
Windchime: An FPGA-Based Self-Timed Parallel Processor

Erik Brunvand

Department of Computer Science

University of Utah, SLC, Utah, 84112

Abstract

Self-timed circuits and scalable parallel computers seem to be a natural match, but one
that has not been exploited by traditional system designers. One reason for the lack of
experimentation with self-timed systems such as these is the lack of commercially available
parts to support this style of design. Field programmable gate arrays (FPGAs) offer an
excellent alternative for rapid development of novel system designs provided suitable circuit
structures can be implemented. A library of self-timed circuit elements has been developed
for use with Actel FPGAs. This library has been used successfully to build a pipelined,
decoupled uniprocessor called NSR and is now being used to build a scalable parallel
machine called Windchime. Windchime is an experimental MIMD parallel processor that
is both self-timed and reconfigurable. Each processor in the Windchime machine is a
small, self-timed computer. These processors, called Chimes, communicate through a
mesh-connected array of wormhole router circuits that are also self-timed. The routing
circuits are implemented using two Actel 1020A FPGAs for each switching node in the
network. Chime processors are also built using Actel FPGAs. Each processor uses from
one to three Actel 1020A FPGAs and standard memory chips.

INTRODUCTION

As computer designers explore the potential of parallel computing systems, they are faced with
a number of new and vexing problems. Timing problems in particular become more severe
and account for an increasing portion of the design and debugging expense for large concurrent
systems. These problems are beginning to become significant in a variety of large systems, but
are especially noticeable in large ensembles of computers designed to act in concert to solve
problems. If the parallel computer is designed to be scalable by simply adding more processors,
a very desirable property, the timing problems just become worse.

At the root of this problem is the traditional design practice of synchronizing even large
hardware systems with a global clock signal. One alternative is to use asynchronous or self-
timed circuits which avoid timing problems by enforcing simple communication protocols
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between parts of the circuit that are insensitive to delays in circuit components or the wires
that are used to connect them (Seitz 1980, Brunvand 1991a). Asynchronous systems have been
shown to exhibit a number of inherent advantages: more robust behavior (in terms of process
and environmental variations), a capability for higher performance operation, decreased power
consumption, and inherently higher reliability in high speed applications.

Self-timed circuits would seem to be a natural match for large hardware systems, especially
those like parallel computers that exhibit a high degree of concurrency. However, despite a
long history of interest by researchers and some seemingly compelling advantages, this type of
circuit design is not practiced widely at present. The drawbacks of asynchronous and self-timed
systems include an increase in circuit size, an increase in the number of wires connecting parts
of the system, possible performance penalties caused by the larger circuits, and a difference
in test procedures from those used in standard synchronous circuits. These drawbacks are
compounded by a dearth of CAD tools that can be used for asynchronous designs and a lack of
commercial supply for some of the more esoteric circuits used to build these systems.

Recently, asynchronous circuits in general, and self-timed circuits in particular, are expe-
riencing renewed interest by systems designers (Martin 1986, Burns 1987, Ebergen 1987, van
Berkel 1988, Brunvand 1989, Meng 1989, Sutherland 1989). The self-timed techniques being
explored, although distinct in many ways, share a common property of local, rather than global,
synchronization. The problems related to increased asynchronous circuit size are becoming
less important as modern VLSI technology continues to improve and, as more researchers
and designers are drawn to self-timed techniques, CAD tools are becoming more available.
The lack of suitable parts can be overcome simply by designing the parts directly in custom
VLSI, but the turnaround time is still too long, and the cost too high, to allow economic rapid
prototyping of novel computer systems. Field programmable gate arrays (FPGAs) provide an
ideal solution for experimenting with innovative systems such as self-timed systems.

In order to use FPGAs to build self-timed systems easily, a library of self-timed control and
data circuits has been developed for use with Actel FPGAs (Brunvand 1991b, 1992). Using this
library, circuits are assembled using the Viewlogic suite of schematic capture and simulation
tools (Viewlogic 1991), and then placed and routed onto the Actel device using the ALS tools
from Actel (Actel 1991). These cells are also implemented as custom CMOS and DCFL
GaAs cells so a design may be easily re-implemented in a faster technology if the prototype is
successful (Brunvand 1992). The FPGA library has been used to develop a number of successful
self-timed systems including a simple wormhole router (Brunvand 1991b), and a self-timed
pipelined 16-bit computer called the Non-Synchronous RISC (NSR)(Brunvand 1993). This
library is now being used to build a self-timed parallel computer called Windchime.

In addition to the benefits of timely and economical investigation into new computer
architectures, the FPGAs allow students to become involved in the implementation of a complete
computer system in a short amount of time. The components that make up Windchime were
designed by students in a one quarter course on self-timed circuit and system design offered by
the computer science department at the University of Utah. The integration of the system parts
into a functioning parallel computer was carried on by interested students in seminars during
subsequent quarters.

Windchime consists of a collection of small self-timed processors, called Chimes, that
communicate through a mesh-connected array of self-timed wormhole routing chips. In addition
to being individually self-timed, the communication between the processors and the routers, and
between the routers themselves, is also self-timed. This enables Windchime to scale gracefully
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simply by adding more routers and processors to increase the capability of the ensemble.
Because there is no global synchronization, increasing the physical extent of the machine does
not cause timing failures.

Each Chime processor runs its own program in its own private address space. Coordination
of the Chimes is accomplished by sending messages through the routing network. A variety of
different types of Chimes have been built and more are being designed. This paper will, after
a discussion of self-timed circuits and signalling protocols, describe the routing network that
connects the processors, the protocols used to ensure that the different Chimes can cooperate,
and an example of one particular Chime processor.

SELF-TIMED CIRCUITS

Self-timed circuits are a subset of a broad class of asynchronous circuits. Asynchronous
circuits do not use a global clock for synchronization. Instead, they rely on the behavior and
arrangement of the circuits to keep the signals proceeding in the correct sequence. In general
these circuits are very difficult to design and debug without some additional structure to help
the designer deal with the complexity. Clocked synchronous circuits use the structure of a
periodic global clock to keep things under control. Self-timed circuits, on the other hand, rely
on the structure of a signalling protocol used locally whenever parts of the system communicate.
Self-timed protocols are often defined in terms of a pair of signals that request or initiate an
action, and acknowledge that the requested action has been completed. One module, the sender,
sends a request event (Req) to another module, the receiver. Once the receiver has completed
the requested action, it sends an acknowledge event (Ack) back to the sender to complete the
transaction.

Although self-timed circuits can be designed to implement their communication protocols
in a variety of ways, the circuits used to build Windchime use two-phase transition signalling
for control and a bundled protocol for data paths. Two-phase transition signalling(Seitz 1980,
Brunvand 1991a) uses transitions on signal wires to communicate the Req and Ack events
described previously. Only the transitions are meaningful; a transition from low to high is the
same as a transition from high to low and the particular state, high or low, of each wire is not
important.

A bundled data path uses a single set of control wires to indicate the validity of a bundle
of data wires. This requires that the data bundle and the control wires be constructed such that
the value on the data bundle is stable at the receiver before a signal appears on the control wire.
This condition is similar to, but weaker than, the equipotential constraint (Seitz 1980). Two
modules connected with a bundled data path are shown in Figure 1.

Micropipelines

A micropipeline (Sutherland 1989) is a self-timed pipeline where each stage signals to the next
that it has completed, and waits until the previous stage signals before accepting new data. A
pipeline of this type can be organized as a simple first-in first-out (FIFO) buffer where each
pipe stage is a simple latch, or as a more complicated structure that processes data in each pipe
stage. Figure 2 shows a micropipeline both as a FIFO, and with extra processing logic between
stages. The Chime processors and the routing circuits that make up Windchime are designed
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Figure 2 A Micropipeline with Processing

as micropipelines using a library of self-timed cells for Actel FPGAs (Brunvand 1991b).
The Req and Ack signals in the circuit from Figure 2, as in the circuits used to build

Windchime components, are transitions, and the data are contained in bundles. The control
for micropipelines is built from Muller C-elements. These gates, drawn as an AND gate with
a C inside, will drive their output low when both inputs are low, and high when both inputs
are high. When the inputs are at different states, the output is held at its previous level. Note
that one input of each C-element used in Figure 2 is inverted. Thus, assuming that all the
control signals start low, the leftmost C-element will produce a transition to the leftmost latch
when the Req-In line first goes from low to high. The acknowledge from the latch will, after
passing through the logic, produce a similar request through the next C-element to the right.
Meanwhile, the leftmost C-element will not produce another request to the leftmost latch until
there are transitions both on Req-In (signalling that there are more data to be accepted) and the
Ack from the next latch to the right (signalling that the next stage has finished with the current
data). Each pipe stage acts as a concurrent process that will accept new data when the previous
stage has data to give, and the next stage is finished with the data currently held.

Notice that there is logic between the first two stages of this micropipeline. This logic begins
computing its function on receipt of a Req transition, and signals that the result is available by
making a transition on its Ack line. This can be connected to the next micropipeline stage to
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indicate that data are available. If the logic is not internally self-timed and able to generate a
completion signal, as shown in the second logic block in Figure 2, a delay must be added that
models the delay of the data through that logic. This is shown as the delay element at the top
of the figure. If no processing is present between the stages, as seen in the right two stages in
the figure, the micropipeline is a simple FIFO buffer.

WINDCHIME ARCHITECTURE

Windchime is really a framework for assembling a variety of MIMD message-passing parallel
machines. At the heart of Windchime is a mesh-connected array of wormhole routing cir-
cuits. These circuits are the medium through which the Chime processors communicate. The
Windchime routers are self-timed micropipeline circuits that communicate using the two-phase
bundled protocol described above. Chimes communicate to the routers through the same two-
phase bundled interface. The Chimes are attached to the routing array by connecting a ribbon
cable from the Chime processor to one of the headers on the router board associated with each
routing node. In this way different parallel machines may be assembled by plugging a different
set of Chimes into the router mesh. This organization is shown in Figure 3.

Because the communication protocol used throughout Windchime is self-timed, the physical
extent of the machine may be increased simply by attaching more routers and more processors.
There is no concern with tuning the global clock to account for the additional hardware as there
is no global synchronization, other than a global master reset signal. As long as the Chimes also
conform to this protocol, they may be designed independently and connected to Windchime
with assurance that the ensemble will continue to function correctly. If higher performance is
required, the circuits that make up Windchime may be built from faster technologies. In fact,
there is no restriction that each part of Windchime be constructed from the same technology.
A fast CMOS chime, for example, can function without problems in the same machine that
contains FPGA-based Chimes that operate at much lower speeds.

Self-timed wormhole routing

The Windchime router is a self-timed wormhole router inspired by the Torus Routing Chip
(Dally 1986). Our router is connected in a mesh with each node having a pair of unidirectional
bundled data channels in each routing direction and a pair of unidirectional bundled channels
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that connect to a Chime processor. Each node of this router is actually implemented as a pair
of router circuits as shown in Figure 4. Each of this pair of circuits is built on a separate Actel
1020A FPGA and implements three data paths of the complete router: the first contains the
input channel from the processor and the X-dimension channels, while the second implements
the Y-dimension channels and the processor output channel. Each of these chips is the same
design with a mode pin determining if the chip is an X-router or Y-router.

Messages are injected into the routing network from the processor and are routed first in
the X-dimension and then in the Y-dimension based on address information in the header of
the packet until the message reaches its destination. At that point, the message is passed to the
attached Chimes processor. All bundled data paths of the routers are 8 bits wide.

The packet format for messages passed through the routers is shown in Figure 5. The first
byte in the packet is the X-dimension offset, and the second is the Y-dimension offset. These
offsets are signed (two’s complement) 8-bit quantities allowing offsets from -128 to +127 in
each dimension. At each router in the message path the offset is updated. After the correct
number of steps in the X direction, the offset has been updated to 0 and the message switches
to the Y dimension. When the Y offset is 0, the message has reached its destination and is
routed to the processor channel. As each offset reaches 0 it is consumed by the router so that
the Chime does not receive the 0 offset bytes.

The third byte in each packet is a length byte. This byte lets the router, and the eventual
Chime recipient, know how many data bytes are contained in the packet. The wormhole routing
used by the Windchime router will pass the entire message through the same path once the head
of the packet, containing the offset information, has set the path through the array. The packet
that is eventually delivered to the target Chime starts with this length byte and is followed by
that number, from 0 to 255, of data bytes.
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The X-router and Y-router that make up one Windchime router each use an Actel 1020A
FPGA. These circuits use 545 of the available 547 basic modules on the A1020 for 99%
utilization of the Actel part. Such high utilizations are not usually possible for synchronous
hardware. One reason is the limitation on the number of long wires in the FPGA. On the Actel
array, for example, long vertical or long horizontal tracks are often the limiting resource in large
designs. Because the self-timed organization of these circuits tend to use local connections,
we have found that high utilization of FPGAs devices is often possible. On the other hand, the
increased overhead of the self-timed circuits often makes high utilization necessary.

Because of the limitations on the size of the A1020, each router chip has three input channels,
but only two output channels that are shared between the three possible outputs as shown in
Figure 6. Messages traveling in the negative direction always use the A output channel, and
messages traveling in the positive direction always use the B channel. The channel from the
processor can use either the A or B output channel (depending on the direction specified in the
header) with the arbiter managing this overlap to make sure there are no collisions. The output
circuit for the router chip has only two data paths, but three control paths so that although only
two messages may be passing through the router at any time, they may use any combination of
the three possible outputs. With an FPGA of larger capacity, three independent channels would
have been possible.

The current version of the Windchime routing board contains a three by three array of
routers assembled using wire-wrap. There are headers for nine possible Chimes, and headers
at the edges of the router array for connections to additional routers, peripherals, or to a host
processor.

System interconnection

In order for the Chime processor to connect to the Windchime routers they must communicate
using an 8-bit two-phase bundled data channel and they must obey the packet protocol shown
in Figure 5. In order to operate effectively in this environment, they should also have some
additional features related to the Windchime system as a whole. One desirable feature is, at the
risk of using confusing terms, to be able to synchronize with the other processors in the array.
That is, many parallel algorithms synchronize at the software level by requiring that certain
calculations have been completed by each processor in the ensemble before moving on to the
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next phase of the computation. This is accomplished on Windchime by having each Chime
processor implement a SYNC instruction. The effect of this instruction is to issue a transition
on a special SyncReq line on the cable that connects the Chime to the router. Only when all the
machines in the array have also issued a SYNC instruction, and thereby have sent a transition
on their own SyncReq lines is a SyncAck issued to each processor. The Chimes will halt after
issuing a SyncReq and not resume operation until they they have received a SyncAck. In this
way the application running on Windchime can synchronize the processes that are running on
individual Chimes.

The current synchronization mechanism is a large C-element on the router board that collects
the SyncReq transitions from each Chime and issues a single SyncAck to the entire array when
they have all been seen. The cables that connect the Chimes to the router have a special pin
that is pulled low when a processor is connected to that router. In this way the synchronizing
C-element on the router is automatically aware of which Chimes are connected to the array and
thus from which Chimes to expect SyncReq signals. Future versions of Windchime may have
more complex synchronization primitives that would allow individual partitions of the current
Chimes participate in the synchronization. The current version requires that all Chimes SYNC
before any Chime can continue.

Another potential problem with a parallel machine such as this is the possibility of deadlock
in the router network. The Windchime routing algorithm can be made deadlock-free because
the routers are able to route in both the positive and negative direction and thus cycles can be
avoided. This does not mean, however, that deadlock cannot occur because of poorly written
software. If a message is being sent to Chime A from Chime B, for example, but Chime A
is not accepting it because it is busily trying to send a message back to Chime B, the system
can deadlock as each Chime waits for the other to accept its message before continuing. To
provide a means for avoiding this problem in software the Chimes are encouraged to implement
PROBE instructions that operate on their router I/O channels. This PROBE is similar to that
discussed by Martin (1985) and returns true only if the channel is capable of responding. That
is, executing a PROBE instruction on an output channel will return true if sending a byte to
that channel will succeed, and executing a PROBE on an input channel will return true only if
there are data waiting to be accepted at that input channel. Since the software can use these
PROBEs to decide whether an I/O action will succeed if attempted, software may be written
that can avoid the type of deadlock mentioned above.

Finally, the Windchime array should have a connection to the outside world, and have some
means of initialization. This is handled through an attached host processor, currently a PC.
The PC has an interface card that allows the PC to send and receive using two-phase bundled
channels. These channels are connected to the Windchime router at the edge of the router
board. This allows messages to be sent to any Chime in the array from the PC, and allows any
Chime to send messages to the PC through the Windchime Router.

This mechanism is also used for initialization. Each Chime has a “boot mode” that it
enters after a reset signal. In boot mode the Chime expects to receive one packet through its
router interface and deposit the contents of that packet into its memory. After receiving this
single packet (which can contain up to 255 bytes) the Chime will issue a SYNC instruction to
make sure that it does not begin operating until all the Chimes in the array have been similarly
initialized. After receiving a SyncAck signal, the Chime will begin executing at the location
where the boot packet was loaded. These boot packets are injected into the Windchime routing
network, and thus to the individual Chimes, by the host PC.
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SELF-TIMED CHIME PROCESSORS

The Chime processors that are connected to make the Windchime machine can be of whatever
design is useful, as long as they obey the restrictions mentioned previously. In fact, there
is no reason the processors cannot be standard synchronous processors that implement the
correct protocols at their interface. In practice, the Chimes currently developed for Windchime
are themselves self-timed processors designed in the micropipeline style and acting without
a clock signal. Due to space limitations, this section will present a brief description of only
one type of Chime. Other Chimes include stack-based processors, standard accumulator based
processors, a microcoded chime that shares its memory between microcode that implements a
virtual machine of any size and the program code for that machine, a special-purpose Chime
that sorts and merges input packets and then sends them back to the caller, and an arithmetic
co-processor Chime that implements multiplication and division. Any of these Chimes may be
plugged into the router board to configure a Windchime machine that is tailored to a particular
application.

The B-Minor Chime

The B-Minor Chime is an 8-bit stack-based computer modeled after the Transputer. The
register set of this Chime is shown in Figure 7 and include a three-deep evaluation stack,
program counter, index register, and operation register (Op). The byte-wide instruction set of
the B-minor Chime is also modeled after the Transputer. The instruction set is shown in Figure 8.
As seen in the figure, instructions to the B-minor Chime are all single bytes. Of these bytes, the
high four bits are an opcode, and the low four bits are a four-bit data value. This value is OR’d
into the Op register before the instruction is executed. The PREFIX and LDOP instructions
allow constants larger than four bits to be built in the Op register for later instructions. A
consequence of this is that the Op register is cleared after each instruction is executed except
for PREFIX and LDOP which leave the value in the Op register for the following instruction.
As an example of using the PREFIX feature of this instruction set, consider adding the constant
0h19 (decimal 25) to the value currently in the stack. The sequence of instructions would be:

PREFIX 0001
ADDI 1001

This would first put 0001 into the Op register, then shift it four places to the left. The ADDI
instruction then OR’s the 1001 into Op, resulting in the 0h19 constant in the Op register which
is then added to the value in the top of the stack.

The arithmetic instructions all operate on the stack with A being the head of the stack
and C being the tail. The arithmetic operation are examples of “operate” instructions. That
is, the opcode bits of these instructions inform the processor to execute as if the Op register
contains the opcode instead of the instruction register. This expands the instruction set from
the 16 possible instructions to 31 instructions (with more possible in the future by building
instructions in the Op register larger than 4 bits).

Because of space limitations on the Actel 1020, the data path of the B-minor chime is 8 bits
wide and the address space is 12 bits. Thus, for saving the PC and the Index register, two values
must be pushed onto the stack. At this writing the datapath for the B-minor Chime has been
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Mnemonic Encoding Action

PREFIX 1100 value Op 	 value << 4
LDOP 1101 value Op(low 8) 	 A, Pop
LDI 1010 value Push(Op)(low8)
LD 0110 value Push(MEM[Index + Op])
ST 0111 value MEM[Index + Op] 	 A, Pop
PUSHPC 1111 value Push(PC + Op)(low8), Push(PC + Op)(Hi8)
PUSHX 1110 value Push(Index + Op)(Low8),Push(Index + Op)(Hi8)
ADJ 0010 value Index 	 Op
ROUT 1001 0000 RouterOut 	 A, Pop
RIN 1001 0001 Push(RouterIn)
PIN 1011 0000 Push(Probe(RouterIn))
POUT 1011 0001 Push(Probe(RouterOut))
BRABS 0000 value if A == 0, PC 	 Op
BRREL 0001 value If A == 0, PC 	 (PC + Op)
SYNC 1000 xxxx Send SyncOut, Wait for SyncIn
ADDI 0011 value Temp 	 (A + Op), Pop, Push(Temp)
EQI 0100 value Push (A == Op)
ADD 0101 1100 Temp 	 (A + B), Pop, Pop, Push(Temp)
ADDC 0101 1101 Temp 	 (A + B + Carry), Pop, Pop, Push(Temp)
SUB 0101 1111 Temp 	 (B - A), Pop, Pop, Push(Temp)
COMP 0101 0110 Temp 	 (-A), Pop, Push(Temp)
AND 0101 0000 Temp 	 (A AND B), Pop, Pop, Push(Temp)
OR 0101 0001 Temp 	 (A OR B), Pop, Pop, Push(Temp)
XOR 0101 0011 Temp 	 (A XOR B), Pop, Pop, Push(Temp)
NOT 0101 0010 Temp 	 (NOT A), Pop, Push(Temp)
SHL 0101 0100 Temp 	 (A << 1), Pop, Push(Temp)
SHRA 0101 0101 Temp 	 (A >> 1)(arithmetic), Pop, Push(Temp)
SHRL 0101 0111 Temp 	 (A >> 1)(logical), Pop, Push(Temp)
EQ 0101 1000 Push(A == B)
LT 0101 1001 Push(B < A)
LE 0101 1011 Push(B <= A)
POP 0101 1110 Pop
DUP 0101 1010 Push(A)

Figure 8 B-Minor Chime Instruction Set
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built and tested in a single Actel 1020A using 59 I/O pads and 541 of the available 547 logic
modules corresponding to 99% utilization. The control chip is also an Actel 1020A but has not
been fully completed. It is expected that this chip will use roughly 50-75% of the modules on
the Actel A1020.

As a point of comparison, another Chime that has been built and tested uses a microcoded
model where the microcode shares the memory space with the program code. This Chime,
called the Microprogrammed Micropipelined Microprocessor (MP3), consists of a small, self-
timed microcode evaluation engine and fits into a single Actel 1020A FPGA. It uses 48 I/O pads
and 502 logic modules (92% utilization). This Chime, like the B-minor chime, uses standard
SRAM with a timing model to generate a completion signal from the memory.

CONCLUSIONS

Self-timed circuits have a number of interesting advantages over their clocked synchronous
counterparts. In particular, the separation of functionality from timing that results from the
self-timed communication protocol makes these circuits ideal for assemblinga parallel computer
that can be scaled simply by adding more processors. We have built a small scalable parallel
machine called Windchime using Actel FPGAs in order to quickly prototype the architecture.
Windchime consists of an array of mesh-connected self-timed wormhole routing circuits and
a collection of small processors of a variety of types, called Chimes, that can be connected
to this routing network through a self-timed interface. The processors each execute their own
programs from their own private address space and cooperate by passing messages through
the routing network to other processors in the array and to the host processor. If a different
set of processors is desirable for a particular application, they can simply be attached to the
routing network using ribbon cable connectors. Because the communications are self-timed,
no retiming of the system is required.

In addition to being a demonstration of the suitability of self-timed circuits for building
parallel machines, Windchime is also an excellent vehicle for student investigations into parallel
computers and parallel computing. Students interested in computer architecture can design
new chime processors and test them in a system by plugging them into the Windchime routing
network. Because of the communication protocol, a Chime designed to obey the functional
requirements of the protocol is assured to work in the system regardless of the speed of that
system. Relatively slow circuits built using FPGAs can gracefully mingle with faster hardware
built using other higher performance technologies. Students interested in parallel computing
can used Windchime as a vehicle for studying software development and tools in a parallel
environment.

Our library of self-timed parts available for Actel FPGAs, MOSIS scalable CMOS, and
Vitesse GaAs processes has proven to be extremely useful in building a number of systems.
These systems allow the advantages and disadvantages of self-timed approaches to be studied
in detail by building and testing circuits. The FPGA library in particular has been useful
in allowing rapid evaluation of novel designs in real system contexts rather than simply by
simulating the circuits.
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