XG Mode
User Guide

Version X-2005.09, September 2005

Comments?

Send comments on the documentation by going
to http://solvnet.synopsys.com, then clicking
“Enter a Call to the Support Center”

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
and its employees. This is copy number

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,
Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill,
PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, Testify, TetraMAX, TimeMill,
TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)

Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAll, Astro, Astro-Rail, Astro-Xtalk, Aurora,
AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,
Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC
Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,

DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic
Model Switcher, Dynamic-Macromodeling, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess,
ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler Il, FPGA Express, Frame
Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-Il, Hierarchical

Optimization Technology, High Performance Option, HotPlace, HSIMplus, HSPICE-Link, i-Virtual Stepper, iN-Tandem,
Integrator, Interactive Waveform Viewer, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty,
Libra-Passport, Libra-Visa, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit,
Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family,
Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLIint, Optimum Silicon, Orion_ec, Parasitic View, Passport,
Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA,
ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn,
ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,
SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,
Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,
Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System
Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (*“)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Document Order Number: 38065-000 ZA
XG Mode User Guide, version X-2005.09

Contents

Whats New in ThisRelease X
About This ApplicationNote Xiv
Customer Support. XVi

1. Introduction to XG Mode

Products That Support XGMode 1-3
Supported Platforms 1-4
Licensing Requirements, 1-4
Command Languages. 1-4
Libraries. o 1-6

Logical Libraries. 1-6

Physical Libraries. 1-7
Setup Variables 1-7
SupportedCommands i 1-8
Differencesin Behavior. L. 1-9

read_*Command. 1-9

current_designCommand 1-11

Runtime Differences. 1-11
Collection Preservation Differences 1-13
get_object_name Command 1-14
set_attribute Command 1-15
filter_collection Command 1-16
remove_annotated_delay Command. 1-17
Reference Objects. 1-17
Collections 1-19
SDC Support 1-20
Timing Path Attributes L 1-20
Invoking a Synthesis Toolin XGMode 1-23
Determiningthe Mode. L 1-24

XG Mode Design Database Formats

Usingthe .ddc Format. 2-3
Writing.ddc Files. 2-4
Limitations When Writing .ddc Files. 2-4
Reading.ddcFiles. 2-5
Converting From .db Formatto .ddc Format 2-5
GUI Support. 2-5

Using the Milkyway Format 2-6
Creating a Milkyway Design Library. 2-8
Saving a Design in Milkyway Format. 2-9
Limitations When Writing Milkyway Format................ 2-12
Reading a Design in Milkyway Format. 2-12

Limitations When Reading Milkyway Format. 2-17

Maintaining the Milkyway Design Library. 2-18
Invoking the Milkyway Environment Tool 2-19
Opening a Milkyway Design Library. 2-19
Listingthe Cells 2-20
Purging Versions fromthe CEL View 2-21
Deletinga Cell 2-22

Converting From .db Format to Milkyway Format 2-23

GUI Support. 2-23

Usingthe .db Format. 2-24

Writing.doFormat. L. 2-24
Limitations When Writing .db Format. 2-25

Limitations When Reading .db Format. 2-25

Interfacing Between Synopsys Tools. 2-26

Exporting Design Data to Jupiteror Astro 2-26

Verifying Designs Compiled in XGMode. 2-27

. Using Design Compiler in XG Mode

Differencesin Behavior 3-2
Using Automated Chip Synthesisin XGMode 3-5
Unsupported Capabilities 3-6

. Using DFT Compiler in XG Mode
Benefits of XG Mode. e 4-2
Features Available in XGMode. 4-3

vi

Overview of Scan Synthesis Command Changes. 4-4

Using the db2xg Converter Script 4-11
Known Limitations 4-12
Converting to the Unified TestDRC Flow 4-15
About the set_dft_signal Command 4-16
Performing Scan Synthesis L, 4-18
Performing RTL Test Design Rule Checking 4-19
Performing 1-Pass Scan Synthesis 4-20
Performing Pre-Scan Test Design Rule Checking........... 4-20
Performing Scan Insertion. 4-21
Analyzing the Post-Scan Design 4-23
Complete Scan Insertion Example 4-24
Performing Scan Extraction., 4-26
Using Rapid Scan Synthesis. 4-28
Using Hierarchical Scan Synthesis 4-28
Using AutoFix 4-30
Reporting. 4-33
Using BSD Compiler i 4-37
Boundary-Scan DesignFlow. 4-37
Boundary-Scan Verification Flow. 4-39
Unsupported Capabilities. 4-41
Using DFT Compiler DBIST Synthesis 4-42
GUI SUpport ... 4-45

5. Using Physical Compiler in XG Mode

Physical Libraries 5-2
Generating a Milkyway Reference Library from LEF 5-2
Generating a Milkyway Reference Library from .pdb......... 5-4
Generating a Milkyway Technology File. 5-5
Using .pdb Libraries. 5-6

Supported Physical Design Flows. 5-7
Synopsys ToolFlow. 5-7
Third-Party Tool Flow. L 5-8

DifferencesinBehavior. 5-10
Checkpointing the Optimization Results 5-10
Using Interface LogicModels., 5-12
Using Distributed Physical Synthesis. 5-13
GUIEnhancements 5-13

Features Available Onlyin XGMode. 5-14
Milkyway-based DEF and PDEF Support 5-14
Relative Placement 5-16

Unsupported Capabilities 5-16

6. Using Power Compiler in XG Mode

Benefitsof XGMode 6-2
Differences in Command Behavior 6-2
Features Available Only in XGMode. 6-3

Multistage Clock Gating., 6-4

Vii

Hierarchical Clock Gating
Resetting of Clock-Gating Attributes
Power Analysis Enhancements
Stitching of Power-Gating Signals

Appendix A. Command Differences

Index

viii

Preface

This preface includes the following sections:

e What's New in This Release
e About This Application Note

e (Customer Support

What’s New in This Release

This section describes the new features, enhancements, and
changes made to XG mode in version X-2005.09. These features
and enhancements are available only in XG mode. In general,
features added to DB mode in version X-2005.09 are also available
in XG mode, but they are not documented in this guide.

New Features

In version X-2005.09, the following new features have been added to
support XG mode:

* The following DFT Compiler features are now supported in XG
mode:

- BSD Compiler
- SocBIST
e Design Compiler FPGA now supports XG mode

Preface

X

Enhancements

In version X-2005.09, XG mode includes the following
enhancements:

* The following commands work on instances throughout the
hierarchy, instead of just on instances within the current design:

- Netlist editing commands

- ungroup, group, and uniquify commands
- change_1link command

- set_size_only command

For more information, see “current_design Command” on
page 1-11.

e The compile_ultra command automatically ungroups small
hierarchies to improve the quality-of-results

e The check_design command has been enhanced to check for
additional design problems

For information about the check_design enhancements, see
“Differences in Behavior” on page 3-2.

e Support for SDC version 1.5

For details about SDC version 1.5, see the Using the Synopsys
Design Constraints Format Application Note.

What's New in This Release

Xi

Preface

Xii

Support for Milkyway-based DEF and PDEF generation

The DEF and PDEF implementations are now consistent across
the Galaxy platform. This capability requires the use of Milkyway
reference libraries for the physical libraries.

For more information about the Milkyway reference libraries, see
“Physical Libraries” on page 5-2.

The following DFT Compiler enhancements are available only in
XG mode:

- Ability to specify internal pins as test pins
(set_dft_drc_configuration -internal_pins)

- Ability to specify serially routed sequential cells as a scan
group (set_scan_group -serial_routed)

Changes

In version X-2005.09, the following changes have been made to XG
mode:

XG mode is now the default mode for Design Compiler, DFT
Compiler, Physical Compiler, and Power Compiler

By default, Physical Compiler uses Milkyway reference libraries,
rather than the .pdb physical libraries.

Known Limitations and Resolved STARs

Information about known problems and limitations, as well as about
resolved Synopsys Technical Action Requests (STARs), is available
in the product release notes in SolvNet.

To see the product release notes,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNet.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

3. Click Release Notes in the Main Navigation section (on the left),
click the product name you want, then click the release you want
in the list that appears at the bottom.

What's New in This Release

Xiii

About This Application Note

This application note describes how to invoke the Synopsys
synthesis tools in XG mode and the differences between running in
XG mode and DB mode.

This application note does not discuss how to run the synthesis
tools. For this type of information, see the product documentation.

Audience

This application note is for engineers who plan to run the Synopsys
synthesis tools in XG mode.

Related Publications

For additional information about the Synopsys synthesis tools, see

e Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys Electronic Software Transfer (EST) system

* Documentation on the Web, which is available through SolvNet
at http://solvnet.synopsys.com

e The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com

Preface

Xiv

Conventions

The following conventions are used in Synopsys documentation.

Convention

Description

Courier

Courier italic

Courier bold

[]

Control-c

\
/

Edit > Copy

Indicates command syntax.

Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

Denotes optional parameters, such as
pinl [pin2 ... pinNk]

Indicates a choice among alternatives, such as
low | medium | high

(This example indicates that you can enter one
of three possible values for an option:

low, medium, or high.)

Connects terms that are read as a single term
by the system, such as

set_annotated_delay

Indicates a keyboard combination, such as
holding down the Control key and pressing c.

Indicates a continuation of a command line.
Indicates levels of directory structure.

Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.

About This Application Note

XV

Customer Support

Preface

XVi

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call to the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support
Resources section.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

e Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call to the Support
Center”

e Send an e-mail message to your local support center.

- E-mail support_center@synopsys.com from within North
America.

- Find other local support center e-mail addresses at
http://www.synopsys.com/support/support_ctr.

* Telephone your local support center.
- Call (800) 245-8005 from within the continental United States.
- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.

Customer Support

XVii

Preface

XViii

1

Introduction to XG Mode

This chapter provides an overview of the XG mode used by the
Synopsys synthesis tools. The information in this chapter applies to
all tools that support XG mode. Later chapters discuss aspects of
XG mode that apply to specific products.

In version X-2005.09, the Synopsys synthesis tools provide two
modes of operation:

e XG mode (default)

This mode uses optimized memory management techniques that
increase a tool’s capacity and can reduce runtime.

e DB mode

This was the default mode for version W-2004.12 and earlier
versions.

1-1

This book describes differences in behavior between XG mode and
DB mode, as well as features that are available only in XG mode. For
detailed information about tool usage, see the product
documentation.

This chapter contains the following sections:

e Products That Support XG Mode

e Supported Platforms

* Licensing Requirements

e Command Languages

e Libraries

e Setup Variables

e Supported Commands

» Differences in Behavior

e Invoking a Synthesis Tool in XG Mode

e Determining the Mode

Chapter 1: Introduction to XG Mode
1-2

Products That Support XG Mode

XG mode is supported in most Synopsys synthesis products,
including Design Compiler, Design Compiler FPGA, DFT Compiler
(including BSD Compiler, SoCBIST, and Adaptive Scan Technology),
Power Compiler, and Physical Compiler.

The ShadowLogic DFT feature of DFT Compiler is not supported in
XG mode.

The following synthesis products are not supported in XG mode:
Behavioral Compiler, Floorplan Manager, and the SIFF interface to
the Mentor Falcon framework.

For information about using Design Compiler in XG mode, see
Chapter 3, “Using Design Compiler in XG Mode.”

Design Compiler FPGA has no differences between XG mode
and DB mode. For information about using Design Compiler
FPGA, see Design Compiler FPGA User Guide.

For information about using DFT Compiler (including BSD
Compiler and SocBIST) in XG mode, see Chapter 4, “Using DFT
Compiler in XG Mode”

For information about using Physical Compiler in XG mode, see
Chapter 5, “Using Physical Compiler in XG Mode.”

For information about using Power Compiler in XG mode, see
Chapter 6, “Using Power Compiler in XG Mode.”

Products That Support XG Mode
1-3

Supported Platforms

XG mode supports all existing hardware platforms, with the
exception of HP32. (The Milkyway product does not support the
HP32 platform.)

Licensing Requirements

XG mode does not require any special licensing.

Command Languages

In XG mode, all synthesis tools use the tool command language
(Tcl). XG mode does not support the dcsh command language. If
your existing scripts are written in dcsh, you must convert them to Tcl
before running dc_shell in XG mode.

Synopsys provides the dc-transcript utility to help with the
conversion to Tcl. The dc-transcript utility has the following
limitations:

* When your script echoes the results of a dcsh £ind command,
dc-transcript outputs the collection handle (the variable
name) rather than the object names.

For example, dc-transcript translates

ports = find(port, "*")
echo they are: ports

as

Chapter 1: Introduction to XG Mode
1-4

set ports find port "*"
echo [concat they are: $ports

To fix this problem change Sports to [get_object_name
Sports].

The dc-transcript utility does not always correctly handle
multiple objects represented as a string.

For example, dc-transcript translates
find(net, "x\\?")

as

find net {x\?}

To fix this problem, wrap the string value with the Tcl list
command:

find net [list {x\?}]

The dc-transcript utility translates quotation marks to curly
braces. In some cases, this will result in an incorrect translation.

For example, dc-transript translates

sh "echo s#/pattern## > out"

as

sh {echo s#/pattern## > out}

Command Languages
1-5

e If your script contains a very complex statement,
dc-transcript might not be able to translate it.

For example, dc-transcript cannot translate a statement
such as

sh "awk 'BEGIN{flag=0}{if ($1l=="Net" || $l=="Port") flag=1l; \
else if (flag==1 && $1!~/-/) print $1}' naming_temp.rep"

Libraries

This section describes the logical and physical libraries used in XG
mode.

Logical Libraries

XG mode uses the same logical libraries (the library .db files) as DB
mode. No changes are required to the logical libraries. To specify the
logical libraries, set the 1ink_library and target_library
variables, just as you do in DB mode.

Chapter 1: Introduction to XG Mode
1-6

Physical Libraries

By default, XG mode uses the Milkyway reference library as the
physical library. This is the same physical library that is used by the
Jupiter and Astro tools. To specify the Milkyway reference library, set
the mw_reference_library variable.

If you do not have a Milkyway reference library, you can generate one
from your LEF library files or your .pdb library files. Use the Milkyway
read_lef command to convert your LEF files or the Milkyway
read_plib command to convert your .pdb files. For more
information, see “Physical Libraries” on page 5-2.

To revert to using .pdb library files for the physical libraries, set the
use_pdb_1lib_format variable to true. If you use .pdb format
physical libraries, you will not have access to the new
Milkyway-based DEF and PDEF support.

Setup Variables

Before running a synthesis tool in XG mode, you must define the
paths for the libraries and designs that you are using, just as you
would in DB mode. Table 1-1 provides a minimum set of setup
variables for XG mode. You can set these variables in the setup file
(.synopsys_dc.setup), in a script, or interactively.

Table 1-1 XG Mode Setup Variables

Variable Description

search_path Defines the path used to locate the logical libraries,
physical libraries, .db design files, and .ddc design files.

link_library Defines the list of logical libraries searched to resolve

references.

Setup Variables
1-7

Table 1-1 XG Mode Setup Variables (Continued)

Variable

Description

target_library

mw_design_library

mw_reference_library

mw_logicl_net

mw_logicO_net

Defines the list of logical libraries used to perform
optimization.

Specifies the location of the Milkyway design library.

Important:
In XG mode, you can access only one Milkyway
design library in a single shell session.

Specifies the location of the Milkyway reference library.

The order in the list implies priority for reference conflict
resolution. If more than one reference library has a cell
with the same name, the first reference library has
precedence.

Specifies the net used to tie off logic 1.

You must set this variable if you are performing physical
synthesis. If this variable is not set correctly, power nets
might be converted to signal nets.

Specifies the net used to tie off logic 0.

You must set this variable if you are performing physical
synthesis. If this variable is not set correctly, power nets
might be converted to signal nets.

Supported Commands

The XG mode supports most, but not all, commands in dc_shell and
psyn_shell. If you enter a command that is not supported in XG
mode, an error message is generated.

For a complete list of commands and options that are not supported
in XG mode, see Appendix A, “Command Differences.”

Chapter 1: Introduction to XG Mode

1-8

Differences in Behavior

Many commands and concepts are common to all synthesis tools.
This section describes behavior differences that might affect any of
the synthesis tools. Behavior differences that are product specific are
included in the product-specific chapters.

The following sections describe the differences in behavior between
XG mode and DB mode:

read_* Command

current_design Command
get_object_name Command
set_attribute Command
filter_collection Command
remove_annotated_delay Command
Reference Objects

Collections

SDC Support

Timing Path Attributes

read * Command

In XG mode, when you load a design into memory, the tool also loads
all libraries specified in the 1ink_1ibrary variable, regardless of
whether they are needed to link the design.

Differences in Behavior
1-9

In DB mode, the libraries are read in during the link process. When
all references are resolved, the link process ends and additional
libraries, if any, are not read in.

Because the tool reads the libraries while loading the design, rather
than during the link process, the memory usage and runtime
required for loading the design might increase. However, there is a
benefit to this: Unlike in DB mode, where peak memory usage
occurs during optimization, in XG mode, peak memory usage occurs
while the design is loading. Therefore you know immediately whether
your design can be processed with the available memory.

Chapter 1: Introduction to XG Mode

1-10

current_design Command

The behavior of the current_design command differs in two ways
between XG mode and DB mode:

e Inruntime
* In collection preservation

The following sections describe these differences.

Runtime Differences

The runtime for the current_design command in XG mode is
longer than in DB mode. Because of this difference in runtime, you
should avoid writing scripts that use a large number of
current_design commands, such as in a loop.

For example, the following script uses the current_design
commandinalooptosetthe fix_multiple_port_nets attribute
on all designs in memory:

set designs [get_designs]

foreach_in_collection d Sdesigns {
echo [get_object_name $d]
current_design [get_object_name $d]
set_fix multiple_port_nets -all

}

In XG mode, this type of loop uses a very large amount of runtime.
To reduce the runtime, apply the command to a collection of designs,
as shown in the following example, rather than changing the current
design within a loop:

set_fix multiple_port_nets -all [get_designs]

Differences in Behavior
1-11

As another example, to ungroup instances within a hierarchy (such
as a DesignWare instance), use the following command to set the
ungroup attribute on the instance instead of changing the current
design and ungrouping the subdesign. When you compile the
design, the instances with the ungroup attribute are automatically
ungrouped.

set_ungroup instance true

To reduce the need to use the current_design command, the
following commands work throughout the design hierarchy in XG
mode (in DB mode they work only on instances in the current design
or require the -all_instances option):

* Netlist editting commands

These commands are used for incrementally editing a design
that is in memory. Examples are create_cell, create_net,
connect_net, disconnect_net, create_port,
remove_cell, remove_net, remove_port,
remove_unconnected_ports, create_bus, remove_bus,
and report_bus. For a list of enhanced commands, see the
Design Compiler User Guide, Chapter 5.

e The ungroup, group, and uniquify commands

For detailed information, see Chapters 5 and 8 in the Design
Compiler User Guide.

* set_size_ only command

In addition to accepting instance objects, the ~all_instances
option allows you to set the size_only attribute on a leaf cell
when its parent design is instantiated multiple times.

Chapter 1: Introduction to XG Mode

1-12

For more information, see the Design Compiler Reference
Manual: Optimization and Timing Analysis, Chapter 4.

e change_1link command

In addition to accepting instance objects, the -all_instances
option allows you to make link changes for a leaf cell when its
parent design is instantiated multiple times.

For more information, see the Design Compiler User Guide,
Chapter 5.

Collection Preservation Differences

In DB mode, all existing collections are maintained when you change
the current design. You can access collections whether they were
created in the current design or in another design.

In XG mode, you can access collections only within the current
design in which they were created. When you change the current
design, collections containing objects from the previous design are
deleted. In most cases, Design Compiler automatically re-creates
the deleted collections when you change the current design back to
that design. However, Design Compiler does not re-create
collections that contain the following design objects:

e Clusters
e Scan paths
e Timing paths

For example, the following command sequence works in DB mode
but not in XG mode:

Differences in Behavior
1-13

current_design top

set top_cells [get_cells -hier]

current_design mid

set sum_cells [add_to_collection [get_cells] Stop_cells

In DB mode, the collection pointed to by the sum_cel1ls variable
contains the cells from both the top design and the mid design. In XG
mode, the top_cells variable is undefined when top is not the
current design, so the collection pointed to by the sum_cells
variable contains only the cells from the mid design.

Because the collection variables associated with a design are
re-created each time you run current_design, having a large
number of collection variables can increase the current_design
runtime. To reduce the runtime impact, use the unset command to
delete collection variables that you no longer need. For example,

dc_shell-xg-t> set pins [get_pins]
do things with Spins
dc_shell-xg-t> unset pins

get_object_name Command

In XG mode, the get_object_name command returns the
complete path to an object; in DB mode the get_object_name
command returns only the object name.

The following examples show the different results when you run the
get_object_name command.

DB Mode Example

dc_shell-t> get_object_name [get_ lib pins class/NR4P/C]
C

Chapter 1: Introduction to XG Mode

1-14

XG Mode Example

dc_shell-xg-t> get_object_name [get_lib_ pins class/NR4P/C]
class/NR4P/C

This difference makes it possible for you to nest the
get_object_name command within another command when using
XG mode. For example,

dc_shell-xg-t> get_attribute \
[get _object name [get 1lib pins class/NR4P/C]l1]1 \
pin_direction
In addition, in XG mode you can specify multiple objects as the
argument to get_object_name. In DB mode, you must specify a
single object as the argument.

set_attribute Command

In XG mode, the set_attribute command enforces the
predefined attribute type and generates an error if you try to set an
attribute with a value of an incorrect type. In DB mode, the
set_attribute command does not perform type checking.

Note:

To determine the predefined type for an attribute, use the
list_attributes -applicationcommand. Thiscommand
generates a list of all application attributes and their types.

For example, the max_ fanout attribute has a predefined type of
float. Suppose you enter the following command:

set_attribute 1ib/lIcell/lIpin max_fanout 1 -type integer

In XG mode, you get the following error message:

Error: data type does not match attribute type

Differences in Behavior
1-15

In DB mode the tool simply accepts the command.

filter _collection Command

In XG mode, the filter collection command verifies that the
attribute specified in the filter expression is valid for the collection’s
object type and generates an error if you try to filter on an invalid
attribute. In DB mode, the filter_collection command does
not perform attribute checking.

Note:
To determine the valid attributes for an object type, use the
list_attributes -application -class object_type
command. This command generates a list of all application
attributes that apply to one of the following object types: design,
port, cell, clock, pin, net, or lib.

For example, assume you enter the following command to filter a
collection of library cells by specifying the object_class attribute
(which is not a valid library cell attribute):

filter_collection [get_lib_cells mylib/inv] \
"@object_class == cell™

In XG mode, you get the following error message:
Error: Unknown identifier: 'object_class' (FLT-005)

In DB mode the tool accepts the command and returns an empty
collection.

Chapter 1: Introduction to XG Mode

1-16

remove_annotated_delay Command

In DB mode, you must use the same format to specify the annotated
delay to be removed as you initially use to specify the delay. In XG
mode, the requirement has been relaxed to allow a more general
delay specification in the remove_annotated_delay command.

For example, suppose you set the annotated delay by using the
following command:

shell-t> set_annotated delay -from A -to B 10

In DB mode, you must remove the annotated delay by using the
following command:

shell-t> remove_ annotated delay -from A -to B

In XG mode, you could also remove the annotated delay by using the
following more general command:

shell-t> remove_annotated delay -from A

Reference Objects

Reference objects are not supported in XG mode. However, in XG
mode the get_references command provides similar
functionality to using reference objects in DB mode.

In DB mode, the get_references command returns a collection of
references that meet the specified requirements, and you operate on
the references. In XG mode, the get_references command
returns a collection of instances referred to by the specified

Differences in Behavior
1-17

reference, and you operate on the instances. Although the objects in
the collection differ, the effect of operating on the collection is the
same.

For example, in DB mode the following command returns a collection
containing the reference AN2:

shell-t> get_references AN2
{ IIANZ n }

In XG mode, the same command returns a collection containing the
instances in the current design that have the reference AN2:

shell-xg-t> get_references AN2
{U2 U3 U4}

If you use the get_references command in XG mode with a
wildcard string and want to see the reference names, use the
report_cell command.

shell-xg-t> report_cell [get_references AN*]

Reference Library Area Attributes
AN2 1si_10k 2.000000
AN2 1si_10k 2.000000
AN2 1si_10k 2.000000
AN3 1si_10k 2.000000

Chapter 1: Introduction to XG Mode

1-18

Collections

Both DB and XG modes use Tcl collections to represent a group of
design objects, but there are slight differences between the two
modes. The following aspects of collection handling differ between
the DB and XG modes:

Invalidation of collections

Whenever the objects in a collection become invalid or are no
longer in the current scope, the collections that refer to those
objects become invalid.

Because of the different memory management techniques used
in DB and XG modes, commands that invalidate design objects
in one mode might not have the same effect in the other mode.

For example, the reset_design command invalidates
collections in DB mode but not in XG mode. The
current_design command (when used to change the current
design) invalidates collections in XG mode but not in DB mode.
(For details about the effects of the current_design command
on existing collections, see “Collection Preservation Differences”
on page 1-13.)

In either mode, if you need to use an invalidated collection, you
must regenerate the collection.

Query results

In DB mode, querying the contents of a collection produces a
comma-separated list of design objects (for example, {a, b, c,
d...}). This is not valid syntax for a Tcl list, so the result cannot be
used directly.

Differences in Behavior
1-19

In XG mode, the query results are formatted as a Tcl list (for
example, {a b ¢ d ...}), so that you can directly use the results.

If the query returns a collection handle, rather than a printed list,
the result is the same in both DB and XG mode.

SDC Support

In XG mode, Design Compiler supports version 1.5 of the Synopsys
Design Constraints (SDC) format. In DB mode, Design Compiler
supports SDC version 1.4. For details about the SDC versions, see
the Using the Synopsys Design Constraints Format Application
Note.

Timing Path Attributes

In DB mode, you can get detailed information about the data paths
in your design by using the get_timing_paths command to
generate a collection containing the data path, then querying the
data path’s attributes. (For more information about this capability,
see the Design Compiler Reference Manual: Optimization and
Timing Analysis.)

In XG mode, you can also get detailed information about the clock
paths associated with the specified data path and information about
the clock reconvergence pessimism removal (CRPR). To enable
access to this information, you must specify the -path_type
full_clock_expanded option when you run the
get_timing_paths command. (The default, -path_type full,
enables access only to the data path information.)

Chapter 1: Introduction to XG Mode

1-20

Table 1-2 shows the attributes supported on clock paths. Table 1-3
on page 1-22 shows the attributes supported on clock path points.

Table 1-2 Attributes Supported on Clock Paths

Attribute Type Notes

arrival string

capture_clock_paths collection This attribute is supported only in XG
mode.

clock_path Boolean This attribute is supported only in XG
mode.

clock_uncertainty float

crpr_common_point collection This attribute is supported only in XG
mode.

crpr_value float This attribute is supported only in XG
mode.

endpoint string

endpoint_clock string This attribute always has the same value

as the startpoint_clock attribute.

endpoint_clock_close_edge_type string

endpoint_clock_latency float

endpoint_clock_open_edge_type string

endpoint_recovery_ time value float

endpoint_setup_time_value float

full name string

hierarchical Boolean This attribute is always true for clock

paths.

Differences in Behavior
1-21

Table 1-2 Attributes Supported on Clock Paths (Continued)

Attribute Type Notes

launch_clock_paths collection This attribute is supported only in XG
mode.

object_class string This attribute always has a value of
timing_path.

path_group string The path group for the clock path is the
same as the path group for the
corresponding data path.

path_type string

startpoint string

startpoint_clock string

startpoint_clock_latency float

startpoint_clock_open_edge_typ string

e

startpoint_input_delay value float

Table 1-3 Attributes Supported on Clock Path Points

Attribute Type Notes

arrival string

object_class string This attribute always has a value of
timing_path.

object string

rise_fall string

Chapter 1: Introduction to XG Mode
1-22

Invoking a Synthesis Tool in XG Mode

You can run the following user interfaces in XG mode:

dc_shell
Design Vision
fpga_shell
psyn_shell

Physical Compiler Graphical User Interface (GUI)

Table 1-4 shows the command used to invoke each interface in XG

mode and the prompt used in XG mode.

Table 1-4 XG Mode Tool Invocation Commands

User interface

Invocation command

XG mode prompt

dc_shell

Design Vision

fpga_shell

psyn_shell

Physical Compiler GUI

dc_shell-t

dc_shell-xg-t
dc_shell -tcl
dc_shell -tcl -xg
design_vision

design_vision-xg
design_vision -xg

fpga_shell-t -xg

psyn_shell
psyn_shell -xg

psyn_gui
psyn_gui -xg

dc_shell-xg-t>

design_vision-xg-t

>

fpga_shell-xg-t>

psyn_shell-xg-t>

psyn_gui-xg-t>

Invoking a Synthesis Tool in XG Mode
1-23

Determining the Mode

When you invoke a user interface in XG mode, the following
message appears at startup:

Starting shell in XG mode...

In addition, when you are using a Tcl-based command-line interface,
you can use the shell_is_in_xg_mode command to determine
the current mode. If shell _is_in_xg mode returns 1, the shell is
running in XG mode. Otherwise the shell is running in DB mode.

Chapter 1: Introduction to XG Mode
1-24

2

XG Mode Design Database Formats

In DB mode, the .db format is the design database format used by all
synthesis tools. In XG mode, the synthesis tools support two design
database formats: .ddc and Milkyway. This chapter describes these
formats in the following sections:

e Using the .ddc Format

* Using the Milkyway Format

e Using the .db Format

* Interfacing Between Synopsys Tools

Table 2-1 shows the support that each synthesis tool provides for the
various database formats. The DB Milkyway format refers to the
Milkyway design library written by the write_mdb command in DB
mode. The XG Milkyway format refers to the Milkyway design library
written by the write_milkyway command in XG mode.

2-1

Table 2-1 Supported Database Formats by Tool

Tool .db .ddc DB Milkyway XG Milkyway
Rea Write Rea Write Rea Write Rea Write
d d d d
dc_shell - DB mode
(Design Compiler, X X X X
DFT Compiler,
Power Compiler)
dc_shell - XG mode
(Design Compiler, X1 X1 X X X X2 X3
DFT Compiler,
Power Compiler)
psyn_shell - DB mode
(Physical Compiler, X X X X
DFT Compiler,
Power Compiler)
psyn_shell - XG mode
(Physical Compiler, X1 X x4 X5 X X3
DFT Compiler,
Power Compiler)
Formality X X X X X
PrimeTime X X X X
PrimePower X X X X
Jupiter X X X X6
Astro X X X X6
1. Not recommended. Use .ddc or Milkyway format instead for maximum efficiency.
2. Not recommended if your design contains physical information.
3. Requires a mapped design that does not contain multiple instances.
4. Saves logical information only.
5. Design constraints are not read. You must use the SDC file to reapply the constraints.
6. Existing design constraints are maintained but not updated.

Chapter 2: XG Mode Design Database Formats
2-2

Using the .ddc Format

The .ddc format is similar to the .db format in that it is a single-file,
binary format. The .ddc format stores design data in a more efficient
manner than the .db format, enabling increased capacity. In addition,
reading and writing files in .ddc format is faster than reading and
writing files in .db format. The .ddc format stores only logical design
information.

Note:

To maximize the capacity and performance improvements, use
the .ddc format rather than the .db format when using XG mode.

The following sections contain information about how to use the .ddc
format:

* Writing .ddc Files

e Limitations When Writing .ddc Files

* Reading .ddc Files

e Converting From .db Format to .ddc Format

e GUI Support

Using the .ddc Format
2-3

Writing .ddc Files

To save the design data in a .ddc file, use the write -format ddc
command.

By default, the write command saves just the top-level design. To
save the entire design, specify the -hier option.

If you do not use the -output option to specify the output file name,
the write -format ddc command creates a file called
top_design.ddc, where top_design is the name of the current design.

Limitations When Writing .ddc Files

The following limitations apply when you are writing .ddc files:

* The .ddc format saves only the logical design information. The
.ddc format does not save physical information, such as physical
constraints, floorplan data, or cell locations.

* If you load your design from a Milkyway database and then save
the design in .ddc format, the .ddc file contains only the gate-level
netlist description. You cannot perform RTL synthesis on this .ddc
file.

Chapter 2: XG Mode Design Database Formats

2-4

Reading .ddc Files

To read the design data from a .ddc file, use the read_ddc
command.

Note:
Like the .db format, the .ddc format is backward compatible (you
can read a .ddc file that was generated with an earlier software
version), but not forward compatible (you cannot read a .ddc file
that was generated with a later software version).

Converting From .db Format to .ddc Format

To convert your design data from .db format to .ddc format, read the
.db file into dc_shell or psyn_shell in XG mode, then save the design
in .ddc format (write -format ddc). To realize the memory
savings from using the .ddc format, you must exit the current shell,
then restart the shell in XG mode and read the .ddc file.

GUI Support

In XG mode, both Design Vision and the Physical Compiler GUI
support the .ddc format.

To read or write .ddc files, select either Auto (if your file has the .ddc
extension) or DDC from the Format list in the appropriate dialog box.

Using the .ddc Format
2-5

Using the Milkyway Format

The Milkyway format uses the directory structure shown in

Figure 2-1 to store design data. This directory structure is referred to
as the Milkyway design library. You specify the Milkyway design
library for the current session by setting the mw_design_library
variable to the root directory path.

Figure 2-1 Milkyway Design Library

Root
directory

NIRRT I AN I

(lib){ CEL|| LM || FRAM|[LM |ROUTE| | PARA || XTR |

T I T T I
L) G\ G) G) G) G G

The Milkyway format stores both logical and physical design
information, but it requires a mapped design (the Milkyway format
cannot store RTL information). In addition, the Milkyway format does
not support designs that contain multiple instances.

Chapter 2: XG Mode Design Database Formats

2-6

The Milkyway format stores the following design information:

* Logical information, such as the netlist, design constraints, and
design attributes

* Floorplan data, such as floorplan objects and physical
constraints (for example, keepouts and bounds)

e Placement data

The format used to represent constraint information differs between
the Milkyway format used in XG mode differs and the Milkyway
format used in DB mode (as generated by the write_mdb
command or by the Jupiter or Astro tool).

If you read a Milkyway design library that was created in the other
mode, the design information is read, but the constraint information
is not. You must reapply the constraints by reading the Synopsys
Design Constraints (SDC) file.

Note:

Jupiter and Astro can read the constraint information from the
Milkyway design library regardless of which mode it was
generated in.

Using the Milkyway Format
2-7

The following sections contain information about how to use the XG
mode Milkyway format:

Creating a Milkyway Design Library

Saving a Design in Milkyway Format

Limitations When Writing Milkyway Format
Reading a Design in Milkyway Format
Limitations When Reading Milkyway Format
Maintaining the Milkyway Design Library
Converting From .db Format to Milkyway Format

GUI Support

Creating a Milkyway Design Library

You must create a Milkyway design library before you can save your
design in Milkyway format.

To create a Milkyway design library,

1.

Specify the logical libraries by setting the search_path,
target_path, and 1ink_library variables.

Specify the physical libraries by setting the
mw_reference_library variable.

Specify the location for the Milkyway design library by setting the
mw_design_library variable.

Define the power nets by setting the mw_1ogic0_net and
mw_logicl_net variables.

Chapter 2: XG Mode Design Database Formats

2-8

5. Runthe create_mw_design command to create the Milkyway

design library.

When you run the create_mw_design command, you must
use the -tech_file option to specify the Milkyway technology
file. If you do not have a Milkyway technology file, see
“Generating a Milkyway Technology File” on page 5-5 for
information about extracting it from the Milkyway reference
library.

For detailed information about the create_mw_design
command, see the Physical Compiler User Guide, Volume 1.

For an example script that shows how to create a Milkyway design
library, see Example 2-1 on page 2-10.

Saving a Design in Milkyway Format

To save the design data in the Milkyway design library,

1.

Specify the Milkyway reference library
(mw_reference_library variable) and the Milkyway design
library (mw_design_library variable).

Define the power nets by setting the mw_1ogic0_net and
mw_logicl_ net variables.

If these variables are not set correctly, the power nets might be
converted to signal nets.

3. Prepare the Milkyway design library.

- If the Milkyway design library does not exist, create it as
described in “Creating a Milkyway Design Library” on
page 2-8.

Using the Milkyway Format
2-9

- If you are writing to an existing Milkyway design library, prepare
it for access by running the set_mw_design command.

4. Runthe write_milkyway command to save the design data.

You must use the -output option to specify the file name.

psyn_shell-xg-t> write_milkyway -output file name

Example 2-1 shows a sample command sequence for saving a
design in Milkyway format.

Example 2-1 Saving a Design in Milkyway Format

Define logical libraries
set search_path “dirl dir2”
set target_library “logic lib.db”
set link_library “* logic lib.db”

Define Milkyway reference library
set mw_reference_library mw ref 1ib

Define Milkyway design library
set mw_design_library design dir

Define power nets
set mw_logicl_net VDD
set mw_logicO_net VSS

Create Milkyway design library
create_mw_design -tech_file mw ref.tf

Save design data in Milkyway format
write_milkyway -output file name

The write_milkyway command saves the design data for the
current design in the CEL view of the Milkyway design library. The
path for the design file is design_dir/CEL/file_name:version, where
design_dir is the location you specified in mw_design_library.

Chapter 2: XG Mode Design Database Formats

2-10

By default, the write_milkyway command increments the version
number of the Milkyway design file. To overwrite the latest version of
the Milkyway design file instead of creating a new one, specify the
-overwrite option.

If you plan to read the Milkyway design file created by
write_milkyway into Jupiter or Astro, see “Interfacing Between
Synopsys Tools” on page 2-26 for the requirements.

If you encounter problems when saving the design in Milkyway
format, check for the following possible causes:

The Milkyway design library does not exist

It is not sufficient for the directory specified in the
mw_design_library variable to exist. The specified directory
must contain a Milkyway design library before you can save your
design in Milkyway format. For information about creating a
Milkyway design library, see “Creating a Milkyway Design
Library” on page 2-8.

The Milkyway design library is locked.

If the Milkyway design library is being used by another user, you
must wait to use the Milkyway design library. If there is a leftover
lock file in the CEL directory, delete it as described in “Reading a
Design in Milkyway Format” on page 2-12.

The design is not mapped

Because the Milkyway format describes physical information, it
supports mapped designs only. You cannot use the Milkyway
format to store design data for unmapped designs.

Using the Milkyway Format
2-11

* The design contains multiples instances

You must flatten or uniquify your design before saving it in
Milkyway format.

Limitations When Writing Milkyway Format

The following limitations apply when you are writing your design in
Milkyway format:

e Thewrite_milkyway command saves the entire hierarchical
design in a single Milkyway design file (CEL view). You cannot
generate separate design files for each subdesign.

* When you save a design in Milkyway format, the
write_milkyway command does not save the interface logic
model (ILM) instances in the Milkyway design library. You must
explicitly save each ILM (see “Using Interface Logic Models” on
page 5-12).

* The constraints saved in the Milkyway design library cannot be
read in DB mode (the read_mdb command) or by versions of
Jupiter or Astro prior to W-2004.12.

If you are using one of these tools, you must input the constraints
by reading the golden SDC file for the design after reading the
Milkyway design library. For more information, see “Limitations
When Reading Milkyway Format” on page 2-17.

Reading a Design in Milkyway Format
To read a Milkyway design file,
1. Specify the logical libraries by setting the search_path,

target_library, and 1link library variables.

Chapter 2: XG Mode Design Database Formats
2-12

2. Specify the Milkyway reference library
(mw_reference_library variable) and the Milkyway design
library (mw_design_library variable).

3. Define the power nets by setting the mw_1ogic0_net and
mw_logicl_net variables.

If these variables are not set correctly, the power nets might be
converted to signal nets.

4. Setup the Milkyway design library and update the search path by
running the set_mw_design command.

5. Runthe read_milkyway command to read the design.

psyn_shell-xg-t> read _milkyway file_ name

Note:

The read_mdb command is not supported in XG mode. For
information about reading Milkyway design libraries created by
write_mdb, see “Limitations When Reading Milkyway
Format” on page 2-17.

Example 2-2 shows a sample command sequence for reading a
design in Milkyway format.

Using the Milkyway Format
2-13

Example 2-2 Reading a Design in Milkyway Format

Define logical libraries
set search_path “dirl dir2”
set target_library “logic_ lib.db”
set link_library “* logic lib.db”

Define Milkyway reference library
set mw_reference_library mw ref 1ib

Define Milkyway design library
set mw_design_library design dir

Define power nets
set mw_logicl_net VDD
set mw_logicO_net VSS

Prepare Milkyway design library
set_mw_design

Read design data in Milkyway format
read_milkyway file name

When you read a design file from the Milkyway design library, the tool
sets the top-level design as the current design and links the design.

By default, the read_milkyway command reads the latest version
of the file_name design file from the location specified in
mw_design_library. To read another version of the design file,
specify the version with the -version option.

By default, the read_milkyway command generates a lock file to
prevent other users from accessing the Milkyway design library. To
open a Milkyway design library without generating a lock file, specify

Chapter 2: XG Mode Design Database Formats

2-14

the -read_only option. This option prevents you from modifying
the Milkyway design library, but allows other users to access the
design.

When you end your session, the lock file is automatically deleted.
However, if your session terminates abnormally or you end the
session by using Control-c, the lock file is not deleted and you must
manually remove it. For example,

% rm design dir/CEL/my design*.lock

If you encounter problems when reading a Milkyway design library,
check for the following possible causes:

* The Milkyway design library is locked.

If the Milkyway design library is being used by another user, you
must wait to use the Milkyway design library. If there is a leftover
lock file in the CEL directory, delete it as previously described.

* The physical library cannot be located.

Verify that the physical library is defined and that its location is
accurately defined in the search path.

* There is a mismatch between the site names in the Milkyway
design library and the physical library.

To synchronize the site names between the Milkyway design
library and the physical library, use the
mw_site_name_mapping variable to define the name
mappings. You must set this variable before running the following
commands: read_db, read_ddc, or read_def.

Using the Milkyway Format
2-15

The syntax for setting this variable is

set mw_site_name_mapping \
[list old site name new_site name]

The logical hierarchy data in the Milkyway design library is
invalid.

If the hierarchy data has been corrupted, you must use Astro to
repair the Milkyway design library. You can use the following
Milkyway consistency checking commands to validate your
Milkyway design library: dbCheckCellData,
dbCheckNetlistVsFram, and
astCheckHierPresConsistency. For more information
about these commands, see the Milkyway documentation.

Chapter 2: XG Mode Design Database Formats

2-16

Limitations When Reading Milkyway Format

If a Milkyway design file was not created in XG mode (it was created
by write_mdb in DB mode or by the Jupiter or Astro tool), the
design constraints are not loaded into memory when you use the
read_milkyway command to read the Milkyway design.

Note:
This limitation also applies to a Milkyway design file that was
updated in Jupiter or Astro, even if the design library was initially
created in XG mode.

To ensure that all design constraints are loaded into memory, use
one of the following methods to read a Milkyway design file that was
not created in XG mode.

Method 1: Using the Milkyway and SDC Files

In XG mode, use read_milkyway to read the DB mode Milkyway
design file, then reapply the design constraints by reading the golden
SDC file:

psyn_shell-t> read milkyway my design
psyn_shell-t> source my constraints.sdc

Using the Milkyway Format
2-17

Method 2: Using the .db and DEF Files

To use this method, you must first convert the Milkyway design file
into .db and Design Exchange Format (DEF) files in DB mode, then
read the .db and DEF files in XG mode.

1.

Invoke the tool in DB mode.

In DB mode, use read_mdb to read the DB mode Milkyway
design file, then save the design in .db and DEF formats.

psyn_shell-t> read _mdb -cell name my design

psyn_shell-t> current_design my design

psyn_shell> write -format db -hierarchy \
-output my_design.db

psyn_shell-t> write_def -output my design.def

Invoke the tool in XG mode.

In XG mode, read the .db and DEF files.

psyn_shell-t-xg> read _db my design.db
psyn_shell-t-xg> link_physical
psyn_shell-t-xg> read_def my design.def

Maintaining the Milkyway Design Library

To maintain your Milkyway design library (for example, to delete
unneeded versions of your design), you must use the Milkyway
Environment tool. The Milkyway Environment tool is a graphical user
interface (GUI) that enables manipulation of the Milkyway libraries.

Chapter 2: XG Mode Design Database Formats

2-18

This section describes how to perform the following tasks:

* Invoke the Milkyway Environment tool
* Open a Milkyway design library
e List the cells in the Milkyway design library

* Purge unneeded versions of cells from the Milkyway design
library

* Delete cells from the Milkyway design library

For more information about using the Milkyway Environment tool,
see the Milkyway documentation. For information about installing the
Milkyway Environment tool, see the Installation Guide.

Invoking the Milkyway Environment Tool
To invoke the Milkyway Environment tool, enter

% Milkyway -galaxy

Opening a Milkyway Design Library

To open an existing Milkyway design library,

1. Choose Library > Open from the Milkyway menu bar.

Using the Milkyway Format
2-19

The Open Library dialog box appears.
=10 x|

OK | Cancel | Default | Help

Library Mame |ram32x32

Library Path |mi|kywawreffmw_lih

_I read only | open ref library for write Browse...

2. Enter the design library name (Library Name) and path (Library
Path).

Alternatively, you can click Browse to use the browse capability
to select the design library. When you use the browse capability,
Milkyway determines both the design library name and its path
from your selection.

3. Click OK to open the specified design library.

Note:
You can have only one design library open at a time.

Listing the Cells

To list the cells in the current Milkyway design library,

e Choose Library > Show Cells from the Milkyway menu bar.

Chapter 2: XG Mode Design Database Formats

2-20

The Current Library’s Cell List dialog box appears. By default, the
view and version information is not displayed. To display all views
of the cells, select “all views”. To display all versions of the cells,
select “all versions”.

Hide | Save As |

List: _ all views | all versions

Cells

Libraries

=101 %]

Help

ram3Zxz32
ram32x32_bid
ram32x3Z_bldarr

ram32x3Z_bottomPart

ram32x3Z_cczdh
ram32x3Z_ccldl
ram32x32_cczh
ram32x3Z_cc?l
ram32x3Z_ccZsh
ram32x3Z2_cc2sl

[«[[ram32x32
_l

Bl

| 4]

Double click library name to list its cells
Single click name to make it cut-and-paste

Purging Versions from the CEL View

DRl

To purge old versions of cells in the current Milkyway design library,

1. Choose Cell > Purge from the Milkyway menu bar.

Using the Milkyway Format
2-21

The Purge Cell dialog box appears.
=10l x|

0|(| Can-::el| Default| npply| Help

Cell Hame |
Version Kept |1
_| pattem match Browse...

2. Specify the name of the cell you want to purge (Cell Name).

Alternatively, you can click Browse to use the browse capability
to select the cell.

Specify the number of versions to keep (Version Kept) field.

For example, if you specify 1, after purging the latest version of
the cell remains. All older versions are deleted.

Click OK to delete the specified versions of the cell from the
Milkyway design library.

Deleting a Cell

To delete a cell from the current Milkyway design library,

1.

Choose Cell > Delete from the Milkyway menu bar.

The Delete Cell dialog box appears.
=10 x|

0|(| Can-::el| Default| npply| Help

Cell Hame |

_| pattem match Browse...

Chapter 2: XG Mode Design Database Formats

2-22

2. Specify the name of the cell you want to delete (Cell Name).

Alternatively, you can click Browse to use the browse capability
to select the cell.

3. Click OK to delete all versions of the specified cell from the
Milkyway design library.

Converting From .db Format to Milkyway Format

To convert your design data from .db format to Milkyway format, read
the .db file into dc_shell or psyn_shell in XG mode, then save the
design in Milkyway format (write_milkyway). For example,

psyn_shell-t-xg> set mw_cel without_Fram tech true
psyn_shell-t-xg> set mw_design_ library design dir

psyn_shell-t-xg> read_db my design.db
psyn_shell-t-xg> write_milkyway -output my design

psyn_shell-t-xg> remove_design -all
psyn_shell-t-xg> read_milkyway my design

GUI Support

In XG mode, the Physical Compiler GUI supports the Milkyway
format with menu options, but Design Vision does not.

To read a Milkyway design in the Physical Compiler GUI, choose
File > Read. When the Read Designs dialog box opens, Milkyway is
set as the design type. To read a design, specify the Milkyway design
library in the “Library name” box, select the appropriate design (cell)
and version, then click Read.

Using the Milkyway Format
2-23

To write a Milkyway design in the Physical Compiler GUI, choose File
> Save As. When the Write Designs dialog box opens, Milkyway is
set as the design type. To write a design, specify the Milkyway design
library in the “Library name” box, select the appropriate design (in the
“Cell name” box), then click OK.

To read or write a Milkyway design library in Design Vision, you must
run read_milkyway or write_ milkyway from the command line.

Using the .db Format

The .db format is the internal database format used in DB mode.
Although this format is supported in both DB and XG mode, for
maximum capacity in XG mode, do not use the .db format in XG
mode.

For more information about the .db format, see the Design Compiler
documentation.

Writing .db Format

To save a design in .db format, you must use the -xg_force_db
option.

psyn_shell-t-xg> write -format db -xg force_ db -hierarchy \
-output my design.db

If your design contains physical information or if you do not specify
the -xg_force_db option, the write -format db command
generates an error message.

Chapter 2: XG Mode Design Database Formats

2-24

Limitations When Writing .db Format

Because Physical Compiler does not annotate physical data to the
.db file, you cannot write .db designs from psyn_shell.

Note:
In the Physical Compiler GUI, the Design type list in the Write
Designs dialog box (File > Save As) lists DB as a valid option.
This option is not valid in XG mode and should not be used.

Limitations When Reading .db Format

When you read a routed design in .db format, Physical Compiler
loads the net topology and any vias defined in the physical library;
however, Physical Compiler does not load any design-specific via
definitions or power net topology.

To ensure that all routing information is loaded into memory, use the
following process to read your .db design:

1. Invoke Physical Compiler in DB mode.

a. Use the read_db command to read the design .db file.

b. Use the write_def command to save the floorplan and
routing information.

2. Invoke Physical Compiler in XG mode.

a. Use the read_db command to read the design .db file.

b. Use the 1ink_physical command to link the physical library
to your design.

c. Use the read_def command to read the generated DEF file
to input the floorplanning and routing information.

Using the .db Format
2-25

Interfacing Between Synopsys Tools

Table 2-2 shows the recommended format for exchanging design
data between the various Synopsys tools. In general, .ddc is the
recommended format for logical information, and Milkyway is the
recommended format when the design contains physical
information.

Table 2-2 Recommended Design Interface Formats

From to dc_shell to psyn_shell to Jupiter/Astro

dc_shell .ddc format .ddc format Milkyway format
psyn_shell .ddc format Milkyway format Milkyway format
Jupiter or Astro Milkyway format Milkyway format Milkyway format

Exporting Design Data to Jupiter or Astro
If you are exporting design data from dc_shell or psyn_shell to
Jupiter or Astro, you must follow these steps:

1. Remove the multiport nets.

To remove the multiport nets, run the
set_fix multiple_port_nets -all command before you
run compile Or physopt.

2. Ensure that the netlist is Verilog compliant.

To ensure that the netlist is Verilog compliant, run the
change_names -rules verilog -hier command before
you run write_milkyway.

Chapter 2: XG Mode Design Database Formats

2-26

Example 2-3 shows a sample command sequence for exporting a
design to Jupiter or Astro.

Example 2-3 Exporting a Design to Jupiter or Astro

Remove the multi-port nets
set_fix multiple_nets -all
physopt

Ensure the netlist is Verilog compliant
change_names -rules verilog -hier

Save the design in Milkyway format
write_milkyway -output my_ design

Verifying Designs Compiled in XG Mode

There are no differences between the optimizations performed in XG
mode and DB mode. Therefore, Formality behaves the same with
designs compiled in either mode.

Interfacing Between Synopsys Tools
2-27

Chapter 2: XG Mode Design Database Formats
2-28

Using Design Compiler in XG Mode

This chapter describes the differences between running Design
Compiler in XG mode and DB mode.

This chapter contains the following sections:

* Differences in Behavior
* Using Automated Chip Synthesis in XG Mode
e Unsupported Capabilities

3-1

Differences in Behavior

The following differences in Design Compiler behavior exist between
XG mode and DB mode:

o Effect of the OPT-100 error

In XG mode, the OPT-100 error (command xyz terminated
abnormally) might corrupt the design database. To prevent a
script from performing further optimization on this data, dc_shell
removes all designs from memory. If this error occurs, exit and
restart the shell. In DB mode, you need not exit when this error
occurs.

e Behavior of the check_design command

In XG mode, the check_design command generates warnings
for the following cases (in addition to the checks performed in DB
mode):

- Constant-driven outputs in the design—that is, an output that
is driven by a logic constant cell or the check_design
command is called post-compile on an originally unused
output

- A multidriver net connecting VDD directly to VSS
- A multidriver net with constant drivers
- Designs with no child cells or nets

Additionally, the check_design command has a new option
-multiple_designs that you can use to display multiply
instantiated designs. By default, warning messages related to
such designs are not reported.

Chapter 3: Using Design Compiler in XG Mode
3-2

Behavior of the unigquify command

In XG mode, the uniquify command removes the original
design from memory after it creates the new, unique designs.
The original design and any collections that contain it or its
objects are no longer accessible.

In DB mode, the original design remains in memory after you run
the uniquify command.

Behavior of compile_ultra command

In XG mode, the compile_ultra command automatically
ungroups small hierarchies to improve the quality-of-results for
both timing and area. You can disable this feature by specifying
the -no_autoungroup option when you run the
compile_ultra command. For more information, see Chapter
8 of the Design Compiler User Guide.

Constraints set on subdesigns

In XG mode, if you are using a bottom-up compile flow, the
constraints set on subdesigns are not preserved after you
perform a top-level compile. To ensure that you are using the
correct constraints, you should always reapply the subdesign
constraints before compiling or analyzing a subdesign.

Note:

This behavior difference does not impact the top-level compile.
The top-level constraints are always preserved.

Differences in Behavior
3-3

The following difference in Design Vision behavior exist between XG
mode and DB mode:

Impact of changing the design netlist

In XG mode, when you change the design netlist (for example, by
using netlist editing commands, such as change_1ink) when
the design schematic is open, Design Vision updates the
schematic and maintains the current zoom level and pan
position.

In DB mode, Design Vision closes the design schematic.

Note:

If you have a path schematic open when you change the
netlist, Design Vision closes the path schematic in both XG
mode and DB mode.

Chapter 3: Using Design Compiler in XG Mode

3-4

Using Automated Chip Synthesis in XG Mode

In XG mode, Automated Chip Synthesis uses the .ddc format to store
the design files, rather than the .db format.

The default directories for the design files do not change when you
use .ddc format instead of .db format; however, Automated Chip
Synthesis provides unique file types for the .ddc files, so you can
change the directories if you want to. Table 3-1 shows the .ddc file
types. For more information about file types and customizing the
directory locations, see the Automated Chip Synthesis User Guide.

Table 3-1 .ddc File Types

File type Keyword Default file location

Elaborated .ddc file elab_ddc $acs_work_dir/elab/db

Precompile .ddc file pre_ddc gacs_work_dir/dest_dir/db/pre_compile’

Postcompile .ddc file post_ddc $acs_work_dir/dest_dir/db/
post_compile’

1. The dest_dir argument refers to the destination directory.

In XG mode, constraints are not preserved on subdesigns after
performing a top-level compile; therefore, the postcompile .ddc files
for the subpartitions do not contain constraints. If you reload a
postcompile .ddc file for a subpartition, you must reapply the
subpartition constraints (from the $acs_work_dir/dest_dir/
constraints directory) before doing any analysis or further processing
on the subpartition.

Using Automated Chip Synthesis in XG Mode
3-5

Unsupported Capabilities

In XG mode, Design Compiler does not support the following
capabilities:

Saved design budgets

You cannot save design budgets in the design .db file. If a .db file
contains design budgeting information, dc_shell ignores the
information.

Design verification

The compare_design, set_compare_design_script,
reset_compare_design_script, and
write_compare_design_script commands are not
supported in XG mode. In addition, XG mode does not support
the -verify, -verify effort, and
-verify_hierarchically options with the compile or
translate commands.

To verify your design, use the Formality tool, rather than these
dc_shell commands.

Pad mapping

The following commands are not supported in XG mode:
insert_pads, remove_pads, set_pad_type, and
set_port_is_pad.

Chapter 3: Using Design Compiler in XG Mode

3-6

4

Using DFT Compiler in XG Mode

This chapter describes the DFT Compiler flow using the new user
interface introduced in XG mode. In XG mode, DFT Compiler uses
the Unified Test Design Rule Checking (DRC) flow (which was
introduced in version U-2003.06), so the scope of changes you see
depends on whether you have previously converted to the Unified
Test DRC flow. A converter script, db2xg, is provided to assist with
the conversion.

This chapter contains the following sections:

Benefits of XG Mode

e Features Available in XG Mode

e Overview of Scan Synthesis Command Changes
e Using the db2xg Converter Script

e Converting to the Unified Test DRC Flow

4-1

e Performing Scan Synthesis

e Performing Scan Extraction

e Using Rapid Scan Synthesis

* Using Hierarchical Scan Synthesis

* Using AutoFix

* Reporting

e Using BSD Compiler

e Using DFT Compiler DBIST Synthesis
e GUI Support

Benefits of XG Mode

XG mode provides the following benefits for DFT Compiler:

e Half the runtime of DB mode
* Twice the capacity of DB mode

e New user interface that is more consistent and flexible than the
DB mode user interface

* Enhanced reporting capabilities

Chapter 4: Using DFT Compiler in XG Mode
4-2

Features Available in XG Mode

The following DFT Compiler features are available in XG mode:

Unified Test DRC flow
1-Pass test synthesis
Rapid scan synthesis
Hierarchical scan synthesis

Adaptive Scan Technology (including Hierarchical Adaptive Scan
Synthesis)

Test data volume reduction (TDVR)

Automatic fixing of scan violations (AutoFix)
Location-based scan ordering

Timing-based scan ordering

BSD Compiler

SocBIST (including BIST-ready and Core Wrapping)

The ShadowlLogic DFT feature is not available in XG mode.

The following capabilities are available only in XG mode:

Ability to use internal pins as test pins
(set_dft_drc_configuration -internal_pins
command)

Ability to specify a serially routed set of sequential cells as a scan
group (set_scan_group -serial_routed command)

Features Available in XG Mode
4-3

Overview of Scan Synthesis Command Changes

The main differences between the user interface in XG mode and in
the Unified Test DRC flow in DB mode are the following:

The command set used to identify the test-related ports and to
set the test attributes on these ports

DB mode provides four commands for this purpose. XG mode
provides a single command, set_dft_signal.

The introduction of the concept of descriptive and prescriptive
views of the design-for-test (DFT) structures

The descriptive view (-view existing_dft) describes how
existing logic is used in test mode. The prescriptive view (-view
spec) defines the DFT structures that you want DFT Compiler to
insert into the design. Views are used for specifying the DFT
signals (*dft_signal commands) and the scan paths
(*scan_path commands).

Note:
If you do not specify a view, DFT Compiler uses the
prescriptive view (-view spec).
Addition of commands to report on all DFT specifications
The ability to report on the DFT specifications enables you to

verify the current specification at any point during exploration and
implementation.

Addition of commands to reset or remove all DFT specifications

The ability to return the DFT specification to the default state
enables interactive debugging and exploration of the DFT
structures.

Chapter 4: Using DFT Compiler in XG Mode

4-4

If you have not yet migrated to the Unified Test DRC flow, you will
also see the following differences in test design rule checking:

* Test design rule checking requires a test protocol file.

In the Unified Test DRC flow, the test protocol is no longer
inferred during test design rule checking. You must explicitly run
create_test_protocol (or read_test_protocol) before
running test design rule checking.

e The same command, dft_drc, is used to perform test design
rule checking in all contexts

In the original DRC flow, the rt1drc command is used to
perform test design rule checking for RTL designs, while the
check_dft command is used to perform test design rule
checking for gate-level designs. In the Unified Test DRC flow, the
dft_drc is used to perform test design rule checking,
regardless of the context (RTL design, gate-level pre-scan
design, or gate-level post-scan design).

In addition to these changes, many DFT Compiler commands have
been obsolete for some time but are still used. You must remove
these commands from your scripts, because they do not function in
XG mode. If you use these commands in XG mode, you will get an
error message such as

dc_shell-xg-t> set_test_methodology
Error: Command 'set_test_methodology' is disabled. (CMD-080)

Table 4-1 shows the command correspondence between the
different DFT Compiler user interfaces. In most cases, even if the
command name is the same, the command options differ between
XG mode and DB mode. For detailed information about these
commands, see the man pages. For information about syntax

Overview of Scan Synthesis Command Changes
4-5

differences between XG mode and DB mode, see Appendix A,
“Command Differences.” For information about using the db2xg
converter script to automatically update your script files, see “Using

the db2xg Converter Script” on page 4-12.

Table 4-2 provides a list of obsolete DFT Compiler commands that
no longer function in XG mode.

Table 4-1 DFT Compiler Command Correspondence

XG mode

DB mode (Unified Test DRC)

DB mode (Original DRC)

Scan Specification (Descriptive)

set_dft_configuration
-scan
-fix_clock
-fix_set -fix_reset

reset_dft_configuration

report_dft_configuration

. . 1
set_scan_configuration

set_scan_element false

reset_scan_configuration

report_scan_configuration
set_scan_state
set_dft_signal

-view existing_dft
-type ScanClock

set_dft_configuration
(not available)
-—autofix
—autofix

remove_dft_configuration

report_test
-dft_configuration

. . 1
set_scan_configuration

set_scan_configuration
-replace false

set_dft_configuration1

remove_dft_configuration

set_scan_configuration

set_scan_configuration
-replace false

remove_scan_specificationremove_scan_specificatio

(not available)
set_scan_state

create_test_clock

Chapter 4: Using DFT Compiler in XG Mode

4-6

n
(not available)
set_scan_state

create_test_clock

Table 4-1 DFT Compiler Command Correspondence (Continued)

XG mode
set_dft_signal
-view existing_dft
-type Reset
set_dft_signal
-view existing_dft
-type Constant

remove_dft_signal

report_dft_signal
-view existing_dft

set_test_assume2

DB mode (Unified Test DRC)
set_signal_type

test_asynch[_inverted]

set_test_hold

(not available)

report_test -port

set_test_assume

DB mode (Original DRC)

set_signal_type
test_asynch[_inverted

set_test_hold

(not available)

report_test -port

set_test_assume

set_scan_path
-view existing_dft

remove_scan_path

Test Design Rule Checking
create_test_protocol
read_test_protocol
remove_test_protocol
write_test_protocol

dft_drc

(not available)

(not available)

create_test_protocol

read_test_protocol
(not available)

write_test_protocol

dft_drc

(not available)

(not available)

create_test_protocol

read_test_protocol
(not available)

write_test_protocol

rtldrc

check_dft

check_scan
check_test

Overview of Scan Synthesis Command Changes

4-7

Table 4-1 DFT Compiler Command Correspondence (Continued)

XG mode

DB mode (Unified Test DRC)

DB mode (Original DRC)

Scan Specification (Prescriptive)

set_dft_signal
-view spec

set_scan_bidi

set_scan_path

set_scan_replacement
set_scan_tristate

remove_scan_replacement

Scan Preview

preview_dft1

Scan Insertion

insert_dft1

set_dft_insertion_

configuration3

-synthesis_optimization \

none
-preserve_design_name

reset_dft_insertion_

configuration3

set_scan_signal

set_scan_bidi

set_scan_path
set_scan_segment

set_scan_replacement
set_scan_tristate

set_scan_replacement
-remove

preview_dft

insert_dft1

set_dft_optimization_

configuration3
-none

-preserve_design_name

(not available)

Chapter 4: Using DFT Compiler in XG Mode

4-8

set_scan_signal

set_scan_bidi

set_scan_path
set_scan_segment

set_scan_replacement
set_scan_tristate

set_scan_replacement
-remove

preview_scan

insert_scan

insert_test

set_dft_optimization_

. .2
configuration
-none

-preserve_design_name

Table 4-1 DFT Compiler Command Correspondence (Continued)

XG mode

DB mode (Unified Test DRC)

DB mode (Original DRC)

Hierarchical Scan Synthesis

use_test_models

AutoFix

set_autofix_
configuration

reset_autofix_

configuration3

report_autofix

configuration3
set_autofix_element
reset_autofix_element

report_autofix_element

Reporting

report_scan_path

(not available)

(not available)

(not available)

(not available)

(not available)
(not available)

(not available)

report_test

(not available)

(not available)

(not available)

(not available)

(not available)
(not available)

(not available)

report_test

1. Options differ between XG mode and DB mode.

2. The set_test_assume command can be used only on output pins in XG mode. In addition, it no longer
requires you to isolate the output pin (set_test_isolate is not required).

3. Command is one word; it is broken to fit in the table.

Table 4-2 Obsolete DFT Compiler Commands

Command Notes

All Test Compiler ATPG functionality is obsolete.
Migrate to TetraMAX.

create_test_patterns

Overview of Scan Synthesis Command Changes
4-9

Table 4-2 Obsolete DFT Compiler Commands (Continued)

Command Notes

create_testsim model
delete_test
fault_simulate
insert_test Use insert_dft instead
prepare_testsim_vectors
report_test -dont_fault
-mask_fault
-testsim_timing
-faults
-class
-coverage
-incremental
-atpg_conflicts

restore_test

set_min_fault_coverage

set_scan
set_scan_chain Replace with set_scan_path.
set_scan_style Replace with set_scan_configuration -style.

set_test_dont_fault

set_test_isolate Replace with set_scan_element false.
set_test_keep_fault_data

set_test_mask fault

set_test_methodology

set_test_require

set_test_routing order

Chapter 4: Using DFT Compiler in XG Mode
4-10

Table 4-2 Obsolete DFT Compiler Commands (Continued)

Command Notes

set_test_unmask_ fault

set_testsim_output_strobe

Overview of Scan Synthesis Command Changes
4-11

Using the db2xg Converter Script

The db2xg script (which is located at $SYNOPSY S/auxx/syn/dftc/
db2xg) converts your existing dctcl script to the XG mode command
set. If your script uses dcsh syntax rather than dctcl syntax, run the
dc-transcript script on your script before running db2xg. For
more information about the dc-transcript utility, see the Design
Compiler documentation.

You run the db2xg script from the system prompt. The syntax for
running this script is

db2xg dctcl_script xg script [-silent]

[-help | -man | -version]
Argument Description
dctcl_script The name of the existing dctcl script to be converted.
Xg_script The name of the XG mode script generated by db2xg.
-silent Specifies that the script should run silently. By default, the script

prints warning messages during execution.

[-help] Prints basic usage information for db2xg.
[-man] Prints the man page for db2xg.
[-version] Prints the version of the db2xg script.
Note:

The db2xg script is a Perl script. To run this script, you must be
able to run Perl from /usr/bin/perl.

Chapter 4: Using DFT Compiler in XG Mode

4-12

Known Limitations

The db2xg script has the following known limitations:

Your dctcl script must use the Unified Test DRC flow.

The db2xg script does not support the original DRC flow. For
information about converting your script from the original DRC
flow to the Unified Test DRC flow, see “Converting to the Unified
Test DRC Flow” on page 4-16.

The script fully supports only the multiplexed flip-flop scan style.

If your design uses a scan style other than multiplexed flip-flop,
the db2xg script correctly translates commands such as
set_scan_style, but it might not correctly specify the test
clocks.

Scan path specifications might not translate correctly.

In XG mode, the set_scan_path command is order dependent
(it must occur after the test ports related to the path have been
defined), so the script holds this command in memory until the
script finds a command unrelated to scan specification, such as
create_test_protocol, dft_drc, preview_dft, or
insert_dft.

Because db2xg waits to output the set_scan_path command,
the result can be incorrect if the specification includes a Tcl
variable (db2xg does not perform variable substitution) or occurs
within a Tcl loop.

Using the db2xg Converter Script
4-13

For example, assume that your dctcl script contains the following
commands:

for {set 1 1} {$i < 20} {incr i} {
set_scan_path c¢${i} -chain_length 50
}
for {set j 1} {$J < 20} P{incr j} {
set_scan_signal test_scan_in -port sis${j} \
-chain c${j}
set_scan_signal test_scan_out -port sos${j} \
-chain c${j}
}

create_test_protocol

In this case, db2xg would convert the set_scan_path
command incorrectly because it would not know that c${i} and
c${j} resolve to the same value. Even if the same variable were
used for the two loops, the generated set_scan_path
command would be incorrect, because only a single command
would be generated, and it would be outside the loop (so the
variable would be undefined), as shown in the following code:

for {set 1 1} {$i < 20} {incr i} {
}
for {set 1 1} {$i < 20} P{incr 1} {
set_dft_signal -view spec -port sis{i} \
-type ScanDataln
set_dft_signal -view spec -port soS{i} \
-type ScanDatalOut
}
set_scan_path c¢${i} -view spec -scan_data_in sis{i} \
-scan_data_out so${i} -exact_length 50
create_test_protocol

Chapter 4: Using DFT Compiler in XG Mode

4-14

Trailing characters after the actual command (for example,
redirection specifications) might not be correctly translated.

If a single command is translated into multiple commands, and
the original command contains information after the actual
command syntax, the additional information is added only to the
last command in the generated script. This might result in an
incorrect translation.

For example, assume that your script contains the following
command:

report_test -scan_path > report.log

The resulting commands in the generated script are

report_scan_path -chains all
report_scan_path -cells all > report.log

In this case, only the cell report, and not the chain report, would
be included in the log file.

Multiline commands are merged into a single line during
conversion.

This limitation does not cause a problem for script execution;
however, the generated script does not retain the formatting of
the original script.

Because of these limitations, inspect the generated script to ensure
that it is correct. You can use the enhanced reporting capabilities
provided in XG mode to help with this task.

Using the db2xg Converter Script
4-15

Converting to the Unified Test DRC Flow

The Unified Test DRC flow uses the same DRC engine as TetraMAX,
thereby ensuring consistent rules and messages between DFT
Compiler and TetraMAX.

This section briefly describes how to migrate to the Unified Test DRC
flow. For detailed information about test design rule checking using
the Unified Test DRC flow, see the following chapters in the DFT
Compiler User Guide Vol. 1: Scan (XG Mode):

e Chapter 2, "Running RTL Test Design Rule Checking"
e Chapter 4, "Pre-Scan Design Rule Checking"

e Chapter 5, "Architecting Your Test Design"

To migrate to the Unified Test DRC flow,

1. Addthe create_test_protocol command to your script.

In the Unified Test DRC flow, DFT Compiler no longer infers the
test protocol during test design rule checking. You must explicitly
run create_test_protocol (or read_test_protocol)
before running test design rule checking.

Before running the create_test_protocol command, you
must define the test protocol, including the test clocks, resets,
and constant values. For information about defining the test
protocol, see the DFT Compiler documentation.

By default, the create_test_protocol command does not
infer test clocks and resets. For the best results (and reduced
runtime), use the set_dft_signal -view existing_dft
command to explicitly define these signals before running

Chapter 4: Using DFT Compiler in XG Mode

4-16

create_test_protocol. If you would rather have DFT
Compiler infer these signals, specify the -infer_clock or
-infer_aynch options when you run
create_test_procotol.

2. Replace all test design rule checking commands with the
dft_drc command.

In the Unified Test DRC flow, the dft_drc command performs
test design rule checking at all design stages, replacing the
rtldrc, check test, check scan, and check_dft
commands.

About the set_dft_signal Command

The set_dft_signal command replaces several commands from
the Unified Test DRC flow. In XG mode, this command is used to
identify all test signals, both those that are used in the existing logic
(-view existing_dft) and those that are to be added (-view
spec). You use the -type option to specify the type of test signal.
Table 4-3 lists the valid keyword values.

Important:
The type values are case-sensitive.

About the set_dft_signal Command
4-17

Table 4-3 DFT Signal Type Keywords

Type keyword Description DB mode signal type

Constant Test-hold pin (no equivalent)
(replaces set_test_hold)

MasterClock System clock test_clock

Reset Asynchronous set or reset signal test_asynch
test_asynch_inverted

ScanClock Shorthand for MasterClock +
ScanMasterClock (for use with (no equivalent)
multiplexed flip-flop scan style only)

ScanDataln Scan input test_scan_in
ScanDataOut Scan output test_scan_out
ScanEnable Scan enable test_scan_enable
ScanMasterClock Master clock test_scan_clock

test_scan_clock_a

ScanSlaveClock Slave clock in LSSD scan style test_scan_clock_b
TestData External test data pin test_point_normal_data_source_asyn
c

test_point_normal_data_source
test_point_normal_data_source_clock
test_point_clock

TestMode Test mode pin test_mode

Chapter 4: Using DFT Compiler in XG Mode
4-18

Performing Scan Synthesis

When performing scan synthesis, you use a combination of the
descriptive view (-view existing_dft) and the prescriptive view
(-view spec). When you define existing signals that are used in
test mode, you use the descriptive view. When you define the scan
structure you want inserted, you use the prescriptive view.

As in DB mode, you follow these steps to perform scan synthesis in
XG mode (after reading the RTL design):

1.

Perform RTL test design rule checking.

. Perform 1-pass scan synthesis.

. Perform pre-scan test design rule checking.

2
3
4.
5

Perform scan insertion.

. Analyze the post-scan design.

The following sections provide sample scripts for performing these
steps in XG mode.

Performing Scan Synthesis
4-19

Performing RTL Test Design Rule Checking
To perform RTL test design rule checking,

1. Define the test protocol.

Use the -view existing_dft option with the
set_dft_signal command to specify how existing signals are
used in test mode.

2. Create the test protocol.
3. Run RTL test design rule checking.

Table 4-4 shows a sample script that performs RTL test design rule
checking. Both the XG mode and DB mode (Unified Test DRC flow)
versions are provided for comparison. In the XG mode script, the
commands that differ from DB mode are shown in bold.

Table 4-4 RTL Test Design Rule Checking

XG mode script DB mode script
Define the test protocol
set_scan_configuration \ set_scan_configuration \
-style multiplexed_ flip_ flop -style multiplexed_ flip_ flop
set_dft_signal -view existing dft \ create_test_clock CLK \
-type ScanClock \ -waveform [list 45 55]
-port CLK -timing [list 45 55]
set_dft_signal -view existing dft \ set_signal_type test_asynch_inverted
-type Reset \ RESETN

-port RESETN -active_state 0

Create the test protocol

create_test_protocol create_test_protocol

Run RTL test design rule checking
dft_drc dft_drc

Chapter 4: Using DFT Compiler in XG Mode
4-20

Performing 1-Pass Scan Synthesis

To perform 1-pass synthesis, use the compile -scan command,
just as you do in DB mode. There are no changes to this step.

Performing Pre-Scan Test Design Rule Checking

To perform pre-scan test design rule checking,

1. Create the test protocol.

You previously defined the test protocol when you ran RTL test
design rule checking (if you did not, you must do so now). The
design has changed, so you must regenerate the test protocol.

2. Run pre-scan test design rule checking.

Example 4-1 shows a sample script that performs pre-scan test
design rule checking. The commands to perform this task are the
same in XG mode and DB mode.

Example 4-1 Pre-Scan Test Design Rule Checking

Create the test protocol
create_test_protocol

Run pre-scan test design rule checking
dft_drc

Performing Scan Synthesis
4-21

Performing Scan Insertion

To perform scan insertion,

1. Define the scan configuration.

Use the -view spec option with the set_dft_signal and
set_scan_element commands to define the scan structures
that you want inserted into your design. For details about these
commands, see the man pages.

To specify the scan routing order, use the set_scan_path
-view spec command. In DB mode, when you specify the
routing order, you must specify the entire scan chain. In XG
mode, you can specify cells at the beginning
(-head_elements) orend (-tail_elements) of the scan
chain. DFT Compiler inserts cells between the specified cells.

2. Preview the scan chains.
3. Insert the scan chains.

To prevent DFT Compiler from renaming the subdesigns, run the
set_dft_insertion_configuration
-preserve_design_name true command before inserting
the scan chains.

Table 4-5 shows a sample script that performs scan insertion. Both
the XG mode and DB mode (Unified Test DRC flow) versions are
provided for comparison. In the XG mode script, the commands that

differ from DB mode are shown in bold.

Chapter 4: Using DFT Compiler in XG Mode
4-22

Table 4-5 Scan Insertion

XG mode script

DB mode script

Define the scan configuration

set_dft_signal -view spec \

-type ScanDataIn -port TEST_ SI
set_dft_signal -view spec \

-type ScanDataOut -port TEST_SO
set_dft_signal -view spec \

-type ScanEnable -port TEST SE

Preview the scan chains
preview_dft
Insert the scan chains
insert_dft

set_scan_signal test_scan_in \
-port TEST_ST

set_scan_signal test_scan_out \
-port TEST_SO

set_scan_signal test_scan_enable \
-port TEST_SE

preview_dft

insert_dft

Performing Scan Synthesis

4-23

Analyzing the Post-Scan Design

To analyze the post-scan design,

1. Save the design and test protocol.

2. Run post-scan test design rule checking.
3. Report on the scan structures.

Table 4-6 shows a sample script that performs post-scan test design
rule checking. In the XG mode script, the commands that differ from
DB mode are shown in bold.

Table 4-6 Post-Scan Design Analysis

XG mode DB mode

Save the design and test protocol

write -format ddc -hier \ write -format db -hier \
-output my design.ddc -output my_design.db
write_test_protocol \ write_test_protocol \
-output my_design_final.spf -output my_design_final.spf

Analyze the scan design
dft_drc dft_drc
report_scan_path -view existing dft \ report_test -scan
-chain all
report_scan_path -view existing dft \
-cell all

Chapter 4: Using DFT Compiler in XG Mode
4-24

Complete Scan Insertion Example

Table 4-7 shows a sample script that performs the complete scan
insertion process. Both the XG mode and DB mode (Unified Test

DRC flow) versions are provided for comparison. In the XG mode
script, the commands that differ from DB mode are shown in bold.

Table 4-7 Complete Scan Insertion Script

XG mode script

DB mode script

Read RTL design

read_verilog my _design.v
current_design my_design
link

Define the test protocol

set_scan_configuration \
-style multiplexed_flip_flop

set_dft_signal -view existing 4dft \
-type ScanClock \
-port CLK -timing [list 45 55]

set_dft_signal -view existing dft \
-type Reset \
-port RESETN -active_state 0

Create the test protocol

create_test_protocol

Run RTL test design rule checking
dft_drc

Run l-pass scan synthesis

compile -scan

read_verilog my_design.v
current_design my_design
link

set_scan_configuration \
-style multiplexed_flip_flop

create_test_clock CLK \
-waveform [list 45 55]

set_signal_type test_asynch_inverted
RESETN

create_test_protocol

dft_drc

compile -scan

Run pre-scan test design rule checking

create_test_protocol
dft_drc

Performing Scan Synthesis
4-25

Table 4-7 Complete Scan Insertion Script (Continued)

XG mode script

DB mode script

Define the scan configuration
set_dft_signal -view spec \
-type ScanDataIn -port TEST_SI

set_dft_signal -view spec \
-type ScanDataOut -port TEST_ SO

set_dft_signal -view spec \
-type ScanEnable -port TEST_ SE

Preview the scan chains

preview_dft

Insert the scan chains

insert_dft

Save the design and test protocol
write -format ddc -hier \

-output my design.ddc
write_test_protocol \

-output my_design_final.spf

Analyze the scan design

dft_drc

report_scan_path -view existing dft \
-chain all

report_ scan_path -view existing dft \
-cell all

set_scan_signal test_scan_in \
-port TEST_SI

set_scan_signal test_scan_out \
-port TEST_SO

set_scan_signal test_scan_enable \
-port TEST_SE

preview_dft

insert_dft

write -format db -hier \
-output my_design.db

write_test_protocol \
-output my_design_final.spf

dft_drc

report_test -scan

Chapter 4: Using DFT Compiler in XG Mode
4-26

Performing Scan Extraction

When performing scan extraction, you always use the descriptive
view (-view existing_dft), because you are defining test
structures that already exist in your design.

To perform scan extraction,

1.

3.

Define the scan input and scan output for each scan chain.

Use the -view existing_dft option with the
set_scan_path and set_dft_signal commands to define
these relationships.

Define the test clocks, resets, and test mode signals.

Use the -view existing_dft option with the
set_dft_signal command to specify these signals.

Run dft_drc to extract the scan chains.

Table 4-8 shows a sample script that performs scan extraction. Both
the XG mode and DB mode (Unified Test DRC flow) versions are
provided for comparison. In the XG mode script, the commands that
differ from DB mode are shown in bold.

Note:

You can use this flow to perform scan reordering after physical
synthesis by running the preview_dft -physical and
insert_dft -physical commands after you run the
commands shown in the sample script.

Performing Scan Extraction
4-27

Table 4-8 Scan Extraction

XG mode

DB mode

Define the scan chains

set_scan_configuration \
-style multiplexed_ flip_flop

set_dft_signal -view existing dft \
-type ScanDataIn -port TEST_SI
set_dft_signal -view existing dft \
-type ScanDataOut -port TEST_ SO
set_dft_signal -view existing 4dft \
-type ScanEnable -port TEST SE
set_scan_path chainl \
-view existing 4dft \
-scan_data_in TEST ST \
-scan_data_out TEST_ SO

Define the test signals

set_dft_signal -view existing 4dft \
-type ScanClock -port CLK \
-timing [list 45 55]

set_dft_signal -view existing dft \
-type Reset -port RESETN \
-active_state 0

Extract scan chains

create_test_protocol

dft_drc

report_scan_path -view existing dft \
-chain all

report_scan_path -view existing dft \
-cell all

set_scan_configuration \
-style multiplexed flip_flop

set_scan_state scan_existing

set_signal_type test_scan_in TEST_STI \
-index 1

set_signal_type test_scan_out TEST_SO \
-index 1

set_signal_type test_scan_enable TEST SE

create_test_clock CLK -waveform {45 55}

set_signal_type test_asynch_inverted \
RESETN

create_test_protocol
dft_drc -infer_scan_structure

report_test -scan

Chapter 4: Using DFT Compiler in XG Mode
4-28

Using Rapid Scan Synthesis

Rapid scan synthesis is the process of stitching the scan chains
together without optimizing them. In XG mode, use the
set_dft_insertion_configuration
-synthesis_optimization none command to prevent
optimization during scan insertion.

Using Hierarchical Scan Synthesis

The hierarchical scan synthesis process is the same in XG mode as
it is in DB mode. (For details about hierarchical scan synthesis, see
Chapter 1, "Key DFT Flows and Methodologies" in the DFT Compiler
User Guide Vol. 1: Scan (XG Mode).)

There are a few differences in command and variable names, which
are detailed in this section.

To create test models during scan insertion, set the
test_xg_use_models variable to true before running
insert_dft. (DB mode uses the test_use_test_models
variable for this purpose.)

To use test models at the top level,

e Setthe test_xg_use_models variable to true.
e Usethe read_ test_models command to read the test models.

e Usethe use_test_models command to specify which
subdesigns use test models.

Using Rapid Scan Synthesis
4-29

Use the -true design_I1ist option to specify which
subdesigns use test models. Use the -false design_Ilist
option to specify which subdesigns do not use test models.

To report the current settings, use the
report_use_test_models command.

Table 4-9 shows a sample script that creates a test model.

Table 4-10 shows a sample script that uses the test model. Both the

XG mode and DB mode (Unified Test DRC flow) versions are

provided for comparison. In the XG mode script, the commands that

differ from DB mode are shown in bold.

Table 4-9 Hierarchical Scan Synthesis (Module Level)

XG mode

DB mode

Enable test model generation

set test_xg use_models true

Perform scan insertion
compile -scan
set_dft_signal ...
create_test_protocol
dft_drc
set_scan_configuration ...
preview_dft

insert_dft

Save test model

write_test_model -output modl.ctldb

set test_use_test_models true

compile -scan
set_signal_type ...
create_test_protocol
dft_drc
set_scan_signal ...
preview_dft
insert_dft

write_test_model -output modl.ctldb

Chapter 4: Using DFT Compiler in XG Mode
4-30

Table 4-10 Hierarchical Scan Synthesis (Top Level)
XG mode DB mode

Enable test model generation

set test_xg use models true set test_use_test_models true

Read design and test model
read_test_model modl.ctldb read_test_model modl.ctldb

read_verilog top.v read_verilog top.v

Enable use of test models throughout the design hierarchy

use_test_model -true top

Perform scan insertion at the top level

dft_drc dft_drc
set_scan_configuration ... set_scan_signal ...
preview_dft preview_dft
insert_dft insert_dft

Using AutoFix

The AutoFix capability can automatically fix scan rule violations
associated with uncontrollable clocks, uncontrollable asynchronous
set signals, or uncontrollable asynchronous reset signals.

To use the AutoFix capability,

1. Enable the desired capabilities.

You use the set_dft_configuration command to enable
these capabilities. Table 4-11 shows the options used to control
the various capabilities.

Using AutoFix
4-31

Table 4-11

Options to Enable AutoFix Capabilities

To enable fixing of Use this option
Uncontrollable clocks -fix_clock enable
Uncontrollable asynchronous reset signals -fix_reset enable
Uncontrollable asynchronous set signals -fix_set enable

2. Specify the control signals.

You use the set_autofix_configuration command to
specify global control signals. (To remove the specification, use
the reset_autofix_configuration command.)

You use the set_autofix_element command to specify the
local control signals. (To remove the specification, use the
reset_autofix_element command.)

Note:

Although the set_autofix_configuration and
set_autofix_element commands exist in DB mode, their
options and functionality differ in the two modes.

Both commands have the same set of options. Table 4-12
defines the options used to fix clocks, asynchronous set signals,
or asynchronous reset signals. For more information, see the
man pages and the DFT Compiler documentation.

Chapter 4: Using DFT Compiler in XG Mode

4-32

Table 4-12 AutoFix Configuration Options

Option

Description

-type clock | reset | set

-control_signal signal_name

-test_data signal_name

-include_elements object_1list

-exclude_elements object_1list

You must specify the AutoFix type that uses this
configuration. You can define different configurations for
each AutoFix type and set of elements.

Specifies the name of the test mode control signal. This
signal must be defined as either a TestMode or
ScanEnable signal (with the set_dft_signal
command).

If you do not specify this option, DFT Compiler uses the
TestMode signals in your design (as defined by
set_dft_signal). If there are no TestMode signals in
your design, DFT Compiler creates one.

Specifies the name of the externally controllable test data
signal. This signal must be defined as a TestData signal
(with the set_dft_signal command).

If you do not specify this option, DFT Compiler creates a
new port.

Specifies the set of design objects that are considered for
fixing violations. By default, all objects are considered.

Specifies the set of design objects that are not considered
for fixing violations. By default, all objects are considered.

Table 4-13 shows a sample script that performs AutoFix. Both the
XG mode and DB mode (Unified Test DRC flow) versions are
provided for comparison. In the XG mode script, the commands that
differ from DB mode are shown in bold.

Using AutoFix
4-33

Table 4-13 AutoFix

XG mode DB mode

Enable AutoFix

set_dft_configuration \ set_dft_configuration -autofix
-fix clock enable \
-fix_reset enable \
-fix set enable

Perform scan insertion

compile -scan compile -scan

set_dft_signal ... set_signal_type ...

create_test_protocol create_test_protocol

dft_drc dft_drc

set_scan_configuration ... set_scan_signal ...

preview_dft -test_points all \ preview_dft -test_points all \
-show all -show all

insert_dft insert_dft

Reporting

In XG mode, all DFT specification commands have corresponding
reporting commands. To report what exists in the design, use the
-view existing_dft option onthe reporting command. To report
what you have specified for insertion, use the -view spec option
(this is the default).

Example 4-2 through Example 4-6 show sample reports from many
of the XG mode reporting commands.

Chapter 4: Using DFT Compiler in XG Mode
4-34

Example 4-2 A DFT Configuration Report

dc_shell-xg-t> report_dft_configuration

ER R R R R R R R R R R

Report DFT configuration
Design test

Version: 2003.12-DFT-POWER-BETA1
Date Fri Aug 22 16:10:05 2003

ER R R R R R R R R R R

DFT Structures
Scan:

Autofix:

Test point:
Logic BIST:
Memory BIST:
Wrapper:
Integration:
Boundary scan:

Example 4-3

dc_shell-xg-t> report_scan_configuratio
ER I b b b IR I 2R I b I b I b b b b b b b R b b b b b b b b b b b b b b b b

Report Scan configuration
Design SYNCH

Version: 2003.12-DFT-POWER-BETAL
Date Fri Aug 22 15:48:24 2003

Rk b Ik b Ik I I b I S I R I S S S S S I Sk b Sk b kb

TEST MODE:
VIEW

Internal_scan
Specification
Chain count:

Scan Style:

Maximum scan chain length:
Preserve multibit segments:
Clock mixing:

Internal clocks:

Add lockup:

Insert terminal lockup:
Create dedicated scan out ports:
Shared scan in:
Bidirectional mode:

*

*

Status
Enable
Enable
Disable
Disable
Disable
Disable
Disable
Disable

A Scan Configuration Report

n
*

*

Undefined
Multiplexed flip-flop
Undefined

True

Not defined

False

True

False

False

0

No bidirectional type

Reporting
4-35

Example 4-4 A DFT Signal Report

dc_shell-xg-t> report_dft_signal -view existing_dft

EE R R R R R R I I I I I I I O

Report : DFT signals

Design : SYNCH

Version: 2003.12-DFT-POWER-BETA1
Date : Fri Aug 22 15:48:51 2003

EE R R R R R R I I I I I I I I

TEST MODE: Internal_scan

VIEW : Existing DFT

Port SignalType
hrst_L Reset

mrxc ScanMasterClock
mrxc MasterClock
clk3 ScanMasterClock
clk3 MasterClock
clk2 ScanMasterClock
clk2 MasterClock

[e el e e S

dc_shell-xg-t> report_dft_signal -view spec
ER R I b I S b I R b b b S S b I b b b A b S b S b b

Report : DFT signals

Design : SYNCH

Version: 2003.12-DFT-POWER-BETA1
Date : Fri Aug 22 16:25:11 2003

EE R R R R R R I I R I R R I I

TEST MODE: Internal_scan

VIEW : Specification
Port SignalType
SI1 ScanDataln

Chapter 4: Using DFT Compiler in XG Mode
4-36

o L v A v B v B v B v

Timing
100.0 R 55.
100.0 R 45.
100.0 R 45.
100.0 R 45.
100.0 R 45.
100.0 R 45.
100.0 R 45.
Timing
Delay 5.0

[eNeNeNeNeNeNe)
i I e B ey By s s

45.
55.
55.
55.
55.
55.
55.

O O O O o oo

Example 4-5 Report on a User-Specified Scan Path

dc_shell-xg-t> report_scan_path -view spec -chain all

EE R R R R R R I I I I I I I O

Report : Scan path

Design : SYNCH

Version: 2003.12-DFT-POWER-BETA1
Date : Fri Aug 22 15:50:07 2003

EE R R R R R R I I I I I I I I

TEST MODE: Internal_scan

VIEW : Specification

Scan_path ScanDatalIn (h) ScanDataOut
chainl - -

1

Example 4-6 An AutoFix Configuration Report

dc_shell-xg-t> report_autofix_configuration
ER R R I e b b R R R R R I e 2 P R R R R R I b h R R R S 2 2 b R R

Report : Autofix configuration

Design : sample

Version: V-2004.06-SP1

Date : Fri Jul 2 12:11:19 2004

Rk b Ik b I Sk b Sk I I S I S I b S Ik S S I I

TEST MODE: all_dft

VIEW : Specification

Fix type: Set

Fix method: Mux

Fix latches: Disable

Fix type: Clock

Fix latches: Disable

Fix clocks used as data: Disable

Fix type: Internal_ bus
Fix method: Enable_one
Fix type: External_ bus
Fix method: Disable_all

ScanEnable (h)

Reporting
4-37

Using BSD Compiler

In XG mode, BSD Compiler supports both boundary-scan insertion
and compliance checking for IEEE Standards 1149.1-1993 and
1149.1-2001. It also supports BSDL file and test pattern generation.

Like the DFT Compiler user interface, the BSD Compiler user
interface has been simplified in XG mode.

Note:
The db2xg script does not convert BSD Compiler commands.

This section covers the following topics:

e Boundary-Scan Design Flow
e Boundary-Scan Verification Flow

e Unsupported Capabilities

Boundary-Scan Design Flow

The process used for inserting boundary-scan logic is the same in
XG mode as in DB mode; however many of the commands are
different. In cases where the command is the same, the options
might differ.

Table 4-16 shows the command correspondence between XG mode
and DB mode for the commands used in the boundary-scan design
flow. For detailed information about the boundary-scan design flow,
see the BSD Compiler User Guide (XG Mode).

Chapter 4: Using DFT Compiler in XG Mode

4-38

Table 4-14 Boundary-Scan Design Commands

Task

XG mode commands

DB mode commands

Enable boundary-scan synthesis

Read design
Specify pad cells
Specify data cells
Specify control cells

Specify boundary-scan
cell order

Specify boundary-scan
signals (pre-insertion)

Remove boundary-scan signal attributes

Identify linkage ports

Define the boundary-scan
configuration

Specify power-up reset
of TAP controller

Configuring the device
identification register

Define TAP controller
interface

Define test data register

Specify boundary-scan
instructions

set_dft_configuration
-bsd enable

read -format fmt

define_dft_design

set_boundary_cell

set_boundary_cell

set_scan_path

set_dft_signal -view spec

remove_dft_signal

set_bsd_linkage_port

set_bsd_configuration

set_bsd_power_up_reset

set_bsd_instruction

define_dft_design

set_bsd_register

set_bsd_instruction

N/A

read -format fmt
set_bsd_pad_design
set_bsd_data_cell
set_bsd_control_cell

set_bsd_path

set_bsd_signal

remove_bsd_signal
set_bsd_linkage_port

set_bsd_configuration

set_bsd_power_up_reset

Set the following variables:

test_bsd_version_number,
test_bsd_part_number, and
test_bsd _manufacturer_id

set_bsd_tap_element
set_tap_elements

set_dft_signal
set_scan_path

set_bsd_instruction
set_bsd_intest
set_bsd_runbist

Using BSD Compiler
4-39

Table 4-14 Boundary-Scan Design Commands (Continued)

Task XG mode commands DB mode commands

Preview boundary scan preview dft -bsd_all preview bsd

Insert boundary scan insert_dft insert_bsd

Save design N/A write -donot_ expand dw
Synthesize the boundary- N/A compile

scan design

Boundary-Scan Verification Flow

The process used for verifying boundary-scan logic is the same in
XG mode as in DB mode; however many of the commands are
different. In cases where the command is the same, the options
might differ.

Table 4-15 shows the command correspondence between XG mode
and DB mode for the commands used in the boundary-scan
verification flow. For detailed information about the boundary-scan
verification flow, see the BSD Compiler User Guide (XG Mode).

Table 4-15 Boundary-Scan Verification Commands

Task XG mode commands DB mode commands
Checking for existing report_dft_signal report_test -port
test ports

Specify existing boundary- set_dft_signal set_bsd_port

scan signals -view existing_dft

Remove boundary-scan remove_dft_signal remove_bsd_signal

signal attributes

Identify linkage ports set_bsd_linkage_port set_bsd_linkage_port

Chapter 4: Using DFT Compiler in XG Mode
4-40

Table 4-15 Boundary-Scan Verification Commands (Continued)

Task

XG mode commands

DB mode commands

Configure the compliance- set_bsd_compliance

enable ports

Report the compliance-
enable configuration

Reset the compliance-
enable ports

Define system clocks
Enable automatic
inferencing of boundary-
scan instructions

Check compliance

Create boundary-scan
patterns

Verify the boundary-scan
specification
Remove the boundary-

scan specification

Save the boundary-scan
patterns

Generate BSDL file

N/A

reset_bsd_specification

set_dft_signal

check_bsd

-infer instructions true

check_bsd

create_bsd_patterns

preview_dft -bsd_all

reset_bsd_specification

write_test

write_bsdl

set_bsd_compliance

report_test -bsd

remove_bsd_specification

create_clock

set_bsd_configuration

-infer instructions true

check_bsd

create_bsd_patterns

report_test
-bsd_configuration
-bsd

remove_bsd_specification

write_test

write_bsdl

Using BSD Compiler
4-41

Unsupported Capabilities

In XG mode, BSD Compiler does not support the following
capabilities:

The write -donot_expand_dw option

In XG mode, the DesignWare boundary scan components are
automatically linked to the design when you save the design.

Generation of the boundary scan test patterns as a Verilog
testbench

You must save the boundary scan test patterns in STIL format.
You can simulate these patterns with the VerilogDPV capability.

Integration with Physical Compiler

In DB mode, BSD Compiler places the boundary scan registers
close to the pad cells. This capability is not supported in XG
mode.

Scan through TAP

In DB mode, BSD Compiler can connect the TAP signals to the
internal scan enable and generate a test protocol that uses the
TAP to control the internal scan chains. This capability is not
supported in XG mode.

Chapter 4: Using DFT Compiler in XG Mode

4-42

Using DFT Compiler DBIST Synthesis

The Synopsys deterministic built-in self test (DBIST) feature
provides a method of testing digital logic more efficiently, while
maintaining high test quality and minimizing the impact of test on
designers. This feature includes X-tolerant DBIST and streaming
DBIST (SDBIST).

The BIST insertion process consists of the following steps:

e BIST preparation
* BIST integration

In XG mode, you can perform these steps with a single insert_dft
command. In DB mode, these are two separate steps. Other than
this flow enhancement, the DBIST synthesis process is the same in
both XG and DB mode; however some of the commands and options
are different.

Note:
The db2xg script does not convert DBIST commands.

Table 4-16 shows the command correspondence between XG mode
and DB mode for the commands used in DBIST synthesis. For
detailed information about DBIST synthesis, see the DBIST User
Guide (XG Mode).

Using DFT Compiler DBIST Synthesis
4-43

Table 4-16 DBIST Command Correspondence

Task XG mode commands DB mode commands

BIST preparation commands

Specify BIST set_dft_configuration set_dft_configuration
preparation step -logicbist enable -bist
-wrapper enable -Ccore_wrapper
set_logicbist_configuration set_bist_configuration
-bist_ready true -bist_ready
[-type xdbist] [-type xdbist]
Specify insertion of set_dft_configuration set_dft_configuration
control and observe -control_points enable -testability
pohﬂs -observe_points enable
set_testability_configuration set_testability_configuration
-type control_and_observe -method bist
-max_test_points n -max_control_points n
-test_points_per_scan_cell n -control_points_per_scan_cell n
Specify X-state set_dft_configuration set_dft_configuration
propagation and -fix_xpropagation enable -autofix -bist
bus fixing -fix_bus enable set_autofix configuration
-Xprop true
-bus true
BIST integration commands
Specify BIST set_dft_configuration set_dft_configuration
integration step -logicbist enable -dbist | -xdbist
set_logicbist_configuration set_bist_configuration
-type dbist | xdbist -integration

-integration true

Chapter 4: Using DFT Compiler in XG Mode
4-44

Table 4-16 DBIST Command Correspondence (Continued)

Task XG mode commands

DB mode commands

One-step BIST synthesis commands

Specify BIST set_dft_configuration
synthesis -logicbist enable
-wrapper enable
set_logicbist_configuration
-type dbist | xdbist
-integration true

Specify X-state set_dft_configuration
propagation -fix xpropagation enable
and bus fixing -fix_bus enable

Common commands

Remove BIST remove_dft_configuration
configuration

Report on the report_logicbist_configuratio
BIST configuration n

Create test protocol create_test_protocol

Check BIST dft_drc
design rules

Preview test preview dft
structures

Insert test insert_dft
structures

(based on

configuration)

N/A

N/A

remove_dft_configuration

report_test -bist

create_test_protocol

dft_drc

preview_dft

insert_dft

Using DFT Compiler DBIST Synthesis
4-45

GUI Support

In XG mode, the Test menu options and the DRC violation browser
are disabled in Design Vision and the Physical Compiler GUI. You
must invoke all DFT commands from the command line.

To debug your DRC violations, you can use the
dft_drc_interactive Tcl procedure to invoke the TetraMAX
GUI from within DFT Compiler. The TetraMAX GUI provides
advanced DRC analysis capabilities.

You do not need a TetraMAX license to use these DRC analysis
capabilities. However, you must have a fully mapped netlist and have
access to simulation libraries that can be used by TetraMAX.

For more information about using the dft_drc_interactive
procedure and a link to download it, see the SolvNet article, “Using
TMAX for interactive debug inside DFT Compiler” (located at https:/
/solvnet.synopsys.com/retrieve/012388.html).

Chapter 4: Using DFT Compiler in XG Mode

4-46

5

Using Physical Compiler in XG Mode

This chapter describes the differences between running Physical
Compiler in XG mode and DB mode.

This chapter contains the following sections:

* Physical Libraries

e Supported Physical Design Flows

» Differences in Behavior

e Features Available Only in XG Mode
e Unsupported Capabilities

5-1

Note:
The information provided in Chapter 1, “Introduction to XG
Mode,” and Chapter 2, “XG Mode Design Database Formats,”
applies to Physical Compiler as well. For detailed information
about running Physical Compiler, see the Physical Compiler
documentation.

Physical Libraries

By default, Physical Compiler uses the Milkyway reference library as
the physical library in XG mode. This is the same physical library that
is used by the Jupiter and Astro tools. To specify the Milkyway
reference library, set the mw_reference_library variable.

If you do not have a Milkyway reference library, you can use the
Milkyway tool to generate one from your LEF library files or your .pdb
library files. After generating the Milkyway reference library, you must
generate a technology file (for use with the create_mw_design
command). Physical Compiler also provides a way to revert to using
.pdb format physical libraries. The following sections describe these
tasks.

Generating a Milkyway Reference Library from LEF

To generate a Milkyway reference library from your LEF library files,

1. Choose Cell Library > LEF In from the Milkyway menu bar.

Chapter 5: Using Physical Compiler in XG Mode

5-2

The Read LEF dialog box appears.

0K ‘ Cancel | Default ‘ Apply ‘ Help
Library Hame i | Browse...
Tech LEF Files |] Browse...
Cell LEF Files | Browsse...
Layer Mapping | Browse...

_I Overwnte Existing Tech
_I Ignore Cell Geometries

_I fwlvanced Library Prep Mode

Same Hame Cell Resolution

4 Merge with Existing Cell
~ Overwrite Existing Cell
~ Make Mew Cell Version

~ lgnore LEF Cell

2. Enter the reference library name (Library Name), the technology
LEF files (Tech LEF Files), and the cell LEF files (Cell LEF Files).

Alternatively, you can click Browse to use the browse capability
to select the reference library and LEF files.

If the same LEF file is used for both technology and cell
information, enter the file name in both the Tech LEF Files and
Cell LEF Files fields.

3. Click OK to generate the specified reference library.
4. Check the log file for warnings or errors.

The log file is located in the directory where you invoked the
Milkyway tool. The name of the log file is Milkyway.log.date,
where date is the date and time when you invoked the Milkyway
tool.

Physical Libraries
5-3

For more information about this process, including debugging
information and information about the other fields in the Read LEF
dialog box, see the Milkyway documentation.

Generating a Milkyway Reference Library from .pdb

To generate a Milkyway reference library from your .pdb library files,

1. Choose Cell Library > Import PLIB from the Milkyway menu bar.
The PLIB/PDB In dialog box appears.

ZZ PLIB/PDB In

0K ‘ Cancel | Default ‘ Apply ‘ Help
Library Hame i | Browse...
Tech PLIBfPDE File | Browse...
Cell PLIB/PDB Files | Browsse...
GDSII Fle | Browse...

_I Overwnte Existing Tech
_I Ignore Cell Geometries

_I fwlvanced Library Prep Mode

Same Hame Cell Resolution

% Make Mew Cell Version
~ Overwrite Existing Cell
~ Merge with Existing Cell

~ lgnore PLIB/PDB Call

2. Enter the reference library name (Library Name), the technology
.pdb file (Tech PLIB/PDB File), and the cell .pdb files (Cell PLIB/
PDB Files).

Alternatively, you can click Browse to use the browse capability
to select the reference library and .pdb files.

Chapter 5: Using Physical Compiler in XG Mode

5-4

Caution!

The technology .pdb file must contain layer definitions;
otherwise the generated Milkyway reference library will be
invalid.

If the same .pdb file is used for both technology and cell
information, enter the file name in both the Tech PLIB/PDB File
and Cell PLIB/PDB Files fields.

. Click OK to generate the specified reference library.
. Check the log file for warnings or errors.

The log file is located in the directory where you invoked the
Milkyway tool. The name of the log file is Milkyway.log.date,
where date is the date and time when you invoked the Milkyway
tool.

For more information about this process, including debugging
information and information about the other fields in the PLIB/PDB In
dialog box, see the Milkyway documentation.

Generating a Milkyway Technology File

You use the Milkyway Environment tool to extract the technology file
from the Milkyway reference library.

To extract the technology file,

. Choose Library > Dump Tech File from the Milkyway menu bar.

Physical Libraries
5-5

The Dump Technology File dialog box appears.

ZZ pump Technology File

OK | Cancel | Default | Help

Technology File Hame | |

Library Hame | Browse...

2. Enter the technology file name (Technology File Name) and the
Milkyway reference library name (Library Name).

Alternatively, you can click Browse to use the browse capability
to select the reference library.

3. Click OK to generate the specified technology file.

Using .pdb Libraries

The Milkyway reference library is the recommended physical library
for the following reasons:

* A common physical library is used across the Galaxy platform

* The enhanced capabilities for reading and writing DEF and
PDEF files require the Milkyway reference library

However, you can revert to using .pdb format physical libraries by
setting the use_pdb_1ib_format variable to true. When you use
the .pdb physical libraries, you also revert to the previous DEF and
PDEF implementations (you are not using the common
Milkyway-based DEF and PDEF implementation).

If you set the use_pdb_1ib_format variable to true, you must
specify the physical library by setting the physical_library
variable.

Chapter 5: Using Physical Compiler in XG Mode

5-6

Supported Physical Design Flows
Physical Compiler supports the following flows in XG mode:

* Synopsys tool flow
* Third-party tool flow

This section provides an overview of these flows. You can find more
information about these flows in the Physical Compiler User Guide,
Volume 1.

Synopsys Tool Flow

If you are using only Jupiter, Physical Compiler, and Astro, you are
using the Synopsys tool flow. This tool flow uses the Milkyway design
library to store all design information.

Before running Physical Compiler, you must have the design
floorplan that you created using Jupiter or Astro. The floorplan is
saved in the Milkyway design library.

The script in Example 5-1 shows the basic commands for using this
flow in XG mode. For more information about the Synopsys tool flow,
see “Interacting With Other Synopsys Tools” in the Physical
Compiler User Guide, Volume 1.

Supported Physical Design Flows
5-7

Example 5-1 Jupiter or Astro > Physical Compiler > Jupiter or Astro

Set variables for running in XG mode (REQUIRED)
set mw_design_library design dir

set mw_reference_library lib dir

set mw_logicl_net VDD

set mw_logicO_net VSS

Read floorplan
read_milkyway mydesign

Set constraints
source myconstraints.sdc

Perform physical optimization
physopt

Save design database
write_milkyway -output mydesign

Third-Party Tool Flow

If you are using a tool other than Jupiter or Astro for floorplanning or
routing, you are using the third-party tool flow. This flow uses DEF
files to export the floorplanning and routing information.

Before running Physical Compiler, you must have the design
floorplan that you created using a third-party tool. The design is
saved in an ASCII format, such as Verilog. The floorplan is saved in
DEF or PDEF format.

The script in Example 5-2 shows the basic commands for using the
third-party flow in XG mode. For more information about the
third-party flow, see “Interfacing with Third-Party Tools” in the
Physical Compiler User Guide, Volume 1.

Chapter 5: Using Physical Compiler in XG Mode

5-8

Example 5-2 Third-Party Flow

Set variables for running in XG mode (REQUIRED)
set mw_design_library design dir

set mw_reference_library 1lib dir

set mw_logicl_net VDD

set mw_logicO_net VSS

Read netlist

read_file -format fmt mydesign. fmt
link

link physical

Read floorplan
read_[pldef mydesign. [pldef

Set constraints
source myconstraints.sdc

Save design database
create_mw_design -tech_file mw _ref.tf
write_milkyway -output mydesign

Perform physical optimization
physopt

Save placement data
write_[pldef -output mydesign. [p]def

Save design database
write_milkyway -output mydesign

Supported Physical Design Flows
5-9

Differences in Behavior

The following sections describe the differences in behavior between
XG mode and DB mode.

* Checkpointing the Optimization Results
* Using Interface Logic Models
e Using Distributed Physical Synthesis

e GUI Enhancements

Checkpointing the Optimization Results

The process used for saving an intermediate design database
(checkpointing) is the same in XG mode as in DB mode. You can do
automatic checkpointing by setting the
physopt_checkpoint_stage variable, or you can do manual
checkpointing by pressing Control-c during optimization. However,
there are differences in the checkpointing behavior.

The checkpointing capability has the following differences between
XG mode and DB mode:

e In XG mode, checkpoint files are saved in the CEL view of the
Milkyway design library, rather than in a .db file.

Before using checkpointing, you must have created the Milkyway
design library and specified its location by setting the
mw_design_1library variable. Forinformation about creating a
Milkyway design library, see “Creating a Milkyway Design
Library” on page 2-8.

* The default file naming is different in XG mode than in DB mode.

Chapter 5: Using Physical Compiler in XG Mode

5-10

In DB mode, the default file name is CHECKPOINT.db. You can
specify a file name by setting the
compile_checkpoint_filename variable before you run the
physopt command.

In XG mode, the default file name is the current design name
(design_dirlCEL/current_design:version, where design_diris the
location you specified inmw_design_library). To specify the
file name, set the physopt_mw_checkpoint_filename
variable before you run the physopt command.

You can save multiple checkpoint files in XG mode.

In DB mode, you can save a single checkpoint file. Each
successive checkpoint file overwrites the existing checkpoint file.

In XG mode, you can save multiple checkpoint files. Each
successive checkpoint file increments the version number. To
conserve disk space, purge unneeded checkpoint files when you
are done. For information about purging CEL versions, see
“Purging Versions from the CEL View” on page 2-21.

Differences in Behavior
5-11

Using Interface Logic Models

Interface logic model (ILM) behavior differs between XG mode and
DB mode in the following ways:

The interface logic models are stored in the ILM view of the
Milkyway design library rather than in a .db file.

When you save a design that contains ILMs, the ILMs are not
saved. You must explicitly save each ILM.

You do not read ILMs directly in XG mode; instead you specify
the ILMs in the 1ink_1library variable and then Physical
Compiler automatically loads them when you read the top-level
design (in Milkyway format).

In addition, the following ILM capabilities are available only in XG
mode:

ILMs can be displayed in the GUI.

The create_1i1lm command automatically handles
dont_touch subblocks

The get_location command can return the coordinates of
pins on an ILM instance.

You can perform on-route optimization on designs that contain
ILMs.

For detailed information about using interface logic models in XG
mode, see the Interface Logic Model User Guide.

Chapter 5: Using Physical Compiler in XG Mode

5-12

Using Distributed Physical Synthesis

In XG mode, distributed physical synthesis uses the Milkyway format
rather than the .db format. If you read your design in Milkyway
format, distributed physical synthesis automatically uses the
Milkyway format.

Note:

If you read your design in .db format, distributed physical
synthesis uses the .db format. For the best results, start with a
Milkyway design, rather than a .db design. For information about
converting your .db design to Milkyway format, see “Converting
From .db Format to Milkyway Format” on page 2-23

GUI Enhancements

In XG mode, the Physical Compiler GUI provides three modes for
displaying flylines:

* Pin to pin (default)
This mode displays the flylines between two core cells.

e Macro to macro

This mode displays the flylines between two macro cells.

e Pin to macro

This mode displays the flylines between a core cell and a macro
cell.

These flyline display modes are available only in XG mode.

Differences in Behavior
5-13

Features Available Only in XG Mode

The following features are available only in XG mode:

e Milkyway-based DEF and PDEF support

* Relative placement

Milkyway-based DEF and PDEF Support

In XG mode, Physical Compiler uses the same Milkyway-based
Design Exchange Format (DEF) and Physical Design Exchange
Format (PDEF) reader and writer as the Astro and Jupiter products.

To use the Milkyway-based implementation to read and write DEF or
PDEF files,

e The Milkyway Environment tool must be installed

For information about installing the Milkyway Environment tool,
see the Installation Guide.

* The physical libraries must be Milkyway reference libraries

The Milkyway reference library is the default physical library. If
you revert to using .pdb libraries, you cannot use the
Milkyway-based DEF or PDEF implementation.

Chapter 5: Using Physical Compiler in XG Mode

5-14

The same commands (read_def, write_def, read_pdef, and
write_pdef) are used to read and write DEF and PDEF files,
regardless of the implementation you use; however, the options
differ. Table 5-1 lists the options for each command that are
supported only in the Milkyway-based implementation.

Table 5-1 Options Supported Only in Milkyway-based Implementation

Command Options

read_def -allow_physical_objects
-lef file_ name

write_def -regions_groups
-macro
-fixed_cell-
-placed_cell
-blockages
-routed_net
-diode_pins
-notch_gap
-floating metal_fill
-pg_metal_ fill
-lef file_name

read_pdef -allow_physical_objects

For more information about using DEF and PDEF files, see Chapter
4, “Preparing Data for Physical Compiler,” in the Physical Compiler
User Guide, Volume 1.

Features Available Only in XG Mode
5-15

Relative Placement

The Physical Compiler physical datapath with relative placement
capability provides a way for you to create structures within
psyn_shell in which you specify the relative column and row
positions of instances with respect to each other. During placement
and legalization, these structures, which are placement constraints
called relative placement structures, are preserved and the cells in
each structure are placed as a single entity. Relative placement is
also called physical datapath and structured placement.

For details about using relative placement, see Chapter 12, “Physical
Datapath with Relative Placement,” in the Physical Compiler User
Guide, Volume 1.

Unsupported Capabilities

The following commands are not supported in XG mode:

- compile_physical
- reoptimize_design
- read_mdb

Use the read_milkyway command to read the Milkyway
design library. For information about reading Milkyway design
libraries created with the write_mdb command, see
“Limitations When Reading Milkyway Format” on page 2-17.

Chapter 5: Using Physical Compiler in XG Mode

5-16

- write_mdb

Use the write_milkyway command to save your designina
Milkyway design library. For more information, see “Saving a
Design in Milkyway Format” on page 2-9.

- change_site_name
Use the mw_site_name_mapping variable to define the

name mappings. For more information about this variable, see
“Reading a Design in Milkyway Format” on page 2-12.

In addition, the Physical Compiler clock tree synthesis capabilities
are not supported in XG mode. To perform clock tree synthesis, use
the clock tree synthesis features in Astro.

Unsupported Capabilities
5-17

Chapter 5: Using Physical Compiler in XG Mode
5-18

Using Power Compiler in XG Mode

This chapter describes the differences between running Power
Compiler in XG mode and DB mode.

This chapter contains the following sections:

e Benefits of XG Mode
e Differences in Command Behavior

e Features Available Only in XG Mode

6-1

Benefits of XG Mode

XG mode provides the following benefits for Power Compiler:

* A 35 percent reduction in memory usage
e Up to 10 times faster runtime on some features

* New features that are available only in XG mode (for information
about the new features, see “Features Available Only in XG
Mode” on page 6-3)

Differences in Command Behavior

All Power Compiler commands behave the same in XG mode as they
do in DB mode. However, if you use the DFT Compiler
hookup_testports command in your flow, you need to be aware
of a change in the method of identifying test ports and update your
scripts accordingly.

In DB mode, you identify the test ports by using the
set_signal_type command (for scan enable ports) or
set_test_hold and set_attribute commands (for test mode
ports). In XG mode, you must use the set_dft_signal command
to identify the test ports. For more information about the
set_dft_signal command, see Chapter 4, “Using DFT Compiler
in XG Mode”

In addition, after you execute the hookup_testports command on
a design in XG mode, if you save the design in .db format (which is
not recommended), the resulting .db file is incompatible with DFT
Compiler in DB mode. You can use the resulting .db file in DB mode
only if you will not be using DFT Compiler.

Chapter 6: Using Power Compiler in XG Mode

6-2

Features Available Only in XG Mode

Power Compiler has added the following features that are available
only in XG mode:

e Multistage clock gating

* Hierarchical clock gating

* Ability to reset clock-gating attributes
* Power analysis enhancements

e Stitching of power-gating signals

The following sections describe these features. For more information
about these features, see the Power Compiler User Guide.

Features Available Only in XG Mode
6-3

Multistage Clock Gating

When a clock-gating cell drives another clock-gating cell or a row of
clock-gating cells, this structure is referred to as multistage clock
gating. Multistage clock gating reduces power consumption by
moving the clock gating closer to the root. Figure 6-1 shows a
two-stage clock-gating structure.

Figure 6-1 Multistage Clock Gating
set_clock_gating style -num_stages 2

EN

CLK

Power Compiler can automatically identify shared enable signals
and use them to insert additional clock-gating levels. You can use
this capability on either an RTL or gate-level design.

To enable multistage clock gating, run the
set_clock_gating style -name_stages cnt command
before you run the insert_clock_gating command. For
example,

dc_shell-xg-t> set_clock_gating style -num stages 2
dc_shell-xg-t> insert_clock_gating

Chapter 6: Using Power Compiler in XG Mode
6-4

Hierarchical Clock Gating

Traditionally, the Power Compiler clock-gating technique extracts
common enable conditions that are shared across registers in the
same block.

With hierarchical clock gating, Power Compiler extracts common
enable conditions shared across registers in different blocks. With
this technique the tool looks for globally shared enables, thereby
limiting the number of clock-gating cells inserted. Power Compiler
inserts the hierarchical clock-gating cells in the current design when
you run the insert_clock_gating command. Figure 6-2 shows
an example of hierarchical clock gating.

Figure 6-2 Hierarchical Clock Gating

current_design TOP
insert_clock_gating -global

Sub-block 1

Registe
\Bank
Registe
Registe
 Bank

Sub-block 2
Registe
GELLS
Registe
Registe
| Bank

X
-
o
(a]
i}
-
<
o

To enable hierarchical clock gating, specify the ~global option
when you run the insert_clock_gating command.

Features Available Only in XG Mode
6-5

Resetting of Clock-Gating Attributes

Two new options, -reset and -reset_only object_1list, have
been added to the identify clock gating command. These
options are supported only in XG mode.

The -reset option resets all clock-gating attributes in the design.
The -reset_only object_1list option resets the clock-gating
attributes only on the specified cells and nets.

For more information about the 1identify_clock_gating
command, see the Power Compiler User Guide.

Power Analysis Enhancements

The following power analysis enhancements are available only in XG
mode:

e The propagate _switching_ activity command was
added to propagate switching activity data directly.

In DB mode, you use the report_power command to
propagate the switching activity data. In XG mode, the
propagate_switching activity command performs this
task. For details aboutthe propagate _switching activity
command, see the man page.

e The -target_instance option was added to the read_saif
command.

In DB mode, when you run the read_saif command the
switching activity is annotated on the entire design. In XG mode,
you can restrict the annotation to a specific instance by
specifying the -target_instance option when you run the
read_saif command.

Chapter 6: Using Power Compiler in XG Mode

6-6

The write_saif command was added to save the switching
activity data in Switching Activity Interchange Format (SAIF).

To write the annotated switching activity to the SAIF file, enter

dc-shell-xg-t> write_sailf -output my design.saif

To include both annotated and propagated switching activity in
the SAIF file, specify the -propagated option.

To exclude state-dependent static probabilities and
state-dependent or path-dependent toggle rates from the SAIF
file, specify the -exclude_sdpd option.

For more information about the write_ saif command, see the
man page.

Stitching of Power-Gating Signals

In both XG mode and DB mode, Power Compiler can insert state
retention power-gating registers. In DB mode, you must manually
stitch the power-gating signals. In XG mode, Power Compiler can
automatically connect the sleep and wake signals on the registers to
the power-gating signals.

To stitch the power-gating signals,

1.

Identify the power-gating signals.

Use the set_power_gating_signal command to identify the
power-gating signals. You apply this command to top-level ports
or to the output pins of instances in your design.

If you do not identify existing power-gating signals, Power
Compiler creates new top-level ports when you stitch the
power-gating signals.

Features Available Only in XG Mode
6-7

2. Stitch the power-gating signals.

Use the hookup_power_gating ports command to stitch
the power-gating signals. This command connects the specified
power-gating signals to the appropriate pins of the state retention
power-gating registers. To control the naming of top-level ports
added during stitching, specify the -port_naming_style or
-default_port_naming_style option.

3. Report on the stitched signals.

The report_power_gating command reports the following
information about the stitched state retention power-gating
reqgisters: cell name, library cell name, power-gating style,
power-gating pin (the library pin of the retention registers), and
power-gating signal. If the power-gating signals are not stitched,
report_power_gating displays the disabled value rather than
the power-gating signal.

For more information about power gating, see the Power Compiler
User Guide.

Example 6-1 shows a sample script used for stitching the
power-gating signals.

Example 6-1 Stitching of Power-Gating Signals

dc_shell-xg-t> set_power gating signal ts \
-library pin SLEEP

dc_shell-xg-t> set_power gating signal tw \
-library pin WAKE

dc_shell-xg-t> hookup_ power_gating ports \
-port_naming style ts

dc_shell-xg-t> report_power_gating

Chapter 6: Using Power Compiler in XG Mode

6-8

Command Differences

The tables in this appendix list the command differences between
DB mode (Tcl-based shells) and XG mode. Table A-1 on page A-2
shows the commands that are supported in DB mode but not in XG
mode. Table A-2 on page A-9 shows the commands that are
supported in XG mode but not in DB mode.Table A-3 on page A-15
shows the commands that are supported in both modes, but have
different options in the two modes.

A-1

Table A-1 Commands Not Supported in XG Mode

Command Note

all_cluster_cells
all_clusters

characterize_physical

check_dft Use dft_drc instead.
check_scan Use dft_drc instead.
check_test Use dft_drc instead.
compare_fsm Command will never be supported in XG mode.

compile_clock_tree

compile_physical

create_cluster

create_routing_path

create_schematic

create_test clock Use set_dft_signal instead.
create_test_patterns Command will never be supported in XG mode.
create_test_schedule

create_wire_load

disconnect_scan_chains

estimate_physical

estimate_test_coverage

extract

get_clock_tree_attributes

Appendix A: Command Differences
A-2

Table A-1 Commands Not Supported in XG Mode (Continued)

Command

Note

get_clock_tree_delays

get_clock_tree_objects

get_congested_regions

get_design_parameter
get_regions
highlight_path
infer_test_protocol
insert_bsd

insert_scan
library_analysis
minimize_fsm
optimize_bsd
parent_cluster

plot

preview_bsd
preview_scan
read_bsd_init_protocol
read_bsd_protocol
read_clusters
read_init_protocol

read_mdb

Command will never be supported in XG mode.
Use insert_dft instead.

Use insert dft instead.

Command will never be supported in XG mode.

Use preview dft instead.

Use preview_dft instead.

A-3

Table A-1 Commands Not Supported in XG Mode (Continued)

Command Note
read_trc_file
reduce_fsm Command will never be supported in XG mode.

remove_analysis_info
remove_bsd_port

remove_bsd_signal
remove_bsd_specification
remove_bsr_cell_type
remove_clock_tree
remove_clock_tree_balance_group
remove_clock_tree_exceptions
remove_clock_tree_options
remove_clock_tree_root_delay
remove_clusters
remove_core_integration_configuration
remove_core_wrapper_configuration
remove_core_wrapper_specification
remove_delay_calculation
remove_dft_configuration Use reset_dft_configuration instead.
remove_highlighting
remove_port_configuration

remove_wrapper_element

Appendix A: Command Differences
A-4

Table A-1 Commands Not Supported in XG Mode (Continued)

Command Note

reoptimize_design
replace_fpga
report_clock_tree
report_clusters
report_floorplan_macro_array
report_floorplan_macro_options
report_floorplan_options
report_floorplan_pnet_options
report_floorplan_port_options
report_packages
report_ph_region
report_routability
report_routing_options
report_test

report_xref
reset_clock_tree_references
rtl_analyzer

rtldrc

set_autofix_async
set_autofix_clock

set_bist_configuration

Table A-1 Commands Not Supported in XG Mode (Continued)

Command Note

set_bsd_bsr_element
set_bsd_control_cell
set_bsd_data_cell
set_bsd_intest
set_bsd_pad_design
set_bsd_path

set_bsd_port

set_bsd_register
set_bsd_runbist
set_bsd_signal
set_bsd_tap_element
set_bsr_cell_type
set_clock_tree_balance_group
set_clock_tree_exceptions
set_clock_tree_options
set_clock_tree_references
set_clock_tree_root_delay
set_core_integration_configuration
set_core_wrapper_cell
set_core_wrapper_cell_design

set_core_wrapper_configuration

Appendix A: Command Differences
A-6

Table A-1 Commands Not Supported in XG Mode (Continued)

Command Note

set_core_wrapper_path
set_dft_optimization_configuration
set_floorplan_macro_array
set_floorplan_macro_options
set_floorplan_options
set_floorplan_pnet_options
set_floorplan_port_options
set_inverted_placement_keepout
set_layer

set_min_porosity
set_pipeline_stages
set_port_configuration
set_rail_voltage
set_routing_options
set_scan_exclude
set_scan_segment
set_scan_signal
set_scan_transparent
set_signal_type
set_tap_elements

set_test_hold

Table A-1 Commands Not Supported in XG Mode (Continued)

Command

Note

set_test_initial
set_test_isolate
set_test_model
set_test_signal
set_testability_element
set_trc_configuration
set_wired_logic_disable
set_wrapper_element
split_clock_gates
trace_nets
untrace_nets
update_clusters
update_script
write_bsd_protocol
write_clusters
write_constraints
write_ibm_constraints
write_layout_scan
write_mdb
write_testsim_lib

write_timing

Command will never be supported in XG mode.

Command will never be supported in XG mode.

Command will never be supported in XG mode.

Appendix A: Command Differences
A-8

Table A-2 Commands Supported in XG Mode Only

Command Note

add_to_rp_group
all_dont_touch
all_preroute_checks
all_rp_groups
all_rp_hierarchicals
all_rp_inclusions
all_rp_instantiations
all_rp_references
begin_group_undo
can_redo

can_undo
change_site_name
check_target_library_subset
create_rp_group
define_lib_cell_class
define_user_attribute
disable_undo
enable_undo
end_group_undo
extract_rp_group

get_lib_cell_class

Table A-2 Commands Supported in XG Mode Only (Continued)

Command Note

get_power_domains
get_rp_groups
get_scan_chains_by_name
get_voltage_areas
gui_update_physical_model
hookup_power_gating_ports
initialize_mpc
invalidate_undo
last_redo_cmd_name
last_undo_cmd_name
order_rp_groups
read_milkyway

redo

remove_boundary_cell
remove_dft_equivalent_signals
remove_fanout_load
remove_from_rp_group
remove_lib_cell_class
remove_row_type
remove_rp_group

remove_rp_group_options

Appendix A: Command Differences
A-10

Table A-2 Commands Supported in XG Mode Only (Continued)

Command

Note

remove_scan_link
remove_scan_path
remove_scan_replacement
remove_target_library_subset
remove_test_assume
remove_test_point_element
remove_user_attribute
report_autofix_configuration
report_autofix_element
report_boundary_cell
report_dft
report_dft_clock_controller
report_dft_configuration
report_dft_design
report_dft_equivalent_signals
report_dft_signal
report_dw_rp_group_options
report_lib_cell_class
report_logicbist_configuration
report_scan_configuration

report_scan_link

Table A-2 Commands Supported in XG Mode Only (Continued)

Command Note

report_scan_path
report_scan_register_type
report_scan_replacement
report_scan_state
report_target_library_subset
report_test_assume
report_test_point_element
report_testability_configuration
report_use_test_model
report_wrapper_configuration
reset_autofix_configuration
reset_autofix_element
reset_bsd_configuration
reset_dft_clock_controller
reset_dft_configuration
reset_logicbist_configuration
reset_mbist_configuration
reset_mbist_controller
reset_mbist_wrapper
reset_scan_configuration

reset_test_mode

Appendix A: Command Differences
A-12

Table A-2 Commands Supported in XG Mode Only (Continued)

Command

Note

reset_testability_configuration
reset_testbench_parameters
reset_wrapper_configuration
reshape_objects
rp_group_inclusions
rp_group_instantiations
rp_group_references
set_boundary_cell
set_cell_type
set_dft_equivalent_signals
set_dw_rp_group_options
set_inverted_placement_keepouts
set_logicbist_configuration
set_mbist_wrapper
set_power_gating_signal
set_rp_group_options
set_scan_style
set_target_library_subset
set_test_dont_fault
set_testbench_parameters

set_user_attribute

A-13

Table A-2 Commands Supported in XG Mode Only (Continued)

Command Note

set_wrapper_configuration
undo

update_region
update_voltage_area
use_test_model

write_dps
write_dw_rp_group
write_link_library
write_milkyway
write_rp_group

write_scan_def

Appendix A: Command Differences
A-14

Table A-3 Modified Commands

Command Options in DB mode only Options in XG mode only
change_link -all_instances
check_bsd -infer_instructions

check_budget
check_design
check_dft
check_scan
check_test

compile

create_bsd_patterns
create_ilm

create_operating_conditions

create_test_clock

define_test._mode

derive_regions

derive_voltage_areas

-no_environment

-overwrite_model
-overwrite_model
-overwrite_model

-arch
-background
-host

-xterm

-stil
-instances

-parameter1
-parameter2
-parameter3d
-parameter4
-parameter5

-hookup
-existing

-spec
-view

-multiple_designs

-keep_parasitics

-inherit

-guard_band_x
-guard_band_y

-guard_band_x
-guard_band_y

A-15

Table A-3 Modified Commands (Continued)

Command Options in DB mode only Options in XG mode only
dft_drc -infer_scan_structures
drive_of -wire_drive -min
extract_ilm -ilm_core
-optimizable
filter -dont_check_real_objects
get_clocks -exact
-hierarchical
get_clusters -hierarchical -flat
-hier
-of_objects
get_location -rp_group
get_multibits -exact
-hierarchical
get_path_groups -exact
get_pins -leaf
get_placement_keepouts -of_objects
-within
get_scan_cells_of_chain -test_mode
get_scan_chains -test_mode
get_timing_paths -path_type
get_wiring_keepouts -of_objects
-within

identify_clock_gating

Appendix A: Command Differences

A-16

-gated_elements
-ungated_elements

-gated_element
-reset

-reset_only
-ungated_element

Table A-3 Modified Commands (Continued)

Command

Options in DB mode only Options in XG mode only

insert_dft

list_test_modes

move_objects

optimize_placement

preview_dft

propagate_constraints
propagate_ilm

read_def

read_file

read_parasitics

read_pdef

-arch

-background
-dont_fix_constraint_violation
S

-host
-ignore_compile_design_rule
s

-map_effort

-no_scan

-xterm

-existing

-spec
-respect_mobility -respect_rigidity
-fix_drc
-ignore_all_groups
-worst_in_group

-bscan -bsd

-no_scan
-format
-parasitics

-design -adjust_tracks
-allow_physical_objects
-lef_file_name
-ilm
-ril

-format -dont_write_to_db

-allow_physical_cells
-allow_physical_ports
-quiet

-verbose

-allow_physical_objects

Table A-3 Modified Commands (Continued)

Command

Options in DB mode only

Options in XG mode only

read_saif

read_test_protocol

remove_clock_latency
remove_dft_logic_usage

remove_dft_signal

remove_port

remove_scan_specification

remove_test_mode

remove_test_protocol

remove_wire_load_model

remove_wire_load_selection_group

report_annotated_delay

Appendix A: Command Differences
A-18

-silent

-clock

-test._ modes

-all

-all
-bidirectionals
-chain

-link
-segment
-signal
-test_mode
-tristates

-existing

-spec
-view

-cluster

-cluster

-min

-target_instance

-overwrite
-section
-test_mode
-verbose

-test._ mode

-hookup_pin
-port
-test_mode
-view

-design
-test_mode

Table A-3 Modified Commands (Continued)

Command

Options in DB mode only

Options in XG mode only

report_congestion
report_constraint

report_lib

report_peak_noise
report_port
report_region
report_saif

report_test

report_timing
report_voltage_area
rotate_objects

set_autofix_configuration

-coordinate

-noise
-noise_arcs

-explore_isolation

-op_condition

-assertions
-bsd
-clock

-core_integration_configuratio

n
-dft_configuration
-incremental

-inst

-nosplit
-register_type
-replacements

-locations
-op_condition
-respect_mobility

-async
-async_fix

-bus

-clocks

-data_is_clock
-fix_async_with_scan_en
-Xprop

-max_net_length

-yield

-only_physical
-connection
-annotated_flag

-autofix_configuration
-bist

-bist_config

-dft

-no_split

-replacement
-test_mode
-testability_configuration

-connection
-respect_rigidity

-exclude_elements
-fix_data

-fix_latch
-include_elements
-method

-test_data

-type

A-19

Table A-3 Modified Commands (Continued)

Command Options in DB mode only Options in XG mode only
set_autofix_element -async -control_signal
-clock -fix_data
-fix_latch
-method
-test_data
-type
set_bsd_compliance -name
-pattern
set_bsd_configuration -flow -control_cell_max_fanout
-infer_instructions -integrate
set_bsd_instruction -inst_enable -capture_value
-internal_scan -clock_cycles
-user_code_val -signature
-view
set_bsd_power_up_reset -cell_name
set_dft_clock_controller -design -design_name
set_dft_configuration -autofix -boundary
-bist -bsd
-bscan -control_points
-clock_controller -fix_bidirectional
-core_integration -fix_bus
-core_wrapper -fix_clock
-order -fix_reset
-shadow_wrapper -fix_set
-testability -fix_xpropagation
-tester_checks -integration
-logicbist
-mbist
-observe_points
-scan
-wrapper
set_dft_drc_configuration -internal_pins

Appendix A: Command Differences
A-20

Table A-3 Modified Commands (Continued)

Command Options in DB mode only Options in XG mode only

set_dft_insertion_configuration -map_effort
-preserve_design_name
-route_scan_clock
-route_scan_enable
-route_scan_serial
-synthesis_optimization

-unscan
set_dft_logic_usage -test_modes -test_mode
set_dft_optimization_configuration -def_out
set_dft_signal -hookup -active_state
-sense -freq_mult
-hookup_pin

-hookup_sense
-internal_clocks

-test_mode
-type
-view
set_disable_timing -reset_loop_breaking_arcs
set_dps_module_options -no_opt
set_driving_cell -none
set_macro_cell_bound_spot -coordinate -coordinates
set_mbist_configuration -exclude_elements
-include_elements
set_mbist_controller -controller_names -instance
-ip_parameters -parameters
-memory_cells -target
set_mpc_options -dont_promote_layer
set_port_fanout_number -max
-min

A-21

Table A-3 Modified Commands (Continued)

Command

Options in DB mode only

Options in XG mode only

set_scan_configuration

set_scan_element
set_scan_group
set_scan_link

set_scan_path

Appendix A: Command Differences
A-22

-bidi_mode
-dedicated_scan_ports
-disable

-existing_scan
-external_tristates
-insert_end_of_chain_lockup

_latch

-internal_tristates
-longest_chain_length
-methodology
-minimize_hold_time_violatio
n

-multibit_segments
-physical

-prfile

-prtool

-rebalance

-route

-route_signals
-scan_enable_per_domain
-share_pins

-multibit

-chain_length
-clock

-create_dedicated_scan_out_
ports
-domain_based_scan_enable
-exclude_elements
-insert_terminal_lockup
-max_length
-minimize_hold_time_violatio
ns

-pipeline_fanout_limit
-pipeline_scan_enable
-preserve_multibit_segment
-shared_scan_in
-voltage_mixing

-serial_routed
-test_mode

-class

-exact_length

-hookup
-infer_dft_signals
-input_wrapper_cells_only
-ordered_elements
-output_wrapper_cells_only
-scan_data_in
-scan_data_out
-scan_enable
-scan_master_clock
-scan_slave_clock

-view

Table A-3 Modified Commands (Continued)

Command Options in DB mode only Options in XG mode only

set_scan_replacement -remove

set_testability_configuration -control_points_per_scan_cel -clock_signal
I -max_additional_logic_area
-max_control_points -max_test_points
-max_observe_logic_area -power_saving
-max_observe_points -test_points_per_scan_cell
-method -type
-observe_points_per_scan_c
ell

-power_saving_on
-share_across_hierarchy
-top_instance

set_wire_load_model -cluster
set_wire_load_selection_group -cluster
update_lib -force

write -scenarios
-xg_force_db

write_def -default_sp_conn -blockages

-tiehigh -diode_pins

-tielow -fills
-fixed_cell
-floating_metal_fill
-9Zip
-lef_file_name
-macro
-notch_gap
-pg_metal_fill
-placed_cell
-regions_groups
-routed_net

write_file -scenarios
-xg_force_db

A-23

Table A-3 Modified Commands (Continued)

Command

Options in DB mode only

Options in XG mode only

write_lib

write_pdef

write_test

write_test_model

write_test_protocol

-mw_oc_type
-mw_ref_lib

-new_cells_only
-no_attributes
-no_hierarchy
-v2

-v3

-cumulative
-first

-input
-parallel
-part_number
-revision

-no_legalize
-unit

-pattern_exec
-test_bench_environment

-design

-design

Appendix A: Command Differences
A-24

Index

A

attributes
listing 1-15, 1-16

Automated Chip Synthesis, using .ddc format

3-5

B

Behavioral Compiler 1-3

C

checkpointing 5-10
default file name 5-11
enabling 5-10
specifying the file name 5-11
clock gating
hierarchical 6-5
multistage 6-4
clock-gating attributes, resetting 6-6
commands
current_design 1-11
hookup_power_gating_ports 6-8
identify_clock_gating 6-6
insert_clock_gating 6-4, 6-5
propagate_switching_activity 6-6
read_ddc 2-5
read_saif 6-6

report_power_gating 6-8
set_attribute 1-15, 1-16
set_clock_gating_style 6-4
set_mw_design 2-10, 2-13
set_power_gating_signal 6-7
shell_is_in_xg_mode 1-24
unsupported in dcxg mode A-1
write -format ddc 2-4
write_milkyway 2-10
write_saif 6-7

creating from LEF 5-2

creating from .pdb 5-4

D

datapath, physical, defined 5-16
.db format, defined 2-24
DB mode
defined 1-1
dcsh, converting to dctcl 1-4
dc-transcript
converting from dcsh to dctcl 1-4
limitations 1-4
dcxg mode
unsupported commands A-1
.ddc format
in Automated Chip Synthesis 3-5
reading 2-5

IN-1

writing 2-4
DFT Compiler, unsupported features 1-3

F

Floorplan Manager 1-3

H

hierarchical clock gating

defined 6-5

enabling 6-5
hierarchy, ungrouping 1-12
hookup_power_gating_ports command 6-8

identify_clock_gating command 6-6
ILM view 5-12
insert_clock_gating command 6-4
-global option 6-5
interface logic models
reading 5-12

L

licensing requirements 1-4
limitations
clock tree synthesis 5-17
current_design runtime 1-11
interface logic models, saving 2-12
Milkyway design library 1-8
reading 2-17
writing 2-12
SDC, reading into Astro 2-12
set_attribute type enforcement 1-15, 1-16

M

Milkyway design library
accessing an existing library 2-13

IN-2

creating 2-8
defined 2-6
deleting cells 2-22
limitation 1-8
listing cells 2-20
opening 2-19
purging cell versions 2-21
reading 2-14
specifying 2-6
specifying location of 1-8
writing to an existing library 2-10
Milkyway Environment tasks
design library
deleting cells 2-22
listing cells 2-20
opening 2-19
purging cell versions 2-21
reference library 5-2, 5-4
Milkyway Environment tool
defined 2-18
invoking 2-19
Milkyway format
limitations
reading 2-17
writing 2-12
saving design data 2-9
Milkyway lock file 2-14
Milkyway reference library
specifying location of 1-8
Milkyway refernce library
generating from LEF 5-2
generating from .pdb 5-4
mode, determining 1-24
modes, supported 1-1
multistage clock gating
defined 6-4
enabling 6-4
mw_design_library variable 1-8
mw_logicO_net variable 1-8
mw_logic1_net variable 1-8
mw_reference_library variable 5-2

mw_site_name_mapping variable 2-15, 5-17

O

OPT-100 error 3-2

P

Physical Compiler, flows supported in XG
mode 5-7
physical datapath, defined 5-16
physical library
default 5-2
selecting format 5-6
specifying 5-2, 5-6
physical_library variable 5-6
physopt_mw_checkpoint_filename variable
5-11
Power Compiler
XG mode benefits 6-2
XG-only features 6-3
hierarchical clock gating 6-5
multistage clock gating 6-4
resetting clock-gating attributes 6-6
stitching of power-gating signals 6-7
power-gating signals
identifying 6-7
reporting 6-8
stitching 6-8
propagate_switching_activity command 6-6

R

read_ddc command 2-5
read_saif command 6-6
references, handling differences 1-17

remove_annotated_delay command, XG mode
limitation 1-17
report_power_gating command 6-8

S

scan extraction 4-26
scan reordering 4-26
scan routing, specifying 4-21
SDBIST
<i>See streaming DBIST

set_clock_gating_style command 6-4
set_mw_design command 2-10, 2-13
set_power_gating_signal command 6-7
shell mode, determining 1-24
shell_is_in_xg_mode command 1-24
SIFF Interface 1-3

streaming DBIST
defined 4-42

T

tool 2-19

U

ungrouping hierarchical instances 1-12
use_pdb_lib_format variable 5-6

Vv

variables
mw_design_library 1-8
mw_logicO_net 1-8
mw_logic1_net 1-8
mw_reference_library 5-2
mw_site_name_mapping 2-15, 5-17
physical_library 5-6
physopt_mw_checkpoint_filename 5-11
use_pdb_lib_format 5-6

W

write -format ddc command 2-4
write_milkyway command 2-10

IN-3

write_saif command 6-7 supported platforms 1-4
supported products 1-3

unsupported features 3-6
X unsupported products 1-3
XG mode X-tolerant DBIST 4-42
defined 1-1 defined 4-42

IN-4

	Preface
	Introduction to XG Mode
	Products That Support XG Mode
	Supported Platforms
	Licensing Requirements
	Command Languages
	Libraries
	Logical Libraries
	Physical Libraries

	Setup Variables
	Supported Commands
	Differences in Behavior
	read_* Command
	current_design Command
	Runtime Differences
	Collection Preservation Differences

	get_object_name Command
	set_attribute Command
	filter_collection Command
	remove_annotated_delay Command
	Reference Objects
	Collections
	SDC Support
	Timing Path Attributes

	Invoking a Synthesis Tool in XG Mode
	Determining the Mode

	XG Mode Design Database Formats
	Using the .ddc Format
	Writing .ddc Files
	Limitations When Writing .ddc Files
	Reading .ddc Files
	Converting From .db Format to .ddc Format
	GUI Support

	Using the Milkyway Format
	Creating a Milkyway Design Library
	Saving a Design in Milkyway Format
	Limitations When Writing Milkyway Format
	Reading a Design in Milkyway Format
	Limitations When Reading Milkyway Format
	Maintaining the Milkyway Design Library
	Invoking the Milkyway Environment Tool
	Opening a Milkyway Design Library
	Listing the Cells
	Purging Versions from the CEL View
	Deleting a Cell

	Converting From .db Format to Milkyway Format
	GUI Support

	Using the .db Format
	Writing .db Format
	Limitations When Writing .db Format

	Limitations When Reading .db Format

	Interfacing Between Synopsys Tools
	Exporting Design Data to Jupiter or Astro
	Verifying Designs Compiled in XG Mode

	Using Design Compiler in XG Mode
	Differences in Behavior
	Using Automated Chip Synthesis in XG Mode
	Unsupported Capabilities

	Using DFT Compiler in XG Mode
	Benefits of XG Mode
	Features Available in XG Mode
	Overview of Scan Synthesis Command Changes
	Using the db2xg Converter Script
	Known Limitations

	Converting to the Unified Test DRC Flow
	About the set_dft_signal Command
	Performing Scan Synthesis
	Performing RTL Test Design Rule Checking
	Performing 1-Pass Scan Synthesis
	Performing Pre-Scan Test Design Rule Checking
	Performing Scan Insertion
	Analyzing the Post-Scan Design
	Complete Scan Insertion Example

	Performing Scan Extraction
	Using Rapid Scan Synthesis
	Using Hierarchical Scan Synthesis
	Using AutoFix
	Reporting
	Using BSD Compiler
	Boundary-Scan Design Flow
	Boundary-Scan Verification Flow
	Unsupported Capabilities

	Using DFT Compiler DBIST Synthesis
	GUI Support

	Using Physical Compiler in XG Mode
	Physical Libraries
	Generating a Milkyway Reference Library from LEF
	Generating a Milkyway Reference Library from .pdb
	Generating a Milkyway Technology File
	Using .pdb Libraries

	Supported Physical Design Flows
	Synopsys Tool Flow
	Third-Party Tool Flow

	Differences in Behavior
	Checkpointing the Optimization Results
	Using Interface Logic Models
	Using Distributed Physical Synthesis
	GUI Enhancements

	Features Available Only in XG Mode
	Milkyway-based DEF and PDEF Support
	Relative Placement

	Unsupported Capabilities

	Using Power Compiler in XG Mode
	Benefits of XG Mode
	Differences in Command Behavior
	Features Available Only in XG Mode
	Multistage Clock Gating
	Hierarchical Clock Gating
	Resetting of Clock-Gating Attributes
	Power Analysis Enhancements
	Stitching of Power-Gating Signals

	Command Differences
	Index
	A
	B
	C
	D
	F
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

