements
are the left and right subtrees, respectively, the list representation of the preceding
tree would be

(4 (2 (1 () ()) (3 () ())) (6 (5 () ()) (7 () ())))

Its tree structure is much easier to see if we write it on several different lines:

(4
(2
(1 () ())
(3 () ()))
(6
(5 () ())
(7 () ())))

What sort of operations do we need to implement binary search trees? We use
two constructors:
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(define make-empty-tree
(lambda () ’()))

(define make-nonempty-tree
(lambda (root left-subtree right-subtree)
(list root left-subtree right-subtree)))

and four selectors:

(define empty-tree? null?)

(define root car)

(define left-subtree cadr)

(define right-subtree caddr)

These procedures are all we need to implement the binary search algorithm
given above. Initially, we assume that we’re dealing with a binary search tree that
has numerical elements and does not have duplicate entries:

(define in?
(lambda (value tree)
(cond
((empty-tree? tree) #f)
((= value (root tree)) #t)
((< value (root tree)) (in? value (left-subtree tree)))
(else ; the value must be greater than the root
(in? value (right-subtree tree))))))

Notice how closely this procedure follows the definition of binary search trees. If
the tree is empty, the value can’t be in the tree. On the other hand, if the tree is not
empty, the value is either equal to the root or it’s in one of the subtrees. Furthermore,
we can tell which subtree it’s in by how it compares to the root.

There are two related points worth noting here because they will crop up time
and time again. One is the parallelism between the recursive structure of the data
and that of the procedure that operates on it. The other is that our one-layer thinking
about the design of the procedure goes along with a one-layer perspective on the
structure of the data. We don’t think about searching through a succession of values
in the tree, but rather about looking at the root and then one or the other subtree.
Similarly, we don’t view the tree as composed of a bunch of values, but rather of
a root and two subtrees. We can summarize these points as a general principle for
future reference:
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The one-layer data structure principle: Hierarchical data structures should not
be thought of in their entirety but rather in a one-layer fashion, as a recursive
composition of substructures. This one-layer thinking guides one to write recursive
procedures that naturally parallel the recursive structure of the data.

Exercise 8.1

Write a procedure called minimum that will find the smallest element in a nonempty
binary search tree of numbers.

Exercise 8.2

Write a procedure called number-of-nodes that will count the number of elements
in a binary search tree.

In the video catalog example, we will want a version of in? that returns a list
of all the videos directed by a given person. Therefore, we will need a procedure
that takes a video record and a director’s name and determines how the name of
the director of the video compares alphabetically to the given name. The director
field of the video record is often called the key field; the particular name that we’re
searching for is called the key value. Now, any two names could be identical, the
first one could come before the second in alphabetical order, or the first one could
come after the second. Therefore we’ll assume our comparison procedure returns
one of three symbols, =, <, or >.

(define compare-by-director
(lambda (video-record name)
; Returns one of the symbols <, =, or > according to how the
; director in video-record compares alphabetically to name.
; For example, if video-record’s director alphabetically
; precedes name, < would be returned.
the code implementing this would go here))

We’re now in a position to modify in? so that it can list all of the videos in a
binary search tree that are directed by a given person. The basic idea is to traverse
the tree looking for a node whose director is the same as the given key value. Once
we find such a subtree, we must still search both halves of it, looking for all of the
other records that match the key value. This may seem to defeat the efficiency of
the procedure. However, it can be shown that so long as the tree isn’t unnecessarily
tall and skinny, this search method is in fact very efficient.

To make our procedure work generally, and not just for the director, let’s suppose
that we have a general comparison operator (such as compare-by-director). Such
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a procedure takes a video record and a key value, compares the appropriate field of
the record to the key value, and returns exactly one of the symbols =, <, or >. We can
then write a procedure that returns the list of records matching a given key value as
follows:

(define list-by-key
(lambda (key-value comparator tree)
(if (empty-tree? tree)

’()
(let ((comparison-result (comparator (root tree)

key-value)))
(cond
((equal? comparison-result ’=)
(cons (root tree)

(append (list-by-key key-value comparator
(left-subtree tree))

(list-by-key key-value comparator
(right-subtree tree)))))

((equal? comparison-result ’<)
(list-by-key key-value comparator

(right-subtree tree)))
(else ;it must be the symbol >
(list-by-key key-value comparator

(left-subtree tree))))))))

Of course, because we haven’t explained how to do alphabetical comparison,
you’re not in a very good position to complete the compare-by-director pro-
cedure above. You could, of course, try list-by-key out with an analogous
compare-by-year instead, or alternatively consult a Scheme reference manual to
learn how to do alphabetical comparisons. However, our main point was to illustrate
the nature of accessing a binary search tree, not to get into the details of the specific
kind of comparison used.

The procedure list-by-key typifies a process called tree traversal. We call it a
preorder traversal because we consider the root of the tree first and then the left and
right subtrees, in that order. When the root of the tree should be included in the
result, it is consed on in front of the elements from the left and right subtrees. The
lists from the left and right subtrees are appended together using a built-in procedure
we haven’t seen before, append. Here is a simpler example of append:

(append ’(a b c) ’(1 2 3 4))
(a b c 1 2 3 4)

We can use this idea of preorder traversal with cons and append to produce a list
of all the nodes in the tree:
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(define preorder
(lambda (tree)
(if (empty-tree? tree)

’()
(cons (root tree)

(append (preorder (left-subtree tree))
(preorder (right-subtree tree)))))))

The append in this procedure can be avoided if we generalize to a preorder-
onto procedure that conses the tree’s nodes onto the front of a specified list. This is
analogous to our definition of reverse in terms of reverse-onto and is motivated
by the same concern: efficiency.

(define preorder
(lambda (tree)
(preorder-onto tree ’())))

(define preorder-onto
(lambda (tree list)
(if (empty-tree? tree)

list
(cons (root tree)

(preorder-onto (left-subtree tree)
(preorder-onto (right-subtree tree)

list))))))

Exercise 8.3

Use this technique to eliminate the append from list-by-key.

One of the problems with preorder is that the list it produces is not sorted. We
can get a list of the nodes that’s sorted by doing what’s called an in order traversal of
the tree. The “in” refers to the fact that you include the root of the tree in between
the left and right subtrees:

(define inorder
(lambda (tree)
(if (empty-tree? tree)

’()
(append (inorder (left-subtree tree))

(cons (root tree)
(inorder (right-subtree tree)))))))
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Now when we call inorder on a binary search tree, the resulting list has the elements
in it listed in increasing order.

Exercise 8.4

Again, eliminate append by using an “onto” parameter.

Exercise 8.5

The third standard way of traversing a tree is called a postorder traversal. Here, you
enumerate the left subtree, then the right subtree, and finally the root. Write a
procedure that takes a binary search tree and produces the list of nodes that describe
a postorder traversal of the tree.

Exercise 8.6

Suppose we want to create a new binary search tree by adding another element to
an already existing binary search tree. Where is the easiest place to add such an
element? Write a procedure called insert that takes a number and a binary search
tree of numbers and returns a new binary search tree whose elements consist of the
given number together with all of the elements of the binary search tree. You may
assume that the given number isn’t already in the tree.

Exercise 8.7

Using the procedure insert, write a procedure called list->bstree that takes a
list of numbers and returns a binary tree whose elements are those numbers. Try this
on several different lists and draw the corresponding tree diagrams. What kind of list
gives you a short bushy tree? What kind of list gives a tall skinny tree?

8.2 Efficiency Issues with Binary Search Trees

Now that we have some experience with binary search trees, we need to ask if they
really are a better structure for storing our catalog of videos than sorted lists. In
order to do that, we first look at a general binary tree and get some estimates on the
number of nodes in a tree. We start with some definitions.

If we ignore the ordering properties that are part of a binary search tree’s definition,
we get something called a binary tree. More precisely,
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Binary tree: A binary tree is either empty or it consists of three parts: the root,
the left subtree, and the right subtree. The left and right subtrees are themselves
binary trees.

Needless to say, binary search trees are special cases of binary trees. Furthermore, we
set up the basic constructors and selectors for binary search trees so that they work
equally well for implementing binary trees.

There is an enormous amount of terminology commonly used with binary trees.
The elements that make up roots of binary trees (or roots of subtrees of binary trees)
are called the nodes of the tree. In the graphical representation of a tree, the nodes
are often represented by circles with values inside them. If a particular node in a
binary tree is the root of a subtree that has two empty subtrees, that node is called
a leaf. On the other hand, if a node is the root of a subtree that has at least one
nonempty subtree, that node is called an internal node. If you look at the graphical
representation, the leaves of a tree are the nodes at the very bottom of the tree and
all of the rest of the nodes are internal ones. Of course, if we drew out trees with
the root at the bottom of the diagram, the leaves would correspond more closely to
real leaves on real trees. The two subtrees of a binary tree are often labeled as the
left subtree and the right subtree. Sometimes these subtrees are called the left child
or the right child. More commonly, we define a parent-child relationship between
nodes. If an internal node has a nonempty left subtree, the root of that left subtree
is called the left child of the node. The right child is similarly defined. The internal
node is the parent node of its children. The parent-child relationship is indicated
graphically by drawing an edge between the two nodes. The root of the whole tree
has no parent, all internal nodes have at least one and at most two children, and the
leaves in a tree have no children at all.

Imagine traveling through a binary tree starting at the root. At each point, we
make a choice to go either left or right. If we only travel downward (i.e., without
backing up), there is a unique path from the root to any given node. The depth of a
node is the length of the path from the root to that node, where we define the length
of a path to be the number of edges that we passed along. For example, if we travel
from 7 to 2 to 3 in the tree

7

2 8

3 9



222 Chapter 8 Trees

we take a path of length 2. The height of a tree is the length of the longest path
from the root down to a leaf without any doubling back. In other words, it is the
maximum depth of the nodes in the tree. Thus, the height of the above tree is 2
because every path from the root to a leaf has length 2. According to our definition,
a tree having a single node will have height 0. The height of an empty tree is
undefined; in the remainder of this section, we’ll assume all the trees we’re talking
about are nonempty.

Exercise 8.8

Write a predicate that will return true if the root node of a tree is a leaf (i.e., the tree
has only one node).

Exercise 8.9

Write a procedure that will compute the height of a tree.

Suppose we have a binary tree of height h. What is the maximum number of
nodes that it can have? What is the maximum number of leaves that it can have?
These maximum values occur for complete trees, where a complete tree of height h is
one where all of the leaves occur at depth h and all of the internal nodes have exactly
two children. (Why is the number of leaves maximum then?) Let’s let leaves(h) and
nodes(h), respectively, denote the maximum number of leaves and nodes of a tree
of height h and look at a few small examples to see if we can determine a general
formula. A tree of height 0 has one node and one leaf. A tree of height 1 can have at
most two leaves, and those plus the root make a total of three nodes. A tree of height
2 can have at most four leaves, and those plus the three above make a maximum of
seven nodes.

In general, the maximum number of leaves doubles each time h is increased by 1.
This combined with the fact that leaves(0) 5 1 implies that leaves(h) 5 2h. On the
other hand, because every node in a complete tree is either a leaf or a node that
would remain were the tree shortened by 1, the maximum number of nodes of a tree
of height h . 0 is equal to the maximum number of leaves of a tree of height h plus
the maximum number of nodes of a tree of height h 2 1. Thus, we have derived the
following recursive formula, or recurrence relation:

nodes(h) 5

{
1 if h 5 0
leaves(h) 1 nodes(h 2 1) if h . 0

If we take the second part of this recurrence relation, nodes(h) 5 leaves(h) 1
nodes(h 2 1), and substitute in our earlier knowledge that leaves(h) 5 2h, it follows
that when h is positive, nodes(h) 5 2h 1 nodes(h 2 1). Similarly, for h . 1, we could
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show that nodes(h21) 5 2h21 1nodes(h22), so nodes(h) 5 2h 12h21 1nodes(h22).
Continuing this substitution process until we reach the base case of nodes(0) 5 1,
we find that nodes(h) 5 2h 1 2h21 1 2h22 1 ? ? ? 1 4 1 2 1 1. This sum can be
simplified by taking advantage of the fact that multiplying it by 2 effectively shifts it
all over by one position, that is, 2 3 nodes(h) 5 2h11 1 2h 1 2h21 1 ? ? ? 1 8 1 4 1 2.
The payoff comes if we now subtract nodes(h) from this:

2 3 nodes(h) 5 2h11 1 2h 1 2h211? ? ? 1 4 1 2
2 nodes(h) 5 2h 1 2h211? ? ? 1 4 1 2 1 1

nodes(h) 5 2h11 2 1

Exercise 8.10

You can also use the recurrence relation together with induction to prove that
nodes(h) 5 2h11 2 1. Do so.

Exercise 8.11

In many applications, binary trees aren’t sufficient because we need more than two
subtrees. An m-ary tree is a tree that is either empty or has a root and m subtrees,
each of which is an m-ary tree. Generalize the previous results to m-ary trees.

Now suppose we have a binary tree that has n nodes total. What could the height
of the tree be? In the worst-case scenario, each internal node has one nonempty
child and one empty child. For example, imagine a tree where the left subtree of
every node is empty (i.e., it branches only to the right). (This will happen with a
binary search tree if the root at each level is always the smallest element.) In this
case, the resulting tree is essentially just a list. Thus the maximum height of a tree
with n nodes is n 2 1.

What about the minimum height? We saw that a tree of height h can accommodate
up to 2h11 2 1 nodes. On the other hand, if there are fewer than 2h nodes, even
a tree of height h 2 1 would suffice to hold them all. Therefore, for h to be the
minimum height of any tree with n nodes, we must have 2h # n , 2h11. If we take
the logarithm base 2 of this inequality, we find that

h # log2(n) , h 1 1

In other words, the minimum height of a tree with n nodes is blog2(n)c. (The
expression blog2(n)c is pronounced “the floor of log en.” In general, the floor of a
real number is the greatest integer that is less than or equal to that real number.)

Because searching for an element in a binary search tree amounts to finding a
path from the root node to a node containing that element, we will clearly prefer
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trees of minimum height for the given number of nodes. In some sense, such trees
will be as short and bushy as possible. There are several ways to guarantee that a tree
with n nodes has minimum height. One is given in Exercise 8.12. In Chapter 13
we’ll consider the alternative of settling for trees that are no more than 4 times the
minimum height.

We now have all of the mathematical tools we need to discuss why and when
binary search trees are an improvement over straightforward lists. We will consider the
procedure in? because it is somewhat simpler than list-by-key. However, similar
considerations apply to the efficiency of list-by-key, just with more technical
difficulties. Remember that with the in? procedure, we are only concerned with
whether or not a given element is in a binary search tree, whereas with list-by-key
we want to return the list of all records matching a given key.

Let’s consider the time taken by the procedure in? on a tree of height h having n
nodes. Searching for an element that isn’t in the tree is equivalent to traveling from
the root of the tree to one of its leaves. In this case, we will pass through at most
h 1 1 nodes. If we’re searching for an element that is in the tree, we will encounter
it somewhere along a path from the root to a leaf. Because the number of operations
performed by in? is proportional to the number of nodes encountered, we conclude
that in either case, searching for an element in the tree takes O(h) time. If the tree
has minimum height, this translates to O(log(n)). In the worst case, where the height
of the tree is n 2 1, this becomes O(n).

Exercise 8.12

In Exercise 8.7, you wrote a procedure list->bstree that created a binary search
tree from a list by successively inserting the elements into the tree. This procedure
can lead to trees that are far from minimum height—surprisingly, the worst case oc-
curs if the list is in sorted order. However, if you know the list is already in sorted order,
you can do much better: Write a procedure sorted-list->min-height-bstree
that creates a minimum height binary search tree from a sorted list of numbers. Hint:
If the list has more than one element, split it into three parts: the middle element, the
elements before the middle element, and the elements after. Construct the whole
tree by making the appropriate recursive calls on these sublists and combining the
results.

Exercise 8.13

Using sorted-list->min-height-bstree and inorder (which constructs a
sorted list from a binary search tree), write a procedure optimize-bstree that
optimizes a binary search tree. That is, when given an arbitrary binary search tree, it
should produce a minimum-height binary search tree containing the same nodes.



8.2 Efficiency Issues with Binary Search Trees 225

Exercise 8.14

Using list->bstree and inorder, write a procedure sort that sorts a given list.

Privacy Issues

How would you feel if you registered as a child at a chain ice-cream parlor for
their “birthday club” by providing name, address, and birth date, only to find
years later the Selective Service using that information to remind you of your
legal obligation to register for the draft?

This case isn’t a hypothetical one: It is one of many real examples of personal
data voluntarily given to one organization for one purpose being used by a different
organization for a different purpose.

Some very difficult social, ethical, and legal questions occur here. For example,
did the ice-cream chain “own” the data it collected and hence have a right to
sell it as it pleased? Did the the government step outside of the Bill of Rights
restrictions on indiscriminate “dragnet” searches? Did the social good of catching
draft evaders justify the means? How about if it had been tax or welfare cheats or
fathers delinquent in paying child support? (All of the above have been tracked
by computerized matching of records.) Should the computing professionals who
wrote the “matching” program have refused to do so?

The material we have covered on binary search trees may help you to define
efficient structures to store and retrieve data. However, because many information
storage and retrieval systems are used to store personal information, we urge you
to also take the following to heart when and if you undertake such a design.
The Code of Ethics and Professional Conduct of the Association for Computing
Machinery, or ACM (which is the major computing professional society) contains
as General Moral Imperative 1.7:

Respect the privacy of others
Computing and communication technology enables the collection and exchange of
personal information on a scale unprecedented in the history of civilization. Thus
there is increased potential for violating the privacy of individuals and groups. It is the
responsibility of professionals to maintain the privacy and integrity of data describing
individuals. This includes taking precautions to ensure the accuracy of data, as well
as protecting it from unauthorized access or accidental disclosure to inappropriate
individuals. Furthermore, procedures must be established to allow individuals to
review their records and correct inaccuracies.

(Continued)
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Privacy Issues (Continued)

This imperative implies that only the necessary amount of personal information be
collected in a system, that retention and disposal periods for that information be
clearly defined and enforced, and that personal information gathered for a specific
purpose not be used for other purposes without consent of the individual(s). These
principles apply to electronic communications, including electronic mail, and pro-
hibit procedures that capture or monitor electronic user data, including messages,
without the permission of users or bona fide authorization related to system operation
and maintenance. User data observed during the normal duties of system operation
and maintenance must be treated with strictest confidentiality, except in cases where
it is evidence for the violation of law, organizational regulations, or this Code. In
these cases, the nature or contents of that information must be disclosed only to proper
authorities.

8.3 Expression Trees

So far, we’ve used binary trees and binary search trees as a way of storing a collection
of numbers or records. What makes these trees different from lists is the way we
can access the elements. A list has one special element, the first element, and all
the rest of the elements are clumped together into another list. Binary trees also
have a special element, the root, but they divide the rest of the elements into two
subtrees, instead of just one, which gives a hierarchical structure that is useful in
many different settings. In this section we’ll look at another kind of tree that uses this
hierarchical structure to represent arithmetical expressions. In these trees, the way a
tree is structured indicates the operands for each operation in the expression.

Consider an arithmetic expression, such as the one we’d write in Scheme notation
as (+ 1 (* 2 (- 3 5))). We can think of this as being a tree-like structure with
numbers at the leaves and operators at the other nodes:

–

3 5

+

∗

2

1
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Such a structure is often called an expression tree. As we did with binary trees, we
can define an expression tree more precisely:

Expression tree: An expression tree is either a number or it has three parts, the
name of an operator, a left operand and a right operand. Both the left and right
operands are themselves expression trees.

There are several things to notice about this definition:

We are restricting ourselves to expressions that have binary operators (i.e., operators
that take exactly two operands).
We are also restricting ourselves to having numbers as our atomic expressions. In
general, expression trees also include other kinds of constants and variable names
as well.
There is nothing in the definition that says an expression tree must be written in
prefix order, that is, with the name of the operator preceding the two operands.
Indeed, most people would find infix order more natural. An infix expression has
the name of the operator in between the two operands.

How do we implement expression trees? We will do it in much the same way that
we implemented binary trees, except that we will follow the idea of the last note in
the preceeding list and list the parts of an expression in infix order:

(define make-constant
(lambda (x) x))

(define constant? number?)

(define make-expr
(lambda (left-operand operator right-operand)
(list left-operand operator right-operand)))

(define operator cadr)

(define left-operand car)

(define right-operand caddr)

Now that we have a way of creating expressions, we can write the procedures
necessary to evaluate them using the definition to help us decide how to structure our
code. To buy ourselves some flexibility, we’ll use a procedure called look-up-value
to map an operator name into the corresponding operator procedure. Then the main
evaluate procedure just needs to apply that operator procedure to the values of the
operands:
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(define evaluate
(lambda (expr)
(cond ((constant? expr) expr)

(else ((look-up-value (operator expr))
(evaluate (left-operand expr))
(evaluate (right-operand expr)))))))

(define look-up-value
(lambda (name)
(cond ((equal? name ’+) +)

((equal? name ’*) *)
((equal? name ’-) -)
((equal? name ’/) /)
(else (error "Unrecognized name" name)))))

With these definitions, we would have the following interaction:

(evaluate ’(1 + (2 * (3 - 5))))
-3

Exercise 8.15

In the preceding example, we’ve “cheated” by using a quoted list as the expression to
evaluate. This method relied on our knowledge of the representation of expression
trees. How could the example be rewritten to use the constructors to form the
expression?

We can do more with expression trees than just finding their values. For example,
we could modify the procedure for doing a postorder traversal of a binary search tree
so that it works on expression trees instead. In this case, our base case will be when
we have a constant, or a leaf, instead of an empty tree:

(define post-order
(lambda (tree)
(define post-order-onto
(lambda (tree list)
(if (constant? tree)

(cons tree list)
(post-order-onto (left-operand tree)

(post-order-onto
(right-operand tree)
(cons (operator tree) list))))))

(post-order-onto tree ’())))
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If we do a postorder traversal of the last tree shown, we get:

(post-order ’(1 + (2 * (3 - 5))))
(1 2 3 5 - * +)

This result is exactly the sequence of keys that you would need to punch into a
Hewlett-Packard calculator in order to evaluate the expression. Such an expression
is said to be a postfix expression.

Exercise 8.16

Define a procedure for determining which operators are used in an expression.

Exercise 8.17

Define a procedure for counting how many operations an expression contains.

Note that all of the operators in our expressions were binary operators, and thus
we needed nodes with two children to represent them; we say the operator nodes
all have degree 2. If we had operators that took m expressions instead of just two, we
would need nodes with degree m (i.e., trees that have m subtrees).

The kind of tree we’ve been using in this section differs subtly from the binary
and m-ary trees we saw earlier in the chapter. In those positional trees, it was possible
to have a node with a right child but no left child, for example. In the ordered trees
we’re using for expressions, on the other hand, there can’t be a second operand
unless there is a first operand. Other kinds of trees exist as well, for example, trees
in which no distinction is made among the children—none is first or second, left or
right; they are all just children. Most of the techniques and terminology carry over
for all kinds of trees.

8.4 An Application: Automated Phone Books

Have you ever called a university’s information service to get the phone number of a
friend and, instead of talking to a human operator, found yourself following instruc-
tions given by a computer? Perhaps you were even able to look up the friend’s phone
number using the numbers on the telephone keypad. Such automated telephone
directory systems are becoming more common. In this section we will explore one
version of how such a directory might be implemented.

In this version, a user looks up the telephone number of a person by spelling
the person’s name using the numbers on the telephone keypad. When the user has
entered enough numbers to identify the person, the system returns the telephone
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number. Can we rephrase this problem in a form that we can treat using Scheme?
Suppose that we have a collection of pairs, where each pair consists of a person’s
name and phone number. How could we store the pairs so that we can easily retrieve
a person’s phone number by giving the sequence of digits (from 2 to 9) corresponding
to the name? Perhaps our system might do even more: For example, we could have
our program repeatedly take input from the user until the identity of the desired
person is determined, at which point the person’s name and phone number is given.

Notice the similarity between this problem and the video catalog problem con-
sidered in Section 8.1. There we wanted to store the videos in a way that allowed us
to efficiently find all videos with a given director. Our desire to implement binary
search led us to develop the binary search tree ADT. Searching was accomplished
by choosing the correct child of each subtree and therefore amounted to finding the
path from the root node to the node storing the desired value.

We are also searching for things with the automated phone book, but the difference
is the method of retrieval: we want to retrieve a phone number by successively giving
the digits corresponding to the letters in the person’s name. How should we structure
our data in a way that facilitates this type of retrieval? Suppose we use a tree to store
the phone numbers. What type of tree would lend itself to such a search?

If we are going to search by the sequence of digits corresponding to the person’s
name, then these digits could describe the path from the root node to the node
storing the desired value. Each new digit would get us closer to our goal. The easiest
way to accomplish this is to have the subtrees of a given node labeled (indexed) by
the digits themselves. Then the sequence of digits would exactly describe the path
to the desired node because we would always choose the subtree labeled by the next
digit in our sequence. Such a tree is called a trie. This name is derived from the
word retrieval, though the conventional pronunciation has become “try” rather than
the logical but confusing “tree.” More precisely,

Trie: A trie is either empty or it consists of two parts: a list of root values and a
list of subtries, which are indexed by labels. Each subtrie is itself a trie.

Because we have the eight digits from 2 to 9 as labels in our example, our tries
will be 8-ary trees. The first child of a node will be implicitly labeled as the “2” child,
the second as the “3” child, etc. In other words, the digits the user enters describe a
path starting from the root node. If the user types a 2, we move to the first child of
the root node. If the user types a 3 next, we then move to the second child of that
node.

The values stored at a particular node are those corresponding to the path from
the root of the trie to that node. If anyone had an empty name (i.e., zero letters
long), that name and number would be stored on the root node of the trie. Anyone
with the one-letter name A, B, or C would be on the first child of the root (the one
for the digit 2 on the phone keypad, which is also labeled ABC). Anyone with the
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Ben
Children of each node, left to right:
2=ABC 3=DEF 4=GHI 5=JKL 6=MNO 7=PQRS 8=TUV 9=WXYZ

Figure 8.1 An example phone trie, with Ben’s position indicated

one-letter name D, E, or F would be on the second child of the root. Anyone with
any of the two-letter names Ad, Ae, Af, Bd, Be, Bf, Cd, Ce, or Cf would be on the
second child of the first child of the root. For example, the trie in Figure 8.1 shows
where the name and number of someone named Ben would be stored.

Note that a given node may or may not store a value: In our example, the nodes
encountered on the way to Ben’s node don’t have any values because no one has
an empty name, the one-letter name A, B, or C, or any of the 9 two-letter names
listed above. Not all the values need be at leaf nodes, however. For example, Ben’s
name corresponds on a phone to the digits 2-3-5. However, these are also the first
three digits in the name Benjamin, and in fact even the first three digits in the name
Adonis, because B and A share a phone digit, as do E and D and also N and O.
Therefore, the node in our trie that stores the value Ben may also be encountered
along a path to a deeper node that stores Benjamin or Adonis.

We must also allow more than one value to be stored at a given node, because,
for example, Jim and Kim would be specified by the same sequence of digits (5-4-6)
on the telephone. Therefore, we have a list of root values in our definition.

How can we implement tries? As described above, we will implement them as
8-ary trees, where every tree has exactly eight subtrees, even if some (or all) of them
are empty. These subtrees correspond to the digits 2 through 9, which have letters
on a phone keypad. We call these digits 2 through 9 the “labels” of the subtrees and
define a selector called subtrie-with-label that returns the subtrie of a nonempty
trie that corresponds to a given label:

(define make-empty-trie
(lambda () ’()))
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(define make-nonempty-trie
(lambda (root-values ordered-subtries)
(list root-values ordered-subtries)))

(define empty-trie? null?)

(define root-values car)

(define subtries cadr)

(define subtrie-with-label
(lambda (trie label)
(list-ref (subtries trie) (- label 2))))

Note that the constructor make-nonempty-trie assumes that the subtries are given
to it in order (including possibly some empty subtries). Constructing a specific phone
trie is a somewhat difficult task that we will consider later in this section. In fact,
we will write a procedure values->trie that takes a list of values (people’s names
and phone numbers) and returns the trie containing those values. Note also that
the procedure subtrie-with-label must subtract 2 from the label because list
convention refers to the first element (corresponding to the digit 2) as element
number zero.

The values in our automated phone book are the phone numbers of various
people. In order to store the person’s name and phone number together, we create
a simple record-structured ADT called person:

(define make-person
(lambda (name phone-number)
(list name phone-number)))

(define name car)

(define phone-number cadr)

How do we construct the trie itself? As we said in the preceeding, we will do this
later in the section by writing a procedure values->trie that creates a trie from a
list of values. For example, a definition of the form:

(define phone-trie
(values->trie (list (make-person ’lindt 7483)

(make-person ’cadbury 7464)
(make-person ’wilbur 7466)
(make-person ’hershey 7482)
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(make-person ’spruengli 7009)
(make-person ’merkens 7469)
(make-person ’baker 7465)
(make-person ’ghiradelli 7476)
(make-person ’tobler 7481)
(make-person ’suchard 7654)
(make-person ’callebaut 7480)
(make-person ’ritter 7479)
(make-person ’maillard 7477)
(make-person ’see 7463)
(make-person ’perugina 7007))))

will define phone-trie to be the trie containing the given people, which can then
be used to look up phone numbers. You can work on other exercises involving tries
before we write values->trie because we’ve included an alternate definition on
the web site for this book, which simply defines phone-trie as a quoted list.

Using what we have already developed, we can implement a simple automated
phone book as follows:

(define look-up-with-menu
(lambda (phone-trie)
(menu)
(look-up-phone-number phone-trie)))

(define menu
(lambda ()
(newline)
(display "Enter the name, one digit at a time.")
(newline)
(display "Indicate you are done by 0.")
(newline)))

(define look-up-phone-number
(lambda (phone-trie)
(newline)
(if (empty-trie? phone-trie)

(display "Sorry we can’t find that name.")
(let ((user-input (read)))
(if (= user-input 0)

(display-phone-numbers (root-values phone-trie))
(look-up-phone-number (subtrie-with-label

phone-trie
user-input)))))))
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(define display-phone-numbers
(lambda (people)
(define display-loop
(lambda (people)
(cond ((null? people) ’done)

(else (newline)
(display (name (car people)))
(display "’s phone number is ")
(display (phone-number (car people)))
(display-loop (cdr people))))))

(if (null? people)
(display "Sorry we can’t find that name.")
(display-loop people))))

Here is how you could use look-up-with-menu to look up the telephone number
of Spruengli, for example:

(look-up-with-menu phone-trie)
Enter the name, one digit at a time.

Indicate you are done with 0.

7
7
7
8
3
6
4
5
4
0
spruengli's phone number is 7009

This method is certainly progress, but it is also somewhat clunky. After all, in our
example Spruengli is already determined by the first two digits (7 and 7). It seems
silly to require the user to enter more digits than are necessary to specify the desired
person. We could make our program better if we had a procedure that tells us when
we have exactly one remaining value in a trie, and another procedure that returns
that value.

We can write more general versions of both of these procedures; one would return
the number of values in a trie and the other the list of values. Notice that these two
procedures are quite similar. In either case you can compute the answer by taking
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the number of values (respectively, the list of values) at the root node and adding
that to the number of values (respectively, the list of values) in each of the subtries.
The difference is that in the former case you add the numbers by regular addition,
whereas in the latter case you add by appending the various lists.

Exercise 8.18

Write the procedure number-in-trie that calculates the total number of values
in a trie. Hint: In the general case, you can compute the list of numbers in the
various subtries by using number-in-trie in conjunction with the built-in Scheme
procedure map. The total number of values in all the subtries can then be gotten
by applying the sum procedure from Section 7.3. Of course, you have to take into
account the values that are at the root node of the trie.

Exercise 8.19

Write the procedure values-in-trie that returns the list of all values stored in a
given trie. It should be very similar in form to number-in-trie. You may find your
solution to Exercise 7.5 on page 173 useful. In fact, if you rewrote number-in-trie
to use Exercise 7.5’s solution in place of sum, values-in-trie would be nearly
identical in form to number-in-trie.

Exercise 8.20

Let’s use these procedures to improve what is done in the procedure look-up-
phone-number.

a. Use number-in-trie to determine if there are fewer than two values in phone-
trie and immediately report the appropriate answer if so, using values-in-trie
and display-phone-numbers.

b. Further modify look-up-phone-number so that if the user enters 1, the names
of all the people in the current trie will be reported, but the procedure
look-up-phone-number will continue to read input from the user. You will
also want to make appropriate changes to menu.

We now confront the question of how these tries we have been working with
can be created in the first place. As we indicated earlier, we will write a procedure
values->trie that will take a list of values (i.e., people) and will return the trie
containing them. First some remarks on vocabulary: Because we have so many
different data types floating around (and we will soon define one more), we need to
be careful about the words we use to describe them. A value is a single data item (in
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our case a person, that is, name and phone number) being stored in a trie. A label is
in our case a digit from 2 to 9; it is what is used to select a subtrie. Plurals will always
indicate lists; for example, values will mean a list of values and labels will mean a
list of labels. This may seem trivial, but it will prove very useful for understanding
the meanings of the following procedures and their parameters.

Exercise 8.21

Write a procedure letter->number that takes a letter (i.e., a one-letter symbol) and
returns the number corresponding to it on the telephone keypad. For q and z use 7
and 9, respectively. Hint: The easiest way to do this exercise is to use a cond together
with the list membership predicate member we introduced in the previous chapter.

Exercise 8.22

To break a symbol up into a list of one-character symbols, we need to use
some features of Scheme that we’d rather not talk about just now. The follow-
ing explode-symbol procedure uses these magic features of Scheme so that
(explode-symbol ’ritter) would evaluate to the list of one-letter symbols
(r i t t e r), for example:

(define explode-symbol
(lambda (sym)
(map string->symbol

(map string
(string->list (symbol->string sym))))))

Use this together with letter->number to write a procedure name->labels that
takes a name (symbol) and returns the list of numbers corresponding to the name.
You should see the following interaction:

(name->labels ’ritter)
(7 4 8 8 3 7)

To make a trie from a list of values, we will need to work with the labels associated
with each of the values. One way is to define a simple ADT called labeled-value that
packages these together. This could be done as follows:

(define make-labeled-value
(lambda (labels value)
(list labels value)))
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(define labels car)

(define value cadr)

Because we will use this abstraction to construct tries, we will need some procedures
that allow us to manipulate labeled values.

Exercise 8.23

Write a procedure empty-labels? that takes a labeled value and returns true if and
only if its list of labels is empty.

Exercise 8.24

Write a procedure first-label that takes a labeled value and returns the first label
in its list of labels.

Exercise 8.25

Write a procedure strip-one-label that takes a labeled value and returns the
labeled value with one label removed. For example, you would have the following
interaction:

(define labeled-ritter
(make-labeled-value ’(7 4 8 8 3 7)

(make-person ’ritter 7479)))

(labels (strip-one-label labeled-ritter))
(4 8 8 3 7)

(name (value (strip-one-label labeled-ritter)))
ritter

(phone-number (value (strip-one-label labeled-ritter)))
7479

Exercise 8.26

Write a procedure value->labeled-value that takes a value (person) and re-
turns the labeled value corresponding to it. You must of course use the procedure
name->labels.
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We can now write values->trie in terms of a yet to be written procedure that
operates on labeled values:

(define values->trie
(lambda (values)
(labeled-values->trie (map value->labeled-value

values))))

How do we write labeled-values->trie? The argument to this procedure is a
list of labeled values, and we must clearly use the labels in the trie construction. If
a given labeled value has the empty list of labels (in other words, we have gotten
to the point in the recursion where all of the labels have been used), the associated
value should be one of the values at the trie’s root node. We can easily isolate these
labeled values using the filter procedure from Section 7.3, as in:

(filter empty-labels? labeled-values)

We can similarly isolate those with nonempty labels, which belong in the subtries;
the first label of each labeled value determines which subtrie it goes in.

Exercise 8.27

Write a procedure values-with-first-label that takes a list of labeled values and
a label and returns a list of those labeled values that have the given first label, but with
that first label removed. You may assume that none of the labeled values has an empty
list of labels. Thus, the call (values-with-first-label labeled-values 4)
should return the list of those labeled values in labeled-values with a first label
of 4, but with the 4 removed from the front of their lists of labels. (This would only
be legal assuming each labeled value in labeled-values has a nonempty list of
labels.) Stripping off the first label makes sense because it was used to select out the
relevant labeled values, which will form one subtrie of the overall trie. Within the
subtrie, that first label no longer plays a role.

Exercise 8.28

Using the procedure values-with-first-label, write a procedure categorize-
by-first-label that takes a list of labeled values, each with a nonempty list of
labels, and returns a list of lists of labeled values. The first list in the list of lists should
contain all those labeled values with first label 2, the next list, those that start with
3, etc. (If there are no labeled values with a particular first label, the corresponding
list will be empty. There will always be eight lists, one for each possible first label,
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Figure 8.2 The design of the labeled-values->trie procedure

ranging from 2 to 9.) Each labeled value should have its first label stripped off, which
values-with-first-label takes care of. (Thus the labeled values in the first list,
for example, no longer have the label of 2 on the front.)

Exercise 8.29

Finally, write the procedure labeled-values->trie. If the list of labeled values
is empty, you can just use make-empty-trie. On the other hand, if the list is
not empty, you can isolate those labeled values with empty labels and those with
nonempty labels, as indicated above. You can turn the ones with empty labels into
the root values by applying value to each of them. You can turn the ones with
nonempty labels into the subtries by using categorize-by-first-label, map,
and labeled-values->trie. Once you have the root values and the subtries, you
can use make-nonempty-trie to create the trie. Figure 8.2 illustrates this design.

Review Problems

Exercise 8.30

Fill in the following definition of the procedure successor-of-in-or. This pro-
cedure should take three arguments: a value (value), a binary search tree (bst), and
a value to return if no element of the tree is larger than value (if-none). If there is
any element, x, of bst such that x . value, the smallest such element should be
returned. Otherwise, if-none should be returned.
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(define successor-of-in-or
(lambda (value bst if-none)
(cond ((empty-tree? bst)

)
((<= (root bst) value)
(successor-of-in-or

))
(else
(successor-of-in-or

)))))

Exercise 8.31

Write a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and counts how many elements of the tree are greater
than or equal to the lower bound and less than or equal to the upper bound. Assume
that the tree may contain duplicate elements. Make sure your procedure doesn’t
examine more of the tree than is necessary.

Exercise 8.32

Write a procedure that takes as arguments a binary search tree of numbers, a lower
bound, and an upper bound and returns an ordered list of those elements of the tree
that are greater than or equal to the lower bound and less than or equal to the upper
bound. Assume that the tree may contain duplicate elements. Use the technique of
an “onto” parameter to avoid unnecessary appending of lists, and make sure your
procedure doesn’t examine more of the tree than is necessary.
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make-person
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Notes

As with Q in Chapter 4, the conventional definition of O allows any number of
exceptions up to some cutoff point, rather than finitely many exceptions as we
do. Again, so long as n is restricted to the nonnegative integers, our definition is
equivalent.

The example of personal information divulged to an ice-cream parlor “birthday
club” winding up in the hands of the Selective Service is reported in [24].

The ACM Code of Ethics and Professional Conduct can be found in [17]; a set
of illustrative case studies accompanies it in [4].

Regarding the pronunciation of “trie,” we’ve had to take Aho and Ullman’s word
for it—none of us can recall ever having heard “trie” said aloud. Aho and Ullman
should know, though and they write on page 217 of their Foundations of Computer
Science [3] that “it was originally intended to be pronounced ‘tree.’ Fortunately,
common parlance has switched to the distinguishing pronunciation ‘try.’ ”



C H A P T E R N I N E

Generic Operations

9.1 Introduction

We described data abstraction in Chapter 6 as a barrier between the way a data
type is used and the way it is represented. There are a number of reasons to use
data abstraction, but perhaps its greatest advantage is that the programmer can rely
on an abstract mental model of the data rather than worrying about such mundane
details as how the data is represented. For example, we can view the game-state
ADT from Chapter 6 as a snapshot picture of an evolving Nim game and can view
lists as finite sequences of objects. The simplification resulting from using abstract
models is essential for many of the complicated problems programmers confront.
In this chapter we will exploit and extend data abstraction by introducing generic
operations, which are procedures that can operate on several different data types.

We rely on our mental model of an ADT when pondering how it might be used
in a program. To actually work with the data, however, we need procedures that
can manipulate it; these procedures are sometimes called the ADT’s interface. For
example, all of the procedures Scheme provides for manipulating lists comprise
the list type’s interface. The barrier between an ADT’s use and its implementation
results directly from the programming discipline of using the interface procedures
instead of explicitly referring to the underlying representation. The interface must
give us adequate power to manipulate the data as we would expect, given our mental
model of the data, but we still have some flexibility in how the interface is specified.
On the other hand, once we have specified the interface, we can easily imagine
that some of the interface procedures would be appropriate for other data types.
For example, most ADTs could benefit from a type-specific display procedure, if
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only for debugging purposes; such a procedure should “do the right thing” for its
data, regardless of how the data is represented. Generic operators allow us to share
common operators among several different data types.

Another advantage of generic operators is that they can be used to maintain a
uniform interface over similar data types that have entirely different representations.
One example of this occurs when a data type can be represented in significantly
different ways. For instance, suppose we wish to implement an ADT date to represent
the date (i.e., the day, month, and year) when something occurs. One way to do
this would be by using a three-part data structure containing integers representing
the day, month, and year in the obvious manner (e.g., May 17, 1905, would be
represented by the triple (17, 5, 1905)). An altogether different way would be to
represent a date by the integer that equals the number of days that date fell after
January 1, 1900 (January 1, 1901, would be represented by 365 and May 17, 1905, by
1962). Which representation we use can have a significant impact on performance.
For example, if we want to determine whether a given date occurs in the month
of May, that would be easier to do using the first representation than the second.
On the other hand, if we want to find the number of days between two dates, the
relative difficulty would be reversed. Of course we can convert between the two
representations, but the formula would be quite messy in this case and in general
might entail significant computational complexity.

When forced to decide between significantly different representations, the pro-
grammer must make a judgment based on how the ADT is likely to be used. However,
in this chapter we’ll discover another option open to the programmer: allow mul-
tiple representations for the same abstract data type to coexist simultaneously. There
are cases where this proves advantageous. We work through the details of such an
example in Section 9.2.

More generally, it is not hard to imagine distinct data types that nonetheless share
some commonality of form or purpose. For example, a library catalog will contain
records of various kinds of items, say, books, movies, journals, and CDs. To a greater
or lesser extent, all of these types of catalog items share some common attributes
such as title, year of publication, and author (respectively, director, editor, and artist).
Each kind of catalog item might have a separate interface (such as the interface we
described for the movie ADT in Chapter 7). When combining the various types of
catalog items into a common database, however, it would be greatly advantageous
if they shared a common interface. We work through the details of this example in
Section 9.3.

9.2 Multiple Representations

Scheme represents lists of values by explicitly consing together the elements in the
list. Therefore there will be one cons pair per element in the list, which potentially
requires a considerable amount of computer memory. Other lists can be represented
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more efficiently, however, especially if the lists have some regularity in them. For
example, if we know that a list consists of increasing consecutive integers in a given
range (for example, 3 through 100), rather than storing the list (3 4 5 ... 100),
we could instead store the first and last elements of the range (3 and 100). Note
that the standard list procedures can be easily computed in terms of the first and last
elements. For example, the length of the example list is 1002311 5 98 and its “cdr”
is the increasing consecutive list with first element 4 and last element 100. In this
section, we’ll show how we can allow this new representation to coexist seamlessly
with regular Scheme lists. To avoid confusion, we’ll think of both representations as
implementations of sequences and use the term list to mean Scheme lists. Similarly,
we’ll reserve the normal list notation, such as (1 2 3), for genuine Scheme lists,
and when we want to write down the elements of a sequence, we will do so as
k1, 2, 3l, for example.

Let’s step back a moment to consider how Scheme deals with lists. We remarked
in Chapter 7 that the choice of cons, car, cdr, and null? as the basic constructor
and selectors for lists ran counter to good data-abstraction practice because they don’t
sufficiently separate the use of lists from their representation. Even if we used more
descriptive names like make-list, head, tail, and empty-list?, the underlying
representation would be obscured but not fully hidden—head and tail are after all
the two components of the underlying representation (the “two-part list viewpoint”).
We will use more descriptive names like head and tail in our implementation of
sequences, but these two procedures will not have the same “core” status as they do
with Scheme lists.

In general, at least some of an ADT’s interface procedures must have direct access
to the underlying representation, whereas others might well be implemented in
terms of this basic set without direct reference to the underlying representation. For
example, we indicated in Chapter 7 how cons, car, cdr, and null? formed such
an essential set by showing how other list procedures such as length, list-ref,
and map could be written in terms of them. However, Scheme itself may have
a more complex representation that allows the other interface procedures to be
more efficiently implemented. For example, the representation might keep track
of the list’s length so that the length doesn’t have to be recalculated each time
by cdring down the list. To allow our implementation of sequences to provide all
operations as efficiently as possible, there will be no designated minimal set of core
procedures. Instead, we will view the ADT sequence as being specified by its entire
interface. That interface is implemented separately in terms of each underlying
representation.

So how do we implement sequences in a manner that allows these two (and
perhaps other) representations to coexist in a transparent manner? To start out, let’s
suppose that we will have a variety of constructors (at least one for each representa-
tion) but will limit ourselves to the following selectors, which are modeled after the
corresponding list procedures:
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(head sequence)
; returns the first element of sequence, provided sequence is
; nonempty

(tail sequence)
; returns all but the first element of sequence as a
; sequence, provided sequence is nonempty

(empty-sequence? sequence)
; returns true if and only if sequence is empty

(sequence-length sequence)
; returns the length of sequence

We will implement sequences using a style of programming called message-passing,
which exploits the fact that procedures are first-class data objects in Scheme. The
data objects representing our sequences will not be passive: They will instead be
procedures that respond appropriately to “messages,” which are symbols representing
the various interface operations.

For example, we could write a procedure sequence-from-to that returns an
increasing sequence of consecutive integers in a given range as follows:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
(else (error "illegal sequence operation" op))))))

In this code, op is a symbol (the “message”) that represents the desired operator.
After evaluating the procedure above, we might then have the following interaction:

(define seq-1 (sequence-from-to 3 100))

(seq-1 ’head)
3
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(seq-1 ’sequence-length)
98

(seq-1 ’tail)
#<procedure>

((seq-1 ’tail) ’head)
4

Although this style of programming will probably appear quite odd the first few
times you see it, a number of programming languages (notably Smalltalk and other
object-oriented languages) successfully exploit the message-passing approach. Nev-
ertheless, we can layer the more traditional interface on top of message-passing by
defining the interface procedures as follows:

(define head
(lambda (sequence)
(sequence ’head)))

(define tail
(lambda (sequence)
(sequence ’tail)))

(define empty-sequence?
(lambda (sequence)
(sequence ’empty-sequence?)))

(define sequence-length
(lambda (sequence)
(sequence ’sequence-length)))

Our earlier interaction would then contain the following more familiar code:

(head seq-1)
3

(sequence-length seq-1)
98

(head (tail seq-1))
4
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Exercise 9.1

As is evident from the the output given above, we would be better able to check our
procedures if we could easily display the sequences we construct. Instead of writing
an ADT display procedure for sequences, an easier approach is to write a procedure
sequence->list that converts a sequence to the corresponding Scheme list, which
can then be directly displayed. Write this procedure, accessing the sequence only
through the interface procedures head, tail, and empty-sequence?.

Exercise 9.2

The sequences we just described are restricted to consecutive increasing sequences
of integers (more precisely, to increasing arithmetic sequences where consecutive
elements differ by 1). We can easily imagine similar but more general sequences
such as k6, 5, 4, 3, 2l or k5, 5.1, 5.2, 5.3, 5.4, 5.5l—in other words, general arithmetic
sequences of a given length, starting value, and increment (with decreasing sequences
having a negative increment value).

a. Write a procedure sequence-with-from-by that takes as arguments a length,
a starting value, and an increment and returns the corresponding arithmetic se-
quence. Thus, (sequence-with-from-by 5 6 -1) would return the first and
(sequence-with-from-by 6 5 .1) would return the second of the two pre-
ceding sequences. Remember that sequences are represented as procedures, so
your new sequence constructor will need to produce a procedural result.

b. The procedure sequence-from-to can now be rewritten as a simple call to
sequence-with-from-by. The original sequence-from-to procedure made
an empty sequence if its first argument was greater than its second, but you
should make the new version so that you can get both increasing and de-
creasing sequences of consecutive integers. Thus, (sequence-from-to 3 8)
should return k3, 4, 5, 6, 7, 8l, whereas (sequence-from-to 5 1) should return
k5, 4, 3, 2, 1l.

c. Write a procedure sequence-from-to-with that takes a starting value,
an ending value, and a length and returns the corresponding arithmetic
sequence. For example, (sequence-from-to-with 5 11 4) should return
k5, 7, 9, 11l.

Having given constructors for arithmetic sequences, we can add sequences rep-
resented by traditional Scheme lists by writing a procedure list->sequence that
returns the sequence corresponding to a given list:
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(define list->sequence
(lambda (lst)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(null? lst))
((equal? op ’head)
(car lst))
((equal? op ’tail)
(list->sequence (cdr lst)))
((equal? op ’sequence-length)
(length lst))
(else (error "illegal sequence operation" op))))))

In essence, we are off-loading each of the sequence procedures to the corresponding
list procedure. Note that to the user, the various representations of sequences work
together seamlessly and transparently:

(define seq-2 (sequence-with-from-by 6 5 -1))

(define seq-3 (list->sequence ’(4 3 7 9)))

(head seq-2)
5

(head seq-3)
4

In a sense, each of the interface procedures triggers a representation-specific behavior
that knows how to “do the right thing” for its representation.

Exercise 9.3

Use list->sequence to write a procedure empty-sequence that takes no argu-
ments and returns an empty sequence.

Exercise 9.4

One disadvantage with the preceding version of list->sequence is that the Scheme
procedure length normally has linear complexity in the list’s length (unless the
version of Scheme you use does something like the trick we will now describe that
reduces sequence-length to constant complexity).
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a. Modify list->sequence so that it has a let expression that computes the list’s
length once at sequence construction time and then uses that value when asked
for the sequence’s length.

b. The problem with the solution in part a is that the tail’s length is computed each
time you return the tail. Because the complexity of calculating a list’s length is
proportional to the length, if you do the equivalent of cdring down the sequence,
the resulting complexity is quadratic in the list-sequence’s length, certainly an
undesirable consequence.

One solution to this problem is to write an auxiliary procedure list-
of-length->sequence that is passed both a list and its length and re-
turns the corresponding sequence. This procedure can efficiently compute
its tail, and list->sequence can be reimplemented as a call to list-
of-length->sequence. Carry out this strategy.

This solution seems to nicely accomplish our goal of seamlessly incorporating
different underlying representations, but because we have only implemented the
four selectors head, tail, empty-sequence?, and sequence-length, we have not
really tested the limits of this approach. To do so, let’s attempt to add the selector
and constructors corresponding to list-ref, cons, map, and append.

The selector that corresponds to list-ref differs significantly from the other
selectors we’ve seen so far. Each of those takes only one parameter (the sequence)
and, as a result, always returns the same value for a given sequence. In contrast,
sequence-ref will take two parameters, a sequence and an integer index, and the
value returned will depend on both the sequence and the index. Consequently,
the cond branch corresponding to sequence reference in sequence-from-to or
list->sequence should be a procedure that takes an integer index n and returns
the nth number in the sequence. To see how this works, here is the expanded version
of sequence-from-to that includes a branch for sequence reference:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
;;(continued)
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((equal? op ’sequence-ref)
(lambda (n)
(if (and (<= 0 n) (<= n (- high low)))

(+ low n)
(error "sequence-from-to: index out of range"

n))))))))

We can then implement sequence-ref as follows:

(define sequence-ref
(lambda (sequence n)
((sequence ’sequence-ref) n)))

Exercise 9.5

Rewrite list->sequence so that it has a branch for sequence reference.

The remaining three operators we will add to sequences correspond to the
list operators cons, map, and append; for simplicity, we will call these operators
sequence-cons, sequence-map, and sequence-append. Note that all three of
these operators are in fact constructors, because their agenda is to create a new se-
quence from the given data. Therefore, rather than being implemented as branches
of the conds of the other sequence constructors, we should simply write a new
sequence constructor for each of these operators.

Consider sequence-cons, which is passed an element (to become the head) and
an already-constructed sequence (to become the tail). Following is an implemen-
tation of sequence-cons that uses a let in order to calculate its length once and
for all:

(define sequence-cons
(lambda (head tail)
(let ((new-length (+ 1 (sequence-length tail))))
(lambda (op)
(cond ((equal? op ’empty-sequence?)

#f)
((equal? op ’head)
head)
((equal? op ’tail)
tail)
((equal? op ’sequence-length)
new-length)
;;(continued)



252 Chapter 9 Generic Operations

((equal? op ’sequence-ref)
(lambda (n)
(if (= n 0)

head
(sequence-ref tail (- n 1)))))

(else (error "illegal sequence operation" op)))))))

Note that we need not worry what “kind” of sequence tail is, because we are assured
that whichever representation tail uses, it knows how to appropriately calculate
sequence-length and sequence-ref. In particular, we can be sure that compu-
tational efficiencies constructed into tail (for example, in sequence-length) are
maintained in sequence-cons.

Exercise 9.6

Write the sequence constructor sequence-map, that outwardly acts like the list
procedure map. However unlike map, which applies the procedural argument to all
the list elements, sequence-map should not apply the procedural argument at all
yet. Instead, when an element of the resulting sequence (such as its head) is accessed,
that is when the procedural argument should be applied.

We finally arrive at the sequence constructor sequence-append. Just as we’ve
shown how append can be used to append together two lists, we’ll write
sequence-append such that it can append together any two sequences:

(define sequence-append

(lambda (seq-1 seq-2)

(cond ((empty-sequence? seq-1) seq-2)
((empty-sequence? seq-2) seq-1)

(else

(let ((seq-1-length (sequence-length seq-1))

(seq-2-length (sequence-length seq-2)))

(lambda (op)

(cond ((equal? op ’empty-sequence?)

#f)

((equal? op ’head)

(head seq-1))

((equal? op ’tail)
(sequence-append (tail seq-1) seq-2))

((equal? op ’sequence-length)

(+ seq-1-length seq-2-length))

;;(continued)
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((equal? op ’sequence-ref)

(lambda (n)
(cond ((< n seq-1-length)

(sequence-ref seq-1 n))

(else

(sequence-ref seq-2

(- n seq-1-length))))))

(else (error "illegal sequence operation"

op)))))))))

As with sequence-cons, the let expression is used primarily for efficiency. Note,
however, that the length of the first subsequence is also used in sequence-ref to
determine which subsequence to reference at what index.

9.3 Exploiting Commonality

Imagine that you have parlayed the movie query system from Chapter 7 into such
an enormous success that it is currently being used by three major video store chains
(not to mention the pirated versions being used by less honorable dealers). You have
extended the natural language interface of your program (which you nicknamed
Roger) to such an extent that many people think of Roger as a friend, and a few
even consult him about their love life and other such befuddling aspects of their
existence.

You were recently contacted by the owner of the Twilight Coffeehouse/Bookstore,
who, in addition to selling books, also sells compact discs and rents obscure but
interesting videos. She is very interested in extending Roger so that he could be
consulted about books and CDs as well as videos. She already has two database
programs, one for her books and and one for her CDs (surprisingly, done in Scheme
as well), but she prefers the Roger interface. What she would like to do is to combine
these two databases and your video database into one large database. A tantalizing
idea indeed, but how could it be done?

Combining the three databases involves more than just gluing the lists of records
together; you also need to provide procedures that operate on the individual records
in this new database. But there’s a catch here: Each of those individual records could
represent a book, a video, or a CD. Books, videos, and CDs have many properties in
common; for example, each has a title and a year released. Also, the book’s author
more or less corresponds to the movie’s director and the CD’s recording artist. On
the other hand, some attributes do not have obvious correlates from one data type
to another (e.g., the actors in a movie have no obvious analogue in books or CDs).
Ideally, we would like to have an interface that is as uniform as possible across the
three underlying data types.
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But speaking of an interface seems premature. After all, we defined an interface as
the set of procedures that operate on an ADT, and we do not yet have a single ADT.
From the point of view of generic operations, we can get around this problem by
hypothesizing an ADT catalog-item that captures the commonality among the three
underlying ADTs. Any given catalog-item will in fact be a movie, book, or CD (or
any other catalog-item-like type we might later add), so movies, for example, might
be called a “class” of catalog items. (We are essentially introducing here a form of
class hierarchy that is a core concept in object-oriented programming, which we will
describe in detail in Chapter 14.)

In order to fully specify the interface for catalog items, let’s write down the
operations for each of the databases, grouping together those that are similar. Thus,
we have three different operations for finding a title, three different operations for
finding the year in which an object was made, and so on. The result is the table
in Figure 9.1. The individual entries of the table are the procedures that operate
on data of the given type. The columns of the table organize the operations by
type, and the rows of the table group the analogous operations among the three
types under a generic name indicating what is being done. In some cases (title,
year-made, and display-item) there are obvious correlates for each of the three
types. In other cases, such as actors, there are no obvious correlates, which leads
to blanks in the table. In some cases, however, there are close analogues that we
wrote in the table under more generic names (creator and company). Note that
company applies to only two of the three data types because our movie database
didn’t contain information about movies’ distributors. The names of the rows are
precisely the generic operators we want to implement as the interface for catalog
items.

We are left with the question of how we actually implement these generic oper-
ators. (Note that we are assuming that the three underlying types are already fully
implemented, and our goal is to combine them in as transparent a manner as pos-
sible.) One method of accomplishing this would be to use the message-passing style
of Section 9.2; we choose not to do it that way, mainly because we will take this
opportunity to introduce another approach to genericity that involves tagging the

movie book cd

title movie-title book-title cd-title

year-made movie-year-made book-year-made cd-year-made

display-item display-movie display-book display-cd

creator movie-director book-author cd-artist

company book-publisher cd-record-company

actors movie-actors

Figure 9.1 Operation table for Movies, Books, and CDs
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data with its type. In addition to allowing us to explore a new technique, this lat-
ter approach is slightly more suited to the integration of already-existing types than
message-passing. We will work through two variants of this type-tagging approach.

Generic Operations through Symbolic Type Tags

Our first variant of the type-tagging approach involves attaching a symbolic tag, or
label, to each piece of data that indicates whether the datum is a book, video, or
CD. Then, when we write a generic procedure, we take a tagged datum, look at its
tag, and use that to determine which operation to apply.

Tagging data is fairly simple. We need to create an ADT that binds together each
datum with its tag. For example, we can do the following:

(define tagged-datum
(lambda (type value)
(cons type value)))

(define type car)

(define contents cdr)

The type argument could in general be various things; for now it will be a symbol
that “names” the given type.

Exercise 9.7

Write a procedure list->tagged-list that takes a list of untagged elements and
a type and returns the corresponding list where each element has been tagged by
the given type tag. Thus, if movies is a list of movie records, you can define a
(symbolically) tagged list of movie records by evaluating:

(define tagged-movies
(list->tagged-list movies ’movie))

If our three databases are lists called movies, books, and cds, then we could create
the combined database as follows:

(define database
(append (list->tagged-list movies ’movie)

(list->tagged-list books ’book)
(list->tagged-list cds ’cd)))
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How can we implement the generic operations? Probably the most obvious way
is to do so one operation at a time. Viewed in terms of the table in Figure 9.1, we
are filling out the table row by row. Assume that the data has been tagged as in
Exercise 9.7, with each element tagged with one of the symbols movie, book, or cd.
We can then easily test the type of a given item by using the following predicates:

(define movie?
(lambda (x)
(equal? (type x) ’movie)))

(define book?
(lambda (x)
(equal? (type x) ’book)))

(define cd?
(lambda (x)
(equal? (type x) ’cd)))

Using these predicates, the generic operations become easy to write. For example,
here is title:

(define title
(lambda (x)
(cond ((movie? x) (movie-title (contents x)))

((book? x) (book-title (contents x)))
((cd? x) (cd-title (contents x)))
(else (error "unknown object in title" x)))))

Exercise 9.8

In the course of integrating databases, some of the operations that seem analogous
between types might have some annoying differences. For example, suppose that the
movie directors and actors have their names stored as lists with the family names last,
whereas for books and CDs the authors’ and artists’ names are stored with family
names first. Suppose that you decide for consistency’s sake and ease of display to
have all of the generic procedures return the names with the family name last.

a. Write a procedure family-name-last that takes a name (as a list of symbols)
with family name first and returns the corresponding list with family name last.

b. Use family-name-last to write a generic operation creator that returns the
name with the family name last in all cases.
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Implementing generic operations becomes somewhat more delicate when an op-
eration doesn’t apply across the three types, say, for example, actors. One possibility
would be to signal an error when this occurs. For example, we could handle the
operation actors by using error:

(define actors
(lambda (x)
(cond ((movie? x) (movie-actors (contents x)))

(else (error "Cannot find the actors of the given type"
(type x))))))

If we choose this approach, we must modify the query system appropriately. For
example, suppose Roger were asked the following question:

(what films was randy quaid in)

Then the action matching this pattern must not apply the operation actors to all
items in the database because otherwise it will signal an error. This means that in
this case the database must first be filtered by the predicate movie?. In general,
patterns that clearly indicate the type of the desired records should first filter the
database by the type’s predicate.

Exercise 9.9

An alternative approach to this problem is to return a testable value, for example,
the empty list, if there is no procedure for the given operation and type. Discuss this
approach, especially as it pertains to Roger.

Exercise 9.10

Because we have posed our problem in terms of integrating databases, we should
not assume that the result will be the last word in entertainment databases. After
all, we might add a new type (say magazines), a new piece of information (perhaps
the cost for rental or purchase), or some other increased functionality. Let’s consider
how difficult these tasks would be using the current approach to generic operations.

a. Discuss what you would need to do to integrate a magazine database into the
current one consisting of movies, books, and CDs. What changes would you have
to make to the generic operations you have already written?

b. Discuss what you would need to do to add a new generic operation, for example,
the cost for rental or purchase of the given item.
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c. Discuss what you would need to do to add a single entry to the operation table,
for example, adding a way of finding a movie’s distributor to the “company” row
of the table.

Operation Tables as Type Tags

In the variant of the type-tagging approach described above, we symbolically tagged
the data as being of a given type and wrote the generic operations using a cond
that branched on the allowable types for the operation. Viewed in terms of the
operation table of Figure 9.1, this approach fills the table out row by row, which is
to say operation by operation. One could argue that there would be advantages to
an approach that more directly mirrors how the individual databases were originally
constructed, namely, type by type. If we had used message-passing as suggested at
the beginning of this section, we would have had a separate constructor for each
underlying type, precisely this desired approach. But there would also be a great deal
of redundancy in the message-passing implementation: After all, each of the movies
contains a variant of the same general method for responding to the operations;
individual movies only differ in their “content” data. You might well argue that this
is precisely the point, and you would be correct. But somehow or other, these general
methods of responding seem more appropriately associated with the type than with
each of the separate data objects.

Is there some way to combine the two approaches? One way to do this would be to
tag the data as in the preceding subsection but let the type tags provide the general
procedures for performing the operations instead of merely being symbolic type
names. In other words, the tags would correspond to the columns of the operation
table. In effect, each type would be a one-dimensional table that stores the particular
procedure to be used for each of the various generic operations.

Let’s implement a type ADT, which contains the name of the type as well as the
operation table, because it will prove useful to know the name of the type when
reporting errors:

(define make-type
(lambda (name operation-table)
(cons name operation-table)))

(define type-name car)

(define type-operation-table cdr)

We implement one-dimensional tables (the columns of the full operation table) as
an abstract data type with a constructor make-table that will make a table from a
list of the symbols denoting the operations and a list of the corresponding procedures
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to be used for those operations on the given type. For example, we would define the
type movie as

(define movie

(make-type ’movie

(make-table

’(title year-made director actors creator display-item)

(list movie-title movie-year-made movie-director

movie-actors movie-director display-movie))))

Having defined the types book and cd as well, we could then define our tagged
database as follows:

(define database
(append (list->tagged-list movies movie)

(list->tagged-list books book)
(list->tagged-list cds cd)))

Notice that the tags are no longer simply symbols but are instead type objects that
also contain the column of the operation table corresponding to the type of the
tagged data item.

At this point each data object includes not only its particular component values
but also has access to the column of the operation table that tells how to do the
various operations. What we need now is a procedure, which we will call operate,
that when given the name of an operation and a tagged data value, looks up the
appropriate procedure in the data value’s operation table and applies that procedure
to the contents of the (tagged) data value. Thus we could use operate to define the
generic operation title as follows:

(define title
(lambda (tagged-datum)
(operate ’title tagged-datum)))

How do we define operate? Clearly we must look up the operation name in the
operation table and apply the corresponding procedure (if it exists) to the contents of
the given data object. If no such procedure is found for the given operation, an error
should be reported. This process is complicated. It would probably be best to have
operate spin the table-searching tasks off onto another more general table-lookup
procedure, to which it passes the necessary arguments. We will define a procedure
table-find, which is passed the operation table, the name of the operation, a
procedure that describes what to do if the operation is found in the given table,
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and a procedure that describes what to do if it is not found. Thus, we would call
table-find as follows:

(define operate
(lambda (operation-name value)
(table-find (type-operation-table (type value))

operation-name
(lambda (procedure) ; use this if found
(procedure (contents value)))

(lambda () ; use this if not found
(error "No way of doing operation on type"

operation-name
(type-name (type value)))))))

Note that the procedure that operate supplies to table-find for use if the table
lookup is successful takes one argument, namely, the procedure that was found in
the table. In contrast, the procedure that operate supplies to table-find for the
not-found case takes no arguments; it simply reports the error that occurred.

At this point, we need to define the table ADT, with its make-table and
table-find operations. There are many plausible representations for tables; here,
we’ll opt for simplicity and just cons together into a pair the list of keys and the list
of values:

(define make-table
(lambda (keys values)
(cons keys values)))

The procedure table-find simply cdrs down the two lists, looking in the list of
keys for the desired key, (i.e., the operation name):

(define table-find
(lambda (table key what-if-found what-if-not)
(define loop
(lambda (keys values)
(cond ((null? keys) (what-if-not))

((equal? key (car keys))
(what-if-found (car values)))
(else
(loop (cdr keys) (cdr values))))))

(loop (car table) (cdr table))))
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Exercise 9.11

How would you implement the type predicates such as movie? using this represen-
tation with type tags containing operation tables?

Exercise 9.12

Discuss the questions from Exercise 9.10 in terms of the operation-table type-tag
representation.

Exercise 9.13

Through this entire section, we’ve been glossing over a minor difficulty, namely, that
many books are coauthored. Thus, it would be more likely that the book database
actually supported a book-authors operation, which returns a list of authors, rather
than the book-author operation we’ve been presuming. The primary difficulty this
would cause is that we’d wind up with a creator generic operation that returns a
single director for a movie, but a list of authors for a book. If we were processing a
query like (what do you have by John Doe), we would have to in some cases
test for equality between (John Doe) and the creator and in other cases test for
membership of (John Doe) in the creator list.

a. How would you arrange, at database integration time, for there to be a creators
generic operation that returned a list of creators for any type of object, even
a movie? Assume that the movie database is unchanged, so there is still just
a singular director, whereas the book database is now presumed to have the
book-authors operation. (Which assumption seems more plausible for CDs?)

b. An alternative would be to change the movie database to directly support a list
of directors, rather than a single director, for each movie. What are the relative
advantages and disadvantages of the two approaches?

In the next section you’ll have an opportunity to apply the technology of generic
operations; we also use it as a tool while covering other topics in the next two
chapters. We’ll return to our consideration of generic operations as a topic of study
in its own right in Chapter 14, which discusses object-oriented programming. The
implementation technique we use there is a variant of the “operation tables as type
tags” theme, with techniques we’ll encounter in the meantime used to improve the
efficiency of the table lookup.
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9.4 An Application: Computer Graphics

In this section, we’ll look inside graphics operations like those used in Chapters 1
through 4. We’ll show how to use the message-passing technique to implement those
graphics operations in terms of lower-level ones. In fact, we’ll serve up a double
helping of generic operations because there are two different abstract data types we’ll
use:

Drawing media, on which we can perform the basic graphics operations of drawing
lines and filled triangles

Images, which can be arbitrarily complex assemblies so long as they know how to
draw themselves onto a medium

First, let’s consider why we want to treat images as an abstract data type with
generic operations that can be used across multiple implementations. We have lots
of different kinds of images from simple ones such as lines and filled triangles to
more complex images such as pinwheeled quilts and c-curve fractals. Nonetheless,
there are certain operations we want to perform on any image, without needing
to know what kind of image it is. For example, we should be able to find the
width and height of any image. If nothing else, this information is needed for error
checking when we perform stacking and overlaying operations. (Only images of the
same width can be stacked, and only images of the same width and height can be
overlaid.) We also want to be able to draw an image onto a drawing medium in a
single simple operation, without concerning ourselves with what conglomeration of
lines and triangles may need to be drawn.

The situation with drawing media is a bit more interesting. First, there can be
multiple forms of graphics output. For example, we can draw onto an on-screen
window, or we can “draw” by writing to a file stored in some graphics file format,
for later use. Thus we can foresee having at least two kinds of drawing media:
windows and files. We can perform the same basic operations of drawing lines
and filled triangles in either case but with different results depending on the kind
of medium we are drawing on. Because we’ll use generic operations to uniformly
access any medium, we’ll be able to construct complex images that know how to
“draw themselves” on any medium, without the images needing to be aware of the
different kinds of media. Additionally, we will show how we can layer a new “virtual
medium” on top of an existing medium. We do this layering to make it easy to
perform a transformation, such as turning an image.

Before we begin looking closely at images and drawing media, we need to take
care of two details. First, both images and drawing media use a two-dimensional
coordinate system. For example, if we wanted to create an image with a line, we
would specify the two coordinates for each of the line’s two endpoints. Now that
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we’ve learned how to make compound data, we can make a point ADT. We define
the constructor and selectors for points as follows:

(define make-point cons)

(define x-coord car)

(define y-coord cdr)

We’ll use the convention that x coordinates increase from left to right and y co-
ordinates increase from bottom to top. This is mathematically conventional but not
in agreement with all computer systems’ conventions. On some computer systems,
the y coordinates in a window start with 0 at the top and increase as you go down
the screen. On such a system, the low-level type of drawing medium for drawing on
windows will need to take care of reversing the y coordinates.

We will, however, use two different ranges of coordinate values. One range is for
images and so will be used for the arguments the user provides to the constructors of
fundamental images, make-line and make-filled-triangle. For convenience
and consistency with earlier chapters, these two constructors expect points with
coordinates in the range from 21 to 1.

Our other range of coordinates will be used for doing the actual drawing on
drawing media. For this drawing, we’ll use coordinates that range from 0 up to the
width or height of the medium. What units do we use to measure the width and
height? We do not specify the unit of measure, but one reasonable unit for images
displayed on a computer screen would be the size of a pixel, that is, one of the little
dots that the computer can individually light up. For example, a 100 3 200 medium
might be drawing to a window of those dimensions so that valid x coordinates for
drawing on the medium range from 0 at the far left to 100 at the far right, whereas
the valid y coordinates range from 0 at the bottom to 200 at the top. We chose this
coordinate system, with the origin in the lower left-hand corner rather than in the
center, because it will simplify the calculations needed to stack images.

The second detail we need to take care of is providing an interface that hides our
decision to use the message-passing style. That is, each image or drawing medium
will be represented as a procedure that can perform the various operations when
passed an appropriate symbolic message indicating the desired operation. However,
our users will be thinking that various operations are performed on the images. Thus,
we’ll define the following interface procedures:

;; Interface to image operations

(define width
(lambda (image)
(image ’width)))
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(define height
(lambda (image)
(image ’height)))

(define draw-on
(lambda (image medium)
((image ’draw-on) medium)))

;; Interface to drawing medium operations

(define draw-line-on
(lambda (point0 point1 medium)
((medium ’draw-line) point0 point1)))

(define draw-filled-triangle-on
(lambda (point0 point1 point2 medium)
((medium ’draw-filled-triangle) point0 point1 point2)))

At this point, we know what operations we can invoke on an image or a medium,
even though we don’t have any images or media on which to invoke those oper-
ations. Conversely, we know what operations any image or medium we construct
will need to support. By putting these two kinds of information together, we can
begin to write some constructors. We’ll start with the constructors for two funda-
mental images, make-line and make-filled-triangle. (We’ve chosen to call
these procedures make-line and make-filled-triangle, rather than line and
filled-triangle, to help you distinguish the procedures we’re writing in this sec-
tion from the predefined ones we used in the earlier chapters. We’ll similarly avoid re-
using other names.) These images support the draw-on operation for drawing them-
selves on a medium by using the draw-line-on and draw-filled-triangle-on
interface operations specified above for media.

We’ll need to make a rather arbitrary choice of size for these two fundamental
images. (Other images, formed by stacking, turning, etc., will have sizes that derive
from this basic image size.) The best choice depends on where the medium is doing
its drawing; for example, if the medium is drawing on your computer screen, the
best choice depends on such issues as the size of your computer’s screen. However,
the following value is probably in a plausible range:

(define basic-image-size 100)

Recall that make-line and make-filled-triangle need to convert from the user’s
coordinate range of 21 to 1 into the drawing medium’s coordinate range, which will
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be from 0 to basic-image-size. We can convert a point from one range to the
other using the following procedure:

(define transform-point ; from -1 to 1 into 0 to basic-image-size

(lambda (point)
(define transform-coord

(lambda (coord)

(* (/ (+ coord 1) 2) ; fraction of the way to top or right

basic-image-size)))

(make-point (transform-coord (x-coord point))

(transform-coord (y-coord point)))))

With these preliminaries in place, we can write our first image constructor:

(define make-line
(lambda (point0 point1)
(lambda (op)
(cond
((equal? op ’width) basic-image-size)
((equal? op ’height) basic-image-size)
((equal? op ’draw-on)
(lambda (medium)
(draw-line-on (transform-point point0)

(transform-point point1)
medium)))

(else (error "unknown operation on line" op))))))

As you can see, a line responds to queries about its width and height by reporting
our basic-image-size, and it draws itself on a medium in the obvious way, by
drawing a single line on that medium. So far, the image hasn’t added any interesting
functionality to that provided by the drawing medium itself. But remember, images
can be more complex. For example, we could have an image that was a c-curve
fractal of level 10. When we invoke its draw-on operation to draw it on a medium,
1024 draw-line-on operations will be performed on the medium for us.

So that you can test the preceding line constructor, we need to give you some
way of making a drawing medium that actually displays an image on your screen.
Later in this section we’ll show how drawing media can be constructed, by working
through the example of a type of drawing medium that writes a particular graphics
file format. Meanwhile, you can use a procedure called show that’s provided on
the web site for this book. We provide specific versions of show for various different
computer systems. You apply show to an image that needs to be shown, as in the call

(show (make-line (make-point 0 0) (make-point 1 1)))
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The show procedure is more than just a drawing medium, however. First, show
takes care of some system-dependent matters, such as opening a window that is the
same size as the image. Then show constructs a drawing medium for drawing on
that window (in some system-dependent way) and passes it to the image’s draw-on
procedure. When the drawing is all done, show takes care of any system-dependent
wrap-up that needs to be done, such as notifying the system that the window is
complete.

In the earlier chapters, we assumed that images constructed using the predefined
image procedures were automatically shown, without needing to explicitly use a
procedure such as show. The way this is implemented is that the Scheme system
itself applies show when the value of a computation is an image, just as when the
value is a number, it displays the digits representing the number. Thus show (or an
analogue) was really at work behind the scenes. In this chapter we make it explicit.

We mentioned above that the images can be much more complex, like that 1024-
line level-10 c-curve. However, before we move on to how these complex images are
constructed, one other image type directly reflects the abilities of drawing media.

Exercise 9.14

Write the make-filled-triangle image constructor. It should take three points as
arguments, each with coordinates in the 21 to 1 range. It should produce an image
with the basic-image-size as its width and height, drawn on a medium as a filled
triangle.

Now we are ready to consider how to build more complex images. We’ll start
with overlaying two images, because that is all we need to construct our c-curve
example. Such an image should be able to report its height or width and should be
able to draw itself. The size issue is fairly simple to deal with, but how do we get an
overlaid image to draw itself? The answer is to use the fact that an overlaid image is
a composite of two other images. When the overlaid image is asked to draw itself on
a medium, it simply passes the buck to its two constituent images by asking them to
draw themselves on that medium. This leads to the following constructor:

(define make-overlaid-image
(lambda (image1 image2)
(if (not (and (= (width image1) (width image2))

(= (height image1) (height image2))))
(error "can’t overlay images of different sizes")
(lambda (op)
(cond ((equal? op ’width) (width image1))

((equal? op ’height) (height image1))
;;(continued)
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((equal? op ’draw-on)
(lambda (medium)
(draw-on image1 medium)
(draw-on image2 medium)))

(else
(error "unknown operation on overlaid image"

op)))))))

Notice that this is both a producer and a consumer of the interface we specified for
images. Because what it produces is an image, the result needs to provide the width,
height, and draw-on operations. Because that composite image is built from two
preexisting images, it can count on image1 and image2 to be able to report their
own width and height and to draw themselves appropriately. That way we don’t need
to care what sort of images are being overlaid.

You can try out the code thus far by using the c-curve procedure, rewritten in
terms of our new constructors:

(define c-curve
(lambda (x0 y0 x1 y1 level)
(if (= level 0)

(make-line (make-point x0 y0) (make-point x1 y1))
(let ((xmid (/ (+ x0 x1) 2))

(ymid (/ (+ y0 y1) 2))
(dx (- x1 x0))
(dy (- y1 y0)))

(let ((xa (- xmid (/ dy 2)))
(ya (+ ymid (/ dx 2))))

(make-overlaid-image
(c-curve x0 y0 xa ya (- level 1))
(c-curve xa ya x1 y1 (- level 1))))))))

With this definition in place, and using the show procedure we mentioned earlier to
provide an appropriate on-screen drawing medium, you could do (show (c-curve
0 -1/2 0 1/2 8)) to see a level-8 c-curve.

Let’s now consider the example of turning an image a quarter turn to the right,
as we did in designing quilt covers. We can use the ability to have different kinds
of drawing media to great advantage here. When we want a turned image to draw
itself on a particular medium, the turned image will create a new “virtual” medium
layered on top of the given medium. This new medium takes care of doing the
turning. In other words, when a turned image is asked to draw itself onto a base
medium, it will pass the buck to the original image by asking it to draw itself on the
virtual medium. The original image then asks the virtual medium to draw some lines
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and/or triangles. The virtual medium responds to each of these requests by asking
the base medium to draw a rotated version of the requested line or triangle.

How does the virtual medium turn the lines and triangles? The key to this turning
is that we really only need to move the endpoints of the lines or the vertices of the
triangle. A point that is near the left end of the medium’s top edge will need to
transformed to a point near the top of the right-hand edge of the base medium, and
a point at the center of the left edge will be transformed to a point at the center top.
To turn a line connecting these two points, the virtual medium simply transforms
each of the points and then asks the base medium to draw a line connecting the two
transformed points.

When we write the constructor for this virtual medium, we’ll assume that we have
a transform procedure that can take care of transforming one point. That is, if we
apply transform to the top center point, we get the center point of the right edge
back. Given this point transformer, we can build the transformed medium using the
following constructor:

(define make-transformed-medium
(lambda (transform base-medium)
(lambda (op)
(cond
((equal? op ’draw-line)
(lambda (point0 point1)
(draw-line-on (transform point0) (transform point1)

base-medium)))
((equal? op ’draw-filled-triangle)
(lambda (point0 point1 point2)
(draw-filled-triangle-on (transform point0)

(transform point1)
(transform point2)
base-medium)))

(else
(error "unknown operation on transformed medium"

op))))))

Just as make-overlaid-image was both a producer and a consumer of the image
interface, so too is make-transformed-medium both a producer and a consumer of
the drawing medium interface. It constructs the new medium as a “wrapper” around
the old medium—all operations on the new medium are translated into operations
on the old medium.

For the specific problem of turning an image a quarter turn to the right, consider
the quarter turn illustrated in Figure 9.2. Clearly the width and height are inter-
changed in the turned image, and the x coordinate of a transformed point is the
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Figure 9.2 Illustration of what happens to the width, height, and a point (x, y) when an image is
turned. The turned point has coordinates (y, w 2 x) where w is the width of the base image.

original point’s y coordinate. (In our earlier example, this explains why a point on
the top edge maps into a point on the right-hand edge.) Furthermore, we can obtain
the transformed point’s y coordinate by subtracting the original point’s x coordinate
from the new height, which is the old width. This leads to the following code:

(define make-turned-image ; quarter turn to the right
(lambda (base-image)
(define turn-point
(lambda (point)
;; y becomes x, and the old width minus x becomes y
(make-point (y-coord point)

(- (width base-image) (x-coord point)))))
(lambda (op)
(cond
((equal? op ’width) (height base-image))
((equal? op ’height) (width base-image))
((equal? op ’draw-on)
(lambda (medium)
(draw-on base-image

(make-transformed-medium turn-point medium))))
(else (error "unknown operation on turned image" op))))))

You could test this out using lines, but if you’ve written make-filled-triangle,
you can also try quarter turns out in their familiar context of quilting basic blocks,
such as the two below:
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(define test-bb
(make-filled-triangle (make-point 0 1)

(make-point 0 -1)
(make-point 1 -1)))

(define nova-bb
(make-overlaid-image
(make-filled-triangle (make-point 0 1)

(make-point 0 0)
(make-point -1/2 0))

(make-filled-triangle (make-point 0 0)
(make-point 0 1/2)
(make-point 1 0))))

Of course, we don’t have to limit ourselves to just explicating the kind of image
operations we used in earlier chapters. We can also add some new operations to our
repertory.

Exercise 9.15

Write a make-mirrored-image constructor. It should take a single image as an
argument, like make-turned-image does. The image it produces should be the
same size as the original but should be flipped around the vertical axis so that what
was on the left of the original image is on the right of the mirrored image, and vice
versa, as though the original image had been viewed in a mirror.

Exercise 9.16

Write a make-scaled-image constructor. It should take a real number and an
image as its arguments. The image it makes should be a magnified or shrunken
version of the original image, under the control of the numeric scale argument.
For example, (make-scaled-image 2 test-bb) should make an image twice a
big as test-bb, whereas (make-scaled-image 1/4 test-bb) should make one
one-quarter as big as test-bb. (Of course, you can scale other images, like c-curves,
as well.) Don’t just scale the image’s width and height; you also need to arrange for
the scaling when the image is drawn.

To get full quilt covers, we also still need a way of stacking one image on top
of another, making a new image with the combined heights. This is rather similar
to make-overlaid-image, except that the top image will need to be fooled into
drawing higher up on the drawing medium than it normally would so that its drawing
goes above that of the bottom image. This can be achieved by giving it a transformed
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medium to draw on. It will draw on that transformed medium using y coordinates that
start at 0, but the transformed medium will translate that into drawing commands
on the base medium that have larger y coordinate values.

Exercise 9.17

Using this approach, write a make-stacked-image constructor that takes the top
and bottom images as its arguments. You should initially test out your constructor
by doing such simple evaluations as (make-stacked-image test-bb nova-bb).
Once it seems to work, you can make fancier quilt patterns as described below.

Using your make-stacked-image procedure along with our earlier make-
turned-image procedure, the pinwheel procedure can be rewritten as follows:

(define pinwheel

(lambda (image)
(let ((turned (make-turned-image image)))

(let ((half (make-turned-image (make-stacked-image turned

image))))

(make-stacked-image half

(make-turned-image

(make-turned-image half)))))))

With this in hand, you can make quilt covers by doing evaluations such as (show
(pinwheel (pinwheel nova-bb))). For large covers, you probably will want to
show scaled-down versions made using make-scaled-image.

You may be feeling a bit ripped off because so far we haven’t shown how a “real”
drawing medium can be constructed, that is, one that doesn’t just pass the buck in
some transformed way to an underlying base medium. If you look on the web site
for this book, you can find several system-dependent versions of the show procedure,
each of which constructs some particular kind of on-screen drawing medium. At this
point, we’ll take a look at constructing a drawing medium that “draws” by writing
to a file. This further highlights the benefits of generic operations. All of the image
constructors we defined above are just as good for producing a graphical file as they
are for drawing on the screen. That’s because each of them draws on an arbitrary
drawing medium, using the specified interface that all drawing media share.

The file format we’ll write is one known as Encapsulated PostScript, or EPS. It
is a popular format, which on many systems you’ll be able to preview on-screen
or include as illustrations in documents. (For example, you could write a c-curve
or quilt pattern to an EPS file and then include that EPS file in a word-processed
report. We used this technique to make illustrations for this book.) In addition to
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the EPS format’s popularity and versatility, it has the advantage of being a relatively
straightforward textual format. For example, to draw a line from (0, 0) to (100, 100),
we would put the following into the EPS file:

0 0 moveto 100 100 lineto stroke

Similarly, to draw a filled triangle with vertices (0, 0), (100, 0), and (50, 100), we
would put the following line into the file:

0 0 moveto 100 0 lineto 50 100 lineto closepath fill

Although this notation is likely to be unfamiliar to you, at least it is readable, unlike
some other graphics file formats.

By using the display and newline procedures, we could write the EPS output
to your computer’s screen for you to see. That is, you’d wind up seeing a bunch of
textual descriptions of graphical objects, like the examples given above. However,
doing so would not be very useful. Instead, we’ll write the EPS output into a file
stored on your computer, ready for you to view using a previewer program or to
incorporate into a word-processed document. To write this output to a file, we’ll
use a predefined Scheme procedure called with-output-to-file. It reroutes the
output produced by procedures like display and newline so that they go into the
file instead of to your screen. For example,

(with-output-to-file "foo"
(lambda ()
(display "hello, world")
(newline)))

would create a one-line file called foo containing the message hello, world .
We’ll write a procedure called image->eps that writes an EPS version of a given

image into a file with a given filename. Just like show, this procedure will take care
of some start-up details before asking the image to draw itself. The procedure first
writes a bit of header information to the file, including the information about how
big the image is. Then, image->eps asks the image to draw itself on a specially
constructed drawing medium called eps-medium that outputs the EPS commands
for drawing the lines or filled triangles.

(define image->eps
(lambda (image filename)
(with-output-to-file filename
(lambda ()
(display "%!PS-Adobe-3.0 EPSF-3.0")
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(newline)
(display "%%BoundingBox: 0 0 ")
;; We need to make sure the bounding box is expressed
;; using only exact integers, as required by PostScript.
;; Therefore we process the width and height of the
;; image using round and then inexact->exact. The
;; round procedure would convert 10.8 into the inexact
;; integer 11., which the inexact->exact then converts
;; to the exact integer 11
(display (inexact->exact (round (width image))))
(display " ")
(display (inexact->exact (round (height image))))
(newline)
;; Now do the drawing
(draw-on image eps-medium)))))

How does eps-medium work? It simply needs to draw lines and filled triangles in
the EPS manner illustrated earlier, which leads to the following definition:

(define eps-medium
(lambda (op)
(cond ((equal? op ’draw-line)

(lambda (point0 point1)
(display-eps-point point0)
(display "moveto")
(display-eps-point point1)
(display "lineto stroke")
(newline)))

((equal? op ’draw-filled-triangle)
(lambda (point0 point1 point2)
(display-eps-point point0)
(display "moveto")
(display-eps-point point1)
(display "lineto")
(display-eps-point point2)
(display "lineto closepath fill")
(newline)))

(else
(error "unknown operation on EPS medium"

op)))))
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The display-eps-point procedure this uses simply writes out the x and y coor-
dinates in a format suitable for PostScript. In particular, PostScript can’t handle a
fraction written with a slash, such as 1 6 2. Therefore, we use the predefined proce-
dure exact->inexact to convert numbers that aren’t integers into their “inexact”
form, which gets displayed as .5 (for example) rather than 16 2. (The procedure
exact->inexact returns unchanged any number that is already inexact.)

(define display-eps-point
(lambda (point)
(define display-coord
(lambda (coord)
(if (integer? coord)

(display coord)
(display (exact->inexact coord)))))

(display " ")
(display-coord (x-coord point))
(display " ")
(display-coord (y-coord point))
(display " ")))

Exercise 9.18

Write a procedure summarize-image that takes an image as its argument and uses
display to give you a summary of that image as follows. For each line segment the
image contains, a letter l should be displayed, and for each filled triangle, a letter t.
For example, if you evaluate (summarize-image (c-curve 0 -1/2 0 1/2 3)),
you should see eight l’s because the level-3 c-curve is constituted out of eight line
segments.

Review Problems

Exercise 9.19

You are hired to supervise a team of programmers working on a computerized
geometry system. It is necessary to manipulate various geometric figures in standard
ways. As project manager, you have to select an organizational strategy that will allow
all different shapes of geometric figures to be be accessed using generic selectors for
such information as the x and y coordinates of the figure and the area.

State which strategy you have chosen and briefly justify your choice (e.g., use one
to three sentences). For your programmers’ benefit, illustrate how your choice would
be used to implement constructors make-square and make-circle and generic
selectors center-x, center-y, and area. The two constructors each take three
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arguments; in both cases, the first two are the x and y coordinates of the center of
the figure. The third argument specifies the length of the side for a square and the
radius for a circle. The selectors should be able to take either a square or a circle as
their argument and return the appropriate numerical value.

Exercise 9.20

Global Amalgamations Corp. has just acquired yet another smaller company and is
busily integrating the data processing operations of the acquired company with that of
the parent corporation. Luckily, both companies are using Scheme, and both have set
up their operations to tolerate multiple representations. Unfortunately, one company
uses operation tables as type tags, and the other uses procedural representations (i.e.,
message passing). Thus, not only are multiple representations now co-existing, but
some of them are type-tagged data and others are message-passing procedures. You
have been called in as a consultant to untangle this situation.

What is the minimum that needs to be done to make the two kinds of rep-
resentation happily coexist? Illustrate your suggestion concretely using Scheme as
appropriate. You may want to know that there is a built-in predicate pair? that tests
whether its argument is a pair, and a similar one, procedure?, that tests whether its
argument is a procedure.

Exercise 9.21

One way we can represent a set is as a predicate (i.e., a procedure that returns true
or false). The idea is that to test whether a particular item is in the set, we pass it to
the procedure, which provides the answer. For example, using this representation,
the built-in procedure number? could be used to represent the (infinite) set of all
numbers.

a. Implement element-of-set? for this representation. It takes two arguments, an
element and a set, and returns true or false depending on whether the element is
in the set or not.

b. Implement add-to-set for this representation. It takes two arguments, an ele-
ment and a set, and returns a new set that contains the specified element as well
as everything the specified set contained. Hint: Remember that a set is represented
as a procedure.

c. Implement union-set for this representation. It takes two arguments—two sets—
and returns a new set that contains anything that either of the provided sets
contains.

d. Write a paragraph explaining why you think the authors included this exercise in
this chapter rather than elsewhere in the book.
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Exercise 9.22

Assume that infinity has been defined as a special number that is greater than
all normal (finite) numbers and that when added to any finite number or to itself,
it yields itself. (In some Scheme systems you can define it as follows: (define
infinity (/ 1.0 0.0)).) Now there is no reason why sequences need to be of
finite length. Write a constructor for some interesting kind of infinite sequence.

Exercise 9.23

Show how the movie, book, and CD databases could be combined using message-
passing instead of type-tagging.
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C H A P T E R T E N

Implementing Programming
Languages

10.1 Introduction

The Scheme system you’ve been using as you work through this book is itself a
program, one that repeatedly reads in an expression, evaluates it, and prints out the
value. The main procedure in this system is a read-eval-print loop. In this chapter,
we’ll see how such a system could have been written by building a read-eval-print
loop for a somewhat stripped down version of Scheme we call Micro-Scheme.

The previous paragraph announced without any fanfare one of the deepest truths
of computer science: The fully general ability to perform any computation what-
soever is itself one specific computation. The read-eval-print loop, like any other
procedure, performs the one specialized task it has been programmed to do. How-
ever, its specific task is to do whatever it is told, including carrying out any other
procedure. It exemplifies the universality principle:

The universality principle: There exist universal procedures (such as the read-
eval-print loop) that can perform the work of any other procedure. Like any
other procedure, they are specialized, but what they specialize in is being fully
general.

In the next section, we’ll first describe exactly what Micro-Scheme expressions
look like by using a special notation called Extended Backus-Naur Form. In the third
section, we’ll build the read-eval-print loop for Micro-Scheme. Because definitions
are among the features of Scheme missing from Micro-Scheme, there is no con-
venient way to create recursive procedures. To overcome this, in the fourth section

278
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we’ll add global definitions to Micro-Scheme, resulting in Mini-Scheme. Finally,
in the application section at the end of the chapter you’ll have the opportunity to
modify the Mini-Scheme system so that it prints out each of the steps involved in
evaluating the main problem, each subproblem, sub-subproblem, etc., much like
the diagrams from the early chapters. That way, you’ll have a useful tool for helping
to understand Scheme evaluation.

Before launching into the development of Micro-Scheme, let’s consider why we
would want to build a Scheme system when we already have one available:

As mentioned in the preceding paragraph, in the application section you’ll add
explanatory output that is helpful in understanding Scheme evaluation. Adding
this output to the Scheme system you’ve been using would probably not be as
easy.
In fact, even without adding any explanatory output, you’ll probably come to
understand Scheme evaluation better, simply by getting an insider’s perspective
on it.
You’ll also be able to experiment with changes in the design of the programming
language. For example, if you have been wishing that Scheme had some feature,
now you’ll have the opportunity to add it.
You’ll even be in a good position to implement a whole new programming lan-
guage that isn’t a variant of Scheme at all. Many of the general ideas of program-
ming language implementation are independent of the specific language being
implemented. The main reason why this chapter is focused on the nearly circu-
lar implementation of Mini-Scheme in Scheme is simply to avoid introducing
another language for you to understand.

10.2 Syntax

The read-eval-print loop for Micro-Scheme uses many of the ideas from the movie
query application in Section 7.6. There, we had a procedure, query-loop, that read
in a query, matched it to one of a variety of patterns, took the appropriate action, and
printed the result. Here, we have a loop that reads in an expression and uses a similar
matching algorithm to determine what kind of expression it has. This information is
then used to compute and print the value of the expression.

Recall that in the query loop, we knew that there would be some queries that
didn’t match any of the patterns in our database. Similarly, in the Micro-Scheme
loop, there will be expressions that don’t match any of the valid forms for Micro-
Scheme expressions. For example, the expression (if (not (= x 0)) (/ 2 x)
(display "tried to divide by 0") 17) is not a valid Micro-Scheme expres-
sion because there are four expressions following the symbol if and only three are
allowed. Expressions that don’t have a valid form are said to be syntactically incorrect;
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those that are well formed are, of course, syntactically correct. Note that the em-
phasis is on form; for example, the expression (3 2) is syntactically correct because
2 and 3 are both valid expressions, and any collection of one or more valid expres-
sions surrounded by parentheses is also a valid expression. However, that expression
doesn’t have any meaning or value. Such an error is called a semantic error.

The input to the movie query system was fairly easy to specify—it was a list of
symbols—but the input to the Micro-Scheme read-eval-print loop has considerably
more structure. Micro-Scheme is just a stripped down version of Scheme; essentially
it has all the features of Scheme that we’ve seen up until now except define, cond,
let, and, or, and most of the built-in Scheme procedures. This means that a Micro-
Scheme expression could be a symbol, a constant (i.e., a number, boolean, or string),
or a list of Micro-Scheme expressions and keywords. The keywords are the special
symbols if, lambda, and quote; we’ll say more about quote, which you haven’t
previously seen, in a bit. Not everything a Micro-Scheme user types in is going to be
a valid Micro-Scheme expression, so we’ll call each input to the read-eval-print loop
a potential Micro-Scheme expression, or PMSE for short. We can give a recursive
definition of a PMSE:

PMSE: A PMSE is a symbol, a number, a string, a boolean, or a list of PMSEs.

The main task of this section is to describe which PMSEs are actually Micro-
Scheme expressions. To do this, we’ll use a concise notation called EBNF that is
commonly used for defining the syntax of formal languages, such as programming
languages. The name EBNF stands for Extended Backus-Naur Form, because this
notation is an extension to a form of syntax definition that John Backus developed and
Peter Naur popularized by using it in the published definition of the programming
language Algol, which he edited.

EBNF is one example of a notation for language grammars, which specify how
syntactic categories are recursively structured. The basic idea is to be able to say
things like “any collection of one or more expressions surrounded by parentheses is
also an expression,” which is an inherently recursive statement. The only difference
is that rather than saying it in English, we have a notation for saying it that is both
more precise and more concise. Regarding precision, notice that the English version
could be misread as saying that each of the individual expressions is surrounded
by parentheses, rather than the whole collection. Regarding concision, here is the
EBNF version:

kexpressionl −→ (kexpressionl1)

This collection of symbols with an arrow in it is called a production of the grammar.
The arrow separates the production into two sides, the left-hand and the right-hand
sides. The word kexpressionl with the angle brackets around it is a syntactic category
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name or nonterminal. A grammar is a collection of productions that is used to define
one specific syntactic category; for Micro-Scheme it would be kexpressionl. However,
along the way we may want to define other syntactic categories, such as kconditionall.
The meaning of a production is that the right-hand side specifies one form that is
permissible for the syntactic category listed on the left-hand side. For example, the
above production gives one form that an kexpressionl can have.

The parentheses in the example production’s right-hand side are necessary symbols
that must appear in any kexpressionl of that form; these are called terminal symbols.
For another example, the production

kexpressionl −→ (if kexpressionl kexpressionl kexpressionl)

contains the keyword if as a terminal symbol as well as the parentheses.
At this point we have two productions for kexpressionl, because we have given

two different forms that kexpressionls can have. This is normal; many syntactic
categories will be specified by a collection of productions specifying alternative
forms the category can have. The grammar is easier to read if all the productions for
a particular category are grouped together; a notational shorthand is generally used
for this. In the case of our two productions for kexpressionl, this shorthand notation
would be as follows:

kexpressionl −→ (kexpressionl1)
| (if kexpressionl kexpressionl kexpressionl)

The vertical bar is used to indicate that another production for the same left-hand
side follows. Any number of productions can be grouped together in this way. If the
right-hand sides are short, they can be listed on the same line, as follows:

kdigitl −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note, incidentally, that none of these productions for kdigitl contains any nonter-
minal symbols on the right-hand side. Every grammar must have some productions
like that to provide the base case for the recursion inherent in grammars.

The first production given for kexpressionl had a superscript plus sign in its
right-hand side; this is a special notation that means “one or more.” In particular,
kexpressionl1 is the EBNF way to say “one or more kexpressionls,” which was used
to say that one form an kexpressionl can have is a pair of parentheses surrounding
one or more kexpressionsls.

There is another very similar notation that can be used to say “zero or more.” For
example, suppose we want to specify the syntax of lambda expressions. We’ll limit
the body to a single kexpressionl but will allow the parameter list to have zero or
more knamels in it so that we can have procedures with any number of parameters,
including parameterless procedures. This would be expressed as follows:
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kexpressionl −→ (lambda (knamel*) kexpressionl)

The general rule is that a syntactic category name with a superscript asterisk indicates
zero or more instances of the category, whereas a syntactic category name with a
superscript plus sign indicates one or more instances of the category.

Now that we have the basics of EBNF, we can use it to describe all of Micro-
Scheme. Recall that Micro-Scheme is a stripped-down version of Scheme; specifi-
cally, it includes many of the features of Scheme that we’ve seen up until now. The
basic syntactic category in Micro-Scheme is the expression.

kexpressionl −→ knamel | kconstantl | kconditionall | kabstractionl
| kapplicationl

kconstantl −→ kliterall | kquotationl

kliterall −→ knumberl | kbooleanl | kstringl

kconditionall −→ (if kexpressionl kexpressionl kexpressionl)

kabstractionl −→ (lambda (knamel*) kexpressionl)

kquotationl −→ (quote kdatuml)

kapplicationl −→ (kexpressionl1)

knamel −→ any symbol allowed by the underlying Scheme except lambda, quote,
and if

knumberl −→ any number allowed by the underlying Scheme
kstringl −→ any string allowed by the underlying Scheme
kbooleanl −→ any boolean allowed by the underlying Scheme
kdatuml −→ any datum allowed by the underlying Scheme

You will notice that there are five syntactic categories at the end of the grammar
that are defined in terms of the underlying Scheme. The last one, kdatuml, includes
the other four as well as lists and a couple other Scheme types we have not yet
discussed; specifically, kdatuml consists of everything that Scheme will successfully
read using the built-in read procedure. In fact, the main reason that we describe
knamels, knumberls, kstringls, kbooleanls, and kdatumls in terms of the underlying
Scheme is that we’re using the built-in read procedure for reading in the PMSEs.
Once we’ve read in a PMSE, the underlying Scheme has it all nicely packaged for
us so we can tell if it’s a symbol, a number, a boolean, a string, a list, or none of the
above simply by using predicates such as symbol?, number?, and so on.
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Our grammar provides two ways to specify a kconstantl. One is as a kliterall, such
as 31, #t, or "hello". The other way is as a kquotationl, such as (quote x) or
(quote (1 2)). In normal Scheme, you are used to seeing quotations written a
different way, as ’x or ’(1 2), which is really just a shorthand notation; when the
read procedure sees ’x in the input, it returns the list (quote x).

Finally, you’ll notice that we used an unfamiliar name for the syntactic category
of lambda expressions: We called them kabstractionls. We didn’t want to name
the syntactic category klambda-expressionl because that would be naming it after
the keyword occurring in it—naming it after what the expressions look like rather
than after their meaning. (An analogy would be if we had named kapplicationls
“parenthesized expressions” because they have parentheses around them, rather
than focusing on the fact that they represent the application of a procedure to its
arguments.) We didn’t want to call these expressions kprocedurels either because a
procedure is the value that results from evaluating such an expression, and we want
to distinguish the expression from the value. There is a long tradition of calling this
kind of expression an abstraction, so we adopted this name.

Exercise 10.1

The categories knumberl, kstringl, and kbooleanl are directly testable by the corre-
sponding Scheme procedures number?, string?, and boolean?, but knamel does
not have an exact Scheme correlate. You will write one in this exercise.

a. Recall that the symbols lambda, quote, and if that are disallowed as names
because of their special usage in Micro-Scheme are called keywords. Write a
predicate keyword? that tests whether its argument is a keyword.

b. Write the predicate name?. You will need to use the built-in Scheme procedure
symbol?.

Exercise 10.2

Even when a category is directly testable by Scheme, using EBNF to express it at a
more primitive level can help you appreciate the expressive power of EBNF. In this
exercise you will use EBNF to describe certain kinds of numbers—a small subset of
those allowed by Scheme.

a. Write a production for kunsigned-integerl. You can use the productions for kdigitl
given above.

b. Next write productions for kintegerl; an kintegerl may start with a - sign, a + sign,
or neither.

c. Finally, write productions for kreal-numberl, which are (possibly) signed numbers
that may have a decimal point. Note that if the real number has a decimal point,



284 Chapter 10 Implementing Programming Languages

there must be at least one digit to the left or to the right (or both) of the decimal
point. Thus, 243., .43, 43, 143.21, and 43.0 are all valid real numbers.

Exercise 10.3

In Section 8.3 we considered expression trees for simple arithmetic expressions.
All such expressions are either numbers or lists having an operator (one of +, -,
*, or /) and two operands. Actually, there are three important variants, depending
on where the operator occurs: in the first position (prefix or Scheme notation),
the second position (infix or standard notation), or the third position (postfix, also
known as Reverse Polish notation, or RPN). Let’s consider how such expressions can
be specified using EBNF.

a. Write productions for karithmetic-prefix-expressionl.
b. Write productions for karithmetic-infix-expressionl.
c. Write productions for karithmetic-postfix-expressionl.
d. As noted in Section 8.3, a postorder traversal of an expression tree re-

sults in a list of the nodes that is identical to the language specified by
karithmetic-postfix-expressionl, except that subexpressions are not parenthesized.
Revise the productions for karithmetic-postfix-expressionl so that subexpressions
are not parenthesized. (The overall top-level expression needn’t be parenthesized
either.)

Exercise 10.4

Let’s consider two possible additions to our Micro-Scheme grammar involving regular
Scheme expressions.

a. Write a production for let expressions. Remember that let expressions allow zero
or more bindings (i.e., parenthesized name/expression pairs), and the body of the
let contains one or more expressions. You should define a separate syntactic
category for kbindingl.

b. Write productions for cond expressions. Remember that cond expressions allow
one or more branches, the last of which may be an else, and each branch has
one or more expressions following the test condition.

Exercise 10.5

Our grammar for Micro-Scheme says that an kapplicationl is of the form
(kexpressionl1). Some authors prefer to instead say that it is of the form (kexpressionl
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kexpressionl*), even though this is longer and is equivalent. Speculate why it might
be preferred.

We can use the productions for kexpressionl to determine whether or not (+ 2 3)
is a syntactically valid Micro-Scheme expression. Because it matches the production
for an kapplicationl, it will be a valid Micro-Scheme expression if and only if +,
2, and 3 are valid. Now, + is a symbol in Scheme and not a keyword, so it is a

The Expressiveness of EBNF

If we weren’t allowed to use the superscript asterisk and plus sign in EBNF, we
wouldn’t lose anything in terms of the power of the notation: We could still
represent all the same language constructs, just using recursion. For example,
rather than

kapplicationl −→ (kexpressionl1)

we could write

kapplicationl −→ (kexpressionsl)

kexpressionsl −→ kexpressionl
| kexpressionsl kexpressionl

As the above example shows, although the superscripted asterisk and plus sign
don’t add anything to the range of languages the EBNF notation can describe,
they do contribute to keeping our grammars short and easy to understand.

Having seen what happens if we eliminate the “repetition” constructs and rely
only on recursion, now let’s consider the reverse. Suppose we forbid all use of
recursion in EBNF but allow the superscript asterisk and plus sign. We have to
be clear what it means to rule out recursion: Not only are we forbidding syntactic
categories from being directly defined in terms of themselves (as kexpressionsl
is in the preceding), but we are also forbidding indirect recursions, such as the
definition of kexpressionl in terms of kapplicationl, which is itself defined in terms
of kexpressionl. This restriction cuts into the range of languages that is specifiable.
For example, consider the language specified by the following recursive EBNF
grammar:

kparensl −→ ()
| (kparensl)

(Continued)
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The Expressiveness of EBNF (Continued)

Any string of one or more left parentheses followed by the same number of
right parentheses is a kparensl. Suppose we have a nonrecursive grammar that
also matches all these strings (but possibly others as well). Consider a very long
string of left parentheses followed by the same number of right parentheses. If
the string is long relative to the size of the nonrecursive grammar, the only
way this can happen is if the asterisk or plus sign is being used at some point to
match a repeated substring. The part being repeated has to contain either only left
parentheses or only right parentheses because otherwise its repetition would cause
a right parenthesis to come before a left parenthesis. However, if the repeated part
contains only one kind of parenthesis, and if we simply repeat that part more times
(which the asterisk or plus sign allows), we’ll wind up with an imbalance between
the number of left and right parentheses. Thus the nonrecursive grammar, if it
matches all the strings that kparensl does, must match some other strings as well
that kparensl doesn’t; in other words, we’ve got a language that can be specified
using a recursive grammar but not a nonrecursive one.

Even with recursion allowed, EBNF isn’t the ultimate in language specification;
it can’t specify some very simple languages. For example, suppose we want the
language to allow any number of left parentheses followed by the same number
of letter a’s followed by the same number of right parentheses. For example, (a)
and ((aa)) would be legal but ((a)) and ((aa) wouldn’t be. There is no way
to specify this language using EBNF. Even sketching the proof of this would go
beyond the scope of this book, but you’ll see it in a course on formal languages
and automata theory. Such courses, also sometimes called “mathematical theory
of computation” or “foundations of computation,” go into more details on the
other issues we covered in this sidebar and cover related topics as well.

knamel in Micro-Scheme, and thus + is a valid Micro-Scheme expression. Similarly,
2 and 3 are numbers, so they are Micro-Scheme kconstantls. Thus, they too are valid
Micro-Scheme expressions. Hence, the whole expression (+ 2 3) is also valid.

Exercise 10.6

Determine which of the following PMSEs are syntactically valid Micro-Scheme
expressions and explain why.

a. (if 3 1 5)

b. (lambda x (+ x 2))

c. (((a ((b))) c))
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d. (lambda (lambda) 3)

e. (lambda () lambda)

f. (lambda (x) (if (> x 0) x (- x) 0))

g. (lambda () x)

h. (lambda ())

i. (/)

j. (#t #f)

As you did the exercise above, you probably matched a PMSE against the pro-
ductions for a Micro-Scheme kexpressionl. Whenever you found a match, you took
the various parts of the PMSE and checked to see whether they were valid as well.
Note that this is a form of pattern-matching similar to what you did in Section 7.6
to determine the form of a query in the movie query system.

We can use the pattern-matching mechanism from Section 7.6 to determine
whether or not a PMSE is a syntactically correct Micro-Scheme expression. In par-
ticular, we’ll use the procedures matches? and substitutions-in-to-match,
together with a pattern/action list appropriate for Micro-Scheme. This list will
have one pattern/action pair for each kind of compound expression—kconditionall,
kabstractionl, and kapplicationl. The matching will determine whether or not a
PMSE has the correct number of “sub-PMSEs” in the correct places, and the ac-
tions will check to see if these sub-PMSEs are valid expressions. The pattern/action
list will also take care of kquotationls, whereas we’ll have to use separate checks
to determine whether or not we have one of the simplest kinds of Micro-Scheme
expressions, knamel and kliterall, neither of which has any sub-PMSE.

Here, then, is the code for a syntax checking predicate syntax-ok?, together
with the pattern/action list. The procedure all-are is a higher-order procedure
from Exercise 7.49 on page 208. It takes a predicate, such as name? or syntax-ok?,
and returns a procedure that determines whether or not everything in a list satisfies
the original predicate. Thus, for example, the action for the pattern starting with
lambda includes a check that all of the parameters are really names.

(define syntax-ok?

(lambda (pmse)

(define loop ;main procedure is on next page

(lambda (p/a-list)
(cond ((null? p/a-list) #f)

((matches? (pattern (car p/a-list)) pmse)

(apply (action (car p/a-list))

(substitutions-in-to-match

(pattern (car p/a-list))

pmse)))

(else (loop (cdr p/a-list)))))) ;end of loop
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(cond ((or (number? pmse) ;main syntax-ok? procedure

(string? pmse)
(boolean? pmse)) ;pmse is a literal

#t)

((name? pmse) #t)

((list? pmse) ;try matching it against the patterns

(loop micro-scheme-syntax-ok?-p/a-list))

(else #f))))

(define micro-scheme-syntax-ok?-p/a-list

(list

(make-pattern/action ’(if _ _ _)
(lambda (test if-true if-false)

(and (syntax-ok? test)

(syntax-ok? if-true)

(syntax-ok? if-false))))

(make-pattern/action ’(lambda _ _)

(lambda (parameters body)

(and (list? parameters)

((all-are name?) parameters)

(syntax-ok? body))))

(make-pattern/action ’(quote _)
(lambda (datum) #t))

(make-pattern/action ’(...) ; note that this *must* come last

(lambda (pmses)

((all-are syntax-ok?) pmses)))))

Let’s look at what happens if we call syntax-ok? on a list-structured PMSE,
say, (if 3 1 5). This PMSE will match the first pattern in the pattern/action list
because (if 3 1 5) is a list with four elements and the first element is the symbol
if. The last three elements in the PMSE are the test expression, the expression to
evaluate if the test expression is true, and the expression to evaluate if the test is false.
The action that corresponds to this pattern is to recursively check to see if all three
of these expressions are really well-formed Micro-Scheme expressions by using the
procedure syntax-ok? and the special form and.

In the example above a mutual recursion occurs between syntax-ok? and the
action procedures, much like with even-part and odd-part in Section 7.5. That
is, syntax-ok? doesn’t directly invoke itself to check the validity of sub-PMSEs
but rather invokes an action procedure that in turn invokes syntax-ok? on the
sub-PMSEs. Because this will in general result in more than one recursive call
to syntax-ok? (for example, conditionals result in three recursive calls), the net
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result is tree recursion. Micro-Scheme expressions have a tree-like structure similar
to the expression trees in Section 8.3. The tree recursion resulting from a call to
syntax-ok? exactly parallels the tree-like structure of the given PMSE.

Exercise 10.7

Why does the mutual recursion between syntax-ok? and the action procedures
eventually stop when we check the syntax of (if 3 1 5)? Why will it eventually
stop on any list-structured PMSE?

Exercise 10.8

What happens if the PMSE being checked is the empty list?

Note that there are plenty of syntactically valid Micro-Scheme expressions that are
nevertheless completely nonsensical: consider, for example, (1 5). This expression
is a syntactically valid Micro-Scheme expression (and a syntactically valid Scheme
one, too), but it doesn’t have a value, because the value of 1 is the number 1, not a
procedure. The point is that this expression has the correct form for Micro-Scheme
expressions, and form is the only thing that EBNF specifies. The big gain with EBNF
is that the productions for a language translate fairly simply into a syntax checker
such as syntax-ok?. In the next section, we’ll see that the same productions can
also serve as the basis for categorizing expressions and identifying their parts in
preparation for evaluating them.

Finally, we make one important remark concerning the structure of the pat-
tern/action list. Note that the first three patterns in the pattern/action list describe
list-structured PMSEs that can be identified by their size and their first element.
Because of the way the pattern/action list is structured, any other nonempty list is
considered to be an application. When we extend Micro-Scheme by adding new
productions, we will want to maintain this property by keeping the pattern for appli-
cations at the end of the pattern/action list.

10.3 Micro-Scheme

Now that we know the syntax for Micro-Scheme, we can build a read-eval-print loop
for it. The Micro-Scheme read-eval-print loop itself is quite straightforward:

(define read-eval-print-loop
(lambda ()
(display ";Enter Micro-Scheme expression:")
(newline)
;;(continued)
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(let ((expression (read)))
(let ((value (evaluate (parse expression))))
(display ";Micro-Scheme value: ")
(write value)
(newline)))

(read-eval-print-loop)))
Each expression is read in with read, then parsed and evaluated, and finally the value
is written back out using write, with some frills provided by newline and display.
(The built-in procedure write is just like display except for some details such as
providing double quote marks around strings. That way you can see the difference
between the string "foo" and the symbol foo, unlike when they are displayed.)

The core of this read-eval-print loop is a two-step process that uses the two proce-
dures parse and evaluate. In order to understand the separate tasks of these two
procedures, let’s first consider the arithmetic expressions described in Exercise 10.3.
No matter which way we denote arithmetic expressions (infix, prefix, and postfix),
each expression gives rise to a unique expression tree, as described in Section 8.3.
Parsing is the process of converting an actual expression to the corresponding ex-
pression tree. But why should we go through this intermediate stage (the expression
tree) rather than simply evaluating the expression directly? Separating the parsing
from the evaluation allows us to make changes in the superficial form or syntax of
expressions (such as whether we write our arithmetic expressions in prefix, infix, or
postfix) without needing to change the evaluation procedure. Furthermore, evalua-
tion itself is made easier, because the expression tree data type can be designed for
ease of evaluation rather than for ease of human writing.

Arithmetic expressions are considerably simpler than Micro-Scheme expressions
in one sense, however. Namely, there were only two kinds of nodes in our expression
trees: constants, which were leaves, and operators, which were internal nodes. We
needed to distinguish between constants and operators in Section 8.3’s evaluate
procedure, but all internal nodes were treated the same way: by looking up and
applying the specified Scheme procedure.

If you think instead about how Micro-Scheme works, it would be natural for
expression trees to have two kinds of leaves, corresponding to the syntactic categories
knamel and kconstantl. Each of these will need to be evaluated differently. Similarly,
there are three natural candidates for kinds of internal nodes, corresponding to
kconditionall, kabstractionl, and kapplicationl, because these syntactic categories have
subexpressions that would correspond to subtrees. Again, the way each of these
expressions is evaluated depends on what kind of expression it is. For example, think
about the difference between the way (+ (square 2) (square 3)) is evaluated
and the way (if (= x 0) 1 (/ 5 x)) is. Because we need to know what kind
of expression we have in order to evaluate it, parsing must identify and mark what
sort of expression it is considering and break it down into its component parts. In
our example above, the expression (+ (square 2) (square 3)) is an application,
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whose operator is + and whose operands are (square 2) and (square 3). Each
of these operands is itself an application with an operator, which is square, and an
operand, which is either 2 or 3.

So, the value of parse will be a tree-structured data type, which is typically called
an Abstract Syntax Tree, or AST. The AST for an expression indicates what kind
of expression it is and what its components are. Furthermore, the components are
themselves typically ASTs. The evaluation process itself can be carried out on the
AST rather than the original expression; as described above, this approach has the
advantage that if the language is redesigned in ways that change only the superficial
syntax of expressions, only parse (not evaluate) needs to be changed.

ASTs are an abstract data type, which means we shouldn’t worry too much for
now about how they are represented (what they “look like”) so long as they provide
the appropriate operations, notably the evaluate operation. However, it is easier
to think about ASTs if you have something concrete you can think about, so we
will present here a pictorial version of ASTs that you can use when working through
examples with paper and pencil. Each AST is visually represented as a tree whose root
node has a label indicating what kind of AST it is. The leaf nodes, which correspond
to the syntactic categories knamel and kconstantl, are fairly simple. For example,

name: +

Name

is the name AST corresponding to the name +, and value: 2

Constant

is the constant AST corresponding to 2. Note that in addition to the labels (that
designate their syntactic categories Name and Constant), both of these ASTs contain
information specifying which particular name or constant they represent (name: +
and value: 2).

The other three syntactic categories (kconditionall, kabstractionl, and
kapplicationl) correspond to internal nodes because they each contain subexpressions
that themselves result in ASTs. In contrast to the expression trees in Section 8.3,
which always had exactly two children, the number of children of an internal node
in these ASTs will vary. This number depends partially on the syntactic category;
for example, the root node corresponding to the category kconditionall will always
have three children: one each for the test, if-true, and if-false subexpressions. On the
other hand, the number of children of the root node corresponding to the category
kapplicationl varies: The operator is one child, and the operands are the others.

First consider the kapplicationl category. If we parse the Micro-Scheme expression
(+ 2 3), we get the following application AST:

name: +

Name

value: 3

Constant

Application

value: 2

Constant
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The three children are the ASTs corresponding to the three subexpressions of the
expression. The leftmost child corresponds to the operator +, which is a name AST,
and the other children correspond to the two operands; we put a curved line in
the diagram to indicate that these latter subtrees are grouped together as a list of
operands. As noted above, the number of subtrees varies with the application; for
example, parsing the expression (+ 2 3 4) would result in the following application
AST:

name:  +

Name
value: 3

Constant

Application

value: 2

Constant
value: 4

Constant

We have two other kinds of ASTs: conditional ASTs, which result from
parsing if expressions, and abstraction ASTs, which result from parsing lambda
expressions. The conditional AST resulting from the expression (if (= x 0)
1 (/ 5 x)) is diagrammed in Figure 10.1, and the abstraction AST resulting from
the expression (lambda (x) (* x x)) is diagrammed in Figure 10.2. Notice that
the abstraction AST contains the list of parameter names and has a single sub-AST,
corresponding to the body of the abstraction.

Recall that we are doing evaluation in a two-step process: first parse the expression,
then evaluate the resulting AST. Thus, if we use A as a name for the first application
AST shown above, the Scheme (not Micro-Scheme) expression (parse ’(+ 2 3))
has A as its value, and the Scheme expression (evaluate A) has 5 as its value.
Those are the two steps that the Micro-Scheme read-eval-print loop goes through
after reading in (+ 2 3): It first parses it into the AST A, and then evaluates the
AST A to get 5, which it writes back out.

What do we gain by using this two-step evaluation process? As we said at the
outset, part of the gain is the decoupling of the superficial syntax (parse’s concern)

name: =

Name

value: 0
Constant

Application

name: x
Name

name: /

Name

name: x
Name

Application

value: 5
Constant

value: 1

Constant

Conditional

Figure 10.1 Conditional AST parsed from (if (= x 0) 1 (/ 5 x))
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parameters: (x)

Abstraction

name: *

Name

name: x

Name

Application

name: x

Name

Figure 10.2 Abstraction AST parsed from (lambda (x) (* x x))

from the deeper structure (evaluate’s concern). Perhaps more important, however,
is the other advantage we mentioned: The tree structure of ASTs greatly facilitates
the evaluation process. ASTs are made to be evaluated. Now that we have seen AST
diagrams, we can understand why this is. First, each AST has an explicit type, which
controls how it is evaluated. For example, consider the two kinds of leaf nodes, name
ASTs and constant ASTs. Evaluating a constant AST is trivial, because we simply
return the value that it stores. Evaluating a name AST is slightly more complicated
but only requires looking up its name somewhere.

As for the more complicated ASTs, their recursive structure guides the evaluation.
Let’s just consider how we might evaluate a conditional AST, for example, the one
in Figure 10.1. In evaluating such an AST, the left child gets evaluated first, and
depending on whether its value is true or false, either the second or third child
is evaluated and its value is returned. The evaluation of the sub-ASTs is done
recursively; how precisely a given sub-AST is evaluated depends on which kind of
AST it is.

Before we start worrying about how to implement the data type of ASTs,
we’ll first write the procedure parse, assuming that we have all the constructors
(make-abstraction-ast, make-application-ast, etc.) we need.

The procedure parse will look almost the same as the procedure syntax-ok?
in that we need to look at the expression and see if it matches one of the forms of
the expressions in our language. The only difference is that instead of returning a
boolean indicating whether the syntax is okay, parse will return an AST. Here is
the code for parse, together with a new pattern/action list:

(define parse

(lambda (expression)

(define loop

(lambda (p/a-list)

(cond ((null? p/a-list)

(error "invalid expression" expression))
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((matches? (pattern (car p/a-list)) expression)

(apply (action (car p/a-list))
(substitutions-in-to-match

(pattern (car p/a-list))

expression)))

(else (loop (cdr p/a-list)))))) ;end of loop

(cond ((name? expression) ;start of main parse procedure

(make-name-ast expression))

((or (number? expression)

(string? expression)

(boolean? expression))

(make-constant-ast expression))
((list? expression)

(loop micro-scheme-parsing-p/a-list))

(else (error "invalid expression" expression)))))

(define micro-scheme-parsing-p/a-list

(list

(make-pattern/action ’(if _ _ _)

(lambda (test if-true if-false)

(make-conditional-ast (parse test)

(parse if-true)
(parse if-false))))

(make-pattern/action ’(lambda _ _)

(lambda (parameters body)

(if (and (list? parameters)

((all-are name?) parameters))

(make-abstraction-ast parameters

(parse body))

(error "invalid expression"

(list ’lambda

parameters body)))))
(make-pattern/action ’(quote _)

(lambda (value)

(make-constant-ast value)))

(make-pattern/action ’(...) ; note that this *must* come last

(lambda (operator&operands)

(let ((asts (map parse

operator&operands)))

(make-application-ast (car asts)

(cdr asts)))))))
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Exercise 10.9

The action for ifs parses all three subexpressions into ASTs and passes the three
resulting ASTs to make-conditional-ast. Similarly, the action for lambda expres-
sions parses the body. However, it doesn’t parse the parameters. Why not?

Our next task, then, is to implement the AST data structure. How are we going
to do this? Although the various make-...-ast procedures make lots of different
kinds of ASTs (one for each kind of expression), we want to be able to apply one
operation to any one of them: evaluate. Thus, to implement ASTs we need to do
so in a way that accommodates generic operations. We choose to use procedural
representations, leading to the following definition of evaluate:

(define evaluate
(lambda (ast)
(ast ’evaluate)))

We’ll evaluate expressions much the way we showed in Chapter 1, using the sub-
stitution model, which means that when a procedure is applied to arguments, the
argument values are substituted into the procedure’s body where the parameters
appear, and then the result is evaluated. This process leads us to need an additional
generic operator for ASTs, one that substitutes a value for a name in an AST:

(define substitute-for-in
(lambda (value name ast)
((ast ’substitute-for) value name)))

Note that we’ve set this up so that when the AST is given the message
substitute-for, it replies with a procedure to apply to the value and the name.
That way ASTs can always expect to be given a single argument, the message
(evaluate or substitute-for), even though in one case there are two more
arguments to follow.

Let’s look at the evaluation process and see how substitution fits into it, using our
pictorial version of ASTs. We’ll introduce one minor new element into our pictures,
additional labels on the ASTs so that we can more easily refer to them. For example,
when we talk about the AST A2 in Figure 10.3, we mean the AST whose root node
has the naming label A2, in other words, the abstraction AST that is the full AST’s
first child. Suppose we parse the Micro-Scheme expression ((lambda (x) (* x
x)) (+ 2 3)), which results in the AST A1 shown in Figure 10.3. Now let’s look
in detail at what happens when we evaluate A1.

Because A1 is an application AST, evaluating it involves first evaluating the opera-
tor AST, A2, and the operand ASTs, of which there is only one, A7. Because A2 is an
abstraction AST, evaluating it creates an actual procedure; let’s call that procedure
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A1:
Application

name: +

NameA8:
value: 3

ConstantA10:

A7:
Application

value: 2

ConstantA9:

name: *

NameA4:
name: x

NameA6:

A3:
Application

name: x

NameA5:

parameters : (x)

AbstractionA2:

Figure 10.3 The AST corresponding to ((lambda (x) (* x x)) (+ 2 3)).

P1 for reference. The procedure P1 has a parameter list that contains only x and
has the AST A3 as its body. Next we need to evaluate the operand, A7, to find out
what value P1 should be applied to. Because A7 is again an application AST, its
evaluation proceeds similarly to that of A1; we need to evaluate its operator AST, A8,
and its operand ASTs, A9 and A10. Because A8 is a name AST, evaluating it simply
involves looking up what the name + is a name for. The answer is that it is a name
for the built-in addition procedure, which we can call P2. Evaluating A9 and A10 is
even simpler, because they are constant ASTs. Each evaluates to the value shown
in the AST itself: 2 for A9 and 3 for A10. Now that A7’s operator and operands have
been evaluated, we can finish off evaluating A7 by applying P2 to 2 and 3. Doing
so produces 5, because P2 is the built-in addition procedure. Now we know that
A2’s value is the procedure P1 and that A7’s value is 5. Thus we can finish off the
evaluation of A1 by applying P1 to 5.

Because P1 is not a built-in procedure (unlike P2), but rather is one that the user
wrote in Micro-Scheme, we need to use the substitution model. We take P1’s body,
which is the AST A3, and replace each name AST that is an occurrence of the
parameter name, x, by a constant AST containing the argument value, 5. We can do
this task as (substitute-for-in 5 ’x A3). The result of this substitution is the
AST A11 shown in Figure 10.4. Notice that the AST A4, which was the operator AST

value: 5
A13:

A11:
Application

value: 5

ConstantA12:
A4

Constant

Figure 10.4 The AST resulting from (substitute-for-in 5 ’x A3). Note that the circled
A4 indicates that an already existing AST, A4, is being reused here.
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of A3, is also serving as the operator AST of our new A11, which is what the circled
A4 indicates. Also, notice that each place where the value 5 was substituted for the
name x, it was packaged into a constant AST; this resulted in ASTs A12 and A13.
This packaging is necessary because we can’t use a naked value where a sub-AST is
expected. Next we evaluate A11, which involves evaluating its operator AST, A4, and
its operand ASTs, A12 and A13. A4 evaluates to the built-in multiplication procedure,
and A12 and A13 each evaluate to 5. Finally, the built-in multiplication procedure
can be applied to 5 and 5, producing the final answer of 25. This process can be
shown in a diagram, as in Figure 10.5. Of course, this can also be abbreviated, for
example, by leaving out the details of how substituting 5 for x in A3 results in A11.

We can evaluate conditional ASTs similarly to what is shown in the foregoing, but
there is a bit of a twist because we first evaluate the test AST and then depending on
whether its value is true or false, evaluate one of the other two sub-ASTs to provide
the conditional AST’s value. This process is illustrated in Figure 10.6, which shows
the evaluation of an AST (A14) that results from parsing (if #f 1 2).

Exercise 10.10

Draw a diagram showing the AST resulting from parsing ((lambda (x) (if (>
x 0) x 0)) (- 0 3)). Now step through the process of evaluating that AST,
analogously to the above evaluations of A1 and A14.

Now we’re in a position to start writing the various AST constructors, each with its
own method of evaluating and substituting. We start with the simplest ASTs, names
and constants.

Names can be evaluated using the look-up-value procedure from Chapter 8;
substituting a value for a name in a name AST is either a nonevent or a real
substitution, depending on whether the two names are equal or not:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) (look-up-value name))

((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)

(make-constant-ast value)
the-ast)))

(else (error "unknown operation on a name AST"
message)))))

the-ast))
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evaluate A2
P1  (parameters x, body A3)

evaluate A8
P2  (addition)

evaluate A7

5

evaluate A9
2

evaluate A10
3

apply P2 to 2 and 3

substitute 5 for x in A4
A4

substitute 5 for x in A3

A11 (new appplication with A4 and A12 and A13)

substitute 5 for x in A5
A12 (new constant 5)

substitute 5 for x in A6
A13 (new constant 5)

evaluate A1

25

apply P1 to 5

evaluate A11

evaluate A4
P3  (multiplication)

evaluate A12
5

evaluate A13
5

apply P3 to 5 and 5

Figure 10.5 The process of evaluating the AST A1



10.3 Micro-Scheme 299

value: 2

Constant

value: 1

Constant

Conditional

value: #f

Constant A17:A16:A15:

A14:

evaluate A15
#f

evaluate A14

2

evaluate A17

Figure 10.6 The process of evaluating a conditional AST

Exercise 10.11

Extend look-up-value to include all your other favorite Scheme predefined names
so that they are available in Micro-Scheme as well.

Exercise 10.12

Further extend look-up-value so that some useful names are predefined in Micro-
Scheme that aren’t predefined in Scheme.

Constants are the ASTs that have the most straightforward implementation:

(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate) value)

((equal? message ’substitute-for)
(lambda (value name)
the-ast))

(else (error "unknown operation on a constant AST"
message)))))

the-ast))

The compound ASTs are much more interesting to implement, mostly because
evaluating them usually involves evaluating one or more of their components. Here
is the AST for conditional expressions (ifs):

(define make-conditional-ast
(lambda (test-ast if-true-ast if-false-ast)
(lambda (message)
(cond ((equal? message ’evaluate)

;;(continued)
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(if (evaluate test-ast)
(evaluate if-true-ast)
(evaluate if-false-ast)))

((equal? message ’substitute-for)
(lambda (value name)
(make-conditional-ast
(substitute-for-in value name test-ast)
(substitute-for-in value name if-true-ast)
(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"
message))))))

This code follows a very simple pattern: Evaluating the conditional AST involves
evaluating component ASTs (first the test and then one of the others based on
the result of that first evaluation), and similarly, substituting into the AST involves
substituting into the constituent AST components.

Evaluating an application is similar to evaluating a conditional. First, we need
to evaluate the operator and each of the operands. Then we should apply the
operator’s value to the values of the operands, using the built-in procedure apply,
which assumes that an operator’s value is actually a Scheme procedure. Doing a
substitution on an application involves substituting into the operator and each of the
operands. Therefore, in Scheme, we have

(define make-application-ast
(lambda (operator-ast operand-asts)

(lambda (message)

(cond ((equal? message ’evaluate)

(let ((procedure (evaluate operator-ast))

(arguments (map evaluate operand-asts)))

(apply procedure arguments)))

((equal? message ’substitute-for)

(lambda (value name)

(make-application-ast

(substitute-for-in value name operator-ast)
(map (lambda (operand-ast)

(substitute-for-in value name operand-ast))

operand-asts))))

(else (error "unknown operation on an application AST"

message))))))

The most complicated ASTs are probably those for abstractions (lambda expres-
sions). As we mentioned previously, the result of evaluating an abstraction AST
should be an actual Scheme procedure; we’ll ignore that for now by assuming that



10.3 Micro-Scheme 301

we can write a procedure called make-procedure that will make this Scheme
procedure for us. The method for handling substitutions is worth looking at closely:

(define make-abstraction-ast

(lambda (parameters body-ast)

(define the-ast

(lambda (message)

(cond ((equal? message ’evaluate)

(make-procedure parameters body-ast))

((equal? message ’substitute-for)
(lambda (value name)

(if (member name parameters)

the-ast

(make-abstraction-ast

parameters

(substitute-for-in value name body-ast)))))

(else (error "unknown operation on an abstraction AST"

message)))))

the-ast))

You should have noticed that if a substitution is performed where the name being
substituted for is one of the parameters, the AST is returned unchanged. Only if the
name isn’t one of the parameters is the substitution done in the body. In other words,
if we substitute 3 for x in (lambda (x) (+ x y)), we get (lambda (x) (+ x y))
back unchanged, but if we substitute 3 for y in (lambda (x) (+ x y)), we get
(lambda (x) (+ x 3)). This rule is what is called only substituting for free oc-
currences of the name rather than also bound occurrences. This limited form of
substitution is the right thing to do because when we are evaluating an expression
like

((lambda (x)
(+ x

((lambda (x) (* x x))
5)))

3)

we want to substitute the 3 only for the outer x, not the inner one, which will later
have 5 substituted for it. That way we get 28 rather than 12.

Exercise 10.13

Draw the pictorial form of the AST that would result from parsing the above ex-
pression, and carefully step through its evaluation, showing how the value of 28 is
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arrived at. As additional checks on your work, the parsing step should result in 13
ASTs (the main AST with 12 descendant ASTs below it), and six more ASTs should
be created in the course of the evaluation so that if you sequentially number the
ASTs, the last one will be numbered 19. Be sure you have enough space to work in;
it is also helpful to do this exercise with a partner so that you can catch each other’s
slips because it requires so much attention to detail.

All that is left at this point to have a working Micro-Scheme system is the
make-procedure procedure:

(define make-procedure
(lambda (parameters body-ast)
(lambda arguments
(define loop
(lambda (parameters arguments body-ast)
(cond ((null? parameters)

(if (null? arguments)
(evaluate body-ast)
(error "too many arguments")))

((null? arguments)
(error "too few arguments"))
(else
(loop (cdr parameters) (cdr arguments)

(substitute-for-in (car arguments)
(car parameters)
body-ast))))))

(loop parameters arguments body-ast))))

One minor new feature of Scheme is shown off in the above procedure, where
it has (lambda arguments ...) instead of the usual (lambda (...) ...). This
expression makes a procedure that will accept any number of arguments; they get
packaged together into a list, and that list is called arguments.

Exercise 10.14

Suppose we define (in Scheme, not Micro-Scheme) the procedure foo as follows:

(define foo (lambda x x))

What predefined Scheme procedure behaves exactly like foo?
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Now that we have a working Micro-Scheme system, we can extend it either in
ways that make it more similar to Scheme or in ways that make it less similar.

Exercise 10.15

Add let expressions to Micro-Scheme, like those in Scheme.

Exercise 10.16

Add a with expression to Micro-Scheme that can be used like this:

;Enter Micro-Scheme expression:

(with x = (+ 2 1) compute (* x x))
;Micro-Scheme value: 9

The meaning is the same as (let ((x (+ 2 1))) (* x x)) in Scheme; unlike
let, only a single name and a single body expression are allowed.

Exercise 10.17

Add some other Scheme feature of your choice to Micro-Scheme.

Exercise 10.18

Add some other non-Scheme feature of your choice to Micro-Scheme.

10.4 Global Definitions: Turning Micro-Scheme into Mini-Scheme

Using the Micro-Scheme language you can make procedures and apply them to
arguments. For example, we can make a squaring procedure and apply it to 3 as
follows:

((lambda (x) (* x x))
3)

You can also give names to procedures, which will be easiest if you’ve added let
expressions to Micro-Scheme, as in Exercise 10.15. In that case, you can write

(let ((square (lambda (x) (* x x))))
(square 3))
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You can even build up a succession of procedures, where later procedures make
use of earlier ones. For example,

(let ((square (lambda (x) (* x x))))
(let ((cylinder-volume (lambda (radius height)

(* (* 3.1415927 (square radius))
height))))

(cylinder-volume 5 4)))

However, all is not well. With the language as it stands, there is no easy way to
write recursive procedures (i.e., procedures that use themselves), which is a major
problem, considering all the use we’ve been making of recursive procedures.

To resolve this problem, we’ll add definitions to our language so that we can say
things like

(define factorial
(lambda (n)
(if (= n 1)

1
(* (factorial (- n 1))

n))))

To keep matters simple, we’ll stick with global or top-level definitions that are given
directly to the read-eval-print loop. We won’t add internal definitions nested inside
other procedures. Even with only global definitions, our language suddenly becomes
much more practical, so we’ll rename it Mini-Scheme to distinguish it from the
nearly useless Micro-Scheme.

To support global definitions and recursive procedures, we need to introduce the
notion of a global environment. A global environment is a collection of name/value
associations that reflects the global definitions that have been entered up to some
point. The read-eval-print loop starts out with an initial global environment that
contains the predefined names, such as +. Every time the read-eval-print loop is
given a new global definition, a new global environment is formed that reflects that
new definition as well as all prior ones. When the read-eval-print loop is given an
expression, it is evaluated in the current global environment rather than simply being
evaluated. We need to talk about evaluating in a global environment, rather than just
evaluating, because evaluating (factorial 5) is quite different after factorial
has been defined than it is before. Here is the Mini-Scheme read-eval-print loop that
reflects these considerations:
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(define read-eval-print-loop
(lambda ()
(define loop
(lambda (global-environment)
(display ";Enter Mini-Scheme expr. or definition:")
(newline)
(let ((expression-or-definition (read)))
(if (definition? expression-or-definition)

(let ((name (definition-name
expression-or-definition))

(value (evaluate-in
(parse (definition-expression

expression-or-definition))
global-environment)))

(display ";Mini-scheme defined: ")
(write name)
(newline)
(loop (extend-global-environment-with-naming

global-environment
name value)))

(let ((value (evaluate-in
(parse expression-or-definition)
global-environment)))

(display ";Mini-scheme value: ")
(write value)
(newline)
(loop global-environment))))))

(loop (make-initial-global-environment))))

This new read-eval-print loop distinguishes between definitions and expressions using
the predicate definition? and selects out the two components of a definition using
definition-name and definition-expression. Before we move onto the more
meaty issues surrounding global environments, here are simple definitions of these
more superficial procedures:

(define definition?
(lambda (x)
(and (list? x)

(matches? ’(define _ _) x))))

(define definition-name cadr)

(define definition-expression caddr)
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Returning to global environments, we now have a good start on con-
sidering them operationally, as an abstract data type. We have seen
that we need two constructors, make-initial-global-environment and
extend-global-environment-with-naming. The former produces a global en-
vironment that contains the predefined names, and the latter makes a new global
environment that is the same as a preexisting global environment except for one new
name/value association. What about selectors? We’ll need a look-up-value-in se-
lector, which when given a name and a global environment finds the value associated
with that name in that global environment.

To see how this selector winds up getting used, we need to consider evaluate-in,
which is the Mini-Scheme analog of Micro-Scheme’s evaluate:

(define evaluate-in
(lambda (ast global-environment)
((ast ’evaluate-in) global-environment)))

As before, the actual knowledge regarding how to evaluate is localized within each
kind of AST. The only difference is that now an evaluate-in operation, rather
than evaluate, is provided by each kind of AST. This new operation is applied to
the global environment in which the evaluation is to occur.

When we look at name ASTs, we see the key difference between the Mini-
Scheme evaluate-in operation, which looks up the name in the specified global
environment, and the old Micro-Scheme evaluate:

(define make-name-ast
(lambda (name)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(look-up-value-in name global-environment)))

((equal? message ’substitute-for)
(lambda (value name-to-substitute-for)
(if (equal? name name-to-substitute-for)

(make-constant-ast value)
the-ast)))

(else (error "unknown operation on a name AST"
message)))))

the-ast))

Constant ASTs can be implemented in a way that is very similar to Micro-Scheme,
because the global environment is completely irrelevant to their evaluation:
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(define make-constant-ast
(lambda (value)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
value))

((equal? message ’substitute-for)
(lambda (value name)
the-ast))

(else (error "unknown operation on a constant AST"
message)))))

the-ast))

For conditional ASTs (i.e., if expressions), the global environment information
is simply passed down to the evaluations of subexpression ASTs:

(define make-conditional-ast

(lambda (test-ast if-true-ast if-false-ast)

(lambda (message)

(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

(if (evaluate-in test-ast global-environment)

(evaluate-in if-true-ast global-environment)

(evaluate-in if-false-ast global-environment))))
((equal? message ’substitute-for)

(lambda (value name)

(make-conditional-ast

(substitute-for-in value name test-ast)

(substitute-for-in value name if-true-ast)

(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"

message))))))

As with the constant ASTs, the global environment is irrelevant to the evaluation
of abstraction ASTs (i.e., lambda expressions):

(define make-abstraction-ast
(lambda (parameters body-ast)

(define the-ast

(lambda (message)

;;(continued)
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(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(make-procedure parameters body-ast)))

((equal? message ’substitute-for)

(lambda (value name)

(if (member name parameters)

the-ast

(make-abstraction-ast

parameters

(substitute-for-in value name body-ast)))))

(else (error "unknown operation on an abstraction AST"

message)))))
the-ast))

The last AST to consider is the application AST. When a procedure is applied,
its body is evaluated (with appropriate parameter substitutions done) in the current
global environment. Thus, we need to keep track of that global environment. In
order to do this, we’ll pass in the global environment as an extra argument to the
Mini-Scheme procedure, before the real ones:

(define make-application-ast
(lambda (operator-ast operand-asts)
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)
(let ((procedure (evaluate-in operator-ast

global-environment))
(arguments (map (lambda (ast)

(evaluate-in
ast
global-environment))

operand-asts)))
(apply procedure

(cons global-environment arguments)))))
((equal? message ’substitute-for)
(lambda (value name)
(make-application-ast
(substitute-for-in value name operator-ast)
;;(continued)
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(map (lambda (operand-ast)
(substitute-for-in value

name
operand-ast))

operand-asts))))
(else (error "unknown operation on an application AST"

message))))))

Of course, we’ll have to change make-procedure so that it expects this extra first
argument and uses it appropriately:

(define make-procedure

(lambda (parameters body-ast)

(lambda global-environment&arguments

(let ((global-environment (car global-environment&arguments))

(arguments (cdr global-environment&arguments)))

(define loop

(lambda (parameters arguments body-ast)

(cond ((null? parameters)
(if (null? arguments)

(evaluate-in body-ast global-environment)

(error "too many arguments")))

((null? arguments)

(error "too few arguments"))

(else

(loop (cdr parameters) (cdr arguments)

(substitute-for-in (car arguments)

(car parameters)

body-ast))))))
(loop parameters arguments body-ast)))))

Exercise 10.19

Look up lambda expressions in the R4RS (available from the web site for
this book) and figure out how to rewrite make-procedure so that it has
(lambda (global-environment . arguments) ...) where the above version
has (lambda global-environment&arguments ...).

Finally, we need to implement global environments. Because global environments
are used to find a value when given a name, one simple implementation is to use
procedures. Thus a global environment is a procedure that takes a name as its
parameter and returns the corresponding value:
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(define look-up-value-in
(lambda (name global-environment)
(global-environment name)))

(define make-initial-global-environment
(lambda ()
(lambda (name)

return the built-in procedure called name)))

(define extend-global-environment-with-naming
(lambda (old-environment name value)
(lambda (n)
(if (equal? n name)

value
(old-environment n)))))

As you can see, we still need to finish writing make-initial-global-
environment. The procedure it produces, for converting a name (such as +) to
a built-in procedure (such as the addition procedure), is very similar to look-up-
value. However, there is one important difference. In Micro-Scheme, we could
directly use the built-in procedures (such as addition) from normal Scheme; thus,
look-up-value could return these procedures, such as the Scheme procedure
called +. However, in Mini-Scheme this is no longer the case. In Mini-Scheme,
the evaluation of an application AST no longer applies the procedure to just its
arguments. Instead, it slips in the global environment as an extra argument before
the real ones. Thus, if we were to use normal Scheme’s + as Mini-Scheme’s +, when
we tried doing even something as simple as (+ 2 2), we’d get an error message
because the Scheme addition procedure would be applied to three arguments: a
global environment, the number 2, and the number 2 again.

To work around this problem, we’ll make a Mini-Scheme version of + and of all
the other built-in procedures. The Mini-Scheme version will simply ignore its first
argument, the global environment. We can make a Mini-Scheme version of any
Scheme procedure using the following converter:

(define make-mini-scheme-version-of
(lambda (procedure)

(lambda global-environment&arguments

(let ((global-environment (car global-environment&arguments))

(arguments (cdr global-environment&arguments)))

(apply procedure arguments)))))

For example, this procedure could be used as follows:
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(define ms+ (make-mini-scheme-version-of +))

(ms+ (make-initial-global-environment) 2 2)
4

Now, we can finish writing make-initial-global-environment:

(define make-initial-global-environment
(lambda ()
(let ((ms+ (make-mini-scheme-version-of +))

(ms- (make-mini-scheme-version-of -))
;; the rest get similarly converted in here
)

(lambda (name)
(cond ((equal? name ’+) ms+)

((equal? name ’-) ms-)
;; the rest get similarly selected in here
(else (error "Unrecognized name" name)))))))

Exercise 10.20

Flesh out make-initial-global-environment.

Exercise 10.21

Extend your solution of Exercise 10.19 to make-mini-scheme-version-of.

10.5 An Application: Adding Explanatory Output to Mini-Scheme

In this section, you’ll modify the Mini-Scheme implementation so that each ex-
pression being evaluated is displayed. You’ll then further modify the system so that
varying indentation is used to show whether an expression is being evaluated as the
main problem, a subproblem, a sub-subproblem, etc. You’ll also modify the system
to display the value resulting from each evaluation.

To display each expression as it is evaluated, we can modify the evaluate-in
procedure. At first you might think something like the following would work:

(define evaluate-in ; Warning: this version doesn’t work
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write ast)
(newline)
((ast ’evaluate-in) global-environment)))
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Unfortunately, this code displays the AST being evaluated, and what the user
would really like to see is the corresponding expression. Therefore, we’ll instead
define evaluate-in as follows:

(define evaluate-in
(lambda (ast global-environment)
(display ";Mini-Scheme evaluating: ")
(write (unparse ast))
(newline)
((ast ’evaluate-in) global-environment)))

This code uses a new generic operation on ASTs, unparse. This operation should
recreate the expression corresponding to an AST. The unparse procedure itself looks
much like any generic operation:

(define unparse
(lambda (ast)
(ast ’unparse)))

Now we have to modify each AST constructor to provide the unparse operation.
Here, for example is make-application-ast:

(define make-application-ast

(lambda (operator-ast operand-asts)

(lambda (message)

(cond ((equal? message ’unparse)

(cons (unparse operator-ast)

(map unparse operand-asts)))

((equal? message ’evaluate-in)

unchanged)
((equal? message ’substitute-for)

unchanged)
(else (error "unknown operation on an application AST"

message))))))

Exercise 10.22

Add the unparse operation to each of the other AST constructors. When you add
unparse to make-constant-ast, keep in mind that some constants will need to be
expressed as quotations. For example, a constant with the value 3 can be unparsed
into 3, but a constant that has the symbol x as its value will need to be unparsed



10.5 An Application: Adding Explanatory Output 313

into (quote x). You can look at the parse procedure to see what kinds of values
can serve as constant expressions without being wrapped in a quotation.

Exercise 10.23

Adding the unparse operation has rather unfortunately destroyed the separation
of concerns between parse and the AST types. It used to be that only parse
needed to know what each kind of expression looked like. In fact, most of the
knowledge regarding the superficial appearance of expressions was concentrated in
the parsing pattern/action list. Now that same knowledge is being duplicated in
the implementation of the unparse operation. Suggest some possible approaches
to recentralizing the knowledge of expression appearance. You need only outline
some options; actually implementing any good approach is likely to be somewhat
challenging.

At this point, you should be able to do evaluations (even fairly complex ones, like
(factorial 5)) and get a running stream of output from Mini-Scheme explaining
what it is evaluating. However, no distinction is made between evaluations that are
stages in the evolution of the main problem and those that are subproblems (or sub-
subproblems or . . . ), which makes the output relatively hard to understand. We can
rectify this problem by replacing evaluate-in with evaluate-in-at, which takes
not only an expression to evaluate and a global environment to evaluate it in, but
also a subproblem nesting level at which to do the evaluation. The actual evaluation
is no different at one level than at another, but the explanatory output is indented
differently:

(define evaluate-in-at
(lambda (ast global-environment level)
(display ";Mini-Scheme evaluating:")
(display-times " " level)
(write (unparse ast))
(newline)
((ast ’evaluate-in-at) global-environment level)))

(define display-times
(lambda (output count)
(if (= count 0)

’done
(begin (display output)

(display-times output (- count 1))))))
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The AST constructors also need to be modified to accommodate this new
evaluate-in-at operation. Here’s the new make-application-ast, which eval-
uates the operator and each operand at one subproblem nesting level deeper:

(define make-application-ast

(lambda (operator-ast operand-asts)

(lambda (message)
(cond ((equal? message ’unparse)

unchanged)
((equal? message ’evaluate-in-at)

(lambda (global-environment level)

(let ((procedure (evaluate-in-at operator-ast

global-environment

(+ level 1)))

(arguments (map (lambda (ast)

(evaluate-in-at

ast
global-environment

(+ level 1)))

operand-asts)))

(apply procedure

(cons global-environment

arguments)))))

((equal? message ’substitute-for)

unchanged)
(else (error "unknown operation on an application AST"

message))))))

Exercise 10.24

Modify the other AST constructors to support the evaluate-in-at operation. For
conditionals, the test should be evaluated one nesting level deeper than the overall
conditional, but the if-true or if-false part should be evaluated at the same level as
the overall conditional. (This distinction is because the value of the test is not the
value of the overall conditional, so it is a subproblem, but the value of the if-true or
if-false part is the value of the conditional, so whichever part is selected is simply a
later stage in the evolution of the same problem rather than being a subproblem.
This reasoning is illustrated in Figure 1.2 on page 14 and Figure 10.6.)
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Exercise 10.25

Modify the read-eval-print-loop so that it does its evaluations at subproblem
nesting level 1.

Exercise 10.26

Modify make-procedure so that the procedures it makes expect to receive an extra
level argument after the global environment argument, before the real arguments.
The procedure body (after substitutions) should then be evaluated at this level.
You’ll also need to change make-application-ast to supply this extra argument
and change make-mini-scheme-version-of to produce procedures that expect
(and ignore) this extra argument.

At this point, if you try doing some evaluations in Mini-Scheme, you’ll get output
like the following:

;Enter Mini-Scheme expr. or definition:

(+ (* 3 5) (* 6 7))
;Mini-Scheme evaluating: (+ (* 3 5) (* 6 7))

;Mini-Scheme evaluating: +

;Mini-Scheme evaluating: (* 3 5)

;Mini-Scheme evaluating: *

;Mini-Scheme evaluating: 3

;Mini-Scheme evaluating: 5

;Mini-Scheme evaluating: (* 6 7)

;Mini-Scheme evaluating: *

;Mini-Scheme evaluating: 6

;Mini-Scheme evaluating: 7

;Mini-scheme value: 57

On the positive side, it is now possible to see the various subproblem nesting levels.
For example, +, (* 3 5), and (* 6 7) are subproblems of the main problem, and
*, 3, 5, * (again), 6, and 7 are sub-subproblems. On the negative side, this output is
still lacking any indication of the values resulting from the various nested problems
(other than the final value shown for the main problem). For example, we can’t see
that the two multiplications produced 15 and 42 as their values. We can arrange
for the value produced by each evaluation to be displayed, indented to match the
“Mini-Scheme evaluating” line:
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(define evaluate-in-at

(lambda (ast global-environment level)
(display ";Mini-Scheme evaluating:")

(display-times " " level)

(write (unparse ast))

(newline)

(let ((value ((ast ’evaluate-in-at) global-environment level)))

(display ";Mini-Scheme value :")

(display-times " " level)

(write value)

(newline)

value)))

With this change, we can see the values of the two multiplication subproblems as
well as the addition problem. However, as you can see below, the result is such a
muddled mess as to make it questionable whether we’ve made progress:

;Enter Mini-Scheme expr. or definition:

(+ (* 3 5) (* 6 7))
;Mini-Scheme evaluating: (+ (* 3 5) (* 6 7))

;Mini-Scheme evaluating: +

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: (* 3 5)

;Mini-Scheme evaluating: *

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: 3

;Mini-Scheme value : 3

;Mini-Scheme evaluating: 5

;Mini-Scheme value : 5

;Mini-Scheme value : 15

;Mini-Scheme evaluating: (* 6 7)

;Mini-Scheme evaluating: *

;Mini-Scheme value : #<procedure>

;Mini-Scheme evaluating: 6

;Mini-Scheme value : 6

;Mini-Scheme evaluating: 7

;Mini-Scheme value : 7

;Mini-Scheme value : 42

;Mini-Scheme value : 57

;Mini-scheme value: 57
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This explanatory output is so impenetrable that we clearly are going to have to
find a more visually comprehensible format. We’ll design an idealized version of
our format first, without regard to how we are going to actually produce that output.
While we are at it, we can also solve another problem with our existing output:
We don’t currently have any way of explicitly showing that an evaluation problem
is converted into another problem of the same level with the same value. Instead,
the new and old problems are treated independently, and the value is shown for
each (identically). For an iterative process, we’ll see the same value over and over
again. For example, if we computed the factorial of 5 iteratively, we’d get shown the
value 120 not only as our final value but also as the value of each of the equivalent
problems, such as 135!, 534!, 2033!, etc. Yet we’d really like to see each problem
converted into the next with a single answer at the bottom.

An example of our idealized format is shown in Figure 10.7; as you can see, it is
closely based on the diagrams we used to explain AST evaluation. Notice that we

+

#<procedure>

*

#<procedure>

(* 3 5)

15

3

3

5

5

*

#<procedure>

(* 6 7)

42

6

6

7

7

(+ (* 3 5) (* 6 7))

57

Figure 10.7 An idealized example of explanatory output
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are still using indentation to show the subproblem nesting levels, but now we are
also using lines with arrowheads to show the connection between each expression
and its value. We can also use a similar format to show several expressions sharing
the same value, as in Figure 10.8. Here three expressions all share the value 9. The
first is an application expression, and the second results from it by substituting the

(lambda (x) (if (= x 0) 5 (* x x)))

#<procedure>

+

#<procedure>

(+ 2 1)

3

2

2

1

1

=

#<procedure>

(= 3 0)

#f

3

3

0

0

((lambda (x) (if (= x 0) 5 (* x x))) (+ 2 1))

9

(if (= 3 0) 5 (* 3 3))

(* 3 3)

*

#<procedure>

3

3

3

3

Figure 10.8 Another idealized example of explanatory output, with three equivalent problems
sharing the value 9
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argument value, 3, into the procedure body in place of the parameter name, x. The
resulting conditional expression, (if (= 3 0) 5 (* 3 3)), is in turn converted
into the third equivalent expression, (* 3 3), because the condition evaluates to a
false value.

If we want to approximate these diagrams, but do so using the normal Scheme
display procedure, which produces textual output, we’ll have to settle for using
characters to approximate the lines and arrowheads. Our two examples are shown in
this form in Figures 10.9 and 10.10.

+-< (+ (* 3 5) (* 6 7))
|
| +-< +
| +-> #<procedure>
|
| +-< (* 3 5)
| |
| | +-< *
| | +-> #<procedure>
| |
| | +-< 3
| | +-> 3
| |
| | +-< 5
| | +-> 5
| |
| +-> 15
|
| +-< (* 6 7)
| |
| | +-< *
| | +-> #<procedure>
| |
| | +-< 6
| | +-> 6
| |
| | +-< 7
| | +-> 7
| |
| +-> 42
|
+-> 57

Figure 10.9 Explanatory output with lines and arrowheads approximated using characters
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+-< ((lambda (x) (if (= x 0) 5 (* x x))) (+ 2 1))
|
| +-< (lambda (x) (if (= x 0) 5 (* x x)))
| +-> #<procedure>
|
| +-< (+ 2 1)
| |
| | +-< +
| | +-> #<procedure>
| |
| | +-< 2
| | +-> 2
| |
| | +-< 1
| | +-> 1
| |
| +-> 3
|
+-- (if (= 3 0) 5 (* 3 3))
|
| +-< (= 3 0)
| |
| | +-< =
| | +-> #<procedure>
| |
| | +-< 3
| | +-> 3
| |
| | +-< 0
| | +-> 0
| |
| +-> #f
|
+-- (* 3 3)
|
| +-< *
| +-> #<procedure>
|
| +-< 3
| +-> 3
|
| +-< 3
| +-> 3
|
+-> 9

Figure 10.10 Second example of explanatory output using characters
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In the character-based version of the explanatory output, there are two kinds of
lines: lines that have something on them, like

| +-< (+ 2 1)

or

| +-> 3

or

+-- (* 3 3)

and those that are blank aside from the vertical connecting lines, such as

| |

We can use two procedures for producing these two kinds of line. For the ones that
have content, we need to specify the thing to write (which might be an expression
or a value), the “indicator” that shows what kind of line this is (< or > or -), and the
nesting level. For blank lines, only the nesting level is needed:

(define write-with-at
(lambda (thing indicator level)
(display-times "| " (- level 1))
(display "+-")
(display indicator)
(display " ")
(write thing)
(newline)))

(define blank-line-at
(lambda (level)
(display-times "| " level)
(newline)))

Now we have to insert the appropriate calls to these procedures into our evaluator.
We’ll need to differentiate between two kinds of evaluations: those that should have
lines with leftward pointing arrowheads (initial evaluations) and those that should
have arrowheadless connecting lines (additional evaluations sharing the same ulti-
mate value). The additional evaluations, with the arrowheadless line, originate from
two sources: evaluating the body of a procedure with the argument values sub-
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stituted in and evaluating one or the other alternative of a conditional. Both are
shown in our example of evaluating ((lambda (x) (if (= x 0) 5 (* x x)))
(+ 2 1)). We can handle initial and additional evaluations differently by using two
separate procedures. For initial evaluations we’ll use our existing evaluate-in-at,
which provides the left-arrow line and also is responsible for the right-arrow line at
the end with the value. We’ll use a new procedure, evaluate-additional-in-at,
for the additional evaluations, which just “hook into” the existing evaluation’s line:

(define evaluate-in-at

(lambda (ast global-environment level)

(blank-line-at (- level 1))

(write-with-at (unparse ast) "<" level)

(let ((value ((ast ’evaluate-in-at) global-environment level)))

(write-with-at value ">" level)

value)))

(define evaluate-additional-in-at

(lambda (ast global-environment level)

(blank-line-at level)

(write-with-at (unparse ast) "-" level)

((ast ’evaluate-in-at) global-environment level)))

Exercise 10.27

Three calls to evaluate-in-at need to be changed to evaluate-additional-
in-at. Change them.

Exercise 10.28

To make the output look as shown, it is also necessary to provide a blank line before
the value of a built-in procedure. Put the appropriate call to blank-line-at into
the procedures generated by make-mini-scheme-version-of.

Exercise 10.29

When an application expression is evaluated, it might be desirable to explicitly show
that a procedure is being applied and what argument values it is being applied to,
after the operator and operands have been evaluated. Figure 10.11 shows an example
of this. Add this feature.
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+

#<procedure>

*
#<procedure>

(* 3 5)

15

3

3

5

5

apply #<procedure> to 3 and 5

*

#<procedure>

(* 6 7)

42

6

6

7

7

apply #<procedure> to 6 and 7

(+ (* 3 5) (* 6 7))

57

apply #<procedure> to 15 and 42

Figure 10.11 Explanatory output with applications shown

Exercise 10.30

Decide what further improvements you’d like to have in the explanatory output and
make the necessary changes.

Review Problems

Exercise 10.31

Use EBNF to write a grammar for the language of all strings of one or more digits
that simultaneously meet both of the following requirements:

a. The digits alternate between even and odd, starting with either.
b. The string of digits is the same backward as forward (i.e., is palindromic).
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Your grammar may define more than one syntactic category name (nonterminal),
but be sure to specify which one generates the language described above.

Exercise 10.32

Suppose the following Micro-Scheme expression is parsed:

((lambda (x) x) (if (+ 2 3) + 3))

a. Draw the AST that would result.
b. If this AST were evaluated, two of the ASTs it contains (as sub-ASTs or sub-sub-

ASTs, etc.) would not wind up getting evaluated. Indicate these two by circling
them, and explain for each of them why it doesn’t get evaluated.

Exercise 10.33

In Scheme, Micro-Scheme, and Mini-Scheme, it is an error to evaluate ((+ 2 3)
(* 5 7) 16) because this will try to apply 5 to 35 and 16, and 5 isn’t a procedure.
It would be possible to change the language so that instead of this construction being
an error, it would evaluate to the three-element list (5 35 16). That is, when the
“operator” subexpression of an “application” expression turns out not to evaluate to
a procedure, a list of that value and the “operand” values is produced.

a. Change Micro-Scheme or Mini-Scheme to have this new feature.
b. Argue that this is an improvement to the language.
c. Argue that it makes the language worse.

Exercise 10.34

Suppose that the Micro-Scheme make-conditional-ast were changed to the
following:

(define make-conditional-ast

(lambda (test-ast if-true-ast if-false-ast)

(lambda (message)

(cond ((equal? message ’evaluate)
(let ((test-value (evaluate test-ast))

(if-true-value (evaluate if-true-ast))

(if-false-value (evaluate if-false-ast)))

;;(continued)
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(if test-value

if-true-value
if-false-value)))

((equal? message ’substitute-for)

(lambda (value name)

(make-conditional-ast

(substitute-for-in value name test-ast)

(substitute-for-in value name if-true-ast)

(substitute-for-in value name if-false-ast))))

(else (error "unknown operation on a conditional AST"

message))))))

a. Give an example of a conditional expression where this new version of
make-conditional-ast would produce an AST that evaluates to the same value
as the old version would.

b. Give an example of a conditional expression where evaluating the AST con-
structed by the new version would produce different results from evaluating the
AST produced by the old version.

c. Is this change a good idea or a bad one? Explain.

Exercise 10.35

Rewrite look-up-value to use a table of names and their corresponding values,
rather than a large cond.

Exercise 10.36

Replace the global-environment ADT implementation with an alternative represen-
tation based on a list of name/value pairs.

Exercise 10.37

Some programming languages have a so-called arithmetic-if expression that is
similar to Scheme’s if expression, except that instead of having a boolean test
condition and two other subexpressions (the if-true and if-false subexpressions), it
has a numerical test expression and three other subexpressions (the if-negative, the if-
zero, and the if-positive subexpressions). To evaluate an arithmetic-if expression,
you first evaluate the test expression, and then, depending upon whether that value is
negative, zero, or positive, the corresponding subexpression is evaluated. For example,
if you wanted to define an expt procedure that appropriately dealt with both positive
and negative integers, you could write
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(define expt
(lambda (b n)
(arithmetic-if n

(/ 1 (expt b (- n)))
1
(* b (expt b (- n 1))))))

You will work through the details of adding arithmetic-if’s to Mini-Scheme
in this problem. To get you started, let’s choose to implement arithmetic-ifs
using a new AST constructor make-arithmetic-if-ast. The skeleton for
make-arithmetic-if-ast, with the important code left out, is as follows (note
that all subexpressions are passed in parsed):

(define make-arithmetic-if-ast

(lambda (test-value-ast if-neg-ast if-zero-ast if-pos-ast)
(lambda (message)

(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

code for evaluate-in ))

((equal? message ’substitute-for)

(lambda (value name)

code for substitute-for ))

(else (error "unknown operation on a conditional AST"

message))))))

a. Add the code for evaluate-in.
b. Add the code for substitute-for.
c. Add the appropriate pattern/action to the micro-scheme-parsing-p/a-list.

Exercise 10.38

Suppose we add a new kind of expression to the Micro-Scheme language, the uncons
expression. The EBNF for it is as follows:
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(uncons kexpressionl into knamel and knamel in kexpressionl)

This kind of expression is evaluated as follows:

The first kexpressionl is evaluated. Its value must be a pair (such as cons produces);
otherwise, an error is signaled.
The car of that pair is substituted for the first knamel, and the cdr for the second
knamel, in the second kexpressionl.
After these substitutions have been made, the second kexpressionl (as modified by
the substitutions) is then evaluated. Its value is the value of the overall uncons
expression.

For a simple (and stupid) example, the expression

(uncons (cons 3 5) into x and y in (+ x y))

would evaluate to 8.
Parsing an uncons expression involves parsing the constituent expressions, which

we can call the pair-expression and the body-expression. The resulting two ASTs,
which we can call the pair-ast and body-ast, get passed into the make-uncons-ast
constructor, along with the two names, which we can call the car-name and cdr-
name. Here is the outline of make-uncons-ast; write the two missing pieces of
code.

(define make-uncons-ast
(lambda (pair-ast body-ast car-name cdr-name)
(lambda (message)
(cond ((equal? message ’evaluate)

code for evaluate )

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for ))

(else (error "unknown operation on a for AST"
message))))))
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Chapter Inventory

Vocabulary

read-eval-print loop
Extended Backus-Naur Form (EBNF)
syntactic correctness
semantic error
keyword
grammar
syntactic category
production
nonterminal

terminal
abstraction
parsing
free
bound
global or top-level definition
global environment
subproblem nesting level
arithmetic if

Slogans

The universality principle

Abstract Data Types

abstract syntax tree (AST)

New Predefined Scheme Names

symbol?
string?

boolean?
write

New Scheme Syntax

quote
lambda expressions accepting variable
numbers of arguments

Scheme Names Defined in This Chapter

keyword?
name?
syntax-ok?
micro-scheme-syntax-ok?-p/a-list
read-eval-print-loop
parse
micro-scheme-parsing-p/a-list
evaluate
substitute-for-in
make-name-ast
make-constant-ast

make-conditional-ast
make-application-ast
make-abstraction-ast
make-procedure
definition?
definition-name
definition-expression
evaluate-in
look-up-value-in
make-initial-global-environment
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extend-global-environment-
with-naming

make-mini-scheme-version-of
unparse
evaluate-in-at
display-times

write-with-at
blank-line-at
evaluate-additional-in-at
make-arithmetic-if-ast
make-uncons-ast

Sidebars

The Expressiveness of EBNF

Notes

We motivated Mini-Scheme with the remark that Micro-Scheme provides no easy
way to express recursive procedures. As an example of the not-so-easy ways of ex-
pressing recursion that are possible even in Micro-Scheme, we offer the following:

;; factorial-maker makes factorial when given factorial-maker
(let ((factorial-maker

(lambda (factorial-maker)
(lambda (n)
(if (= n 0)

1
(let ((factorial

(factorial-maker factorial-maker)))
(* (factorial (- n 1))

n)))))))
(let ((factorial (factorial-maker factorial-maker)))
(factorial 52)))





P A R T III

Abstractions of State

I n the previous part, we characterized each type of data by the collection
of operations that could be performed on data of that type. However, there
were only two fundamental kinds of operations: those that constructed new

things and those that asked questions about existing things. In this part, we’ll add
a third, fundamentally different, kind of operation, one that modifies an existing
object. This kind of operation also raises the possibility that two concurrently
active computations will interact because one can modify an object the other
is using. Therefore, at the conclusion of this part we’ll examine concurrent,
interacting computations.

We will lead into our discussion of changeable objects by looking at how
computers are organized and how they carry out computations. The relevance
of this discussion is that the storage locations in a computer’s memory consti-
tute the fundamental changeable object. We’ll look next at how numerically
indexed storage locations, like a computer’s memory, can be used to make
some computational processes dramatically more efficient by eliminating re-
dundant recomputations of subproblem results. Then we’ll look at other forms
of modifiable objects, where the operations don’t reflect the computer’s num-
bered storage locations but rather reflect application-specific concerns. We’ll
then build this technique into object-oriented programming by blending in
the idea that multiple concrete kinds of objects can share a common inter-
face of generic operations. Finally, we will show how to transplant these same
ideas into another programming language, Java, that we will use to introduce
programs that have concurrent, interacting components.





C H A P T E R E L E V E N

Computers with Memory

11.1 Introduction

In the first two parts of the book we looked at computational processes from the
perspective of the procedures and the data on which those procedures describe
operations, but we’ve not yet discussed the computer that does the processing. In
this chapter, we’ll look at the overall structure of a typical present-day computer
and see how such a computer is actually able to carry out a procedurally specified
computational process.

One of the most noteworthy components we’ll see that computers have is memory
(specifically, Random Access Memory or RAM). What makes memory so interesting
is that it is unlike anything we’ve seen thus far—it is not a process or a procedure
for carrying out a process, and it is also not simply a value or a collection of values.
Rather, it is a collection of locations in which values can be stored; each location
has a particular value at any one time, but the value can be changed so that the
location contains a different value than it used to.

After seeing collections of memory locations as a component of computers, we’ll
see how they are also available for our use when programming in Scheme, as
so-called vectors. In this chapter, we introduce vectors and use them to build a
computer simulator in Scheme. In the following chapters we look at ways in which
these locations can be used to improve the efficiency of computational processes
and to construct software systems that are modular and naturally reflect the structure
of noncomputational systems that the software models.

11.2 An Example Computer Architecture

In this section, we will attempt to “open the hood” of a computer like the one
you have been using while working through this book. However, because so many

333
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different types of computers exist, and because actual computers are highly complex
machines involving many engineering design decisions, we will make two simplifi-
cations. First, rather than choosing any one real computer to explain, we’ve made up
our own simple, yet representative, computer, the Super-Lean Instruction Machine,
also known as SLIM. Second, rather than presenting the design of SLIM in detail,
we describe it at the architectural level. By architecture we mean the overall structure
of the computer system to the extent it is relevant to the computer’s ability to execute
a program.

You might well wonder whether an actual SLIM computer exists that meets the
specifications of our architectural design. To our knowledge, no such computer does
exist, although in principle one could be fabricated. (Before construction could
begin, the specifications would need to be made more complete than the version we
present here.) Because you are unlikely to find a real SLIM, we provide a simulated
SLIM computer on the web site for this book; we will say more about this simulated
computer in the next section. In fact, this chapter’s application section involves
writing another simulator for SLIM.

Even at the architectural level, we have many options open to us as computer
designers. We use the SLIM architecture to focus on a single representative set of
choices rather than illustrating the entire range of options. These choices were made
to be as simple as possible while still remaining broadly similar to what is typical
of today’s architectures. We point out a few specific areas where alternative choices
are common, but you should keep in mind that the entire architecture consists
of nothing but decisions, none of which is universal. A good successor course on
computer organization and architecture will not only show you the options we’re
omitting but will also explain how a designer can choose among those options to
rationally balance price and performance.

SLIM is a stored program computer. By this we mean that its behavior consists
of performing a sequence of operations determined by a program, which is a list of
instructions. The set of possible instructions, called the computer’s instruction set,
enumerates the computer’s basic capabilities. Each instruction manipulates certain
objects in the computer—for example, reading input from the keyboard, storing
some value in a memory location, or adding the values in two memory locations and
putting the result into a third. The way that an actual computer accomplishes these
tasks is a very interesting story but not one we will pursue here. Viewing SLIM as a
stored program computer allows us to focus on the computational core of computers.

You might well ask, “How does this information relate to my computer? I don’t
recall ever specifically telling my computer to run through a list of instructions.”
In fact, you probably have done so, regardless of how primitive or advanced your
computer is. Turning on (or “booting up”) the computer implicitly loads in and starts
running an initial program known as an operating system, part of whose task is to
make it easy to run other programs. The applications you use on your computer (such
as your Scheme system) are programs stored in the computer’s memory. When you
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Figure 11.1 High-level view of SLIM

invoke one of these applications, perhaps by using a mouse to click on an icon, you
are causing the operating system to load the application program into the computer’s
instruction memory and start execution at the program’s first instruction.

We start with a structural description of SLIM: Figure 11.1 shows a high-level,
coarse-grained view of its architecture. The boxes in this diagram represent SLIM’s
functional units, and the arrows show paths for the flow of data between these units.
Our structural description will involve describing the tasks of the functional units,
successively “opening them up” to reveal their functional subunits and internal data
paths. We will stop at a level detailed enough to give an understanding of how a
stored program works rather than continuing to open each unit until we get to the
level of the electrical circuits that implement it. In the next section we will turn our
attention to an operational understanding of the architecture, and will enumerate
the instructions it can execute.

The computer core is an organizing concept referring to those parts of SLIM except
its input and output devices—imagine it as your computer minus its keyboard, mouse,
monitor, and disk drive. Because SLIM is a stored program computer, the task of
the computer is to run (or execute) a program, which takes in input and produces
output. Instead of considering all of the possible input and output devices enumerated
in the diagram, we will make the simplifying assumption that input comes from the
keyboard and output goes to the monitor screen.

The processor performs the operations that constitute the execution of a program,
using the data memory to store values as needed for the program. When a processor
operation requires that values be stored into or retrieved from memory, it sends
to the memory unit the address (described below) of the memory location. The
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memory unit remembers what value was most recently stored by the processor into
each location. When the processor then asks the memory to retrieve a value from
a particular location, the memory returns to the processor that most recently stored
value, leaving it in the location so that the same value can be retrieved again. The
processor can also consume input and produce output.

Even at this very crude level, our architecture for SLIM already embodies im-
portant decisions. For example, we’ve decided not to have multiple independently
operating processors, all storing to and retrieving from a single shared memory.
Yet in practice, such shared-memory multiprocessor systems are becoming relatively
common at the time of this writing. Similarly, for simplicity we’ve connected the
input and output devices only to the processor in SLIM, yet real architectures to-
day commonly include Direct Memory Access (DMA), in which input can flow into
memory and output can be retrieved directly from memory without passing through
the processor.

Now we need to examine each of the boxes in the computer core more closely.
The memory component is the simpler one. Conceptually, it is a long sequence
of “slots” (or “boxes”) that are the individual memory locations. In order to allow
the processor to uniquely specify each location, the slots are sequentially numbered
starting at 0. The number corresponding to a given slot is called its address. When
the processor asks the memory to store 7 at address 13, the memory unit throws away
the value that is in the slot numbered 13 and puts a 7 into that slot, as shown in
Figure 11.2. At any later time, as long as no other store into location 13 has been
done in the meantime, the processor can ask the memory to retrieve the value from
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Figure 11.2 Memory, with 7 stored at address 13
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address 13 and get the 7 back. (Note that the location numbered 13 is actually the
fourteenth location because the first address is 0.)

The processor has considerably more internal structure than the memory because
it needs to

Keep track of what it is supposed to do next as it steps through the instructions
that constitute the program
Locally store a limited number of values that are actively being used so that it
doesn’t need to send store and retrieve requests to the memory so frequently
Do the actual arithmetic operations, such as addition

The three subcomponents of the processor responsible for these three activities
are called the control unit, the registers, and the arithmetic logical unit (or ALU),
respectively. Figure 11.3 illustrates these three units and the main data paths between
them. As you can see, in SLIM everything goes to or from the registers. (Registers are
locations, like those in the memory: They can be stored into and retrieved from.) The
ALU receives the operands for its arithmetic operations from registers and stores the
result back in a register. If values stored in memory are to be operated on, they first
have to be loaded into registers. Then the arithmetic operation can be performed,
and the result will be stored in a register. Finally, the result can be stored in memory,
if desired, by copying it from the register.

In addition to the data paths shown in the diagram, additional paths lead out
of the control unit to the other units that allow the control unit to tell the ALU
which arithmetic operation to do (addition, subtraction, multiplication, . . . ), to tell
the register set which specific registers’ values are to be retrieved or stored, and to
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memory
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memory
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Processor

Input

Output
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Figure 11.3 SLIM’s processor
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tell the memory whether a value is to be stored into the specified address or retrieved
from it. We don’t show these control paths because they complicate the diagram.
Keep in mind, however, that whenever we describe some capability of one of the
units, we are implicitly telling you that there is a connection from the control unit to
the unit in question that allows the control unit to cause that capability to be used.
For example, when we tell you that the ALU can add, we are telling you that there
is a path leading from the control unit to the ALU that carries the information about
whether the control unit wishes the ALU to add. From the operational viewpoint of
the next section, therefore, an add instruction is in SLIM’s instruction set.

Zooming in another level of detail, we examine each of the boxes shown in
the processor diagram more closely, starting with the registers. The registers unit is
just like the memory, a numbered collection of locations, except that it is much
smaller and more intimately connected with the rest of the processor. SLIM has 32
registers, a typical number currently. (In contrast, the data memory has at least tens of
thousands of locations and often even millions.) The registers are numbered from 0 to
31, and these register numbers play an important role in nearly all of the computer’s
instructions. For example, an instruction to perform an addition might specify that
the numbers contained in registers 2 and 5 should be added together, with the sum
to be placed into register 17. Thus, the addition instruction contains three register
numbers: two source registers and one destination register. An instruction to store a
value into memory contains two register numbers: the source register, which holds
the value to store, and an address register, which holds the memory address for storing
that value.

The ALU can perform any of the arithmetic operations that SLIM has instructions
for: addition, subtraction, multiplication, division, quotient, remainder, and numeric
comparison operations. The numeric comparison operations compare two numbers
and produce a numeric result, which is either 1 for true or 0 for false. The ALU
can do six kinds of comparison: 5, Þ, ,, ., #, and $. This is a quite complete
set of arithmetic and comparison operations by contemporary standards; some real
architectures don’t provide the full set of comparison operations, for example, or
they require multiplication and division to be done with a sequence of instructions
rather than a single instruction.

The control unit, shown in Figure 11.4, contains the program to execute in an
instruction memory. Like the main (data) memory, the instruction memory has num-
bered locations, and we call the location numbers addresses. The difference is that
instead of containing values to operate on, these locations contain the instructions
for doing the operating. For example, the instruction at address 0 might say to load
a 7 into register number 3. (Many architectures share a single memory for both in-
structions and data; the kind of architecture we’ve chosen, with separate memories,
is known as a Harvard architecture.)

At any time, the computer is executing one particular instruction from the instruc-
tion memory, which we call the current instruction. The address in the instruction
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memory at which this current instruction appears is the current instruction address.
A special storage location, called the program counter, or PC, is used to hold the
current instruction address. When the computer is first started, a 0 is placed into the
PC, so the first instruction executed will be the one at address 0 (i.e., the first one in
the instruction memory). Thereafter, the computer normally executes consecutive
instructions (i.e., after executing the instruction at address 0, the computer would
normally execute the instruction at address 1, then 2, etc.). This is achieved by
having a unit that can add 1 to the value in the PC and having the output from this
adder feed back into the PC. However, there are special jump instructions that say
to not load the PC with the output of the adder but instead to load it with a new
instruction address (the jump target address) taken from a register. Thus, there is a
jump decision circuit that controls whether the PC is loaded from the adder (which
always adds 1), for continuing on to the next instruction, or from the jump target
address (which comes from the registers unit), for shifting to a different place in
the instruction sequence when a jump instruction is executed. This jump decision
circuit can decide whether to jump based on the jump condition value, which also
comes from the registers unit.

The PC provides the current instruction address to the instruction memory, which
in turn provides the current instruction to the instruction decoder. The instruction
decoder sends the appropriate control signals to the various units to make the in-
struction actually happen. For example, if the instruction says to add the contents of
registers 2 and 5 and put the sum in register 17, the control unit would send control
signals to the registers to retrieve the values from registers 2 and 5 and pass those
values to the ALU. Further control signals would tell the ALU to add the values
it received. And finally, control signals would tell the registers to load the value
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received from the ALU into register 17. The other connection from the control unit
to the rest of the processor allows instructions to include constant values to load into
a register; for example, if an instruction said to load a 7 into register 3, the control
unit would send the 7 out along with control signals saying to load this constant
value into register 3.

We could in principle continue “opening up” the various boxes in our diagrams
and elucidating their internal structure in terms of more specialized boxes until
ultimately we arrived at the level of individual transistors making up the computer’s
circuitry. However, at this point we’ll declare ourselves satisfied with our structural
knowledge of the computer architecture. In the next section we will turn our at-
tention to an operational understanding of the architecture and will enumerate the
instructions it can execute. Our structural knowledge of the SLIM architecture is
summarized in Figure 11.5, which combines into a single figure the different levels
of detail that were previously shown in separate figures.

11.3 Programming the SLIM

In this section, we will examine the instructions that SLIM can execute. Each in-
struction can be written in two notations. Within the computer’s instruction memory,
each location contains an instruction that is encoded in machine language, which is
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a notation for instructions that is designed to be easy for the computer to decode and
execute rather than to be easy for humans to read and write. Therefore, for human
convenience we also have an assembly language form for each instruction, which is
the form that we use in this book. A program known as an assembler can mechan-
ically translate the instructions constituting a program from assembly language to
machine language; the result can then be loaded into the instruction memory for
running. (The machine language form of an instruction in instruction memory is
a pattern of bits, that is, of 0s and 1s. The sidebar What Can Be Stored in a Loca-
tion? explains that memory locations fundamentally hold bit patterns; in instruction
memory, those bit patterns represent instructions.)

Each instruction contains an operation code, or opcode, that specifies what opera-
tion should be done, for example, an addition or store. In the assembly language we
will use, the opcode always will be a symbol at the beginning of the instruction; for
example, in the instruction add 17, 2, 5, the opcode is add and indicates that an
addition should be done. After the opcode, the remainder of the instruction consists
of the operand specifiers. In the preceding example, the operand specifiers are 17,
2, and 5. In the SLIM instruction set, most operand specifiers need to be register
numbers. For example, this instruction tells the computer to add the contents of
registers 2 and 5 and store the sum into register 17. (Note that the first operand spec-
ifies where the result should go.) To summarize, we say that the form of an addition
instruction is add destreg, sourcereg1, sourcereg2. We’ll use this same notation for
describing the other kinds of operations as well, with destreg for operand specifiers
that are destination register numbers, sourcereg for operand specifiers that are source
register numbers, addressreg for operand specifiers that are address register numbers
(i.e., register numbers for registers holding memory addresses), and const for operand
specifiers that are constant values.

Each of the 12 arithmetic operations the ALU can perform has a corresponding
instruction opcode. We’ve already seen add for addition; the others are sub for sub-
traction, mul for multiplication, div for division, quo for quotient, rem for remainder,
seq for 5, sne for Þ, slt for ,, sgt for ., sle for #, and sge for $. The overall
form of all these instructions is the same; for example, for multiplication it would
be mul destreg, sourcereg1, sourcereg2. Recall that the comparison operations all
yield a 0 for false or a 1 for true. So, if register 7 contains a smaller number than
register 3 does, after executing the instruction slt 5, 7, 3, register number 5 will
contain a 1. The s on the front of the comparison instructions is for “set,” because
they set the destination register to an indication of whether the specified relationship
holds between the source registers’ values.

There are two instructions for moving values between registers and memory.
To load a value into a register from a memory location, the ld opcode is used:
ld destreg, addressreg. To store a value from a register into a memory location, the
st opcode is used: st sourcereg, addressreg. As an example, if register 7 contains
15, and memory location 15 contains 23, after executing the instruction ld 3, 7,
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What Can Be Stored in a Location?

One of the many issues we gloss over in our brief presentation of computer
architecture is the question of what values can be stored in a memory location
or register. Until now we have acted as though any number could be stored into
a location. The purpose of this sidebar is to confess that locations in fact have a
limited size and as such can only hold a limited range of numbers.

Each storage location has room for some fixed number of units of information
called bits. Each bit-sized piece of storage is so small that it can only accommodate
two values, conventionally written as 0 and 1. Because each bit can have two
values, 2 bits can have any of four bit patterns: (0, 0), (0, 1), (1, 0), and (1, 1);
similarly 3 bits worth of storage can hold eight different bit patterns: (0, 0, 0),
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1). In general, with
n bits it is possible to store 2n different patterns. The number of bits in a storage
location is called the word size of the computer. Typical present-day computers
have word sizes of 32 or 64 bits. With a 64-bit word size, for example, each storage
location can hold 264, or 18,446,744,073,709,551,616 distinct patterns.

It is up to the computer’s designer to decide what values the 2n bit patterns that
can be stored in an n-bit word represent. For example, the 264 bit patterns that can
be stored in a 64-bit word could be used to represent either the integers in the
range from 0 to 264 2 1 or the integers in the range from 2263 to 263 2 1 because
both ranges contain 264 values. It would also be possible to take the bit patterns as
representing fractions with numerator and denominator both in the range 2231 to
231 2 1 because there are 264 of these as well. Another option, more popular than
fractions for representing nonintegral values, is so-called floating point numerals
of the form m 3 2e, where the mantissa, m, and the exponent, e, are integers
chosen from sufficiently restricted ranges that both integers’ representations can
be packed into the word size. In our example of a 64-bit word, it would be typical
to devote 53 bits to the the mantissa and 11 bits to the exponent. If each of these
subwords were used to encode a signed integer in the conventional way, this
would allow m to range from 2252 to 252 2 1 and e to range from 2210 to 210 2 1.
Again, this results in a total of 264 numerals.

Of course, the circuitry of the ALU will have to reflect the computer designer’s
decision regarding which number representation is in use. This is because the
ALU is in the business of producing the bit pattern that represents the result of an
arithmetic operation on the numbers represented by two given bit patterns. Many
computers actually have ALUs that can perform arithmetic operations on several
different representations; on such a machine, instructions to carry out arithmetic
operations specify not only the operation but also the representation. For example,

(Continued)
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What Can Be Stored in a Location? (Continued)

one instruction might say to add two registers’ bit patterns interpreted as integers,
whereas a different instruction might say to add the bit patterns interpreted as
floating point numerals.

Whatever word size and number representation the computer’s designer
chooses will impose some limitation on the values that can be stored in a lo-
cation. However, the computer’s programmer can represent other kinds of values
in terms of these. For example, numbers too large to fit in a single location can be
stored in multiple locations, and nonnumeric values can be encoded as numbers.

register 3 will also contain 23. If register 4 contains 17 and register 6 contains 2,
executing st 4, 6 will result in memory location 2 containing a 17.

To read a value into a register from the keyboard, the instruction read destreg
can be used, whereas to write a value from a register onto the display, the instruction
would be write sourcereg. We’ve included these instructions in the SLIM archi-
tecture in order to make it easier to write simple numeric programs in assembly
language, but a real machine would only have instructions for reading in or writing
out individual characters. For example, to write out 314, it would have to write out
a 3 character, then a 1, and finally a 4. The programming techniques shown later
in this chapter would allow you to write assembly language subprograms to perform
numeric input and output on a variant of the SLIM architecture that only had the
read-a-character and write-a-character operations. Thus, by assuming that we can
input or output an entire number with one instruction, all we are doing is avoiding
some rather tedious programming.

The one other source for a value to place into a register is a constant value
appearing in the program. For this the so-called load immediate opcode, li, is used:
li destreg, const. For example, a program that consisted of the two instructions:

li 1, 314
write 1

would display a 314 because it loads that value into register 1 and then writes out
the contents of register 1 to the display.

Actually, the preceding two-instruction program above isn’t quite complete be-
cause nothing stops the computer from going on to the third location in its instruc-
tion memory and executing the instruction stored there as well; we want to have
some way to make the computer stop after the program is done. This action can be
arranged by having a special halt instruction, which stops the computer. So, our
first real program is as follows:
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li 1, 314
write 1
halt

Exercise 11.1

Suppose you want to store the constant value 7 into location 13 in memory. Let’s
see what is involved in making this store happen. You’ll need a copy of Figure 11.5
for this exercise (that figure is the diagram of the entire SLIM architecture).

a. Use color or shading to highlight the lines in the diagram that the value 7 will
travel along on its way from the instruction memory to the main memory.

b. Similarly, use another color or shading style to highlight the lines in the diagram
that the address 13 will travel along on its way from the instruction memory to
the main memory.

c. Finally, write a sequence of SLIM instructions that would make this data move-
ment take place.

As mentioned above, a simulated SLIM computer is on the web site for this book.
It is called SLIME, which stands for SLIM Emulator. SLIME has the functionality of
an assembler built into it, so you can directly load in an assembly language program
such as the preceding one, without needing to explicitly convert it from assembly
language to machine language first. Once you have loaded in your program, you
can run it in SLIME either by using the Start button to start it running full speed
ahead or by using the Step button to step through the execution one instruction at a
time. Either way, SLIME shows you what is going on inside the simulated computer
by showing you the contents of the registers, memories, and program counter.

In designing SLIME, we needed to pin down what range of numbers the storage
locations can hold, as described in the preceding sidebar. Our decision was to
allow only integers in the range from 2231 through 231 2 1. Because we are only
allowing integers, we made the div instruction (division) completely equivalent to
quo (quotient). The two opcodes are different because other versions of SLIM might
allow fractions or floating point numerals. Also, any arithmetic operation that would
normally produce a result bigger than 231 2 1 or smaller than 2231 gets mapped
into that range by adding or subtracting the necessary multiple of 232. This produces
a result that is congruent to the real answer, modulo 232. For example, if you use
SLIME to compute factorials, it will correctly report that 5! 5 120 but will falsely
claim that 14! is 1,278,945,280; the real answer is larger than that by 20 3 232.

For another example of assembly language programming, suppose you want to
write a program that reads in two numbers and then displays their product. This is
accomplished by reading the input into two registers, putting their product into a
third, and then writing it out:
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read 1
read 2
mul 3, 1, 2
write 3
halt

Note that we didn’t actually need to use the third register: we could have instead
written mul 2, 1, 2, storing the result instead in register 2; we would then have
to also change write 3 to write 2. In a larger program, this might help us stay
within 32 registers; it would only be possible, however, if the program didn’t need to
make any further use of the input value after the product has been calculated.

Exercise 11.2

Write a program that reads in two numbers and then displays the sum of their squares.

Now we only have one more kind of instruction, the instructions for jumping, or
causing some instruction other than the one in the immediately following location
in instruction memory to be executed next. SLIM follows tradition by having two
kinds of jump instructions, conditional jumps, which under some conditions jump
and other conditions fall through to the next instruction, and unconditional jumps,
which jump under all circumstances. For simplicity, we’ve designed SLIM to only
have a single conditional jump opcode: jump if equal to zero, or jeqz. The way
this code is used is that jeqz sourcereg, addressreg will cause the computer to
check to see if the sourcereg register contains zero or not. If it doesn’t contain
zero, execution falls through to the next instruction, but if it does contain zero, the
contents of the addressreg register is used as the address in instruction memory at
which the execution should continue. Because the comparison instructions, such
as slt, use 0 for false and 1 for true, you can also think of jeqz as being a “jump
when false” instruction. The unconditional jump, j addressreg, will always use the
number stored in the addressreg register as the next instruction address.

The following simple program reads in two numbers and then uses conditional
jumping to display the larger of the two. We include comments, written with a
semicolon just like in Scheme:

read 1 ; read input into registers 1 and 2

read 2

sge 3, 1, 2 ; set reg 3 to 1 if reg 1 >= reg 2, otherwise 0
li 4, 7 ; 7 is address of the "write 2" instruction, for jump

jeqz 3, 4 ; if reg 1 < reg 2, jump to instruction 7 (write 2)

write 1 ; reg 1 >= reg 2, so write reg 1 and halt

halt

write 2 ; reg 1 < reg 2, so write reg 2 and halt

halt
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Notice that we must figure out the instruction number (i.e., the address in instruction
memory) of the jump target for the jeqz instruction, which is 7 (not 8) because
we start at instruction number 0. We also need to load the 7 into a register (in this
case register 4) because jump instructions take their jump target from a register (the
address register) rather than as an immediate, constant value. The need to determine
the address of some instructions is one factor that contributes to the difficulty of
writing, and even more of understanding, assembly language programs. It is even
worse if you need to modify a program because if your change involves adding or
deleting instructions, you might well have to recalculate the addresses of all potential
jump targets and change all references to those addresses. As you can imagine, this
problem would make program modification very difficult indeed.

Another factor contributes to the difficulty of programming in assembly language,
which also relates to numbers within a program. We reference the value in a register
by its register number; thus, we write the instruction sge 3, 1, 2 knowing that
registers 1 and 2 contain the input values and register 3 will contain the value
indicating which is larger. In a simple program, this is not much of a problem
(especially if the comments are adequate), but you can probably imagine that this
can make larger programs very hard to understand and nearly impossible to modify.

Both of these difficulties would be reduced if we had a way to use names to make
our programs more understandable. Assemblers typically have such a capability; the
one we have built into SLIME is no exception. Our assembler allows names to be
assigned to registers and allows us to embed symbolic labels at points within our
program; both types of names can be used within assembly language instructions.
Thus, we could rewrite the program as follows:

allocate-registers input-1, input-2
allocate-registers comparison, jump-target

read input-1
read input-2
sge comparison, input-1, input-2
li jump-target, input-2-larger
jeqz comparison, jump-target

write input-1
halt

input-2-larger: ; an instruction label, referring to the
write input-2 ; write input-2 instruction
halt
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We use blank lines to indicate the basic logical blocks within the program and indent
all the lines except labels to make the labels more apparent.

The designation of register names is done using the allocate-registers lines,
which instruct the assembler to choose a register number (between 0 and 31) for each
of the names. The division into two separate allocate-registers lines is simply
to avoid having one very long line. Either way, each name is assigned a different
register number. The register names can be used exactly as register numbers would
be, to specify the operands in assembly language instructions. Note that there is no
guarantee as to which register number is assigned to a given name, and there is
a limit of 32 names. In fact, if you use register names, do not refer to registers by
number because you may be using the same register as a symbolically named one.

In addition to these names for register numbers, our assembler (like most) allows
names to be given to instruction numbers by using labels within the program,
such as input-2-larger:. The labels end with a colon to distinguish them from
instructions. A label can be used as a constant would be, in an li instruction, as
illustrated previously. Notice that the colon doesn’t appear in the li instruction, just
where the label is actually labeling the next instruction.

The key point to keep in mind about register names and instruction labels is that
they are simply a convenient shorthand notation, designed to let the assembler do
the counting for you. The two versions of the preceding program will be completely
identical by the time they have been translated into machine language and are being
executed by the machine. For example, the instruction label input-2-larger in
the li instruction will have been replaced by the constant 7 in the course of the
assembly process.

Exercise 11.3

The quadratic formula states that the roots of the quadratic equation ax2 1bx1c 5 0
(where a Þ 0) are given by the formula

2b 6
√

b2 2 4ac
2a

Therefore, the equation will have 0, 1, or 2 real roots depending on whether b2 24ac
is , 0, 5 0, or . 0.

Write an assembly language program that reads in three values (corresponding to
a, b, and c) and writes out whether the equation ax2 1 bx 1 c 5 0 has 0, 1, or 2 real
roots.

Even with our ability to use names, assembly language programming is still
excruciatingly detail-oriented, which is why we normally program in a language
like Scheme instead. Even though SLIM (like real computers) can only execute
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instructions in its own machine language, we can still use Scheme to program it in
either of two ways:

1. We can write a single assembly language program, namely, for a Scheme read-eval-
print-loop, like the one we programmed in Scheme in the previous chapter. From
then on, the computer can just run the result of assembling that one program,
but we can type in whatever Scheme definitions and expressions we want. This is
called using an interpreter.

2. We can write a program (in Scheme) that translates a Scheme program into a
corresponding assembly language or machine language program. This is known
as a compiler. Then we can use the compiler (and the assembler, if the compiler’s

SLIM’s Instruction Set

add destreg, sourcereg1, sourcereg2

sub destreg, sourcereg1, sourcereg2

mul destreg, sourcereg1, sourcereg2

div destreg, sourcereg1, sourcereg2

quo destreg, sourcereg1, sourcereg2

rem destreg, sourcereg1, sourcereg2

seq destreg, sourcereg1, sourcereg2

sne destreg, sourcereg1, sourcereg2

slt destreg, sourcereg1, sourcereg2

sgt destreg, sourcereg1, sourcereg2

sle destreg, sourcereg1, sourcereg2

sge destreg, sourcereg1, sourcereg2

ld destreg, addressreg
st sourcereg, addressreg

li destreg, const

read destreg
write sourcereg

jeqz sourcereg, addressreg
j addressreg

halt
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output is assembly language) to translate our Scheme programs for execution by
the computer.

For your convenience, a complete list of SLIM’s instructions is given in a sidebar.

11.4 Iteration in Assembly Language

The previous sections described the capabilities of a computer by showing the
structure of SLIM and enumerating the instructions it can carry out. We also wrote
some simple programs in assembly language that used the naming and labeling
capabilities of the assembler. In this section, we turn our attention to extending our
programming skills by writing programs in SLIM’s assembly language for carrying
out iterative processes. We extend this skill to recursive processes in the next section.

You may recall that in Part I of this book we introduced recursion before iteration.
This order was because in our experience students find many problems easier to solve
using the recursion strategy rather than the iteration strategy. However, by now you
should be experienced at solving problems both ways, and iterative solutions can
be more naturally expressed in assembly language than can recursive solutions.
Therefore, we’ve reversed the order of presentation here, starting with iteration and
then moving on to recursion in the next section. The reason why it is straightforward
to write assembly language programs that generate iterative processes is that iterative
behavior is fairly easy to achieve through programming loops caused by jumps in the
code.

Consider the simple problem of printing out the numbers from 1 to 10. One
solution is described in the flow chart in Figure 11.6. The loop is visually apparent
in the flow chart and is accomplished in assembly language as follows:

allocate-registers count, one, ten, loop-start, done

li count, 1
li one, 1
li ten, 10
li loop-start, the-loop-start

the-loop-start:
write count
add count, count, one
sgt done, count, ten
jeqz done, loop-start

halt
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Is count >10?

No

Yes

Add 1 to count

Write count

Set count to 1

Halt

Figure 11.6 Flow chart for printing the numbers from 1 to 10

Before going on, be sure to compare the flow chart with the program and see how
completely they parallel each other.

Having now written a simple iterative program, we can write more interesting
programs, perhaps drawing from iterative procedures we have written in Scheme.
For example, we can write a program to read in a number, iteratively calculate its
factorial, and print out the result, similar to the following Scheme program:

(define factorial-product

(lambda (a b) ; computes a * b!, provided b is a nonnegative integer

(if (= b 0)
a

(factorial-product (* a b) (- b 1)))))

(define factorial

(lambda (n)

(factorial-product 1 n)))

Just as this Scheme program has a comment explaining what the
factorial-product procedure does, so too our assembly language version has
a comment saying what we can expect to happen when execution reaches the in-
struction labeled factorial-product-label:
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allocate-registers a, b, one, factorial-product, end

li a, 1
read b
li one, 1
li factorial-product, factorial-product-label
li end, end-label

factorial-product-label:
;; computes a * b! into a and then jumps to end
;; provided that b is a nonnegative integer;
;; assumes that the register named one contains 1 and
;; the factorial-product register contains this address;
;; may also change the b register’s contents
jeqz b, end ; if b = 0, a * b! is already in a

mul a, a, b ; otherwise, we can put a * b into a
sub b, b, one ; and b - 1 into b, and start the
j factorial-product ; iteration over

end-label:
write a
halt

Exercise 11.4

Translate into SLIM assembly language the procedure for raising a base to a power
given in Section 3.2.

Exercise 11.5

SLIME has a counter that shows how many instructions have been executed. This
counter can be used to carefully compare the efficiency of different algorithms.
Translate into SLIM assembly language the following alternative power-product
procedure and compare its efficiency with that of your program from the preceding
exercise, with increasingly large exponents. (Hint: You’ll need an extra register in
which to store the remainder of e divided by 2. You’ll also need one more label
because the cond has three cases; another register to hold the numeric value of that
label will also come in handy.) You should be able to predict the instruction counts
by carefully analyzing your programs; that way the simulator’s instruction counts can
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serve as empirical verification of your prediction, showing that you have correctly
understood the programs.

(define power-product
(lambda (a b e) ; returns a times b to the e power
(cond ((= e 0) a)

((= (remainder e 2) 0)
(power-product a (* b b) (/ e 2)))
(else (power-product (* a b) b (- e 1))))))

Exercise 11.6

Translate into SLIM assembly language your procedure for finding the exponent of
2 in a positive integer, from Exercise 3.2.

Exercise 11.7

Translate into SLIM assembly language the procedure for finding a Fermat number
by repeated squaring given in Section 3.2.

One aspect of the iterative factorial program to note carefully is the order of the
multiplication and subtraction instructions. Because the multiplication is done first,
the old value of b is multiplied into a; only afterward is b reduced by 1. If the order
of these two instructions were reversed, the program would no longer compute the
correct answer. In Scheme terms, the correct version of the SLIM program is like
the following Scheme procedure:

(define factorial-product

(lambda (a b) ; computes a * b!, given b is a nonnegative integer

(if (= b 0)

a
(let ((a (* a b)))

(let ((b (- b 1)))

(factorial-product a b))))))

If the multiplication and subtraction were reversed, it would be like this (incorrect)
Scheme procedure:

(define factorial-product ; this version doesn’t work

(lambda (a b) ; computes a * b!, given b is a nonnegative integer

;;(continued)
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(if (= b 0)

a
(let ((b (- b 1)))

(let ((a (* a b))) ; note that this uses the new b

(factorial-product a b))))))

In the factorial-product procedure, the new value for b is calculated without
making use of the (old) value of a, so we can safely “clobber” a and then compute
b. Other procedures may not be so lucky in this regard; there may be two arguments
where each needs to have its new value computed from the old value of the other
one. In these cases, it is necessary to use an extra register to temporarily hold one of
the values. For example, consider translating into the SLIM assembly language the
following Scheme procedure for computing a greatest common divisor:

(define gcd
(lambda (x y)
(if (= y 0)

x
(gcd y (remainder x y)))))

Here the new value of x is computed using the old value of y (in fact, it is simply the
same as the old value of y), and the new value of y is computed using the old value
of x; thus, it appears neither register can receive its new value first because the old
value of that register is still needed for computing the new value of the other register.
The solution is to use an extra register; we can model this solution in Scheme using
lets as follows:

(define gcd
(lambda (x y)
(if (= y 0)

x
(let ((old-x x))
(let ((x y)) ; x changes here
(let ((y (remainder old-x y))) ; but isn’t used here
(gcd x y)))))))

Exercise 11.8

Translate gcd into a SLIM assembly language program for reading in two numbers
and then computing and writing out their greatest common divisor. (Hint: To copy
a value from one register to another, you can add it to zero.)
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Returning to the iterative factorial program, another more subtle point to note
is that the comment at the factorial-product-label specifies the behavior that
will result in terms of the values in three kinds of registers:

1. The a and b registers correspond to the arguments in the Scheme procedure.
These control which specific computation the loop will carry out, within the
range of computations it is capable of.

2. The one register, which is assumed to have a 1 in it whenever execution reaches
the label, has no direct analog in the Scheme procedure. This register isn’t
intended to convey information into the loop that can be varied to produce varying
effects, the way the a and b registers can. Instead, it is part of the specification
for efficiency reasons only. Instead of requiring that a 1 be in the one register
whenever execution reaches the label, it would be possible to load the 1 in after
the label. However, that would slow the program down because the loading would
be needlessly done each time around the loop. The same considerations apply to
the factorial-product register, which also holds a constant value, the starting
address of the loop.

3. The end register is perhaps the most interesting of all. It is what we call a continua-
tion register because it holds the continuation address for the factorial-product
procedure. That is, this register holds the address that execution should continue
at after the factorial-product computation is completed. Once the computer
has finished computing a 3 b!, it jumps to this continuation address, providing
another opportunity to control the behavior of this looping procedure, as we’ll see
shortly. Namely, in addition to varying what numbers are multiplied, we can also
vary where execution continues afterward.

To see how we would make more interesting use of a continuation register,
consider writing a procedure for computing n! 1 (2n)! as follows:

(define factorial-product ; unchanged from the above

(lambda (a b) ; computes a * b!, given b is a nonnegative integer

(if (= b 0)

a

(factorial-product (* a b) (- b 1)))))

(define two-factorials

(lambda (n)

(+ (factorial-product 1 n)

(factorial-product 1 (* 2 n)))))

Clearly something different should happen after factorial-product is done with
its first computation than after it is done with its second computation. After the first
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computation, it is still necessary to do the second computation, whereas after the
second computation, it is only necessary to do the addition and write the result out.
So, not only will different values be passed in the b register, but different values will
be passed in the end continuation register as well:

allocate-registers a, b, one, factorial-product
allocate-registers end, n, result, zero

li one, 1
li zero, 0
li factorial-product, factorial-product-label
read n
li a, 1
add b, zero, n ; copy n into b by adding zero
li end, after-first ; note continuation is after-first

factorial-product-label:
;; computes a * b! into a and then jumps to end
;; provided that b is a nonnegative integer;
;; assumes that the register named one contains 1 and
;; the factorial-product register contains this address;
;; may also change the b register’s contents
jeqz b, end ; if b = 0, a * b! is already in a

mul a, a, b ; otherwise, we can put a * b into a
sub b, b, one ; and b - 1 into b, and start the
j factorial-product ; iteration over

after-first:
add result, zero, a ; save n! away in result
li a, 1
add b, n, n ; and set up to do (2n)!,
li end, after-second ; continuing differently after
j factorial-product ; this 2nd factorial-product,

after-second: ; namely, by
add result, result, a ; adding (2n!) in with n!
write result ; and displaying the sum
halt

To understand the role that the n and result registers play in the two-factorials
program, it is helpful to contrast it with the following double-factorial program. If we
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refer to the value the double-factorial program reads in as n, what it is computing
and displaying is (n!)!:

allocate-registers a, b, one, factorial-product, end, zero

li one, 1
li zero, 0
li factorial-product, factorial-product-label
li a, 1
read b ; the first time, the read-in value is b
li end, after-first ; and the continuation is after-first

factorial-product-label:
;; computes a * b! into a and then jumps to end
;; provided that b is a nonnegative integer;
;; assumes that the register named one contains 1 and
;; the factorial-product register contains this address;
;; may also change the b register’s contents
jeqz b, end ; if b = 0, a * b! is already in a

mul a, a, b ; otherwise, we can put a * b into a
sub b, b, one ; and b - 1 into b, and start the
j factorial-product ; iteration over

after-first:
add b, zero, a ; move the factorial into b by adding zero
li a, 1 ; so that we can get the factorial’s factorial
li end, after-second ; continuing differently after
j factorial-product ; this second factorial-product,

after-second: ; namely, by
write a ; displaying the result
halt

This latter program reads the n value directly into the b register, ready for com-
puting the first factorial. The earlier two-factorials program, in contrast, read n into
a separate n register and then copied that register into b before doing the first fac-
torial. The reason why the two-factorials program can’t read the input value directly
into b the way double-factorial does is that it will need the n value again, after n!
has been computed, to compute (2n)!. Therefore, this n value needs to be stored
somewhere “safe” while the first factorial is being computed. The b register isn’t a



11.5 Recursion in Assembly Language 357

safe place because the factorial-product loop changes that register (as its comment
warns). Thus, a separate n register is needed.

The result register is needed for a similar reason, to be a safe holding place for
n! while (2n)! is being computed; clearly the result of n! can’t be left in the a register
while the second factorial is being computed. In double-factorial, on the other hand,
the result of n! isn’t needed after (n!)! is computed, so it doesn’t need to be saved
anywhere.

Exercise 11.9

Write a SLIM program for reading in four numbers, x, y, n, and m, and computing
xn 1 ym and displaying the result. Your program should reuse a common set of
instructions for both exponentiations.

To review, we’ve learned two lessons from the two-factorials program:

1. If a procedure within the program is invoked more than once, a continuation
register can be used to make the procedure continue differently when it is done
with one invocation than when it is done with another.

2. If a value needs to be preserved across a procedure invocation, it shouldn’t be
stored in a register that will be clobbered (i.e., stored into) by the procedure.
Instead, the value should be moved somewhere “safe,” a location not stored into
by the procedure.

11.5 Recursion in Assembly Language

In the previous section, we wrote assembly language procedures that generated
iterative processes. Along the way, we learned two important lessons: the use of a
continuation register and the importance of choosing a safe location for values that
must be preserved across a procedure invocation. With these two lessons in mind, it is
time to consider recursive processes. Sticking with factorials, we’ll use the following
Scheme procedure as our starting point:

(define factorial
(lambda (n)
(if (= n 0)

1
(* (factorial (- n 1))

n))))

Consider using a SLIM program based on this procedure to compute 5! by
computing 4! and then multiplying the result by 5. What needs to be done after
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the factorial procedure has finished computing 4!? What needs to be done after
the factorial procedure has finished computing 5!? Are these the same? This should
bring to mind the first of the two lessons from two-factorials: A continuation register
can be used to make the factorial procedure continue differently after computing 4!
than after computing 5!. After computing 4!, the computer needs to multiply the
result by 5, whereas after computing 5!, the computer needs to display the final result.
Tentatively, then, we’ll assume we are going to use three registers: an n register for the
argument to the factorial procedure, a cont register for the procedure’s continuation
address, and a val register to hold the resulting value of n!.

Next question: Do any values need preserving while the computation of 4! is
underway? Yes, the fact that n is 5 needs to be remembered so that when 4! has been
computed as 24, the computer knows to use 5 as the number to multiply 24 by. The
computer also needs to save the 5! computation’s continuation address across the 4!
computation so that once it has multiplied 24 by 5 and gotten 120, it knows what
to do next. It isn’t obvious that the continuation will be to display the result—the
computation of 5! might have been as a step in computing 6!. So, the continuation
address needs to be preserved as the source of this information on how to continue.
Thus, two values must be preserved across the recursive factorial subproblem: the
main factorial problem’s value of n and the main factorial problem’s continuation
address.

The second of the two lessons we learned from two-factorials leads us to ask:
What are safe locations to hold these values so they aren’t overwritten? Clearly the n
register is not a safe place to leave the value 5 while computing 4!, because in order
to compute 4!, we’ll store 4 into n. Similarly, the cont register is not a safe place
to leave the continuation address for the computation of 5! while the computation
of 4! is underway, because the continuation address for the 4! computation will be
stored there. Should we introduce two more registers to hold the main problem’s n
value and continuation address while the subproblem uses the n and cont registers?

If there were only two levels of procedure invocation—the main problem and the
subproblem—the proposed solution of using two more registers would be reasonable.
Unfortunately, the subproblem of computing 4! itself involves the sub-subproblem
of computing 3!, which involves the sub-sub-subproblem of computing 2!, and so
forth down to the base case. Each level will have two values to preserve, but we can’t
use two registers per level; among other things we only have 32 registers total, so
we’d never be able to compute 52! if we used two registers per level.

The need for two safe storage locations per level (i.e., two locations that won’t be
stored into by the other levels) is real. So, having seen that registers won’t suffice, we
turn to our other, more plentiful, source of storage locations, the data memory. The
top-level problem can store its n value and continuation address into the first two
memory locations for safekeeping (i.e., it can store them at addresses 0 and 1). The
subproblem would then similarly use the next two memory locations, at addresses 2
and 3, the sub-subproblem would use addresses 4 and 5, etc. Because each level uses
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different locations, we cannot clobber values, and because the memory is large, the
maximum recursion depth attainable, although limited, will be sufficient for most
purposes. (You may have noticed that this example is our first use of memory. In the
following section and subsequent chapters we’ll see other uses, so recursion isn’t the
only reason for having memory. It is one important reason, however.)

To keep track of how much of the memory is already occupied by saved values,
we’ll use a register to hold the number of locations that are in use. When a proce-
dure starts executing, this register’s value tells how much of memory should be left
untouched and also tells which memory locations are still available for use. If the
register holds 4, that means that the first four locations should be left alone, but it
also means that 4 is the first address that is up for grabs, because the four locations
in use are at addresses 0 through 3.

The procedure can therefore store its own values that need safekeeping into
locations 4 and 5; it should increase the memory-in-use register’s value by 2 to
reflect this fact. When the procedure later retrieves the values from locations 4 and
5, it can decrease the count of how many memory locations are in use by 2. Thus,
when the procedure exits, the memory-in-use register is back to 4, the value it had
on entry.

This very simple idea of having procedures “clean up after themselves,” by
deallocating the memory locations they’ve allocated for their own use, is known
as stack discipline. (When we speak of allocating and deallocating memory locations,
we’re referring to increasing and decreasing the count of how many locations are
in use.) The reason for the name stack discipline is that the pattern of growth and
shrinkage in the memory’s use is like piling things up on a stack and then taking
them off. The most recently piled item is on top of the stack, and that is the one
that needs to be taken off first. So too with the stack in the computer’s memory;
locations 0 and 1 were allocated first, then 2 and 3 “on top” of those, and then 4
and 5 “on top” of those. Now, the first locations to be deallocated are 5 and 4—the
stack shrinks from the top. Computer scientists traditionally refer to putting items on
a stack as pushing onto the stack and removing items from the stack as popping. The
register that records how much of the memory is currently occupied by the stack is
known as the stack pointer, or SP. We’ll use the register name sp in the program
below. The stack pointer is a procedure’s indication of what locations in memory to
use for its saved values, as in the following recursive factorial program:

allocate-registers n, cont ; the argument, continuation,

allocate-registers val ; and result of factorial procedure

allocate-registers factorial, base-case ; hold labels’ values

allocate-registers sp ; the "stack pointer", it records how many

; memory locations are occupied by saved

; values (starting at location 0)

allocate-registers one ; the constant 1, used in several places
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;; set up the constants

li one, 1
li factorial, factorial-label

li base-case, base-case-label

;; initialize the stack pointer (nothing saved yet)

li sp, 0

;; set up for the top level call to factorial

read n ; the argument, n, is read in

li cont, after-top-level ; the continuation is set

;; and then we can fall right into the procedure

factorial-label:
;; computes the factorial of n into val and jumps to cont;

;; doesn’t touch the first sp locations of memory and

;; restores sp back to its entry value when cont is jumped to;

;; assumes the factorial, base-case, and one registers hold the

;; constant values established at the beginning of the program

jeqz n, base-case

;; if n isn’t zero, we save n and cont into memory for

;; safe keeping while computing (n-1)!; sp tells us where in

;; memory to save them (so as not to clobber other, previously
;; saved values), and we adjust sp to reflect the new saves

st n, sp

add sp, sp, one

st cont, sp

add sp, sp, one

;; now that we’re done saving, we can set up for (n-1)!

sub n, n, one ; using n-1 as the new n argument

li cont, after-recursive-invocation ; the continuation

j factorial ; after this call

after-recursive-invocation: ; is down here

;; having made it through the recursive call, the saved

;; values of cont and n can be restored to their registers

;; from memory; note that they are "popped" from the stack

;; in the opposite order they were "pushed" onto the stack,

;; since the second one pushed wound up "on top" (i.e., later

;; in memory), so should be retrieved first

sub sp, sp, one

ld cont, sp

sub sp, sp, one
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ld n, sp

;; having retrieved n and cont and set sp back to the way it
;; was on entry (since it went up by two and back down by two)

;; we are ready to compute n! as (n-1)! * n, i.e. val * n,

;; putting the result into val, and jump to the continuation

mul val, val, n

j cont

base-case-label:

;; this is the n = 0 case, which is trivial

li val, 1

j cont

after-top-level:

;; when the top level factorial has put n! in val, it jumps here

write val ; to display that result

halt

Exercise 11.10

Write a SLIM program based on the recursive power procedure you wrote in Exer-
cise 2.1 on page 28. Try not to save any more registers to the stack than are needed.
You should use SLIME to compare the efficiency of this version with the two itera-
tive versions you wrote in Exercises 11.4 and 11.5. (As before, it should be possible
for you to predict the instruction counts in advance by analyzing the programs; the
simulator can then serve to verify your prediction.)

Exercise 11.11

Write a SLIM program based on your procedure for recursively computing the sum
of the digits in a number; you wrote this procedure in Exercise 2.11 on page 39.

Exercise 11.12

Write a SLIM program based on your procedure for recursively computing the
exponent of 2 in a number; you wrote this procedure in Exercise 2.12 on page 40.

11.6 Memory in Scheme: Vectors

In the previous sections of this chapter we’ve looked “under the hood” at computer
architecture and assembly language programming. This introduction is valuable in its



362 Chapter 11 Computers with Memory

own right because it provided you with a clearer understanding of how computation
actually happens. However, it had an important side benefit as well: We encountered
a new kind of programming, based on sequentially retrieving values from locations,
computing new values from them, and storing the new values back into the locations.
This style is known as the imperative style or imperative paradigm of programming
because each instruction is issuing a command to the computer to carry out a
particular action. The imperative style is closely tied to the concept of state (i.e., that
actions can change something about the computer that affects future actions). It is
what ties together the disjointed sequence of commands into a purposeful program—
the fact that each changes something that future instructions examine. In SLIM, as
in most computers today, the primary form of state is the storage locations.

In the following chapters we’ll see some interesting applications of state and
imperative programming. However, before we do so, it is worth recapturing what we
lost in moving from Scheme to assembly language. As an example of what we’ve
lost, consider storing (x 1 y) 3 (z 1 w) into some memory location. In Scheme, we
could express the product of sums as exactly that, a product of sums: (* (+ x y)
(+ z w)). However, we haven’t yet seen any way to store the resulting value into a
location. (That’s about to change.) In assembly language, on the other hand, we’d
have no problem storing the result into a location, but we’d also be forced to store
the component sums into locations, whether we wanted to or not. We’d need to
compute the first sum and store it somewhere—and we’d have to pick the location
to store it into. Then we could do the second sum and again store it somewhere
we’d have to choose. Finally, we could compute the product we wanted and store
it as desired. The result is that what was a natural nesting of computations got
painstakingly linearized into a sequence of steps, and the new ability to store values
into locations spread like a cancer into even those parts of the computation where it
didn’t naturally belong.

The ability to nest computations (like the product of sums) and avoid storing
intermediate results is a large part of what makes a higher-level programming lan-
guage like Scheme so much more convenient than assembly language. Nesting of
computations works naturally when the computations correspond to mathematical
functions, which compute result values from argument values. The programming
we’ve done in Scheme up until now has all had this functional character—we say
that we were programming in the functional style or functional paradigm. In func-
tional programming the natural way to combine computations is through structured
nesting, whereas in imperative programming, the natural means of combination is
through linear sequencing. An important open research topic in computer program-
ming language design is to find natural ways to use richer structures of combination
with state. For now, we’ll tackle a simpler goal: integrating the two styles of pro-
gramming so that the value-oriented portions of a program can use the full power of
functional programming, whereas the state-oriented portions will have an imperative
flavor. To do this, we introduce memory into Scheme.



11.6 Memory in Scheme: Vectors 363

Chunks of memory in Scheme are called vectors. Each vector has a size and
contains that many memory locations. Vectors are made by the make-vector pro-
cedure, which must be told how big a vector to make. For example (make-vector
17) will make a vector with 17 locations in it. The locations are numbered starting
from 0 in each vector, so the locations in the example vector would be numbered
from 0 to 16. A simple example follows of creating and using a vector; it shows how
values can be stored into and retrieved from the vector’s locations and how the size
of a vector can be determined:

(define v (make-vector 17))

(vector-length v) ; find out how many locations
17

(vector-set! v 13 7) ; store a 7 into location 13

(vector-ref v 13) ; retrieve what’s in location 13
7

(vector-set! v 0 3) ; put a 3 into the first location (location 0)

(vector-ref v 13) ; see if location 13 still intact
7

(vector-set! v 13 0) ; now clobber it

(vector-ref v 13) ; see that location 13 did change
0

Notice that the procedure for changing the contents of one of a vector’s locations
is called vector-set!, with an exclamation point at the end of its name. This
is an example of a convention that we generally follow, namely, that procedures
for changing an object have names that end with an exclamation point. Just as
with the question mark at the end of a predicate’s name, this naming convention is
purely for better communication among humans; the Scheme language regards the
exclamation point or question mark as no different than a letter. Another point to
notice is that we didn’t show any value for the evaluations that applied vector-set!.
This is because the definition of the Scheme programming language leaves this value
unspecified, so it can vary depending on the particular Scheme system you are using.
Your particular system might well return something useful (like the old value that
was previously stored in the location), but you shouldn’t make use of that because
doing so would render your programs nonportable.

As an example of how a vector could be used, consider making a histogram of the
grades the students in a class received on an exam. That is, we’d like to make a bar
chart with one bar for each grade range, where the length of the bar corresponds
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to how many students received a grade within that range. A simple histogram might
look as follows:

90-99: XXXXXXXX

80-89: XXXXXXXXXX

70-79: XXXXXXX

60-69: XXX

50-59: XXXXX

40-49: XXX

30-39: XX

20-29:

10-19: X

00-09:

This histogram shows, for example, that two students received grades in the 30s; one
X appears for each student in the grade range.

The obvious way to make a histogram like this one is to go through the students’
grades one by one, keeping 10 counts, one for each grade range, showing how many
students have been discovered to be in that range. Initially each count is 0, but as
a grade of 37 is encountered, for example, the counter for the 30s range would be
increased by 1. At the end, the final counts are used in printing out the histogram
to determine how many Xs to print in each row. The fact that the counts need to
change as the grades are being processed sounds like storage locations; the fact that
we need 10 of them sounds like we need a vector of length 10. So, we have a plan
for our program:

1. Make a vector of length 10.
2. Put a 0 into each location in the vector.
3. Read in the grades one by one. For each, increment the appropriate location or

“bin” within the vector.
4. Display the vector as a histogram.

Writing this in Scheme, we get the following:

(define do-grade-histogram

(lambda ()

(let ((histogram (make-vector 10)))
(define read-in-grades-loop

(lambda ()

(let ((input (read)))

;;(continued)
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(if (equal? input ’done)

’done-reading
(let ((bin (quotient input 10)))

(vector-set! histogram bin

(+ 1 (vector-ref histogram bin)))

(read-in-grades-loop)))))) ;end of loop

(zero-out-vector! histogram) ;start of main procedure

(newline)

(display

"Enter grades in the range 0 - 99; enter done when done.")

(newline)

(read-in-grades-loop)
(display-histogram histogram))))

This relies on two other procedures: zero-out-vector! puts the initial 0 into each
location, and display-histogram displays the vector as a histogram. They can be
written as follows:

(define zero-out-vector!
(lambda (v)
(define do-locations-less-than
(lambda (limit)
(if (= limit 0)

’done
(let ((location (- limit 1)))
(vector-set! v location 0)
(do-locations-less-than location)))))

(do-locations-less-than (vector-length v))))

(define display-histogram
(lambda (histogram)
(define display-row
(lambda (number)
(display number)
(display "0-")
(display number)
(display "9: ")
;; display-times from page 313 useful here
(display-times "X" (vector-ref histogram number))
(newline)))

;;(continued)



366 Chapter 11 Computers with Memory

(define loop
(lambda (counter)
(if (< counter 0)

’done
(begin (display-row counter)

(loop (- counter 1))))))
(newline)
(loop 9)
(newline)))

Exercise 11.13

Some students earn grades of 100 for their exams, rather than just 0 to 99. There is
no one clearly right way to modify the histograms to accommodate this. Consider
some of the options, choose one, justify your choice, and implement it.

The previous program used one X per student. This works for those of us fortunate
enough to have small classes, but in a large course at a large university, some of the
bars of Xs would no doubt run off the edge of the computer’s screen. This problem
can be resolved by scaling the bars down so that each X represents 10 students
instead of 1, for example. The scaling factor can be chosen automatically to make
the longest bar fit on the screen. For example, we could choose as the number of
students per X the smallest positive integer that makes the longest bar no longer than
70 Xs. Here is a version of display-histogram that does this:

(define maximum-bar-size 70)

(define display-histogram
(lambda (hist)
(let ((scale (ceiling ; i.e., round up to an integer

(/ (largest-element-of-vector hist)
maximum-bar-size))))

(define display-row
(lambda (number)
(display number)
(display "0-")
(display number)
(display "9: ")
(display-times "X" (quotient

(vector-ref hist number)
scale))

(newline)))
;;(continued)
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(define loop
(lambda (counter)
(if (< counter 0)

’done
(begin (display-row counter)

(loop (- counter 1))))))
(newline)
(display "Each X represents ")
(display scale)
(newline)
(loop 9)
(newline))))

Exercise 11.14

Write the largest-element-of-vector procedure that it takes to make this work.

11.7 An Application: A Simulator for SLIM

Because vectors in Scheme are so similar to SLIM’s memory and registers, we can
use vectors to build a model of SLIM as the core of a Scheme program that simulates
the execution of SLIM programs. In this section, we’ll build such a simulator. It
won’t be as fancy as SLIME, but it will suffice to execute any SLIM program.
Our ultimate goal is to write a procedure called load-and-run that executes a
given machine language program, but of course we’ll write a lot of other procedures
along the way. The load-and-run procedure will receive the program to run as a
vector of machine language instructions; later we’ll see how those instructions can
be constructed.

In attacking a project as large as the SLIM simulator, it is helpful to divide it
up into separate modules and understand the interfaces between the modules first,
before actually doing any of the programming. For our simulator, we’ll use three
modules (one of which, the instructions module, is shared with the assembler):

1. The first module provides an abstract data type called the machine model. A
machine model keeps track of the state of the simulated machine, which is where
the contents of the simulated machine’s registers, memory, and program counter
are stored. Whether the machine is in the special halted state is also stored here.

More specifically, this module provides the rest of the program with a
make-machine-model procedure, which can be used to make a new machine
model, with all the locations holding 0 and with the machine not halted. This
module then allows the rest of the program to inspect and modify the state of that
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machine model by using procedures such as get-pc for getting the current con-
tents of the program counter and set-pc! for changing the program counter’s
contents. Other interface procedures are get-reg and set-reg! for registers,
get-mem and set-mem! for memory, and halted? and halt! for haltedness.
All the procedures except make-machine-model take a machine model as their
first argument. The procedures that concern registers and memory take a register
number or memory address as the second argument. All the set-. . . ! procedures
take the new value as the final argument. For example, set-reg! takes a machine
model, a register number, and a new value for the register as its arguments.

2. The instructions module provides the assembler with constructors for each
kind of machine language instruction. It also provides the simulator with a
do-instruction-in-model procedure, which takes one of the machine lan-
guage instructions and a machine model and carries out the effects of that
instruction in the model. Notice that nothing outside of this module needs to
care what the encoding of a machine language instruction is. Also, this mod-
ule’s do-instruction-in-model procedure doesn’t need to care about the
representation for machine models because it can use the access and updat-
ing procedures previously described. Part of the effect of every instruction on a
model is to update that model’s program counter, using set-pc!. This effect
exists even for nonjumping instructions, which set the PC to 1 more than its
previous value.

The instruction constructors are make-load-inst, make-store-inst, make-
load-immediate-inst, make-add-inst, make-sub-inst, make-mul-inst,
make-div-inst, make-quo-inst, make-rem-inst, make-seq-inst, make-
sne-inst, make-slt-inst, make-sgt-inst, make-sle-inst, make-sge-
inst, make-jeqz-inst, make-jump-inst, make-read-inst, make-write-
inst, and make-halt-inst. Each of these takes one argument per operand
specifier in the same order as the operand specifiers appear in the assembly lan-
guage instruction. For example, make-load-inst takes two arguments because
load instructions have two operand specifiers. The two arguments in this case
are the register numbers. (They must be numbers, not names.) For make-load-
immediate-inst, the second argument must be the actual numeric constant
value.

3. Finally, there is the main module that provides the load-and-run procedure. It
makes heavy use of the services provided by the other two modules, concerning
itself primarily with the overall orchestration of the execution of the simulated
program. Its argument is a vector of instructions; at each step (so long as the
machine isn’t halted), it retrieves from this vector the instruction addressed by the
model’s program counter and does that instruction in the model. Once the model
indicates that the machine has halted, the load-and-run procedure returns a
count of how many instructions were executed.
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The main module is the simplest, so let’s start there. It needs only to provide the
load-and-run procedure. Having identified that the machine model module makes
the make-machine-model, halted? and get-pc procedures available, and that the
instructions module makes the do-instruction-in-model procedure available,
we can write load-and-run as follows:

(define load-and-run

(lambda (instructions)

(let ((model (make-machine-model))

(num-instructions (vector-length instructions)))

(define loop

(lambda (instructions-executed-count)

(if (halted? model)

instructions-executed-count
(let ((current-instruction-address (get-pc model)))

(cond

((= current-instruction-address num-instructions)

(error "Program counter ran (or jumped) off end"))

((> current-instruction-address num-instructions)

(error

"Jump landed off the end of program at address"

current-instruction-address))

(else

(do-instruction-in-model
(vector-ref instructions

current-instruction-address)

model)

(loop (+ instructions-executed-count 1))))))))

(loop 0))))

Either of the other two modules could be done next or they could even be
done simultaneously by two different programmers. In this textbook, we choose
to focus on the machine model module first. Recall that it provides a constructor,
make-machine-model, and various procedures for examining and updating machine
models (we call these latter procedures selector and mutator procedures, respectively).
A machine model needs to contain models of the machine’s memory, registers,
and the two miscellaneous items of state, the program counter and the haltedness
indicator. The obvious representation for the memory is as a vector that is as large
as the simulated memory. Similarly, it seems natural to use a vector of length 32 to
model the machine’s bank of 32 registers. We’ll lump the other two pieces of state
into a third vector, of length 2; this leads to the following constructor:

(define mem-size 10000)
(define reg-bank-size 32)
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(define make-machine-model
(lambda ()
(let ((memory (make-vector mem-size))

(registers (make-vector reg-bank-size))
(misc-state (make-vector 2)))

(zero-out-vector! memory)
(zero-out-vector! registers)
(vector-set! misc-state 0 0) ; PC = 0
(vector-set! misc-state 1 #f) ; not halted
(list memory registers misc-state))))

This constructor produces machine models that are three element lists, consist-
ing of the memory vector, the registers vector, and the miscellaneous state vector.
This latter vector has the PC in location 0 and the haltedness is location 1. Using
this information, we can now write the four selectors and four mutators. Here, for
example, are the selector and mutator for the registers:

(define get-reg
(lambda (model reg-num)
(vector-ref (cadr model) reg-num)))

(define set-reg!
(lambda (model reg-num new-value)
(vector-set! (cadr model) reg-num new-value)))

Exercise 11.15

Write the remaining selectors and mutators: get-pc, set-pc!, halted?, halt!,
get-mem, and set-mem!.

Moving to the instructions module, we could choose from many possible repre-
sentations for machine language instructions. Some would be more realistic if the
machine language were actually to be loaded into a hardware SLIM, built from
silicon and copper. Here we’ll cop out and use a representation that makes the
simulator easy to develop. If the representation used by this module were changed,
both the assembler (which uses this module’s instruction constructors) and the main
part of the simulator would remain unchanged; therefore, we can afford to cop out
now, knowing that the decision is reversible if we ever get serious about building
hardware.

Specifically, we’ll represent each machine language instruction as a procedure for
suitably updating the machine model, when passed that model as its argument. In
other words, we’ll have a trivial do-instruction-in-model :
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(define do-instruction-in-model
(lambda (instruction model)
(instruction model)))

Even though this pushes off all the real work to the instruction constructors, they
aren’t especially hard to write either, thanks to the support provided by the machine
model module. Here is an example:

(define make-load-inst
(lambda (destreg addressreg)
(lambda (model)
(set-reg! model

destreg
(get-mem model

(get-reg model addressreg)))
(set-pc! model (+ (get-pc model) 1)))))

Exercise 11.16

Write the other instruction constructors: make-store-inst, make-load-
immediate-inst, make-add-inst, make-sub-inst, make-mul-inst, make-
div-inst, make-quo-inst, make-rem-inst, make-seq-inst, make-sne-inst,
make-slt-inst, make-sgt-inst, make-sle-inst, make-sge-inst, make-
jeqz-inst, make-jump-inst, make-read-inst, make-write-inst, and make-
halt-inst.

At this point, you should be able to try out the simulator. Here is an example that
avoids using the assembler; it is the program that we presented in Section 11.3 as
our first complete program, the one for displaying 314 and then halting:

(let ((instructions (make-vector 3)))
(vector-set! instructions 0

(make-load-immediate-inst 1 314))
(vector-set! instructions 1

(make-write-inst 1))
(vector-set! instructions 2

(make-halt-inst))
(load-and-run instructions))

Of course, there is no need to make all your instructions by hand this way, when
an assembler can do the work for you. Writing an assembler in Scheme that could
read in the exact assembly notation we showed earlier would distract us with various
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(define write-larger
(assemble
’((allocate-registers input-1 input-2 comparison jump-target)

(read input-1)
(read input-2)
(sge comparison input-1 input-2)
(li jump-target input-2-larger)
(jeqz comparison jump-target)

(write input-1)
(halt)

input-2-larger
(write input-2)
(halt))))

Figure 11.7 Assembling a program using our variant notation. This definition would re-
sult in write-larger being a vector of machine language instructions; you could then do
(load-and-run write-larger). Note in particular that labels don’t end with colons.

messy details, like how to strip the colon off the end of a label. On the other hand, if
we are willing to accept the variant notation illustrated in Figure 11.7, the assembler
becomes a straightforward application of techniques from earlier chapters, such as
the pattern/action list. An assembler written in this way is included in the software
on the web site for this book. We won’t include a printed version of it here, but you
might be interested in looking at it on your computer.

Review Problems

Exercise 11.17

Suppose you wanted to make SLIM cheaper to build by eliminating some of the six
comparison instructions.

a. If you were only willing to modify your programs in ways that didn’t make them any
longer, how many of the comparison operations could you do without? Explain.

b. Suppose you were willing to lengthen your programs. Now how many of the
comparison operations do you really need? Explain.
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Exercise 11.18

Write a SLIM program to read in one or more single-digit numbers, followed by a
negative number to indicate that the digits are over. The program should then write
out the number those digits represent, treated as a decimal integer. The first digit
read in should be the most significant digit. So, for example, if the program reads in
3, 1, 4, and then 21, it should output the number 314. If you had a machine similar
to SLIM but (more realistically) only able to input a single character at a time, this
is how you would have to input numbers.

Exercise 11.19

Write a SLIM program to read a nonnegative integer in and then display its digits
one by one, starting with the leftmost digit. If you had a machine similar to SLIM
but it was (more realistically) only able to output a single character at a time, this
method is how you would have to output numbers. (Hint: Your solution will probably
be similar to the one for Exercise 11.11.)

Exercise 11.20

Suppose you bought a second-hand SLIM dirt cheap, only to find that the j instruc-
tion on it didn’t work. Explain how you could rewrite all your programs to not use
this instruction.

Exercise 11.21

Write a procedure in Scheme that when given a vector and two integers specifying
locations within the vector, it swaps the contents of the specified locations.

Exercise 11.22

Write a procedure in Scheme that when given a vector, it stores 0 into location 0 of
that vector, 1 into location 1, 2 into location 2, etc.

Exercise 11.23

We can represent a deck of cards as a 52-element vector, initialized to hold the values
0 through 51 using the procedure from Exercise 11.22. If we wish to randomize the
order of the “cards” (i.e., values) prior to using the deck in a game, we can use the
following plan:
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1. Randomly pick an integer in the range from 0 to 51; we’ll call this integer i.
2. Swap the contents of locations i and 51 of the vector, using the swapping procedure

from Exercise 11.21.
3. Now similarly pick a random number in the range from 0 to 50, and swap that

location with location 50.
4. Continue in this way with progressively smaller prefixes of the vector, swapping a

randomly chosen location within the range with the last element of the range.
5. Once a random choice of either location 0 or 1 has been swapped with location 1,

the vector has been totally randomized.

Implement this randomization procedure in Scheme; the procedure should take
the vector to randomize as its argument and should work for vectors of sizes other
than 52.

Exercise 11.24

Write a procedure, shift!, which takes a vector as its one argument and modifies
that vector by shifting its contents down one position as follows. If the length of the
vector is n, for k in the range 0 # k , n 2 1, position k of the vector should be
modified to hold the value that was originally in position k 1 1. The last element of
the vector should be left unchanged. Warning: It matters whether you loop upward
from the beginning of the vector to the end or downward from the end of the vector
to the beginning.

Exercise 11.25

The following SLIM assembly language program reads in two integers, x and y,
computes some function of them, and writes out the answer. You may assume that
neither x nor y is negative and that the arithmetic operations done by the program
never overflow (i.e., never produce a result too large or small to represent). Express
in a simple mathematical formula what function of x and y the program computes.
Explain the reasoning behind your answer.

allocate-registers x, y, z, one, loop-reg, end-reg

read x
read y
li one, 1
li loop-reg, loop
li end-reg, end
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loop:
jeqz y, end-reg
add z, x, x
add z, z, z
sub x, x, z
sub y, y, one
j loop-reg

end:
write x
halt

Exercise 11.26

Consider the following iterative procedure that computes the sum of digits of a
nonnegative number:

(define sum-of-digits
(lambda (n) ; assume n >= 0
(define iter
(lambda (n acc)
(if (= n 0)

acc
(let ((last-digit (remainder n 10)))
(iter (quotient n 10)

(+ acc last-digit))))))
(iter n 0)))

Write a SLIM assembly language program that reads in an integer n (which you
may assume is nonnegative) and writes out the sum of its digits, using the algorithm
described in the previous Scheme procedure.

Exercise 11.27

Write a procedure multiply-by! that takes a vector and a number and changes the
vector by multiplying each value in the vector by that number. You may assume that
the vector itself is filled with numbers. As an example, you should have the following
interaction:
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(define v (vector 2 1 4 5))

v
#(2 1 4 5) ; <-- this is the way Scheme displays vectors

(multiply-by! v 3)
done

v
#(6 3 12 15)

(multiply-by! v 2)
done

v
#(12 6 24 30)

Exercise 11.28

Write a SLIM assembly language program that reads in an integer n (which you
may assume is positive) and writes out its largest odd divisor, using the algorithm
described in the Scheme procedure of Exercise 3.13 on page 69.

Hint: You can test whether the contents of a given register is odd by using the
SLIM instruction rem to check whether its remainder upon division by 2 is 1.
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Notes

Our SLIM architecture is similar to that of many modern RISC instruction set ar-
chitectures, such as the MIPS architecture described by Kane and Heinrich [30].
A good next step if you are interested in computer organization and assembly lan-
guage programming is Patterson and Hennessy’s book [39]. (That book uses the
MIPS architecture for its examples, so the transition from SLIM should be relatively
smooth.)

One key difference to be aware of if you compare our treatment of assembly
language programming with that of other authors is that what we refer to as a
continuation address is called a return address by most other authors; similarly, they
refer to a return address register rather than a continuation register. This alternate
name reflects the fact that the continuation of a procedure often is directly after the
corresponding call, so the procedure continues by returning whence it came. Our
choice of name reflects the fact that although this returning behavior is common, it
isn’t universal, so we’d rather use the more neutral name continuation address.
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Dynamic Programming

12.1 Introduction

In the previous chapter, we introduced the notion of storage, embodied in Scheme
by vectors. The point of storage is to allow one part of a computation to store a
value that a later part of the computation will retrieve. However, this leaves open
the question of what ultimate objectives can be served by this “squirreling away” of
information.

In this chapter, we’ll introduce one important use for storage, a technique that
can be used to make some computations dramatically more efficient. In particular,
we’ll look at tree-recursive processes that naturally wind up repeatedly recomputing
the solution to identical subproblems. By using storage, we can keep track of which
computations have already been done and what the results were so that we can reuse
the results rather than recompute them. We’ll look at two variants on this theme,
one in which results are stashed away on an “opportunistic” basis as they need to
be computed and another in which we systematically precompute results before we
have any need for them. Although we’ll look at the differences between these two
variants, we’ll also emphasize their commonality. Both have the power to turn a
computation that takes too long to be feasible into one that completes in an instant.

We’ll start with an overview section, in which we take a single simple example
problem through all three different versions: the original tree-recursive form, the
version that opportunistically stores results (memoization), and the version that pre-
computes results (dynamic programming). We’ll then have a section apiece devoted
to memoization and dynamic programming, in which we work through more exam-
ples, addressing some side issues that don’t arise in our simple introductory example.
A short section brings the two variants back together in order to compare their rela-
tive advantages. Finally, you will apply these techniques to the problem of breaking
paragraphs into lines in a visually pleasing way.

379
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12.2 Revisiting Tree Recursion

During summer vacation this year, two of us decided to add a path from our back
door to the garden. We had two different lengths of paving stones available to us;
one was 1 foot long and the other was 2 feet. (Both were wide enough for the kind
of path we had in mind.) We were willing to use any combination of the two sizes,
provided that the total length worked out correctly. When we tried to decide the
exact pattern of stones, however, we found that we could not agree on which pattern
to follow. At that point, the third author suggested that we use Scheme to generate
all the possible patterns, present them to him, and he would pick the most pleasing
one. For example, if the path was only 4 feet long, there would be five patterns that
look like these:

As we headed indoors to try this idea out, one of us had second thoughts and became
concerned about the number of pictures we might wind up generating. We decided
to first write a procedure that would count the number of different ways to make a
path using these pavers.

To write this procedure, we can concentrate on the length of the path. If the
length is 1 foot, there is only one way to form it, because we must use one of the
pavers that are 1 foot long. If the length is 0 feet, there is only one way to form it, by
using no pavers at all. On the other hand, if the length is 2 or more feet, we have
two choices for the first paver. If we use a 1-foot paver as the first paver, the number
of ways to pave the remainder of the walk is the same as the number of ways to
construct a walk that is 1 foot shorter. Similarly, if the first stone is a 2-foot paver,
the number of ways to complete the path is the number of ways to construct a path
that is 2 feet shorter. Thus, the total number of ways (starting with either size paver)
to construct a path that is a given length will be the sum of the number of ways to
construct a path that is 1 foot shorter and the number of ways to construct a walk 2
feet shorter:

(define walk-count
(lambda (feet)
(cond ((= feet 0) 1)

((= feet 1) 1)
(else (+ (walk-count (- feet 1))

(walk-count (- feet 2)))))))

We tested this out on some relatively small numbers, and it seemed to work. For
example, it correctly told us that there are five ways to pave a 4-foot walk, as shown
by the preceding pictures. So, we moved to our real question, which was how many
ways there were to pave the 30-foot path in the back yard. After waiting over a minute
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without getting an answer, we got impatient and gave up. Interestingly, the answer
was nowhere near as slow in arriving for only slightly shorter paths; for example, we
were able to find in under a second that there are 10,946 different ways to pave a
20-foot path. Later, when we were feeling more patient, we timed the procedure for
all lengths from 20 to 30 feet and constructed the following table:

Path length Ways to pave Seconds to find

20 10,946 0.83
21 17,711 1.32
22 28,657 2.14
23 46,368 3.49
24 75,025 5.61
25 121,393 9.08
26 196,418 14.51
27 317,811 23.56
28 514,229 37.87
29 832,040 61.28
30 1,346,269 99.67

As you can see from the table, although our tree-recursive procedure is very
elegant, it also takes an enormous amount of time except for very small path lengths.
Remembering the asymptotic outlook from Chapter 4, what is happening is that
the time is growing quickly as the path length increases. You may notice that the
number of ways to pave the path is also growing similarly quickly. If you compare
adjacent rows of the table, you’ll see that neither the number of ways to pave nor
the number of seconds taken is growing so fast as to double with each additional
foot of path. On the other hand, if you compare a row with the one two rows down
from it, you’ll see that both the number of pavings and the number of seconds are
growing quickly enough that they more than double with each additional 2 feet of
path. So, if we use n to denote the path length in feet, the empirical evidence seems
to suggest that both the number of pavings and the time taken have order of growth
Q(bn) where the base of the exponent, b is somewhat more than

√
2 but less than 2.

(Exponential growth with a base of 2 would double each foot, whereas with a base
of

√
2, it would double every 2 feet.) It turns out that it isn’t hard to show that the

number of pavings and the time grow faster than (
√

2)n and slower than 2n. We’ll
take a minute to do the necessary math and then move on to our real goal, which is
to show how to use memory in the form of vectors to dramatically reduce the order
of growth of tree-recursive processes like this one.

Before doing the mathematical analysis, we’ll give a more compact name to the
number of ways to pave an n-foot path using any mixture of 1- and 2-foot pavers.
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Traditionally mathematicians use the symbol Fn11 for this number. That is, F1 is the
number of ways to pave a 0-foot walk, F2 is the number of ways to pave a 1-foot
walk, etc. The letter F stands for Fibonacci, because these numbers are known as
the Fibonacci numbers. These numbers were originally popularized by a problem
concerning rabbit reproduction in an early thirteenth-century arithmetic book whose
author, Leonardo Pisano, was sometimes known by the patronymic Fibonacci.

At any rate, our definition is that F1 5 1, F2 5 1, and for any n . 2, Fn 5
Fn21 1 Fn22. You can convince yourself that after the first two Fibonacci numbers,
they get steadily larger, that is, Fn . Fn21 for all n . 2. (All the Fibonacci numbers
are positive because adding positives yields a positive; thus, because Fn is the sum of
Fn21 and the positive number Fn22, it must be larger than Fn21.) We can get some
handle on how fast the Fibonacci numbers grow by observing that Fn 5 Fn21 1Fn22,
and because the numbers are increasing in size, we have Fn21 . Fn22 (for n . 3).
Therefore, Fn must be larger than twice Fn22 but not as large as twice Fn21 (again,
for n . 2). Thus we have shown that the number of ways to pave a path more than
doubles with every 2 feet in length but doesn’t grow quickly enough to double every
foot, in keeping with the empirical evidence.

All that remains is to show that the time our tree-recursive procedure takes to
compute Fn11 grows at the same order of growth as Fn11 itself. If you look at the
procedure, you can see that all it does is add up lots of 1s to get its answer. The base
case invocations supply the 1s, and the remaining procedure invocations add them
up. To get a total answer of Fn11, there must be Fn11 1s being added together, so the
recursion tree must have Fn11 base-case leaves. Imagine starting with those Fn11 1s in
a pile and repeatedly taking two numbers out of the pile, adding them together, and
putting the sum back into the pile. Continue until there is only one number left in
the pile. How many additions did you do? Well, each addition reduced the number
of numbers by one because you took two numbers out of the pile and put one back
in. You started with Fn11 numbers (the 1s) and ended with one number (Fn11 itself).
Thus, the number of numbers went down by Fn11 2 1, and that must be the number
of additions. This tells us how many invocations of the walk-count procedure
there are when you start by doing (walk-count n). The answer is Fn11 base-case
invocations plus Fn11 2 1 adding-up invocations, for a grand total of 2Fn11 2 1.
Thus, the amount of work done has the same order of growth as Fn11 does, namely,
a quickly growing exponential growth.

From the foregoing analysis, and our earlier table of ways to pave paths of length
20 through 30 feet, we can see that evaluating (walk-count 30) winds up involving
over 2.6 million invocations of walk-count. On the other hand, there isn’t much
variety in these invocations. Because the walk-count for a particular path length is
computed only from the counts for smaller path lengths, there are at most 31 differ-
ent walk-counts that can be involved in the computation of (walk-count 30):
(walk-count 0) up through (walk-count 30). Since we have over 2.6 million
invocations of walk-count, but at most 31 different ones, there clearly must be a
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great deal of repetition. This is our sign that there is a substantial opportunity for
improvement. This is a general sign, worth being on the lookout for in the future.
Therefore, we’ll give it a name:

The much computation, little variety sign: If a procedure does a great number
of subcomputations, but there isn’t much room for variety in the subcomputa-
tions that can arise, a lot of repeated computations must occur. That is a sign
that a large performance improvement may be possible.

With this sign to motivate us, we’ll turn to how we can use memory to get a
more reasonable order of growth. We will look at two techniques, memoization and
dynamic programming. We don’t actually need either of these techniques to write an
efficient version of the walk-count procedure—we could instead just write an itera-
tive version. However, we’re going to need memoization and dynamic programming
in our tool kit when we encounter harder problems. Rather than waiting for those
problems, we’ll learn the essential ideas of memoization and dynamic programming
in the comparatively simple context of the walk-count procedure. Moreover, the
iterative version we’re choosing not to write isn’t fundamentally very different from
the dynamic programming version.

The first technique we look at is called memoization. The basic idea behind
memoization is to use memory to store a table of the values that we’ve already
calculated. Then we can take advantage of the fact that once we’ve calculated a
particular Fibonacci number, we will never need to recalculate it.

With memoization, we need to make a slight change in how we calculate Fi-
bonacci numbers. Whenever we need to know a smaller Fibonacci number, as a
subproblem, we don’t want to just blindly go ahead and calculate it. Instead, we want
to first check to see if it is already in our table of values; if not, we compute it and
put it in the table. To accommodate this change, we’ll slightly modify walk-count
so that rather than directly invoking itself for the recursive calls, it invokes a separate
walk-count-subproblem procedure:

(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))

Before we define walk-count-subproblem, and see how it stores the subproblem
values in a table for reuse, let’s address the question of where the table comes
from. What we can do is define a memoized-walk-count procedure that creates
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the table (as an n-element vector), then has internal definitions of our modified
walk-count, walk-count-subproblem, and other helping procedures, and finally
calls the modified walk-count to do the actual computation. That is, the overall
template looks like this:

(define memoized-walk-count
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))
(define walk-count-subproblem
(lambda (n)

we still need to define this))
there will be some other helping stuff here
(walk-count n))))

Of course, we could have named the outer memoized-walk-count procedure
walk-count as well, which would have the advantage that any callers of the old,
slow, tree-recursive walk-count procedure would automatically now be calling the
sleek, new, memoized version. We’ve chosen to give it a distinctive name so that we
can more easily compare the two versions.

We can write walk-count-subproblem as a two-step process: first ensure that
the value is in the table (i.e., put it there if it isn’t already), and then in any case
return the value found in the table:

(define walk-count-subproblem
(lambda (n)
(ensure-in-table! n)
(vector-ref table n)))

To ensure that a value is in the table, we will first check to see if the table has
a value already stored in the position n; if not, we store one there. This leaves the
question: How do we check? We’ll take the approach of initially storing the false
value, #f, into all the table entries. That way when an actual value is stored into
one of the entries, it will change from being false to being something nonfalse.
Because Scheme interprets anything other than false as being true, we can write the
procedure as follows:
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(define ensure-in-table!
(lambda (n)
(if (vector-ref table n) ; anything but #f ?

’done
(store-into-table! n))))

The store-into-table! procedure itself is trivial:

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

The only missing step is initially filling the whole table with #f values. That can be
done using a procedure called vector-fill!, which we we would use as follows:

(vector-fill! table #f)

The procedure vector-fill! is very similar to the procedure zero-out-vector!
in Section 11.6 in that it puts a particular value in each location of a vector. This
procedure is specified by the R4RS Scheme standard as being “inessential” (i.e., not
every Scheme implementation is required to provide it).

Exercise 12.1

Write the procedure vector-fill!

At this point, we’ve seen all the pieces of memoized-walk-count and merely
need to put them together in one place:

(define memoized-walk-count
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))
(define walk-count-subproblem
(lambda (n)
(ensure-in-table! n)
(vector-ref table n)))
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(define ensure-in-table!
(lambda (n)
(if (vector-ref table n)

’done
(store-into-table! n))))

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

(vector-fill! table #f)
(walk-count n))))

Now let’s take a careful look at how the table gets filled in. As soon as a value is
calculated for the first time, it is placed in the table. On the other hand, we can’t
compute a value until we have computed the previous two values. Thus, the very
first values that go in the table are F1 and F2, then F3, F4, and so on. This suggests
an iterative way of computing Fibonacci numbers, using a vector. The basic idea is
to construct a vector of values as we did in the memoized approach, but instead of
filling this vector in as needed, we start at the beginning (at index 0) and fill in the
whole vector systematically, start to finish. This second approach to using memory
to improve the time complexity of a procedure is called dynamic programming;
we’ll abbreviate dynamic programming to dp and call this version of the procedure
dp-walk-count:

(define dp-walk-count
(lambda (n)

(let ((table (make-vector n)))

(define walk-count

(lambda (n)

(cond ((= n 0) 1)

((= n 1) 1)

(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))

(define walk-count-subproblem

(lambda (n)
;; no need to ensure in table, given systematic filling in

(vector-ref table n)))

(define store-into-table!

(lambda (n)

(vector-set! table n (walk-count n))))

(define store-into-table-from!

;; does store-into-table! for values from start through n-1
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(lambda (start)

(if (= start n)
’done

(begin

(store-into-table! start)

(store-into-table-from! (+ start 1))))))

(store-into-table-from! 0)

(walk-count n))))

Exercise 12.2

Make a list of the parts of memoized-walk-count and dp-walk-count that are
identical and a list of those that are different.

Exercise 12.3

Compute by hand the value of (walk-count 10) (i.e., F11).

If you compare the procedure store-into-table-from! to your code for
vector-fill!, you will probably notice that the two procedures are very simi-
lar. Both of these have the same basic structure of evaluating an expression for the
integers ranging from some initial value up to some final value. We can abstract
these procedures by writing a higher-order procedure called from-to-do:

(define from-to-do
(lambda (start stop body)
(if (> start stop)

’done
(begin (body start)

(from-to-do (+ 1 start) stop body)))))

We can then rewrite dp-walk-count using from-to-do:

(define dp-walk-count-2
(lambda (n)
(let ((table (make-vector n)))
(define walk-count
(lambda (n)
(cond ((= n 0) 1)

((= n 1) 1)
(else (+ (walk-count-subproblem (- n 1))

(walk-count-subproblem (- n 2)))))))
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(define walk-count-subproblem
(lambda (n)
;; no need to ensure in table
(vector-ref table n)))

(define store-into-table!
(lambda (n)
(vector-set! table n (walk-count n))))

(from-to-do 0 (- n 1) store-into-table!)
(walk-count n))))

The most important point to make is that both the memoized and the dynamic
programming versions are huge improvements over the original tree recursive version.
You may recall that the original version took times ranging from 0.83 seconds to
compute F21 up to 99.67 seconds to compute F31 on our computer. By contrast, the
memoized and dynamic programming versions ranged from 0.002 or 0.003 seconds
for F21 only up to 0.003 or 0.004 seconds for F31.

Because the two techniques are so similar and lead to such similarly dramatic
performance improvements, you may wonder why we’ve bothered to present both.
Each technique turns out to have its own advantages; however, they don’t show up
very clearly in this simple example. Therefore, we’ll wait until we’ve seen more
examples of memoization and dynamic programming (in the next two sections)
before presenting a comparison of the relative strengths of these two techniques. The
key point to remember, though, is that the differences between memoization and
dynamic programming are nowhere near as dramatic as those between either one of
them and tree recursion.

Although we probably could have figured out the dynamic programming version
of walk-count without writing the memoized version first, we will find that with
more complicated problems, doing a memoized version helps us visualize the table
without having to worry about how it gets filled in. In the rest of this chapter, we will
look at several problems, first concentrating on how to make a memoized version
and then looking at how to write dynamic programming solutions.

12.3 Memoization

In this section, we consider the binomial coefficients that are calculated by the
solution to Exercise 4.17 on page 103. These numbers describe the number of ways
to select a subset of k objects from a set of n distinct objects, for values of k and n
such that 0 # k # n. To choose k of n items, we can either choose the first item
and k 2 1 of the remaining n 2 1 or not choose the first item and choose k of the
remaining n 2 1. This provides the recursive case of our procedure:
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(define choose
(lambda (n k)
(cond ((= n k) 1)

((= k 0) 1)
(else (+ (choose (- n 1) (- k 1))

(choose (- n 1) k))))))

We can measure the time complexity of choose by counting the number of
additions that are needed to compute (choose n k). Because the base cases only
contribute a value of 1, we can use the same argument as we did with walk-count
to show that the number of additions needed to compute (choose n k) must be
one less than its actual value. However, finding bounds on the size of C(n, k) is very
complicated (and beyond the scope of this text). Even if n grows large, C(n, k) won’t
grow rapidly larger if k stays small. In particular, C(n, 0) 5 1 and C(n, 1) 5 n, neither
of which is rapidly growing. Similarly, if k stays close to n as n grows, C(n, k) again
won’t grow rapidly; as examples, consider that C(n, n) 5 1 and C(n, n 2 1) 5 n. The
most rapidly growing case is when k is midway in between these extremes, that is,
when we’re looking at C(2k, k) as k grows large. This case grows very large very fast,
as shown in the following table:

k C(2k, k)

1 2
2 6
3 20
4 70
5 252
6 924
7 3, 432
8 12,870
9 48,620

10 184,756
11 705,432
12 2,704,156
13 10,400,600
14 40,116,600
15 155,117,520
16 601,080,390
17 2,333,606,220
18 9,075,135,300
19 35,345,263,800
20 137,846,528,820
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Thus, it is clear that our tree-recursive choose procedure, which adds up 1s one at
a time, is going to take an unreasonable amount of time even to solve such a small
problem as C(40, 20).

Exercise 12.4

Draw a tree, analogous to Figure 4.4 on page 92, showing how the value of C(4, 2)
is computed by choose. Your tree should have C(4, 2) at the root and six 1s as its
leaves.

Exercise 12.5

Explain how the “much computation, little variety sign” applies to this problem. In
particular, we showed that C(40, 20) 5 137,846,528,820, which the tree-recursive
choose procedure computes by adding up 137,846,528,820 1s, clearly a great deal of
computation. What about the variety side of the picture? In the course of computing
C(40, 20), the tree-recursive choose procedure winds up computing C(n, k) for other
values of n and k. Can you say anything about how many different combinations of
n and k might arise?

We will first improve the time complexity of choose by using memoization, just
as we did with the Fibonacci numbers. In the next section, we will look at a dynamic
programming solution to computing choose.

There is one major difference between choose and walk-count. Whereas
walk-count has only one parameter and thus can easily use a vector to store the
calculated values, choose has two parameters. If we think of the walk-count value
vector as being a table, we see that we were using a one-dimensional table there.
For choose we’ll need a two-dimensional table, or a grid. Such a table would have
two sets of indices, one for the rows and one for the columns. Each element in the
table can be located by two numbers—one that identifies which row the element
is in and one that identifies which column it’s in. A typical picture would then be
something like the following

0 1 2 3 4 5
0
1
2 6
3

In this example, the element in row 2 and column 4 is 6, and the height of the table
(number of rows) is 4, whereas the width (number of columns) is 6. Note that the
rows and columns are numbered starting from 0.
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Unfortunately, Scheme does not provide two-dimensional tables for us. We can
define an abstract data type for them; we’ll need to have a procedure that constructs
tables, a procedure that looks up a value in a table, and a procedure that changes
the value of a given location in a table. We could also have selectors that tell us
how many rows or columns a particular table has. Assume that these procedures are
specified by the following definitions:

(define make-table
(lambda (number-of-rows number-of-columns)
...))

(define table-ref
(lambda (table row column)
...))

(define table-set!
(lambda (table row column value)
...))

(define table-height
(lambda (table)
...))

(define table-width
(lambda (table)
...))

Exercise 12.6

Using these procedures, write

a. A procedure called table-fill! that takes a table and an element and sets every
entry in the table to the given element. For example, (table-fill! table 0)
would have a similar effect to that of zero-out-vector! in Section 11.6.

b. A procedure called display-table that nicely displays its table parameter.

How do we implement tables? We want to use vectors because they allow us to
store results. But somehow we need to create a two-dimensional table out of a one-
dimensional vector. One way to do this is to think of a table as a sequence of rows
(i.e., a vector of rows). Each row is then divided up into a sequence of elements, one
per column; in other words, each row is itself a vector. When we want the element
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in row r and column c, we look at the vector in position r of our table and find the
element in position c of that vector. Thus, the procedure table-ref is defined by

(define table-ref
(lambda (table row col)
(vector-ref (vector-ref table row) col)))

Exercise 12.7

Write the procedure table-set!

Exercise 12.8

Write the procedures table-height and table-width. Each of these should take
a table as a parameter and return the number of rows or columns in that table.

Creating the table is fairly straightforward. We want to first create a vector for the
rows. Then we want to fill this vector with vectors:

(define make-table
(lambda (r c)
(let ((table (make-vector r)))
(from-to-do 0 (- r 1)

(lambda (i)
(vector-set! table i (make-vector c))))

table)))

Now that we have tables, we can make a memoized version of choose, which
is very similar to making a memoized version of walk-count. As before, we will
construct a table, although this one is a two-dimensional table instead of a one-
dimensional one. We will initially set all of the entries of this table to false. Before
using any element of the table, we ensure that it has been filled in:

(define memoized-choose
(lambda (n k)
(let ((table (make-table n (+ k 1))))
(define choose
(lambda (n k)
(cond ((= n k) 1)

((= k 0) 1)
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(else (+ (choose-subproblem (- n 1) (- k 1))
(choose-subproblem (- n 1) k))))))

(define choose-subproblem
(lambda (n k)
(ensure-in-table! n k)
(table-ref table n k)))

(define ensure-in-table!
(lambda (n k)
(if (table-ref table n k)

’done
(store-into-table! n k))))

(define store-into-table!
(lambda (n k)
(table-set! table n k (choose n k))))

(table-fill! table #f)
(choose n k))))

As you can see, the relationship between memoized-choose and choose is
essentially identical to the relationship between memoized-walk-count and
walk-count, except make-table, table-ref, table-set!, and table-fill! are
used in place of make-vector, vector-ref, vector-set!, and vector-fill!.

One subtle point is the size chosen for the table: n rows and k 1 1 columns. The
n rows are enough because the first argument to choose-subproblem will never
be any larger than n 2 1. (Remember, with n rows, the indices can run from 0 to
n 2 1.) By contrast, the second argument to choose-subproblem can be as large
as k. Therefore, k 1 1 columns are needed. That way the legal range for column
indices includes k.

One of the nice features about the memoized version of choose is the relationship
between the indices of the table entries and the values of those entries. More pre-
cisely, (choose i j) has the same value as (table-ref table i j), assuming
that the table has been filled in at that position. In the next example, we consider a
situation where this relationship is not as direct.

This second example is a chocolate version of a famous problem in computer
science. Suppose we are at a chocolate candy store and want to assemble a kilogram
box of chocolates. Some of the chocolates (such as the caramels) at this store are
absolutely the best in the world, and others are only so-so. In fact, we’ve rated each
one on a scale of 1 to 10, with 10 being the highest. Furthermore, we know the weight
of a piece of each kind; for example, a caramel weighs 13 grams. How do we put
together the best box weighing at most 1 kilogram? (The more well-known version
of this problem is known as the knapsack problem, but we have trouble imagining
packing chocolates into a knapsack rather than a box and trouble imagining anything
other than chocolate being of sufficient value to warrant optimization.)
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Before we start writing a Scheme procedure to solve this problem, we need to
construct abstract data types for chocolates and boxes of chocolates and to define
what we mean by “the best” box.

Defining chocolates is quite easy. At the candy store, each chocolate has a filling
(e.g., caramel, marshmallow, maple cream) and a coating of dark, milk, or white
chocolate. We also know the weight of an individual piece of chocolate as well as a
number that describes its desirability. We will glue these four attributes together in
a list and use car and cdrs for selectors:

(define make-chocolate
(lambda (filling covering weight desirability)
(list filling covering weight desirability)))

(define chocolate-filling car)
(define chocolate-covering cadr)
(define chocolate-weight caddr)
(define chocolate-desirability cadddr)

Boxes of chocolates are just collections of pieces of chocolate. Some boxes are
empty (indeed, in one author’s office, all the boxes are empty); some contain several
pieces. The weight of a box of chocolates is the sum of the weights of the pieces.
Similarly, the desirability of a box is the sum of the desirabilities of the pieces. The
best box, then, is the one with a maximum desirability.

As an abstract data type, we will want to know what chocolates are in the box,
what the weight of a box is, and what the desirability of a box is. We will also need to
compare two boxes to see which one is better. For constructors, we will need to be
able to make an empty box, and we will also need to be able to add a chocolate to
a box. Because we’re concentrating on buying the box, we won’t worry about taking
chocolates out of the box.

Initially, we might be tempted to use lists of chocolates to implement our box
ADT. To find the weight of a box, we would just cdr down the list that represents it
and add up the weights of the individual pieces, and we would find the desirability
in a similar fashion. However, this approach can be time-consuming if we do a lot of
box-weight or box-desirability operations. Because we want to use this ADT
in a procedure that finds the most desirable box subject to a given weight limit, we
are likely to be doing exactly that.

We can improve on using just lists to represent boxes by using a combination of
a list of chocolates, a weight, and a desirability. We will need to be sure that the
weight of a box is actually equal to the sum of the weights of the chocolates in the list
and, similarly, that the desirability is the sum of the desirabilities of the chocolates.
Therefore, whenever we add a piece of chocolate to a box, we will want to cons it
onto the list, add its weight to the weight and add its desirability to the desirability.
Furthermore an empty box will have a weight of 0 and a desirability of 0:
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(define make-empty-box
(lambda ()
(list ’() 0 0)))

(define box-chocolates car)
(define box-weight cadr)
(define box-desirability caddr)

(define add-chocolate-to-box
(lambda (choc box)
(list (cons choc

(box-chocolates box))
(+ (chocolate-weight choc)

(box-weight box))
(+ (chocolate-desirability choc)

(box-desirability box)))))

Exercise 12.9

Using these procedures, write a procedure called better-box that takes two boxes
of chocolates and returns the one that is more desirable. If they are equally desirable,
you should return whichever one you choose.

How do we find the most desirable box weighing 1 kilogram or less? As with
choose, we will first concentrate on finding a tree-recursive procedure to pick a box
and then will write a memoized version of that. The input to the procedure will
be the weight of the box we would like to buy and a list of all the chocolates that
are available in the store. Here is an example of one such list, constructed from the
chocolates available at a small store in Ohio:

(define shirks-chocolates-rated-by-max
(list (make-chocolate ’caramel ’dark 13 10)

(make-chocolate ’caramel ’milk 13 3)
(make-chocolate ’cherry ’dark 21 3)
(make-chocolate ’cherry ’milk 21 1)
(make-chocolate ’mint ’dark 7 3)
(make-chocolate ’mint ’milk 7 2)
(make-chocolate ’cashew-cluster ’dark 8 6)
(make-chocolate ’cashew-cluster ’milk 8 4)
(make-chocolate ’maple-cream ’dark 14 1)
(make-chocolate ’maple-cream ’milk 14 1)))
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Exercise 12.10

Although our program won’t be designed to take advantage of the peculiarities of
the above list, we should notice them so that we can check the program’s output
more easily.

a. Only three of the above ten kinds of chocolate can ever show up in an optimal
box of chocolates, no matter what the box’s weight limit is. Which three are they?

b. Figure out by hand the optimal box weighing no more than 20 grams and the
optimal box weighing no more than 25 grams.

To write a tree-recursive procedure to find the best box for Max, we will concen-
trate on the first chocolate in the list. We will find the best box of chocolates that
doesn’t have any dark chocolate-covered caramels in it, we’ll find the best box of
chocolates that has at least one dark caramel in it, and we’ll take the better of these
two. To make the best 1000-gram (or less) box that has at least one dark caramel
in it, we can make the best 987-gram (or less) box of any kind and then add one
(13-gram) dark chocolate caramel to it. Note that in the case where we exclude the
dark chocolate caramels, we have to find the best box of chocolates using a smaller
list of available chocolates, whereas in the case where we commit 13 grams of our
weight limit for the dark chocolate caramel, we have to assemble the rest of the box
with a smaller remaining weight limit. Thus, our base cases would occur when the
list of available chocolates is empty or when the weight limit is zero. We also need to
remember that if the weight limit is less than 13 grams, we can’t choose to include
a caramel!

(define pick-chocolates

(lambda (chocolates weight-limit)

(cond ((null? chocolates) (make-empty-box))

((= weight-limit 0) (make-empty-box))

((> (chocolate-weight (car chocolates)) ; first too heavy

weight-limit)

(pick-chocolates (cdr chocolates) weight-limit))

(else
(better-box

(pick-chocolates (cdr chocolates) ; none of first kind

weight-limit)

(add-chocolate-to-box

(car chocolates) ; at least one of the first kind

(pick-chocolates chocolates

(- weight-limit

(chocolate-weight

(car chocolates))))))))))
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This procedure is similar to choose in that the else clause has two recur-
sive calls; thus we would expect a worse-case scenario where the time complexity
is roughly exponential. To improve the time complexity, we will try to memoize
pick-chocolates. As with choose, we will need a two-dimensional table. One
dimension will correspond to the weight. In other words, we can use the numbers
from zero up to and including the weight limit to index the columns, say. The other
dimension will correspond to the list of available chocolates in some way. But we
must use integers for indexing the rows; we can’t use lists. One way to get around
this problem is to use the length of each list. Thus, if we’re using the list of Shirk’s
chocolates given above, the row with index 10 would correspond to the whole list of
chocolates, the row with index 9 would correspond to the cdr of that list, and so on.
The entries of the table will be boxes of chocolates. To be precise, the entry in the
ith row and jth column will be the best box of chocolates weighing at most j grams
and restricted to the last i elements of the list of available chocolates.

Exercise 12.11

We assume that the weight limit and the weight of each kind of chocolate is an
integer number of grams. Why is this assumption necessary?

Now that we know how our table works, writing the memoized version of
pick-chocolates is very straightforward. As with choose and walk-count, we
will want to construct a table and fill it with the value #f. The rest of the construc-
tion is also essentially the same as before. The one substantial novelty is that we will
need to use the length of the chocolates list for indexing the rows of the table:

(define memoized-pick-chocolates

(lambda (chocolates weight-limit)

(let ((table (make-table (+ (length chocolates) 1)

(+ weight-limit 1))))

(define pick-chocolates

(lambda (chocolates weight-limit)

(cond ((null? chocolates) (make-empty-box))

((= weight-limit 0) (make-empty-box))

((> (chocolate-weight (car chocolates))

weight-limit) ; first too heavy
(pick-chocolates-subproblem (cdr chocolates)

weight-limit))

(else

;;(continued)
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(better-box

(pick-chocolates-subproblem
(cdr chocolates) ; none of first kind

weight-limit)

(add-chocolate-to-box

(car chocolates) ; at least one of the first kind

(pick-chocolates-subproblem

chocolates

(- weight-limit

(chocolate-weight (car chocolates))))))))))

(define pick-chocolates-subproblem

(lambda (chocolates weight-limit)
(ensure-in-table! chocolates weight-limit)

(table-ref table (length chocolates) weight-limit)))

(define ensure-in-table!

(lambda (chocolates weight-limit)

(if (table-ref table (length chocolates) weight-limit)

’done

(store-into-table! chocolates weight-limit))))

(define store-into-table!

(lambda (chocolates weight-limit)

(table-set! table (length chocolates) weight-limit
(pick-chocolates chocolates weight-limit))))

(table-fill! table #f)

(pick-chocolates chocolates weight-limit))))

Exercise 12.12

We used a tree-recursive procedure, count-combos, in Section 7.5 to determine
how many ways there were to redeem for prizes the 10 tickets one of our sons won
playing Whacky Gator at the local arcade.

a. Since we wrote Chapter 7, our children have grown older and are better Gator
Whackers. Empirically see how well (or poorly) the tree-recursive count-combos
procedure you wrote in Chapter 7 can accommodate this by seeing how the time
grows as the number of tickets to redeem grows.

b. Write a memoized version, and empirically compare it with your prior version.

12.4 Dynamic Programming

Although memoization can dramatically improve the performance of a tree-recursive
procedure, the memoized procedure still generates a recursive process. We saw that
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we could fill out the table in an iterative fashion with the Fibonacci example,
using dynamic programming. In this section, we will show how to use dynamic
programming to rewrite choose. Then we will consider another example, with
applications ranging from document management to molecular biology.

First, let’s look at the binomial coefficients, that is, the numbers calculated by
the procedure choose. If we look at the table of values at the end of computing
(memoized-choose 9 4), the table is as follows:

#f #f #f #f #f
1 1 #f #f #f
1 2 1 #f #f
1 3 3 1 #f
1 4 6 4 1
1 5 10 10 5
#f 6 15 20 15
#f #f 21 35 35
#f #f #f 56 70

As you can see, not all of the entries in the table wound up getting filled in because
not all of them had any bearing on computing C(9, 4). For example, the #f in the
lower left corner corresponds to C(8, 0); although this entry could legally be filled
in with the value 1, there was no reason to do so, because it did not arise as a
subproblem in computing C(9, 4). The #f values in the upper right portion of the
table are more interesting. These correspond to values of C(i, j) where i , j. In
particular, the far upper right entry is for C(0, 4), the number of ways of choosing
four items when you don’t have any to choose from. As before, these entries play
no role in computing C(9, 4). However, they are a little different from the values in
the lower left: Up until now we haven’t specified what the correct value is for C(i, j)
when i , j; our choose procedure doesn’t handle this case. To keep our dynamic
programming version of choose simple, we’ll have it fill in the whole table. To make
this possible, we’ll have to add one more case to the definition of choose. If you ask
how many ways there are to choose k items out of n, and k . n, there are 0 ways to
do it. Thus, the table as filled in by the dynamic programming version will be

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1
1 5 10 10 5
1 6 15 20 15
1 7 21 35 35
1 8 28 56 70
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Now that we’ve straightened out what needs doing—and in particular, that the
upper right triangular portion of the table gets filled in with zeros—we can write the
dynamic programming version much as before:

(define dp-choose

(lambda (n k)

(let ((table (make-table n (+ k 1))))

(define choose

(lambda (n k)

(cond ((< n k) 0) ; this is the new case

((= n k) 1)

((= k 0) 1)

(else (+ (choose-subproblem (- n 1) (- k 1))

(choose-subproblem (- n 1) k))))))
(define choose-subproblem

(lambda (n k)

(table-ref table n k)))

(define store-into-table!

(lambda (n k)

(table-set! table n k (choose n k))))

(from-to-do 1 (- n 1)

(lambda (row)

(from-to-do 0 k

(lambda (col)
(store-into-table! row col)))))

(choose n k))))

Exercise 12.13

Now that we have added a case for n , k, we could eliminate the case for n 5 k.
Explain why.

Exercise 12.14

Write a dynamic programming version of the chocolate box problem in the previous
section. You’ll find it helpful to first write a procedure that when given a number, n,
returns the last n elements of the list of chocolates.

For our second example, consider a problem that occurs in systems that keep
multiple old versions of large files. For example, in writing this book, we used a
program that kept each draft of a chapter. After the first few versions of a given
chapter, the number of changes from one draft to the next was relatively small,
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whereas the size of each draft was relatively large. Rather than storing all of the
different versions, our system stores only the current one. For each prior draft, it
stores a list of the changes between that draft and the next. Now, the smaller this list
of changes is, the less space we’ll need to store it. Thus we’d like to find the smallest
possible list of changes to convert one version into the next.

We will look at a somewhat simplified version of this problem. To be more precise,
suppose we have two vectors of symbols, and we want to convert the first vector to
the second by doing one of three things. We can insert a symbol into the first vector
(in any one position), we can delete one occurrence of a symbol from the first
vector, or we can replace one occurrence of a symbol with another symbol. What is
the minimal number of changes we need to make to convert the first vector to the
second? What are the changes that need to be made? We will answer the first question
using dynamic programming and then outline a way of modifying that solution to
find an answer to the second. Even without the modifications our procedure could
be useful—it could be used to determine how similar two documents are, or, equally
well, how similar two DNA sequences are.

We’ll start by concentrating on the sizes of the two vectors, which we’ll call vector1
and vector2. Suppose vector1 has n elements and vector2 has m elements. If n 5 0,
the minimal number of changes we need to make is m because we will have to
insert each element of that second vector into the first one. Similarly, if m 5 0,
the minimal number of changes we need to make is n because we’ll need to do n
deletions.

Now suppose both sizes are nonzero. We can look at the last element in each
vector and determine what to do by seeing if these elements are the same or not.
If they are the same, we simply need to find out how many changes are needed to
convert the first n 2 1 elements of vector1 into the first m 2 1 elements of vector2.

If, on the other hand, the last elements differ, we have three options:

1. We could delete the last element of vector1 and then find the minimum number
of changes needed to convert the first n 2 1 elements of vector1 into all of vector2.

2. We could find the minimum number of changes needed to convert all of vector1
into the first m 2 1 elements of vector2 and then insert the last element of vector2
at the end.

3. We could replace the last element of vector1 with the last element of vector2 and
then find the minimum number of changes needed to convert the first n 2 1
elements of vector1 into the first m 2 1 elements of vector2.

Note that in each of these cases, we decrease the size of at least one of the
vectors, in the sense that we are looking at one fewer element. The vectors them-
selves don’t shrink; we just focus attention on the first n 2 1 or m 2 1 elements
rather than all n or m. For this reason, the changes procedure that follows is writ-
ten in terms of an internal procedure named changes-in-first-and-elements,
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where (changes-in-first-and-elements i j) computes the minimum number
of changes needed to turn the first i elements of vector1 into the first j elements
of vector2. That is, it determines the number of changes needed in the first i and
j elements (of vectors 1 and 2, respectively), hence the name. This will involve
comparing the ith element of vector1 with the jth element of vector2 rather than
comparing the last elements of the vectors. (Note that the ith and jth elements are
in locations i 2 1 and j 2 1 because the locations are numbered from 0.)

Returning to the three possibilities listed above, let’s quantify how many changes
are needed in each case. We’ll use D(i, j) as a notation for the number of changes
needed to transform the first i elements of vector1 into the first j elements of vector2.
Then in the first case we have the one deletion of the ith element of vector1 plus the
D(i 2 1, j) changes needed to finish the job, for a total of 1 1 D(i 2 1, j). Similarly,
in the other two cases we get 1 1 D(i, j 2 1) and 1 1 D(i 2 1, j 2 1) as the number of
changes. Because we are interested in finding the minimum number of changes, we
simply need to select whichever of these three possibilities is smallest; the built-in
Scheme procedure min can do this for us.

In summary, here is the Scheme version of this algorithm:

(define changes
(lambda (vector1 vector2)
(let ((n (vector-length vector1))

(m (vector-length vector2)))
(define changes-in-first-and-elements
(lambda (i j)
(cond
((= i 0) j)
((= j 0) i)
(else
(if (equal? (vector-ref vector1 (- i 1))

(vector-ref vector2 (- j 1)))
(changes-in-first-and-elements (- i 1) (- j 1))
(min (+ 1 (changes-in-first-and-elements

(- i 1) j))
(+ 1 (changes-in-first-and-elements

i (- j 1)))
(+ 1 (changes-in-first-and-elements

(- i 1) (- j 1)))))))))
(changes-in-first-and-elements n m))))

Because of those three recursive calls in the else clause, this algorithm is a very
good candidate for either memoization or dynamic programming. In both cases,
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Figure 12.1 The three locations that influence a table entry are those above, to the left, and
diagonally up and to the left.

we’ll need to construct a table. We can use i and j to index the table, so we’ll use a
table with n 1 1 rows and m 1 1 columns, and we’ll assume that the table entry in
position (i, j) is D(i, j), the minimal number of changes needed to convert the first i
elements of the first vector to the first j elements of the second.

Exercise 12.15

Write a memoized version of changes.

To write the dynamic programming version of this procedure, note that to com-
pute one element of the table, we need to have already computed the element
immediately above it, the one immediately to its left, and the one that is one row
above and one column to the left of it. In other words, the table entry at position
(i, j) is computed from the entries in positions (i, j 2 1), (i 2 1, j), and (i 2 1, j 2 1),
as shown in Figure 12.1. This means that we should fill out the table in an order
such that the three entries at the tails of the three arrows are filled in before the entry
at the heads of the arrows. There are several such orders; the most obvious two are
either to go left to right across the top row, then left to right across the next row, etc.,
or alternatively to go top to bottom down the leftmost column, then top to bottom
down the second column, etc. If we arbitrarily choose the former of these options
(the row by row approach), we get this program:

(define dp-changes

(lambda (vector1 vector2)
(let ((n (vector-length vector1))

(m (vector-length vector2)))

(let ((table (make-table (+ n 1) (+ m 1))))

(define changes-in-first-and-elements

(lambda (i j)

(cond

((= i 0) j)
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((= j 0) i)

(else
(if (equal? (vector-ref vector1 (- i 1))

(vector-ref vector2 (- j 1)))

(changes-in-first-and-elements-subproblem (- i 1)

(- j 1))

(min

(+ 1 (changes-in-first-and-elements-subproblem

(- i 1) j))

(+ 1 (changes-in-first-and-elements-subproblem

i (- j 1)))

(+ 1 (changes-in-first-and-elements-subproblem
(- i 1) (- j 1)))))))))

(define changes-in-first-and-elements-subproblem

(lambda (i j)

(table-ref table i j)))

(define store-in-table!

(lambda (i j)

(table-set! table i j

(changes-in-first-and-elements i j))))

(from-to-do 0 n

(lambda (row)
(from-to-do 0 m

(lambda (col)

(store-in-table! row col)))))

(changes-in-first-and-elements n m)))))

Exercise 12.16

We mentioned that this procedure uses just one possible valid ordering.

a. Change the procedure to the other (column by column) valid ordering we men-
tioned, and verify that it still works.

b. Give an example of an invalid order in which to fill in the table.
c. Give a third example of a valid order.

Exercise 12.17

The last line of the dp-changes procedure calculates D(n, m) using the expression

(changes-in-first-and-elements n m)
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It would be possible to instead just look this value up from the already filled-in table
by changing the above expression to

(changes-in-first-and-elements-subproblem n m)

The analogous modification would not have been legal in dp-choose, however.
Explain what the relevant difference is between the two procedures.

Exercise 12.18

The previous versions of changes all used as their base cases D(0, j) 5 j and
D(i, 0) 5 i. As preparation for the next exercise, modify dp-changes so that the only
base case is D(0, 0) 5 0. You’ll need to recursively define D(0, j) as 1 1 D(0, j 2 1)
for j . 0 and similarly define D(i, 0) as 1 1 D(i 2 1, 0) for i . 0.

Exercise 12.19

In this problem, we outline a way to modify the dp-changes from the previous
exercise so that it produces a list of the changes to make to vector1 in order to get
vector2.

a. First we need an ADT for the changes. Each change will have a certain type
(replace, insert, or delete) and a position at which to do the change. Insertions
and replacements will also need to know what symbol to use for the insertion
or replacement. Construct a suitable ADT, with three constructors and three
selectors.

b. Next, we’ll need an ADT for collections of changes, which is like a box of
chocolates in the previous section—the point of using a “collection” ADT
rather than a list is so that the number of changes in the collection can
be kept track of, rather than repeatedly counted with length. You’ll need
make-empty-collection and add-change-to-collection constructors and
collection-size and collection-list selectors.

c. We will change the values in the table so that they are collections of changes
rather than integers that indicate the minimum number of changes. In that case,
instead of using the procedure min to select the smallest of three numbers, we’ll
need to select the smallest of three collections of changes. Write a procedure that
gets three collections of changes, determines which has the smallest size, and
returns that collection.

d. Finally, write a version of dp-changes that produces the list of changes to make
rather than the number of them.
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12.5 Comparing Memoization and Dynamic Programming

Having seen a number of examples of both memoization and dynamic programming,
let’s consider what their relative strong points are. Keep in mind, though, that we’re
talking here about relatively fine differences between two very similar and similarly
powerful techniques.

One benefit of memoization is that only those table entries that are needed are
computed, whereas in dynamic programming all table entries get systematically com-
puted in case they turn out to be needed. For some procedures this systematicness
makes no difference; for example, the memoized-walk-count procedure fills in the
whole table anyhow because it is all needed. However, consider the memoized and
dynamic programming versions of choose. As the example tables in Section 12.4
show, the dynamic programming version can compute significantly more table en-
tries. For some other problems, the difference is even more substantial.

The other principal advantage of memoization, relative to dynamic programming,
is that the programmer doesn’t have to figure out in what order the table needs to
be filled. For the procedures we’ve seen (and most encountered in practice), this
wasn’t difficult. Occasionally, however, one encounters a problem where the correct
ordering of the subproblems is a stumper, and then it is wise not to bother figuring
it out but rather to simply use memoization.

One of the biggest advantages of dynamic programming is that for some
problems—such as computing Fibonacci numbers—the dynamic programming
solution can be modified to use asymptotically less memory (in the case of
dp-walk-count, Q(1) instead of Q(n)). This is possible because the Fibonacci
recurrence, Fn 5 Fn21 1 Fn22, is an example of a limited history recurrence, in which
only a limited number of preceding values (here 2) need to be remembered in order
to compute a new value. Thus, rather than using an n-element vector for the table
of values, it is possible to just keep cycling through the positions in a two-element
vector, reusing the same two storage locations over and over for the most recent two
Fibonacci numbers. A similar savings is possible in other limited-history recurrences.

As you can see, the most substantial differences between memoization and dy-
namic programming only arise in some problems, not in all. For those problems
where none of these special considerations apply, professional programmers gener-
ally choose dynamic programming because if one is careful about the programming
details, it can be slightly more efficient (by a constant factor—not a better asymptotic
order of growth). On the other hand, memoization is a tool you can quickly and
easily reach for, with less careful analysis.

12.6 An Application: Formatting Paragraphs

In this section we consider a problem that is encountered by many text formatting
or word processing programs. How do we find the best way to break a paragraph into
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separate lines? To be more precise, suppose we have all the words and punctuation
marks in a paragraph typed in somehow, and we need to decide how to break that
paragraph into lines. We are only allowed to break lines in between words; that is,
we can’t hyphenate words. We are also concerned about the amount of white space
that is left over on the lines. Ideally, the words on each line and the spaces between
those words would fill the entire width of the line, with no leftover space. Moreover,
if there is leftover space, we’d prefer that it was reasonably evenly spread among the
lines, with just a little per line, rather than some lines having large amounts of excess
space. Of course, we realize that the last line of the paragraph may need to have a
large chunk of white space, so we won’t count the amount of leftover white space
that appears on that line.

Let’s assume that the input to this problem will be a list of words, where each
word is a string that can contain letters, digits, punctuation marks, etc., but not any
spaces. We can find the width a word will occupy on the printed page by using a
string-width procedure. A simple version of this procedure would simply say that
each character occupies one unit of space; that works for fixed-width type fonts like
this one. If we make that simplifying assumption, the width of a string would be
the same as its length in characters, and we could simply do the following definition:

(define string-width string-length)

If you want to make our program work with type fonts in which the characters vary in
width, you’ll simply need to redefine string-width to take this fact into account.
We will also assume that we know the maximum width of a line, measured in the
same units as string-width uses. So, because our simple string-width returns
the width measured in characters, the maximum line width would be expressed in
characters too.

We would like the output from our formatting procedure to be a list of lists of
words. Each list of words represents a line in the paragraph. The amount of space
that a given line takes up will be the sum of the widths of the words in that line plus
the width of the spaces that go in between the words. The width of each space can
be given the name space-width; with widths measured in characters this would
simply be

(define space-width 1)

If string-width were changed to report widths in some other unit to accommodate
a variable-width font, space-width would need to be changed to reflect the width of
the space character in that font. The leftover space on a line is simply the difference
between the maximum line width and the amount of space that the line uses. The
amount of space the line uses can be computed as follows, using the sum procedure
from Chapter 7:
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(define line-width
(lambda (word-widths)
(+ (sum word-widths) ; total width of words

(* (- (length word-widths) 1) ; number of spaces
space-width)))) ; each this wide

If we didn’t care about having a large chunk of white space on any one line, we
could measure how good a particular solution to our problem is by simply adding
up the amount of leftover space on all of the lines but the last one. The smaller
this number is, the better the solution is. However, we really do care about huge
chunks of white space. In other words, having nine excess spaces on one line and
one on another is not as good as having five on each. One way to adjust for this
problem would be to add up the cubes of the amounts of leftover space, because
cubing would make that huge chunk count for a lot more. (We could take some
other power, as well. In general, the higher the power, the greater the penalty is for
having one or two big amounts of leftover space.) We call this cubed leftover space
the cost; the following procedure computes the cost of a line:

(define line-cost
(lambda (word-widths max-line-width)
(expt (- max-line-width (line-width word-widths))

3)))

In summary, we want to find the best way to break our paragraph into lines, where
best means that we want to minimize the sum of the line costs on all of the lines
except for the very last line. We will assume that we’re given as input the maximum
line width and a list of strings. Our output is a list of lists of strings.

One approach to this problem is to first simplify it somewhat by taking the
list of strings and converting it into a list of numbers, namely, the widths of the
strings. Working from this list of widths, we will initially produce as output simply
a list of integers, where each of these integers specifies how many words are in
the corresponding line. Using this list, we can then chop up the original list of
strings into the final list of lists of strings. In other words, our overall formatting
process has three phases: preprocessing the list of strings into a list of widths, doing
the main decision-making about how many words to put on each line, and then
postprocessing to get a list of lists of strings. The following two exercises take care of
the preprocessing and postprocessing stages.

Exercise 12.20

Write a procedure that will take a list of strings and convert it into a list of numbers
that correspond to the string widths.
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Exercise 12.21

Write a procedure called make-lines that takes a list of elements and a list of
integers and breaks the list of elements into sublists. For example, (make-lines
’(a b c d e f g h i j) ’(2 3 5)) has a value of ((a b) (c d e) (f g
h i j)). You should assume that the integers in the second list add up to the
number of elements in the first list.

Now we can assume that our problem is to take a list of word widths and find the
best number of words to put on each line. We will work recursively by concentrating
on the first line. Suppose that we have n words total and we decide to put some
number of them, k, on the first line. If we break the remaining n 2 k words into lines
in the best possible way, the overall line breaking will be the best that is possible
given the decision to put k words on the first line. Therefore, all we have to do is
experiment with different values of k and see which gives the best result, in each
case recursively invoking the procedure to optimally divide up the remaining n 2 k
words.

As we experiment with different values of k, we are looking to see which results
in the best solution to the line-breaking problem. How do we tell which solution
is best? One way to do this is to associate a cost with each solution. The cost of a
solution is the sum of the costs of all of the lines except for the last one. The best
solution is one with a minimal cost.

Now, our solutions will consist of a list of numbers that tell us how many words
to put onto each line. We can improve the efficiency of our program by connecting
this list with its associated cost.

Exercise 12.22

Construct an abstract data type for solutions that will glue together a list of integers,
called breaks, and a number, called cost. You should have one constructor and
two selectors:

(make-solution breaks cost)
(breaks solution)
(cost solution)

Exercise 12.23

Write a procedure better-solution that when given two solutions returns the one
with the lower cost. If the two have equal costs, either can be returned.
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As the paragraph formatting procedure systematically experiments with vary-
ing numbers of words on the first line, it needs to determine the best solution
that results. One way we can arrange for this is with a higher-order procedure,
best-solution-from-to-of, much like from-to-do. Like from-to-do, it will
apply a procedure to each integer in a range. Each time the procedure is applied, it
is expected to produce a solution as its result, and the best of these (as determined
by your better-solution procedure) gets returned:

(define best-solution-from-to-of
(lambda (low high procedure)
(if (= low high)

(procedure low)
(better-solution (procedure low)

(best-solution-from-to-of (+ low 1) high
procedure)))))

When this best-solution-from-to-of procedure is used to try out the different
possibilities for how many words go on the first line, the first argument (low) will
be 1, because that is the minimum number of words that can be put on a line. How
about the second argument? What is the maximum number of words that can be put
on the first line? This depends on how wide the words are and what the maximum
line width is.

Exercise 12.24

Write a procedure num-that-fit that takes two arguments. The first is a list of
word widths and the second is the maximum line width. Your procedure should
determine how many of the words (from the beginning of the list) can be fit onto
a line. Remember to account for the spaces between the words, each of which has
the width named space-width.

At this point, we are ready to write the format-paragraph procedure itself. It
takes as arguments the list of word widths for the paragraph and the maximum line
width. It returns a solution object, which contains the best possible set of breaks
together with the cost of that set of breaks. (Remember that the breaks are the
number of words on each line.) This procedure first checks for two special cases:

1. If all the words can be fit on a single line, that is the best solution and has cost 0
because excess space on the last line isn’t counted.

2. If no words can be put on the first line without overfilling it (i.e., even the first
word alone is too wide for the maximum line width), an error message is given
because the given formatting problem is insoluble.
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Other than these two special cases, the procedure follows the strategy we outlined
earlier of systematically trying all the possibilities for how many words to put on the
first line:

(define format-paragraph ;returns solution
(lambda (word-widths max-line-width)

(let ((most-on-first (num-that-fit word-widths max-line-width)))

(cond ((= most-on-first (length word-widths))

(make-solution (list most-on-first) 0)) ; all on first

((= most-on-first 0)

(error "impossible to format; use shorter words"))

(else

(best-solution-from-to-of

1 most-on-first

(lambda (num-on-first)
(let ((solution-except-first-line

(format-paragraph (list-tail word-widths

num-on-first)

max-line-width)))

(make-solution

(cons num-on-first

(breaks solution-except-first-line))

(+ (cost solution-except-first-line)

(line-cost (first-elements-of

num-on-first
word-widths)

max-line-width)))))))))))

Exercise 12.25

Put this procedure together with the ones you wrote for computing the list of widths
from a list of strings, the breaks selector you wrote, and the make-lines procedure
you wrote. This should let you format a list of words into a list of lists of words,
one per line. Try this out with some short lists of words and narrow maximum line
widths. Try scaling up the number of words and/or the maximum line width; how
tolerable is the growth in time?

Of all of the procedures we’ve considered so far, this one probably makes the
most tree-recursive calls because it tries out all possible numbers of words to place
on each line. This fact makes it a very good candidate for memoizing or for using
dynamic programming.
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The various subproblems solved in the course of formatting a paragraph consist of
formatting tails of that paragraph, but with the same maximum line width. Thus only
a one-dimensional table (vector) is needed, indexed by the number of words. That
is, the entry at position n in the vector will contain the solution object showing the
best way to break the last n words of the paragraph into lines, which means that
the length of the word-widths list is used to index the table, much as the length
of the chocolates list was used as an index in the chocolate box problem.

Exercise 12.26

Write a memoized version of format-paragraph. Test your memoized version to
be sure it produces the same answers as the nonmemoized version. Also, empirically
compare their speed as the number of words and/or the maximum line width grows.

In writing a dynamic programming version, it will be helpful to have a procedure
that given a number n computes the tail of length n of the word-widths list. Again,
this problem is analogous to the situation in the chocolate-box problem.

Exercise 12.27

Following the hint just given, write a dynamic programming version of
format-paragraph. Again, test that it produces the same results as the other versions
and empirically compare its performance.

Review Problems

Exercise 12.28

We implemented two-dimensional tables in terms of one-dimensional vectors by
representing each table as a vector of vectors, one per row. The most obvious al-
ternative would be to continue to have a vector of vectors but make it be one per
column. However, we have another, less obvious alternative: We can store all the
elements of an n 3 m table in a single vector of length nm. For example, the 15
elements of a 3 3 5 table can be stored in the 15 elements of a vector of length
15. The two most straightforward ways to do this alternative are either to store first
the elements from the first row, then those from the second row, etc., or to start
with the elements from the first column, then those from the second column, etc.
Note that in either case you will need to store the width and height of the table, not
only because table-width and table-height are selectors for the table ADT, but
more crucially in order to calculate the appropriate index into the vector of table
values. One easy thing we can do is to let a table be represented by a three-element
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vector, where the first two elements represent the width and height and the third
element is the vector that stores the table values. Reimplement the table ADT using
either of these variations (i.e., storing the elements row by row or column by column
in a single vector).

Exercise 12.29

Suppose you are the instructor of a course with n students, and you want to divide
the students into k teams for a project. You don’t care how many students are on
each team (for example, that they be equal), except that each team must have at
least one student on it, because otherwise there wouldn’t really be k teams. How
many ways can you divide the students up?

This problem can be analyzed much as we analyzed choose. The first student
can either be in a team alone or in a team with one or more others. In the first case,
the remaining n21 students need to be divided into k21 teams. In the second case,
the remaining n 2 1 students need to be divided into k teams, and then one of those
k teams needs to be chosen to add the first student to. So, if we use S(n, k) to denote
our answer, we have S(n, k) 5 S(n 2 1, k 2 1) 1 kS(n 2 1, k). (We’re using the letter
S because numbers computed in this way are conventionally called Stirling numbers
of the second kind.) Of course, this equation is only the recursive case; you’ll need
one or more base cases as well.

Write a tree-recursive procedure for computing S(n, k) and then make it more
efficient using memoization or dynamic programming. (Or you could first rewrite it
using memoization and then using dynamic programming.)

Exercise 12.30

We defined the procedure from-to-do earlier in this chapter. This procedure is
very similar to the so-called FOR loop from other languages. Because we learned
in Chapter 10 how to add features to Scheme, it would be nice to add actual FOR

loops to Mini-Scheme. To illustrate what we mean, consider the following use of the
procedure from-to-do:

(from-to-do 2 (* 3 4)
(lambda (n) (display (* 2 n))))

With FOR loops, we could instead write:

(for n = 2 to (* 3 4) do (display (* 2 n)))

This exercise will work through the details of adding FOR loops to Mini-Scheme.



414 Chapter 12 Dynamic Programming

Let’s choose to implement FOR loops using a new AST constructor make-for-
ast. The skeleton for make-for-ast, with the important code left out, is as follows:

(define make-for-ast
(lambda (var start-ast stop-ast body-ast)
(define the-ast
(lambda (message)
(cond ((equal? message ’evaluate-in)

(lambda (global-environment)

code for evaluate-in ))

((equal? message ’substitute-for)
(lambda (value name)

code for substitute-for ))

(else (error "unknown operation on a for AST"
message)))))

the-ast))

a. Write the pattern/action that needs to be added to micro-scheme-parsing-
p/a-list for FOR loops.

b. Add the code for evaluate-in. (Hint: You can use the procedure from-to-do.)
c. Add the code for substitute-for-in.

Exercise 12.31

Imagine the following game: You are given a path that consists of white and black
squares. The exact configuration of white and black squares varies with the game
but might for example look as follows:

You start on the leftmost square (which we’ll call square 0), and your goal is to
move off the right end of the path in the least number of moves. However, the rules
stipulate that
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If you are on a white square, you can move either 1 or 2 squares to the right.
If you are on a black square, you can move either 1 or 4 squares to the right.

How can we determine, for a given path, the least number of moves we need?
One way to compute this number is to write a procedure fewest-moves that takes a
path and a position on the path and computes the minimum number of moves from
that position. Thus, to determine the minimum number of moves for the preceding
path, we would evaluate:

(fewest-moves (vector ’white ’black ’white ’white ’white
’black ’white ’white ’black ’white
’black ’white ’white ’black ’black
’white ’white ’white)

0)

Note that we pass the path as a vector as well as the current square (in this case 0).
Here is one way to implement fewest-moves:

(define fewest-moves
(lambda (path i) ; path is a vector

; i is the position within path
(cond ((>= i (vector-length path)) ; right of path

0)
((equal? (vector-ref path i) ’white)
(+ 1 (min (fewest-moves path (+ i 1))

(fewest-moves path (+ i 2)))))
(else
(+ 1 (min (fewest-moves path (+ i 1))

(fewest-moves path (+ i 4))))))))

a. Write a memoized version of fewest-moves.
b. Write a dynamic programming version of fewest-moves. Be sure to remember

that the simplest subproblems, in the sense of being closest to the base case, do
not correspond to smaller values of the argument i in this problem.

c. Modify fewest-moves, and your memoized and/or dynamic programming ver-
sion of it, to produce a list of moves rather than just the number of moves that
are necessary.

Exercise 12.32

The ps procedure that follows calculates how many ways we can parenthesize an
n-operand expression. For example, (ps 4) evaluates to 5 because there are five
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ways to parenthesize a four-operand expression: a 2 (b 2 (c 2 d)), a 2 ((b 2 c) 2 d),
(a 2 b) 2 (c 2 d), (a 2 (b 2 c)) 2 d, and ((a 2 b) 2 c) 2 d.

(define from-to-add
(lambda (start end f)
(if (> start end)

0
(+ (f start)

(from-to-add (+ start 1) end f)))))

(define ps
(lambda (n)
(cond ((= n 1) 1)

((= n 2) 1)
(else
(from-to-add 1 (- n 1)

(lambda (k)
(* (ps k) (ps (- n k)))))))))

a. Write a memoized version of ps.
b. Write a dynamic programming version of ps.

Exercise 12.33

The function h(n) is defined for nonnegative integers n as follows:

h(n) 5


1 if n , 2
h(n 2 1) 1 h(n 2 2) if n . 2 and n is odd
h(n 2 1) 1 h(n6 2) if n $ 2 and n is even

a. Write a dynamic programming procedure for efficiently calculating h(n).
b. Is it possible to modify the procedure so that it stores all the values it needs in a

vector of fixed size, as walk-count can be modified to store the values it needs
in a two-element vector? (A vector of “fixed size” is one with a size that does not
depend on the parameter, n.) Justify your answer.

Exercise 12.34

The following best procedure determines the best score that is possible on the
following puzzle. You are given a list of positive integers. Let’s say the first one is k.
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You can either claim k points for yourself and then skip over k more numbers after
the k, or you can just skip over the k itself without claiming any points. These options
repeat until the numbers are all gone. When skipping over the next k numbers, if
there aren’t k left, you just stop. For example, given the list

(2 1 3 1 4 2)

your best bet is to first claim 2 points, which means you have to skip over the first 1
and the 3, then pass up the opportunity to take the second 1, so that you can take
the 4, which then causes you to skip the final 2. Your total score in this case is 6; had
you played less skillfully, you could have gotten a lower score. The best procedure
returns the best score possible, so (best ’(2 1 3 1 4 2)) would return 6.

(define best
(lambda (l)
(if (null? l)

0
(let ((k (car l))

(rest (cdr l)))
(max (best rest)

(+ k (best (skip-of k rest))))))))

(define skip-of
(lambda (n l) ;skip first n elements of l
(if (or (= n 0) (null? l)) ;l can be shorter than n

l
(skip-of (- n 1) (cdr l)))))

a. Write a memoized version of best.
b. Write a dynamic programming version of best.
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Notes

We mentioned briefly that the changes-dynamic procedure for computing the
minimum number of changes needed to convert one vector of symbols into another
has applications in comparing the sequences occuring in biological molecules such
as DNA. For a discussion of this application, as well as the application of this
algorithm and its relatives to problems in speech processing and other areas, see [46].

The problem of breaking a paragraph into lines in a visually appealing way by
minimizing the sum of the cubes of the amount of excess space on each line is a
gross simplification of the actual approach used by the TEX program, which was used
to format this book. That program uses a dynamic programming algorithm but takes
into account not only the amount of excess space on each line but also the possibility
of hyphenation and a number of esoteric considerations. For a complete description
of the quantity that it minimizes, see [34]. For the program itself, see [33].
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Object-based Abstractions

13.1 Introduction

In Chapter 6, we emphasized that each abstract data type should have a collection of
operations that was appropriate to how the type needed to be used. This same general
principle applies even when we consider types of objects that can be modified. Yet
up until now, the only modifiable objects we’ve seen—vectors and two-dimensional
tables—have supported only one particular repertoire of operations. You can put a
new value into a numerically specified location or get the current value out from
a numerically specified location, which reflects the close link between vectors and
the numerically addressed memory of machines like SLIM, as we pointed out in
Chapter 11. Yet sometimes our programming would benefit from a different set of
operations. For example, we might want an operation that retrieves the most recently
stored value, independent of the location at which it was stored.

In this chapter, we’ll learn how to work with abstract data types that can be
modified, like vectors, but that support operations determined by our needs rather
than by the nature of the underlying memory. We’ll also see how we can think
clearly about objects that undergo change, by focusing on invariant properties that are
established when the object is first constructed and preserved by each modification of
the object. Finally, we’ll see some specific commonly used examples of modifiable
data structures. In particular, we’ll see a stack-like structure that is useful when
evaluating arithmetic expressions, a queue structure that is useful for managing
waiting lists fairly, and a tree structure that can be used to efficiently store and
retrieve information, such as the collection of movies owned by a video store that
constantly acquires new releases. In fact, you’ll apply the structure to exactly this
problem in the application section at the end of the chapter.

420
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13.2 Arithmetic Expressions Revisited

Recall that we wrote a procedure called evaluate in Section 8.3 that computes the
value of standard arithmetic expressions that are fully parenthesized. For example,
you might have the following interaction:

(evaluate ’((3 + 4) * (9 - (2 * 3))))
21

On the other hand, evaluate would be unable to cope with an expression such as

’((3 + 4) * 9 - 2 * 3)

even though it is a perfectly valid arithmetic expression whose value is 57. Attempting
to evaluate the latter expression results in an error because evaluate only handles
expressions that are numbers or three-element lists. Furthermore, the three-element
lists must have a left operand, an operator, and a right operand, in that order. Because
the operands had to be expressions of the same form, evaluation was accomplished
by recursively applying the value of the operator to the values of the two operands.

We would like to extend our evaluate procedure so that it can handle more
general arithmetic expressions, such as the preceding one. What makes this difficult
is specifying which operands a given operator should operate on. For example,
consider the following two expressions:

’(3 - 4 + 5)

’(3 - 4 * 5)

In the first case, the - operates on 3 and 4, whereas in the second case, the -
operates on 3 and the result of 4 * 5. Why? Because the * operator has higher
precedence than the + does. Normally, when you have an expression with more than
one operator in it, you do the operations with higher precedence first and then do
the others, where the precedence convention with the four operators + - * / is
that there are two levels, one for * and / and another for + and -, and the first level
is higher than the second. If you have an expression with two consecutive operators
with the same precedence (for instance, ’(10 - 3 - 2)), you do those operations
working from left to right.

There is some flexibility in these rules; for instance in evaluating an expression
such as ’(2 + 5 + 5), many people would do the second addition first. However,
we can always do our operations in a left-to-right order as long as we always remember
that when we have two consecutive operators and one has higher precedence, we
do that one first. Here is an example of figuring out the value of an expression using



422 Chapter 13 Object-based Abstractions

this approach:

3 1 2 p 4︸︷︷︸ 2406 5

3 1 8︸ ︷︷ ︸ 2406 5

11 2 406 5︸ ︷︷ ︸
11 2 8︸ ︷︷ ︸

3

We can therefore view the general evaluation process as a sequence of reductions,
where each reduction consists of a single operation on two numbers. In the example
above, we did four of these reductions.

If we look at expressions with parentheses, such as 3p (214), we can use a similar
process involving reductions. We would reduce 2 1 4 to 6, yielding 3 p (6). Then
we could reduce the parenthesized (6) to a plain 6, yielding 3 p 6, which we would
reduce to 18. We’ll put off parenthesized expressions for later in this section and stick
with unparenthesized expressions for now. However, in both cases the key action is
the reduction.

This viewpoint allows us to come up with a method for evaluating unparenthesized
expressions from left to right, provided we can maintain a little bit of memory. The
basic idea is to scan the expression from left to right and do a reduction once we
know it should be done. How do we know when to reduce? Consider the example of
3 1 2 p 4 2 406 5. Having scanned through 3 1 2, we need to check the next symbol
to determine whether to reduce 3 1 2. Seeing that the next symbol is an operator of
higher precedence, we scan further, eventually reaching 3 1 2 p 4. Because the next
symbol is an operator of equal or lower precedence, we determine that a reduction
is in order and replace the scanned portion with 3 1 8. This continues through the
remainder of the list, reducing until we have a single number.

What sort of storage mechanism do we need? First note that the basic data being
manipulated consists of the numbers and operators in the expression. In a sense,
numbers and operators are the “words” from which our expressions are formed. We
will adopt the common computer science convention of referring to these basic
words as tokens. Thus, “scanning down the expression” means cdr-ing down the list
of tokens. As we scan, we’ll keep a collection of already scanned (or reduced) tokens.
Each time we scan a new token, we either shift it onto the collection of already
scanned (or reduced) tokens, or we perform a reduction on that latter collection.
This collection of already scanned or reduced tokens is precisely the memory storage
mechanism we need.

What operations must we perform on this collection? Well, we either shift some-
thing onto it, or we reduce the three most recently scanned tokens by performing
the operation. In either case, we need to access the most recently scanned tokens.
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Figuratively, we can view this collection of scanned or reduced tokens as a stack
of tokens, where we access the stack from the top (i.e., the most recently scanned
or reduced token). Shifting a token means putting it on top of the stack; reducing
means removing the top three items from the stack, performing the operation, and
putting the resulting value back on top of the stack.

Actually, there are two other actions we might need to do besides shifting and
reducing:

If we have successfully finished evaluating an expression, we should accept it and
return the top item on the stack as the value.
If we encounter an error, we should report it and stop the processing altogether.

So we have a total of four possible actions during the course of our processing:
shift, reduce, accept, and error. Each of these actions can be easily accomplished,
provided we can access the top items on the stack of processed tokens.

One question remains before we can view this as a full-blown algorithm: Given
our current state (the stack of processed tokens and the newly scanned token), which
of the four actions do we take? The key point here is that we can determine the action
with only knowledge of the top two elements on the stack and the next scanned token
(or knowledge that we have already reached the end of the expression). To illustrate
this, consider the table in Figure 13.1, which describes the sequence of actions taken
in order to reduce the expression 312p42406 5. Note that we have added a special
“terminating” symbol $ at the bottom of the expression stack and the end of the

expression stack rest of expression next action
$ 3 + 2 * 4 - 40 / 5 $ shift
$ 3 + 2 * 4 - 40 / 5 $ shift
$ 3 + 2 * 4 - 40 / 5 $ shift
$ 3 + 2 * 4 - 40 / 5 $ shift
$ 3 + 2 * 4 - 40 / 5 $ shift
$ 3 + 2 * 4 - 40 / 5 $ reduce
$ 3 + 8 - 40 / 5 $ reduce
$ 11 - 40 / 5 $ shift
$ 11 - 40 / 5 $ shift
$ 11 - 40 / 5 $ shift
$ 11 - 40 / 5 $ shift
$ 11 - 40 / 5 $ reduce
$ 11 - 8 $ reduce
$ 3 $ accept

Figure 13.1 Evaluation of 3 1 2 p 4 2 406 5
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stack next token
top $ op num

$ error error shift

op error error shift

reduce shift
num or or error

accept reduce

Figure 13.2 Action table for unparenthesized expressions

expression. Strictly speaking, this symbol is not really needed; after all, we could
easily test to see whether the expression stack or the rest of the expression is empty.
However, having a symbol that indicates these conditions will be helpful when we
finally get around to writing the code because we will then always be testing tokens
to determine our action.

Although the example in Figure 13.1 gives some notion of how to determine the
next action, we need to be more precise. We increase the precision in Figure 13.2,
where we give a table that nearly specifies which action to take, given the top of the
stack and the next scanned token. In this table the row headings refer to the top of
the expression stack, the column headings refer to the next token, op refers to any
of the four operators, and num refers to any number. Therefore, if the top of the
expression stack is an operator and the next token is a number, we should surely
shift; however, if the next token is an operator, we take the error action because no
legal expression can have two consecutive operators.

Exercise 13.1

Explain why each of the five error conditions in the table in Figure 13.2 is in fact
an error. In each case, give an example of an expression that has the given error,
clearly marking where the error occurs.

We said that the table nearly specifies the action, because in two cases we need
more information:

If the top of the stack is a number and the next token is $, we accept if the token
below the top of the stack is $ (because the expression is then fully reduced), and
otherwise we reduce.
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If the top of the stack is a number and the next token is an operator, we shift if
the token below the top of the stack is either not an operator or else is an operator
of lower precedence than the next token, and otherwise we reduce (this is our
evaluation rule).

In both cases, we need only one more piece of information: the token below the top
of the stack. This explains our statement that to determine the next action, we at
most need to know the top two elements on the stack and the next scanned token.

Exercise 13.2

Work through the steps in evaluating 30 2 7 p 3 2 1. We recommend that you do
this using index cards, at least the first time, to get more of a feel for what is going
on. If you want to document your work, you can then do the evaluation a second
time in tabular form, using the format shown in Figure 13.1.

To do the evaluation using index cards, you’ll use two piles, one for the stack
and the other for the remaining input (that is, the two piles of cards correspond to
the first two columns in Figure 13.1). The pile that represents the remaining input
should start out with eight cards in it, with 30 on the top, then 2, 7, p, 3, 2, 1, and
finally $ on the bottom. The other pile, representing the stack, should start out with
just a $ card. You’ll also need a few blank cards for when you do reductions.

At each step, you should look at the top cards from the two piles and use those to
locate the proper row and column in the action table of Figure 13.2. If the action
table entry is one of the two with “or” in it, you’ll need to peek down at the second
card in the stack and use the rules specified above to determine the correct action.

If the action is shift, you just move the top card from the remaining-input pile to
the stack. If the action is reduce, you take the top three cards off the stack, do the
computation, write the answer on a blank card, and put that onto the stack. (Be sure
to get the order right: The card that was on top of the stack is the right operand,
whereas the one that was three deep is the left operand.) If the action is accept, the
top card on the stack tells you the answer. If the action is error, you must have done
something wrong because the expression we started with, 30 2 7 p 3 2 1, was well
formed.

Having pretty much taken care of unparenthesized expressions (except for writing
the code), let’s now consider expressions that include parentheses, for example the
expression (3 1 2) p 4 2 406 5. First off, this means we must add new tokens (words)
to our expression vocabulary, namely, left and right parentheses. However, this leads
to a bit of a problem, because parentheses are not legal symbols in Scheme; after
all, they are used to delimit Scheme lists. We will get around this problem by using
strings instead of lists to pass our expressions to evaluate. Thus, we would compute
the value of the example expression by evaluating the expression



426 Chapter 13 Object-based Abstractions

(evaluate "(3+2)*4-40/5")

Rather than getting bogged down with details involving strings and characters, we
describe a procedure called tokenize in the sidebar Strings and Characters, later
in the chapter. It converts a string to the list of tokens it represents. To illustrate how
the procedure tokenize works, suppose you have the following interaction:

(tokenize "(3+2)*4-40/5")
(lparen 3 + 2 rparen * 4 - 40 / 5 $)

The return value of tokenize is a list consisting of numbers and symbols, where the
special symbols lparen and rparen represent left parentheses and right parentheses,
respectively, and the terminating symbol $ is at the end of the list.

So how do we extend our algorithm to parenthesized expressions? If we want
to continue with our left-to-right approach, once we encounter a parenthesized
subexpression, we need to fully reduce it to the number it represents before passing
beyond it. Figure 13.3 illustrates how the shift/reduce algorithm might work by
evaluating the expression (3 1 2) p 4 2 406 5. In a sense, a right parenthesis acts
much like the $ symbol, forcing reductions until the subexpression has been fully

expression stack rest of expression next action
$ ( 3 + 2 ) * 4 - 40 / 5 $ shift
$ ( 3 + 2 ) * 4 - 40 / 5 $ shift
$ ( 3 + 2 ) * 4 - 40 / 5 $ shift
$ ( 3 + 2 ) * 4 - 40 / 5 $ shift
$ ( 3 + 2 ) * 4 - 40 / 5 $ reduce
$ ( 5 ) * 4 - 40 / 5 $ shift
$ ( 5 ) * 4 - 40 / 5 $ reduce
$ 5 * 4 - 40 / 5 $ shift
$ 5 * 4 - 40 / 5 $ shift
$ 5 * 4 - 40 / 5 $ reduce
$ 20 - 40 / 5 $ shift
$ 20 - 40 / 5 $ shift
$ 20 - 40 / 5 $ shift
$ 20 - 40 / 5 $ shift
$ 20 - 40 / 5 $ reduce
$ 20 - 8 $ reduce
$ 12 $ accept

Figure 13.3 Evaluation of (3 1 2) p 4 2 406 5
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reduced. When that has been accomplished, the right parenthesis is then pushed
onto the stack, and the stack is reduced by replacing the parenthesized number with
the single number.

Why do we shift a right parenthesis onto the stack, only to immediately throw it
away? We are adopting the viewpoint that things get simplified by reduction alone,
which occurs at the top of the stack. In our extended algorithm we allow another form
of reduction besides performing an arithmetic operation: A parenthesized expression
enclosing a number is reduced to the number itself, stripping away the parentheses;
this is the reduction that changes the (5) on line 7 to the 5 on line 8 in Figure 13.3. A
consequence of this viewpoint is that we must ensure that when the right parenthesis
is finally pushed onto the stack, the matching parentheses enclose a simple number,
not a more complex expression. This explains why a right parenthesis acts like the $
symbol when it is the next token: It must force a full reduction of the expression on
top of the stack back to the matching left parenthesis.

As with unparenthesized expressions, this algorithm is made nearly precise by
giving a table that explains what to do, given the top of the stack and the next token
in the expression. We do this in Figure 13.4, which extends the action table of
Figure 13.2 to include left and right parentheses.

Mismatched parentheses are detected by two of the error cases in the num row
of the table, that is, when the stack top is a number. If the next token is $ and a left
parenthesis lies below the number, we have the kind of error that the input string
"(3" exemplifies. If, on the other hand, the next token is a right parenthesis and a
$ lies below the number on the stack, we have an error like "3)".

stack next token
top $ op num ( )

$ error error shift shift error

op error error shift shift error

reduce, shift shift,
num accept, or error error reduce,

or error reduce or error

( error error shift shift error

) reduce reduce error error reduce

Figure 13.4 Action table for general expressions
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Many of the more complicated parenthesization mismatches reduce to one of the
above two cases. For example, in the expression

( 3 + 3 * 5 ) ) + 56

the underscored right parenthesis is erroneous, because it has no matching left
parenthesis. How can we detect this? Well, in the course of processing the expression
up to, but not including, the erroneous right parenthesis, the expression will be
reduced to

18 ) + 56

Because the expression on the top of the stack, 18, is fully reduced, the error is
detected by the fact that the token below the top of the stack is a $ rather than a left
parenthesis matching the underscored right parenthesis.

Exercise 13.3

Explain, using examples, the eight additional error conditions in the table in Fig-
ure 13.4, beyond those explained in the foregoing and in Exercise 13.1.

Exercise 13.4

Let’s consider some of the regularities in this extended table.

a. Why are the columns headed by num and ( identical?
b. Why are the rows headed by $ and ( identical?
c. Why are these latter rows identical to the row headed by op?

All that remains to make the algorithm precise is to complete our explanation
of the additional ambiguous entry in the table, namely, when the top of the stack
is a number and the next token is a right parenthesis. Because we showed in the
preceding how to detect an error in this situation, we need only explain how to
distinguish a shift from a reduce. As we said, we must reduce if the top of the stack is
a simple arithmetic expression (i.e., an operator and two numeric operands), because
we only want to shift the right parenthesis when the parenthesized expression has
been fully reduced. This situation can be detected by checking to see whether the
token below the top of the stack is an operator or a left parenthesis. If it is an
operator, we should reduce, whereas if it is a left parenthesis, we should shift the
right parenthesis onto the stack.
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Exercise 13.5

Work through the evaluation of 30 2 7 p (3 2 1) using the same technique as in
Exercise 13.2.

To finally code up this algorithm, we need to clearly specify the abstract data type
Stack. As the term is commonly used, a stack allows you to access its top element
and to add or delete an item at the top (these latter two operations are generally
called push and pop, respectively). However, we could use something slightly more
powerful for our program because we will need to access items below the top as
well. For this reason, we are going to use an ADT that we call an RA-stack (for
Random Access stack), which allows access to all of its elements, while still limiting
addition and deletion to the top. Using Scheme notation, we specify the operations
of random access stacks as follows:

(make-ra-stack)
;; returns a newly created empty stack.

(empty-ra-stack? ra-stack)
;; returns #t if ra-stack is empty, otherwise #f.

(height ra-stack)
;; returns the height (i.e., number of elements) in ra-stack.

(top-minus ra-stack offset)
;; returns the element which is offset items below the top of
;; ra-stack, provided 0 <= offset < (height ra-stack).
;; In particular, (top-minus ra-stack 0) returns the top of
;; ra-stack, provided ra-stack is non-empty.

(pop! ra-stack)
;; removes the top element of ra-stack, provided ra-stack is
;; non-empty.
;; The return value is the modified ra-stack.

(push! ra-stack item)
;; pushes item onto the top of ra-stack.
;; The return value is the modified ra-stack.

The two operators pop! and push! are of particular interest because they cause
the stack parameter ra-stack to change (mutate); in this respect, they are similar
to vector-set!. Because the ADT RA-stack allows mutation, it is called a mutable
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data type. Another way to say this is that RA-stacks are objects rather than values.
Mutable data types are very useful for modeling phenomena that change in time; in
our case, the expression stack changes as the evaluator works.

Turning finally to our version of evaluate, most of the work is done by the inter-
nally defined procedure process, which scans down the expression in the manner
described above. The list of as-of-yet-unscanned tokens is maintained through the
parameter rest-of-expr. Process is initialized by first using a let to define an
empty stack expr-stack, then pushing the special token $ onto expr-stack, and
finally calling process with the tokenization of the input string. Here is the code:

(define evaluate
(lambda (expression-string)
(let ((expr-stack (make-ra-stack)))
(define process
(lambda (rest-of-expr)
(let ((next-token (car rest-of-expr)))
(cond ((accept? expr-stack next-token)

(top-minus expr-stack 0))
((reduce? expr-stack next-token)
(reduce! expr-stack)
(process rest-of-expr))
((shift? expr-stack next-token)
(push! expr-stack next-token)
(process (cdr rest-of-expr)))
(else ; error
(error "EVALUATE: syntax error"

expr-stack rest-of-expr))))))
(push! expr-stack ’$)
(process (tokenize expression-string)))))

Note that the determination of the next action is offloaded to three predicate proce-
dures reduce?, accept?, and shift?. Similarly, the reduce action has been spun
off to the procedure reduce!.

The three predicate procedures simply implement the action table in Figure 13.4:

(define accept?
(lambda (expr-stack next-token)
(if (and (number? (top-minus expr-stack 0))

(equal? next-token ’$))
(equal? (top-minus expr-stack 1) ’$)
#f)))
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(define reduce?
(lambda (expr-stack next-token)
(let ((stack-top (top-minus expr-stack 0)))
(cond ((number? stack-top)

(let ((stack-second (top-minus expr-stack 1)))
(cond ((equal? next-token ’$)

(operator? stack-second))
((operator? next-token)
(and (operator? stack-second)

(not (lower-precedence?
stack-second
next-token))))

((equal? next-token ’rparen)
(operator? stack-second))
(else #f))))

((equal? stack-top ’rparen)
(or (equal? next-token ’$)

(operator? next-token)
(equal? next-token ’rparen)))

(else #f)))))

(define shift?
(lambda (expr-stack next-token)
(let ((stack-top (top-minus expr-stack 0)))
(cond ((or (operator? stack-top)

(member stack-top ’($ lparen)))
(or (number? next-token)

(equal? next-token ’lparen)))
((number? stack-top)
(let ((stack-second (top-minus expr-stack 1)))
(cond ((operator? next-token)

(or (not (operator? stack-second))
(lower-precedence? stack-second

next-token)))
((equal? next-token ’rparen)
(equal? stack-second ’lparen))
(else #f))))

(else #f)))))

The procedure reduce! has two branches, corresponding to whether we are
“unparenthesizing” a parenthesized number or performing an arithmetic operation.
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(define reduce!
(lambda (expr-stack)
(cond ((equal? (top-minus expr-stack 0) ’rparen)

(let ((value (top-minus expr-stack 1)))
(pop! expr-stack) ; remove rparen
(pop! expr-stack) ; remove the value
(pop! expr-stack) ; remove lparen
(push! expr-stack value)))

(else ; a simple arithmetic operation
(let ((left-operand (top-minus expr-stack 2))

(operator (top-minus expr-stack 1))
(right-operand (top-minus expr-stack 0)))

(pop! expr-stack) ; remove the right operand
(pop! expr-stack) ; remove the operator
(pop! expr-stack) ; remove the left operand
(push! expr-stack

((look-up-value operator)
left-operand
right-operand)))))))

Finally, the procedure look-up-value was written in Section 8.3. The remaining
auxiliary routines can be implemented as follows:

(define operator?
(lambda (token)
(member token ’(+ - * /))))

(define lower-precedence?
(lambda (op-1 op-2)
(and (member op-1 ’(+ -))

(member op-2 ’(* /)))))

13.3 RA-Stack Implementations and Representation Invariants

We now address the task of implementing RA-stacks. As with all ADTs, we have
great freedom in choosing how we represent them and implement their operators;
our only real constraint is that RA-stacks must behave as they are supposed to behave.
A secondary, though still important, consideration is that they operate efficiently, both
in terms of time and memory consumption.

In addition to the RA-stack precedures previously listed, we add one more,
display-ra-stack, which displays an RA-stack from bottom to top. We can easily
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Strings and Characters

Up until this chapter, we only used strings as output arguments in procedures
like display and error. However, the procedure tokenize needs to access the
contents of a string and construct a list of tokens from it. Therefore, we need to
know more about the built-in String data type and the operations it supports. We
give here a brief overview of strings and the related data type Character; much
more information is given in the R4RS Scheme standard, which is available from
the web site for this book.

Characters are basic Scheme objects that represent textual characters, such as
letters and digits. They are denoted in Scheme by preceding them with #\, so #\a
denotes the character a. Certain characters have names; for example the “space”
character is written #\space. The following procedure determines whether char
is an arithmetic operator:

(define operator-char?
(lambda (char)
(member char ’(#\+ #\- #\* #\/))))

Although strings and vectors are distinct types, strings are essentially vec-
tors that contain characters. Most vector procedures (e.g., make-vector,
vector-length, vector-ref, and vector-set!) have string equivalents
(make-string, string-length, string-ref, and string-set!). Also, there
are some useful conversion procedures such as string->number, which takes a
numeric string and converts it to a number it represents, and string->symbol,
which converts a string to the corresponding symbol.

Given this brief overview of strings and characters, we now present the proce-
dure tokenize. By way of explanation, the internal procedure iter accumulates
the list of tokens from input-string in reverse order in the parameter acc-list.
When iter completes, it returns this reverse-order list of tokens. We cons a $ on
the front and reverse the result; therefore, the result is the tokens in correct order
and with $ at the end, as was our desire.

The procedure iter processes input-string character by character, keeping
track of the current position with the parameter i, and the “previous state” with
the parameter prev-state. This state variable tells what type of character we just
read, and it is used if we need to process a group of characters together (such as
a numeric substring) or are moving to a new token (as would be indicated by a
having read a space).

(Continued)
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Strings and Characters (Continued)

(define tokenize
(lambda (input-string)
(define iter
(lambda (i prev-state acc-lst)
(if (= i (string-length input-string))

acc-lst
(let ((next-char (string-ref input-string i)))
(cond ((equal? next-char #\space)

(iter (+ i 1) ’read-space
acc-lst))

((char-numeric? next-char) ;next-char is a digit
(if (equal? prev-state ’read-numeric)

;; continue constructing the number, digit
;; by digit, by adding the current digit
;; to 10 times the amount read so far
(iter (+ i 1) ’read-numeric

(cons (+ (* 10 (car acc-lst))
(digit->number next-char))

(cdr acc-lst)))
(iter (+ i 1) ’read-numeric

(cons (digit->number next-char)
acc-lst))))

((operator-char? next-char)
(iter (+ i 1) ’read-operator

(cons (string->symbol
(make-string 1 next-char))
acc-lst)))

((equal? next-char #\()
(iter (+ i 1) ’read-lparen

(cons ’lparen
acc-lst)))

((equal? next-char #\))
(iter (+ i 1) ’read-rparen

(cons ’rparen
acc-lst)))

(else
(error "illegal character in input"

next-char)))))))
(reverse (cons ’$ (iter 0 ’start ’())))))

(define digit->number
(lambda (digit-char)
(string->number (string digit-char))))
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implement it in terms of the other operators:

(define display-ra-stack
(lambda (ra-stack)
(define display-from
(lambda (offset)
(cond ((= offset 0)

(display (top-minus ra-stack 0))
’done)
(else
(display (top-minus ra-stack offset))
(display " ")
(display-from (- offset 1))))))

(if (empty-ra-stack? ra-stack)
(display "empty-stack")
(display-from (- (height ra-stack) 1)))))

One advantage of writing display-ra-stack in terms of the other operators is
that we can then use it to help determine whether the other operators are correctly
implemented.

How do we ensure that RA-stacks behave as they should? We must first clearly
specify how they are supposed to behave. Our description of RA-stacks has so far been
very informal, relying on some mental image of a stack, say, as a stack of cafeteria
trays, and our ADT operations were supposed to conform to this imagined stack. We
can make the specification of RA-stacks more formal by writing equations that specify
how the RA-stack operations should work together, much as we did in Section 6.3
for the game-state ADT. For example, here are some equations that describe how
push! and pop! work together with top-minus:

(top-minus (push! ra-stack item) 0) 5 item

If 1 # i # (height ra-stack) and k 5 i 2 1,

(top-minus (push! ra-stack item) i) 5 (top-minus ra-stack k)

If 0 # i , (height ra-stack) 2 1 and k 5 i 1 1,

(top-minus (pop! ra-stack) i) 5 (top-minus ra-stack k)

Exercise 13.6

Ideally we should give a set of equations that, taken together, fully specifies RA-
stacks; such a complete set would be called an axiomatic system for RA-stacks. Rather
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than getting into whether we have such a complete set (or, in fact, precisely what
“complete” means), let’s instead generate some additional equations for RA-stacks.
Keep in mind that an equation needn’t be between two numerical quantities; it can
also state that two boolean values are equal.

a. Write equations that explain how push! and pop! work together with height.
b. Write an equation that explains how empty-ra-stack? and height are related.
c. Write an equation that explains how empty-ra-stack? and make-ra-stack are

related.

Exercise 13.7

The two sides of each of the preceding equations are equivalent in the sense that
they produce the same value but not in the sense of also having the same effect. We
can make improved versions where the effects as well as the values are identical; for
example, if 0 # i , (height ra-stack) 2 1 and k 5 i 1 1,

(top-minus (pop! ra-stack) i)
;

(let ((value (top-minus ra-stack k)))
(pop! ra-stack)
value)

a. Rewrite the other two given equations in this style.
b. Rewrite your equations from Exercise 13.6a in this form.

The previous equations will help guide our implementation. But before we get
around to actually writing code, we must first consider how RA-stacks will be repre-
sented. By this we mean how a given RA-stack should look in terms of more basic
Scheme data objects. In order to come up with a representation, let’s first consider
what specific needs RA-stacks require from their representation. First and foremost
is the need for mutability; and because we only know how to mutate vectors, we will
therefore represent an RA-stack with one or more vectors. A secondary consideration
is that because we do this mutation at the top of the stack, it would be nice to be
able to do so without having to change things elsewhere. Finally, we want to be able
to access all elements of the stack efficiently.

Our first representation uses two vectors, one with two cells and the other with
a large (though fixed) number of cells. The idea is to use the second vector to
store the elements of the stack, starting with the bottom element, and let the first
vector maintain the height of the stack as well as a reference to the second vector.
Figure 13.5 gives a pictorial representation of the stack 5 2 9 1, where 1 is top
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Figure 13.5 Representation of the stack 5 2 9 1, where 1 is top element

element. In this picture, the second vector has eight cells, with the values in the last
four cells being immaterial for the stack in question.

The advantage of this representation is that the RA-stack operations are easy to
implement, because they involve straightforward vector index computations. For
example, the index of the position where the next element should be added is
precisely the stack’s height, so pushing an element onto the stack involves placing
it there and then incrementing the stack’s height by 1. Popping an element is
accomplished in a similar manner. Accessing an element in a stack is done through
a fairly simple index calculation.

Note that this representation imposes an upper limit on the size of the stack,
namely, the number of cells in the second vector. We can reflect this restriction by
having the following alternative constructor:

(make-ra-stack-with-at-most max-num)
;; returns an empty stack that can’t grow beyond max-num items

We can then implement make-ra-stack as follows:

(define make-ra-stack
(lambda ()
(make-ra-stack-with-at-most 8)))

The maximum stack size of 8 was somewhat arbitrarily chosen. It is sufficient for
most expressions you are likely to encounter when using stacks in the algorithm from
the previous section. However, it is insufficient in general because an expression can
have arbitrarily many subexpressions, as illustrated by the following example:

(1+(2+(3+(4+(5+(6+(7+(8+9))))))))

Exercise 13.8

Let’s consider the potential size of the expression stack during the course of process-
ing an expression.
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a. What is the maximum size of the expression stack during the processing of the
preceding expression?

b. What is the maximum size of the expression stack during the processing of an
unparenthesized expression?

Let’s now work through this implementation scheme. The constructor make-ra-
stack-with-at-most is straightforward, given the representation described in Fig-
ure 13.5. We first create two vectors, called header and cells, then appropriately
initialize the values in header, and finally return header as the desired empty
RA-stack.

(define make-ra-stack-with-at-most
(lambda (max-height)
(let ((header (make-vector 2))

(cells (make-vector max-height)))
(vector-set! header 0 0) ; header[0] = height = 0
(vector-set! header 1 cells) ; header[1] = cells
header)))

Note that we used the notation header[0] to signify the element in position 0 of
the vector header. This is not allowable Scheme syntax; it is simply an abbreviation
we will use in comments and elsewhere when describing the contents of a vector.

Given this construction, the two procedures height and empty-ra-stack? are
also straightforward:

(define height
(lambda (ra-stack)
(vector-ref ra-stack 0)))

(define empty-ra-stack?
(lambda (ra-stack)
(= 0 (height ra-stack))))

Note that we’ve defined empty-ra-stack? using height rather than directly in
terms of vector-ref. In general, it makes the implementation of a mutable data type
easier to write, read, understand, and modify if arbitrary numerical vector positions
needed for vector-ref and vector-set! are confined to a limited number of
procedures. For this reason, we’ll also define an “unadvertised” selector, cells,
which is intended to be used only internally within the implementation of RA-
stacks:
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(define cells ; use only within the ADT implementation
(lambda (ra-stack)
(vector-ref ra-stack 1)))

The other operators are more complicated, because we need to do some index
computations. For example, consider the operator top-minus, which is supposed to
return the element offset positions from the top of ra-stack. How do we calculate the
index of the desired element? Well, we claimed in the foregoing that the index of
the position where the next element should be added is precisely the stack’s height.
If we could count on this, we could then conclude that the top of the stack would
be in position height(ra-stack) 2 1. Therefore, the element offset positions from the
top would be in position

height(ra-stack) 2 1 2 offset 5 height(ra-stack) 2 (offset 1 1)

This information helps us come up with the following implementation of
top-minus, which includes some error-checking:

(define top-minus
(lambda (ra-stack offset)
(cond ((< offset 0)

(error "TOP-MINUS: offset < 0" offset))
((>= offset (height ra-stack))
(error "TOP-MINUS: offset too large for stack"

offset (height ra-stack)))
(else
(vector-ref (cells ra-stack)

(- (height ra-stack)
(+ offset 1)))))))

The foregoing reasoning relied on certain assumptions about the representation
we are using for RA-stacks, namely, that the index of the position where the next
element should be added is the height, which is stored in ra-stack[0], and that the
stack elements are stored in order from bottom to top starting at cells[0], where
cells 5 ra-stack[1]. How can we rely on these assumptions? The answer is that
we must maintain them as representation invariants; representation invariants are
important enough that we give the following definition:

Representation invariant: A representation invariant is a property of the rep-
resentation of an ADT that is valid for all legally formed and maintained
instances of the ADT. In other words, if an instance of the ADT was legally
formed via one of the ADT’s constructors, and was only altered by legal calls
to its mutators, the property is guaranteed to be valid.
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By legal, we mean that the arguments to the constructors or mutators satisfy all of
the stipulated or implied preconditions. For example, the max-height argument in
make-ra-stack-with-at-most must be nonnegative.

What are the representation invariants for RA-stacks? Here is one that describes
more formally the structure we are relying on from our representation:

RA-stack representation invariant (representation 1): Let height 5 ra-stack[0]
and cells 5 ra-stack[1]. The elements of ra-stack, listed from the bottom of the
stack to its top, are in cells[0], cells[1], . . . , cells[height 2 1].

In particular, this invariant implies that the element of the stack that is offset ele-
ments from the top is stored in cells[height 2 (offset 1 1)], the fact we used in our
implementation of top-minus.

The key point in the definition is that we must ensure through our implementation
that the representation invariant is valid for any legally formed and maintained
instance of an RA-stack. How can we do this? Well, note that any such instance was
first formed by an ADT constructor and then was operated on a finite number of
times by certain of the ADT selectors and mutators. Because the selectors do not
change the instance, the only changes come from the finite sequence of mutations.
We can inductively prove the validity of the invariant if we show that

The invariant is valid for the value returned by a legal call to an RA-stack con-
structor.

If the property is valid for an RA-stack before it is passed in a legal call to an
RA-stack mutator, it is also valid after the call.

The first condition corresponds to the base case of an induction proof, whereas the
second condition corresponds to the inductive step.

Consider first the base case. Note that the invariant is true for the return value
for the RA-stack constructor make-ra-stack-with-at-most (and therefore also
for make-ra-stack): After all, there is no i such that 0 # i , height because
height 5 0. We say that the invariant is vacuously true in this case.

How about the inductive step in the proof of the invariant? Clearly we can’t
prove it yet because we have not yet written the two mutators pop! and push!.
On the other hand, we can use our need to prove the inductive step to guide our
implementation of the two mutators. Take for example pop!. The only thing we
need to do in order to remove the top element of the stack while maintaining the
invariant is to decrease ra-stack[0] (the height) by 1. After all, the remaining elements
of the stack will still be in the required order and will still start at location 0 in the
cells vector, so the invariant will remain valid assuming it had been valid when pop!
was called. Therefore, we deduce the following implementation for pop!:
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(define pop!
(lambda (ra-stack)
(if (empty-ra-stack? ra-stack)

(error "POP!: attempted pop from an empty stack")
(begin
(set-height! ra-stack

(- (height ra-stack) 1))
ra-stack))))

(define set-height! ; use only within the ADT implementation
(lambda (ra-stack new-height)
(vector-set! ra-stack 0 new-height)))

Finally, consider push!. Again, the invariant will remain valid if we put the new
item in the position with index height(ra-stack). (Recall that the existing elements
stop in the location before that one.) After doing the appropriate vector-set! to
put it there, all we need to do is increase the value of of the height by 1. Hence:

(define push!
(lambda (ra-stack item)
(if (<= (vector-length (cells ra-stack))

(height ra-stack))
(error "PUSH!: attempted push onto a full stack")
(begin
(vector-set! (cells ra-stack)

(height ra-stack)
item)

(set-height! ra-stack
(+ (height ra-stack) 1))

ra-stack))))

That completes our first implementation of RA-stacks. The main advantage of
this implementation is its efficiency: Each operator uses only a small, fixed number
of operations. However, there is a definite disadvantage: The stack has a limited size.

Exercise 13.9

One way to overcome this size limitation is to increase the size of the vector holding
the stack elements whenever that is necessary, which means rewriting the error
clause of the if expression in push!. For example, you could create a vector of
twice the size of the current cells vector, copy the old stack elements into the



442 Chapter 13 Object-based Abstractions

0

4

1 0

1

1 0

9

1 0

2

1 0

5

1

( )

Figure 13.6 Representation of the stack 5 2 9 1, where 1 is top element

new vector, set the new vector as the stack’s cells vector, and carry on from there.
Rewrite push! to implement this strategy.

Our second representation of stacks (not counting the one in Exercise 13.9) uses
a varying number of two-element vectors. It contains one vector for each element
in the stack, plus an additional vector (the header) that contains the stack’s height
and a pointer to the first of the other vectors. Each of the other vectors contains a
stack element and a reference to the next vector. In effect, we are implementing
something very similar to Scheme lists. Figure 13.6 gives a pictorial representation
of the stack 5 2 9 1, where 1 is top element. Notice that the stack is listed from top
to bottom, which is the opposite of the first representation. We do this to have easy
access to the top of the stack: otherwise we would have to, in effect, “cdr” to the end
of the stack in order to add or delete elements. You’ll notice in Figure 13.6 that the
last two-element vector has the empty list, (), in position 1, which plays the same
role as in normal Scheme lists. Because the stack’s height is explicitly recorded, this
end-marker isn’t strictly necessary, but it does make debugging and reasoning easier.

Before starting this implementation, we should try to come up with an invariant
that describes our representation. But even before working on the invariant, we have
a higher priority: coming up with some terminology so that we can conveniently talk
about our representation. We will call the two-element vectors nodes, and a linked
list of nodes such as in Figure 13.6 a node-list.

Rather than continuing to talk concretely about the nodes as two-element vectors
with “element 0” and “element 1,” it would be better if we treated nodes as an
abstract data type with the two selectors node-element and node-rest. That way
you don’t need to keep straight the 0s and 1s, and we also have the flexibility to later
switch to a nonvector representation. For now, the implementation of nodes is as
follows:

(define make-node
(lambda (element rest)
(let ((node (make-vector 2)))
(vector-set! node 0 element)
(vector-set! node 1 rest)
node)))
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(define node-element
(lambda (node)
(vector-ref node 0)))

(define node-rest
(lambda (node)
(vector-ref node 1)))

When we say that an object is a linked list of nodes, or a node-list, we mean that
it obeys the following representation invariant:

Node-list representation invariant: A node-list is always represented in one of
two ways:

1. As the empty list, (), in which case we say the list is of length 0, or contains
0 nodes.

2. As a node that has as its node-rest component a node-list of length n 2 1,
where n is a positive integer; in this case we say that the original node
represents a node-list of length n, or contains n nodes.

All node-lists must be assigned a unique well-defined length by the above rules;

this forbids cycles such as
0

4

1

.

Because our new representation of RA-stacks is as node-lists, we’ll be able to take
advantage of the preceding invariant for node-lists but will also have the responsibility
for maintaining that invariant. However, not just any node-list is a valid representation
of an RA-stack, so there is an additional representation invariant specific to RA-stacks
in addition to the generic node-list invariant above:

RA-stack representation invariant (representation 2): Let height be the node-
element component of ra-stack. Then ra-stack is a node-list containing height1
1 nodes. Furthermore, the elements of the RA-stack, listed from top to bottom,
are the node-element components of the nodes in the node-list given by
the node-rest component of ra-stack (that is, the node-list starting with the
second node in ra-stack).

This invariant already indicates to us how we should implement the operators
make-ra-stack and height. (Note that we no longer have any reason to implement
make-ra-stack-with-at-most, and empty-ra-stack? can remain unchanged,
because it is defined in terms of height.)
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(define make-ra-stack
(lambda ()
(make-node 0 ’()))) ; height 0, no other nodes

(define height
(lambda (ra-stack)
(node-element ra-stack)))

Given their similarity, it would be very useful if we could mimic some of the
functionality of Scheme lists in our node-lists. One such list-like procedure we will
use later is nodes-down, which is roughly like cdring n times down a node-list. Thus,
if ra-stack is the node-list in Figure 13.6, (nodes-down 0 ra-stack) would
be ra-stack itself, whereas (nodes-down 2 ra-stack) would be the node-list
starting with the node containing 9.

(define nodes-down
(lambda (n node-list)
(if (= n 0)

node-list
(nodes-down (- n 1) (node-rest node-list)))))

This procedure makes top-minus quite easy to write, given the invariant describing
our current representation:

(define top-minus
(lambda (ra-stack offset)
(cond ((< offset 0)

(error "TOP-MINUS: offset < 0" offset))
((>= offset (height ra-stack))
(error "TOP-MINUS: offset too large for stack"

offset (height ra-stack)))
(else
(node-element (nodes-down (+ offset 1) ra-stack))))))

To maintain the invariant in pop!, we need to somehow remove the second node
in the node-list (because that is where the top element of the stack is contained) and
also decrease the stack’s height by 1. Both of these tasks involve updating a node, so
we’ll need the following two mutator procedures for our abstract data type of nodes:

(define node-set-element!
(lambda (node new-element)
(vector-set! node 0 new-element)))
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(define node-set-rest!
(lambda (node new-rest)
(vector-set! node 1 new-rest)))

Given a node that represents an RA-stack, the node-element component
is the height of the stack, so decreasing the height by 1 will be done using
node-set-element!:

(node-set-element! ra-stack (- (height ra-stack) 1))

Similarly, the RA-stack’s node-rest component is what needs updating to reflect
the removal of the node containing the top stack element; it should now have as its
contents a node-list of all the elements on the stack after the pop! (i.e., all except
the one that was on top). This node-list can be found using nodes-down to skip over
the header node and the node containing the top element:

(node-set-rest! ra-stack (nodes-down ra-stack 2))

Putting these two steps together (with a little error-checking), we get the following:

(define pop!

(lambda (ra-stack)

(if (empty-ra-stack? ra-stack)

(error "POP!: attempted pop from an empty stack")
(begin (node-set-element! ra-stack (- (height ra-stack) 1))

(node-set-rest! ra-stack (nodes-down 2 ra-stack))

ra-stack))))

Finally, push! requires us to first insert a new node containing the new element
between the first two nodes of the old stack and then to increase the height by 1.
Figure 13.7 illustrates how this would work when pushing 6 onto the stack in
Figure 13.6.
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Figure 13.7 Effect of pushing 6 onto the stack from the previous figure
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(define push!
(lambda (ra-stack item)
(let ((new-node (make-node item (node-rest ra-stack))))
(node-set-rest! ra-stack new-node)
(node-set-element! ra-stack (+ (height ra-stack) 1))
ra-stack)))

This code completes our second implementation of RA-stacks. It has the advantage
of imposing no growth restrictions on RA-stacks. Furthermore, with the exception of
top-minus, all of the operators are efficient in that they only require a small, fixed
number of operations. On the other hand, the procedure top-minus has linear
complexity, measured in terms of offset. In the application from the previous
section, this is unimportant, because the largest value of offset we used was 2.

Before we leave the linked-list representation entirely, we can make one other
interesting observation. The node-lists we have been using are extremely similar to
normal Scheme lists; wouldn’t it be nice if they really could be lists? That is, we would
like to use pairs (of the kind cons creates) rather than two-element vectors as the
representation of the abstract data type of nodes. The constructor and selectors are no
problem—cons, car, and cdr correspond naturally to make-node, node-element,
and node-rest. The only problem is with the mutators. But, Scheme has mutators
for pairs too—a secret we’ve been hiding thus far. They are called set-car! and
set-cdr!, and they allow us to reimplement nodes as follows:

(define make-node cons)
(define node-element car)
(define node-rest cdr)
(define node-set-element! set-car!)
(define node-set-rest! set-cdr!)

With these definitions in place, the RA-stack procedures will work as before, except
now the node-lists will be ordinary lists made out of cons pairs. The pictures would
lose the “0” and “1” labels over the boxes, which were our way of distinguishing
two-element vectors from pairs.

13.4 Queues

Stacks have the property that the last item pushed onto the stack is the first one
popped off; for this reason, they are also known as LIFO structures, for last in first
out. Sometimes we’d rather store information in a first in first out, or FIFO fashion.
This typically arises from fairness considerations. For example, imagine storing the
names of the students waiting to get into a popular course. If a space opens up,
we’d like to retrieve the name of the student who has been waiting the longest.
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The traditional name for a data structure that works in this way is a queue (which is
pronounced like the letter Q). In this section we’ll look at queues as another example
of how representation invariants can guide us in implementing a mutable data type.
As with RA-stacks, we’ll look at two different styles of representation. In one, we store
the elements in consecutive positions within a vector. In the other, we store each
element in a separate node, with the nodes linked together into a list.

We’ll start by giving a list of operations for the queue ADT:

(make-queue)
;; returns a newly created empty queue.

(empty-queue? queue)
;; returns #t if queue is empty, otherwise #f.

(head queue)
;; returns the element which is at the head of queue,
;; that is, the element that has been waiting the longest,
;; provided queue is nonempty.

(dequeue! queue)
;; removes the head of queue, provided queue is
;; nonempty. The return value is the modified queue.

(enqueue! queue item)
;; inserts item at the tail of queue, that is, as the most
;; recent arrival. The return value is the modified queue.

The two mutators are pronounced like the letters DQ and NQ.
Now consider representing queues like our first representation of RA-stacks. In

that representation, we stored the items in consecutive positions of a “cells” vector
and used a two-element “header” vector to store the number of items in the RA-stack
and the cells vector. If we used this same format for queues, and also maintained
the representation invariant that the head of the queue is in cell number 0 and the
remaining elements follow in consecutive cells, we might wind up with a picture
like Figure 13.8 for a queue that had 5 enqueued, then 2, then 9, and finally 1.
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Figure 13.8 Initial, suboptimal, idea for how to represent the queue 5 2 9 1, where 5 is the oldest
element (head) and 1 is the newest (tail)
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In this representation for queues, all the operations except dequeue! would be
relatively straightforward. However, because dequeue! is supposed to remove the 5
from the head of the queue, in this representation it would be necessary to shift the
remaining elements all down by one position. For this reason, the representation
isn’t a good one. The basic problem is that maintaining the representation invariant
is too expensive, given that the elements of the queue should start at position 0 in
the cells vector.

One way to cope with an expensive-to-maintain representation invariant is to
redesign the representation to be more flexible so that we don’t have as constraining
of an invariant to maintain. In particular, we’d like to have the flexibility to start
the queue at any point in the cells vector rather than always at position 0. That
way when a dequeue! operation is done, we wouldn’t have to shift the remaining
elements down. In order to support this flexibility, we’ll extend the header vector to
now contain three pieces of information. It will still contain the number of elements
in the queue and the cells vector. However, it will also contain the position number
within the cells vector that the queue’s head is at. For example, we could now
dequeue! the element 5 from the queue 5 2 9 1 as shown in Figure 13.9, changing
from having four elements starting in position 0 to having three elements starting in
position 1.

Suppose, having dequeued 5 from our example queue, we now were to enqueue
some additional elements. Because the cells vector in the figure has four unused cells
after the one containing 1, we could insert four more items without any problem.
What about adding a fifth item, bringing the total length of the queue to eight? It
should be possible to store an eight-element queue in an eight-element cells vector.
The trick is to consider the queue’s storage as “wrapping around” to the beginning
of the vector. Because the queue starts in position 1 within the cells vector, it can
continue to positions 2, 3, 4, 5, 6, 7, and then 0, in that order. Similarly, if we
dequeued the 2, we would then have freed up space to enqueue one more item, and
the queue would now go from position 2 to 3, 4, 5, 6, 7, 0, and 1. This wrapping
around of positions can be expressed using modular arithmetic. We can write the
representation invariant as follows:
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Figure 13.9 Improved idea for how to represent the queue 5 2 9 1, where 5 is the oldest element
(head) and 1 is the newest (tail); the indicated changes correspond to using dequeue! to remove
the 5, changing the queue to 2 9 1
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Queue representation invariant (representation 1): Let queuelength 5 queue[0],
start 5 queue[1], and cells 5 queue[2]. Let cellslength 5 (vector-length cells).
The following restrictions are all met:

0 # queuelength # cellslength

0 # start , cellslength

There are queuelength elements in queue. For each i in the range 0 # i ,
queuelength, the element that is i elements after the head of queue is stored in
cells[(start 1 i) mod cellslength].

We can use this representation invariant to guide us in writing the operations as
follows:

(define queue-length ; use only within the ADT implementation

(lambda (queue)

(vector-ref queue 0)))

(define set-queue-length! ; use only within the ADT implementation

(lambda (queue new-length)
(vector-set! queue 0 new-length)))

(define queue-start ;use only within the ADT implementation

(lambda (queue)

(vector-ref queue 1)))

(define set-queue-start! ; use only within the ADT implementation

(lambda (queue new-start)

(vector-set! queue 1 new-start)))

(define queue-cells ; use only within the ADT implementation

(lambda (queue)

(vector-ref queue 2)))

(define set-queue-cells! ; use only within the ADT implementation

(lambda (queue new-cells)

(vector-set! queue 2 new-cells)))
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(define make-queue

(lambda ()
(let ((cells (make-vector 8)) ; 8 is arbitrary

(header (make-vector 3)))

(set-queue-length! header 0)

(set-queue-start! header 0) ; arbitrary start

(set-queue-cells! header cells)

header)))

(define empty-queue?

(lambda (queue)
(= (queue-length queue) 0)))

(define head

(lambda (queue)

(if (empty-queue? queue)

(error "attempt to take head of an empty queue")

(vector-ref (queue-cells queue)

(queue-start queue)))))

(define enqueue!

(lambda (queue new-item)

(let ((length (queue-length queue))

(start (queue-start queue))

(cells (queue-cells queue)))

(if (= length (vector-length cells))

(begin

(enlarge-queue! queue)

(enqueue! queue new-item))
(begin

(vector-set! cells

(remainder (+ start length)

(vector-length cells))

new-item)

(set-queue-length! queue (+ length 1))

queue)))))
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(define enlarge-queue! ;use only within the ADT implementation

(lambda (queue)
(let ((length (queue-length queue))

(start (queue-start queue))

(cells (queue-cells queue)))

(let ((cells-length (vector-length cells)))

(let ((new-cells (make-vector (* 2 cells-length))))

(from-to-do

0 (- length 1)

(lambda (i)

(vector-set! new-cells i

(vector-ref cells
(remainder (+ start i)

cells-length)))))

(set-queue-start! queue 0)

(set-queue-cells! queue new-cells)

queue)))))

Exercise 13.10

The enlarge-queue! procedure is used when the cells vector is full. It makes a
new cells vector twice as large and copies the queue’s elements into it. It copies
the elements into positions starting at the beginning of the new cells vector and
correspondingly sets the queue’s start to be 0. Explain why the queue’s elements
can’t just be copied into the same positions within the new vector that they occupied
in the old vector.

Exercise 13.11

We’ve left out dequeue!. Write it. If the queue is empty, you should signal an error.
Be sure to maintain the representation invariant by adjusting the start of the queue
appropriately. You can’t just add 1 to it because you have to keep it in the proper
range, 0 # start , cellslength.

Now let’s turn our attention to designing an alternative queue representation
using a node list. We’ll store each element of the queue in one node of the node
list, in some order; we still have to decide whether it should be head to tail or tail
to head. Recall that node lists are inherently asymmetrical: One end of the node list
is the beginning, from which one can start cdring down the list. Queues need to be
operated on at both ends because enqueuing happens at the tail end, and dequeuing
happens at the head end. Thus, to support both operations efficiently, we’ll need
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0 1

5 2 9 1
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Figure 13.10 Representation of the queue 5 2 9 1 as a header vector that contains the first and
last nodes of a node list

some quick way to get directly to the last node in the node list, without cdring down
to it starting from the first node. This is true no matter which order we pick; the
order just determines which operation’s efficiency is at stake. The easiest way to have
quick access to both ends of the node list is by using a header vector that directly
contains both the first and the last node of the node list. That is, we would have a
situation like that shown in Figure 13.10.

If you consider what it would take to maintain the representation invariant, you
can figure out which end of the node list should be the queue’s head and which
should be the queue’s tail. Remember that nodes will get added at the queue’s tail
and removed at its head. So, we have to consider how easily we can update the
picture shown in Figure 13.10 under the two options:

If the beginning of the node list is the head of the queue, we can dequeue
by simply adjusting the header vector to point at the next node instead. We can
enqueue by adding a new node after the current last node (found using the header
vector) and adjusting the header vector to reflect this new last node.
If the beginning of the node list is the tail of the queue, enqueuing would still be
easy because we can tack a new node onto the front of the node list and adjust the
header vector to make it the new starting node. However, dequeuing is another
matter. There is no efficient way to get to the second to last node, which should
now become the last node.

Having considered these options, we see that it is superior to consider the start of
the node list the head of the queue. That is, in Figure 13.10, 5 is the head element
of the queue. Having made this decision, we should formalize it in a representation
invariant.

Exercise 13.12

Write the representation invariant for this second representation for queues. Be sure
to specify what the two elements of the header vector should be when the queue is
empty.
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Exercise 13.13

Now write the queue ADT procedures based on this new representation invariant.
Be sure that you maintain the invariant. For example, when you enqueue, you will
need not only to make use of the header’s information about which node is last but
also to update that information.

13.5 Binary Search Trees Revisited

One common problem in computer programming is maintaining large amounts
of data in a manner that allows the individual records in the data to be retrieved
efficiently. For example, states maintain driver’s license information, schools main-
tain student records, dictionaries maintain definitions, card catalogs maintain book
records, and Joe Franksen’s video store (Section 8.1) maintains its video records.
A data structure that holds this information should allow efficient construction,
retrieval, and maintenance.

When we considered this problem in Section 8.1, we investigated binary search
trees as such a storage mechanism. (Recall that binary search trees are binary trees
where each node has a value that is greater than those in its left subtree and less than
those in its right subtree.) Binary search trees have the potential for very efficient
data retrieval. Specifically, we showed that searching for an element in such a tree
takes O(h) time, where h is the height of the tree. We also showed that the minimum
height for a binary tree with n nodes is exactly blog2(n)c (where blog2(n)c is the largest
integer # log2(n)). Thus, searching for an element in a minimum-height tree would
take O(log(n)) time. We even wrote a procedure optimize-bstree in Exercise 8.13
on page 224 that produced a minimum-height binary search tree containing the same
nodes as a given binary search tree.

Unfortunately, the methods developed in Sections 8.1 and 8.2 did not adequately
address the problem of maintenance, by which we mean adding and deleting records
when necessary. In particular, the insert procedure in Exercise 8.6 on page 220 did
not keep the height of the tree as small as possible, and calling the optimize-bstree
procedure after each insertion would prove time-consuming. What should we do?
Well, various strategies have been devised for maintaining binary search trees so that
their height is O(log(n)), which will suffice to allow us to write retrieval, insertion,
and deletion procedures that have time complexity O(log(n)). We describe one such
strategy here, one using red-black trees.

Red-black trees are a special subclass of binary search trees. That is, they obey an
additional, more restrictive, representation invariant above and beyond the structural
invariant that all binary trees satisfy and the ordering invariants that all binary search
trees satisfy. Every node in a red-black tree has an additional field, its color, which
is either red or black. This includes also the “empty nodes” at the bottom of the
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tree, which we treat as the leaves of the tree. The representation invariant is that the
following three conditions hold must hold, in addition to the binary search condition:

Each leaf (empty) node is black.
The number of black nodes along a path from the root node to any of the leaf
nodes is the same as for any of the other leaves.
No red node has a red parent.

Figure 13.11 gives an example of a red-black tree containing numbers (the only
type of red-black trees we will consider in this section).

We need to show that the height of a red-black tree with n nonempty nodes is
O(log(n)). Let h denote the height of our tree. When we say that this tree has height
h, we mean that the deepest of the empty nodes is at depth h. For example, in
Figure 13.11 the deepest empty node is at depth 5, so the tree has height 5. How
about the shallowest empty node? The tree in that figure has its shallowest empty
node at depth 3; we will use the name d for the depth of the shallowest empty node.
Because d is the depth of the shallowest empty node, all the nodes at depth d 2 1
must be nonempty. There are 2d21 of these; thus, the number of nonempty nodes,
n, is at least this big, and we have n $ 2d21. Taking the log of both sides we have
log2(n) $ d 2 1, or log2(n) 1 1 $ d, so we know that d can be no bigger than
log2(n) 1 1. When n $ 2, this means that d # 2 log2(n).

This is all well and good for the shallowest empty node, at depth d, but what
about the deepest, at depth h? The red-black properties come to our rescue here:
There are an equal number of black nodes on any path down from the root to a leaf,
and at worst every other node on such a path can be red, because red nodes cannot
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Figure 13.11 A red-black tree containing numbers
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have red parents. Thus, the deepest empty node can be at most twice as deep as the
shallowest (which would happen if there were no red nodes at all on the path to
the shallowest empty node and every other node was red on the path to the deepest
empty node). Therefore we have h # 2d and hence h # 4 log2(n) for n $ 2. From
the foregoing we conclude that h, and therefore also the complexity of retrieval, is
O(log(n)) in red-black trees.

We next turn to the insertion algorithm for red-black trees. As a mutator of red-
black trees, red-black-insert! will take a number and a red-black tree and then
insert the number into the tree in a manner that maintains the binary search and red-
black invariants. We would naturally want the complexity of red-black-insert!
to be O(log(n)) as well. But before actually describing the insertion algorithm, we
give an equivalent definition of red-black trees that will prove to be better suited for
both describing and implementing the algorithm.

According to the new definition, a red-black tree is a binary search tree where
every node has an additional field, its rank, that is a nonnegative integer. (The rank
is in place of the color, not in addition to it.) Again, this definition includes also the
“empty nodes” at the bottom of the tree. Furthermore, the following three conditions
must hold (in addition to the binary search condition):

Each leaf (empty) node has rank 0 and each parent of a leaf has rank 1.
rank(node) # rank(parent(node)) # rank(node) 1 1, provided node has a parent.
rank(node) , rank(parent(parent(node))), provided node has a grandparent

Briefly, the latter two conditions say that the rank can either stay the same or
increase by 1 when going to a node’s parent, but it can’t stay the same through all
three of the node, its parent, and its grandparent. Figure 13.12 gives the example
from Figure 13.11 according to this new definition of red-black trees.
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Figure 13.12 Previous red-black tree recast according to new definition
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Why are these two definitions of red-black trees equivalent? If you have a red-black
tree according to the second definition, color a node black if its rank is different from
its parent, and otherwise color it red. (The root node must be black if either of its
children are red, but otherwise it can be either red or black.) Because leaves have
rank 0 and their parents have rank 1, all leaf nodes are black. Furthermore, the ranks
along any path from the root to a leaf will decrease k times, where k is the rank of
the root, and each decrease corresponds to a black node; hence, the number of black
nodes is the same going to any leaf. Finally, the prohibition against three consecutive
generations sharing a rank implies that the parent of a red node is necessarily black.

Exercise 13.14

If you have a red-black tree according to the first definition, you can define the rank
of a node to be the number of black nodes encountered along any path from the
node down to any descendant leaf (not counting the node itself). Explain why the
foregoing results in a red-black tree according to the second definition.

We finally turn to the algorithm for insertion into a red-black tree. The idea
is to use the binary search condition to move down the tree until we find a leaf
(empty) node where the new item can be inserted while maintaining the binary
search condition. We then insert the item, giving it rank 1 and two new rank 0
empty children. Thus far, the insertion is much as for binary search trees. However,
the additional red-black invariants may have become violated. Therefore, before
calling the red-black tree insertion complete, we repair the damage by performing
a sequence of simple “rebalancings” that progress upward until the invariants have
been restored, possibly moving as far up the tree as the root node. Just as the number
of steps going down the tree was O(log(n)), so too the number of rebalancing steps
moving back up the tree is also O(log(n)).

What operations can we do at a given node and how do we determine which one
to do in order to rebalance at a given node? The point is that after we have done
the binary search insert, only the third of the red-black conditions might fail (the
prohibition against three consecutive equal-rank generations), and if it does fail, it
will only do so at the newly inserted node. Our strategy will be to move this failure
upward in the tree until it finally disappears.

This condition can fail in exactly four ways, each of which is illustrated in Fig-
ure 13.13. (The triangles in this diagram correspond to possibly empty subtrees, and
the letter k corresponds to a rank). We therefore need rebalancing procedures that
will deal with each of these four cases. If we consider the first of these cases, we see
that it can be broken down into the two subcases illustrated in Figure 13.14. In the
first of these, our only choice is to increase the rank of the grandparent by 1 and
continue upward from there. We call the process of increasing a node’s rank by one
promotion.
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Figure 13.13 Four ways to fail the third red-black condition

The second subcase is more difficult because promoting the grandparent would
cause it to have a rank that is 2 larger than the rank of its right child, thereby violating
the second red-black condition. We therefore need some operation that will “move
things around” slightly. Two such operations, called right rotation and left rotation,
are illustrated in Figure 13.15. Notice that the nodes in the two trees in Figure 13.15
satisfy the following condition (where b and d denote the values at the two displayed
nodes, and A, C, and E represent values at any node in their respective subtrees):

A , b , C , d , E

k

k

k

k

k

k

k

k -1

Figure 13.14 Two subcases for failing the third red-black condition
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Figure 13.15 Right and left rotation

This condition means that the binary search condition is maintained under both left
and right rotation. Figure 13.16 illustrates how right rotation applied to the second
tree in Figure 13.14 completely fixes the red-black failure.

What about the other possible red-black failures illustrated in Figure 13.13? Each
of these again has a subcase where grandparent promotion applies; we will focus here
only on the second subcase of each case, where we can’t promote the grandparent.
The last case shown in Figure 13.13, which is the mirror image of the first, can be
fixed by left rotation. The other cases appear more complicated but can be solved
by a couple of rotations. For example, the way to fix the second case is illustrated in
Figure 13.17.

As an example of how insertion into a red-black tree works, consider starting
with an empty tree and inserting the numbers 1, 2, 3, and 4 in that order. This
is illustrated in Figure 13.18. Inserting the 1 puts the value of 1 at the root node,
with a rank of 1. Because this node has no grandparent, there is no potential for it
to have the same rank as its grandparent, and hence there is no failure of the red-
black invariant. Therefore, no rebalancing action is necessary. Now we insert the 2;
because 2 is greater than 1, it goes in as the right child of the root, again with rank 1.
(Remember, all insertions are at rank 1.) Again, this node has no grandparent, so
there can be no problem. Next we insert 3; because it is greater than both 2 and 1,
it goes in as the right child of the 2 node, as usual with rank 1. Now we have three
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Figure 13.16 Using right rotation to fix case 1, subcase 2
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Figure 13.18 Inserting 1, 2, 3, and 4 into an empty red-black tree



460 Chapter 13 Object-based Abstractions

nodes in a row all of rank 1: the newly inserted 3, the 2 that is its parent, and the 1
that is its grandparent. This is a violation of the invariant. Because the new node’s
uncle doesn’t share the rank of 1 (it is an empty tree, with rank 0), it isn’t permissible
to promote the grandparent to rank 2. Instead we do a left rotation at the new node’s
grandparent, resulting in the node with value 2 now being the root, with the 1 on
its left and the 3 on its right. All three of these nodes retain their ranks, (i.e., all are
still rank 1). Now the 4 is inserted, and it goes to the right of the 3, with rank 1.
Again we have an invariant violation, because three generations in a row share the
rank 1: the new 4, its parent 3, and its grandparent 2. However, this time the uncle
(the node with value 1) also is of rank 1, so we simply promote the grandparent to
rank 2. Because this node is the root of the tree, it doesn’t itself have a grandparent,
so we can’t possibly have introduced a new invariant violation in fixing the old one.
Thus, we are done.

We can work through another example, in which the course of events is slightly
different. Suppose we again start with an empty tree, but this time insert 12, 1, 4,
and 3 in that order, as illustrated in Figure 13.19. The 12 becomes the root and the
1 becomes its left child. Both nodes have rank 1, and no rebalancing is necessary,
because neither has a grandparent. Now we insert the 4; because it is smaller than
12 but bigger than 1, it goes to the right of the 1, with rank 1. This action leads
to a three-generation chain of rank 1, so we have an invariant violation. Again the
uncle is an empty tree of rank 0, so promotion isn’t an option. Instead we can first
do a left rotation at the parent (the node containing 1) and then a right rotation
at the grandparent (the node containing 12). The net result is that the node with
value 4 is now the root, with 1 on its left and 12 on its right. All three are still of
rank 1. Now when 3 is inserted, it goes to the right of the 1 node, and the resulting
invariant violation can be fixed simply by promoting the root node (the new node’s
grandparent) to rank 2.

We can summarize the rebalancing process as shown in Figure 13.20. Notice that
we have two basic kinds of rebalancing, depending on whether the node’s uncle
shares its rank (which is also shared by the grandparent, or we’d have no problem).
If the uncle has the same rank, we promote the grandparent; otherwise we rotate.
We mentioned earlier that in the case where we rotate, promotion wouldn’t work
because it would leave the grandparent with a rank 2 greater than the uncle. In the
case where we promote, rotation would just shift the problem from one side of the
tree to the other rather than making any headway on solving it. (To see this, consider
Figure 13.16, but with G relabeled to be of rank k.) Thus, we never really have any
choice—one situation needs promotion and the other needs rotation.

Exercise 13.15

Insert the following numbers one by one into the red-black tree shown in Fig-
ure 13.12. After each one is inserted, do the appropriate rotation(s) and/or promo-
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Figure 13.19 Inserting 12, 1, 4, and 3 into an empty red-black tree

tion(s) (if any), as previously described. Remember that after you do a promotion, you
need to check to see whether it introduced a new invariant violation, necessitating
further action.

a. 13
b. 14
c. 210
d. 25
e. 15
f. 16
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Does node have a grandparent?

No rebalancing is needed.

no

Is node’s rank same as grandparent’s?

yes

no
Is node’s rank same as uncle’s?
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Promote grandparent and
restart with grandparent as the
node under consideration.

yes

What shape is path to grandparent?

no

Rotate the parent down to straighten the path.

zig-zag

Rotate the grandparent down.

straight

Figure 13.20 A summary of how to rebalance a red-black tree, starting from an inserted node.

Armed with this background, we now turn to the actual implementation of red-
black trees. As indicated in the foregoing, we will make the simplifying assumption
that the values in our red-black trees are numbers, inserted according to their numeric
value. (The final section in this chapter will consider how red-black trees can be
extended to more general data, such as movie databases.) Furthermore, we will
allow multiple copies of an element to be inserted into the tree. Therefore, our basic
operators for red-black trees are as follows:

(make-red-black-tree)
;; returns a newly created empty red-black tree.

(red-black-in? item rb-tree)
;; returns #t if item is in rb-tree, otherwise #f.

(red-black-insert! item rb-tree)
;; inserts item into rb-tree, maintaining red-black invariants.
;; If item is already in rb-tree, another copy of item
;; is inserted.

Note that we implement red-black-in? instead of an operation to do a lookup and
return what is found. (We could call such an operation red-black-retrieve.) The
two procedures are very similar, and retrieval makes little sense for pure numeric
trees. We will consider how to convert red-black-in? into red-black-retrieve
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Figure 13.21 Representation of ranked binary trees

in the last section of this chapter. Furthermore, for simplicity, we have decided to
not implement deletion.

We have noted that red-black trees are a special class of binary search trees,
which in turn are a special class of binary trees. This suggests a “layered” strategy
for implementing red-black trees: First we implement ranked binary trees, which are
simply mutable binary trees where every node has a rank and where we can access
a node’s parent as well as its left and right subtrees. None of the binary search or
rank conditions hold for these trees; they are just the low-level stratum on which we
will construct binary search and red-black trees. On top of this layer we build binary
search trees, and on top of that layer we build red-black trees.

So we first turn to the implementation of ranked binary trees. Conceptually, we
are extending the binary trees of Chapter 8 by allowing mutation as well as access to
a node’s parent and rank. In particular, we need something to mutate, so an empty
tree cannot simply be the empty list; it should have the same structure as nonempty
trees. Figure 13.21 describes the representation we will use for ranked binary trees as
six-element vectors, where the names at the end of the arrows indicate the meanings
of the various cells.

Figure 13.22 gives an implementation for ranked binary trees in terms of this
representation. The code is fairly straightforward because most of what we do involves
the selection and mutation of the various attributes of ranked binary trees. The
mutators take care to maintain the simple representation invariants that apply to
all binary trees. For example, it is impossible using these mutators to set the value
without marking the tree as nonempty, and (even more importantly) if node1 is made
a child of node2, node2 is automatically made the parent of node1. Note, however,
that not all cells in a vector need to be set; for example, the first cell being #t
indicates that the tree is empty, so we don’t care about the values in cells 1, 3, and
4 (the value, the left-subtree, and the right-subtree, respectively). Also note that we
use #f in cell 2 (the parent cell) to indicate that the node has no parent (i.e., that
we are at the root node of the tree). This is a subtle difference from the binary trees
of Chapter 8, because there we had no absolute notion of root: Each node was the
root of its own subtree. Here we consider the root node to be the “top-most” node
in the tree, that is, the node you get to by following up the parent links as far as
possible. We therefore include a selector root?, which determines whether we are
at the root node of the tree.
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(define make-empty-ranked-btree
(lambda ()
(let ((tree (make-vector 6)))
(vector-set! tree 0 #t) ; empty-tree? = true
(vector-set! tree 2 #f) ; has no parent
(vector-set! tree 5 0) ; rank = 0
tree)))

(define empty-tree? (define set-empty! ;makes tree empty
(lambda (tree) (lambda (tree)
(vector-ref tree 0))) (vector-set! tree 0 #t)))

(define value (define set-value!
(lambda (tree) (lambda (tree item)
(vector-ref tree 1))) (vector-set! tree 0 #f) ;not empty

(vector-set! tree 1 item)))

(define parent (define root?
(lambda (tree) (lambda (tree)
(vector-ref tree 2))) (not (vector-ref tree 2))))

(define left-subtree (define set-left-subtree!
(lambda (tree) (lambda (tree new-subtree)
(vector-ref tree 3))) (vector-set! new-subtree 2 tree) ;parent

(vector-set! tree 3 new-subtree)))

(define right-subtree (define set-right-subtree!
(lambda (tree) (lambda (tree new-subtree)
(vector-ref tree 4))) (vector-set! new-subtree 2 tree) ;parent

(vector-set! tree 4 new-subtree)))

(define rank (define set-rank!
(lambda (tree) (lambda (tree rank)
(vector-ref tree 5))) (vector-set! tree 5 rank)))

Figure 13.22 Basic operators for ranked binary trees

Although the procedures in Figure 13.22 give a complete implementation of
ranked binary trees, there are certain procedures that will prove useful later when
we use ranked binary trees to implement binary search trees and red-black trees.
In particular, the insertion algorithm in red-black trees requires us to know where
we are in the tree (for example, is the current node the left or right child of its
parent?) and also to move around easily (for example, to the current node’s sibling).
The following two procedures accomplish these tasks (note that we use the built-in
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Scheme predicate eq?, which tests whether its two arguments actually are the same
Scheme object):

(define which-subtree
(lambda (tree)
;; Returns the symbol left if tree is left-subtree of its
;; parent and the symbol right if it is the right-subtree
(cond ((root? tree)

(error "WHICH-SUBTREE called at root of tree."))
((eq? tree (left-subtree (parent tree)))
’left)
(else ’right))))

(define sibling
(lambda (tree)
(cond ((root? tree)

(error "SIBLING called at root of tree."))
((equal? (which-subtree tree) ’left)
(right-subtree (parent tree)))
(else
(left-subtree (parent tree))))))

Exercise 13.16

Write display-ranked-btree so that it produces output such as that shown in Fig-
ure 13.23 when given the tree shown in that figure. Each line of output corresponds
to one node; the indentation level indicates the depth of the node in the tree, and
the value (or emptiness) and rank are shown explicitly. Each node is followed by its
left-subtree descendants and then its right-subtree descendants.

10

empty

9

empty empty

11

empty

12

empty

2

1

11

10 (rank 2)
9 (rank 1)

empty (rank 0)
empty (rank 0)

11 (rank 1)
empty (rank 0)
12 (rank 1)

empty (rank 0)
empty (rank 0)

Figure 13.23 An example of display-ranked-btree
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We next turn to the implementation of binary search trees. As with red-black trees,
we will make the simplifying assumption that the values in our trees are numbers, and
we will allow multiple copies of an element to be inserted into the tree. Therefore,
our basic operators for binary search trees are as follows:

(make-binary-search-tree)
;; returns a newly created empty binary search tree.

(binary-search-in? item bs-tree)
;; returns #t if item is in bs-tree, otherwise #f.

(binary-search-insert! item bs-tree)
;; inserts item into bs-tree, maintaining the binary search
;; invariant. If item is already in bs-tree, another
;; copy of item is inserted.

Again, for simplicity, we will not implement deletion.
The first two operators are easy because we will define an empty binary search tree

to be an empty ranked binary tree, and binary-search-in? can be implemented
the same way as the procedure in? was in Chapter 8:

(define make-binary-search-tree make-empty-ranked-btree)

(define binary-search-in?
(lambda (item bs-tree)
(cond ((empty-tree? bs-tree)

#f)
((= item (value bs-tree))
#t)
((< item (value bs-tree))
(binary-search-in? item (left-subtree bs-tree)))
(else
(binary-search-in? item (right-subtree bs-tree))))))

To insert something into a binary search tree, we must first find the point where
it should be inserted. In other words, we move down the tree, using the tree’s order
condition (i.e., exploiting the representation invariant), until we finally arrive at the
(empty) leaf node where the item should go. Because we are allowing multiple
copies of an item to be inserted, we need to decide in which direction to go if
we encounter the item while moving downward. Our choice is to move rightward
if the item is encountered; that way, the new node will occur “later” in the tree.



13.5 Binary Search Trees Revisited 467

We determine the point at which the item should be inserted through a procedure
insertion-point, thereby simplifying the code for binary-search-insert!:

(define insertion-point
(lambda (item bs-tree)
;; This procedure finds the point at which item should be
;; inserted in bs-tree. In other words, it finds the empty
;; leaf node where it should be inserted so that the
;; binary search condition still holds after it is inserted.
;; If item is already in bs-tree, then the insertion
;; point will be found by searching to the right so that
;; the new copy will occur "later" in bs-tree.
(cond ((empty-tree? bs-tree) bs-tree)

((< item (value bs-tree))
(insertion-point item (left-subtree bs-tree)))
(else
(insertion-point item (right-subtree bs-tree))))))

(define binary-search-insert!
(lambda (item bs-tree)
;; This procedure will insert item into bs-tree at a leaf
;; (using the procedure insertion-point), maintaining
;; the binary search condition on bs-tree. The return value
;; is the subtree that has item at its root.
;; If item occurs in bs-tree, another copy of item
;; is inserted into bs-tree
(let ((insertion-tree (insertion-point item bs-tree)))
(set-value! insertion-tree item)
(set-left-subtree! insertion-tree

(make-binary-search-tree))
(set-right-subtree! insertion-tree

(make-binary-search-tree))
insertion-tree)))

A couple of remarks need to be made about binary-search-insert!. First, we
have specified its return value, the newly inserted node (rather than the bs-tree
itself, for example), because our red-black insertion procedure will need to readjust
the tree starting at the insertion point, and it would be handy to know where that
insertion point is.

The second remark is a warning. Nonempty binary trees, as we have implemented
them, are examples of cyclic structures, meaning that it is possible to move around
the nodes in the tree, eventually returning to the starting node. An example would be
simply going from the root node to one of its children and then back again through
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the parent link. This might seem innocuous enough, and in fact this cyclicality is
important for our needs. However, this property could be disastrous if we allow the
read-eval-print loop to display a tree. After all, to print out a node would require
that its children be printed out, which in turn requires that the children’s parent be
printed out, thereby leading to an infinite loop. The moral of this story is never to
let the read-eval-print loop display a cyclic structure. In our case, we can use the
procedure display-ranked-btree from Exercise 13.16.

We finally turn to the implementation of the red-black tree operations listed
earlier. Two of these operations are trivial, because red-black trees are a special class
of binary search trees:

(define make-red-black-tree make-binary-search-tree)

(define red-black-in? binary-search-in?)

That leaves only red-black-insert! yet to be implemented. As we said in the
foregoing, our strategy will be to first use binary-search-insert! to insert the
node and then to use promotion, right rotation, and left rotation to rebalance the
tree, starting at the newly inserted node and progressing upward. Hence we must
implement these three operations before going on to red-black-insert!. Of these
three, promotion is the easiest:

(define promote!
(lambda (node)
(set-rank! node (+ (rank node) 1))))

To implement rotate-left! and rotate-right!, we need to move things
around in the tree. We choose to do this through two more elementary pro-
cedures. The first one, exchange-values!, takes two nonempty nodes and ex-
changes their respective values, as illustrated in Figure 13.24. We can implement
exchange-values! as follows:
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Figure 13.24 Effect of (exchange-values! tree-1 tree-2)
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Figure 13.25 Effect of (exchange-left-with-right! tree-1 tree-2)

(define exchange-values!
(lambda (node-1 node-2)
(let ((value-1 (value node-1)))
(set-value! node-1 (value node-2))
(set-value! node-2 value-1))))

The other procedure, exchange-left-with-right!, takes two nonempty trees and
exchanges the left subtree of the first with the right subtree of the second, as illustrated
in Figure 13.25. In particular, (exchange-left-with-right! tree tree) “flips”
the two children of tree.

(define exchange-left-with-right!
(lambda (tree-1 tree-2)
(let ((left (left-subtree tree-1))

(right (right-subtree tree-2)))
(set-left-subtree! tree-1 right)
(set-right-subtree! tree-2 left))))

The two rotation procedures become fairly straightforward using exchange-
values! and exchange-left-with-right!. For example, Figure 13.26 illustrates
how rotate-left! can be accomplished through a sequence of exchanges. The
corresponding code for rotate-left! (and by analogy, for rotate-right!) fol-
lows:

(define rotate-left!
(lambda (bs-tree)
(exchange-left-with-right! bs-tree

(right-subtree bs-tree))
(exchange-left-with-right! (right-subtree bs-tree)

(right-subtree bs-tree))
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Figure 13.26 Left rotation through a sequence of exchanges

(exchange-left-with-right! bs-tree
bs-tree)

(exchange-values! bs-tree (left-subtree bs-tree))
’done))

(define rotate-right!
(lambda (bs-tree)
(exchange-left-with-right! (left-subtree bs-tree)

bs-tree)
(exchange-left-with-right! (left-subtree bs-tree)

(left-subtree bs-tree))
(exchange-left-with-right! bs-tree

bs-tree)
(exchange-values! bs-tree (right-subtree bs-tree))
’done))

Exercise 13.17

Other sequences of exchanges also exist that will accomplish left rotation. Map one
of them out analogously to Figure 13.26 and then write the corresponding alternate
definition for rotate-left!.

We finally arrive at the procedure red-black-insert!, which is now accom-
plished fairly easily using the tools we have developed:
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(define red-black-insert!
(lambda (item red-black-tree)

(define rebalance!

(lambda (node)

(cond ((root? node)

’done)

((root? (parent node))

’done)

((< (rank node) (rank (parent (parent node))))

’done)

((= (rank node) (rank (sibling (parent node))))
(promote! (parent (parent node)))

(rebalance! (parent (parent node))))

(else

(let ((path-from-grandparent

(list (which-subtree (parent node))

(which-subtree node))))

(cond ((equal? path-from-grandparent ’(left left))

(rotate-right! (parent (parent node))))

((equal? path-from-grandparent ’(left right))

(rotate-left! (parent node))
(rotate-right! (parent (parent node))))

((equal? path-from-grandparent ’(right left))

(rotate-right! (parent node))

(rotate-left! (parent (parent node))))

(else ; ’(right right)

(rotate-left! (parent (parent node))))))))))

(let ((insertion-node (binary-search-insert! item

red-black-tree)))

(set-rank! insertion-node 1)

(rebalance! insertion-node))
’done))

Notice that each of the three kinds of trees we layered on top of one another—
ranked binary trees, binary search trees, and red-black trees—had mutators that took
care to maintain the appropriate invariant. At the ranked binary tree level, the muta-
tors ensured that node1 couldn’t become a child of node2 without node2 becoming
the parent of node1, thus maintaining an important structural invariant. At the bi-
nary search tree level, the insertion procedure made sure to maintain the ordering
invariant that the binary-search-in? procedure relied upon for correct operation.
And at the red-black tree level, the red-black-insert! procedure maintained the
additional invariant properties needed to guarantee O(log(n)) time operation.
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13.6 An Application: Dictionaries

To make the exposition clearer in Section 13.5, we restricted the red-black trees
to storing numbers rather than more complex records. Some more interesting (and
typical) examples of how red-black trees can be applied once the restriction to
numbers is lifted were cited at the beginning of that section: databases consisting of
driver’s license information or student records, dictionaries containing definitions,
card catalogs containing book records, or the movie database in Joe Franksen’s video
store (Section 8.1). In this section we will modify the red-black trees to accommodate
the construction of, retrieval from, and maintenance of Joe’s movie database.

In each of the cited examples, something is used to look up the records: for drivers’
licenses, perhaps the license number; for student records, perhaps the student’s name;
for dictionaries, the word being defined; etc. In some cases, there might be more
than one thing that we could use for looking up: For example, we might look up
a movie record either by its title or by its director. The aspect of the record we use
for retrieval is called the key. Thus, we retrieve a record from a database by its key.
Several records may share the same key, in which case retrieval using that key should
obtain all those records.

We will use the term dictionary as a general term to refer to a mutable data type
that stores records and allows retrieval by key, even if the keys aren’t words and the
records aren’t definitions. How can we use keys to organize and retrieve data? Can we
be more specific about how we operate on keys? Well, we need to be able to extract
the key from any given record, and we need to be able to compare two different
keys to see which one is larger or if they are equal. We will call the procedure that
gets the key from the record the key-extractor. For example, if we were keying on the
movie’s title, then the movie ADT selector movie-title would be the key-extractor.
On the other hand, we will call the procedure that compares two key values the
key-comparator.

How should we compare two key values? Of course that depends on what the
keys are, but we must give a specification of the general form of the comparison
procedures. Keeping in mind that keys can compare in three ways (,, 5, or .),
we will specify that the key-comparator should take two key arguments and return
one of the symbols <, =, or > according to whether the first key is less than, equal
to, or greater than the second key. For example, if our keys were strings, then we
could use the built-in Scheme procedures string<? and string=? to implement
string-comparator:

(define string-comparator
(lambda (string-1 string-2)
(cond ((string<? string-1 string-2) ’<)

((string=? string-1 string-2) ’=)
(else ’>))))
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In summary, a key-extractor takes a data record and returns a key, whereas a key-
comparator takes two keys and returns one of the symbols <, =, and >.

Exercise 13.18

Scheme has a built-in procedure symbol->string that takes a symbol and returns
the corresponding string. Use symbol->string and string-comparator to write
the procedure symbol-comparator, that compares two Scheme symbols. Thus, you
should have the following interaction:

(symbol-comparator ’erick ’karl)
<

(symbol-comparator ’barbara ’Barbara)
=

Note that symbol-comparator returned = in the latter case because in Scheme the
two expressions ’barbara and ’Barbara evaluate to the exact same symbol. (The
name of that symbol, returned by symbol->string, can be either "barbara" or
"BARBARA", depending on the particular Scheme implementation.)

Exercise 13.19

Use symbol-comparator to write symbol-list-comparator, which takes two
lists of symbols and returns the appropriate comparison symbol. You should have the
following interaction:

(symbol-list-comparator ’(karl wesley)
’(karl knight))

>

(symbol-list-comparator ’(abba dabba)
’(abba dabba doo))

<

We will make it the responsibility of the dictionary to store the key-extractor and
key-comparator in addition to the underlying database, which allows the dictionary
to make use of comparisons between keys in organizing the database. For example,
we will create two dictionaries in this section: one that allows us to retrieve movie
records by title and the other one by director. Although they will share the same
underlying data, it will be organized in two different ways.
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Following are the basic operators for dictionaries:

(make-dictionary key-comparator key-extractor)
;; returns a newly created empty dictionary with given
;; key-comparator and key-extractor

(dictionary-retrieve key dictionary)
;; returns the list of all items in dictionary matching key

(dictionary-insert! item dictionary)
;; inserts item into dictionary, allowing multiple copies

Note that as in the last section, we will not implement deletion.
Because we are going to layer dictionaries on red-black trees, which are in

turn layered on binary search trees, we need to next extend binary search trees
so that they operate on keys. We will not have binary search trees nor red-black
trees store the key-extractor and key-comparator; that will be additional information
stored by dictionaries. As a result, the constructors make-binary-search-tree and
make-red-black-tree will remain unmodified. Instead, we will have to modify the
other operators so that they will take two additional arguments, the key-comparator
and key-extractor.

Exercise 13.20

Modify the procedure insertion-point so that a call of the form

(insertion-point item bs-tree
key-comparator key-extractor)

will find the appropriate empty leaf node where the item should be inserted.

Exercise 13.21

Modify the procedure binary-search-insert! so that a call of the form

(binary-search-insert! item bs-tree
key-comparator key-extractor)

will properly insert item into bs-tree.

During the course of modifying binary search trees and red-black trees to operate
on keys, you will need to test that the procedures work correctly. You can do this
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using data from the movie database, our-movie-database in Section 7.6, which is
included in the software on the web site for this book. You could then do the following
calls to create a new binary search tree bs-tree and insert two elements into it (note
that we wrap the calls to binary-search-insert! inside a begin expression that
ends with ’done, because otherwise the read-eval-print loop would have problems
displaying the cyclic structure returned by binary-search-insert!):

(define bs-tree (make-binary-search-tree))

(begin (binary-search-insert! (make-movie ’(amarcord)
’(federico fellini)
1974
’((magali noel)
(bruno zanin)
(pupella maggio)
(armando drancia)))

bs-tree
symbol-list-comparator
movie-title)

’done)

(begin (binary-search-insert! (make-movie ’(the big easy)
’(jim mcbride)
1987
’((dennis quaid)
(ellen barkin)
(ned beatty)
(lisa jane persky)
(john goodman)
(charles ludlam)))

bs-tree
symbol-list-comparator
movie-title)

’done)

Exercise 13.22

In the course of testing your procedures, you will often need to display the trees you
are manipulating. You could use the procedure display-ranked-btree from Ex-
ercise 13.16. Unfortunately, that procedure would display each entire movie record,
which would make examining the output difficult.

Make a variant of the procedure display-ranked-btree called display-
ranked-btree-by that takes an additional argument, a selector operating on
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records. For each nonempty node of the tree, the selector is used to obtain what
should be displayed. For example, you should get the following output given that
you had defined bs-tree as above:

(display-ranked-btree-by bs-tree movie-title)
(amarcord) (rank 0)

empty (rank 0)

(the big easy) (rank 0)

empty (rank 0)

empty (rank 0)

Exercise 13.23

Using binary-search-in? as a model, write the procedure binary-search-
retrieve, that will additionally take a key-comparator and key-extractor, and will
return a list of all the records matching the key. Thus, you should have the following
interaction using the previously defined bs-tree:

(binary-search-retrieve ’(the big easy)
bs-tree
symbol-list-comparator
movie-title)

(((the big easy) (jim mcbride) 1987 ((dennis quaid)

(ellen barkin) (ned beatty) (lisa jane persky) (john goodman)

(charles ludlam))))

For efficiency you should use the “onto” parameter idea introduced in Section 8.1,
rather than using append.

We next need to extend red-black trees so that they operate on keys. Two of the
operators remain the same because they are lifted directly from binary search trees:

(define make-red-black-tree make-binary-search-tree)

(define red-black-retrieve binary-search-retrieve)

Exercise 13.24

Modify red-black-insert! so that it additionally takes a key-comparator and a
key-extractor as arguments. Thus, you can construct and put one element into a
red-black tree as follows:



13.6 An Application: Dictionaries 477

(define rb-tree (make-red-black-tree))

(red-black-insert! (make-movie ’(amarcord)
’(federico fellini)
1974
’((magali noel)
(bruno zamin)
(pupella maggio)
(armando drancia)))

rb-tree
symbol-list-comparator
movie-title)

We are finally at the point where we can implement dictionaries. Because we
require that a dictionary keeps track of its key-comparator and key-extractor, we start
the implementation of dictionaries as follows:

(define make-dictionary
(lambda (key-comparator key-extractor)
(vector key-comparator

key-extractor
(make-red-black-tree))))

(define key-comparator
(lambda (dictionary)
(vector-ref dictionary 0)))

(define key-extractor
(lambda (dictionary)
(vector-ref dictionary 1)))

(define red-black-tree
(lambda (dictionary)
(vector-ref dictionary 2)))

Note that the three selectors are for internal usage by dictionaries. A person using
dictionaries would use the operators make-dictionary, dictionary-insert!,
and dictionary-retrieve. Thus, we would create our desired movie dictionaries
as follows (though they don’t yet contain the data):

(define our-movies-by-title
(make-dictionary symbol-list-comparator movie-title))



478 Chapter 13 Object-based Abstractions

(define our-movies-by-director
(make-dictionary symbol-list-comparator movie-director))

Exercise 13.25

Implement the procedure dictionary-insert!.

Exercise 13.26

Implement the procedure dictionary-retrieve.

Exercise 13.27

Scheme has a built-in procedure for-each that takes a procedure and a list and
applies the procedure to each element of the list. For-each is very similar to map,
except that it is done for effect, not for its return value. Thus, you would have the
following interaction:

(for-each (lambda (n)
(newline)
(display (* n n)))

’(1 2 3 4))
1

4

9

16

(In this example, all the output is produced by explicit newline and display
invocations. If you try this evaluation, you’ll probably also see a value returned by the
for-each procedure itself, but the Scheme standard leaves that value unspecified.)
Use for-each to insert the data from our-movie-database appropriately into our
two dictionaries our-movies-by-title and our-movies-by-director.

Review Problems

Exercise 13.28

Suppose we want to add the factorial operation, indicated by a postfix !, to the
shift/reduce evaluator of Section 13.2. That is, because 4! 5 24, we should have
(evaluate "2*4!") produce 48 and (evaluate "(2*2)!") produce 24. Notice
(from the first example) that ! has higher precedence even than * and /, so to apply
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the factorial operation to anything other than a single number or another factorial,
you need parentheses. We’ll now have a new kind of reduction. If the top item on
the stack is a ! and a number is below it, we can reduce by popping the two of them
off and pushing the factorial on. Extend Figure 13.4 with an extra column and an
extra row, each labeled with !. Fill in each of the new blank cells in this row and
column with shift, reduce, or error as appropriate; you should detect all errors as
early as possible.

Exercise 13.29

Suppose we changed our first representation of RA-stacks so that the stack’s elements
are stored at the end of the cells vector, with the bottom element of the stack in the
last element of the vector. For example, a representation of the stack 5 2 9 1, where
1 is the top element, could look like the following:

0

–

1

–

2

–

3

1

4

9

5

2

6

5

0

4

1

Of the procedures make-ra-stack-with-at-most, height, top-minus, pop!,
and push!, which ones would need changing (relative to the versions from Sec-
tion 13.3’s representation 1) and which wouldn’t? Justify your answer.

Exercise 13.30

Reimplement the abstract data type for movies in a mutable version that sup-
ports all the same operations (the make-movie constructor and such selec-
tors as movie-title) and also the following additional operations: check-
movie-out-to!, check-movie-in!, and movie-status. Initially, a newly created
movie should be considered checked in. The check-movie-out-to! operation
can only be done on a movie that is currently checked in; otherwise an error is
signaled. Conversely, only a movie that is currently checked out can be checked in,
or check-movie-in! will signal an error. The check-movie-out-to! procedure
takes a person’s name as a second argument and records that information in the
movie object. The movie-status procedure returns the name of the person to
whom the movie is checked out, if it is checked out, or #f if it is checked in.

Exercise 13.31

In Chapter 1 we emphasized that the quarter-turn-right procedure didn’t really
rotate an image a quarter turn to the right in the sense of changing the image; a new
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image was created instead, looking like the original image would have had it been
turned.

Now we have the ability to make objects that can really be turned in the sense
of themselves changing. Define a mutable abstract data type turnable image with
a constructor make-turnable-image that takes a normal image as its argument,
a mutator quarter-turn-right! that updates the turnable image, and selector
get-image that returns a normal image showing the current status of the turnable
image.

Write three versions, and make sure they all work indistinguishably. They should
use the following approaches:

a. The object contains just a normal image. The turn mutator replaces this image
with a new one reflecting the turn. The selector returns it.

b. The object contains both a normal image and a turn count in the range 0 to 3. The
turn mutator leaves the image unchanged and instead updates the turn count.
The selector uses the turn count and image in order to produce the properly
turned image to return.

c. The object contains both a normal image and a turn count in the range 0 to 3,
as in part b. The mutator acts as in part b, updating the turn count. However, the
selector is different. It not only uses the turn count and image to calculate the
turned image to return, but it also then stores that turned image into the object
and sets the turn count to 0.

Exercise 13.32

Recall that in Chapter 6 we wrote a two-pile Nim game that used a game-state ADT.
We implemented the ADT in various different ways, including using cons-pairs.
Suppose we wanted to model game states, but with mutation. In other words, we will
implement the following constructor, selector, and mutator:

(make-game-state n m)
;; returns a game state with n coins in the first
;; pile and m coins in the second pile

(size-of-pile game-state p)
;; returns an integer equal to the number of coins
;; in the p-th pile of the game-state (p = 1 or 2)

(remove-coins-from-pile! game-state n p)
;; changes game-state so that there are n fewer
;; coins in pile p (p = 1 or 2). The return value of
;; remove-coins-from-pile! is unspecified.
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Note that remove-coins-from-pile! actually alters game-state so that pile p
has n fewer coins.

Implement this mutable game state ADT using vectors.

Exercise 13.33

The three procedures below are the constructor, mutator, and selector for a new kind
of object, the widget. Describe in English how widgets behave, from the standpoint
of someone using these three procedures but not knowing what is going on inside
them or how the widgets are being represented. That is, your explanation shouldn’t
talk about vectors or vector positions at all but instead should talk about how widget
insertion and retrieval relate. If some insertions and retrievals are done, how could
you predict what each retrieval was going to retrieve? Once you’ve provided this
outsider’s perspective, provide a justification of it in terms of the internal behavior of
the procedures. That is, explain how it is that the vector operations these procedures
do result in the previously stated external behavior.

(define make-widget
(lambda ()
(let ((widget (make-vector 3)))
(vector-set! widget 0 ’empty)
(vector-set! widget 1 ’empty)
(vector-set! widget 2 0)
widget)))

(define insert-into-widget!
(lambda (widget value)
(let ((place (vector-ref widget 2)))
(vector-set! widget place value)
(vector-set! widget 2 (remainder (+ place 1) 2))
’done)))

(define retrieve-from-widget
(lambda (widget)
(vector-ref widget (vector-ref widget 2))))

Exercise 13.34

In Chapter 10 we turned Micro-Scheme into Mini-Scheme by introducing defini-
tions and used global environments to hold the name/value associations resulting
from those definitions.
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Unfortunately, there was a serious modularity problem. Only the read-
eval-print-loop ever added an association to the global environment, and only
the evaluation of name ASTs ever looked a name up in the global environment.
Yet the global environments needed to be passed around throughout the rest of the
program, in particular through all the other kinds of ASTs.

Now that we know how to define mutable data types, we can implement Mini-
Scheme much more cleanly. We can start with Micro-Scheme and change only
the two communicating partners (read-eval-print-loop and the name ASTs),
leaving the rest unchanged, because the communication can now be done through
an object with state.

In particular, suppose we do the following definitions:

(define make-read-eval-print-loop-state
(lambda ()
(make-vector 1)))

(define set-global-environment!
(lambda (repl-state new-global-env)
(vector-set! repl-state 0 new-global-env)))

(define get-global-environment
(lambda (repl-state)
(vector-ref repl-state 0)))

(define repl-state (make-read-eval-print-loop-state))

At this point, the read-eval-print-loop can take charge of setting the global
environment into the repl-state, and the name ASTs can get the current global
environment back out from there.

As a starting point, you should use all the code from the Micro-Scheme imple-
mentation except read-eval-print-loop, as well as the four preceding defini-
tions and the following procedures from Chapter 10’s Mini-Scheme implementa-
tion: read-eval-print-loop, definition?, definition-name, definition-
expression, look-up-value-in, make-initial-global-environment, and
extend-global-environment-with-naming.

a. Modify make-name-ast so the name ASTs use look-up-value-in rather than
look-up-value. They should get the global environment from the repl-state.

b. Modify the Mini-Scheme read-eval-print-loop so that it uses evaluate
rather than evaluate-in and so that at the top of the loop it sets the
global-environment into the repl-state.
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Exercise 13.35

Insert the following numbers in order into an initially empty red-black tree, re-
balancing after each insertion. Show the tree after each insertion, but before the
rebalancing, and again after each rebalancing. You must show the rank of each node
as well as the value stored in it but may omit the empty leaf nodes from your diagrams
if you prefer. The numbers are 5, 1, 25, 0, 22, and 21.
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mutable data type
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eq?
string<?
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node-set-rest!
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dequeue!
enqueue!
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make-red-black-tree
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dictionary-retrieve
dictionary-insert!
bs-tree
display-ranked-btree-by
binary-search-retrieve
red-black-retrieve
rb-tree
key-comparator
key-extractor
red-black-tree
our-movies-by-title
our-movies-by-director
check-movie-out-to!

check-movie-in!
movie-status
make-turnable-image
quarter-turn-right!
get-image
remove-coins-from-pile!
make-widget
insert-into-widget!
retrieve-from-widget
make-read-eval-print-loop-state
set-global-environment!
get-global-environment
repl-state

Sidebars

Strings and Characters

Notes

Our treatment of red-black trees is patterned rather closely on Tarjan’s [50], so that
would be one place to turn for guidance on the deletion operation, which we’ve
omitted. However, it is quite dense reading; for a more lengthy treatment, you could
turn to an algorithms and data structures textbook, such as Cormen, Leiserson, and
Rivest [14].
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Object-oriented Programming

14.1 Introduction

In this chapter we will primarily be concerned with mixing together two ideas we’ve
already presented: generic operations (from Chapter 9) and object-based abstractions
(from Chapter 13). This combination, in which abstract data types with state can
have diverse implementations that are operated on through a uniform interface, is
the core of the cluster of ideas known as object-oriented programming.

Although there is general agreement on these two core concepts, and although
there is considerable enthusiasm for object-oriented programming, there is no general
consensus on the remainder of the ideas in the cluster—which are essential or
inessential, central or peripheral. Nonetheless, we’ll cover a few of the more common
“extras.” The most significant is that rather than clearly distinguishing abstract data
types from their implementation, the two are fused together into a single notion
of a class and organized into a single class hierarchy in which the hierarchichal
class relationship can represent the sharing of interface between abstract types, the
provision of an abstract type’s interface by a concrete implementation, or even the
sharing of common portions of concrete implementations.

Rather than go into further detail here about object-oriented programming, we’ll
do so in the next section in the context of a specific example application program.
After that, we’ll explore some extensions and variations in a separate section and
then peek behind the scenes to see how the object-oriented programming system we

486
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presume in the earlier sections can be efficiently implemented. Finally, we’ll give
you a chance to apply the object-oriented programming techniques imaginatively by
building your own world in an adventure game.

14.2 An Object-oriented Program

To illustrate object-oriented programming, we’ll look at a program for an on-line
clothing catalog company. Ideally, users (or customers) would browse through pic-
tures of the various items of clothing, selecting those they wanted. To keep things
simple, we’ll initially only offer oxford-cloth shirts and chino pants. As the customers
browse, they fill in an order form, which is essentially a list of items. They do this
by adding items to the list and inputting the specifics of those items, such as size
and color. Customers can also, at any time, decide to see what’s on their list, get the
total price of all their items, delete an item from the list, or revise the specifics of an
item on their list. When they are finished, if our system were real, they would pay
for their order and, in due time, the items would be sent to them.

To illustrate the ideas of object-oriented programming, our program will concen-
trate on the items of clothing and on the order form, or list. Because our emphasis
is not on the user interface, we’ll stick with a style of interaction that is simple to
program but not likely to win many customers. Similarly, in place of payment and
shipping, we’ll simply provide a mechanism for exiting the program.

We can use the preceding description to get started on an object-oriented design.
First, we can look through this description for important nouns; these serve as clues
regarding what classes of objects we’ll need. These nouns are items of clothing
and a list of items. Thus, we will tentatively assume that we have a class called
item and a class called item-list. We also mentioned two specific kinds of items of
clothing, which suggests having oxford-shirt and chinos classes. There are some other
nouns that are less clear-cut. For example, the description mentions “prices,” both
for individual items and for the total. Should there be a class for prices, or should
they simply be numbers? There is no one right answer to this question. For now,
we’ll use numbers for the prices. However, if there are a variety of interesting things
to do with prices, we might want to reconsider this decision.

The next thing we need to do is identify the operations that we’ll need to perform
on objects of each class. Again, we can get some guidance from our description of
the program by looking carefully both at what is explicitly said (for example, that
items can be deleted from the list) and what is implicit (for example, to calculate
a total price, it must be possible to find the price of each item). This combination
will give us an initial list of operations. As we look in more detail at how each
operation can be implemented, and as we give more careful consideration to how
the operations are used to produce the overall user-visible behavior of the program,
we may come up with some additions to our “wish lists.”



488 Chapter 14 Object-oriented Programming

Let’s start by considering the item-list class. What do we need to be able to do to
an item-list? The following operations come from the program’s description; in each
case we’ve italicized one or more words to serve as the name of the operation:

Add a specified item to the list
Display the list for the user
Find the total price of the items on the list
Delete a specified item from the list
Allow the user to choose an item from the list (to delete or revise)

Once we started to program with these operations, we’d quickly discover we had a
problem if the user decides to choose an item from an empty item list. The best way
to handle this is to not even present choosing as an option when the list is empty;
for the program to do that, it needs to be able to tell if the list is empty. Thus we are
forced to add an empty? predicate to our catalog of operations.

The item class is somewhat simpler; the operations that appear (at least implicitly)
in the program’s description are as follows:

Allow the user to input specifics (such as size and color) for an item
Display the description and price of an item to the user
Allow the user to revise specifics (such as size and color) for an item
Find the price of the item

In the introduction to the chapter we indicated that one of the principal ideas
in object-oriented programming is the use of generic operations to allow a uniform
interface to diverse implementations of an abstract data type. How does this idea
fit into shopping for clothing? The key observation is that although the two kinds
of clothing in our catalog (oxford-cloth shirts and chinos) have some properties in
common, there are considerable differences between them. For example, if you
called a catalog company and asked for the price of any item, you would get an
answer, but if you ordered a pair of chinos with a sleeve length of 32, the operator
would be pretty puzzled. In our program, we’ll use subclasses of the item class to
represent different kinds of clothing. For example, the oxford-shirt class will be a
subclass of the item class. Any oxford-cloth shirt is an item of clothing, or, in object-
oriented jargon, an object that is an instance of the oxford-shirt class is also implicitly
an instance of the item class. That way the oxford-shirt object will support all the
operations of the item class, such as finding its price. However, because it is not
simply an instance of the item class, but also of the oxford-shirt subclass, it can
support additional operations, such as finding the sleeve length, as well.

Now that we have a rough idea of what classes we’ll need, let’s take a look at
some common object-oriented jargon. We start with the word class. When we speak
generally of items of clothing, we’re really talking about the abstract idea of such
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an item rather than a particular item or items. In object-oriented jargon, this idea
makes “item” an example of a class. A class is an abstract grouping of objects that
are similar to each other; the fundamental commonality between the objects of a
class is that they all can be operated on in the same way. For example, we can find
the price of any item in the same way and display the description of any item in
the same way, although the results are likely to be different for different items. Just
as a set can be a subset of another set, a class can be a subclass of a more general
superclass, Thus, the oxford-shirt class is a subclass of the item class, and the item
class is the superclass of the oxford-shirt class. We also say that the oxford-shirt class is
derived from the base class item. The ancestry of a class consists of all the classes it is
derived from, whether directly or indirectly. We choose to define a class’s ancestry as
including the class itself, as well as the class’s superclass, the superclass’s superclass,
etc. In our example, the ancestry of the oxford-shirt class consists of the oxford-shirt
class, the item class, and the object class. The object class is the ultimate ancestor of
all classes in our system. This organization of our program’s world into classes that
are subclasses and superclasses is called the class hierarchy. We can represent this
class hierarchy as a tree, with the object class at the root:

item-list item

object

oxford-shirtchinos

This diagram is our first example of a class diagram in a standard notation known
as the Unified Modeling Language, or UML. This notation also provides means for
expressing many other aspects of object-oriented design, not just the class hierarchy.
We’ll gradually explain more and more of the notation, as the need arises. (Even so,
we’ll only see the tip of the iceberg.)

The oxford-shirt class is really an abstract notion; when we talk about a particular
oxford cloth shirt, this particular concrete shirt is a specific example of the general
class. In object-oriented jargon, we say that a particular object is an instance of a class.
So, for example, if the first item we wanted to order was a blue oxford-cloth shirt
with a 32-inch sleeve length and a 16-inch neck size, this particular shirt would be
an instance of the oxford-shirt class. One very important principle in object-oriented
programming is that a particular object is an instance of all of the ancestor classes
of the class it belongs to, which means that our blue oxford-cloth shirt is not only
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an instance of the oxford-shirt class but also an instance of the item class and an
instance of the object class.

The UML class diagram can show information about the individual instances
as well as about the overall classes. Our first diagram showed only the hierarchical
relationship among the classes. However, an important relationship also exists be-
tween instances of the item-list class and instances of the item class. Each item-list
is associated with arbitrarily many items. From the item-list, we can find the items.
We can add this association to our diagram as follows:

item-list item

object

oxford-shirtchinos

0..1

*

The line between item-list and item represents the association. You can tell it is
an association rather than a subclass/superclass relationship because it doesn’t have
the triangular arrowhead. Instead, it has an arrowhead formed out of two lines.
This arrowhead points to the item class, which tells us that from the item-list, we
can find the items. If each item also could tell us what item-list it belonged to,
we’d have an arrowhead on the other end of the association as well. There is some
additional information near the two ends of the association. An asterisk (*) is on
the end pointing at the item class. This is a special UML notation indicating that
each item-list can have any number of items. If every item-list had to have exactly
five items, the number 5 would appear in place of the asterisk. If each item-list was
constrained to have somewhere between three and seven items, the notation would
be 3..7, and if the requirement was any number from 2 on up, the notation would be
2..*. These notations are called multiplicities. On the other end of the association,
we see the multiplicity 0..1. As we just indicated, this notation is the UML way of
indicating the range from 0 to 1. In other words, each item is associated either with
no item-list or with one item-list.

This multiplicity of 0..1 documents a design decision we made. At the moment we
only foresee having one item-list for the customer’s choices. But what if we changed
the program so that there could be multiple customers, each with an individual
item-list? We’d still want each item to be on at most one list. Even though an item
object is actually just a description of the clothing, and not the real cloth garment,
sharing would be a bad idea because we earlier decided that the item class supported
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an operation for revising the specifics (such as size and color). If two customers had
the same item on their item-lists, and one of them changed the size or color, the
other customer would be surprised to see the same change. Therefore, we insist that
each item appear on at most one item-list. Allowing an item to be on no list at all
doesn’t seem to do any harm and may come in handy as we explore the little “world”
we are constructing, so we left this option open. Another designer might well have
chosen to insist that each item be on an item-list, by using a multiplicity of 1 where
we used 0..1. This illustrates one of the nice features of putting the associations on
the UML diagrams, complete with their multiplicities: it forces us to think about
these design decisions.

We’ve stressed that classes are abstract notions, whereas the objects that are in-
stances of the classes are concrete. However, our object-oriented programming system
is designed in such a way that each class has a concrete class object to represent it.
For example, the oxford-shirt class has an object called oxford-shirt-class that
represents it. These class objects are themselves instances of a class, namely, the
class class. The class class is a class that is used just for the concrete representations
of classes. For example, not only oxford-shirt-class but also object-class,
item-class, item-list-class, chinos-class, and even class-class are all
instances of the class class. If we add this class to our hierarchy, the full diagram
looks as follows:

item-list item

object

oxford-shirtchinos

0..1

*
class

Each instance of a class contains certain pieces of information, stored in instance
variables. Each instance of that class has the same assortment of instance variables:
for example, every oxford shirt has a color, a neck size, a sleeve length, and a price.
However, the specific values of those instance variables are stored independently
in each instance—each shirt gets to have its own color, size, and price. Moreover,
the instance variables are state variables that can change over time—if the customer
remembers having put on a few pounds, the size of the chinos ordered can be
changed.

Because an instance of one class is also an instance of all the ancestor classes, it
will have the instance variables of each of these classes. For example, every item has
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a price, and so if the first thing on the item-list is an item, it has a price. The fact that
it is not just a plain item, but rather an oxford-cloth shirt, is irrelevant. (However,
oxford-cloth shirts can and do have some additional instance variables, beyond those
that all items have.) The way we describe this situation is by saying that a class’s
instance variables are inherited by its subclasses. The oxford-shirt class gets its price
instance variable by inheritance from the item class.

Objects do more than just store information, however. They can also perform
operations. For example, an item can display its description and an item-list can add
another item to itself. The operations are traditionally known as methods. We speak
of general method names, such as item/display, which is the name used to make
any item display itself, no matter how it chooses to do so. (We include the class name
in the method name.) These method names are inherited by subclasses, so any item,
even if it is an oxford-cloth shirt, can be operated on using item/display. However,
the specific method implementation that gets used may or may not be inherited; in
the case of oxford-cloth shirts and displaying, the implementation gets overridden
with an oxford-shirt-specific way of displaying. If the method implementation is not
overridden, the superclass’s implementation is inherited. For example, oxford-cloth
shirts report their price exactly the same way as plain items do because this method’s
implementation is inherited.

Now, having completed our jargon lesson, and having earlier sketched out the
classes we need and their interfaces, we turn our attention to how the classes can
be implemented. We’ll use an object-oriented programming system that allows us
to write object-oriented programs in Scheme. (A later section addresses how the
object-oriented programming system itself is implemented.) This object-oriented
programming system is available from the web site for this book.

The first thing we need to do is to implement the three classes we previ-
ously described. We start by defining the item-list class, using a procedure called
define-class :

(define-class
’item-list ; the class is named item-list
object-class ; it has the object-class as its superclass
’(item-vector ; it has instance variables named item-vector
num-items) ; and num-items

’(add ; and methods with these names
display
total-price
delete
choose
empty?))

Most of the preceding arguments to define-class follow directly from our earlier
discussion of the class and its interface. In particular, the method names come from
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our “wish list” of operations, and the superclass is object-class because we had no
more specific superclass in mind. The only genuinely new revelation is the instance
variables. As you might guess from their names, we are choosing to use a vector to
hold the items, and to allow us to leave some extra unused space in the vector, we
use another instance variable to explicitly record the number of items. That way we
can make the vector big enough to accommodate some addition of items; if it still
turns out to be too small, we can replace it with a larger one.

The define-class procedure is an abbreviation for a long list of other def-
initions. For example, by defining the item-list class as shown, we have defined
item-list-class to be the actual class object (representing the class) but have also
defined make-item-list to be the constructor, item-list? to be a predicate that
tests whether an object is an item-list or not, etc. (We’ll have more to say about con-
structors and predicates later.) Thus, you should not be surprised when we use names
that you haven’t seen explicitly defined. For example, we’ll use make-item-list
without ever saying (define make-item-list . . . ). The definition was provided
by define-class.

Next we need to implement the methods. For an example of how this implemen-
tation is done, let’s first look at the simplest one, empty?, which only needs to check
whether there are 0 items:

(class/set-method!
item-list-class ’empty?
(lambda (this)
(= (item-list/get-num-items this) 0)))

Not only does this implementation of the empty? method illustrate how class/set-
method! is used to provide method implementations, it also provides an example of
how the value of an instance variable is retrieved. The item-list/get-num-items
procedure can be applied to any instance of the item-list class to retrieve the current
value of its num-items instance variable; we call it a getter procedure. The particular
item-list it is applied to in the foregoing is the one passed in to the empty? method
as that method’s one argument, called this. Every method must have at least one
argument, the object to operate on. No matter what other arguments a particular
method might need, its first argument must be this object. (Here it was the only
argument.) By convention this first argument is called this because it is “this object.”
(Another popular convention is to call it self because from the object’s perspective it
is “myself.” We’ll stick with this.) To summarize in the anthropomorphic language
that is commonly used by object-oriented programmers, an item-list answers the
question of whether it is empty by getting its own number of items and checking to
see whether that equals 0.

The num-items instance variable will clearly need to be incremented in the add
method and decremented in the delete method. A more subtle question is how
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it gets set to 0 in the first place. The most logical time to do this would be when
the item-list is first created. Our object-oriented system lets us create an item-list as
follows:

(define example-item-list (make-item-list))

What happens when we create this item-list is that a new instance of the item-list
class is created and then a special object-class method, called init, is automatically
invoked on this newly created object. The normal implementation of the init
method, provided in the object class, does nothing interesting. However, it can be
overridden like any other method. Thus we can arrange for num-items to start at
zero by providing a suitable init method in the item-list class.

The item-list class’s init method should set the num-items instance vari-
able using that instance variable’s setter procedure, which is called item-
list/set-num-items!. We’ll also have it set the item-vector to a 10-element
vector initially because 10 seems like a large enough number that many customers
will stay within it, but it is still a small enough number to not waste a great deal of
the computer’s memory. (Remember, if a particular customer wants to order more
than 10 items, we can always switch to a bigger vector because item-vector is a
state variable that can change.) Putting these two together, we get the following:

(class/set-method!
item-list-class ’init
(lambda (this)
(item-list/set-item-vector! this (make-vector 10))
(item-list/set-num-items! this 0)))

To see this init method in action, we can now do the above definition of
example-item-list, which invokes make-item-list and gives a name to the
result. Now we can check that it really behaved as expected:

(item-list/get-num-items example-item-list)
0

(item-list/empty? example-item-list)
#t

Another useful way to see that the item-list was constructed as expected is by using the
object/describe method, which is provided by our object-oriented programming
system for the sake of debugging and exploration:
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(object/describe example-item-list)

An instance of the class item-list

with the following instance variable values:

num-items: 0

item-vector: [a 10 element vector]

class: [an object of class class]

You can see from the preceding that the num-items and item-vector instance
variables are as expected. You can also see that there is a third instance variable called
class; every object has one of these. It records the most specific class this object is
an instance of, which plays an important role in the underlying implementation of
the object-oriented programming system. Until we examine that implementation in
Section 14.4, you can safely ignore this instance variable.

Incidentally, we sometimes call procedures like make-item-list instantia-
tors rather than constructors because the way they construct objects is by mak-
ing instances of classes. From the object’s viewpoint it is a constructor, whereas
from the class’s viewpoint, it is an instantiator. We say that make-item-list is
item-list-class’s instantiator.

We now can continue implementing the methods of item-list-class one by
one, starting with add, which adds an item to the list. It needs to check to see whether
there is still room in the vector for the additional item. If not, the vector needs to be
replaced with a bigger one, and then the addition can continue. Otherwise, the item
can be inserted into the vector and the num-items counter increased by 1. For now
let’s leave out the details of how we upgrade to a bigger vector; a comment indicates
where this upgrade will need to go:

(class/set-method!
item-list-class ’add
(lambda (this item)
(let ((num-items (item-list/get-num-items this))

(item-vector (item-list/get-item-vector this)))
(if (= num-items (vector-length item-vector))

(begin ; some code (yet to be determined) goes here to
; replace the vector with a bigger one somehow
(item-list/add this item))

(begin (vector-set! item-vector num-items item)
(item-list/set-num-items! this (+ num-items 1))
’added)))))
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Exercise 14.1

Suppose that we forgot to replace the comment with the actual code to upgrade to
a bigger vector and therefore used the method exactly as shown. Under what cir-
cumstances would users not notice our mistake? When they did notice our mistake,
what would the symptoms be? Explain.

Rather than complicate the above method with the details of “growing” into
a bigger vector, a better option is to use procedural abstraction to advantage: We
concern ourselves here with what we want done (growing) and elsewhere with how
that should be accomplished. That is, here we simply invoke a grow procedure
and elsewhere define what that procedure does. In the object-oriented programming
context, this grow procedure actually needs to be a method of the item-list class.
Thus, in addition to all the methods from our original wish-list, which constitute
the “ public interface” of the class, we’ll have an additional grow method that is
for “ private” internal use. The define-class needs to be revised to show the one
additional method name; we’ll also put some comments in to distinguish the two
categories of methods:

(define-class
’item-list
object-class
’(item-vector
num-items)
’(
;; intended for public consumption:
add
display
total-price
delete
choose
empty?
;; intended for private, internal use:
grow
))

Having added this method name, we can now replace the comment in our add
method with real Scheme code:

(class/set-method!
item-list-class ’add
(lambda (this item)
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(let ((num-items (item-list/get-num-items this))
(item-vector (item-list/get-item-vector this)))

(if (= num-items (vector-length item-vector))
(begin (item-list/grow this)

(item-list/add this item))
(begin (vector-set! item-vector num-items item)

(item-list/set-num-items! this (+ num-items 1))
’added)))))

Now we no longer have the worry that we might forget to replace the comment. Of
course, we could forget to implement the grow method; if that happens, we’ll get
an “unimplemented method” error message when growth first becomes necessary,
which at least points us right to the problem.

The grow method itself can be written quite straightforwardly, particularly if we
allow ourself the use of a vector-copy! procedure for copying the contents of the
old vector into the new, larger vector.

Exercise 14.2

The vector-copy! procedure takes two vectors as its arguments. The second vector
must be at least as long as the first. The vector-copy! procedure copies each
element of the first vector into the corresponding position in the second vector.
Write this procedure.

Exercise 14.3

Now write the grow method for item-list-class. It should make a new vector
that is twice as long as the current item-vector. It should then copy the contents
of the old vector into the new one. Finally, it should set the item-vector instance
variable to be the new vector.

One method commonly invokes another method on the same object, as the add
method did with the grow method. By the same token, a method will often also
invoke some methods on other, related objects. For example, to display an item-list,
each item in the list needs to be displayed:

(class/set-method!
item-list-class ’display
(lambda (this)
(let ((num-items (item-list/get-num-items this))

(item-vector (item-list/get-item-vector this)))
;;(continued)
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(from-to-do
0 (- num-items 1)
(lambda (index)
(display (+ index 1))
(display ") ")
(item/display (vector-ref item-vector index))
(newline))))

(display "Total: ")
(display-price (item-list/total-price this))
(newline)
’displayed))

As you can see, when item-list/display is applied to an item-list, it winds up
applying item/display to each of the items stored in its vector. Of course, it
does some other things as well, namely, decorating each item’s display with an item
number in front, such as 1), separating the items with newlines, and adding a display
of the total price at the end. We assume that there is a procedure display-price
that can take a numerical price and suitably display it; for example, in the United
States there would be a dollar sign at the front and a decimal point before the last
two digits.

Exercise 14.4

Write this (United States) display-price procedure. Assume that prices are rep-
resented within the program as an integer number of cents, such as 1950 for 19
dollars and 50 cents. You can use quotient and remainder to calculate the num-
ber of dollars and remaining cents. (Representing monetary amounts as an integer
number of cents is a common practice in business programs because it can elimi-
nate round-off errors. For example, adding together 100 one-cent items should yield
an exact dollar, whereas adding 100 copies of .01 together on our computer yields
1.0000000000000007, due to the inexact way in which .01 is represented in the
computer.)

Exercise 14.5

Write the total-price method for the item-list class; you can use item/price
to get the price of each item.

To delete an item from an item list, we need to decrement the num-items
instance variable. If the item wasn’t the last one in the list, the items after it should
be shifted one position closer to the beginning of the vector, to close up the gap.
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Exercise 14.6

Write the delete method for the item-list class in this way. It should take the
item to delete as an argument (after the this argument) and search the vector to
find it, using eq? to compare the specified item with each one in the vector. It is an
error if the item is not in the item-list.

There is one very subtle problem with a delete method that works as we just
described. As the simplest illustration, consider starting with a new, empty item-list,
inserting a single item into it, and then deleting it again. When the item is inserted
into the item-list, position 0 in the vector will be set to the item and num-items
will be increased to 1. When the item is deleted, num-items is decreased to 0 and
the vector is left unchanged. Thus, position 0 of the vector still holds the item.
From a logical standpoint, this doesn’t matter because it will never be accessed;
only the first num-items elements of the vector ever get looked at. However, the
underlying Scheme system won’t have any way of knowing this, so it will keep the
item around just in case it is accessed, even though it never will be. If the item is not
accessible in any way other than through the vector, its needless appearance in the
vector will be all that prevents the Scheme system from reusing (garbage collecting)
the portion of the computer’s memory that the item occupies. Thus, although the
program will work correctly, it may wind up using more memory than it needs to,
or even unnecessarily running out of memory, because deleted items are still in the
item-vector.

Exercise 14.7

Fix this problem by modifying your delete method so that after shifting the items
down in the vector to fill the gap, it uses vector-set! to store the symbol empty (or
any other arbitrary value) into the newly unused vector location. This vector location
is the one that prior to the deletion held the last item.

At this point, the only method that remains to be implemented for the item-list
class is the choose method, which will get us for the first time into the user interface
of this program because we need to provide the user with some way of choosing
an item from the list. As a rather crude approach to the user interface, we’ll display
the whole item-list (using item-list/display) and then ask the user to select an
item. Because the items are numbered consecutively from 1 by the display method,
we can input the user’s choice as an integer in the range from 1 to the number of
items. Notice that we’ve got a tight coupling between the display method and the
choose method; this coupling may not be good for the long-term maintainability
of our program, particularly if we don’t explicitly document it in the requirements
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for the display method. At any rate, our choose method is as follows; we use an
input-integer-in-range procedure, which we’ll need to write later.

(class/set-method!
item-list-class ’choose
(lambda (this)
(if (item-list/empty? this)

(error "Can’t choose an item when there aren’t any.")
(begin
(display "Which item?")
(newline)
(item-list/display this)
(vector-ref (item-list/get-item-vector this)

(- (input-integer-in-range
1 (item-list/get-num-items this))
1))))))

The input-integer-in-range procedure simply needs to display a prompt,
read an input from the user, and if it isn’t appropriate, complain and try again:

(define input-integer-in-range
(lambda (min max)
(display "(enter ")
(display min)
(display "-")
(display max)
(display ")")
(newline)
(let ((input (read)))
(cond ((not (integer? input))

(display "input must be an integer and wasn’t")
(newline)
(input-integer-in-range min max))
((or (< input min)

(> input max))
(display "input out of range")
(newline)
(input-integer-in-range min max))
(else
input)))))
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At this point we’re done implementing the item-list class (although we’ll look at
variations on it in the next section), and we can move on to our other principal class,
item. The only piece of information we can be sure is associated with any item is its
price—not all items have distinguishing colors or sizes, for example. Thus we’ll put
a single instance variable, price, in the item class, leaving the rest (color, size, . . . )
for more specialized subclasses. Recalling our earlier wish list of method names for
the item class, we get the following definition:

(define-class
’item
object-class
’(price)
’(
;; intended for public consumption:
price
display
input-specifics
revise-specifics))

One decision we’ll have to make is how an item’s price gets set in the first place.
A straightforward possibility is to have it supplied to the make-item constructor as
an argument, as in

(define example-item (make-item 1950)) ; 1950 cents = $19.50

Our object-oriented programming system handles constructor arguments such as this
one by passing them as additional arguments to the init method, after the this
argument. Thus the item class needs an init method that accepts the price as its
second argument:

(class/set-method!
item-class ’init
(lambda (this price)
(item/set-price! this price)))

Most of the remaining methods for the item class are easy. The price method
needs only to get the value of the price instance variable and return it, the display
method needs only to display the price (because there is no other information), and
the input-specifics method doesn’t need to do anything at all because there are
no “specifics” (such as color or size) to get.
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Exercise 14.8

Write these three methods.

Exercise 14.9

Play around with the item and item-list classes. Make some items with various
prices and add them to and delete them from an item-list. Display the items and
the item-list, redisplaying the item-list after each addition or deletion. Also use
object/describe to look at the items and at how the item-list evolves. Make sure
the item-list successfully outgrows its original vector.

The only remaining method for the item class is revise-specifics. At first
glance, it would appear that we should simply make this a do-nothing method,
like input-specifics, because plain items have no specifics. However, there is
another, better alternative. We can write a revise-specifics method that does
nothing except invoke the input-specifics method. For a plain item, this will of
course still do nothing. For an instance of some subclass of item, such as oxford-
shirt, if the revise-specifics method isn’t overriden, the one from the item
class will be used, but it will wind up invoking the subclass’s more specialized
input-specifics method, and all the specifics of color, size, etc., will wind up
being input. Finally, if some subclass wishes to override not only input-specifics
but also revise-specifics, it can provide a more sophisticated means of revision
that allows some specifics to be left unchanged and others revised, rather than
requiring them to all be input over again.

Exercise 14.10

Write the revise-specifics method for the item class.

To demonstrate more concretely our point about revise-specifics, consider
the following example:

(define-class
’special-item
item-class
’()
’())



14.2 An Object-oriented Program 503

(class/set-method!
special-item-class ’input-specifics
(lambda (this)
(newline)
(display " *** doing special input ***")
(newline)))

(define a-normal-item (make-item 1950))

(define a-special-item (make-special-item 1000000))

(item/input-specifics a-normal-item)

(item/input-specifics a-special-item)

*** doing special input ***

(item/revise-specifics a-normal-item)

(item/revise-specifics a-special-item)

*** doing special input ***

As you can see, although we only provided a specialized version of the input-
specifics method, both item/input-specifics and item/ revise-specifics
now behave differently for the normal item than for the special item. (For the
normal item, both are silent, whereas for the special item, both print out the message
“doing special input.”) This is an important consequence of using generic operations:
When one operation invokes another, making a specialized version of the called one
effectively specializes the behavior of the calling one as well.

Speaking of specialized subclasses of item-class, we should get around to cre-
ating one. Oxford-cloth shirts have colors, neck sizes, and sleeve lengths, in addi-
tion to the inherited instance variables (price from item-class and class from
object-class). There is also one other, less obvious, instance variable that we
need to add, one to indicate whether the specifics have been input yet or not. That
way, if the item is displayed before the specifics have been input, a less detailed
description can be produced. For this purpose we’ll use a boolean-valued instance
variable called specified-yet. There are no additional method names beyond
those inherited from item-class, so the definition is as follows:

(define-class
’oxford-shirt
item-class
’(color
neck



504 Chapter 14 Object-oriented Programming

sleeve
specified-yet)

’(
))

We’ll set up the init method so that we can use make-oxford-shirt as shown
below:

(define an-oxford-shirt (make-oxford-shirt))

(item/price an-oxford-shirt)
1950

(oxford-shirt/get-specified-yet an-oxford-shirt)
#f

As you can see, we didn’t need to specify any arguments to the make-oxford-shirt
constructor, and we wound up with a price of 1950 and the specified-yet instance
variable set to #f. The question is, how shall we arrange for this result? The most
obvious possibility, but not the best, would simply be to have the init method set
both the price instance variable and the specified-yet instance variable:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item/set-price! this 1950)
(oxford-shirt/set-specified-yet! this #f)))

The problem with this method implementation is that although it works, it con-
tains a nearly verbatim copy of what item-class’s version of the init method
does, which could result in a maintainability problem. Right now all item-class’s
init does is to set the price instance variable, but what if we changed it to do
more? Would we remember to also make the additions in oxford-shirt-class’s
init? The program would be more maintainable if rather than repeating what
item-class’s init does, we could simply invoke that init method and let it do
whatever it needs to do. At first, you might think that the following will do that:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item/init this 1950)
(oxford-shirt/set-specified-yet! this #f)))
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The problem is that when item/init is applied to an object, the class of the
object determines which implementation of the init method is used, just like
with any other method invocation. Thus, when it is applied to an instance of
the oxford-shirt class, as here, we would wind up using the init method from
oxford-shirt-class. As such, this init method is simply reinvoking itself, result-
ing in an infinite recursion. (Actually, it isn’t even an error-free infinite recursion
because the recursive call passes in two arguments, but this init method only
accepts one.)

What we need is to say “please ignore the fact that this object is more than
just a plain item; I still want you to invoke the plain item init method.” In our
object-oriented programming system, we can do this by using item^init instead of
item/init:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item^init this 1950)
(oxford-shirt/set-specified-yet! this #f)))

This use of ^ rather than / is a general feature of our object-oriented program-
ming system. It always means to use the method implementation corresponding
to the class that explicitly appears before the ^, rather than using the method im-
plementation corresponding to the class of the object being operated on. For ex-
ample, returning to the earlier example of the special-item class, if we were to say
(item^input-specifics a-special-item), we wouldn’t get the special message
we get from (item/input-specifics a-special-item) because we are asking
to have the method invoked that would be used were the special item just a plain
item.

The ^ feature is not nearly as commonly used as normal method invocation; the
primary use for it is to allow a method (such as the init method above) to invoke
the method of the same name from the superclass. In particular, normally every
init method will invoke the superclass’s init method in this way; therefore each
ancestor class winds up with a chance to do its own initialization.

Exercise 14.11

The two init methods we previously showed for item-list-class and item-
class violated this guideline. Neither of them gave the superclass’s init a chance.
Luckily, the superclass (object-class) doesn’t currently do anything in its init
method. However it would be wiser not to count on that. Revise these two init
methods so that their first step invokes the superclass’s init method.
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This feature of having a method invoke the like-named method from the super-
class provides an intermediate point between the extremes of either inheriting the
superclass’s method unchanged or totally overriding it with a new method imple-
mentation. Instead, an overriding implementation can be provided that augments
the superclass’s implementation by invoking it and also doing some extra work. For
example, consider the display method. The implementation in item-class al-
ready does some useful work, namely, displaying the price of the item. If there were
ever any additional information that all items had, presumably this display method
would show it as well. So, when we write a display method for the oxford-shirt class,
it should add on to that base behavior by taking care of displaying the information
specific to that subclass and then using item^display as well:

(class/set-method!
oxford-shirt-class ’display
(lambda (this)
(if (oxford-shirt/get-specified-yet this)

(begin
(display (oxford-shirt/get-color this))
(display " Oxford-cloth shirt, size ")
(display (oxford-shirt/get-neck this))
(display "/")
(display (oxford-shirt/get-sleeve this))
(display "; "))

(display "Oxford-cloth shirt; "))
(item^display this)))

Exercise 14.12

Suppose you do the following:

(let ((item-list (make-item-list)))
(item-list/add item-list (make-item 100))
(item-list/add item-list (make-oxford-shirt))
(item-list/add item-list (make-item 200))
(item-list/add item-list (make-item 300))
(item-list/add item-list (make-oxford-shirt))
(item-list/display item-list))

What output do you get from this example? Explain why.

The only method we still need to implement for the oxford-shirt class is the
input-specifics method. (We could also optionally add a revise-specifics
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method.) Our input-specifics follows. Notice that it not only sets the in-
stance variables corresponding to the shirt’s color and size but also sets the
specified-yet instance variable to #t. To get input from the user, it makes
use of the input-integer-in-range procedure we saw earlier, as well as an
input-selection procedure that allows the user to select one of a collection
of values, which in this case are colors.

(class/set-method!

oxford-shirt-class ’input-specifics

(lambda (this)

(display "What color?")

(newline)
(oxford-shirt/set-color!

this (input-selection ’("Ecru" "Pink" "Blue" "Maize" "White")))

(display "What neck size? ")

(oxford-shirt/set-neck! this (input-integer-in-range 15 18))

(display "What sleeve length? ")

(oxford-shirt/set-sleeve! this (input-integer-in-range 32 37))

(oxford-shirt/set-specified-yet! this #t)

’inputted))

A simple approach to implementing input-selection is to print out each of
the choices with a number in front of it and then use input-integer-in-range
to allow the user to select one. The procedure can then return the element in the
list of choices that corresponds to the integer the user entered:

(define input-selection
(lambda (choices)
(define display-loop
(lambda (number choices)
(if (null? choices)

’done
(begin
(display " ")
(display number)
(display ") ")
(display (car choices))
(newline)
(display-loop (+ number 1) (cdr choices))))))

(display-loop 1 choices)
(list-ref choices

(- (input-integer-in-range 1 (length choices))
1))))
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At this point we’ve seen enough of how the classes work that we can turn our atten-
tion to the overall program that uses these classes. We call this program compu-duds:

(define compu-duds

(lambda ()

(let ((item-list (make-item-list)))

(define loop

(lambda ()

(newline)
(display "What would you like to do?")

(newline)

(display " 1) Exit this program.")

(newline)

(display " 2) Add an item to your selections.")

(newline)

(display " 3) List the items you have selected.")

(newline)

(display
" 4) See the total price of the items you selected.")

(newline)

(let ((option

(if (item-list/empty? item-list)

(input-integer-in-range 1 4)

(begin

(display

" 5) Delete one of your selections.")

(newline)

(display
" 6) Revise specifics of a selected item.")

(newline)

(input-integer-in-range 1 6)))))

(newline)

(cond ((= option 2)

(let ((item (input-item)))

(item-list/add item-list item)

(item/input-specifics item)))

((= option 3)

(item-list/display item-list))
((= option 4)

(display-price (item-list/total-price item-list))

(newline))

;;(continued)
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((= option 5)

(item-list/delete item-list
(item-list/choose item-list)))

((= option 6)

(item/revise-specifics

(item-list/choose item-list))))

(if (not (= option 1))

(loop))))) ;end of the loop procedure

(loop)))) ;this starts the loop

As you can see, nothing thus far has embodied any knowledge of what kinds
of clothing our on-line clothing store has to offer. That knowledge is used by the
input-item procedure, which allows the user to select an item to add. Here is a
simple version:

(define input-item
(lambda ()
(display "What would you like?")
(newline)
(display " 1) Chinos")
(newline)
(display " 2) Oxford-cloth shirt")
(newline)
(if (= (input-integer-in-range 1 2) 1)

(make-chinos)
(make-oxford-shirt))))

Although our on-line clothing store offers two kinds of clothing, chinos and oxford-
cloth shirts, we’ve only implemented a class for the shirts. We need to implement a
class for chinos in a similar manner so that the rest of the program will work. The
definitions of chinos-class and its init, display, and input-specifics meth-
ods follow, completing our compu-duds program. However, although the program
will now be complete, the next section investigates extensions to and variations on
this program.

(define-class
’chinos
item-class
’(color
size ; waist, in inches
inseam ; also in inches
cuffed ; #t = cuffed, #f = hemmed
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specified-yet)
’(
))

(class/set-method!
chinos-class ’init
(lambda (this)
(item^init this 3300) ; chinos are priced at $33.00
(chinos/set-specified-yet! this #f)))

(class/set-method!
chinos-class ’display
(lambda (this)
(if (chinos/get-specified-yet this)

(begin
(display (chinos/get-color this))
(display " chinos, size ")
(display (chinos/get-size this))
(display ", ")
(display
(if (chinos/get-cuffed this)

"cuffed"
"hemmed"))

(display " to ")
(display (chinos/get-inseam this))
(display " inches; "))

(display "Chinos; "))
(item^display this)))

(class/set-method!
chinos-class ’input-specifics
(lambda (this)
(display "What color?")
(newline)
(chinos/set-color! this

(input-selection
’("Charcoal" "Khaki" "Blue")))

(display "What waist size? ")
(chinos/set-size! this (input-integer-in-range 30 44))
(display "Hemmed or cuffed?")
(newline)
(display " 1) Hemmed")
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(newline)
(display " 2) Cuffed")
(newline)
(chinos/set-cuffed! this (= (input-integer-in-range 1 2) 2))
(display "What inseam length? ")
(chinos/set-inseam! this (input-integer-in-range

29
(if (chinos/get-cuffed this)

34
36)))

(chinos/set-specified-yet! this #t)
’inputted))

Exercise 14.13

Explain the role served by each conditional expression (i.e., if or cond) appearing
in chinos-class’s methods.

14.3 Extensions and Variations

In this section we’ll look at some of the many possible extensions to the compu-duds
program from the last section. Because many of these extensions and variations will
involve extending the class hierarchy or modifying existing classes, we first look at a
couple additional tools our object-oriented programming system provides for helping
to keep track of these modifications.

The first of these tools is that at any point you can see the complete class hierarchy
by using show-class-hierarchy, as follows:

(show-class-hierarchy)

object

item-list

item

chinos

oxford-shirt

class

In this case, we see that the object class (which is the “root” of the class hierarchy)
has three subclasses: item-list, item, and class. (We’ll learn more about the class class,
which is used for representing classes, in the next section.) The item class in turn
has the chinos and oxford-shirt subclasses. By using show-class-hierarchy as you
add various new classes or reorganize the existing classes, you’ll have an easier time
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keeping track of what you’ve done so far. It is also a useful tool if you need to work
with someone else’s program, in that it provides an overview.

Another useful tool for keeping track of your work as you modify exist-
ing classes and create new ones is object/describe. We’ve already seen how
object/describe can be used to examine the state of a normal object, showing
each of its instance variables. However, object/describe is also useful when ap-
plied to the special class objects, such as chinos-class. This is because there is
an overriding describe method in the class class, which results in a special form of
description just for classes. Here is an example:

(object/describe chinos-class)

The class chinos has the following ancestry:

object

item

chinos

and the following immediate subclasses:

and the following instance variables (including inherited ones):

specified-yet (new)

cuffed (new)

inseam (new)

size (new)

color (new)

price (from item)

class (from object)

and the following method names (including inherited ones):

revise-specifics (name from item, implementation from item)

input-specifics (name from item, new implementation)

display (name from item, new implementation)

price (name from item, implementation from item)

init (name from object, new implementation)

describe (name from object, implementation from object)

As you can see, this output provides a good overview of the status of the class, which
could help you keep track of your work as you modify and create classes.

Before we start in on the actual extensions and variations, one final comment
is worth making; it is a warning regarding the ordering restrictions that our object-
oriented programming system imposes. When a class is defined, the superclass must
already have been defined. When a method is set, the class needs to already have
been defined. When an object is created, the class it is an instance of must already
exist. (However, the methods don’t need to have been set yet.) If you redefine a class,
you’ll need to redefine all the classes descended from it, reset all the methods in those
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various redefined classes, and remake any instances of those classes. Otherwise, you
wind up with the subclasses still being subclasses of the old superclass, the methods
existing only in the old class, and the objects still being instances of the old class. If
you just reevaluate a class/set-method!, on the other hand, no problems result;
all instances of the class and any descendant classes that inherit the implementation
will immediately get the new version.

Now let’s explore some variations and extensions of the compu-duds program. The
first variation doesn’t use any of the fancier features of object-oriented programming
but rather takes advantage of data abstraction (i.e., the separation between a class’s
interface and its implementation). Consider the total-price method within the
item-list class. As it stands now, it loops through all the items, adding up their prices.
If the total price is repeatedly queried, this adding up would be wastefully repeated.
Instead, the item-list could keep track of the total price as it added and deleted items
and simply return the current total when queried.

Exercise 14.14

Modify the definition of the item-list class and of its add, delete, and total-price
methods in order to keep and use a running total price in this way. Without changing
any other part of the compu-duds program, it should work just the same as before,
except with regard to efficiency.

Next let’s look at adding new subclasses of item-class. The existing two sub-
classes allow you to dress like two-thirds of this book’s authors, who are frequently
seen wearing oxford-cloth shirts and chinos. But perhaps, like most of our students,
you have other tastes in clothing.

Exercise 14.15

Add one or more additional kinds of items to compu-duds so that it more closely
reflects your own taste in clothing.

Exercise 14.16

If you added other kinds of pants than chinos, or other kinds of shirts than Oxford
shirts, you may have discovered some commonality between your new classes and the
existing classes. Reorganize the class hierarchy so there are subclasses of item-class
for pants and shirts, with the chinos now being a subclass of pants-class and Oxford
shirts positioned under shirts. Place your own kinds of pants and shirts under the
more general classes as well, and figure out what commonality you can centralize.



514 Chapter 14 Object-oriented Programming

Exercise 14.17

How about adding yet another level of hierarchy between shirt-class or
pants-class and the specific kinds of pants and shirts? What classes of an in-
termediate degree of specialization might you include?

In addition to using subclassing to reflect real-world concerns, such as additional
kinds of clothing, we can also use it purely for the program’s internal purposes. For
example, consider the sizing of the vector in the item-list class. Right now, it grows
(by doubling in size) whenever addition of an item requires it to, but it never shrinks,
no matter how many items are deleted. For many applications, this is a reasonable
design decision. However, if you want to be particularly thrifty with the computer’s
memory, it might be desirable to have a kind of item-list that shrank as deletions
occured. Thus we’ll define a subclass of item-list-class for thrifty-item-lists that
is indistinguishable in terms of what operations it provides and how they outwardly
behave but that shrinks down to a smaller vector when appropriate.

As a brief side trip, not particularly related to object-oriented programming, con-
sider what “when appropriate” should mean: When should the vector shrink? At
first you might think that because we double the vector’s size when it overflows, we
should cut the vector’s size in half when it becomes only half-full. The problem
with this approach is that if the customer happens to repeatedly add, then delete,
then add, then delete, etc., we might wind up moving to a new size of vector on
every single operation. For example, if we start with a 10-element vector and the
customer after adding 10 items adds an eleventh, we move to a 20-element vector.
The customer then deletes an item, leaving the 20-element vector only half-full, so
we move back to a 10-element vector. The eleventh item is added again, leading us
back to a 20-element vector, etc.

A way around this oscillation between neighboring sizes is to demand that the
vector get even emptier than half-empty before we shrink down to a vector half the
size. For example, we can shrink to a vector half the size when a deletion results
in the vector being one-third full or less. However, the vector should never shrink
below its original size of 10.

Exercise 14.18

Make a thrifty-item-list subclass of item-list-class that behaves in this way. By
simply changing the compu-duds procedure to use make-thrifty-item-list in
place of make-item-list, you should be able to switch to this new kind of item list.
In particular, the rest of the program, which thinks it is operating on an item-list, will
still be right because a thrifty-item-list is an item-list. Be sure not only to check that
the program still works but also to use object/describe to make sure the vector
size is growing and shrinking appropriately.
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As we’ve remarked before, one of the most central features of object-oriented
programming is its use of generic operations to allow instances of various subclasses
of a class to be uniformly operated upon, even if the resulting behavior varies. For
example, this allows chinos to be displayed differently from Oxford shirts, even though
item/display is done to both. As a consequence of this, we rarely need predicates
to test whether an object is an instance of a particular class because we can generally
get appropriate behavior for each class without needing conditionals that say “if this
item is an Oxford shirt, display it this way, whereas if it is a pair of chinos, display
it this other way.” Nonetheless, there are occasionally circumstances for which class
predicates are useful, and so our object-oriented programming system provides them.
Each class defined using define-class automatically gets a predicate with a name
formed by adding a question mark to the end of the class name, such as chinos?.
The most common situation in which these predicates are useful is when sifting a
particular kind of object back out of a mixed collection.

Exercise 14.19

Add to the compu-duds program a feature that lets the user change in a single step
the waist size of all the items selected that are chinos (and hence have a waist size).
If in Exercises 14.15 and 14.16 you added other kinds of pants and introduced a
general pants class, your new feature should change the waist size of all pants, rather
than merely of all chinos.

Another feature of object-oriented programming that we haven’t explicitly illus-
trated before now is that a class can be useful even without implementations for all
its methods, if we don’t intend to ever instantiate the class but rather use it only as a
framework for subclasses that are instantiated and that provide the missing method
implementations. In this case the class is called an abstract class. The compu-duds
program very nearly contained an example of an abstract class, in that the item
class really has no reason ever to be instantiated to form “plain items,” other than
for the sake of some of our pedagogic examples; in the program itself, only specific
subclasses of item ever get instantiated. So, for example, we could have left out
item-class’s implementation of the input-specifics method. With that omis-
sion, the program would have been unaffected, but we would no longer have the
option of “plain items.” In other words, the item class would have become abstract.

The idea of an abstract class can be taken to the fullest extent, often termed a pure
abstract class, if the class provides only the names (and presumably specifications)
for methods, without providing any method implementations or instance variables.
In this case the class is serving as a true abstract data type, that is, just an interface
specification, with its subclasses providing the implementations. For example, there
is only a relatively minor amount of implementation sharing between the different
kinds of item; they share the price instance variable and method, and the display
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method for showing the price, which gets augmented in the more specific display
methods. Because this implementation sharing is so minor, it might make more
sense to eliminate it altogether, leaving the item class purely abstract. As a negative
consequence, some repetition would occur among the various subclasses, but as
a positive consequence, the subclasses would be free to implement the formerly
shared methods in other, perhaps simpler, ways. For example, the price method
could simply return a constant price rather than having to get the value of a price
instance variable.

Exercise 14.20

Another common use for pure abstract classes is to make explicit an interface that
can be implemented using two or more different data structures. For example, we
implemented the abstract interface of the item-list class using a vector but could
instead have used a true list representation, in the sense of cons, car, cdr, null?,
and set-cdr!. Change the class item-list to be purely abstract, with two subclasses
called item-list-as-vector and item-list-as-list that provide these two implementations.
You will have to change compu-duds to use one of the make-item-list-as-. . .
constructors in place of make-item-list.

Finally, we’ll conclude this section on extensions and variations with two loose
ends left from the preceding section.

Exercise 14.21

We mentioned that the revise-specifics method could be overridden to allow
more selective revision, rather than requiring the user to input all the specifics over
again. Illustrate this possibility.

Exercise 14.22

We mentioned the possibility of using a class for prices. Presumably it would be most
convenient if the constructor would take the number of dollars and the number of
cents as two arguments, and if we had methods for displaying the price and for adding
another price to the price. Design a class with this interface. Consider two possible
implementations: one that stores the dollars and cents separately and one that stores
them combined into a total number of cents, such as we’ve used previously. Explain
the trade-offs between these implementations, and implement whichever of them
you decide is on the whole preferable, or both if you think they should coexist. Test
your price class in isolation, and then change the compu-duds program to use it.
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14.4 Implementing an Object-oriented Programming System

In this section, we’ll show how the object-oriented programming system used in the
preceding sections can be implemented. The object-oriented programming system
is a relatively large and complex piece of software, so we’ll explain it incrementally
in bite-sized chunks, each occupying a subsection. First we’ll provide an overview
of the system, and then we’ll show how instance variables are represented and their
getters and setters implemented. Next we’ll show how instantiators (constructors)
are implemented, then methods, and then predicates. Once we have explained
all these features of classes, we’ll show how classes themselves are constructed. In
the last two subsections we pull it all together. We make extensive use of vectors
to provide a reasonably efficient implementation of object-oriented programming,
which is similar to some implementations used for object-oriented languages such as
Java. If you’d rather accept object-oriented programming as a “black box” technology
instead of looking behind the scenes, this section can be skipped without any loss of
continuity.

Throughout this explanation we’ll use the object-oriented programming system
as our technology for describing itself. We’ll assume first that we have constructed,
somehow, the object class and the class class and we’ll use them to explain what
define-class does. As we do this, we’ll see that define-class invokes several
methods from the class class and the object class; we’ll show how each of these
methods is implemented. There is an inherent circularity in what we’re doing; after
all, how can we make a class for representations of classes before we have such a
class to represent itself with? In the penultimate subsection, we show how to use
bootstrapping to get around this circularity, and in the last subsection, we pull the
last (superficial) layer of mystery aside by explaining how define-class abbreviates
many normal definitions.

Overview

Before we delve into the implementation of the object-oriented programming system,
we should make clear what needs implementing. One of the primary interfaces we’ve
been using in the preceding sections is define-class; however, define-class is
really just a convenient abbreviation, not the fundamentals of what we need to
implement. In particular, evaluating a definition like

(define-class
’widget
object-class
’(size)
’(activate))

is really just a shorthand for evaluating the following sequence of definitions:
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(define widget-class (make-class ’widget
object-class
’(size)
’(activate)))

(define widget? (class/predicate widget-class))

(define make-widget (class/instantiator widget-class))

(define widget/get-size (class/getter widget-class ’size))

(define widget/set-size! (class/setter widget-class ’size))

(define widget/get-class (class/getter widget-class ’class))

(define widget/set-class! (class/setter widget-class ’class))

(define widget/activate (class/method widget-class ’activate))

(define widget^activate
(class/non-overridable-method widget-class ’activate))

(define widget/init (class/method widget-class ’init))

(define widget^init
(class/non-overridable-method widget-class ’init))

(define widget/describe (class/method widget-class ’describe))

(define widget^describe
(class/non-overridable-method widget-class ’describe))

In the ensuing subsections we’ll see how each of these pieces works; for exam-
ple, in looking at instance variables, we’ll see how class/getter produces the
getter for widget-class’s size instance variable, which winds up being called
widget/get-size. The machinery we will describe is housed in two fundamental
classes: object and class.

As we’ve remarked before, the object class is the root of the class hierarchy and so
is inherited from, directly or indirectly, by every class. It has one instance variable,
class, that is used to indicate which class the object belongs to. We can indicate
this fact, that each object knows which class it is an instance of, in a UML class
diagram as follows:
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object

* instances

class

1 class

Notice that there are two relationships between these fundamental classes. Each
class object is an object, so we have a subclass/superclass relationship between the
class class and the object class. However, each object is also associated with one
particular class, the class it is a direct instance of, so we have an association arrow as
well. The arrowhead is only on one end, indicating that the object knows its class,
but the class doesn’t know its instances. Next to the multiplicities, we’ve given a
name to each role in this association to help clarify the meaning of the association.
In particular, we show not just that each class object is associated with arbitrarily
many objects but also what those objects are: the instances of the class. Similarly,
the one class object associated with an arbitrary object is that object’s class.

When we earlier expanded the define-class to show what it was a shorthand for,
you could see that the widget class winds up with a getter and setter for the inherited
instance variable named class as well as for its own size instance variable. This
example illustrates a general pattern: Every class has getters and setters for all its
instance variables, whether inherited or newly added, and similarly for methods.
The object class also has two methods, which are inherited by all classes, namely
init and describe. We’ve already seen the special role that the init method plays
when a class is instantiated to construct a new object; we’ve also seen the use of the
describe method for debugging and exploration. As you can see from the preceding
definitions, the widget class winds up with these two methods and its own activate
method. Each method also has a non-overridable version, which is given a name
with a ^ in it, such as widget^init.

The class class is used for representations of classes. For example, widget-class
is an instance of the class class. These objects of the class class store the information
that is shared by the entire class, such as the names of the instance variables and
methods. Each class object (i.e., each instance of the class class) is made using
make-class. Once the class object is made, we use methods of the class class, such
as class/getter, to obtain the procedures to use with that class.

Instance Variables

Each object is represented simply as a vector containing its instance variable values.
To continue our running example, consider the widget class. Each widget has two
instance variables: class and size. Therefore, each widget will be represented as



520 Chapter 14 Object-oriented Programming

a two-element vector. The vector will contain the widget’s class instance variable
at position 0 and its size at position 1. Given this representation, it is easy to
see what getters and setters need to do. For example, if we wanted to produce
widget/get-size and widget/set-size! by hand, the definitions would look
like this:

(define widget/get-size
(lambda (object)
(vector-ref object 1)))

(define widget/set-size!
(lambda (object value)
(vector-set! object 1 value)))

One important aspect of object-oriented programming is that a class’s operations
(including getters and setters) can be used on any instance of that class including
instances of subclasses, sub-subclasses, etc. To do this, we will impose a very simple
constraint on the layout of the instance variables within the vector: The superclass’s
instance variables have to come first, in the same order as in the superclass. The
newly added instance variables come afterward, at the end of the vector. That is
why the class instance variable is at position 0 and the size instance variable at
position 1: The class instance variable is inherited from the object class and hence
had to come first.

As an example of where this approach would pay off, consider defining a subclass
of the widget class, perhaps called colorful-widget. It could have additional instance
variables, such as color, that would be stored in vector positions from 2 onward.
However, just like any other widget, the size would be stored in position 1. Thus
we can use the above widget/get-size on any widget, without needing to know
whether or not it is a colorful-widget or any other more specialized variety.

Of course, we don’t really want to write each getter and setter by hand; in-
stead we want to use class/setter and class/getter to do it for us. That way,
instead of defining widget/get-size using vector-ref and 1 as in the foregoing,
we could just do

(define widget/get-size (class/getter widget-class ’size))

We have class/getter find the correct vector position and then use it to produce
the specific getter procedure for us. We’ll do that as follows:

(class/set-method!
class-class ’getter
(lambda (this instvar-name)
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(let ((index (class/ivar-position this instvar-name)))
(lambda (object)
(vector-ref object index)))))

Notice that we are using object-oriented programming to build the object-oriented
programming system itself. In particular, getter is a method we are providing for
the class class. It in turn uses another method from the class class, class/ivar-
position, that is in charge of figuring out which vector position each instance vari-
able goes in. For example, it is class/ivar-position that figures out that the size
of a widget should go at position 1. We’ll put off defining class/ivar-position
until after we’ve seen how classes are created by make-class.

The preceding definition would work, so long as nobody ever applied a getter to an
object that wasn’t of the right class. However, if someone applied widget/get-size
to an object that wasn’t a widget, that person would get whatever instance variable
happened to be stored in position 1—perhaps the account number of a bank account
or the name associated with an employee record. To catch similar mistakes, we’d
prefer that widget/get-size were actually defined more like the following:

(define widget/get-size
(lambda (object)
(if (widget? object)

(vector-ref object 1)
(error "Getter applied to object not of correct class:"

’size ’widget))))

To have class/getter make such an improved getter for us, it is actually defined
as follows:

(class/set-method!
class-class ’getter
(lambda (this instvar-name)
(let ((index (class/ivar-position this instvar-name))

(ok? (class/predicate this)))
(lambda (object)
(if (ok? object)

(vector-ref object index)
(error
"Getter applied to object not of correct class:"
instvar-name (class/get-name this)))))))

The definition of class/setter is completely analogous, just using vector-set!
instead of vector-ref:
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(class/set-method!
class-class ’setter
(lambda (this instvar-name)
(let ((index (class/ivar-position this instvar-name))

(ok? (class/predicate this)))
(lambda (object value)
(if (ok? object)

(begin
(vector-set! object index value)
’set-done)

(error
"Setter applied to object not of correct class:"
instvar-name (class/get-name this)))))))

To summarize the most important points from this subsection:

1. Each object is represented as a vector storing the instance variable values.
2. The superclass’s instance variables come first, in the same order as in the super-

class.
3. Aside from error-checking, all a getter or setter does is a single vector-ref or

vector-set!.

Instantiators

As we saw in the preceding subsection, each object is represented as a vector. Thus
to a first approximation, we could write the widget class’s instantiator as follows:

(define make-widget
(lambda ()
(make-vector 2)))

However, two details are omitted here. First, if the new object is to truly be a widget,
its class instance variable needs to be set to the widget-class. Second, we need
to give the init method an opportunity to initialize the newly created widget. Thus,
a better second attempt at make-widget would be as follows:

(define make-widget
(lambda ()
(let ((instance (make-vector 2)))
(object/set-class! instance widget-class)
(object/init instance)
instance)))
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At this point, had we stuck with the non-error-checking design for setters in which
they only did a vector-set!, the make-widget procedure would work. But with
error-checking setters, object/set-class! will first use object? to verify that it
is really being passed an object (i.e., an instance of the object class). Unfortunately,
until the class is set, there is no way this test can succeed. So, our next version of
make-widget is as follows:

(define make-widget
(lambda ()
(let ((instance (make-vector 2)))
(unchecked-object/set-class! instance widget-class)
(object/init instance)
instance)))

The unchecked-object/set-class! procedure that this version uses is like our
first, crude widget/set-size! procedure. It can be written by hand and simply
sets vector location 0.

One final issue is worth addressing before we turn to automating the production of
class instantiators. Thus far we have assumed that make-widget takes no arguments.
But what if, in reality, we want to use it like (make-widget 1000)? In this case,
the make-widget procedure would have to accept the argument and pass it in
to object/init (after the instance) because, as we’ve seen in our prior object-
oriented programming, the init method actually processes any arguments to the
instantiator. Rather that adding a single argument in this way, we’ll allow any number
of arguments to be passed to the instantiator and from there to the init method,
using the special unparenthesized lambda-parameter notation (Section 10.3) and
apply:

(define make-widget
(lambda init-args
(let ((instance (make-vector 2)))
(unchecked-object/set-class! instance widget-class)
(apply object/init (cons instance init-args))
instance)))

Now all that remains is to automate the production of such instantiator procedures
using class/instantiator. We’ll assume that the class can find out how many
instance variables it has using class/get-num-ivars. With this assumption, we
can write
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(class/set-method!
class-class ’instantiator
(lambda (this)
(let ((num-ivars (class/get-num-ivars this)))
(lambda init-args
(let ((instance (make-vector num-ivars)))
(unchecked-object/set-class! instance this)
(apply object/init (cons instance init-args))
instance)))))

At this point, we’ve clarified how two features of classes work—instance vari-
ables, with their getters and setters, and instantiators, for creating objects that are
instances of a class. Of course, we’ve added some additional items to our agenda—
class/ivar-position and class/get-num-ivars now need explaining too. For
now, we’ll put these off and continue working through the features we originally
identified—methods, predicates, and class creation. Along the way, we’re sure to
discover yet more supporting machinery we need, and before we can declare our-
selves finished, we’ll need to have implemented not only the “official interface”
methods, like class/instantiator, but also the “behind the scenes” methods,
like class/ivar-position. This process of working from the external interface of
a class inward to the supporting mechanisms is a common occurrence in object-
oriented programming, no less so when the class we are programming is the class of
classes.

Methods

Although at this point we know how to make instances of a class and how to get and
set the instance variables contained within those instances, we’re still missing one of
the most fundamental ingredients of object-oriented programming: methods.

For efficient access, methods can be stored in vectors, just like instance variables
are; the primary difference is that one vector of methods is shared by an entire
class, whereas the instance variables are unique to each instance. Given a class,
we can get its method vector using class/get-method-vector. Then we simply
need to retrieve the particular method from the vector using vector-ref and apply
it. Putting it all together, here is an example of how widget/activate might be
written by hand:

(define widget/activate
(lambda (object)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
2)))

(method object))))
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Notice that we get the method from the method vector of the object’s class.
That way, if the object wasn’t a plain widget, but rather some special kind of wid-
get such as our hypothetical colorful-widget, we’d get the colorful-widget class’s
activate method, which might do something special. This approach contrasts
with widget^activate, which always gets the method from the widget-class’s
method vector, even if the particular object turns out to be a colorful-widget:

(define widget^activate
(let ((method-vector (class/get-method-vector widget-class)))
(lambda (object)
(let ((method (vector-ref method-vector 2)))
(method object)))))

We wait until widget^activate is used to retrieve the method from the method
vector so that the method can be changed using class/set-method!, which we’ll
see shortly.

We are making an assumption that underlies our ability to use widget/activate
on any kind of widget, even special widgets like colorful widgets. Namely, we rely on
all subclasses of widget-class to still use position 2 of the method vectors to store
their activate methods. In other words, just as with instance variables, the methods
whose names are inherited from the superclass need to be at the beginning of the
method vector, in the same order as in the superclass; methods whose names are
newly introduced come afterward. This explains how we knew that the activate
method would be in position 2 of the method vectors: positions 0 and 1 would be
occupied by the init and describe methods because those method names are
inherited from widget-class’s superclass, object-class.

At this point, we’ve shown how methods can be written by hand. We still need
to show how that process can be automated, and we still need to make a few
refinements. Also, we’ll need to show how methods are installed into the method
vectors using class/set-method!. Before proceeding with these topics, however,
we should point out that procedures such as the one named widget/activate aren’t
the real methods but act as though they were. When you apply widget/activate
to a widget, it retrieves the real method from the method vector and applies the real
method to the widget. Thus, the net effect is just as if the real method had been
applied in the first place. For this reason we call widget/activate a virtual method.

Exercise 14.23

How many vector-refs are done between the time when the virtual method
widget/activate is invoked and the time when the real method gets applied?
Explain. Be sure to count those done by procedures that widget/activate uses.
You may omit any that are used only for error-checking, however.
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Our first refinement will be to allow the activate method to take any number
of additional arguments, rather than just the widget being activated. In the following
procedure, args is a name for a list of all the additional arguments after the widget
being activated:

(define widget/activate
(lambda (object . args)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
2)))

(apply method (cons object args)))))

Next we’ll get rid of the explicit number 2 and instead use class/method-
position to find it for us:

(define widget/activate
(let ((index (class/method-position widget-class ’activate)))
(lambda (object . args)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
index)))

(apply method (cons object args))))))

Now it is time for you to do some of the work.

Exercise 14.24

As a third refinement to widget/activate, make it check that it really is being
applied to a widget and signal an error if not, much as with widget/get-size.

Exercise 14.25

Rewrite widget^activate so it too benefits from these three refinements. That is,
it should accept additional arguments, use class/method-position rather than
the number 2, and verify that it is being applied to a widget.

Exercise 14.26

Automate the production of virtual methods like widget/activate and widget^
activate by writing the class/method and class/non-overridable-method
methods as procedure factories. For an example, you could look at class/getter.
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At this point we can retrieve and use methods, but we haven’t seen how they get
into method vectors in the first place. If you’ve been following carefully, you might
well think it could be done as follows:

(class/set-method!
class-class
’set-method!
(lambda (this method-name method)
(vector-set! (class/get-method-vector this)

(class/method-position this method-name)
method)))

This code is very nearly right. Before making the few refinements it needs, we should
point out that it brings us face-to-face with the bootstrapping problem that we’ll have
to solve eventually. We used class/set-method! to install into the class-class
its set-method! method—in other words, we used class/set-method! to install
itself. (This circularity is like trying to pull yourself up by your bootstraps, hence the
description of the problem as being a bootstrapping problem.) Clearly this circularity
will need to be addressed.

However, for now we’ll leave the circularity unaddressed and instead clean up a
detail. Namely, if we’re putting the activate method into the widget class’s method
vector, and the widget class has subclasses like colorful-widget, and those subclasses
don’t have their own overriding methods, the same method that is being installed into
the widget class’s method vector should be installed into the subclasses’ method vec-
tors as well. That’s how method implementations (as opposed to just method names)
get inherited. In fact, the same method might get installed into the method vectors
of sub-subclasses, sub-sub-subclasses, etc. Any class descended from widget-class
will get this method, unless an overriding method intervenes.

Installing method implementation in descendant classes requires several forms of
support. Most fundamentally, each class will need to know its subclasses. We’ll as-
sume that we can get a list of the subclasses of a class using class/get-subclasses.
When we look at how classes are created by make-class, we’ll see how the list of
subclasses is kept up to date. For the time being, we’ll record the availability of this
information in our UML class diagram:

object

* instances

class
* subclasses

0..1 superclass

1 class
{super/subclass associations
form a tree with object-class
as the root—the only class
with no superclass}
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This class diagram illustrates another feature of the UML notation, namely, the
ability to express a constraint that an association must satisfy. The constraint is
written next to the association in curly braces. Here we’ve recorded the fact that
the subclass relationship forms a tree. Starting from object-class and going to its
subclasses, then their subclasses, etc., we should reach every class eventually, without
ever reaching the same class a second time.

Another form of support we’ll need is some way to keep track of whether a
descendant class has its own overriding implementation of the method and hence
shouldn’t inherit the superclass’s. Therefore, we’ll give each class a second vector. In
addition to the method-vector, there will be a method-set?-vector containing
boolean values: True means the method has been directly set and hence shouldn’t
be inherited in, whereas false means that the superclass’s implementation is the only
one available. Using these, and a higher-order procedure for traversing the tree of
descendant classes, we arrive at the following:

(class/set-method!

class-class

’set-method!

(lambda (this method-name method)

(let ((index (class/method-position this method-name)))

(vector-set! (class/get-method-vector this)

index

method)

(vector-set! (class/get-method-set?-vector this)
index

#t)

(apply-below this

(lambda (class)

(vector-set! (class/get-method-vector class)

index

method))

(lambda (class)

(not (vector-ref (class/get-method-set?-vector

class)
index)))))

method-name))

(define apply-below

(lambda (class proc apply-to?)

(for-each (lambda (subclass)

(if (apply-to? subclass)
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(begin (proc subclass)

(apply-below subclass proc apply-to?))))
(class/get-subclasses class))))

Predicates

We need to design our class predicates so that, for example, widget? returns #t not
only when applied to a plain widget that is directly an instance of widget-class
but also when applied to a colorful widget that is an instance of some descendant
class of widget-class. Thus it will not suffice to simply check to see if the object’s
class is equal to widget-class.

One straightforward solution would be to get the object’s class, check for equality
with widget-class, and if unequal retrieve the class’s superclass and check again,
iterating up the class hierarchy until an ancestor equal to widget-class is found
or the top of the class hierarchy is reached. This approach would work, but it would
be our first operation in the whole object-oriented programming system that wasn’t
accomplished with some small fixed number of vector accesses. Instead, the deeper
the inheritance hierarchy, the slower the predicates would be. This is intolerably
inefficient if we are going to use the predicates on a precautionary basis before each
method invocation or instance variable access. Even if predicates were used more
sparingly, we should design them to take a constant number of steps, absent any
reason to the contrary.

For this design, we’ll focus on each class’s ancestry (i.e., the sequence of classes
starting with object-class and working down the hierarchy to the class in ques-
tion). We’ll call object-class the “level 0 ancestor,” the subclass of object-class
that is an ancestor of the class in question its “level 1 ancestor,” etc. In this termi-
nology, the widget? predicate should return #t for any object whose class has
widget-class as its level 1 ancestor. To test this condition efficiently, we simply
store the ancestry as a vector, use vector-ref to retrieve element 1, and test to see
whether it is equal to widget-class:

(define widget?

(lambda (object)

(let ((ancestry (class/get-ancestry (object/get-class object))))

(and (> (vector-length ancestry) 1)
(eq? (vector-ref ancestry 1)

widget-class)))))

Of course, we still need to ensure that the ancestry vectors really exist in each
class—we’ll address that when we turn to the construction of classes. For now, let’s
update our UML class diagram, as a reminder of this important design decision:
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object

* instances

class
* subclasses

0..1 superclass

1 class

{super/subclass associations
form a tree with object-class
as the root—the only class
with no superclass}

ancestry
{ordered} 1..*

1..*

{ancestry = object-class, ...,
superclass’s superclass,
superclass, this class}

The diagram shows a new notation, the special constraint horderedj. This notation
means that rather than each class being associated with an unordered set of one
or more ancestors, it has an ordered list of one or more ancestors—one specific
ancestor comes first, etc. We’ve also used the constraint notation to indicate what
the ancestors need to be. The first ancestor (level 0) needs to be object-class, and
the last ancestor needs to be the class whose ancestry this is. Immediately preceding
that comes the superclass, and before that comes the superclass’s superclass. The
implication is that the ancestry needs to be consistent with the superclass/subclass
association between classes.

The design of the widget? predicate just given has two flaws. First, it in-
vokes object/get-class and class/get-ancestry, which as precautions invoke
object? and class?, respectively. However, assuming that object? and class?
follow the same design as widget?, they will in turn invoke object/get-class and
class/get-ancestry. So, we’ll wind up with an infinite recursion. The second
flaw in widget?’s design is that no provision is made for the possibility that it might
be applied to a value that is not an object at all, as in (widget? 3).

Exercise 14.27

Write out the object? predicate that corresponds to the above widget? predicate.
Now trace out the details of the infinite recursion that occurs when it is used.

To provide some measure of foolproofing against predicates being applied to
nonobjects, we can test a number of additional consistency conditions. If all of these
consistency conditions hold, we can be relatively certain that we have a genuine
object and can test the original two conditions: that the ancestry vector is long
enough and that it has the widget-class as its element at position 1 (i.e., as
the level 1 ancestor). The following version of widget? embodies the additional
consistency checks to guard against nonobjects, although it still has the infinite
recursion problem:
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(define widget?

(let ((level (- (vector-length (class/get-ancestry widget-class))
1))

(min-length (class/get-num-ivars widget-class))

(min-class-length (class/get-num-ivars class-class)))

(lambda (object)

(and (vector? object)

(>= (vector-length object) min-length)

(let ((class (object/get-class object)))

(and (vector? class)

(>= (vector-length class) min-class-length)

(let ((a (class/get-ancestry class))
(size (class/get-num-ivars class)))

(and (number? size)

(= size (vector-length object))

(vector? a)

(eq? (vector-ref a

(- (vector-length a) 1))

class)

(> (vector-length a) level)

(eq? (vector-ref a level)

widget-class)))))))))

Exercise 14.28

Write out an English description of what each of the consistency checks is.

Exercise 14.29

Recall that the infinite recursion is due to the predicate using getters that them-
selves use predicates to do precautionary checking. The last time we had a problem
caused by precautionary checking in the normal getter or setter procedures was in
make-widget in the Instantiators subsection. Solve the infinite recursion problem
using the same approach as we used there.

Exercise 14.30

Using your widget? predicate as a starting point, write the class/predicate
method, which acts as a procedure factory for generating such predicate procedures.
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Making Classes

Classes are themselves instances of the class class, made using make-class. To see
what needs to be done to make a class, let’s review the instance variables that we have
come to assume each class has: name, subclasses, num-ivars, method-vector,
method-set?-vector, and ancestry. In addition, we’ve assumed the availability
of the ivar-position and method-position methods.

To support ivar-position and method-position, we’ll equip each class with
a table showing which vector position each instance variable is stored in and another
table showing which vector position each method is stored in. We’ll store each table
as simply a list of lists; for example, the list ((class 0) (size 1)) would be used
to show that class is in position 0 and size in position 1. Because these tables
associate a position with each name, they are conventionally called association lists
or simply alists. We’ll add two more instance variables to our above list of instance
variables the class class needs: ivar-alist and method-alist. These will hold
the two association lists. For convenience we’ll also add a num-methods instance
variable, paralleling num-ivars.

At this point, we can show a full definition for class-class:

(define class-class
(make-class ’class ; name

object-class ; superclass
’(name ; instance variables
subclasses
num-ivars
ivar-alist
num-methods
method-alist
method-vector
method-set?-vector
ancestry)

’(instantiator ; methods
predicate
getter
setter
method
non-overridable-method
set-method!
ivar-position
method-position)))

Of course, this again raises the bootstrapping issue of circularity: We just used
make-class, which makes an instance of the class class, to specify what the class
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class is. We’ll resolve this problem in the next subsection, which is devoted to
bootstrapping. For now, we at least have a human-readable description of the class
class.

The make-class procedure is simply the instantiator for the class class, obtained
using class/instantiator. As such, all it does is create an appropriately sized
vector, install class-class into element 0 of that vector, and then invoke the init
method to do all the real work. We can already sketch out most of what the init
method will need to do, simply by initializing each of the instance variables:

(class/set-method!

class-class ’init

(lambda (this class-name superclass instvar-names method-names)

(object^init this)

;; some code should go here to check that none of the new

;; instvar-names or method-names are already in use in the

;; superclass -- and if any are, to signal an error
(class/set-name! this class-name)

(class/set-subclasses! this ’())

(class/set-subclasses! superclass

(cons this

(class/get-subclasses superclass)))

(class/set-num-ivars! this (+ (class/get-num-ivars superclass)

(length instvar-names)))

(class/set-ivar-alist! this

;; some code needs to go here to

;; assign the positions for the instance
;; variables

)

(class/set-method-alist! this

;; some code needs to go here to

;; assign the positions for the methods

)

(let ((num-methods (+ (class/get-num-methods superclass)

(length method-names))))

(class/set-num-methods! this num-methods)

(let ((method-vector (make-vector num-methods)))
(class/set-method-vector! this method-vector)

(vector-copy! (class/get-method-vector superclass)

method-vector)

;;(continued)
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(for-each (lambda (method-name)

(vector-set! method-vector
(class/method-position this

method-name)

(lambda (object . args)

(error "Unimplemented method"

method-name))))

method-names))

(let ((method-set?-vector (make-vector num-methods)))

(class/set-method-set?-vector! this method-set?-vector)

(vector-fill! method-set?-vector #f)))

(let ((ancestry (make-vector (+ (vector-length
(class/get-ancestry superclass))

1))))

(class/set-ancestry! this ancestry)

(vector-copy! (class/get-ancestry superclass) ancestry)

(vector-set! ancestry

(- (vector-length ancestry) 1)

this))))

The above outline of class-class’s init method has two “holes” that need
to be filled in with code that computes alists, assigning positions for the instance
variables and methods. Recall that all the superclass’s instance variable or method
names need to be assigned the same positions as in the superclass, with the new
names assigned larger position numbers. Thus, a simple approach is to cons new
name/position associations onto the front of the superclass’s alists, starting with the
superclass’s number of instance variables or methods as the next available position
number. The following procedure handles this process of building onto an existing
alist:

(define alist-from-onto
(lambda (names num alist)
(if (null? names)

alist
(alist-from-onto (cdr names)

(+ num 1)
(cons (list (car names)

num)
alist)))))

Using this procedure, the two pieces of code we need to fill into the holes are as
follows:
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(alist-from-onto instvar-names
(class/get-num-ivars superclass)
(class/get-ivar-alist superclass))

and

(alist-from-onto method-names
(class/get-num-methods superclass)
(class/get-method-alist superclass))

With these filled in, the init method will now work; however, it won’t provide the
user with any error message if they pick a name for an instance variable or method
that is already in use from one of the ancestor classes. To provide this error-checking,
we need to check to see if any element of instvar-names or method-names
appears in the corresponding alist of the superclass. To check to see if a particular
name appears in the alist, we can use the built-in procedure assq, which searches
the alist for a particular name and returns the first pair that has that name as its car
or returns #f if the name isn’t found. For example,

(assq ’size ’((class 0) (size 1)))
(size 1)

(assq ’color ’((class 0) (size 1)))
#f

This procedure makes checking for erroneously reused names fairly straightforward.

Exercise 14.31

Write the error-checking (and reporting) code.

The only remaining features of the class class we need to implement are the
ivar-position and method-position methods. These methods can also be
straightforwardly written using assq:

(class/set-method!
class-class ’ivar-position

(lambda (this ivar-name)

(let ((lookup (assq ivar-name (class/get-ivar-alist this))))

(if lookup

(cadr lookup)

(error "instance variable name not present in class"

ivar-name (class/get-name this))))))
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(class/set-method!

class-class ’method-position
(lambda (this method-name)

(let ((lookup (assq method-name (class/get-method-alist this))))

(if lookup

(cadr lookup)

(error "method name not present in class"

method-name (class/get-name this))))))

The class class’s init method in turn invokes the object class’s init method,
using object^init. This is just another example of our general practice of having
each class’s init give the superclass’s init a chance to do any initializing it needs
to. As it happens, there is no initializing to do in the object class, so we simply write
a place holder:

(class/set-method!
object-class ’init
(lambda (this) ’done))

The next two subsections address the bootstrapping problem and the question of
how the define-class abbreviation is expanded. Other than these issues, all we
have omitted from our description of the object-oriented programming system are the
features used for debugging and exploration: the object class’s describe method,
the class class’s overriding describe method, and the show-class-hierarchy
procedure. The material above, showing how classes and objects are structured,
provides the information you would need to write these debugging tools.

Exercise 14.32

Either write the debugging tools, or write English explanations of our definitions of
them, which you can find in the complete version of the object-oriented program-
ming system that is on the web site for this book.

Bootstrapping

Having thus far ignored the circularities inherent in using the object-oriented pro-
gramming system to implement itself, we now are faced with the following problems:

1. The class-class can’t possibly be made using make-class because what
make-class does is to instantiate class-class.



14.4 Implementing an Object-oriented Prog. System 537

2. The object-class can’t be made using make-class either. Not only does
the same circularity issue apply (because make-class would be trying to cre-
ate object-class by instantiating one of its subclasses, class-class), but in
addition object-class has no superclass.

3. Many of the getters, setters, and methods of object-class and class-class
can’t be obtained in the usual way, using class/getter, class/setter, and
class/method, because of circularity problems. For example, class/method
clearly can’t be used to get the method method of the class-class, because
that would mean it was being used to get itself.

The simplest approach to the problem of creating class-class is simply to build
it “by hand” as a 10-element vector (because there are 10 instance variables) with
the appropriate contents:

(define class-class

(vector ’class-class-goes-here

’class ; name

’() ; subclasses
10 ; num-ivars

’((class 0) ; ivar-alist (These position numbers must

(name 1) ; be matched by the actual positioning

(subclasses 2) ; of the items in this class-class vector

(num-ivars 3) ; as well as the ones in the object-class

(ivar-alist 4) ; vector below.)

(num-methods 5)

(method-alist 6)

(method-vector 7)

(method-set?-vector 8)
(ancestry 9))

11 ; num-methods

’((init 0) ; method-alist

(describe 1)

(instantiator 2)

(predicate 3)

(getter 4)

(setter 5)

(method 6)

(non-overridable-method 7)
(set-method! 8)

(ivar-position 9)

(method-position 10))

;;(continued)
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(make-vector 11) ; method-vector

(make-vector 11) ; method-set?-vector
(make-vector 2))) ; ancestry

Of the 10 positions in this vector, one of them needed to be temporarily filled in
with a place holder rather than the real value: Position 0 is supposed to be the class
of which the object is an instance, but in the case of class-class, it is an instance
of itself. Thus, we put the placeholder ’class-class-goes-here in the preceding
and now can fix it:

(unchecked-object/set-class! class-class class-class)

At this point, the class-class has been constructed, but the vectors it contains—its
method-vector, method-set?-vector, and ancestry—still need to be filled in.
We’ll take care of that later.

The object-class can be constructed analogously:

(define object-class
(vector class-class ; class

’object ; name
(list class-class) ; subclasses
1 ; num-ivars
’((class 0)) ; ivar-alist
2 ; num-methods
’((init 0) ; method-alist
(describe 1))

(make-vector 2) ; method-vector
(make-vector 2) ; method-set?-vector
(make-vector 1))) ; ancestry

Now we can move on to the getters and setters. For these, we’ll write quick-and-
dirty versions of those actually needed during the bootstrapping process, and then
once the bootstrapping is over, we can (re)define them all the normal way, using
class/getter and class/setter. That will fill in all the ones we skipped over
because they weren’t needed for bootstrapping, and moreover it will replace all our
quick-and-dirty versions (i.e., ones without error-checking) with the normal versions
with error-checking. For example, to fill in the above two classes’ ancestry vectors,
we need class/get-ancestry, so we’ll define it as follows:

(define class/get-ancestry (lambda (obj) (vector-ref obj 9)))
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Note that the number 9 needs to match the position given in the instance variable
alist that is part of class-class. The other getters and setters we need can be
defined similarly.

Once these are in place, we can fill in some missing details in the classes to show
that no methods have been set yet and to show the correct ancestries:

(vector-fill! (class/get-method-set?-vector object-class) #f)

(vector-fill! (class/get-method-set?-vector class-class) #f)

(vector-set! (class/get-ancestry object-class)
0
object-class)

(let ((a (class/get-ancestry class-class)))
(vector-set! a 0 object-class)
(vector-set! a 1 class-class))

Once the two fundamental classes are constructed and the necessary getters and
setters are jury-rigged, we can set to work defining the various methods. However,
we again run into some circularity problems. For example, we can’t very well use
class/set-method! to install itself, can we? Well, we actually can, if we do it
carefully, as follows:

(define class/method-position ; temporary real, later replaced
(lambda (this method-name) ; with virtual
(let ((lookup (assq method-name

(class/get-method-alist this))))
(if lookup

(cadr lookup)
(error "method name not present in class"

method-name (class/get-name this))))))

(define class/set-method! ; temporary real, later replaced
(lambda (this method-name method) ; with virtual
(let ((index (class/method-position this method-name)))
(vector-set! (class/get-method-vector this)

index
method)

(vector-set! (class/get-method-set?-vector this)
index
#t)

;;(continued)
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(apply-below this
(lambda (class)
(vector-set! (class/get-method-vector class)

index
method))

(lambda (class)
(not (vector-ref

(class/get-method-set?-vector class)
index)))))

method-name))

(class/set-method! class-class ’method-position
class/method-position)

(class/set-method! class-class ’set-method!
class/set-method!)

; similarly for other methods, including class/method

(define class/method-position
(class/method class-class ’method-position))

(define class/set-method!
(class/method class-class ’set-method!))

; and so forth

You’ll notice that the name class/set-method! is temporarily defined to be the
specific real method rather than the virtual method. If we had any subclasses of
class-class during the bootstrapping process, this definition would be a problem,
but we don’t. Once the bootstrapping is complete, we redefine class/set-method!
to be the virtual method, which is obtained in the usual way.

The three preceding techniques are all it takes to get the object-oriented pro-
gramming system off the ground: hand construction of the class-class and
object-class vectors, hand construction of temporary versions of some getters and
setters, and temporary definition of method names such as class/set-method!
and class/method to be the real methods rather than the virtual ones. If you want
to see all the details, such as exactly which getters and setters need to be provided by
hand, you can look at the full implementation of the object-oriented programming
system, which is on the web site for this book. (Or, you could work it out for yourself.)
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Define-Class

At this point we have a working object-oriented programming system but not one
that is very pleasant to use because for each class we need to first make the class
using make-class, then get its instantiator using class/instantiator, then its
predicate using class/predicate, and then all its getters and setters and methods.

The solution, which we employed in our earlier object-oriented programming, is
to use define-class as an abbreviation for this tedious list of definitions. Although
this is just a superficial abbreviation of many definitions by one definition, it is worth
understanding, and so in this subsection we’ll look at the mechanism that is used.

We can implement define-class using a two-step process: First the definitions
for the class are computed, and then those definitions are evaluated “globally,” that
is, as though they had been typed in:

(define define-class
(lambda (class-name superclass instvar-names method-names)
(eval-globally
(class-definitions
class-name superclass instvar-names method-names))))

This code still leaves the problems of writing class-definitions, which produces
the long list of definitions for a class, and eval-globally, which makes those
definitions take effect.

To write class-definitions, we’ll need some way of “gluing together” symbols
so that we can take a class name, such as widget and glue make- onto the front
to make the instantiator name make-widget or glue a ? onto the end to make the
predicate name widget? or glue / and the method name activate onto the end to
make the name widget/activate, etc. We can write a procedure to do this gluing
together, which we’ll call symbol-append. Here are some examples of symbol-
append in use:

(symbol-append ’make- ’widget)
make-widget

(symbol-append ’widget ’/ ’activate)
widget/activate

We can write symbol-append in terms of some built-in procedures: symbol->
string, for converting the symbols to strings; string-append, for gluing the strings
together; and string->symbol for converting the result back into a symbol. Here
is the definition:
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(define symbol-append
(lambda symbols
(string->symbol
(apply string-append

(map symbol->string symbols)))))

Now that we have this tool in hand, writing class-definitions is simply a
large amount of relatively boring list-construction code. As an example of one little
piece of it, consider the following definition:

(define class-predicate-definition
(lambda (class-name)
(list ’define (symbol-append class-name ’?)

(list ’class/predicate
(symbol-append class-name ’-class)))))

If we apply that procedure to the class name widget, we get the definition that
would need to be evaluated in order to define widget?:

(class-predicate-definition ’widget)
(define widget? (class/predicate widget-class))

All the definitions that the define-class is abbreviating can be produced simi-
larly. The various definitions can then be packaged together by wrapping them in a
list starting with begin, as in

(begin

(define widget-class ...)

(define make-widget ...)

(define widget? ...)

...)

If you want to see the full, tedious code for generating the necessary definitions
as lists, you can find it in the full version of the object-oriented programming system
that is on the web site for this book. However, the previous sample should suffice to
indicate the general mechanism by which class-definitions works.

Now that the definitions have been produced as a list structure, the remaining
problem is how to make the Scheme system process those definitions; this is the
job of eval-globally. Most Scheme systems have an eval-globally procedure
already built in, but typically it is under a different name. For example, it might
just be called eval, in which case all you need to do is (define eval-globally
eval). However, the R4RS standard for Scheme doesn’t specify any version of
this procedure at all. Therefore, the system-independent version of our software
takes a somewhat more roundabout approach, but one that works in nearly any
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Scheme system. Namely, eval-globally writes the definitions out to a file called
evaltemp.scm and then does (load "evaltemp.scm") to load the file in. Because
the R4RS standard specifies both the mechanisms necessary for writing to a file and
for loading a file in, the only problem that may arise is with the choice of the
filename.

As before, if you are interested in the details, we invite you to look at the definition
of eval-globally in the full version of the object-oriented programming system
that we distribute. (The web site also has versions that have been tailored to specific
Scheme systems.)

14.5 An Application: Adventures in the Imaginary Land of Gack

Although object-oriented programming is now used for developing every imaginable
kind of software, its historical roots are in the development of simulation systems, in
which the software’s objects are used to model the interactions between the real-world
objects being simulated. Simulations are used for many practical purposes, such as
studying the effectiveness of emergency preparedness plans without needing a real
emergency. However, this category of software has also begotten a derivative category
with no more practical purpose than having fun: adventure games. In an adventure
game, the simulation is of a fantasy world and the characters inhabiting it. Typically
the player of the game controls one character, and the others are automated. As fun
as adventure games can be to play, they are nowhere near as fun to play as they are to
construct because in their construction you can exercise unbounded creativity. In this
section we’ll give you the opportunity to exercise your own creativity in constructing
a simulated world for an adventure game, using object-oriented programming as the
underlying technology.

We obtained the idea of using an adventure game to illustrate object-oriented
programming from Harold Abelson and Gerald Jay Sussman, who together with their
colleagues at MIT developed an adventure game in Scheme for use in their course,
Structure and Interpretation of Computer Programs. Their game was designed to
have places and characters that would be familiar to their students at MIT, and our
game started its life simply as an attempt to relocate to places and characters that
would be more familiar to our own students. Since then it has evolved, both in terms
of the underlying technology and, to a lesser extent, the game, to become increasingly
dissimilar from the MIT game. We nonetheless owe a great debt to Abelson, Sussman,
and the rest of the MIT team because the game is still recognizably theirs at heart.
We use it here with their permission. We would also like to encourage others to
engage in the same sort of “localization” we did; rather than just adding on to the
base set of locations and characters we provide, how about completely replacing
them with ones more familiar to you or more to your own imaginative taste?

Our game, which we call Adventures in the Imaginary Land of Gack, has three
major components. The most important of these is a hierarchy of classes for rep-
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resenting people, places, and things. Subclassing is used to achieve many of the
special effects of the game, for example, special kinds of automated people who
behave differently than normal automated people do. The second component of
the game is the particular world, the Land of Gack, which is produced simply by
creating specific instances of the various classes, such as a specific automated person
named Max, and establishing the relationships between them, such as positioning
Max in the offices. The third and final component of the game is a user interface,
which allows the player to interact with the game; this component is based on the
pattern/action idea that we first introduced in the movie query system.

In contrast to most of the prior chapters’ application sections, in which we’ve
chosen to jointly develop an application program with our readers by alternating
between portions we supply and exercises for the readers, in this section we present
a complete version of the adventure game and then call upon you to extend it
in whatever directions suit your fancy (after studying our version, which includes
playing it, of course). We provide some suggestions, but they are just starting points.

The class hierarchy portion of our game can be seen in overview most easily by
loading it in and then evaluating (show-class-hierarchy). If you do this, you’ll
see the following output:

object

registry

named-object

thing

scroll

place

person

auto-person

wizard

witch

class

We can also draw a UML class diagram of this hierarchy, as in Figure 14.1. As you
can see, there are two “top-level” classes in the game: registry and named-object. The
named-object class clearly plays an important role in that its subclasses are used for
representing all the things, places, and persons in the simulated Land of Gack. What
these have in common is that they have names. You can also see that we’ve provided
a specialized kind of person, the auto-person, for the characters that are controlled by
the program rather than by the player. These characters can all act, although some
of them act differently than others. In particular, there are wizards and witches with
distinctive behavior patterns. Similarly there could be things or places that behave
in supernormal ways. We’ve left most of those possibilities unexplored (leaving them
for you) but provide a simple illustration with a special kind of thing, scrolls that can
be read.
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registry named-
object

object

thingperson place

scrollauto-
person

witch wizard

Figure 14.1 The class hierarchy for the Land of Gack

We’ll return to the named-object class and its various descendants in more detail
shortly, but first we should explain the one other class, the registry class. This class is
used to create a single object that serves as a central registry of all the auto-persons
who are roaming the Land. To preserve this property, whenever an auto-person is
created, the auto-person/init method registers it with the registry. When an
auto-person becomes no longer free to act (because a witch turned the auto-person
into a frog—more on that later), the auto-person is removed from the registry. The
registry is used to give all the automated characters a chance to act after each action
taken by the player. This makes important use of the generic operations inherent in
object-oriented programming. The registry goes down its list of auto-persons applying
auto-person/maybe-act to each of them in a uniform way, without needing to
know or care that some might be witches or wizards. Yet the appropriate kind of
action is triggered in each case.

Before we continue with our description of the registry class, we really should
take a moment to update our UML class diagram with the new association we have
identified between the registry class and the auto-person class. While we’re at it,
we’ll give you a sneak preview (or overview) of the remaining associations by putting
them in Figure 14.2 as well. You should be able to look over the diagram and make
some sense of it. For example, you can see that there is a bidirectional association
between the person and thing classes, whereby each person knows the things that
are its possessions, and conversely each thing knows its owner, if any. Each person
also knows its place, and the place knows its contents. One new notation is used
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registry named-
object

object

thingperson place

scrollauto-
person

witch wizard

owner
0..1

*
possessions

0..1

*

* 1

* contents

0..1

direction

neighbor
0..1

{a person’s place’s contents
contains that person and all
their possessions}

*

Figure 14.2 The Land of Gack class diagram, including associations

for the neighbor relationship between places. A box labeled “direction” is on the
side of the place class, with an arrow back to the place class. This notation means
that starting from a particular place object, and given a particular direction, we can
then get to the neighboring place in that direction—except that there might not be
any neighbor in that direction, a contingency we are warned of by the multiplicity
of 0..1.

Having seen the overview diagram, we can look at the individual classes in more
detail. To start with, let’s return to the registry class. We’ll give the registry methods
for adding and removing an auto-person, a method for triggering all the auto-persons,
and finally a method for repeatedly triggering all the auto-persons, with the repetition
count specified by an argument. This last method, trigger-times, provides a
convenient way for the game to provide variable difficulty levels because it allows
for a faster-paced game in which each auto-person gets multiple opportunities to act
after each action of the player. The code is as follows:

(define-class
’registry
object-class
’(list)
’(add
remove
trigger
trigger-times))
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(class/set-method!
registry-class ’init
(lambda (this)
(object^init this)
(registry/set-list! this ’())))

(class/set-method!
registry-class ’add
(lambda (this person)
(registry/set-list! this

(cons person
(registry/get-list this)))))

(class/set-method!
registry-class ’remove
(lambda (this person)
(registry/set-list! this

(delq person
(registry/get-list this)))))

(class/set-method!
registry-class ’trigger
(lambda (this)
(for-each auto-person/maybe-act

(registry/get-list this))))

(class/set-method!
registry-class ’trigger-times
(lambda (this n)
(if (> n 0)

(begin (registry/trigger this)
(registry/trigger-times this (- n 1)))

’done)))

The remove method relies on a procedure called delq. This procedure takes an
object and a list and returns a new list that looks like the old one with all occurrences
of the object removed from it. We can define delq as follows:

(define delq
(lambda (item list)
(filter (lambda (x)

(not (eq? x item)))
list)))
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Now we can move on to the named-object class and its descendants, which are
used to model persons, places, and things from the Land of Gack. These objects use
instance variables to keep track of their relationships; for example, a person has a list
of the things it possesses. Because each thing also has an instance variable recording
the person who owns it, this portion of the game also provides a good reinforcement
of the importance of representation invariants as always-preserved consistency con-
ditions. Clearly one invariant property must be that the person objects’ possession
lists and the things’ owner instance variables remain in agreement; whenever the
owner of a thing is changed, the thing must be removed from one person’s list of
possessions and added to the other’s. Similar considerations apply elsewhere in the
design as well. For example, each person object knows what place the person is in,
and each place knows what persons (and things) are in it.

We maintain these consistency constraints by identifying one of the partners in
each relationship as being “in charge.” In particular, we will designate persons as
being in charge of the things they own and places they are in. Therefore when a
person takes or loses a thing, it will tell the thing to change its owner, and when
a person moves from place to place, it will tell the places to update their lists of
contents. The reverse arrangement would have also been possible, in which (for
example) when a thing changed its owner, it told the persons involved to update
their lists of possessions. However, having decided which object is in charge, we
simply need to initiate all changes through that object, leaving it to update the
subordinate partner object.

The named-object class itself is quite simple because it captures only the notion
that the object has a name, which can potentially be changed:

(define-class
’named-object
object-class
’(name)
’(name
change-name))

(class/set-method!
named-object-class ’init
(lambda (this name)
(object^init this)
(named-object/set-name! this name)))

(class/set-method!
named-object-class ’name
(lambda (this)
(named-object/get-name this)))
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(class/set-method!
named-object-class ’change-name
(lambda (this new-name)
(named-object/set-name! this new-name)))

Of the subclasses of named-object-class, the simplest is the class for things
because all that distinguishes a plain thing (other than its name) is who owns it. The
owner is normally a person object but can also be the symbol no-one, in which case
the owned? predicate returns false. Initially a thing is owned by no one, but it can
become owned by a person or become unowned again:

(define-class
’thing
named-object-class
’(owner)
’(owned?
owner
become-unowned
become-owned-by))

(class/set-method!
thing-class ’init
(lambda (this name)
(named-object^init this name)
(thing/set-owner! this ’no-one)))

(class/set-method!
thing-class ’owned?
(lambda (this)
(not (equal? (thing/owner this)

’no-one))))

(class/set-method!
thing-class ’owner
(lambda (this)
(thing/get-owner this)))

(class/set-method!
thing-class ’become-unowned
(lambda (this)
(thing/set-owner! this ’no-one)))
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(class/set-method!
thing-class ’become-owned-by
(lambda (this person)
(thing/set-owner! this person)))

A scroll is simply a thing that can be read. (Its name is the title of the scroll.)
A normal scroll is pretty boring to read, but we are including scrolls in the game
primarily so that you can add subclasses that behave more interestingly when read.
Here is the scroll class:

(define-class
’scroll
thing-class
’()
’(be-read))

(class/set-method!
scroll-class ’init
(lambda (this title)
(thing^init this title)))

(class/set-method!
scroll-class ’be-read
(lambda (this)
(let ((owner (scroll/owner this))

(title (scroll/name this)))
(if (scroll/owned? this)

(person/say owner
(list "I have read" title))

(display-message (list "No one has" title))))))

As you can see, although normal scrolls may not do anything very exciting when
read, even the little that they do accomplish requires some moderately interesting
machinery. In particular, we have a good example of an object’s method invoking a
method on a related object—the scroll asks its owner to say that he or she has read
the scroll. That way, if some people have unusual ways of speaking, when they read
a scroll, they will report having done so in their own peculiar way. Because only a
scroll’s owner is allowed to read it, we report any attempt to read an unowned scroll.
This reporting is done using a display-message procedure that takes a list of items
(such as strings or symbols) to display; it is defined as follows:
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(define display-message
(lambda (list-of-stuff)
(newline)
(for-each (lambda (s) (display s) (display " "))

list-of-stuff)))

The place class represents the places in the Land of Gack, or “rooms” as they are
frequently called by adventure gamers, whether they are actually rooms or not. Each
place has a list of contents, which are the things and persons that are at the place, and
has the ability to gain or lose such an item (when they arrive or leave). Each place
also has a neighbor-map, which is a list of pairs used as an association list, associating
each exit direction with the neighboring place in that direction. For example, if a
pair in the list has the symbol up as its car, the cdr is the place object that one would
arrive at by going up. This information regarding the spatial connections between
places can be accessed via a number of different methods. The exits method simply
returns the list of valid direction symbols (such as up). The neighbors method, in
contrast, supplies a list of the actual neighboring places. Finally, one can determine
which neighbor is in a particular direction using neighbor-towards or add a
new neighbor in a particular direction using add-new-neighbor. The class and its
methods are as follows:

(define-class
’place
named-object-class
’(neighbor-map ; pairs: car = direction, cdr = neighbor
contents) ; people and things

’(exits
neighbors
neighbor-towards
add-new-neighbor
gain
lose
contents))

(class/set-method!
place-class ’init
(lambda (this name)
(named-object^init this name)
(place/set-neighbor-map! this ’())
(place/set-contents! this ’())))
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(class/set-method!
place-class ’exits
(lambda (this)
(map car (place/get-neighbor-map this))))

(class/set-method!
place-class ’neighbors
(lambda (this)
(map cdr (place/get-neighbor-map this))))

(class/set-method!
place-class ’neighbor-towards
(lambda (this direction)
(let ((p (assq direction

(place/get-neighbor-map this))))
(if (not p)

#f
(cdr p)))))

(class/set-method!
place-class ’add-new-neighbor
(lambda (this direction new-neighbor)
(let ((neighbor-map (place/get-neighbor-map this)))
(if (assq direction neighbor-map)

(display-message
(list "there is already a neighbor"

direction
"from"
(place/name this)))

(place/set-neighbor-map! this
(cons (cons direction

new-neighbor)
neighbor-map))))))

(class/set-method!
place-class ’gain
(lambda (this new-item)
(let ((contents (place/contents this)))
(if (memq new-item contents)

(display-message
(list (named-object/name new-item)

;;(continued)
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"is already at"
(place/name this)))

(place/set-contents! this
(cons new-item contents))))))

(class/set-method!
place-class ’lose
(lambda (this item)
(let ((contents (place/contents this)))
(if (not (memq item contents))

(display-message
(list (named-object/name item)

"is not at"
(place/name this)))

(place/set-contents! this
(delq item contents))))))

(class/set-method!
place-class ’contents
(lambda (this)
(place/get-contents this)))

The most interesting of the various kinds of named objects are the persons. They
have a variety of methods intended for internal use within the game but also methods
that, in effect, are directly used by the human player of the game. Strictly speaking,
these are used by the user interface component of the game. For example, when
the player types in to the user interface the command (go north), the effect is the
same as if the user had evaluated the expression (person/go player ’north),
although actually the user interface evaluated it on the user’s behalf.

The person class and its methods follow. The methods make use of a utility
procedure that we define afterward, verbalize-list, which turns a list of items into
a spoken form by inserting “and” between consecutive words and using a specified
replacement if there are no items. In reading the methods below, remember that the
person class is “in charge” of its reciprocal relationships with things and places and
hence needs to keep those up to date. The code is as follows:

(define-class
’person
named-object-class
’(place
possessions)

;;(continued)
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’(say
look-around
list-possessions
read
have-fit
move-to
go
take
lose
place
possessions
greet
other-people-at-same-place))

(class/set-method!
person-class ’init
(lambda (this name place)
(named-object^init this name)
(person/set-place! this place)
(person/set-possessions! this ’())
(place/gain place this)))

(class/set-method!
person-class ’say
(lambda (this list-of-stuff)
(let ((name (person/name this))

(place (person/place this)))
(let ((place-name (place/name place)))
(display-message
(append (list "At" place-name ":" name "says --")

list-of-stuff))))))

(class/set-method!
person-class ’look-around
(lambda (this)
(let ((place (person/place this)))
(let ((other-items

(map named-object/name
(delq this

(place/contents place))))
(exits (place/exits place)))

;;(continued)
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(person/say this
(append ’("I see")

(verbalize-list other-items "nothing")
’("and can go")
(verbalize-list exits "nowhere")))))))

(class/set-method!
person-class ’list-possessions
(lambda (this)
(let ((stuff (map thing/name

(person/possessions this))))
(person/say
this
(append ’("I have")

(verbalize-list stuff "nothing"))))))

(class/set-method!
person-class ’read
(lambda (this scroll)
(if (eq? this (scroll/owner scroll))

(scroll/be-read scroll)
(display-message
(list (person/name this)

"does not have"
(scroll/name scroll))))))

(class/set-method!
person-class ’have-fit
(lambda (this)
(person/say this ’("Yaaaah! I am upset!"))))

(class/set-method!
person-class ’move-to
(lambda (this new-place)
(let ((name (person/name this))

(old-place (person/place this))
(possessions (person/possessions this)))

(display-message
(list name "moves from" (place/name old-place)

"to" (place/name new-place)))
(place/lose old-place this)
;;(continued)



556 Chapter 14 Object-oriented Programming

(place/gain new-place this)
(for-each (lambda (p)

(place/lose old-place p)
(place/gain new-place p))

possessions)
(person/set-place! this new-place)
(person/greet this

(person/other-people-at-same-place this)))))

(class/set-method!
person-class ’go
(lambda (this direction)
(let ((old-place (person/place this)))
(let ((new-place (place/neighbor-towards

old-place
direction)))

(if new-place
(person/move-to this new-place)
(display-message
(list "you cannot go" direction "from"

(place/name old-place))))))))

(class/set-method!
person-class ’take
(lambda (this thing)
(if (eq? this (thing/owner thing))

(display-message
(list (person/name this) "already has" (thing/name thing)))
(begin
(if (thing/owned? thing)

(let ((owner (thing/owner thing)))
(person/lose owner thing)
(person/have-fit owner))

’unowned)
(thing/become-owned-by thing this)
(person/set-possessions!
this
(cons thing (person/possessions this)))
(person/say
this
(list "I take" (thing/name thing)))))))
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(class/set-method!
person-class ’lose
(lambda (this thing)
(if (not (eq? this (thing/owner thing)))

(display-message (list (person/name this) "doesn’t have"
(thing/name thing)))

(begin
(thing/become-unowned thing)
(person/set-possessions!
this
(delq thing (person/possessions this)))
(person/say
this
(list "I lose" (thing/name thing)))))))

(class/set-method!
person-class ’place
(lambda (this)
(person/get-place this)))

(class/set-method!
person-class ’possessions
(lambda (this)
(person/get-possessions this)))

(class/set-method!
person-class ’greet
(lambda (this people)
(if (not (null? people))

(person/say this
(cons "Hi"

(verbalize-list
(map person/name people)
"no one")))

’no-one-to-greet)))

(class/set-method!
person-class ’other-people-at-same-place
(lambda (this)
(delq this

(filter person?
(place/contents (person/place this))))))
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The verbalize-list utility procedure used by the person class is as follows:

(define verbalize-list
(lambda (items none-word)
(define loop
(lambda (items)
(if (null? (cdr items))

items
(cons (car items)

(cons "and"
(loop (cdr items)))))))

(if (null? items)
(list none-word)
(loop items))))

The player of the game controls a normal person, but all the remaining characters
are automatically triggered by the registry and so are instances—at least indirectly—
of the auto-person class. What distinguishes the auto-person class is that it has a
method maybe-act for use by the registry. Each auto-person has some frequency
with which it acts that is controlled using a threshold to which its “restlessness” has
to rise before it acts. Each time the maybe-act method is invoked, it checks to see if
the threshold has been reached, and if not, increases the restlessness by 1. When the
restlessness reaches the threshold, the maybe-act method in turn invokes the act
method, to trigger the automated person’s behavior, and then resets the restlessness
to zero. Normal auto-persons act by moving to a randomly chosen adjoining room,
but there are subclasses that have more interesting act methods. The auto-person
class and its methods are given below; note that the auto-person is in charge of its
relationship with the registry.

(define-class
’auto-person
person-class
’(threshold
restlessness)

’(maybe-act
act))

(class/set-method!
auto-person-class ’init
(lambda (this name place threshold)
(person^init this name place)
;;(continued)
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(auto-person/set-threshold! this threshold)
(auto-person/set-restlessness! this 0)
(registry/add registry this)))

(class/set-method!
auto-person-class ’maybe-act
(lambda (this)
(let ((threshold (auto-person/get-threshold this))

(restlessness (auto-person/get-restlessness this)))
(if (< restlessness threshold)

(auto-person/set-restlessness! this
(+ 1 restlessness))

(begin (auto-person/act this)
(auto-person/set-restlessness! this 0))))))

(class/set-method!
auto-person-class ’act
(lambda (this)
(let ((new-place (random-element

(place/neighbors
(auto-person/place this)))))

(if new-place
(auto-person/move-to this new-place)))))

(define random-element
(lambda (list)
(if (null? list)

#f
(list-ref list (random (length list))))))

We’ve provided two subclasses of the auto-person-class with more interesting
act methods. The witch class has the special behavior that when there is someone
else in the room with the witch when she acts, she curses the person. (Otherwise
she acts just like any other auto-person.) The wizard, on the other hand, is basically
a scroll collector. The two classes, with their methods, follow:

(define-class
’witch
auto-person-class
’()
’(curse))
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(class/set-method!
witch-class ’act
(lambda (this)
(let ((victim (random-element

(witch/other-people-at-same-place this))))
(if victim

(witch/curse this victim)
(auto-person^act this)))))

(class/set-method!
witch-class ’curse
(lambda (this person)
(let ((person-name (person/name person)))
(person/say this

(list
"Hah hah hah, I’m going to turn you into a frog"
person-name))

(turn-into-frog person)
(person/say this

(list "Hee hee" person-name
"looks better in green!")))))

(define turn-into-frog
(lambda (person)
(for-each (lambda (item) (person/lose person item))

(person/possessions person))
(person/say person ’("Ribbitt!"))
(person/move-to person pond)
(registry/remove registry person)))

(define-class
’wizard
auto-person-class
’()
’())

(class/set-method!
wizard-class ’act
(lambda (this)
(let ((place (wizard/place this)))
(let ((scrolls (filter scroll?

(place/contents place))))
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(if (and (not (null? scrolls))
(not (eq? place chamber-of-wizards)))

(begin
(wizard/take this (car scrolls))
(wizard/move-to this chamber-of-wizards)
(wizard/lose this (car scrolls)))

(auto-person^act this))))))

At this point we have the entire class hierarchy for the Land of Gack—or rather,
the entire class hierarchy, as far as we’ve developed it for you. After you’ve played
(and become bored with) the existing game, you’ll be expected to invent new kinds
of characters, new and magical scrolls and other kinds of things, and maybe even
enchanted places that behave in unusual ways.

The next major component of the game, you will recall, is simply the “setting of
the stage”: in other words, the establishment of the specific individuals, places, and
things that constitute the Land of Gack. For example, this is where we decide that
the Land of Gack has (initially) only a single witch, named Barbara:

;; The "registry" is an object that keeps track of all
;; the auto-person objects that need to be given an
;; opportunity to act.

(define registry (make-registry))

;; Here we define the places in the imaginary world of Gack

(define food-service (make-place ’food-service))
(define PO (make-place ’PO))
(define alumni-hall (make-place ’alumni-hall))
(define chamber-of-wizards (make-place ’chamber-of-wizards))
(define library (make-place ’library))
(define good-ship-olin (make-place ’good-ship-olin))
(define lounge (make-place ’lounge))
(define computer-lab (make-place ’computer-lab))
(define offices (make-place ’offices))
(define dormitory (make-place ’dormitory))
(define pond (make-place ’pond))

;; One-way paths connect individual places in the world.

(place/add-new-neighbor food-service ’down PO)
(place/add-new-neighbor PO ’south alumni-hall)
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(place/add-new-neighbor alumni-hall ’north food-service)
(place/add-new-neighbor alumni-hall ’east chamber-of-wizards)
(place/add-new-neighbor alumni-hall ’west library)
(place/add-new-neighbor chamber-of-wizards ’west alumni-hall)
(place/add-new-neighbor chamber-of-wizards ’south dormitory)
(place/add-new-neighbor dormitory ’north chamber-of-wizards)
(place/add-new-neighbor dormitory ’west good-ship-olin)
(place/add-new-neighbor library ’east alumni-hall)
(place/add-new-neighbor library ’south good-ship-olin)
(place/add-new-neighbor good-ship-olin ’north library)
(place/add-new-neighbor good-ship-olin ’east dormitory)
(place/add-new-neighbor good-ship-olin ’up lounge)
(place/add-new-neighbor lounge ’west computer-lab)
(place/add-new-neighbor lounge ’south offices)
(place/add-new-neighbor computer-lab ’east lounge)
(place/add-new-neighbor offices ’north lounge)

;; We define persons as follows:

;; We’ve chosen to define max-the-person rather than
;; redefining max, which is predefined in Scheme to
;; be a procedure for finding the largest of its numeric
;; arguments.
(define max-the-person
(make-auto-person ’max offices 2))

(define karl
(make-auto-person ’karl computer-lab 4))

(define barbara
(make-witch ’barbara offices 3))

(define elvee
(make-wizard ’elvee chamber-of-wizards 1))

(define player
(make-person ’player dormitory))

;; and now we’ll strew some scrolls around:

(define scroll-of-enlightenment
(make-scroll ’scroll-of-enlightenment))

(place/gain library scroll-of-enlightenment)
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(for-each (lambda (title)
(place/gain library

(make-scroll title)))
’(crime-and-punishment war-and-peace

iliad
collected-works-of-rilke))

(define unix-programmers-manual
(make-scroll ’unix-programmers-manual))

(place/gain computer-lab unix-programmers-manual)

(define next-users-reference
(make-scroll ’next-users-reference))

(place/gain computer-lab next-users-reference)

Finally, we need a user interface for the game so that the player can say things like
(go north) instead of (person/go player ’north), as you would have to do to
play from the normal read-eval-print loop. The user interface also makes the game
more fun by triggering the registry after each move to give the automated persons
a chance to do their things. The user interface is entered via the play procedure,
by simply evaluating (play). This procedure is based on the pattern/action-list idea
we’ve seen in earlier chapters. Each command you can execute has a particular
pattern. For example, the pattern for commands like (go north) and (go up) is
(go _).

One additional kind of pattern has been added, beyond those described in Chap-
ter 7. A pattern can contain not only symbols and wild cards but also predicate
procedures. For example, the pattern for commands for taking things is made using
the expression (list ’take thing?), which makes a pattern rather like (take _),
except that the word after take is restricted to be the name of a thing that is in the
place where the player is. The requirement that the object satisfies the predicate (as
well as has the right name and is nearby) prevents you from committing kidnaping
by saying (take max), because Max is not a thing. A similar pattern, made using
(list ’read scroll?), ensures that you can only read scrolls, not other kinds of
things or people. These predicate wild cards also behave specially once it has been
determined that the pattern matches, and the action procedure is being applied. For
example, suppose you are in the library with the scroll-of-enlightenment and
you say (take scroll-of-enlightenment). The pattern matches, because the
scroll is a thing, has the right name, and is in the same place as the player. Now
the action procedure is applied. However, rather than being applied to the name
scroll-of-enlightenment, the way it would if the pattern were (take _), the
action procedure is instead applied to the scroll object itself.
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The code for the user interface is as follows:

(define difficulty 1)

(define play
(lambda ()
(define loop
(lambda ()
(newline)
(let ((user-input (read)))
(if (equal? user-input ’(quit))

’done
(begin
(respond-to-using user-input gack-p/a-list)
(loop))))))

(newline)
(display "Enter your name, using one word only, please.")
(newline)
(person/change-name player (read))
(display-message
(list "OK," (person/name player)

"enter your commands one by one"
"as scheme lists; to get help enter (help)."))

(loop)))

(define gack-p/a-list
(list (make-pattern/action ’(help)

(lambda ()
(newline)
(display "Possibilities:")
(newline)
(for-each (lambda (command)

(display " ")
(display command)
(newline))

’((help)
(quit)
(drop thing)
(lose thing)
(take thing)
;;(continued)
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(go direction)
(read scroll)
(inventory)
(list possessions)
(look)
(look around)
(say ...)))

(newline)))
(make-pattern/action (list ’(drop lose) thing?)

(lambda (verb thing)
(person/lose player thing)
(registry/trigger-times
registry difficulty)))

(make-pattern/action (list ’take thing?)
(lambda (thing)
(person/take player thing)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(go _)
(lambda (direction)
(person/go player direction)
(registry/trigger-times
registry difficulty)))

(make-pattern/action (list ’read scroll?)
(lambda (scroll)
(person/read player scroll)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(inventory)
(lambda ()
(person/list-possessions player)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(list possessions)
(lambda ()
(person/list-possessions player)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(look)
(lambda ()
(person/look-around player)))

;;(continued)
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(make-pattern/action ’(look around)
(lambda ()
(person/look-around player)))

(make-pattern/action ’(say ...)
(lambda (stuff)
(person/say player stuff)
(registry/trigger-times
registry difficulty)))))

(define respond-to-using
(lambda (command p/a-list)
(cond ((null? p/a-list)

(display-message ’("I don’t understand.")))
((matches? (pattern (car p/a-list)) command)
(apply (action (car p/a-list))

(substitutions-in-to-match
(pattern (car p/a-list))
command)))

(else (respond-to-using command (cdr p/a-list))))))

;; The versions of matches? and substitutions-in-to-match
;; given below not only are after doing various chapter 7
;; exercises, but moreover have an additional feature that a
;; predicate can be used as one of the components of a pattern,
;; in which case it means that at that position in the command,
;; a symbol is needed that is the name of an item in the player’s
;; place that satisfies the predicate.

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((not (pair? question)) #f)
((equal? (car pattern) ’_)
(matches? (cdr pattern) (cdr question)))
((list? (car pattern))
(if (member (car question) (car pattern))

(matches? (cdr pattern)
(cdr question))

#f))
((equal? (car pattern) ’...) #t)
;;(continued)
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((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
((procedure? (car pattern))
(let ((object (object-with-name (car question))))
(if (and object

((car pattern) object))
(matches? (cdr pattern)

(cdr question))
#f)))

(else #f))))

(define substitutions-in-to-match
(lambda (pattern question)
(cond ((null? pattern)

(if (null? question)
’()
(error
"substitutions-in-to-match without a match")))

((not (pair? question))
(error "substitutions-in-to-match without a match"))
((equal? (car pattern) ’_)
(cons (car question)

(substitutions-in-to-match (cdr pattern)
(cdr question))))

((list? (car pattern))
(if (member (car question) (car pattern))

(cons (car question)
(substitutions-in-to-match (cdr pattern)

(cdr question)))
(error
"substitutions-in-to-match without a match")))

((equal? (car pattern) ’...) (list question))
((equal? (car pattern) (car question))
(substitutions-in-to-match (cdr pattern)

(cdr question)))
;;(continued)
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((procedure? (car pattern))
(let ((object (object-with-name (car question))))
(if (and object

((car pattern) object))
(cons object

(substitutions-in-to-match
(cdr pattern) (cdr question)))

(error
"substitutions-in-to-match without a match"))))

(else (error
"substitutions-in-to-match without a match")))))

(define object-with-name
(lambda (name)
(let ((objects (filter (lambda (obj)

(equal? (named-object/name obj)
name))

(place/contents
(person/place player)))))

(if (or (null? objects)
(not (null? (cdr objects))))

#f
(car objects)))))

Now it is time for you to take charge of the game.

Exercise 14.33

First you’ll need to familiarize yourself with the game. Load it and try playing the
following simple game, using the (play) procedure. Try to get from the dormitory
to the computer lab without getting turned into a frog along the way. To make it
more challenging, try to get to the lab possessing the scroll of enlightenment. If you
want, you can make the other characters move several times after each move of yours
(rather than just once) by redefining difficulty to be some number larger than 1.
Be sure to get familiar with the game’s other features too.

Exercise 14.34

Modify the Land of Gack so that there is a new scroll, called late-lab-report,
in the dormitory. Now you can play the game with a new goal: Pick up the
late-lab-report, go catch up with max, wherever he may have wandered to, and
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try to give max the report even though it’s late. You’ll need to add some additional
mechanisms to the person class and the interface’s pattern/action list to be able to
use a command like (give max late-lab-report) or (give late-lab-report
to max). Verify that at the end the lab report thinks max is its owner, max thinks
the lab report is one of his possessions, and player no longer thinks the lab report
is one of its possessions.

Exercise 14.35

Of course, you can make the game much more interesting by adding additional
twists. Implement some that interest you. We give a list of suggestions below but feel
free to come up with some of your own. Be sure to describe in English whatever
new ideas you introduce.

Add chocolate as a kind of thing. It should be able to be-eaten. When a chocolate
is eaten, the owner loses it and it is gone from the place where the owner is located.
You can optionally add cute sound effects or make a wrapper or some crumbs
appear at the place. Make some chocolates appear at food-service.
Modify the person class so people have an eat method that causes a chocolate
they own to be eaten, much like the read method.
Now that we have chocolates, we can modify the witch class to reflect a little-
known property of witches: They can be bought off with chocolates. Change the
act method so that if Barbara’s victim has any chocolates, Barbara will take and
eat one rather than turning the victim into a frog. Only victims who possess no
chocolates will become frogs. This makes the game more interesting in that you
have to decide whether to take the extra time to make a detour to food service for
chocolates or go for speed but risk being caught unprepared by Barbara.
If you want to make the game harder yet, you can make it difficult to hoard
protective chocolates by creating a troll who wanders around eating chocolates.
Perhaps you should change Max from being a normal person to being the troll—it
was probably just the fact that he wrote this section that kept him from being cast
as a troll in the first place.
Introduce magic scrolls into the game as an abstract subclass of scroll-class
that has a limited number of “charges” (let’s say n) and when read the first n
times invokes its do-magic method. Define one or more specific kinds of magic
scrolls as subclasses of the magic-scroll class with interesting do-magic methods;
for example, you might make a scroll-of-teleportation.
It makes the game rather easy if the title of a magic scroll tells what it does.
You could add a feature so that initially the name method of any magic scroll
just returns a-mysterious-scroll, but when you read the scroll the first time
the name changes to the actual title. This feature is particularly effective if you
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include scrolls with undesirable effects as well as desirable ones. Of course, you
could counter by including a scroll-of-identification that can be used to decode
the titles.
Currently Elvee, the wizard, always takes the first scroll at a place. Because some
scrolls are more valuable than others, this action can make the game boring.
Change the definition of the wizard class so wizards choose a scroll to take at
random.
Feel free to add you own interesting kinds of people, places and things.

Review Problems

Exercise 14.36

If you apply object/describe to most objects, you’ll see the instance variables
that constitute the object. On the other hand, if you apply object/describe
to a class object (such as item-class), you’ll instead see a description of the
class that the object represents, with detailed information such as the ancestor class
from which it inherits each inherited instance variable, method name, or method
implementation. How can you get a description of a class object that shows the
actual instance variables of the class object? (For example, the description should
make the method-set?-vector instance variable visible.)

Exercise 14.37

a. Write a procedure that returns a list of all the classes currently in existence. (It
should return the actual class objects, not the names of the classes.) Hint: See the
definition of show-class-hierarchy and also the material on tree traversal in
Chapter 8.

b. Write a predicate procedure that tests whether a given class has a given method
name.

c. Write a procedure, using the previous two, that returns a list of the class names
for all those classes in existence that have a given method name.

Exercise 14.38

In Section 13.5, we built a layered collection of data types: ranked-binary-trees,
binary-search-trees, and red-black-trees. This layering is suggestive
of object-oriented programming’s class hierarchy; we can imagine having
ranked-binary-tree as a base class, with binary-search-tree derived from
it as a subclass, and red-black tree derived further as a subclass of binary search
tree.
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On closer examination, no reason exists to have ranked binary trees as the base.
After all, the notion of rank only becomes relevant when we build the red-black
tree abstraction. In Section 13.5, we had to include the ranks from the beginning
because only the procedures for operating on the trees changed from layer to layer;
the data representation stayed the same. Now with object-oriented programming, we
can add a new instance variable in a subclass rather than just adding new procedures
(methods).

Reimplement red-black trees in the object-oriented programming system. Start
with a base class that is just plain binary trees, without ranks. Then build the binary
search tree class as a subclass. Finally, implement red-black trees as a subclass of
binary search trees, which is where you’ll add the rank instance variable.

Exercise 14.39

When a method is overridden in a subclass, the new implementation should comply
with whatever the external specification of the method is so that users are not
surprised. For example, it would not be appropriate for a kind of item (in the
compu-duds example) to implement the display method by switching to a new
randomly selected color rather than by actually displaying the item’s description and
price. On the other hand, the specification will no doubt have some flexibility in
it; for example, we haven’t pinned down exactly what sort of “description” should
be displayed because if we were too precise about that, there would be no room to
accommodate different kinds of subclasses.

One interesting point is that depending which of several potential specifications
the designer chooses to articulate for a particular class and its methods, the exact
same subclass of that class might be either “in compliance” or “out of compliance”
with the specification, even though the specifications might all be reasonable for the
original class.

Give a concrete illustration of this phenomenon by defining a class and its subclass
and giving two reasonable specifications for the superclass, one of which leads to
the subclass being compliant and the other of which doesn’t. Also, write up some
thoughts on the subject of how a software designer should anticipate and cope with
this phenomenon.

Exercise 14.40

Suppose you wanted to change the Land of Gack so that it was possible to ask people
to introduce themselves; that is, you could do the following:

(person/introduce-self barbara)

or
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(person/introduce-self max-the-person)

or

(person/introduce-self elvee)

Whoever you ask to introduce themselves would then say

Hello, I'm barbara.

I'm known to be fond of chocolate and turning people into frogs.

Pleased to meet you.

or

Hello, I'm max.

Pleased to meet you.

or

Hello, I'm elvee.

I've got this problem with scrolls.

Pleased to meet you.

Note that the first and last lines are similar for all people, but what comes in between
(if anything) is particular to the given subclass of person-class. How would you
arrange for this dialogue in a way that takes full advantage of the class hierarchy?
Illustrate with sample code.

Exercise 14.41

In Exercise 14.34, you added to the Land of Gack the ability to give a scroll to
someone else. There the intent was to give the late lab report to Max. However, you
probably made the mechanism general enough that you could also give a scroll to
the wizard, Elvee. If you do this, you may later see Elvee (when he acts) trying to
take a scroll that he already has, which results in a message reporting this oddity.
Explain how this occurs and what can be done to eliminate this behavior.

Exercise 14.42

When a person says something in the Land of Gack, it is “heard” only by the player,
in that whatever is said gets displayed. It would be more interesting if other objects
within the Land of Gack itself could also hear—and potentially respond to—what
was said. That way you could have characters who behaved differently if you said
“please,” magic portals that opened when you said “open sesame,” etc.
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a. Add a method called named-object/hear that takes two arguments: the person
speaking and what was said. Put an implementation in the named-object-class
that does nothing because ordinary objects ignore what they hear.

b. Change the person/say method so that it invokes the named-object/hear
method of each object in the place where the person is speaking.

c. Now have fun introducing special classes of object that respond to what they hear.

Exercise 14.43

Write a procedure instance-of? that can be used to test whether a particular
object is an instance of a particular class. Examples of its use follow:

(instance-of? barbara witch-class)
#t

(instance-of? barbara person-class)
#t

(instance-of? barbara place-class)
#f

(instance-of? lounge place-class)
#t

Chapter Inventory

Vocabulary

object-oriented programming
class
class hierarchy
object-oriented design
subclass
superclass
object
instance
derived class
base class
ancestry
Unified Modeling Language (UML)
class diagram
association

multiplicity
class object
instance variable
inherit
method
method name
method implementation
override
getter
this or self
setter
instantiator
public
private
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garbage collection
augment (the superclass’s method)
abstract class
pure abstract class
bootstrapping
role (in a UML association)
virtual method

constraint (on a UML association)
association list
alist
simulation
adventure game
consistency condition

Classes

item-class
item-list-class
oxford-shirt-class
chinos-class
object-class
class-class
special-item-class
pants-class
thrifty-item-list-class
item-list-as-vector-class
item-list-as-list-class
registry-class

named-object-class
thing-class
place-class
person-class
auto-person-class
wizard-class
witch-class
scroll-class
chocolate-class
troll-class
magic-scroll-class

New Predefined Scheme Names

assq
string-append
load

Methods

item-list/add
item-list/display
item-list/total-price
item-list/delete
item-list/choose
item-list/empty?
item/input-specifics
item/display
item/revise-specifics
item/price
class/set-method!
object/init
item-list/init
object/describe

item-list/grow
item/init
special-item/input-specifics
oxford-shirt/init
oxford-shirt/display
oxford-shirt/input-specifics
chinos/init
chinos/display
chinos/input-specifics
class/predicate
class/instantiator
class/getter
class/setter
class/method
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class/non-overridable-method
class/ivar-position
class/method-position
auto-person/init
auto-person/maybe-act
registry/init
registry/add
registry/remove
registry/trigger
registry/trigger-times
named-object/init
named-object/name
named-object/change-name
thing/owned?
thing/init
thing/owner
thing/become-unowned
thing/become-owned-by
scroll/init
scroll/be-read
place/exits
place/neighbors
place/neighbor-towards
place/add-new-neighbor
place/init

place/gain
place/lose
place/contents
person/init
person/say
person/look-around
person/list-possessions
person/read
person/have-fit
person/move-to
person/go
person/take
person/lose
person/place
person/possessions
person/greet
person/other-people-at-same-place
auto-person/act
witch/act
witch/curse
wizard/act
chocolate/be-eaten
person/eat
magic-scroll/do-magic
magic-scroll/name

Objects From the Land of Gack

registry
food-service
PO
alumni-hall
chamber-of-wizards
library
good-ship-olin
lounge
computer-lab
offices
dormitory

pond
max-the-person
karl
barbara
elvee
player
scroll-of-enlightenment
unix-programmers-manual
next-users-reference
late-lab-report
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Other Scheme Names Defined in This Chapter

define-class
vector-copy!
display-price
input-integer-in-range
input-selection
compu-duds
input-item
show-class-hierarchy
unchecked-object/set-class!
apply-below
alist-from-onto
class-definitions

eval-globally
symbol-append
class-predicate-definition
delq
display-message
verbalize-list
turn-into-frog
play
difficulty
gack-p/a-list
respond-to-using
object-with-name

Notes

One version of the MIT adventure game we based ours on was published in [1].
We touched only briefly on the design of object-oriented software, emphasizing

the search for nouns in the problem statement as potential classes of objects and verbs
and implicit operations as potential methods. Books such as those of Rumbaugh [44]
and Booch [7] provide a much more extensive treatment of these issues of analyzing
a problem, modeling it in terms of objects, and designing the software. Another
important approach, complementing the finding of “natural objects” in the problem
specification, is the recognition of common patterns of object creation and behavior;
an excellent source-book for this approach is Design Patterns, by Gamma, Helm,
Johnson, and Vlissides [21].

In addition to these general topics of design, you may want to read up on the
concrete realization of object-oriented software in currently popular object-oriented
programming languages. At the time we are writing this book, the greatest enthusiasm
centers around the Java programming language. The next chapter contains a quick
introduction to Java, and the notes at the end of that chapter provide some suggestions
for further reading.

At the time of our writing, the only definitive source for information on UML
is the web site, http://www.rational.com/uml/; documentation published on
paper is still forthcoming. There is, however, an introductory overview book by
Fowler [18].

The techniques we used to implement the object-oriented programming system
are typical of those used for implementing such systems. Most of these techniques
have been used for decades. Surprisingly, however, one of them was published
as recently as 1991. That was the year when the technique we use for the class
predicates, based on ancestry vectors, was described by Norman Cohen [13].
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Java, Applets, and Concurrency

15.1 Introduction

In this chapter, we’ll turn our attention from Scheme to another programming
language, Java. Scheme has served us well, providing a simple context for learning
many important computing concepts. However, now it is advantageous to look at
another language, for the following reasons:

We want to emphasize the continuity of concepts between what we’ve done in
the rest of the book and the programming you are likely to do after leaving us.

Although the big concepts carry over, there are some variations at a more super-
ficial level, and it will help you if we point those out.

We have a couple new concepts we consider it important to introduce that would
not be easy or natural to introduce in Scheme. In particular, we are going to
move away from programs that sequentially do one thing at a time to programs
that divide their attention between multiple activities.

In the next section, we’ll provide a basic introduction to the Java programming
language by taking a program you are familiar with—the compu-duds program from
the previous chapter—and rewriting it in Java. We’ll show how the same object-
oriented programming concepts are realized in a different notation.

After completing our crash course in how object-oriented programming maps
into Java, we’ll turn our attention to a new class of programs: those that present the
user with a graphical interface and respond to the user’s manipulation of interface

577
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elements, such as clicking on buttons. In particular, we’ll look at applets, which
are programs with graphical user interfaces that are intended to be embedded into
World Wide Web documents.

Finally, we’ll use Java applets as the setting in which to introduce the most
conceptually significant material, concurrency. A concurrent system is one in which
multiple activities go on at once. We’ll show how to develop programs that can
divide their attention between multiple activities. Most importantly, we’ll show how
the concept of representation invariant, which we’ve emphasized in prior chapters,
gains renewed importance as the key to preventing unwanted interactions between
concurrent activities. The chapter concludes with an opportunity for you to apply
concurrent programming techniques to a simulation applet.

15.2 Java

The Java programming language is heavily biased toward the object-oriented style of
programming we introduced in the previous chapter. All programming is organized
into classes: Every single procedure you write in a Java program must be associated
with some class, unlike in Scheme, where in addition to classes’ methods, we also
had “normal” procedures that floated free from the class hierarchy. In Java, even a
procedure that just squared a number would have to be part of a class.

Another big difference between Java and Scheme is that we’ll need to explicitly
declare what type of object or value each name is a name for. For example, in the
compu-duds program, we’ll have to explicitly state that the argument to the add
method of the item-list class is an item, that the choose method returns an item, and
that the item-vector is a vector that holds items (no big surprise). On the one hand,
this is sort of a nuisance because you have to type in all sorts of declarations that
don’t do any of the program’s real work but instead just state what type of objects are
being manipulated. On the other hand, the presence of these declarations provides
a number of advantages:

The declarations allow the automatic detection of many common programming
errors. By now you surely have applied a Scheme procedure to the wrong kind
of argument. If the faulty argument gets passed around untouched for a while
before any operation is performed on it that causes symptoms to arise, you can
have quite a debugging puzzle. If the symptoms only arise in some infrequently
executed part of your program, matters are worse. In Java, by contrast, you can get
immediate feedback regarding any place in your program where a type mismatch
occurs.
The declarations provide useful information to readers of your program. For
example, does the item-list class’s delete method expect to be told which item to
delete or which numerical position it should delete the item from? One look at
the type declaration for the parameter answers this question.
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The declarations can actually contribute to the brevity of your program by allowing
method names to be abbreviated. In Scheme, every time you operated on an item,
you needed to specify that it was an item, by using method names like item/price
or item/display. In Java, you declare once and for all that it is an item and
then can operate on it with method names like price or display.

These two areas are broad differences between Java and Scheme: types must be
declared, and the entire program must be organized into classes. However, smaller
differences also exist, particularly at the superficial level of what the notation looks
like. A few of these are purely arbitrary, reflecting the different background and taste
of the languages’ designers or intended audience. Most, however, can be accounted
for in terms of a desire for succinctness: Java is a much more terse notation than
Scheme and allows lots of optional shorthands that can make it even terser. For
an example, consider what a method of the item-list class does to get the current
value of the num-items instance variable stored in this item-list (i.e., the one
the method is operating on). In Scheme we wrote (item-list/get-num-items
this). In Java, the “longhand” option would be this.numItems, and the shorthand
that is normally used is just numItems, because if you don’t specify what object an
instance variable should be fetched from, it is assumed to be this.

We renamed the instance variable from num-items to numItems because arith-
metic operators in Java are written between their operands, so num-items would
mean num minus items. Because the hyphen means subtraction—and no spaces
are required around it—we are forced to separate words some other way. The Java
convention is to use capitalization of the first letter of each new word within the
name. (For class names, even the first word is conventionally capitalized, for ex-
ample, ItemList, whereas for other names the first word is left lowercase, as in
numItems or displayPrice.)

Enough general comments about Java; the time has come for an example program.
We’ll do a straightforward translation of the compu-duds (or CompuDuds) program
into Java, sticking close to the Scheme original so you have a basis for comparison.
To refresh your memory, here is the class hierarchy from the Scheme version:

item-list item

object

oxford-shirtchinos

0..1

*
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The variant of this class hierarchy we will implement in Java includes two changes:

ItemList Item

Object

OxfordShirtChinos

0..1

*
CompuDuds

The first change concerns the Java naming convention described in the previous
paragraph (e.g., ItemList instead of item-list). The second change is the addition
to our hierarchy of the class called CompuDuds. We need this class as a place to put
the “normal” procedures that in Scheme floated free from the class hierarchy. One
of those procedures was the main compu-duds procedure that was the program itself;
in Java, this procedure is renamed to be the main method of the CompuDuds class,
because the Java system assumes that the program to run is the main method of the
specified class.

Because of its relative simplicity, we will start our description of the CompuDuds
program with the Item class, followed in short order by its subclasses OxfordShirt
and Chinos, after which we will look at the ItemList and CompuDuds classes.
Because the code is so extensive, and there are so many new language features
you will be learning, we will divide the remainder of this section into subsections
corresponding to each of these classes.

Item Class

Recall that the Item class maintained the price of each item and otherwise existed
mainly as a base for its subclasses. Here is the full Java implementation of Item,
which must be in a file named Item.java:

public class Item extends Object {

private int price;

public Item(int initialPrice){
price = initialPrice;

}
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public int price(){
return price;

}

public void display(){
CompuDuds.displayPrice(price);

}

public void inputSpecifics(){
}

public void reviseSpecifics(){
inputSpecifics();

}
}

To understand the meaning of this notation, recall that in Scheme we first used
define-class to provide some basic information about the class: its name, su-
perclass, instance variable names, and method names. We then added the method
implementations one by one, using class/set-method!. In Java, by contrast, we
provide the method implementations in the same chunk of code with the rest of
the information about the class. This notation is as though in Scheme all the calls
to class/set-method! were stuck in as extra arguments to define-class. The
overall form is therefore as follows:

public class Item extends Object {
// all the instance variables and methods go in here

}

The first line states that the Item class has the Object class as its superclass. Actually,
we can leave “extends Object” out because Java assumes the superclass is Object
if you don’t specify otherwise. The keyword public indicates that this class can be
freely used from anywhere within the overall program. For simplicity, we’ll stick
exclusively to public classes, although in large programs it can be helpful to delimit
the visibility of some classes, as a complexity control measure. Each public class
needs to be defined in a file named after the class; for example, we stated earlier
that the definition of the Item class must be in Item.java. Because all our classes
will be public, each will need to be put in its own individual file.

We’ve taken this early opportunity to show what a comment looks like in Java; the
line

// all the instance variables and methods go in here
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is a comment, because anything from // to the end of the line is ignored by the Java
system, much like Scheme comments that extend from ; to the end of the line. Java
also offers comments that extend from /* to */, even if the */ is on a subsequent
line, such as this example:

/* all the instance variables and methods go
in here */

The instance variables and methods in a class’s definition can be listed in any
order between the outer curly braces. We could list all the instance variables and
then all the methods or vice versa or mix them up. In the examples we give, we’ll
follow the convention of first listing the instance variables and then the methods.

The class Item has a single instance variable, named price, that is declared in
the line

private int price;

Notice that price is flagged private. This means that no code outside the class
can get or set it: The only access is through this class’s methods. If you look back
over the code in the previous chapter, you’ll see that we’ve always used instance
variables that way. Doing so makes the program as a whole much more resilient to
changes in individual classes.

In addition to the instance variable’s name, we also included one other piece of
information, between the private keyword and the name, namely, what type of
value the instance variable will hold. (We warned you that such declarations were
coming.) In particular, we’ve declared that the price instance variable will always
hold an integer (called an int in Java).

Consider next how the five methods for class Item are written in Java. The first
of these, which is named Item, has a special role—it is used to initialize a new
instance of the Item class when that instance is constructed, which is analogous
to the Scheme version’s init method. In Java, instead of being called init, it is
given the same name as the class. Also, in Java terminology it isn’t strictly speaking a
method but rather a constructor. In Scheme, we used the same word, constructor, to
instead refer to the make-item procedure. Recall that in Scheme we could construct
an item with the following code:

(define example-item (make-item 1950)) ; 1950 cents = $19.50

The corresponding Java code would be

Item exampleItem = new Item(1950);

This statement declares exampleItem to be a variable of type Item and assigns it the
value returned by the class instance creation expression, new Item(1950). Because
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of the parenthesized 1950, the newly created Item is initialized by the constructor
applied to 1950. We define the constructor Item by

public Item(int initialPrice){
price = initialPrice;

}

This code introduces several features of Java. As you can see, this constructor is
public, in other words, available for use from outside the class. In parentheses after
the constructor name is the list of parameters; if there were more than one, they
would be seperated by commas. The this parameter is not listed. Thus, Item takes
a parameter named initialPrice, which is of type int. The reason Java omits the
this parameter is not because it doesn’t exist but rather because every constructor
and method necessarily has it, so for conciseness it isn’t explicitly mentioned. Next
comes the body of the constructor, surrounded by braces. The single statement
within the body illustrates the use of the equal sign as a setter: The instance variable
to the left of the equal sign is being set to the value indicated on the right. Thus, the
price instance variable is set to the desired initial price. This assignment statement
ends with a semicolon.

Consider next the price method:

public int price(){
return price;

}

The int between the public and price() says that price is a method that returns
an integer value. Notice that we need to explicitly say that the value should be
returned, unlike in Scheme. The empty parentheses are because this method takes
no arguments, other than the implicit this.

Before describing the remaining methods in the Item class, consider the following
code, which illustrates how the price method could be invoked:

int itsPrice = exampleItem.price();

This statement (which assumes that exampleItem was declared as before) declares
a new variable of type int and assigns it the value returned by invoking the price
method on exampleItem, namely, 1950. The pair of parentheses after the method
name contains all the arguments other than which object the method is being
invoked on; that special argument (exampleItem) appears before the method name,
separated by a dot. Because it is so common for methods to invoke other methods
on the same object (i.e., on this), Java allows the shorthand form in which you just
write price() instead of this.price().
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Returning to the remaining methods in the Item class, consider next display,
which illustrates how to call a method that is not associated with any particular
object:

public void display(){
CompuDuds.displayPrice(price);

}

First note that the word void, appearing before the method name, is in the position
where normally we would specify what kind of value this method returns. What
it means is that no value at all is returned: The method is invoked solely for its
effect. This use of void contrasts with the way we declared the Item constructor.
Constructors have no return type specifier at all, not even void, whereas methods
must have a return type specifier, whether void or a real type like int.

The interesting feature of display’s invocation of displayPrice is that
CompuDuds isn’t an object; it is a class. As descibed, we normally put an object
before the dot to show which object the method should be invoked on. However,
the displayPrice procedure isn’t really an object’s method at all; it is just a normal
procedure. As we mentioned earlier, even normal procedures in Java need to be
grouped into classes; in Java terminology, they are called class methods as opposed
to instance methods. We’ve given the CompuDuds class the responsibility of holding
all the utility procedures for our program, like this one for showing a price as dollars
and cents. To access such a procedure, we just write the class name before the dot.

This leaves the final two methods in the Item class, which are fairly straightfor-
ward:

public void inputSpecifics(){
}

public void reviseSpecifics(){
inputSpecifics();

}

We don’t have much new to say about these two procedures, other than to point out
that inputSpecifics() has an empty body and therefore does nothing. Otherwise,
these two procedures are direct translations of their Scheme counterparts.

OxfordShirt Class

The OxfordShirt class extends a superclass other than Object, namely, Item.
Following is the portion of its implementation dealing with its instance variables
and constructor. Take a particularly close look at the line involving super that we’ve
flagged with a comment; we’ll have more to say about it presently:
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public class OxfordShirt extends Item {

private String color;
private int neck;
private int sleeve;
private boolean specifiedYet;

public OxfordShirt(){
super(1950); // <-- allow Item class to initialize the price
specifiedYet = false;

}

// Methods display() and inputSpecifics() go here;
// we will show them later.

}

First note that two new Java types are used for the instance variables: String and
boolean. These types have pretty much the same meaning as in Scheme.

The line we flagged invokes the constructor from the superclass (i.e., the Item
class). In the Scheme version, the init method for the oxford-shirt class invoked
the init from the item class as follows:

(item^init this 1950)

Here in Java, the analogue is super(1950).
The display() method in OxfordShirt introduces a number of new features:

public void display(){
if(specifiedYet){
System.out.print(color);
System.out.print(" Oxford shirt, size ");
System.out.print(neck);
System.out.print("/");
System.out.print(sleeve);
System.out.print("; ");

} else {
System.out.print("Oxford shirt; ");

}
super.display(); // <-- now do displaying the Item way

}
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First note that display() uses the if. . . else construct to choose between two
forms of output. Also, the code contains a number of instances of the expression
System. out.print(. . .). These produce output for the user to see, analogously to
Scheme’s display procedure. Similarly, System.out.println(. . .) will produce
output and then start a new line. In particular, System.out.println() has the
same effect as Scheme’s newline procedure. Actually, print and println are
methods that can be used to cause output to be produced elsewhere as well (like
into a file), and System.out is the object we invoke those methods on when we
want the output to go to the normal place, typically the user’s display screen.

Regarding the statement flagged with a comment in the preceding code, recall
that the Scheme version of the oxford-shirt class’s display method ended by
invoking the item class’s display as follows:

(item^display this)

In Java, the display method from the superclass is invoked as super.display().
Finally, consider the inputSpecifics() method in the OxfordShirt class:

public void inputSpecifics(){
System.out.println("What color?");
String[] colors = {"Ecru", "Pink", "Blue", "Maize", "White"};
color = CompuDuds.inputSelection(colors);
System.out.print("What neck size? ");
neck = CompuDuds.inputIntegerInRange(15, 18);
System.out.print("What sleeve length? ");
sleeve = CompuDuds.inputIntegerInRange(32, 37);
specifiedYet = true;

}

Note first that the actual input is offloaded to the two utility procedures,
inputSelection and inputIntegerInRange, just like in the Scheme version.
We’ll provide their definitions when we get to the CompuDuds class.

We need to explain a number of new Java features that are implicit in the following
line:

String[] colors = {"Ecru", "Pink", "Blue", "Maize", "White"};

This is Java shorthand for the following code, which is what we will actually explain:

String[] colors = new String[5];
colors[0] = "Ecru";
colors[1] = "Pink";
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colors[2] = "Blue";
colors[3] = "Maize";
colors[4] = "White";

The first line declares colors to be a temporary local variable; that is, rather than
being a permanent instance variable of the object, it is a name that can only be
used from its declaration to the end of the curly braces. The variable colors is
declared to have the type String[], which means that colors is an array (Java’s
word for vector) that can hold Strings. (The brackets indicates that it is an array,
whereas the name before the brackets indicates what type of object the array holds.)
The expression new String[5] is analogous to Scheme’s (make-vector 5) except
that the array can only hold Strings. Because of the equal sign, the newly made
array becomes the value of colors.

The remainder of the code illustrates how array elements are set in Java. For
example, the Java code

colors[2] = "Blue";

is directly analogous to the Scheme code

(vector-set! colors 2 "Blue")

Just as in Scheme, array elements in Java are numbered from 0, not 1.
Finally, note that the shorthand form involving h"Ecru", "Pink", "Blue",

"Maize", "White"j has the big advantage of leaving the counting to the computer.

Chinos Class

The Chinos class is so similar to the OxfordShirt class that we won’t bother
showing it all here; the full version is on the web site for this book. The only really
novel issue arises in the inputSpecifics method, at the point where the Scheme
version does the following:

(chinos/set-inseam! this (input-integer-in-range
29
(if (chinos/get-cuffed this)

34
36)))

This code sets the inseam instance variable to a value chosen from a range that
always has 29 as its minimum value but can extend to a maximum of either 34 or
36 depending on whether the chinos are to be cuffed or not. We’ve seen that Java
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also has an if construct; however, it can’t be used in this fashion. The reason is that
Java, unlike Scheme, distinguishes between expressions, which calculate values, and
statements, which command the computer to carry out some action. An if, in Java,
is a conditional statement that selects between two alternative actions to carry out,
not a conditional expression that can select between alternative values. For example,
we used if in the OxfordShirt class’s display method to select which of two
forms of output to produce, but we can’t use it here to choose between 34 and 36.
We’ll see that there are two options for dealing with this in Java.

The most common approach taken by Java programmers is simply to reformulate
the task in such a way that a conditional statement becomes appropriate. For example,
they would write

if(cuffed){
inseam = CompuDuds.inputIntegerInRange(29, 34);

} else {
inseam = CompuDuds.inputIntegerInRange(29, 36);

}

The disadvantage, of course, is that the part that doesn’t vary winds up repeated.
An alternative is to stick with a conditional expression, as we had in the Scheme

version. It turns out that Java does have conditional expressions; they just aren’t called
if. Here is how the code would look written this way:

inseam = CompuDuds.inputIntegerInRange(29, cuffed ? 34 : 36);

As you can see, the conditional expression has a peculiar syntax; you state the
controlling boolean expression (here cuffed), then a question mark, the alternative
to use if the condition is true, a colon, and the other alternative. Because this syntax
is rather idiosyncratic, many Java programmers avoid it. However, it does solve the
problem of allowing control to be exerted only over that which needs to vary.

ItemList Class

Following is an abbreviated version of ItemList’s implementation, giving complete
code only for its instance variables, its constructor, and the method empty:

public class ItemList extends Object {

private Item[] itemVector;
private int numItems;
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public ItemList(){
itemVector = new Item[10];
numItems = 0;

}

public boolean empty(){
return numItems == 0;

}

/* Code will be given later for the following methods:
*
* public void display()
* public int totalPrice()
* public void add(Item item)
* private void grow()
* public void delete(Item item)
* public Item choose()
*/

}

Note the double equal sign in empty, which checks for equality just like a single
equal sign does in Scheme. We have to have a separate notation for equality checking
because the single equal sign is used in Java for assigning new values to variables.

The ItemList class’s display method needs to loop through all the individual
items, displaying them one by one using the Item class’s displaymethod. In Scheme
we used the from-to-do procedure to loop through the positions the items occupy
in the item vector; in Java, the equivalent is the for loop:

public void display(){
for(int index = 0; index < numItems; index = index + 1){
System.out.print(index + 1);
System.out.print(") ");
itemVector[index].display();
System.out.println();

}
System.out.print("Total: ");
CompuDuds.displayPrice(totalPrice());
System.out.println();

}

The for loop is controlled by the parenthesized code immediately following the
keyword for, which consists of three parts separated by two semicolons. The first
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part is an initializer, which is evaluated once before everything else is evaluated.
In our case we declare and initialize the integer variable index, used for counting
through the positions. It is a temporary local variable that can be used up to the
curly brace ending the for loop’s body. The second part of the loop control, index
< numItems, specifies how long the loop should continue: so long as the index
hasn’t run past the part of the array that is actually in use. Finally, before the body
of the loop we specify how index should be changed each time, by setting it to the
old value plus 1. Note that this setting is actually done after each execution of the
loop body, even though it is written before. (For example, the first time the body is
executed, index is 0, because it hasn’t yet been incremented to 1.)

The line

itemVector[index].display();

is the equivalent of the Scheme

(item/display (vector-ref item-vector index))

In other words, the brackets are being used here to indicate that an element is to
be fetched from the array, like Scheme’s vector-ref operation. We saw earlier
that if the brackets are used to the left of an equal sign, they corresponded instead
to vector-set!, and after new, they indicated the size of an array being created,
analogous to make-vector. One of the prices of concision is that the same symbols
get pressed into service for multiple roles. Once you become familiar with the
language, you should have no problem telling from context what role a particular
pair of brackets is serving.

The method for computing the total price of the items doesn’t introduce any new
Java features, but it does give another example of a for loop:

public int totalPrice(){
int sum = 0;
for(int i = 0; i < numItems; i = i + 1){
sum = sum + itemVector[i].price();

}
return sum;

}

Because there is nothing new in this method, maybe it is time to introduce a couple
extra Java shorthands that you’ll frequently see used. You’ll notice that there are
two places where a variable is set to a new value found by adding the old value to
something: i gets 1 added to it, and sum gets a price added to it. This pattern shows
up frequently enough to have a shorthand; using it we can write
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public int totalPrice(){
int sum = 0;
for(int i = 0; i < numItems; i += 1){
sum += itemVector[i].price();

}
return sum;

}

Because incrementing a variable by 1 is so common, you can get one step more
terse and instead of writing i += 1, write i++.

The add method is a fairly straightforward translation of the Scheme version into
Java:

public void add(Item item){
if(numItems == itemVector.length){
grow();
add(item);

} else {
itemVector[numItems] = item;
numItems++;

}
}

The only novel aspect concerns how one finds the length of a array in Java: Although
the notation is different (the dot and then length), what it does is the same as
Scheme’s vector-length.

The grow method is also a fairly straightforward translation of the corresponding
Scheme method:

private void grow(){
Item[] newItemVector = new Item[itemVector.length * 2];
for(int i = 0; i < itemVector.length; i++){
newItemVector[i] = itemVector[i];

}
itemVector = newItemVector;

}

Note that grow is declared private, because it is only used internally within the
Item class.

In the delete method, we’ll use not only the ++ shorthand but also the analo-
gous -- shorthand, which decrements a variable by 1:
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public void delete(Item item){
for(int i = 0; i < numItems; i++){
if(itemVector[i] == item){
for(int j = i + 1; j < numItems; j++){
itemVector[j - 1] = itemVector[j];

}
itemVector[numItems - 1] = null;
numItems--;
return;

}
}
System.err.println
("Error: ItemList delete done with Item not in list.");

System.exit(1);
}

When this method finds the item that is to be deleted, it slides all the items after
it in the array down by one position. Then it puts a special null value into the
newly vacated array position. The null value is used as a placeholder when an
array element or variable does not refer to any object at all. Once the array has been
updated in this manner, and the numItems is decremented, the method immediately
returns, without continuing to search further for the item (because it has already
found and deleted it). Notice that because this method isn’t supposed to return
any value, we have no expression between the keyword return and the semicolon.
Rather than specifying a value to return, the return statement is serving only to
terminate the method without further execution.

If the loop instead does run to completion, because the item is not found, an
error message is printed out and the program exits. The error message is printed on
System.err, which is just like System.out, except that even if the user asks for
normal output to go somewhere other than the display screen (for example, to go
into another program for further processing), the output produced on System.err
will still be displayed on the screen. The println method is being used here both
to print the message and to start a new line afterward. The call to System.exit
causes the program to stop; by convention a value of 0 is passed to indicate a normal
termination, whereas nonzero values (like 1) are used to indicate that something
went wrong.

The remaining method from the ItemList class, choose, doesn’t introduce any
new features of Java:

public Item choose(){
if(empty()){
System.err.println("Error: choose done on empty ItemList.");
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System.exit(1);
}
System.out.println("Which item?");
display();
return
itemVector[CompuDuds.inputIntegerInRange(1, numItems) - 1];

}

CompuDuds Class

At this point, we’ve covered all of the classes that existed in the Scheme version of
compu-duds, but the Java version still has one class left, the CompuDuds class that
we are using to collect together all the utility procedures, like displayPrice and
inputIntegerInRange. This class will also provide the main program itself, which
repeatedly lets the user choose what to do next.

The CompuDuds class is a rather strange class in that there will never be any
objects that are instances of it—not even by way of subclasses. So, there will be no
instance variables, no constructor called CompuDuds, and no methods in the normal
sense. Instead the class will contain nothing but class methods, which are really just
normal procedures. Each class method is flagged as such with the keyword static.
Here’s how the class starts out:

public class CompuDuds {

public static void displayPrice(int totalCents){
int dollars = totalCents / 100;
int remainingCents = totalCents % 100;
System.out.print("$");
System.out.print(dollars);
if(remainingCents < 10){
System.out.print(".0");

} else {
System.out.print(".");

}
System.out.print(remainingCents);

}

// more class methods go here
}

As you can see, the static keyword is used to signal that displayPrice is a class
method; when it is invoked, it isn’t going to be associated with any object—there
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will be no implicit this argument. The other novelties occur in the first two lines
of the body: the use of the slash and percent-sign characters to find the quotient
and remainder when totalCents is divided by 100. In Java, the rule is that if a
slash has an integer on both sides, it represents the quotient operation. (By contrast,
in Scheme, a slash would produce a fractional answer, and so we use an explicit
quotient procedure.) The percent sign indicates remainder; the rationale is that it
visually resembles the slash, to remind you that they go together.

The CompuDuds class is the main class for the program—the one you tell the
Java system you want to run. (How you tell the Java system that depends what sort
of system you have.) When you say that you want to start up the program associated
with the CompuDuds class, what the Java system does is run the procedure named
main in that class; here it is:

public static void main(String[] commandLineArgs){
ItemList itemList = new ItemList();
while(true){ // infinite loop terminated by program exiting
System.out.println();
System.out.println("What would you like to do?");
System.out.println(" 1) Exit this program.");
System.out.println(" 2) Add an item to your selections.");
System.out.println(" 3) List the items you have selected.");
System.out.println
(" 4) See the total price of the items you selected.");

int option;
if(itemList.empty()){
option = inputIntegerInRange(1, 4);

} else {
System.out.println(" 5) Delete one of your selections.");
System.out.println
(" 6) Revise specifics of a selected item.");

option = inputIntegerInRange(1, 6);
}
if(option == 1){
System.exit(0);

} else if(option == 2){
Item item = inputItem();
itemList.add(item);
item.inputSpecifics();

} else if(option == 3){
itemList.display();

} else if(option == 4){
displayPrice(itemList.totalPrice());
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System.out.println();
} else if(option == 5){
itemList.delete(itemList.choose());

} else if(option == 6){
itemList.choose().reviseSpecifics();

}
}

}

The most interesting parts of this procedure are actually in the first three lines:

public static void main(String[] commandLineArgs){
ItemList itemList = new ItemList();
while(true){ // infinite loop terminated by program exiting

As you can see, the main procedure (which constitutes the actual program itself)
needs to accept an argument that is an array of Strings. This is used because in
some systems you can start a program up with arguments provided to the program
as a whole—with command-line arguments. We’ll ignore these entirely but need to
have the declaration there to keep the Java system happy. The second line shows
how a new object is created as an instance of a class; the new ItemList() is the
analog of Scheme’s (make-item-list). Finally, we have a new kind of loop, the
while loop. This loop is just a stripped down version of the for loop that doesn’t
have a variable to initialize before the loop or to step from one iteration of the loop
to the next. Instead, all that remains is the test condition that determines whether
the loop should continue. (Of course, the loop body remains as well.) In this case,
our test expression is the boolean constant true, the Java analog of Scheme’s #t.
That means the loop will always keep looping—at least until System.exit causes
the whole program to stop.

By the way, notice that where the main procedure invokes other proce-
dures contained within the CompuDuds class, it doesn’t need to explicitly put
the CompuDuds class name and a dot before the procedure name; for exam-
ple, it can say inputIntegerInRange(1, 4) rather than CompuDuds.input
IntegerInRange(1, 4). This is a shorthand, just like omitting the prefix this
when one method invokes another on the same object.

To reinforce the notion of how objects are created, here is the inputItem proce-
dure, which is used by main:

private static Item inputItem(){
System.out.println("What would you like?");
System.out.println(" 1) Chinos");
System.out.println(" 2) Oxford shirt");
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if(inputIntegerInRange(1, 2) == 1){
return new Chinos();

} else{
return new OxfordShirt();

}
}

As you can see, this code creates either a new instance of the Chinos class or a
new instance of the OxfordShirt class. Either one gets returned; notice that the
procedure is declared as returning an Item, and sure enough, it does return an
Item—of some kind. The empty parentheses after the class name occur because no
arguments are being passed to the class’s constructor. For an example where this case
wouldn’t be true, consider creating a plain Item with a price of $19.50, such as our
earlier exampleItem; you would write new Item(1950).

There are only two procedures left in the CompuDuds class: inputInteger
InRange and inputSelection. The latter is rather straightforwardly written in
terms of the former, so we’ll skip it here; you can get it from the web site for
this book. The inputIntegerInRange procedure, on the other hand, is quite in-
teresting. Not only does it show how input is done, it also shows the handling of
exceptions (i.e., unusual circumstances). In this case, two kinds of exceptions could
occur: Something could go wrong while reading the input (such as the computer
noticing that the keyboard is unplugged) and something could go wrong while trying
to convert the input into a number (such as the input not being composed of digits).
The following procedure has handlers for both of these exceptions:

public static int inputIntegerInRange(int min, int max){
System.out.print("(enter ");
System.out.print(min);
System.out.print("-");
System.out.print(max);
System.out.println(")");
String inputAsString = null;
try{
inputAsString = reader.readLine();

} catch(java.io.IOException e){
System.err.print("Problem reading input: ");
System.err.println(e);
System.exit(1);

}
if(inputAsString == null){ // this means end of file on input
System.exit(0); // handle as a normal program termination

}
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int inputAsInt;
try{
inputAsInt = Integer.parseInt(inputAsString);

} catch(NumberFormatException e){
System.err.println("input must be an integer and wasn’t");
return inputIntegerInRange(min, max);

}
if(inputAsInt < min || inputAsInt > max){
System.err.println("input out of range");
return inputIntegerInRange(min, max);

} else{
return inputAsInt;

}
}

As we said, there are two places where we need to be prepared for exceptional
things to go wrong (the input itself and the conversion of the input to an integer).
Each of these is handled with a try and catch construct. The code between the
try and the catch is where the exception might originate, and the code after the
catch is what deals with it if it does occur. Each catch specifies what kind of
exception it is prepared to catch; our first one catches java.io.IOExceptions, and
the second one catches NumberFormatExceptions. Either way, we provide a name
for the exception that is caught; that is what the e is. This e is like a parameter to
a procedure; a particular exception object has been caught, and we give it a name
so that we can refer to it in the code that handles it. In fact, it is literally an object;
in our second example, it is an instance of the class NumberFormatException. We
don’t do anything with that exception object, but in the first exception handler, we
print the java.io.IOException object itself out as part of our error message.

Another generally useful feature is the double vertical bar to indicate “or” in the
following line:

if(inputAsInt < min || inputAsInt > max){

If the input is either too small or too big, we want to deal with it as out of range.
One fine point is that the second condition is only tested if the first one isn’t true,
which means you can safely write code like

if(diplomacySucceeds() || goingToWarSucceeds()){

and know that you won’t even try going to war if diplomacy succeeds. An analogous
situation occurs with &&, which is used for “and.” For example, you can write

if(diplomacyFails() && goingToWarFails()){
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The second condition is only tested if the first one is true—if the first is false
(diplomacy didn’t fail), we already know that they aren’t both true (diplomacy and
going to war didn’t both fail).

One detail we glossed over in the inputIntegerInRange method was the
reader that the readLine method is invoked on, to get a line of input as a String.
What is this reader? It is defined by the following component of the CompuDuds
class:

private static java.io.BufferedReader reader =
new java.io.BufferedReader
(new java.io.InputStreamReader(System.in));

This example looks like a private instance variable, except that it has a static
keyword, which means there is a single variable shared by the whole class rather
than one per instance. (Remember, the CompuDuds class has no instances, so
that wouldn’t make much sense.) This variable called reader is declared to be
of the class java.io.BufferedReader and is initialized by a big long mess that
constructs a java.io.BufferedReader. To tell you the full story would get into
grungy details of input that you can probably afford to ignore, because most Java
programs don’t interact this way; instead they use graphical user interfaces, such
as we’ll consider in the next section. If you ever need to know more about what a
java.io.BufferedReader really is, plenty of good documentation is available—see
the end-of-chapter notes for references.

Now that we’ve translated CompuDuds into Java, you can try it out and can try
your hand at adding various enhancements (just like you did in Scheme in the prior
chapter).

Exercise 15.1

Find out how to run Java programs on your computer system, and try out the
CompuDuds program as it comes from the web site for this book. It is important
to try out the program unmodified first so that you can work out any kinks in the
mechanics of running a Java program.

Exercise 15.2

Change the ItemList class so that it keeps a running total price as Items are added
and deleted and then just returns that from the totalPrice method, rather than
looping through adding up all the prices. Check that the program still works.
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Exercise 15.3

Add some more subclasses of Item, reflecting your own taste in clothing. Change
inputItem so that these additional choices are available to the user, and check that
your changes work correctly.

Exercise 15.4

Assuming the CompuDuds program is being operated by sales personnel, rather
than directly by the customer, it might be desirable to provide a means of applying
a discount.

a. Add a method to the Item class that marks down the price by 10 percent. Be
forewarned that you can’t legally say

price = .9 * price;

because multiplying by .9 results in something that isn’t an int and hence can’t
be stored into price. Instead you can multiply by 9 and then take the quotient
upon division by 10.

b. Use your new Item method to add a method to the ItemList class that marks
down the price of all the Items by 10 percent.

If you’ve done Exercise 15.2, in which you changed the ItemList class to
maintain a running total price, you’ll have a problem with simply discounting
each Item by 10 percent and discounting the accumulated total price by 10
percent. If you do so, under some circumstances you’ll wind up with a total price
that doesn’t match the sum of the individual prices, due to roundoff. The solution
is to recompute the total price whenever a discount is applied.

c. Finally, add a new option to the main CompuDuds user interface that discounts
everything that has been selected by 10 percent.

15.3 Event-Driven Graphical User Interfaces in Applets

The CompuDuds program interacts with its user in a very old-fashioned style, char-
acterized by two primary features:

All input and output is textual: the user and the program both type lines of text
instead of the user pointing at visual information that the program shows.
The program is in charge of the interaction. The user is reduced to answering the
questions the program asks rather than taking charge and directly manipulating
the program.
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This textual, program-directed style of interaction made sense in its original histor-
ical context, roughly the early 1960s. Among other things, the typical computer user
didn’t have access to any hardware that supported graphical interaction: Sending the
computer a line of text and receiving a line of text in response was the best that most
could hope for. (Many users had to settle for batch processing, which involved send-
ing enough textual input for the entire running of the program and then receiving
back a printout of the entire output rather than being able to incrementally give and
take.)

However, times have changed, and today users typically have computers that
allow for a tightly coupled graphical interaction, in which the user takes charge
and directly manipulates the program’s interface by pushing buttons, sliding sliders,
checking checkboxes, typing into fields, etc. The role of the program is no longer
to step through a fixed sequence of questions and answers but rather to perform two
basic functions:

Present a collection of objects to the user.
Respond to whatever manipulations of those objects the user performs.

In this section, we’ll see how such programs are written. They are called event-
driven graphical user interface (GUI—pronounced gooey) programs because they not
only present a GUI but moreover are driven by outside events, such as the user
clicking on a button.

In particular, we’ll look at applets, which are event-driven GUI programs that
are designed to be components of documents on the World Wide Web rather than
standing alone. Instead of running lots of separate programs, users run a single web
browser program, which lets them view and interact with lots of different kinds of
multimedia hypertext documents. Those documents contain all the usual kinds of
content, like words, tables, and pictures, and also interactive content in the form of
applets.

Object-oriented programming turns out to play a critical role in event-driven GUI
programs, both from our perspective as programmers of individual applets and also
from the perspective of the programmers of the overall web browsers that our applets
run inside of.

From our own perspective, we will be able to write our programs reasonably
simply and easily because there is a large “library” of prewritten classes for such
interaction components as buttons and checkboxes. Thus we can just create appro-
priate instances of these classes, without worrying about the details of how they work
inside.

From the perspective of the programmers of the main browser program, the key
fact is that all these individual component classes, like Button and Checkbox, are
actually subclasses of a general Component class. Any Component knows how to
draw itself. Any Component knows how to respond to a mouse button being pressed
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while the mouse is pointing into that Component’s area. Thus the browser doesn’t
have to concern itself with the many different kinds of interaction mechanisms. It
can just uniformly treat the whole applet as a bunch of Components. It asks each
Component to draw itself on the screen without knowing or caring that they do so in
varying ways. When a mouse button is pressed, it notifies the appropriate Component,
without caring that a TextField might treat this action entirely differently from a
Button—they are both still Components.

Our first example applet is shown in Figure 15.1. It is a simulation of the sliding
15-tile puzzle. The real puzzle has 15 numbered tiles that can slide around inside a
frame that has room for 16 tiles, so there is always one empty position. After sliding
the tiles around for a while to scramble them, the goal is to get them back into their
original arrangement, in numerical order with the blank space in the lower right
corner. Our applet simulates the puzzle with a grid of 16 buttons, of which 15 are
labeled with the numbers 1 through 15, and the remaining one has a blank label,
representing the empty position. If the user clicks on a numbered button that is in
the same row or column as the blank one, that means he or she wants to slide the
tile clicked on, pushing along with it any others that intervene between it and the
empty position. We simulate this action by copying the numeric labels over from
each button to its neighbor. We also set the clicked-on button’s label to an empty
string, because it becomes the newly empty one.

To program this puzzle, we will adopt the object-oriented perspective and view
the program as a collection of interacting objects. Some of the objects have visible
representations on the screen when our applet is running. These are the objects
that are instances of the subclasses of Component. The Component class, like many
others that we’ll use, is found in the Abstract Window Toolkit (AWT), a GUI-specific
portion of Java’s rich hierarchy of library classes. The Components in our applet are
as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 15.1 The sliding 15-tile puzzle applet
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There are 16 instances of the class Button, which is an AWT class derived from
Component. Each Button has a label (empty in one case) and can respond to
being pushed.
One object represents the applet as a whole, containing the grid of Buttons. This
object is an instance of a class we’ll define, called Puzzle. The Puzzle class is a
subclass of an AWT class called Applet, used for all applets. As the class hierarchy
in Figure 15.2 shows, the Applet class is indirectly descended from Component
because an Applet is visibly present on the screen. More specifically, because an
Applet can contain other Components (like our Buttons), the Applet class is
descended from a subclass of Component called Container, which is an AWT
class providing the ability to contain subcomponents.

In addition to the objects mentioned above, our applet has some others that operate
behind the scenes:

Our Puzzle, like any Container, needs a layout manager to specify how the
subcomponents should be laid out on the screen. Because our subcomponents
are the Buttons, which we want to form a 4 3 4 grid, we’ll use a GridLayout as

GridLayout Component

ButtonContainer

TileActionListener

Object

Panel

Applet

Puzzle

Figure 15.2 Class hierarchy for 15-tile puzzle applet (dashed boxes indicate library classes)
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the layout manager. The GridLayout class is also provided for us as part of the
AWT because this grid is a commonly desired layout.
Each of our 16 Buttons needs to cause some response when it is pushed, rather
than just being displayed on the screen. The Button class lets us tailor the
response by giving each Button a companion object to notify when the Button is
pushed. That companion object is in charge of providing the appropriate response.
We’ll define a class, TileActionListener, for these companion objects and
make 16 TileActionListeners, one per Button.

The portion of the class hierarchy used in this applet is shown in Figure 15.2. Note
that we mark library classes with dashed boxes, and those we will write ourselves
with solid boxes. Of the library classes, all except the fundamental Object class are
from the AWT. (Actually, the Applet class is technically not in the AWT but rather
is in a package of its own that builds on top of the AWT. For many purposes it is
convenient to treat it as part of the AWT, as we do.)

Now, let’s go directly to the portion of the Puzzle.java file that deals with the
initial construction and layout of the Puzzle object:

import java.awt.*;

public class Puzzle extends java.applet.Applet {

private int size = 4; // how many buttons wide and high
private Button[][] buttons;
private int blankRow, blankCol; // position of the blank space

public void init(){
setLayout(new GridLayout(size, size));
buttons = new Button[size][size];
int buttonCount = 0;
for(int row = 0; row < size; row++){
for(int col = 0; col < size; col++){
Button b = new Button();
buttons[row][col] = b;
b.addActionListener(new TileActionListener

(this, row, col));
buttonCount++;
b.setLabel("" + buttonCount);
add(b);

}
}
blankRow = size - 1;
blankCol = size - 1;
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buttons[blankRow][blankCol].setLabel("");
}

/* Code will be given later for the following method:
*
* public void pushTile(int row, int col)
*
*/

}

This code includes a number of new Java features that bear explaining, one of which
is the import line at the top of the file. This line allows us to use shortened names
for the library classes we’ll be using. For example, we’ll be able to use the short name
Button rather than the full name, which is java.awt.Button.

A more significant difference between the Puzzle class and our earlier Java classes
is the apparent nonexistence of a constructor for the Puzzle class and the use of the
init method, which seems to hearken back to our Scheme version of object-oriented
programming. Regarding the apparent nonexistence of a constructor, Puzzle is
in fact using a default constructor, which does nothing except invoke the Applet
constructor. Java writes this do-nothing-extra constructor for us as a shorthand if
we don’t provide any constructor explicitly. Although the Puzzle constructor might
seem the natural place to initialize the instance variables for the Puzzle class,
standard practice dictates that applet initialization be accomplished by overriding
the Applet class’s init method. This standard practice derives from the special
nature of applets, namely, that they are intended to run inside other programs, most
notably in web browsers. In particular, because the browser is in charge of the applet’s
run-time environment, it needs to set up two-way communications between itself and
the applet when it creates the applet. The two-way communication is necessary so
that the browser and applet can react in tandem to various events that might occur
(such as resizing), as well as to allow the applet access to information it might need
(such as the location of image or audio files).

To deal with this two-way communication, the designers of Java have set up a
protocol for programmers to follow when writing applets. The only aspect of this
protocol that bears on us now concerns the roles of the applet constructor and the
init method. Specifically, when the browser creates an applet, it first invokes applet’s
constructor, next sets up the two-way communication between itself and the applet,
and then invokes the applet’s init method. Because the applet’s initialization often
involves certain aspects of its run-time environment, which requires the two-way
communications to have already been established, the standard practice is to wait
until the init method to do the applet-specific initialization. This is the model we
have followed.
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A third new feature in the code is the double set of brackets we use for the
two-dimensional array of buttons. Actually buttons is strictly speaking just a normal
one-dimensional array, each element of which is itself another one-dimensional
array, which in turn holds Buttons. This is the same as what we’ve done in Scheme,
where we represented two-dimensional tables as vectors of vectors. However, Java
has a handy shorthand; we can say

buttons = new Button[size][size];

to create the entire structure, consisting in this case of five arrays: four arrays to hold
Buttons and then one “outer” array that contains the four others.

As you can see, we use nested for loops to loop over all the columns of all the
rows. For each position, we create a new Button (temporarily called b), store b at
the appropriate position in the buttons array, invoke two methods on b to configure
it appropriately (addActionListener and setLabel), and finally add b itself to
the applet. Let’s look more closely at the actual statements in this code.

First, recall that applets are types of Containers, so named because they can
contain other components such as buttons. Components are added to a container
by Container’s add method. Precisely how these components are arranged in the
container is controlled by the container’s layout manager, which is specified by
Container’s setLayout method. In our case, we have specified the layout as a
4 3 4 grid. The GridLayout object places the components in the grid from left to
right, top to bottom, in the order they are added.

Adding the action listener is how we specify what response should occur when
the user clicks on the Button. If we omitted that line, the applet would still display
the same 4 3 4 grid of buttons, but we couldn’t scramble their labels and then get
them back into order; the puzzle would stay permanently in its solved state. We’ll
say more about the action listener later.

The button’s label is set by the setLabel method from the Button class. The
argument to this method is a String specifying the new label. For example, at the
end we label the bottom right Button with an empty string so that it will be blank.
How about the rest of the labeling, done inside the nested for loops? This takes a bit
more explaining. We have a numerical variable, buttonCount, which records how
many buttons have been created so far. We need to convert that numerical value
into the corresponding string of digits, which in the first case is the string "1". This
conversion is done by a very strange Java idiom, namely, adding the number onto the
empty string: "" + buttonCount. This idiom works because of the combination of
two facts:

For Strings, the plus sign indicates sticking the two Strings together (like
Scheme’s string-append) rather than numerical addition.
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If the plus sign only has a String on one side, whatever is on the other side gets
converted to a String first, so that it can be appended.

Thus we are asking for the numerical buttonCount to be implicitly converted into
a String and then tacked onto the end of an empty String. As roundabout as this
may seem, it is in practice a quick and easy idiom to type.

At this point we have finished with the initial presentation of the applet and
merely have to make it responsive to the user’s pushing on its buttons. Recall that
this responsiveness is provided by using the addActionListener method on each
Button to give it its own TileActionListener. The idea is that the Button
notifies the action listener whenever it is pushed. Notice that when we construct
the TileActionListener, we specify what Puzzle it is a part of (by passing in
this) as well as what row and column its Button is in. Here is the code for the
TileActionListener class:

import java.awt.event.*;

public class TileActionListener implements ActionListener {

private Puzzle puz;
private int row, col;

public TileActionListener(Puzzle p, int r, int c){
puz = p;
row = r;
col = c;

}

public void actionPerformed(ActionEvent evt){
puz.pushTile(row, col);

}
}

As you can see, TileActionListener isn’t a very big class. It stores the Puzzle and
row and column position in instance variables, and when it is told by the Button
that an action has been performed (namely, the user pushed the Button), the
actionPerformed method simply invokes the Puzzle’s pushTile method, passing
in the row and column numbers. Thus the real work of shifting all the labels over
by one is done in the Puzzle class’s pushTile method.

Although the core of what this TileActionListener class does is quite straight-
forward, it has a couple oddities in the first few lines. A minor one is that
this class has a different import, to get short names for the ActionListener
and ActionEvent classes. A more interesting one is that TileActionListener
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implements ActionListener—notice the implements keyword where we previ-
ously have seen extends. The reason for this difference is that ActionListener
isn’t strictly speaking a class, it is an interface. Interfaces are extremely close relatives
of classes, with two differences:

An interface must be purely abstract. That is, it can only provide a declaration
of the method names and types. It can’t provide any method implementations or
any instance variables to provide a representation. All implementation details are
confined to the classes that implement the interface.
A class can implement as many interfaces as you like, even though it can only
extend one superclass.

We won’t define any interfaces, so the only place you’ll see them is when we
implement an interface provided by the standard library, like ActionListener. We
should point out, however, that LayoutManager is also an interface; the AWT
provides several implementations of this interface, including GridLayout. We
can add the two interfaces, ActionListener and LayoutManager, to our UML
class diagram as shown in Figure 15.3. The interfaces are labeled as such, and

GridLayout Component

ButtonContainer

TileActionListener

Object

Panel

Applet

Puzzle

«interface»

LayoutManager
«interface»

ActionListener

Figure 15.3 The puzzle class hierarchy with interfaces added; dashed boxes still indicate library
classes or interfaces, but the dashed arrows are part of the UML notation.
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a dashed arrow with a triangular arrowhead is used to connect the specific class
(TileActionListener or GridLayout) to the general interface that it implements.

Now that we have the interfaces in our diagram, we can also add some as-
sociations, as shown in Figure 15.4, that will help clarify the relationships be-
tween the Puzzle, the Buttons, and the TileActionListeners. The Puzzle
keeps track of the 16 Buttons so that it can manipulate their labels. Each
Button is associated with one TileActionListener, which is specific to that
Button. Each of the 16 TileActionListeners knows about the Puzzle, so that
the TileActionListener’s actionPerformed method can invoke the Puzzle’s
pushTile, as we have seen. So far, the associations are much as we’ve seen in other
programs. But, we have one key new annotation, namely the :ActionListener near
the arrow from the Button class to the TileActionListener class. This annota-
tion is our way of showing that the Button only makes use of the ActionListener
interface, not any of the specifics of the TileActionListener class. This point is
essential because it allows the Button class to be general enough to work with other
kinds of ActionListeners as well.

GridLayout Component

ButtonContainer

TileActionListener

Object

Panel

Applet

Puzzle

«interface»
LayoutManager

«interface»
ActionListener

1:ActionListener

16

1

1

1

16

Figure 15.4 The relationships between Puzzle, Button, and the TileActionListener imple-
mentation of the ActionListener interface
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All that is left now is the pushTile method in the Puzzle class, which takes
care of the mechanics of shifting the Buttons’ labels. To do so, it will use not only
the setLabel method of the Button class, which we saw previously, but also the
converse getLabel method. The code loops through the affected positions, getting
the label from one Button and setting it into the neighboring Button. If the tile
being pushed is in the same row as the blank space, the tiles need shifting to the
right or left, whereas if the tile being pushed is in the same column as the blank
space, the tiles need shifting down or up. If neither row nor column matches, no
shifting happens:

public void pushTile(int row, int col){
if(row == blankRow){
for( ; blankCol < col; blankCol++){
buttons[blankRow][blankCol].setLabel
(buttons[blankRow][blankCol+1].getLabel());

}

for( ; blankCol > col; blankCol--){
buttons[blankRow][blankCol].setLabel
(buttons[blankRow][blankCol-1].getLabel());

}
} else if(col == blankCol){
for( ; blankRow < row; blankRow++){
buttons[blankRow][blankCol].setLabel
(buttons[blankRow+1][blankCol].getLabel());

}
for( ; blankRow > row; blankRow--){
buttons[blankRow][blankCol].setLabel
(buttons[blankRow-1][blankCol].getLabel());

}
}
buttons[blankRow][blankCol].setLabel("");

}

The correctness of the above code critically depends on a feature of for loops that
we haven’t stressed previously. If the test condition isn’t true to start with, the loop’s
body will be executed zero times. That is, the test is done before each iteration of
the loop, even the first one.

Exercise 15.5

Explain in more detail how this assures correctness. In particular, answer the follow-
ing questions:
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a. Suppose both the row and the column are equal to the blank position. What will
happen?

b. Suppose the row is equal, but the column number of the blank square is less
than that which is clicked on, which means that the first for loop’s body will be
executed at least once. When that first loop finishes, how do you know that the
second for loop’s body won’t also be executed?

The applet itself is now complete; however, in order to view it, we need a World
Wide Web document that contains it. This document gets written in a special Hy-
perText Markup Language, known as HTML. It can contain headings, normal text,
etc., as well as a special indication of where the applet should go. We won’t delve
into HTML here, because this information is widely available and peripheral to our
topic. However, the following HTML file would be adequate to show our puzzle
applet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>Puzzle (original)</title>
</head>
<body>
<h1>Puzzle (original version)</h1>
<applet code="Puzzle" width=150 height=150>
</applet>
</body>
</html>

The specifics of how you can get your web browser to access this file and the applet
that it contains depend on what sort of computer system you are using. You should be
able to get the necessary information from the documentation for your web browser
and Java system or from a local expert.

We’ll now consider some variations on this applet. The first two just add new
features to the puzzle, but one actually changes it to be an entirely different puzzle.
We’ll also look at some additional variants in the next section, using concurrency.

For our first variant, let’s consider adding an “Initialize” button above the grid of
tiles, which restores the labels to their starting configuration. That way frustrated users
can get a fresh start. To reprogram Puzzle to accomplish this task, we will spin off the
task of labeling the tiles in their initial state to a method called initializeTiles.

More significantly, to make the applet look as shown in Figure 15.5, we need to
change our applet’s configuration a bit. Rather than consisting of the 16 tile buttons,
we’ll view the applet as containing a thin control panel along the top and then a big
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I n i t i a l i z e

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 15.5 The puzzle applet with the Initialize button added

main panel on the bottom. (As noted in Figure 15.2, Panel is the intermediary class
between Container and Applet; it is the most basic Container subclass.) The
main panel, in turn, will contain the 16 tiles. The control panel, for now, will have
only the “Initialize” button. This change is confined to the init method, because
that is where the various pieces are put together. Here is the new version:

import java.awt.*;

public class Puzzle extends java.applet.Applet {

private int size = 4; // how many buttons wide and high
private Button[][] buttons;
private int blankRow, blankCol; // position of the blank space

public void init(){
setLayout(new BorderLayout());
Panel controlPanel = new Panel();
add(controlPanel, "North");
Panel mainPanel = new Panel();
add(mainPanel, "Center");

Button initializeButton = new Button("Initialize");
initializeButton.addActionListener
(new InitializeActionListener(this));

controlPanel.add(initializeButton);
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mainPanel.setLayout(new GridLayout(size, size));
buttons = new Button[size][size];
for(int row = 0; row < size; row++){
for(int col = 0; col < size; col++){
Button b = new Button();
buttons[row][col] = b;
b.addActionListener(new TileActionListener

(this, row, col));
mainPanel.add(b);

}
}
initializeTiles();

}

public void initializeTiles(){
int buttonCount = 0;
for(int row = 0; row < size; row++){
for(int col = 0; col < size; col++){
buttonCount++;
buttons[row][col].setLabel("" + buttonCount);

}
}
blankRow = size - 1;
blankCol = size - 1;
buttons[blankRow][blankCol].setLabel("");

}

/*
* Code for pushTile(int row, int col) is unchanged
*/

}

As you can see, the applet itself no longer has a GridLayout—that has been
moved to the mainPanel. Instead, the overall layout is now what is called a
BorderLayout, which is what lets us add the controlPanel with a specifica-
tion that it should form the "North" border. We could also, if we wanted, provide
borders on the other three sides; we don’t, though. The mainPanel gets added as
the "Center" component, which simply means it takes up the remainder of the
applet’s space.

We still need to write the InitializeActionListener class, but it is no big
deal at all:
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import java.awt.event.*;

public class InitializeActionListener implements ActionListener {

private Puzzle puz;

public InitializeActionListener(Puzzle p){
puz = p;

}

public void actionPerformed(ActionEvent evt){
puz.initializeTiles();

}
}

We made a design decision to call initializeTiles from init, rather than
leaving init as it was, performing essentially identical actions to what is in the
new initializeTiles method. We can describe this decision as having chosen
separating out over copying out. This decision involved a trade-off of short-term versus
long-term quality considerations:

Copying the code out while leaving the existing init code unchanged would
mean not changing that which was already working—and hence (in the short
term) would run less risk of breaking it.
Separating the code out (as we did) makes it more obvious to a reader that
initializeTiles necessarily is putting the tiles back into the same configuration
as init puts them in. There is less risk that this equality would be broken if the
code is later changed.

Said another way, short-term quality considerations argue for minimizing changes
to working code, whereas long-term quality is improved by making those changes
necessary to enforce the following dictum:

The sameness principle: Coincidental sameness should be indicated by du-
plication; necessary sameness should be indicated by sharing.

Exercise 15.6

We should have followed this principle elsewhere in the book but didn’t always.

a. Find other examples of where we have adhered to the sameness principle.
b. Find an example of where we have strayed from the principle, and show how to

modify our code so as to bring it into compliance.
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Exercise 15.7

The sameness principle can be violated in two ways: Code that is coincidentally
the same can be shared, and code that is necessarily the same can be duplicated.
Compare the dangers inherent in these two forms of violation.

If we want to add additional features, we can just add more items to the
controlPanel. For example, it would be nice if we had a “Randomize” button
next to the “Initialize” one, for people who don’t want to do their own scrambling
of the tiles. We’ll write a randomizeTiles method for the Puzzle class and then
leave you to add the appropriate ActionListener class and Button. One aside:
When we add a new Button to the controlPanel, we said it would go next to the
“Initialize” one. Why? Well, that has to do with the controlPanel’s layout. But if
you look at the preceding Puzzle constructor, you’ll see we didn’t set a layout for
the controlPanel, just for the applet itself and the mainPanel. The solution to
this mystery is that each Panel when constructed starts out with a default layout,
called FlowLayout. For the other two panels, we had to change to a different layout,
but for the controlPanel the default was just what we wanted. It puts a little space
between the constituents (for example, between the “Initialize” and “Randomize”
buttons) and then centers the whole group.

We have two basic approaches to how the randomizeTiles method could work.
One would be to literally randomize the 16 labels, by selecting any of the 16 to be
on the first tile, then any of the remaining 15 to go on the next tile, etc. A different
approach would be to simply randomly shove the tiles around for a while, using
pushTile, until we were satisfied that they were adequately scrambled. The big
problem with the first approach is that you can get into configurations that can’t be
solved. To see this in a simpler setting, consider what might happen in a 232 sliding
tile puzzle, which has three numbered tiles. It shouldn’t take much playing around
to convince you that the configuration shown in Figure 15.6 can’t be solved because
the tiles can only be cycled. Keep in mind that for the puzzle to be solved, the blank
space needs to be in the lower right corner—it doesn’t suffice for the numbers to be

2 1

3

Figure 15.6 From this configuration, no amount of sliding the tiles will put the numbers in order
with the blank in the lower right.
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in order. A similar but more complicated argument can be made to show that half
the configurations in the 15-tile puzzle are also unsolvable.

We therefore make the design decision to write randomizeTiles so that it ran-
domly slides tiles around, which can be accomplished by the following code:

public void pushRandomTile(){
int row = (int) (Math.random() * size);
int col = (int) (Math.random() * size);
pushTile(row, col);

}

public void randomizeTiles(){
for(int i = 0; i < 100; i++){
pushRandomTile();

}
}

The lines that pick the random row and random column need some explanation. The
procedure Math.random generates a random fraction between 0 and 1; multiplying
that by size (i.e., 4) and then truncating the result to an int gives us a random
integer from 0 through 3. The notation (int) is called a cast and converts the
number to an int by throwing away its fractional part. Other than that magic, the
only question you are likely to have is Why 100? The answer is that it seemed like
a reasonable number: big enough to do a pretty good job of scrambling but not
so large as to take a long time. You can change it if you want to make a different
trade-off. At any rate, to see how long it does take on your computer, you’ll need to
provide a button to activate it.

Exercise 15.8

Provide a “Randomize” button, by doing the following:

a. Write a RandomizeActionListener class, similar to InitializeAction
Listener, but which invokes the randomizeTiles method.

b. Add a “Randomize” Button to the controlPanel with a RandomizeAction
Listener.

We’ll see a rather different applet in the application section at the end of the
chapter. For now, let’s stick close to home and do another puzzle that involves a
square grid of Buttons. The physical version of this puzzle is played with a square
grid of pennies, initially all head side up. At each move you can flip any penny
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over, but then you also have to flip over the four neighboring ones (not counting
the diagonal neighbors). If the penny you flip is on an edge of the grid, so that it is
missing a neighbor, or in a corner, where it misses two neighbors, you just flip the
neighbors that it does have. As with the sliding tile puzzle, the goal is to do a bunch
of moves to scramble the grid up and then try to get back to the starting position. If
you want to make the puzzle relatively easy, you might want to change size from 4
to 3; if you like challenge, you might up it to 6.

Exercise 15.9

Change the puzzle applet to this new puzzle, by doing the following:

a. Get rid of the blankRow and blankCol instance variables, and in their place add
two new instance variables of type String, called heads and tails, each set
equal to an appropriate string. The strings you choose needn’t have any resem-
blance to coins, and it is best if the two are visually very distinct, for example,
heads = "Flip!" and tails = "".

b. Change the initializeTiles method to set the label of all the buttons to
heads.

c. Add a new method, flip, which takes a Button as an argument and changes its
label. If the current label is heads, it should change to tails and vice versa.

d. Change the pushTile method to flip the Button in the pushed position and
also flip each of its four neighbors, provided that they exist.

15.4 Concurrency

In the introduction to this chapter, we defined a concurrent system as one in which
multiple activities go on at once, but we didn’t say anything about why anyone
would want to build such a system. You might think that the answer is to get a
computation done faster, by doing multiple subproblems simultaneously. This goal
can indeed be a motivation for concurrency, but it is not the most important one
in practice. To start with, most “concurrent” computer programs don’t truly carry
out their multiple activities at the same time; instead, the computer switches its
attention back and forth between the activities, so as to give the impression of doing
them simultaneously. Truly concurrent computation would require the computer
hardware to have multiple processors; although some systems have this feature,
many don’t. On a single-processor computer, all the activities necessarily have to
take turns being carried out by the single processor. At any rate, concurrency has far
more fundamental importance than just as a way to (maybe) gain speed, because
the world in which the computer is embedded is concurrent:
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The user is sitting in front of the computer thinking all the time the computer is
computing. Maybe the user decides some other computation is more interesting
before the computer is done with the one it is working on.
Computers today communicate via networking with other computers. A client
computer may well want to do other computations while waiting for a response
from a server computer. A server, in turn, may well want to process requests it
receives from clients, even if it is already busy doing work of its own or handling
other clients’ earlier requests.

In other words, the primary motivation for concurrent programming is because a
computer needs to interact with outside entities—humans and other computers—
that are operating concurrently with it.

In this section we’ll see how to write a concurrent program and some of the
interesting issues that arise from interactions between the concurrently executing
parts of the program. To illustrate our points, we’ll use some further variations on the
sliding 15-tile puzzle applet from the previous section. The basic premise is that the
puzzle isn’t challenging enough for some users, so we’re going to add a new twist,
which requires the user to stay alert. Namely, the computer will occasionally slide
the tiles on its own, without the user doing anything. We call this the “poltergeist”
feature because it resembles having a mischievous invisible spirit (i.e., a poltergeist)
who is playing with your puzzle and thereby with your mind.

In broad outline, it seems relatively obvious how to program a poltergeist into the
puzzle. We’ll just add a third button to the control panel after the “Initialize” and
“Randomize” buttons, with some appropriate label (maybe “Mess with me”), and an
action listener that when the button is pushed goes into an infinite loop, and each
time around the loop it pushes a random tile.

The one big problem with this plan is that when the user pushes a button and
the action listener is notified, the user interface goes dead until the action listener’s
actionPerformed method has finished responding. Depending on how fast your
computer is, you may have noticed this phenomenon with the “Randomize” button.
If not, you could try the experiment of increasing how many random pushes it
does from 100 to some larger number, say 500. You should be able to notice that no
additional button pushes get responded to until all the random sliding around is done.
Thus a button that didn’t loop 100 or 500 times, but instead looped forever, would
never let the user push any tiles. That defeats the whole point of the poltergeist—the
point is to have it sliding tiles while the user slides them too.

Thus, we need the program to be concurrent: One part of the program should
loop forever, sliding tiles randomly, and another part of the program should continue
to respond to user interaction. Rather than speaking of “parts” of the program, which
is rather vague, we’ll use the standard word: threads. One thread will do the random
pushing, while the original main thread of the program continues handling the user’s
actions. Thus our applet will now be multithreaded.
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Rather than attempting a precise definition of threads, let us instead suggest that
you think of them as independently executing strands of computations that can be
braided together to form a concurrent program. This description implies a different
model of computation from the one presented in Chapter 11, where the computer
followed a single strand of execution determined by a program’s SLIM instructions.
In our new multithreaded case, you can still follow linearly along any one strand and
see the instructions one after another in their expected sequence. However, if you
look not at the one strand but at the entire braid, you’ll see the instructions from the
various strands mingled together. If you are wondering how the computer can mingle
different instruction sequences this way, we congratulate you. You should indeed be
wondering that. We’d like to answer the question, and for our own students, we
do—but in a later course. We unfortunately don’t have the time or space here.

From our perspective, however, it is enough to note that the Java language requires
a specific model of concurrency from its implementations. To be more specific, Java
implementations must support the class Thread, which allows the creation and
simultaneous execution of concurrent threads of computation. As you will soon
see, even though the operations involving threads are designed and specified well
in Java, the very nature of concurrency gives rise to new and interesting problems
not encountered in single-threaded applications. The Java language specification
gives the implementation considerable flexibility with regard to how it mingles the
threads of execution—different implementations might take the same strands and
braid them together in different ways. This flexibility will be one of the reasons why
we’ll need to marshal our intellectual tools so that we can keep things simple rather
than succumbing to potential for complexity.

We create our poltergeist by defining a subclass of Thread. This subclass is called
Poltergeist Thread. The only Thread method we need to override is run, which
tells what the thread does when it executes. Here then is our definition of the class
PoltergeistThread:

public class PoltergeistThread extends Thread {

private Puzzle puz;

public PoltergeistThread(Puzzle p){
puz = p;

}

public void run(){
try{
while(true){
Thread.sleep(1000); // 1000 milliseconds = 1 second
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puz.pushRandomTile();
}

} catch(InterruptedException e){
// If the thread is forcibly interrupted while sleeping,
// an exception gets thrown that is caught here. However,
// we can’t really do anything, except stop running.

}
}

}

The one part we hadn’t warned you about in advance is that rather than just madly
looping away at full speed, pushing random tiles as fast as it can, the poltergeist instead
sleeps for 1 second between each random push. This is important; otherwise the user
still wouldn’t have any real chance to do anything. Therefore, we’ve programmed
in a 1-second delay using sleep, a static method in the Thread class. The only
nuisance with using sleep is that it can throw an InterruptedException, so we
have to be prepared to catch it. This exception gets thrown if some other thread
invokes an operation that interrupts this thread’s sleep. That never happens in our
program, but we’re still required to prepare for the eventuality. This requirement
that we include a catch arises because the run method’s declaration doesn’t list
any exceptions that might be thrown out of it, which the Java system interprets as a
claim that none will be. It therefore requires us to back this claim up by catching
any exceptions that might be thrown by other procedures that run calls, such as the
InterruptedException that Thread.sleep can throw.

Here is the PoltergeistActionListener class, which responds to a push of
the poltergeist button by creating a new PoltergeistThread object and telling it
to start running:

import java.awt.event.*;

public class PoltergeistActionListener implements ActionListener {

private Puzzle puz;

public PoltergeistActionListener(Puzzle p){
puz = p;

}

public void actionPerformed(ActionEvent evt){
new PoltergeistThread(puz).start();

}
}
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Note that the actionPerformed method creates a new PoltergeistThread object
and then calls the start method on the newly created object. This point is where
the concurrency happens: The start method immediately returns, so the main
thread can go on its way, processing other button presses from the user. However,
although the start method has returned, the new PoltergeistThread is now off
and running separately.

Assuming you add the appropriate Button to the controlPanel, you now have
an applet that can (if the user chooses) go into poltergeist mode, where the tiles slide
around on their own sporadically. The only problem is, the program is a bit buggy.
We’ll spend much of the rest of this section explaining the bug and what can be
done about it.

Exercise 15.10

Even a buggy program is worth trying out. Add a Button to the ControlPanel for
firing up a poltergeist, and try it out.

Recall that different Java implementations can braid the same strands of a mul-
tithreaded program together in different ways. Therefore, we can’t be sure what
behavior you observed when you ran the program. The chances are good that it be-
haved properly, which may leave you wondering why we called the program buggy.
The problem is: What happens if just as the poltergeist is sliding a tile, the user
chooses to push a button too? Normally one or the other will get there first and be
already done with the sliding before the other one starts. In this case, all is well. But
if by an amazingly unlucky coincidence of timing, one starts sliding a tile while the
other is still doing so, interesting things happen. Our main focus in this section will
be on how you can design a program so that timing-related bugs like this one can’t
possibly occur, rather than merely being unlikely. However, because it is worthwhile
to have some appreciation of the kind of misbehaviors we need to prevent, we’ll first
take some time to look at how we can provoke the program to misbehave.

We have two ways to experimentally find out some of the kinds of interesting
behavior that can occur. One is to click the poltergeist button and then click away
on the other buttons a lot of times until you get lucky and hit the timing just
right. (Or maybe we should say until you get unlucky and hit the timing just
wrong.) The problem with this approach is that you might get a repetitive strain
injury of your mouse finger before you succeeded. So, we’ll let you in on the other
approach, which exploits a special feature of the program: You can have more than
one poltergeist. If you think about it, clicking on the poltergeist button creates a
new PoltergeistThread and starts it running. Nothing checks to see whether
there already is one running. So, if you click the button again, you get a second
PoltergeistThread, concurrent with the first one and the user. A few clicks later
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you can have half a dozen poltergeists, all sliding away at random. Now you just sit
back, relax, and wait for something interesting to happen when two of the poltergeists
happens to slide a tile at the same time.

When we tried this experiment, the first interesting thing that happened was that
the number of blank tiles gradually started going up. (Initially there was just one,
of course.) Occasionally, though much less frequently, the same number appeared
on more than one tile. After a while there were just a few numbered tiles left and
mostly blanks. The final interesting thing, which happened after most of the tiles
were blank, was that we got error messages from the Java system telling us that some
of the array references being done in pushTile were out of bounds. In other words,
one of the array indices (row or column) was less than 0 or greater than 3.

Looking at the code, it appears at first that none of these problems should occur.
For example, consider the following argument for why our array references should
never be out of bounds: The row and column being pushed on are necessarily always
in the range from 0 to 3. The blank row and blank column should also always be in
this range, because they are initially, and the blank spot only moves from where it
is one position at a time toward the tile being pushed, until it reaches that position.
Therefore, because it starts at a legal position, and moves one space at a time to
another legal position, it will always be in a legal position, and all the array accesses
will always be in bound—except that they aren’t.

The flaw in our reasoning is where we said that the blank position only moved
one space at a time, stopping at the destination position. Suppose two threads both
push the tile that is immediately to the right of the blank spot. Both check and find
that the blank column is less than the destination column. Then both increment
the blank column. Now the blank column has increased by 2—shooting right past
where it was supposed to go.

This kind of anomaly, where two threads interact in an undesirable fashion when
the timing is just wrong, is known as a race. Such errors can occur when two
independent threads are accessing the same data (in our case, the instance variables
in the Puzzle object itself) and at least one of them is modifying it. We should
point out that our explanation of how the array reference errors might occur is just
one possible scenario. The Java language specification provides sufficient freedom
in how the threads are intermingled that lots of other possibilities exist as well.

Exercise 15.11

Having given a plausible explanation for the out-of-bound array references, let’s
consider the other two bugs we found:

a. Explain how two threads could interact in a manner that would result in two
blank tiles.
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b. Explain how two threads could interact in a manner that would result in two tiles
with the same number.

As you can see, even detecting a race can be difficult; trying to understand them
can be downright perplexing. Therefore, one of our main goals in this section will
be to show you a way to avoid having to reason about races, by ensuring that they
can’t occur. It is incredibly important to make sure that the races can’t occur because
you can never rely on experimentally checking that they don’t occur. Because a race
by definition depends on the timing being just wrong, you could test your program
any number of times, never observe any misbehavior, and still have a user run into
the problem.

This occurence is not just a theoretical possibility: Real programs have race bugs,
and real users have encountered them, sometimes with consequences that have
literally been fatal. For example, there was a race bug in the software used to control
a medical radiation-therapy machine called the Therac 25. This machine had two
modes of operation: one in which a low-energy beam directly shined on the patient,
and one in which the beam energy was radically increased, but a metal target was
put between the beam source and the patient so that the patient received only
the weaker secondary radiation thrown off by the metal when struck by the beam.
The only problem was that if a very quick-typing therapist set the machine to one
mode, and then went back very quickly and changed it to the other mode, the
machine could wind up with the beam on its high power setting, but the metal not
in the way. This caused horrifying, and sometimes fatal, damage to several patients;
the descriptions are too gruesome to repeat. The problem causing this was a race
condition between two concurrent threads; it only showed up for the very fastest
typists and only if they happened to carry out a particular action (rapidly changing
the operating mode). Because of this, it not only wasn’t found in initial testing, but
it also showed up so sporadically in actual use that the service personnel failed to
track the problem down and allowed the machine to continue causing (occasional)
harm.

Not every concurrent system has the potential to kill, but many can at least cause
serious financial costs if they fail unexpectedly in service. Therefore, it is important
to have some way to avoid race conditions, rather than just hoping for the best.
Luckily we’ve already taught you the key to designing race-free concurrent systems:
representation invariants.

Recall that a representation invariant of a class is some property that is established
by the class’s constructor and preserved by all of the class’s mutators, so all of the
class’s operations can count on the property being true (by induction). For example,
if we ignore the concurrency muddle for the moment, the Puzzle class has the
following representation invariant:

Puzzle representation invariant: Any instance of the Puzzle class will obey the
following constraints at the time each method is invoked:
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0 # blankRow , size.
0 # blankCol , size.
The Button stored in buttons[blankRow][blankCol] has the empty string as
its label.
The remaining size2 2 1 Buttons are labeled with the numerals from 1 to
size2 2 1 in some order.

The whole point of having such a representation invariant is that it frees us from
having to reason about what specific mutations are done in what order because we
have an inductive guarantee that holds over all sequences of mutations.

This ability to know what is true over all sequences, so that we don’t have to
consider each individual sequence, is exactly what we need to deal with concurrency.
Consider, for example, a simple program with two threads, each of which performs
two mutations. The first thread does mutations a and then b, whereas the second
thread does A and then B. Then even this very simple concurrent system has six
possible interleaved sequences in which the mutations might occur: abAB, aAbB,
aABb, AabB, AaBb, and ABab. Would you really want to check that each of these
six orders leaves the program working? And if six hasn’t reached your pain threshold,
consider what happens as the number of threads or mutations per thread grows much
beyond two. So clearly, it is a big win to be able to show that the program is correct
under any ordering, without considering each one individually.

However, having representation invariants that we can inductively rely on to be
true after any sequence of mutator operations only helps us if we have some way
of knowing that the program’s execution is some sequence of mutator operations.
In the case of the Puzzle applet, the two mutator operations that are in charge
of maintaining the invariants are pushTile and initializeTiles. Therefore, we
need some way of knowing that the Java system will invoke those operations in some
sequential fashion, rather than jumbling together parts of one invocation with parts
of another. The reason why individual parts of the mutators can’t be jumbled is that
they don’t preserve the invariant; for example, even if the invariant holds before
executing blankCol++, it won’t hold afterward. So, what we need to do is identify
for the Java system the invariant-preserving units that it needs to treat as indivisible
(i.e, that it is not allowed to intermingle).

Java provides the ability to mark certain methods as indivisible in this sense, using
the modifying keyword synchronized. Because initializeTiles and pushTile
are the two Puzzle mutators that preserve the invariant (if left uninterrupted), we
use the following code to mark them as synchronized:

public synchronized void initializeTiles(){
// body same as before

}
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public synchronized void pushTile(int row, int col){
// body same as before

}

With these keywords in place, the Java system won’t let any thread start into one of
these methods if another thread is in the midst of one of them on the same Puzzle.
Instead, it waits until the other thread has left its synchronized method. One way
to envision this is that each object has a special room with a lock on the door. It
is a rule that synchronized methods may only be performed in that room, with
the door locked. This rule forces all threads that want to perform synchronized
methods to take turns.

In the Puzzle class, the only methods that directly rely on the representation
invariant are the two mutator operations that are also responsible for preserving the
invariant. Some other programs, however, have classes with methods that rely on the
invariant but play no active role in preserving it, because they perform no mutation.
(They just observe the object’s state but don’t modify it.) These methods need to be
synchronized, too, to ensure that they only observe the object’s state after some
sequence of complete mutator operations has been performed rather than in the
middle of one of the mutator operations.

As you can see, freedom from races is the result of teamwork between the pro-
grammer and the Java system: The programmer uses a representation invariant to
ensure that all is well so long as synchronized methods are never executing simul-
taneously in different threads, and the Java system plays its part by respecting those
synchronized annotations.

Exercise 15.12

Consider the itemVector in the ItemList class, in the Java version of CompuDuds.
Although each position in that array can hold an Item, it is not necessarily true that
they all do. For example, when the array is initially created by the line

itemVector = new Item[10];

10 different positions can each hold an Item, but none of them yet does. (Instead,
each holds the special null value.) Similarly, when we do a delete operation, the
vacated position has the special null value stored into it, which isn’t an Item. Thus,
when we retrieve an element from the array, as in the line
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itemVector[index].display();

we have in principle the possibility that the retrieved value might not be an Item but
instead might be the null value from when the array was created or from when a
delete was done. If so, we would get an error when we tried to invoke the display
method on that non-Item.

a. Write a paragraph or two explaining how the design of the ItemList class ensures
that this will never happen, given that CompuDuds is a single-threaded program.

b. Write a paragraph explaining why the reasoning would break down if an ItemList
were used from more than one thread and briefly stating what should be done
about it.

Having seen how to keep one thread from stepping on another thread’s toes, we’ll
now turn to another important concurrency topic: how one thread can wait for an
action in another thread.

Nested Calls to Synchronized Methods and Deadlock

You might wonder what happens if one synchronized method invokes another
one. In terms of our analogy, a thread that is currently inside a locked room is
trying to do another operation that requires being inside a locked room.

In Java, if the second method is on the same object, we have no problem at all.
The thread is already inside that object’s locked room and so can go ahead with
the nested synchronized method. Moreover, when it is done with that inner
method, it doesn’t make the blunder of unlocking the door and leaving the room.
Instead, it waits until the outer synchronized method is done before unlocking.

How about if the inner synchronized operation is on a different object? Our
physical analogy of locked rooms starts to break down here. The thread manages
to stay inside its current locked room while waiting for the other room to become
available. Then without unlocking the room it is in, it locks the new room and is
(somehow) simultaneously in two locked rooms.

There is a real pitfall here for unwary programmers. Suppose one thread is
inside the locked room for object A, while another is inside the locked room for
object B. Now the first thread tries to invoke a synchronized method on B, and
the second thread tries to invoke a synchronized method on A. Each thread
waits for the other room to become available. But because each is waiting with its
own room locked, neither room ever will become available—the two will simply
wait for each other forever. This situation, in which threads cyclically wait for one
another, is known as deadlock.
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Suppose we want to change our applet so that rather than having a button that
causes a poltergeist to come into existence, it has a checkbox that we can use to turn
the poltergeist on or off. A checkbox is a GUI element that switches between an on
state and an off state each time you click on it. On some systems, it looks like a box
that is empty for off and has a checkmark or X in it for on. On other systems it is a
square that has shadows that make it look like it is sticking out for off and recessed
in for on.

One way to implement this would be to handle turning the poltergeist on just the
same way as we previously handled the button presses (create a thread and start it
running) and handle turning the poltergeist off by somehow killing off the thread.
Then the next time the checkbox was clicked to turn the poltergeist back on, a new
thread would be created, etc.

However, there is another, more interesting, alternative. We can have a single
PoltergeistThread that starts running at the beginning and is never killed off (at
least, not until the whole applet is terminated). However, the poltergeist can be in a
dormant state, where it just waits for the checkbox to turn it on. Then it starts doing
its usual random pushing of tiles, until such time as the checkbox is clicked again.
Then it goes back into the dormant state, once more waiting to be turned on.

To implement this design, we’ll give the PoltergeistThread three more meth-
ods. Two will be public methods used by the user interface to exert control: enable
and disable. The disable method puts the thread into its dormant state, where it
doesn’t do any random pushes, and the enable state wakes it back up. Finally, we’ll
add a private method called waitUntilEnabled that can be used by the thread’s
main loop to do the actual waiting; here is that main loop:

public void run(){
try{
while(true){
Thread.sleep(1000); // 1000 milliseconds = 1 second
waitUntilEnabled();
puz.pushRandomTile();

}
} catch(InterruptedException e){
// If the thread is forcibly interrupted while sleeping,
// an exception gets thrown that is caught here. However,
// we can’t really do anything, except stop running.

}
}

As you can see, we made just one change from the previous version. Each time
around the loop it performs waitUntilEnabled before pushing a random tile. If
the thread is currently enabled, this call will immediately return and the tile will
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be pushed. If the thread is disabled, on the other hand, the waitUntilEnabled
method won’t return until after the enable method has been called by the user
interface.

Now we have to see how the three new methods are written. We’ll add a new
instance variable to the PoltergeistThread class:

private boolean enabled;

The two controlling methods can just set this variable appropriately:

public void enable(){
enabled = true;

}

public void disable(){
enabled = false;

}

Now comes the tricky part: waiting for the enabled variable to be set to true. One
simple approach (but not a terribly good one) is to simply go into a loop, checking
each time around the loop to see if the variable is true yet. To avoid hogging the
computer’s time too much, we can sleep for a fraction of a second between each
check:

private void waitUntilEnabled() throws InterruptedException {
while(!enabled){
Thread.sleep(100);

}
}

We have two new Java language features in this method. One is the use of the excla-
mation point to indicate “not.” That is, the loop continues so long as the poltergeist
is “not enabled,” in other words, so long as the enabled variable has the value
false. The other new feature is the phrase “throws InterruptedException.”
You’ll recall that the Thread.sleep procedure can throw this particular exception.
In the run method, we handled that by use of a try and catch construct. Here,
however, we have made a different choice. Rather than catching the exception,
we’ve allowed it to continue on out of the waitUntilEnabled method so that it
can be caught in the caller. Here that makes sense because the caller is run, and
run is in a much better position to do something sensible about being interrupted
while waiting. To indicate that an exception of this kind may now emerge from the
waitUntilEnabled procedure, we need to include the throws declaration.
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The preceding approach, in which waiting is accomplished by nervously glancing
at the controlling variable every fraction of a second, is known as busy waiting. We
chose, rather arbitrarily, to wait 100 milliseconds (one tenth of a second) between
each check. If this time is made too short, the computer will be bogged down doing
nothing but checking over and over. If the time is made too long, on the other
hand, the program will be very sluggish in responding to changes. In this particular
program, the situation isn’t unbearable because only one thread is ever waiting, as
opposed to lots of threads each checking over and over, and also a bit of sluggishness
isn’t such a bad thing for a poltergeist that only acts sporadically anyway. In general,
however, busy waiting is a terrible way for a thread to wait for some relevant change
to occur. (There is also a subtle problem with our specific implementation of busy
waiting. Because doing busy waiting at all is a bad idea, we’ll describe the subtle
problem in the end-of-chapter notes section and move on here to a better alternative.)

So, we need another approach to waiting. What we would really like is to put
the thread to sleep not for some predetermined period but rather until the situation
changes. How will we know when the situation has changed? It changes when the
enable method is invoked by the user interface. Therefore, we can have the enable
method explicitly provide a “wake up call” for the poltergeist thread. Java provides a
pair of methods for providing this “wait until awakened” and “wake up” functionality:
wait and notify. Using them, we can change our code as follows:

// Warning: these two routines don’t work, see below for why.
private void waitUntilEnabled() throws InterruptedException {
while(!enabled){
wait();

}
}

public void enable(){
enabled = true;
notify();

}

As the comment warned you, these methods still aren’t quite right. However, they
do show the essence of what is needed. The waitUntilEnabled method simply
uses wait where it previously used Thread.sleep, and the enable method uses
notify to wake the waiting thread back up.

The problem with the preceding code is that it has a race bug. Suppose the
poltergeist thread invokes waitUntilEnabled and finds that currently enabled is
false. Therefore, it is going to wait. However, in the instant in between when the
while loop checked the enabled flag and when the wait is executed, the user clicks
the checkbox, turning it on. This invokes the enable method. The enable method
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sets the enabled variable to true and executes notify. The notify method finds
that there currently isn’t any waiting thread to wake up, so it returns without having
done anything. Then, just after notify has failed to find a waiter to wake up, the
poltergeist thread resumes executing, calls wait, and goes to sleep. Now the thread
is nominally enabled but is sleeping.

This problem can be solved the same way as other races, by using the
synchronized keyword. In fact, the Java system will force you to do so by sig-
naling an error if you forget. In addition to the enable and waitUntilEnabled
methods, you should add the synchronized keyword to disable, because that is
another method that accesses the shared state. (The details of why disable should
be synchronized are explained in the end-of-chapter notes.) Thus our correct
version using wait and notify is as follows:

public synchronized void enable(){
enabled = true;
notify();

}

public synchronized void disable(){
enabled = false;

}

private synchronized void waitUntilEnabled()
throws InterruptedException {

while(!enabled){
wait();

}
}

You might have this question: The waitUntilEnabled method is
synchronized, so in our metaphor it goes into the lockable room, locks the door,
and then if the enabled variable is false, it waits. If it waits with the room locked,
how can the enable method get in to change enabled to true? The answer is that
the lock is temporarily unlocked while waiting using wait and is relocked before
wait returns.

This need to relock the lock before returning from wait also explains why we
need a while loop around the wait, rather than just an if. A brief period occurs
where the lock is unlocked, between when enable leaves and when wait relocks
it before continuing. Conceivably disable could slip in during this window of
opportunity and change enabled back to false. If so, when wait does (later) get
the lock and resumes execution, the while loop will discover this and wait again.
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Do we now have a working puzzle applet with a checkbox for turning a poltergeist
on and off? If you’ve stayed awake yourself, you may realize that we’re still missing
something: the checkbox itself, and the associated listener that actually calls the
enable and disable methods. In the Puzzle constructor, we can add the following
lines (right after the Initialize and Randomize buttons):

PoltergeistThread thread = new PoltergeistThread(this);
thread.disable(); // just to emphasize that it starts disabled
thread.start();
Checkbox poltergeistCheckbox = new Checkbox("Poltergeist");
poltergeistCheckbox.addItemListener
(new PoltergeistItemListener(thread));

controlPanel.add(poltergeistCheckbox);

As you can see, Checkboxes don’t have ActionListeners; they have Item
Listeners, which is a rather fine distinction that the Java system makes. A Button
can be “acted upon,” with each action independent from any previous ones, whereas
a Checkbox is an “item” that can “change state” from “selected” to “deselected” or
vice versa. Checkboxes are initially deselected.

In practical terms, this distinction means that we need to write the Poltergeist
ItemListener class as follows:

import java.awt.event.*;

public class PoltergeistItemListener implements ItemListener {

private PoltergeistThread thread;

public PoltergeistItemListener(PoltergeistThread t){
thread = t;

}

public void itemStateChanged(ItemEvent evt){
if(evt.getStateChange() == ItemEvent.SELECTED){
thread.enable();

} else {
thread.disable();

}
}

}
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The ItemEvent that is passed in to itemStateChanged tells us information about
the state-change that occurred; in particular, we can tell whether it was a change to
selectedness (being turned on) or deselectedness (being turned off) as shown in the
preceding code.

Before we leave the puzzle applet entirely, we can make one other improvement to
it. Right now if you are viewing this applet in a web browser and have the poltergeist
turned on, and then you tell the browser to switch to viewing some other web page,
the poltergeist will keep right on sliding tiles, even if you can’t see the applet. If you
then tell the browser to go back to the page with the applet on it, you’ll find that
the tiles have moved around in your absence. This is probably not what most users
would want. To fix this, we can disable the PoltergeistThread when the user
stops viewing the applet. We can know when to do this because the browser will
invoke the stop method of an applet whenever it stops showing that applet. The
default implementation of this method, inherited from the java.applet.Applet
class, doesn’t do anything. We can override it with a version that puts our thread on
hold:

public void stop(){
thread.disable();

}

We’ll also need to change where we declare thread. At the moment it is a temporary
local variable inside the Puzzle constructor; we’ll need to change it to be an instance
variable instead.

When the user goes back to looking at the applet, we need to set the poltergeist
going again. The browser invokes another method to notify the applet that it is once
again being viewed; not surprisingly, it is called start. At first you might think it
could just do thread.enable(). However, that would turn the poltergeist “back”
on even if it hadn’t been on in the first place. To solve this problem, we can check
the current state of the checkbox and only re-enable the thread if the checkbox is in
the on state:

public void start(){
if(poltergeistCheckbox.getState()){
thread.enable();

}
}

Because this code uses the poltergeistCheckbox variable, we’ll again need to
move that declaration so as to turn it into an instance variable. Notice that the
Checkbox class has a getState method that returns true or false to indicate
whether the box is currently in the on or off state, respectively.
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Finally, we can add a destroy method to the Puzzle class, which gets called
by the browser when the applet is being completely evicted, as opposed to just
temporarily ceasing to be viewed. What we’ll do in that case is to entirely kill off the
poltergeist thread so that it doesn’t keep running when there is no longer an applet
for it to mess with. We can kill off the thread using the Thread class’s stop method:

public void destroy(){
thread.stop();

}

Exercise 15.13

Another possibility, rather than forcibly killing off the poltergeist thread, would be
to politely ask it to stop running. We could change the main loop in the run
method from while(true) to while(!terminated), with a boolean instance vari-
able called terminated. We would initialize terminated to false and set it to
true in a new terminate method we could add to the PoltergeistThread class.
Then the Puzzle class’s destroy method could call terminate instead of stop.
Implement this approach. Here’s the tricky part: Make sure it works even if the
poltergeist is disabled at the time it is terminated.

15.5 An Application: Simulating Compound Interest

Imagine that you have just started work for a small company that produces Java
applets for use in education. One of the company’s applets is used to illustrate
how compound interest works; it is shown in Figure 15.7. This applet simulates
the passage of years at a rate of 1 year per second, displaying information in the
scrolling area that occupies the main portion of the applet. The figure is just a
snapshot, showing what it looked like after 22 simulated years had passed, but keep
in mind that it keeps getting updated. Meanwhile the top “control panel” portion
of the applet has three controls. One is a checkbox labeled “Run” that can be used
to pause the simulation or resume it. (The applet actually starts in the paused state;
the box was clicked on 22 seconds prior to the snapshot in the figure.) The other
two controls allow the initial amount of money and the interest rate to be changed.
If the user changes either of these, the output area is cleared and the simulation is
reset to year 0. The applet is included on the web site for this book, so you can try
it out.

Like many junior programmers, you have been assigned to fix bugs in the com-
pany’s existing programs, rather than writing a new program from scratch. Occasion-
ally you may get to add a new feature.

The boss, Mr. Wright, comes to you with an interesting problem concerning the
compound-interest simulation applet. Although it generally seems to work properly,
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I n i t i a l  a m o u n t : $1,000.00 I n t e r e s t  r a t e : Run

A f t e r  0  yea r s ,  $1 ,000 .00
A f t e r  1  yea r s ,  $1 ,050 .00
A f t e r  2  yea r s ,  $1 ,102 .50
A f t e r  3  yea r s ,  $1 ,157 .62
A f t e r  4  yea r s ,  $1 ,215 .50
A f t e r  5  yea r s ,  $1 ,276 .28
A f t e r  6  yea r s ,  $1 ,340 .09
A f t e r  7  yea r s ,  $1 ,407 .10
A f t e r  8  yea r s ,  $1 ,477 .45
A f t e r  9  yea r s ,  $1 ,551 .32
Af t e r  10  yea r s ,  $1 ,628 .89
Af t e r  11  yea r s ,  $1 ,710 .33
Af t e r  12  yea r s ,  $1 ,795 .85
Af t e r  13  yea r s ,  $1 ,885 .64
Af t e r  14  yea r s ,  $1 ,979 .93
Af t e r  15  yea r s ,  $2 ,078 .92
Af t e r  16  yea r s ,  $2 ,182 .87
Af t e r  17  yea r s ,  $2 ,292 .01
Af t e r  18  yea r s ,  $2 ,406 .61
Af t e r  19  yea r s ,  $2 ,526 .95
Af t e r  20  yea r s ,  $2 ,653 .29
Af t e r  21  yea r s ,  $2 ,785 .96
Af t e r  22  yea r s ,  $2 ,925 .26

5%

Figure 15.7 Compound interest simulation applet

a few customers have reported seeing it occasionally produce bizarre behavior, which
they have never managed to replicate. The common thread is that after changing one
of the values (initial amount or interest rate) while the simulation was running, the
customers report seeing output on the screen that was clearly wrong or was missing
some years. Your boss normally wouldn’t care that a few customers were claiming to
occasionally see strange things, but it happens that some of them are very important
clients that the company is trying to make a good impression on, and right now the
reliability of the program is in question. The boss tells you your job is to get to the
bottom of the matter and restore the company’s reputation for rock-solid quality.

Because you have had the benefit of learning from a textbook that introduced
concurrent programming, you immediately blurt out to the boss that you are sure—
without even looking at the code—that you know what the problem is. Obviously
the applet must have two threads, one to simulate the passage of years and one to
respond to the user interface (much like in the puzzle with the poltergeist). Clearly
the boneheaded programmer who preceded you at the company didn’t bother to
put “synchronized” where it was needed, and so there is a race condition that
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causes problems when the user makes a change just at the instant a year is being
simulated. You say that you can fix the problem in a few minutes by just sticking
“synchronized” in front of some methods.

The boss is not thrilled, which may be partially an emotional response, given that
you just called his teenaged son a bonehead. However, mostly it is just good, cautious
business sense. Right now, the program appears to work when tested. When you add
the synchronized keywords, it still will appear to work when tested. How can the
boss confidently tell the VIP clients that you definitely have gotten to the bottom
of the matter and solved their mysterious problem? How can he know that your
explanation accounts for their symptoms when the symptoms aren’t even showing
up in testing in the first place? How can he be sure the symptoms won’t keep showing
up for the client?

Because of the questions, you agree on a more careful plan of work:

1. You will examine the code and come up with a few specific race scenarios that
would exhibit the kind of behavior the clients have mentioned. That is, you’ll map
out exactly what order things would have to happen in to make the symptoms
show up.

2. Then you’ll rig the applet so that these race conditions can be made to repeatably
happen, rather than just once in a blue moon, to show your boss that they are real.
You’ll do this by introducing extra time-delay sleeps at the critical points so that
rather than having to change one of the values at just exactly the wrong moment,
you’ll have a much bigger window of opportunity.

3. Then you’ll put the synchronized keywords in that you are convinced will solve
the problem.

4. Finally, you’ll show that even with the extra time delays that you put in to make
the races easy to trigger, the symptoms no longer show up in your fixed version.

If your theory is correct, the problem is definitely localized within the
CompoundingThread class, which provides the guts of the simulation; the other
classes just provide the user interface and seem quite innocent. From your perspec-
tive, all you need to know about them is how they relate to the CompoundingThread
class:

The main applet class, Compounder, provides two methods for managing the
scrolling output area: outputLine (for adding an additional line of output) and
clearOutput (for clearing the area).

The user interface calls two methods from the CompoundingThread class,
setInitial Amount and setInterestRate, to convey this information in and
also uses enable and disable methods, much like the poltergeist’s.
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Here is the code for the class in question:

public class CompoundingThread extends Thread {

private boolean enabled;
private double initial, current, multiplier;
private int year;
private Compounder c;
private java.text.NumberFormat fmt;

// Invariant:
// (1) current = initial * (multiplier raised to the
// year power)
// (2) year also specifies how many lines of output c has
// gotten since it was last cleared, corresponding to
// years from 0 up through year-1.

public CompoundingThread(Compounder comp){
c = comp;
fmt = java.text.NumberFormat.getCurrencyInstance();

}

synchronized private void waitUntilEnabled()
throws InterruptedException {

while(!enabled){
wait();

}
}

synchronized public void disable(){
enabled = false;

}

synchronized public void enable(){
enabled = true;
notify();

}

public void run(){
try{
while(true){
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Thread.sleep(1000);
waitUntilEnabled();
doYear();

}
} catch(InterruptedException e){
// ignore, but stop running

}
}

private void doYear(){
c.outputLine("After " + year + " years, " +fmt.format(current));
year++;
current *= multiplier;

}

public void setInitialAmount(double amount){
initial = amount;
initialize();

}

public void setInterestRate(double rate){
// note that a rate of 5% (e.g.) would be .05, *not* 5
multiplier = 1 + rate;
initialize();

}

private void initialize(){
current = initial;
year = 0;
c.clearOutput();

}
}

We have a few new Java features in this code, as usual. Perhaps the most significant
is that it uses numbers that aren’t integers—this is what the type “double” is for. For
example, unlike the CompuDuds program, which stored $19.50 as 1950 (the num-
ber of cents), the compound interest applet stores it as 19.5. In order to multiply the
current amount of money by the multiplier (which might, for example, be 1.05 if the
interest rate was 5 percent), the doYear method uses *=. This operator is analogous
to +=, in that it uses the old value to compute the new one; here it does so by multi-
plication. Finally, this code uses a fancy library class, java.text.NumberFormat, to
format the current amount of money for the output line. For example, if current is
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19.5, the expression fmt.format(current) would evaluate to the string "$19.50".
Not only does this expression take care of details like making sure there are two digits
after the decimal point, it also has an additional big win: It automatically adjusts to
other currencies that are used elsewhere in the world. (For more details, look up the
documentation for this library class.)

Exercise 15.14

As an important preparation for figuring out the race conditions, you need to un-
derstand the class’s invariant. Assume for the moment that there is no concurrency,
and write out explanations of how the invariant is preserved by each of the three
methods doYear, setInitialAmount, and setInterestRate.

Exercise 15.15

Now come up with at least three different specific misbehaviors that could result from
a race between doYear and one of the other methods. Explain exactly what order
the events would have to occur in. For example, you might say that right between
the user interface thread setting the year to 0 and clearing the output, the simulation
thread might slip in and do a complete invocation of doYear. Also, explain for each
scenario what the user would see. Try to come up with at least three scenarios with
different symptoms from one another.

Exercise 15.16

Now make each of your misbehaviors happen. Rather than developing the knack
of getting the timing just perfect, you should use Thread.sleep to open up a big
window of opportunity. For example, if you put a several-second sleep between setting
the year to 0 and clearing the output, it is a sure thing that at least one doYear will
slip into that gap. (Provided, of course, that the simulation is enabled to run, rather
than being paused in the disabled state.)

Exercise 15.17

Now add the synchronized keyword to the appropriate methods, and verify that the
misbehaviors have all gone away, even when you use Thread.sleep to give them
ample opportunity to show up.

Your boss is sufficiently impressed with your work to let you add a new feature
customers have been requesting. Many people aren’t as interested in answering
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questions like If I invest $1000 now, how much will I have when I retire? as they
are in questions like If I invest $1000 each year from now until I retire, how much
will I have? So, you are to add a feature to the program so that it has two fields for
monetary input: the initial amount and the additional amount to add each year.

Of course, this gets you into the user-interface part of the program, which
you’ve been able to ignore until now. The most relevant portions are the
InitialAmountField class and the part of the Compounder class that creates the
initial amount field. You’ll be able to add the new field just by following that example
because it is another currency amount field.

The part of the Compounder class’s constructor that creates the initial amount
field and adds it to the control panel is as follows:

controlPanel.add(new Label("Initial amount:", Label.RIGHT));
controlPanel.add(new InitialAmountField(1000.00, compThread));

The first line adds a Label, which is just a fixed chunk of text. The argument
Label.RIGHT indicates that it should be positioned to the far right end of the space
it occupies, which looks correct given that it ends with a colon and is followed by the
field in which the amount is entered. The InitialAmountField itself follows. The
first argument to its constructor is the value the field should start out with (1000.00),
pending any modification by the user, while the second argument, compThread, is
the CompoundingThread that should receive setInitialAmount notifications.

Here’s the InitialAmountField class:

public class InitialAmountField extends FormattedField {

private CompoundingThread compThread;

public InitialAmountField(double initialValue,
CompoundingThread ct){

super(10, java.text.NumberFormat.getCurrencyInstance());
compThread = ct;
Double value = new Double(initialValue);
setValue(value);
valueEntered(value);

}

public void valueEntered(Object value){
compThread.setInitialAmount(((Number) value).doubleValue());

}
}
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This little class contains some fairly tricky stuff, and although you don’t really need
to understand it to make another one just like it, we don’t want to pass up an
opportunity for explanation.

The superclass, FormattedField, handles the general problem of being a text-
entry field that has some specified special format—in this case, the format of a
currency amount. Its constructor needs to be told how wide a field is desired and
what format should be used; those are the two arguments in

super(10, java.text.NumberFormat.getCurrencyInstance());

The format object that is passed in as the second argument here formats numbers
as currency amounts, but in general it can specify formats for all sorts of things—for
example, dates as well as numbers. Therefore, the interface of the FormattedField
class needs to be very general. In particular, its setValue method takes an arbitrary
Object as an argument, so as not to be limited to numbers. The only problem is that
the initialValue, which is a double, isn’t an Object. Any instance of any class
is an Object, because all classes are descended from Object. However, double
isn’t a class (nor are int, boolean, or the other basic numeric and character types).
So, we need to make an Object that holds the double inside, which is what the
Double class is for. We make a Double called value that holds the initialValue,
and we pass that Double object into setValue.

When the user types a new value into the field, the FormattedField class
responds by invoking the valueEntered method to process this newly entered
value. We do the same thing with the initial value so that it gets handled the same
way. Again, because FormattedField needs to work for all kinds of data, it passes
an Object to valueEntered. Our valueEntered method needs to recover the
actual double value from that Object. The first thing we do is to declare that we
know the Object must be a Number. (The Number class is the superclass of Double.
It has other subclasses that similarly hold other kinds of numbers.) We make this
declaration with the notation (Number), which is another cast, much like the (int)
we saw earlier. Then we invoke the Number’s doubleValue method to retrieve the
actual value as a double and finally notify the CompoundingThread by invoking its
setInitialAmount method.

Exercise 15.18

Add a new labeled field for the annual contribution, and arrange for it to get passed to
the CompoundingThread. Modify the CompoundingThread so that it incorporates
this additional amount each year.
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Review Problems

Exercise 15.19

Suppose we add one more method to the ItemList class, in the Java version of the
CompuDuds program. The method follows, with the nondescriptive name mystery:

public class ItemList extends Object {

... all the existing stuff goes here ...

public Item mystery(){
Item soFar = itemVector[0];
for(int i = 1; i < numItems; i = i + 1){
if(itemVector[i].price() > soFar.price()){
soFar = itemVector[i];

}
}
return soFar;

}
}

a. Under what conditions can the mystery method be legally invoked to retrieve
an Item?

b. Describe as precisely as you can what the mystery method returns, while retain-
ing an “outsider’s” perspective. That is, your description should focus on what
the method returns and not how it finds it. Your description should not be in
terms of the representation of an ItemList (for example, it should not mention
the itemVector); instead, your description should use terminology that is under-
standable to someone who is using the ItemList class but has not seen the code
for it.

c. Give three examples of options that could be added to the user interface that
would make use of the mystery method. You don’t need to show the code, just
list what the option would do. It is okay if their usefulness is questionable. You
can use existing methods in addition to the new mystery method but shouldn’t
assume any other new methods are added.

Exercise 15.20

Modify the ItemList class so that when a deletion leaves the itemVector less than
one-third full, a new itemVector half as big is created. However, the itemVector
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should never be made any smaller than its original size, 10. See Exercise 14.18 and
the text preceding that exercise for more information on this technique.
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Vocabulary

applet
concurrency
type
declaration
class method
instance method
array
expression
statement
command-line argument
exception
batch processing
event-driven graphical user interface

(GUI)
Abstract Window Toolkit (AWT)

default constructor
interface
World Wide Web
HyperText Markup Language (HTML)
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networking
client
server
thread
multithreaded
race
lock
deadlock
busy waiting

Slogans

The sameness principle
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public
extends
//
/*. . . */
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=
return
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[]
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for
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&&
import
+ for string concatenation

and conversion
implements
(type)

synchronized
!
false
throws
double
*=

Library Classes and Interfaces

Note that these all are listed with their full name, even though many were used
with shortened names. For example, we used String rather than the full name
java.lang.String. The short form is available without needing an import direc-
tive for those classes that are in the java.lang package.

java.lang.String
java.lang.System
java.io.IOException
java.lang.NumberFormatException
java.io.BufferedReader
java.io.InputStreamReader
java.awt.Button
java.awt.Checkbox
java.awt.Component
java.awt.TextField
java.applet.Applet
java.awt.Container
java.awt.LayoutManager
java.awt.GridLayout

java.awt.event.ActionListener
java.awt.event.ActionEvent
java.awt.Panel
java.awt.BorderLayout
java.awt.FlowLayout
java.lang.Math
java.lang.Thread
java.lang.InterruptedException
java.awt.event.ItemListener
java.awt.event.ItemEvent
java.text.NumberFormat
java.awt.Label
java.lang.Double
java.lang.Number

Nonlibrary Classes

Item
OxfordShirt
Chinos
ItemList
CompuDuds
Puzzle
TileActionListener
InitializeActionListener

RandomizeActionListener
PoltergeistThread
PoltergeistActionListener
PoltergeistItemListener
CompoundingThread
Compounder
InitialAmountField
FormattedField
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Library Methods

print (in java.io.PrintStream)
println (in java.io.PrintStream)
readLine

(in java.io.BufferedReader)
add (in java.awt.Container)
setLayout (in java.awt.Container)
setLabel (in java.awt.Button)
addActionListener

(in java.awt.Button)
getLabel (in java.awt.Button)
random (in java.lang.Math)

sleep (in java.lang.Thread)
start (in java.lang.Thread)
wait (in java.lang.Object)
notify (in java.lang.Object)
getStateChange

(in java.awt.event.ItemEvent)
getState (in java.awt.Checkbox)
stop (in java.lang.Thread)
format (in java.text.NumberFormat)
doubleValue (in java.lang.Number)

Nonlibrary Methods

price (in Item)
display (in Item, OxfordShirt,

Chinos, and ItemList)
inputSpecifics (in Item,

OxfordShirt, and Chinos)
reviseSpecifics (in Item)
empty (in ItemList)
totalPrice (in ItemList)
add (in ItemList)
choose (in ItemList)
displayPrice (in CompuDuds)
main (in CompuDuds)
inputItem (in CompuDuds)
inputIntegerInRange (in CompuDuds)
inputSelection (in CompuDuds)
init (in Puzzle)
actionPerformed

(in TileActionListener,
InitializeActionListener, and
PoltergeistActionListener)

initializeTiles (in Puzzle)
randomizeTiles (in Puzzle)
flip (in Puzzle)
run (in PoltergeistThread

and CompoundingThread)
enable (in PoltergeistThread

and CompoundingThread)
disable (in PoltergeistThread

and CompoundingThread)
waitUntilEnabled

(in PoltergeistThread
and CompoundingThread)

itemStateChanged
(in PoltergeistItemListener)

stop (in Puzzle and Compounder)
start (in Puzzle and Compounder)
destroy (in Puzzle and Compounder)
terminate (in PoltergeistThread)
outputLine (in Compounder)
clearOutput (in Compounder)
setInitialAmount

(in CompoundingThread)
setInterestRate

(in CompoundingThread)
setValue (in FormattedField)
valueEntered (in FormattedField,

InitialAmountField,
and InterestRateField)

Sidebars

Nested Calls to Synchronized Methods and Deadlock
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Notes

We mentioned that our implementation of busy waiting (Section 15.4) was flawed.
The problem is as follows. The Java language specification says that in the absence
of synchronized constructs, an arbitrarily long delay can occur between when
one thread changes a variable and when that change is apparent to other threads.
(This permission to delay the news allows more efficient implementations, especially
on multiprocessor systems.) The consequence of this specification is that when the
main user interface thread sets the enabled variable to true, there is no guarantee
when, if ever, the busy-waiting poltergeist thread will see it as having become true.
The only way to fix this problem is to use synchronized, which guarantees that
all variables’ values are updated. But the non-busy-waiting version, using wait and
notify, is superior in any case. The same issue explains why in the wait/notify
version the disable method needs to be synchronized—otherwise the poltergeist
thread might never get word of a disablement.

Our discussion of developing graphical user interfaces (GUIs) in Java has been in
the context of applets. However, we should point out that nearly everything we said
is equally applicable to developing stand-alone Java application programs.

One important source for Java documentation is Sun’s Java web site,
http://java.sun.com. The AWT library classes we used for applets are also doc-
umented in a book by Chan and Lee [11], and the language specification is a book
by Gosling, Joy, and Steele [23]. Some less definitive but more tutorial sources are
the books by Arnold and Gosling [5], Horstmann and Cornell [27], and Campione
and Walrath [9].

Leveson and Turner [35] provide a good summary of the Therac-25’s problems.
They make the point that far more was wrong than just the race bugs we chose to
highlight. The software development methodology was badly flawed, the hardware
was missing safety interlocks on the theory that the software provided adequate safety
assurances, and the procedures for following up on trouble reports were inadequate.
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Nonstandard Extensions to Scheme

We presume the existence of the following predefined procedures, which are not
part of the R4RS standard for Scheme:

(error string value . . .) Signals an error to the user in some form. The string
should be a description of the error. There can be any number of values, and they
are also displayed to the user to further describe what went wrong.

(filled-triangle x0 y0 x1 y1 x2 y2) Produces a standard-sized square im-
age containing a filled-in triangle with vertices (x0, y0), (x1, y1), and (x2, y2). The
coordinate system for the vertices ranges from (21, 21) in the lower left corner
of the image to (1, 1) in the upper right corner.

(invert image) Produces a new image of the same size as image and with the
same contents as image except that black and white are reversed.

(line x0 y0 x1 y1) Produces a standard-sized square image containing a line
segment from (x0, y0) to (x1, y1). The coordinate system and size are the same as
for filled-triangle.

(overlay image1 image2) Produces a new image with the same size as image1

and image2, which must have the same width and height as each other. The
contents of the new image is formed by combining the contents of the two
existing images, much as though two transparencies were laid together.

(quarter-turn-right image) Produces a new image with the contents of
image turned 90 degrees clockwise. The width of the new image is the same
as image’s height, and the height of the new image is the same as image’s width.
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(random n) Produces a nonnegative integer, chosen in a pseudo-random fashion
from the range from 0 up to but not including n. The argument n must be an
exact positive integer. The n possible values are returned equally frequently over
the long run.

(stack image1 image2) Produces a new image by stacking the contents of
image1 on top of the contents of image2. The width of image1 must equal the
width of image2, which becomes the width of the resulting image. The height of
the resulting image is the sum of the heights of image1 and image2.

In addition to presuming the above non-R4RS procedures, we make use of several
features specified in the R4RS as being “inessential.” In other words, these are features
that the standard describes but does not require all implementations to provide. We
list below the inessential features we use, with some comments on how common it
is for an implementation to omit each feature and what impact such an omission
would have on using this book:

internal definitions The R4RS permits an implementation to not support nested
definitions inside the body of a lambda expression or let expression. Such an
implementation would be awkward to use with this book, because we use internal
definitions freely. However, such implementations are very rare.

disjointness of #f and () The R4RS allows a single value to be used as both false
and the empty list. It is relatively common for Scheme implementations to make
this choice. All our examples will work in such implementations, with the minor
exception that wherever we show #f in the output, () will be displayed instead.
(In input, #f should still be used.)

exact rationals Not every implementation needs to support exact rational num-
bers. This area is the one that is likely to cause the most trouble because relatively
many implementations have opted out of exact rationals and we use them moder-
ately freely in the early chapters. The book can be used with such an implemen-
tation, however, provided you are willing to work around a few difficulties as you
encounter them. For example, in most systems that only have inexact “floating
point” numbers, you will not be able to get an approximation to the golden ratio
that is good to one part in 1079 and will get an infinitely looping process if you
try. However, simply using a more tolerant tolerance will solve this problem.

the procedures sqrt, expt, denominator, list-tail, vector-fill!, and
with-output-to-file These predefined procedures are all labeled “inessen-
tial” by the R4RS. Nearly all implementations include sqrt and expt, so they
are unlikely to present a problem. The denominator procedure is used only
in approximating the golden ratio; it is only likely to be missing in implemen-
tations that don’t have exact rationals, and in such a case, the exercise could



Appendix Nonstandard Extensions to Scheme 647

simply be omitted. We define list-tail and vector-fill! in the text, so it
wouldn’t matter if they weren’t predefined. On the rare system that doesn’t sup-
port with-output-to-file, the examples using it can be rewritten to use the
essential procedure call-with-output-file.
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!, 627
#\, 433
#f, 13, 646
#t, 13
$, 423
%, 594
&&, 597
’, 138, 170
(type), 615, 639
*, 7
*=, 636
+, 6, 605
++, 591
+=, 590
-, 7, 35
--, 591
/, 7, 594
/*. . . */, 582
//, 582
;, 30
<, 12
<=, 13
=, 13, 138, 201, 583
==, 589
>, 13
>=, 13
?:, 588
[], 438, 587, 590, 605
^, 505, 519
||, 597
15-tile puzzle, 601

abstract class, 515
abstract class, pure, 515, 516
abstract data type, 134
abstract syntax tree, 291
Abstract Window Toolkit, 601
kabstractionl, 282, 283
accept, 423
accept?, 430
accuracy, 225
ACM, 225, 242
act, auto-person/, 558, 559
act, witch/, 560, 569
act, wizard/, 560
action, 192, 279
action, 195
ActionEvent, 606
ActionListener, 606
actionPerformed, 606, 612, 619
actors, 254, 257
add, 341, 591, 605
add, item-list/, 488, 495, 496, 513
add, registry/, 547
add-change-to-collection, 405
add-chocolate-to-box, 394
add-new-neighbor, place/, 551, 552
add-one, 124
add-to-end, 180
add-to-set, 275
addActionListener, 606
address, 335, 336
address register, 338
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ADT, 134
adventure game, 543, 576
algorithm, 76
alist, 532
alist-from-onto, 534
all-are, 208, 287
allocate-registers, 347
ALU, 337
alumni-hall, 561
ancestry, 489, 529
and, 597
and, 68
announce-winner, 138, 143, 144
answer-by-pattern, 193–194
append, 218
Applet, 602
applet, 578, 600, 604, 610
application, 6, 291
kapplicationl, 282
apply, 6
apply, 194, 300
apply-all, 205
apply-below, 528, 529
approximate-golden-ratio, 63, 64
architecture, 334
area, 274
argument, 7
argument, command-line, 595
arithmetic expression, 284, 290
arithmetic if, 325
arithmetic logical unit, 337
arithmetic sequence, 248
ark-volume, 7
array, 587, 590, 591, 605, 624
artificial intelligence, 116, 202–204
assembler, 341
assembly language, 341
association, 490
Association for Computing Machinery, 225,

242
association list, 532
associative, 87
assq, 535
AST, 291
AST, pictorial version, 291
asymptotic outlook, 76
atomic, 623–625, 629, 633, 637, 644
atomic data, 133
atomic expression, 227

augment, 506
auto-person-class, 544, 545, 558
auto-person/act, 558, 559
auto-person/init, 545, 558
auto-person/maybe-act, 545, 558, 559
automata theory, 286
AWT, 601
axiomatic system, 435

Backus-Naur Form, Extended, 278, 280
barbara, 562
base case (of a procedure), 25
base case (of a proof), 30
base case imperative, 25
base class, 489
basic block, 15
basic-image-size, 264
basis (of a fractal), 95
batch processing, 600
be-eaten, chocolate/, 569
be-read, scroll/, 550
become-owned-by, thing/, 550
become-unowned, thing/, 549
best, 416
best-solution-from-to-of, 410
better-box, 395
better-solution, 409
binary operator, 227
binary search, 213, 216
binary search tree, 214, 453, 463, 466, 474
binary tree, 221
binary tree, ranked, 463
binary-search-in?, 466, 476
binary-search-insert!, 466–468, 474
binary-search-retrieve, 476
kbindingl, 284
binomial coefficient, 104, 388, 399
biology, molecular, 399
bit, 341, 342
bitw-bb, 41
blank-line-at, 321
Blowing in the Wind, 40, 42, 47
BNF, 280
body, 8
book?, 256
boolean, 12
kbooleanl, 282
boolean, 585
bootstrapping, 517, 527, 532, 536
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BorderLayout, 612
bound, 301
box (of chocolates), 394
box and pointer diagram, 155, 171
box-chocolates, 394
box-desirability, 394
box-weight, 394
bracket, 587, 590, 605
breaks, 409, 411
bs-tree, 475
BufferedReader, java.io., 598
bug, 31
busy waiting, 628, 643
Button, 600, 602

c-curve, 96, 108
c-curve, 97
cadddr, 188
caddr, 188
cadr, 188
candy-temperature, 12
car, 150, 151, 169
cast, 615, 639
catalog item, 244, 254, 276
catch, 597
categorize-by-first-label, 238, 239
cd?, 256
cdr, 150, 151, 169
cdr down, 173, 175
cells, 438
center-x, 274
center-y, 274
chamber-of-wizards, 561
change, 405
change-name, named-object/, 549
changes, 401, 402
changes-dynamic, 419
character, 433
character constant, 433
character string, 139, 141
check-isbn, 122
check-movie-in!, 479
check-movie-out-to!, 479
Checkbox, 600, 626, 630, 631
checkerboard, 42
child, 221
Chinese room argument, 203
Chinos, 587
chinos-class, 487, 509, 513

chinos/display, 509
chinos/init, 509
chinos/input-specifics, 509
chocolate, 135, 156, 160, 166, 168, 232–233,

393–395, 400, 412, 569
chocolate caramel, 12
chocolate-class, 569
chocolate-covering, 394
chocolate-desirability, 394
chocolate-filling, 394
chocolate-weight, 394
chocolate/be-eaten, 569
choose, 388, 592
choose, item-list/, 488, 499, 500
class, 254, 486, 488
class constructor, 495, 501
class diagram, 489–491, 518, 527, 529, 544,

545, 580, 602, 607, 608
class hierarchy, 254, 486, 489, 511
class instance variable, 495, 518, 522
class method, 584, 593
class object, 491
class predicate, 529
class, abstract, 515
class, pure abstract, 515, 516
class-class, 518, 519, 532, 536, 537
class-definitions, 541, 542
class-predicate-definition, 542
class/describe, 512
class/getter, 517, 518, 520, 521
class/init, 533
class/instantiator, 517, 523
class/ivar-position, 521, 532, 535
class/method, 517, 526
class/method-position, 526, 532, 536
class/non-overridable-method, 517,

526
class/predicate, 517, 531
class/set-method!, 493, 513, 527, 528,

539
class/setter, 517, 520, 521
clause (of a cond), 35
clearOutput, 634
client, 617
closest-power, 70
coherence, 644
coin, fake, 102
collection (of changes), 405
collection-list, 405
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collection-size, 405
combinations, 104
command-line argument, 595
comment, 30
common interface, 244, 253
commonality, 253
commutative, 87
company, 254
compiler, 348
complete tree, 222
Component, 600, 601
compose, 123
composition, 123
compound data, 133
Compounder, 634, 638
CompoundingThread, 634, 638, 639
compu-duds, 508, 511
CompuDuds, 593
computational process, 3
computer core, 335
computer science, 3, 116
computer-lab, 561
computer-move, 138, 140, 142, 144, 156,

157, 159
concurrency, 578, 616, 617
cond, 35, 284
kconditionall, 282
conditional expression, 588
conditional jump, 345
confidentiality, 226
cons, 150, 151, 155, 169
cons up, 171, 175
consistency condition, 548
kconstantl, 282, 283
constant?, 227
constraint, 528
constructor, 134, 582
constructor, class, 495, 501
constructor, default, 604
Container, 602
contents, 255
contents, place/, 553
continuation address, 354
continuation register, 354
continued fraction, 63, 73
contradiction, proof by, 115
control signal, 339
control unit, 337
corner-bb, 16

cost, 409
count-combos, 185–186, 398
couple, 206
coupling, 499
course, 162
creator, 254, 256
creators, 261
cube, 119
current instruction, 338
current instruction address, 339
curse, witch/, 560
cycle, 443
cyclic, 467
cylinder-volume, 10

d-curve, 98
data abstraction, 134, 143, 243
data memory, 335
data type, mutable, 430
data-abstraction principle, 149
data-abstraction principle, strong, 150
database, 188, 472
database, 255, 259
date, 244
kdatuml, 282
deadlock, 625
debug, 31
debunk-halts?, 115
declaration, 582
decoder, instruction, 339
default constructor, 604
define-class, 492, 493, 517, 541
definition, 7
definition, global, 304
definition, internal, 59, 646
definition, nested, 59, 646
definition, top-level, 304
definition-expression, 305
definition-name?, 305
definition?, 305
degree, 229
delete, 591
delete, item-list/, 488, 499, 513
delq, 547
denominator, 64, 646
depth, 221, 454
dequeue!, 447, 451
derived class, 489
describe, class/, 512
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describe, object/, 494, 512, 519, 536, 570
design patterns, 576
destination register, 338
destroy, 632
diagonalization proof, 115, 129
dictionary, 472–474, 477
dictionary-insert!, 474, 478
dictionary-retrieve, 474, 478
difficulty, 564
digest function, 84
kdigitl, 281
digit->number, 434
digital signature, 83
Direct Memory Access, 336
disable, 626, 627, 629, 631, 634, 644
disclosure, 225
display, 140, 141, 580, 585, 589
display, chinos/, 509
display, item-list/, 488, 497, 498
display, item/, 488, 498, 501
display, oxford-shirt/, 506
display-game-state, 140, 152
display-histogram, 365, 366
display-item, 254
display-message, 550
display-phone-numbers, 234, 235
display-price, 498
display-ra-stack, 432
display-ranked-btree, 465, 468, 475
display-ranked-btree-by, 475
display-table, 391
display-times, 313
displayPrice, 593
distance, 61, 164
distributive, 87
div, 341
divide and conquer, 213
divides?, 59, 60
DMA, 336
do-grade-histogram, 364
do-instruction-in-model, 368, 370
do-magic, magic-scroll/, 569
document management, 399
dollar sign, 423
dormitory, 561
dot-product, 162
Double, 639
double, 118, 636
double equal sign, 589

double quote, 139
doubleValue, 639
dp-changes, 403, 405
dp-choose, 400
dp-walk-count, 386
dp-walk-count-2, 387
dragon curve, 98
draw-filled-triangle-on, 263
draw-line-on, 263
draw-on, 263
drawing medium, 262, 265, 271
dynamic programming, 383, 386, 399
dynamic programming, comparison to

memoization, 406

eat, person/, 569
EBNF, expressiveness of, 285–286
edit distance, 400, 419
element-of-set?, 275
else, 35, 586
elvee, 562
empty, 588
empty list, 168, 170, 646
empty-labels?, 237
empty-queue?, 447, 449
empty-ra-stack?, 429, 436, 438
empty-sequence, 249
empty-sequence?, 245, 247
empty-tree?, 216, 464
empty-trie?, 231
empty?, item-list/, 488, 493
enable, 626–629, 631, 634
Encapsulated PostScript, 271
enlarge-queue!, 449
enqueue!, 447, 449
ensure-in-table, 384
environment, global, 304
EPS, 271
eq?, 465
equal sign, 583
equal sign, double, 589
equal?, 138, 179
error, 202
error, 139, 257, 645
error checking, 142, 257
ethics, 5, 225, 242
eval, 542
eval-globally, 541–543
evaltemp.scm, 543
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evaluate, 227, 290, 295, 421, 425, 430
evaluate-additional-in-at, 322
evaluate-in, 306, 311
evaluate-in-at, 313, 314, 316, 322
evaluation, 5, 279, 290
even-part, 183–184
even?, 13
event-driven, 600
exact rationals, 646
exception, 596
exchange-left-with-right!, 469
exchange-values!, 468
exclamation point, 363, 627
execute, 335
exit, 592
exit?, 192
exits, place/, 551, 552
expand, 208
explode-symbol, 236
exponent, 28, 342
exponent-of-in, 147
exponential growth, 381
expression, 5, 588
kexpressionl, 282
expression tree, 227, 284, 289, 290
expression, arithmetic, 284
expressiveness of EBNF, 285–286
expt, 28, 646
extend-global-environment-with-

naming, 306
Extended Backus-Naur Form, 278, 280
extends, 581

factorial, 23
factorial, 24–26, 36, 48, 72, 120
factorial-product, 49, 50, 55
factorial-sum1, 99
factorial-sum2, 99
factorial2, 37
fake coin, 102
fall through, 345
falling factorial power, 71
false, 627
family-name-last, 256
Fermat number, 57, 73
fermat-number, 57
fewest-moves, 415
Fibonacci number, 382
FIFO, 446

15-tile puzzle, 601
filled-triangle, 18, 645
filter, 175, 189, 238
first in first out, 446
first-elements-of, 176
first-label, 237
first-perfect-after, 60, 61
flip, 616
floating point, 342
b c (floor), 223
flow chart, 349
FlowLayout, 614
food-service, 561
for, 589, 609
FOR loop, 413
for-each, 478
formal language, 286
format, 637
format-paragraph, 412
format-paragraph, 411
FormattedField, 639
formatting paragraphs, 406, 419
fractal, 95, 108
free, 301
from-to-add, 416
from-to-do, 387
function-sum, 204
functional, 362

Gack, Land of, 561
gain, place/, 552
game state, 136, 145, 147–149, 151, 152, 157
game state, mutable, 480
game, adventure, 543, 576
game-state-<, 163
game-state-<=, 163
game-state-=, 163
game-state->, 163
garbage collection, 499
gcd, 353
generic operation, 243, 488, 515
get-global-environment, 482
get-image, 480
get-mem, 367, 370
get-pc, 367, 370
get-reg, 367, 370
getLabel, 609
getState, 631
getStateChange, 631
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getter, 493, 519, 520
getter, class/, 517, 518, 520, 521
global definition, 304
global environment, 304
go, person/, 556
gold-num, 86
golden ratio, 62, 74
good-ship-olin, 561
grammar, 280
graphical user interface, 600
greet, person/, 557
GridLayout, 602, 607
grow, 591
grow, item-list/, 496, 497
GUI, 600

Hailperin, Karl, 184, 186, 187, 398
half-turn, 16
halt, 343
halt!, 367, 370
halted?, 367, 370
halting problem, 114
halts-on?, 126
Harvard architecture, 338
have-fit, person/, 555
head, 168
head, 245, 247, 447, 449
header, 442
height, 222, 454
height, 263, 429, 436, 438, 443
higher-order procedure, 111, 118
HTML, 610
human-move, 138, 142, 144, 157
HyperText Markup Language, 610

if, 12–13, 586, 588
if, arithmetic, 325
image, 262
image, turnable, 480
image->eps, 272
image-of-digit, 46
image-of-number, 46
imperative, 362
implements, 606
import, 604
improve, 64
improvement, iterative, 61
in-order, 219
in-order?, 178

in?, 216, 224, 466
increasing-on-integer-range?, 125
indentation, 7
induction, 30, 440
induction hypothesis, 30
inductive step, 30
infinite sequence, 276
infinity, 276
infix, 227, 284
information process, 3
inherit, 492, 527
init, 603, 604, 611
init, auto-person/, 545, 558
init, chinos/, 509
init, class/, 533
init, item-list/, 494, 505
init, item/, 501, 504, 505
init, named-object/, 548
init, object/, 494, 501, 519, 522, 536
init, oxford-shirt/, 504, 505
init, person/, 554
init, place/, 551
init, registry/, 547
init, scroll/, 550
init, thing/, 549
InitialAmountField, 638
InitializeActionListener, 612
initializeTiles, 610, 611, 623
inorder, 219, 224, 225
input, 142
input device, 335
input-integer-in-range, 500
input-integer-in-range, 500
input-item, 509
input-selection, 507
input-specifics, chinos/, 509
input-specifics, item/, 488, 501, 515
input-specifics, oxford-shirt/, 507
input-specifics, special-item/, 502
inputIntegerInRange, 596
inputItem, 595
inputSelection, 596
inputSpecifics, 580, 586, 587
insert, 220, 453
insert-into-widget!, 481
insertion-point, 467, 474
instance, 489
instance method, 584
instance variable, 491, 493, 494, 519
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instantiator, 495, 522
instantiator, class/, 517, 523
instruction, 334
instruction decoder, 339
instruction memory, 338
instruction set, 334
int, 582
integer-in-range-where-smallest,

124
integers-from-to, 171
integrity, 225
intelligence, artificial, 116, 202–204
intentionality, 203
interface, 243, 244, 607
interface, common, 244, 253
interleave, 176
internal definition, 59, 646
internal node, 221, 290
interpreter, 348
InterruptedException, 619, 627
interval, 161
invariant, 54, 73
invariant, representation, 439, 440, 622–624
inventor’s paradox, 50, 73
invert, 42, 645
IOException, java.io., 597
Item, 580
item-class, 487, 488, 501, 515, 516
item-list-as-list-class, 516
item-list-as-vector-class, 516
item-list-class, 487, 488, 492, 496,

513, 514, 516
item-list/add, 488, 495, 496, 513
item-list/choose, 488, 499, 500
item-list/delete, 488, 499, 513
item-list/display, 488, 497, 498
item-list/empty?, 488, 493
item-list/grow, 496, 497
item-list/init, 494, 505
item-list/total-price, 488, 498, 513
item/display, 488, 498, 501
item/init, 501, 504, 505
item/input-specifics, 488, 501, 515
item/price, 488, 498, 501, 516
item/revise-specifics, 488, 502, 516
ItemEvent, 631
ItemList, 588
ItemListener, 630
itemStateChanged, 630, 631

iteration, 48, 349
iterative improvement, 61
ivar-position, class/, 521, 532, 535

j, 345
Java, 576, 578
java.io.BufferedReader, 598
java.io.IOException, 597
java.text.NumberFormat, 636
jeqz, 345
Josephus, 65
jump, 339
jump target address, 339

karl, 562
key, 472
key-comparator, 472–474
key-comparator, 477
key-extractor, 472–474
key-extractor, 477
keyword, 280, 283
keyword?, 283
knapsack problem, 393
Knight, Erick, 184, 186, 187, 398

Label, 638
label, 346
labeled-value, 236
labeled-values->trie, 238, 239
labels, 236
ladder-height, 19
lambda expression, 8, 302, 309
Land of Gack, 561
language, formal, 286
language, object-oriented, 247
larger, 206
largest-element-of-vector, 367
largest-odd-divisor, 69
last, 205
last in first out, 446
late-lab-report, 568
LayoutManager, 602, 605, 607
ld, 341
leaf, 215, 221, 290
leak, memory, 499
left rotation, 457, 468
left-operand, 227
left-subtree, 216, 464
length, 172, 249, 591
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length (of a path), 221
length-of-c-curve, 98, 108
let, 61, 284, 303
letter->number, 236
level, subproblem nesting, 313, 315
li, 343
library, 561
LIFO, 446
line, 97, 645
line breaking, 406, 419
line-cost, 408
line-width, 407
linear recursion, 25
linearization, 362
linked list, 443
list, 167–169
list, 169
list-<, 174
list->bstree, 220, 224, 225
list->sequence, 248–251
list->tagged-list, 255
list-by-key, 218, 219
list-of-length->sequence, 250
list-of-lists, 179
list-possessions, person/, 555
list-ref, 174
list-tail, 176, 646
list?, 198
lists-compare?, 174
kliterall, 282, 283
load, 341
load, 543
load immediate, 343
load-and-run, 368
location, 333
lock, 624, 625
logarithm, 82
look-around, person/, 554
look-up-phone-number, 233, 235
look-up-value, 227, 297, 299, 325
look-up-value-in, 306, 309
look-up-with-menu, 233, 234
loop, 349
loop-forever, 114
lose, person/, 557
lose, place/, 553
lounge, 561
lower-endpoint, 161
lower-precedence?, 432

machine language, 340
machine model, 367, 369
magic-scroll-class, 569
magic-scroll/do-magic, 569
magic-scroll/name, 569
main, 594
maintainability, 499, 504
make-x, see x-class and x/init
make-3D-vector, 162
make-abstraction-ast, 301, 307
make-add-inst, 368, 371
make-application-ast, 300, 308, 312,

314, 315
make-arithmetic-if-ast, 326
make-averaged-procedure, 126
make-binary-search-tree, 466
make-chocolate, 394
make-circle, 274
make-class, 517, 532, 533
make-conditional-ast, 299, 307, 324
make-constant, 227
make-constant-ast, 299, 306
make-couple, 206
make-dictionary, 474, 477
make-div-inst, 368, 371
make-empty-box, 394
make-empty-collection, 405
make-empty-ranked-btree, 464
make-empty-tree, 215
make-empty-trie, 231, 239
make-exponentiater, 119
make-expr, 227
make-filled-triangle, 263, 264, 266
make-for-ast, 414
make-function-with-exception, 123
make-game-state, 137, 145, 147–149,

151–153
make-game-state-comparator, 163
make-generator, 126
make-halt-inst, 368, 371
make-initial-global-environment, 306,

309, 311
make-interval, 161
make-jeqz-inst, 368, 371
make-jump-inst, 368, 371
make-labeled-value, 236
make-line, 263–265
make-lines, 409, 411
make-list-combiner, 209
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make-list-scaler, 207
make-load-immediate-inst, 368, 371
make-load-inst, 368, 371
make-machine-model, 367, 369
make-mini-scheme-version-of, 310, 315
make-mirrored-image, 270
make-move-instruction, 156
make-movie, 188
make-mul-inst, 368, 371
make-multiplier, 118
make-name-ast, 297, 306, 482
make-node, 442
make-nonempty-tree, 215
make-nonempty-trie, 231, 232, 239
make-overlaid-image, 266
make-pattern/action, 195
make-person, 232
make-point, 163, 263
make-procedure, 301, 302, 309, 315
make-queue, 447, 449
make-quo-inst, 368, 371
make-ra-stack, 429, 436, 437, 443
make-ra-stack-with-at-most, 437, 438
make-read-eval-print-loop-state, 482
make-read-inst, 368, 371
make-red-black-tree, 462, 468, 476
make-rem-inst, 368, 371
make-repeated-version-of, 119
make-scaled, 124
make-scaled-image, 270
make-schedule-item, 162
make-seq-inst, 368, 371
make-sge-inst, 368, 371
make-sgt-inst, 368, 371
make-sle-inst, 368, 371
make-slt-inst, 368, 371
make-sne-inst, 368, 371
make-solution, 409
make-square, 274
make-store-inst, 368, 371
make-string, 433
make-sub-inst, 368, 371
make-table, 258, 260, 391, 392
make-transformed-medium, 268
make-turnable-image, 480
make-turned-image, 269
make-type, 258
make-uncons-ast, 327
make-vector, 363

make-verifier, 121
make-widget, 481
make-write-inst, 368, 371
make-x, see x-class and x/init
mantissa, 342
map, 178, 179, 239
map-2, 207
matches?, 193, 196, 198, 199, 287
Math, 615
mathematical induction, 30
max-the-person, 562
maximum-bar-size, 366
maybe-act, auto-person/, 545, 558, 559
medium, drawing, 262, 265, 271
mem-size, 369
member, 190, 192, 198
memoization, 383, 388
memoization, comparison to dynamic

programming, 406
memoized-choose, 392
memoized-pick-chocolates, 397
memoized-walk-count, 384, 385
memory, 333, 336
memory leak, 499
mental state, 204
menu, 233, 235
merge, 183
merge sort, 78, 80, 82, 83, 107, 182–184
merge-sort, 182
merging, 79
message, 246
message digest, 84
message passing, 246, 247, 276
method, 492, 519, 524
method implementation, 492
method name, 492
method, class, 584, 593
method, class/, 517, 526
method, instance, 584
method, virtual, 525
method-position, class/, 526, 532, 536
Micro-Scheme, 278, 289
micro-scheme-parsing-p/a-list, 295
micro-scheme-syntax-ok?-p/a-list,

288
mid-point, 161
min, 103, 402
min-x-of-c-curve, 103
Mini-Scheme, 279, 304, 481
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minimum, 217
MIPS, 378
mod*, 88
mod+, 88
mod-, 88
mod-expt, 90, 91, 93, 94, 111
modular arithmetic, 85, 87
modularity, 313
module, 367
modulus, 85, 87
modulus, 86
molecular biology, 399
move instruction, 156, 157
move-to, person/, 555
movie, 188, 479
movie, 259
movie query system, 287
movie-actor, 188
movie-director, 188
movie-p/a-list, 195, 199
movie-status, 479
movie-title, 188
movie-year-made, 188
movie?, 256, 257, 261
movies-directed-by, 190
movies-made-in-year, 189
movies-satisfying, 190
movies-with-actor, 190
much computation, little variety sign, 383,

390
mul, 341
multi-threaded, 617
multiple representations, 244
multiple-shuffle, 177
multiplicity, 490
multiply, 36
multiply-by!, 375
mutable data type, 430
mutable game state, 480
mutator, 369
mutual recursion, 184, 288
mystery, 112, 124

name, 6
knamel, 282
name, 232
name, magic-scroll/, 569
name, named-object/, 548
name->labels, 236, 237

name?, 283
named-object-class, 544, 548
named-object/change-name, 549
named-object/init, 548
named-object/name, 548
natural language interface, 191
natural language query system, 188
neighbor-towards, place/, 551,

552
neighbors, place/, 551, 552
nested definition, 59, 646
nesting level, subproblem, 313, 315
networking, 617
new, 582, 587, 595
new-procedure, 126
newline, 140, 141
next-game-state, 157, 159
next-users-reference, 563
Nim, 135, 166
Nim, three-pile, 153
node, 215, 221, 442
node-element, 442
node-list, 442, 443
node-rest, 442
node-set-element!, 444
node-set-rest!, 444
nodes-down, 444
noise word, 199
non-overridable-method, class/, 517,

526
nonterminal, 281
not, 627
not, 68
notify, 628, 629
nova-bb, 16, 18
null, 592, 624
null?, 168
num-6s, 113
num-digits, 39, 113
num-digits-in-satisfying,

112–113
num-odd-digits, 113
Number, 639
number, 5
knumberl, 282
number system, 87
number-in-trie, 235
number-of-nodes, 217
number?, 202, 282



664 Index

NumberFormat, java.text., 636
NumberFormatException, 597

O (big oh), 213, 242
object, 430
object-class, 489, 518, 537, 538
object-oriented analysis, 576
object-oriented design, 487, 571, 576
object-oriented language, 247
object-oriented modeling, 576
object-oriented programming, 254, 486, 517,

543
object-with-name, 568
object/describe, 494, 512, 519, 536, 570
object/init, 494, 501, 519, 522, 536
odd-part, 183–184
odd?, 13
offices, 561
one-layer data structure principle, 217
one-layer thinking, 32
one-layer thinking maxim, 32
opcode, 341
operand, 291
operand specifier, 341
operate, 259
operating system, 334
operation code, 341
operation table, 258, 259
operational definition of intelligence, 117
operational stance, 149
operator, 291
operator, 227
operator-char?, 433
operator?, 432
optimize-bstree, 224, 453
or, 597
or, 68
order of growth, 81
ordered tree, 229
other-people-at-same-place, person/,

557
our-movie-database, 188, 189, 475, 478
our-movies-by-director, 478
our-movies-by-title, 478
output, 140
output device, 335
outputLine, 634
over?, 138, 143, 144
overlay, 18, 645

override, 492
owned?, thing/, 549
owner, thing/, 549
oxford-shirt-class, 487, 503, 513
oxford-shirt/display, 506
oxford-shirt/init, 504, 505
oxford-shirt/input-specifics, 507
OxfordShirt, 584

pair, 150
pair, nested, 153
pair?, 275
palindrome, 179–182
palindrome, 182
Panel, 611
pants-class, 513, 514
paragraph breaking, 406, 419
parameter, 9
parameter list, 8
parent, 221
parent, 464
parenthesize, 416
parse, 290, 293, 313
parsing, 290
path length, 221
pattern, 192, 194, 279
pattern, 195
pattern/action pair, 192, 195, 287
patterns, design, 576
PC, 339
percent-sign, 594
perfect number, 58, 73, 114
perfect shuffle, 175–178
perfect?, 58
permutation, 23
person, 232
person-class, 544, 545, 548, 553
person/eat, 569
person/go, 556
person/greet, 557
person/have-fit, 555
person/init, 554
person/list-possessions, 555
person/look-around, 554
person/lose, 557
person/move-to, 555
person/other-people-at-same-place,

557
person/place, 557
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person/possessions, 557
person/read, 555
person/say, 554
person/take, 556
personal information, 225, 226
phone-number, 232
phone-trie, 232, 233
pick-chocolates, 396
pinwheel, 17
pixel, 263
place, person/, 557
place-class, 544–546, 548, 551
place/add-new-neighbor, 551, 552
place/contents, 553
place/exits, 551, 552
place/gain, 552
place/init, 551
place/lose, 553
place/neighbor-towards, 551, 552
place/neighbors, 551, 552
play, 563, 564
play-with-turns, 138, 139, 141, 144, 159,

161
player, 562
PMSE, 280
PO, 561
point, 163
poltergeist, 617
PoltergeistActionListener, 619
PoltergeistItemListener, 630
PoltergeistThread, 618, 626, 630–632
pond, 561
pop, 359, 429
pop!, 429, 435, 436, 440, 444, 445
porting, 134
position, 174
positional tree, 229
positive-integer-upto-where-

smallest, 127
possessions, person/, 557
post-order traversal, 284
postfix, 229, 284, 290
postorder, 228
post-order, 220, 228
PostScript, Encapsulated, 271
potential Micro-Scheme expression, 280
power, 28, 55, 71, 111
power-product, 55, 56, 351
pre-order, 219

precedence, 421, 425
predicate, 12
predicate, class, 529
predicate, class/, 517, 531
prefix, 227, 284, 290
preorder, 218
preorder, 218, 219
preorder-onto, 219
presents-on-day, 43
presents-through-day, 44
price, 580
price, item/, 488, 498, 501, 516
prime number, 57, 73
primitive procedure, 15
print, 586
println, 586
privacy, 225
private, 496
private, 582
procedural parameter, 110, 142
procedural representation, 148, 149
procedural result, 118
procedure, 6, 8
procedure?, 275
process, 3
processing, batch, 600
processor, 335
product, 72
production, 280
professional conduct, 225, 242
program, 4, 334
program counter, 339
programming language, 4
promote, 468
promotion, 456, 468
prompt, 142, 144
proof by contradiction, 115
proof by diagonalization, 115, 129
proof by reduction, 118
ps, 416
pseudo-random, 160
public, 496
public, 581, 583
pure abstract class, 515, 516
push, 359, 429
push!, 429, 435, 436, 441, 445
pushTile, 609, 623
Puzzle, 602, 603, 622, 631
puzzle, 15-tile, 601
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puzzle1, 14
puzzle2, 14

quarter-turn-left, 16
quarter-turn-right, 16, 645
quarter-turn-right!, 480
query system, 188, 191
query-loop, 191, 192
queue, 447
queue-cells, 449
queue-length, 449
queue-start, 449
quilt, 40
quo, 341
quot, 34, 35
kquotationl, 282, 283
quote, 138, 170
quote, 283
quotient, 34

RA-stack, 429, 432, 443
race, 621, 622, 624, 628, 629, 633, 637
RAM, 333
random, 159, 615, 646
Random Access Memory, 333
random-mix-of, 160
RandomizeActionListener, 615
randomizeTiles, 614, 615
rank, 455
rank, 464
ranked binary tree, 463
rational approximation, 73
rb-tree, 476
rcross-bb, 16
read, 142, 282, 343
read, person/, 555
read-eval-print loop, 278
read-eval-print-loop, 289, 304, 315, 482
read-eval-print-loop state, 482
readLine, 598
rebalancing, 456–460
record, 472
recurrence relation, 222
recursion, 22, 168
recursion strategy, 23
recursive procedure, 54, 304, 329
recursive process, 25, 357
red-black tree, 453, 455, 456, 462, 463, 472,

474, 485

red-black-in?, 462, 468
red-black-insert!, 455, 462, 468, 471
red-black-retrieve, 476
red-black-tree, 477
reduce, 422, 427
reduce!, 430, 431
reduce?, 430
reduction, proof by, 118
reg-bank-size, 369
register, 337
registry, 561
registry-class, 544–546, 558
registry/add, 547
registry/init, 547
registry/remove, 547
registry/trigger, 547
registry/trigger-times, 547
rem, 341
remainder, 39
remove, registry/, 547
remove-coins-from-pile, 137, 145, 146,

152, 157
remove-coins-from-pile!, 481
repeat, 208
repeatedly-square, 57, 119
Repeating Crosses, 15–17, 21
repl-state, 482
representation, 134, 149, 150, 186
representation invariant, 439, 440, 548,

622–624
representations, multiple, 244
respond-to-using, 566
responsibility, 5
retention, 226
retrieve-from-widget, 481
return, 583, 592
return address, 378
return-seven, 114
reverse, 180–182
Reverse Polish notation, 284
revise-specifics, item/, 488, 502,

516
reviseSpecifics, 580
revision control, 400
right rotation, 457, 468
right-half, 161
right-operand, 227
right-subtree, 216, 464
RISC, 378
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role, 519
room, 162
root, 214
root, 216
root-values, 231
root?, 463, 464
rotate-left!, 468, 469
rotate-right!, 468, 469
rotation, left, 457, 468
rotation, right, 457, 468
round, 12
RPN, 284
RSA cryptosystem, 107
run, 335
run, 618, 626
run length encoding, 208

sameness principle, 613
say, person/, 554
schedule item, 162
Scheme, 4
scroll-class, 544, 550
scroll-of-enlightenment, 562
scroll/be-read, 550
scroll/init, 550
Searle, John, 203, 204
selection sort, 77, 80
selector, 134, 369
self, 493
self-similarity, 95
self-similarity strategy, 24
self-verifying number, 120, 129
semantic error, 280
semicolon, 30
separation of concerns, 313
seq, 341
seq-from-to, 250
sequence, 245
sequence comparison, 400, 419
sequence, arithmetic, 248
sequence, infinite, 276
sequence->list, 248
sequence-append, 251, 252
sequence-cons, 251, 252
sequence-from-to, 246, 248, 250
sequence-from-to-with, 248
sequence-length, 245, 247, 249, 252
sequence-map, 251, 252
sequence-ref, 250–252

sequence-with-from-by, 248, 249
server, 617
set-car!, 446
set-cdr!, 446
set-empty!, 464
set-global-environment!, 482
set-height!, 441
set-left-subtree!, 464
set-mem!, 367, 370
set-method!, class/, 493, 513, 527, 528,

539
set-pc!, 367, 370
set-queue-cells!, 449
set-queue-length!, 449
set-queue-start!, 449
set-rank!, 464
set-reg!, 367, 370
set-right-subtree!, 464
set-value!, 464
setInitialAmount, 634, 638, 639
setInterestRate, 634
setLabel, 605
setLayout, 605
setter, 519, 520
setter, class/, 517, 520, 521
setValue, 639
sevens, 179, 204
sge, 341
sgt, 341
shared-memory multiprocessor, 336
shift, 422
shift!, 374
shift?, 430
shirks-chocolates-rated-by-max, 395
shirt-class, 513, 514
show, 265
show-class-hierarchy, 511, 536
shuffle, 177
shuffle-number, 178
sibling, 465
side-by-side, 16
Sierpinski’s gasket, 95
sierpinskis-gasket, 99
signature, 86
signing-exponent, 89
simple-strategy, 158
simulation, 543
size-of-pile, 137, 145, 147–149, 151–154
skip-of, 417
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slash, 594
sle, 341
sleep, 619, 637
sliding 15-tile puzzle, 601
SLIM, 334
slt, 341
smaller, 206
Smalltalk, 247
sne, 341
solution (line breaking), 409
sort, 225
sorted-list->min-height-bstree,

224
source register, 338
SP, 359
space-width, 407
special-item-class, 502
special-item/input-specifics, 502
sqrt, 6, 646
square, 9, 28, 33, 119
square-sum, 205
st, 341
stack, 359, 423, 429
stack, 16, 646
stack discipline, 359
stack pointer, 359
stack-copies-of, 40, 54, 111
start, 619, 620, 631
state, 362
state oriented, 362
state variable, 491
state, read-eval-print-loop, 482
statement, 588
static, 593
Stirling number of the second kind, 413
stop, 631, 632
store, 341
store-into-table, 385
stored program computer, 334
strategy, 156, 158, 166
strictly ordered, 214
String, 585
string, 433
kstringl, 282
string, 434
string->number, 433
string->symbol, 433, 541
string-append, 541
string-comparator, 472

string-length, 433
string-ref, 433
string-set!, 433
string-width, 407
string<?, 472
string=?, 472
strip-one-label, 237
strong data-abstraction principle, 150
sub, 341
sub1-each, 207
subclass, 488, 489, 514
subproblem nesting level, 313, 315
substitute-for-in, 295
substitution, 301
substitution model, 10–12, 295
substitutions-in-to-match, 193, 196,

197, 199, 201, 287
subtract-the-first, 37
subtree, 214
subtrie, 230
subtrie-with-label, 231, 232
subtries, 232
successor-of-in-or, 239
sum, 173
sum-integers-from-to, 38
sum-of-cubes, 38, 120
sum-of-digits, 121, 375
sum-of-divisors, 58, 60
sum-of-first, 36, 120
sum-of-powers, 38
sum-of-squares, 38, 120
summarize-image, 274
super, 584–586
Super-Lean Instruction Machine, 334
superclass, 489
survives?, 66, 68
symbol, 138
symbol->string, 473, 541
symbol-append, 541
symbol-comparator, 473
symbol-list-comparator, 473
symbol?, 282
synchronized, 623–625, 629, 633, 637,

644
syntactic category, 280
syntax, 279
syntax, superficial, 291
syntax-ok?, 287
System, 586, 592
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table, two-dimensional, 390, 391, 412
table-fill!, 391
table-find, 259, 260
table-height, 391, 392
table-ref, 391, 392
table-set!, 391, 392
table-width, 391, 392
tag, type, 255, 258, 259
tagged-datum, 255
tagged-movies, 255
tail, 168
tail, 245, 247
take, person/, 556
take-all-of-first-nonempty, 159
take-one-from-random-pile, 159
target address, 339
tax, 12
terminal, 281
terminate, 632
termination, 30, 31, 114
test, 12
test-bb, 16, 18
TextField, 601
the-only-element-in, 197
Therac 25, 622
Q (big theta), 81, 107
thing-class, 544, 545, 548, 549
thing/become-owned-by, 550
thing/become-unowned, 549
thing/init, 549
thing/owned?, 549
thing/owner, 549
this, 493, 583
Thread, 618
thread, 617
three-dimensional vector, 162
thrifty-item-list-class, 514
throws, 627
TileActionListener, 603, 606
time, 162
title, 254, 256, 259
titles-of-movies-satisfying, 190
together-copies-of, 110–112
token, 422
tokenize, 426, 433, 434
tolerance, 64
top-level definition, 304
top-minus, 429, 435, 439, 444
total-price, item-list/, 488, 498, 513

total-size, 143, 152
totalPrice, 590
transform-point, 265
traversal, post-order, 284
tree recursion, 83, 95
tree traversal, 218–220
tree, binary, 221
tree, binary search, 214, 453, 463, 466, 474
tree, complete, 222
tree, expression, 227, 284
tree, ordered, 229
tree, positional, 229
tree, ranked binary, 463
tree, red-black, 453, 455, 456, 462, 463, 472,

474, 485
tri-block, 104
triangle, 99
trie, 230, 242
trigger, registry/, 547
trigger-times, registry/, 547
triple, 118
troll-class, 569
true, 595
truth value, 12
try, 597
Turing machine, 116
Turing test, 117, 203
Turing, Alan, 116–117, 128, 203, 204
turkey-servings, 13
turn-into-frog, 560
turnable image, 480
two-dimensional table, 390, 391, 412
two-factorials, 354
two-part list viewpoint, 168
type, 258, 582
type, 255
type checking, 157, 158
type tag, 255, 258, 259
type-name, 258
type-operation-table, 258

UML, 489–491, 518, 527, 529, 544, 545,
580, 602, 607, 608

unchecked-object/set-class!, 523
uncomputable, 114, 118
unconditional jump, 345
uncons, 326
Unified Modeling Language, 489–491, 518,

527, 529, 544, 545, 580, 602, 607, 608
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union-set, 275
universality principle, 278
unix-programmers-manual, 563
unparse, 312, 313
upper-endpoint, 161
user interface, 563

vacuous, 440
value, 5, 430
value, 236, 464
value oriented, 362
value->labeled-value, 237
valueEntered, 639
values->trie, 235, 238
values-in-trie, 235
values-with-first-label, 238
vector, 333, 363
vector, three-dimensional, 162
vector-copy!, 497
vector-fill!, 385, 646
vector-length, 363
vector-ref, 363
vector-set!, 363
verbalize-list, 553, 558
verification function, 84
verify, 85
version control, 400
virtual method, 525
void, 584

wait, 628, 629
waiting, busy, 628, 643
waitUntilEnabled, 626–629

walk-count, 380, 383
walk-count-subproblem, 384
ways-to-factor, 100
ways-to-factor-using-no-smaller-

than, 100
Web, World Wide, 610
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widget, 481
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witch-class, 544, 559, 569
witch/act, 560, 569
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x-coord, 162, 163, 263

y-coord, 162, 163, 263
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