
1

Introduction to
CMOS VLSI

Design

Lecture 1: 
Circuits & Layout

David Harris

Harvey Mudd College
Spring 2004

1: Circuits & Layout Slide 2CMOS VLSI Design

Outline
A Brief History
CMOS Gate Design
Pass Transistors
CMOS Latches & Flip-Flops
Standard Cell Layouts
Stick Diagrams



2

1: Circuits & Layout Slide 3CMOS VLSI Design

A Brief History
1958: First integrated circuit
– Flip-flop using two transistors
– Built by Jack Kilby at Texas Instruments

2003
– Intel Pentium 4 µprocessor (55 million transistors)
– 512 Mbit DRAM (> 0.5 billion transistors)

53% compound annual growth rate over 45 years
– No other technology has grown so fast so long

Driven by miniaturization of transistors
– Smaller is cheaper, faster, lower in power!
– Revolutionary effects on society
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Annual Sales
1018 transistors manufactured in 2003
– 100 million for every human on the planet
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Invention of the Transistor
Vacuum tubes ruled in first half of 20th century 
Large, expensive, power-hungry, unreliable
1947: first point contact transistor
– John Bardeen and Walter Brattain at Bell Labs
– Read Crystal Fire

by Riordan, Hoddeson

1: Circuits & Layout Slide 6CMOS VLSI Design

Transistor Types
Bipolar transistors
– npn or pnp silicon structure
– Small current into very thin base layer controls 

large currents between emitter and collector
– Base currents limit integration density

Metal Oxide Semiconductor Field Effect Transistors
– nMOS and pMOS MOSFETS
– Voltage applied to insulated gate controls current 

between source and drain
– Low power allows very high integration
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1970’s processes usually had only nMOS transistors
– Inexpensive, but consume power while idle

1980s-present: CMOS processes for low idle power

MOS Integrated Circuits

Intel 1101 256-bit SRAM Intel 4004 4-bit µProc
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Moore’s Law
1965: Gordon Moore plotted transistor on each chip
– Fit straight line on semilog scale
– Transistor counts have doubled every 26 months
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Corollaries
Many other factors grow exponentially 
– Ex: clock frequency, processor performance
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CMOS Gate Design
Activity:
– Sketch a 4-input CMOS NAND gate
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CMOS Gate Design
Activity:
– Sketch a 4-input CMOS NOR gate
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Complementary CMOS
Complementary CMOS logic gates
– nMOS pull-down network
– pMOS pull-up network
– a.k.a. static CMOS

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

X (crowbar)0Pull-down ON

1Z (float)Pull-down OFF
Pull-up ONPull-up OFF
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Series and Parallel
nMOS: 1 = ON
pMOS: 0 = ON
Series: both must be ON
Parallel: either can be ON
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Conduction Complement
Complementary CMOS gates always produce 0 or 1
Ex: NAND gate
– Series nMOS: Y=0 when both inputs are 1
– Thus Y=1 when either input is 0
– Requires parallel pMOS

Rule of Conduction Complements
– Pull-up network is dual of pull-down
– Parallel -> series, series -> parallel

A

B
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Compound Gates
Compound gates can do any inverting function
Ex: (AND-AND-OR-INVERT, AOI22)Y A B C D= +
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Example: O3AI
( )Y A B C D= + +
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Example: O3AI 
( )Y A B C D= + +
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Signal Strength
Strength of signal
– How close it approximates ideal voltage source

VDD and GND rails are strongest 1 and 0
nMOS pass strong 0
– But degraded or weak 1

pMOS pass strong 1
– But degraded or weak 0

Thus nMOS are best for pull-down network
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Pass Transistors
Transistors can be used as switches
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Pass Transistors
Transistors can be used as switches
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Transmission Gates
Pass transistors produce degraded outputs
Transmission gates pass both 0 and 1 well
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Transmission Gates
Pass transistors produce degraded outputs
Transmission gates pass both 0 and 1 well
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Tristates
Tristate buffer produces Z when not enabled
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Tristates
Tristate buffer produces Z when not enabled
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Nonrestoring Tristate
Transmission gate acts as tristate buffer
– Only two transistors
– But nonrestoring

• Noise on A is passed on to Y

A Y

EN

EN
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Tristate Inverter
Tristate inverter produces restored output
– Violates conduction complement rule
– Because we want a Z output

A

Y
EN

EN
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Tristate Inverter
Tristate inverter produces restored output
– Violates conduction complement rule
– Because we want a Z output

A

Y
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A

EN
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Multiplexers
2:1 multiplexer chooses between two inputs
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Multiplexers
2:1 multiplexer chooses between two inputs
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Gate-Level Mux Design

How many transistors are needed?
1 0 (too many transistors)Y SD SD= +
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Gate-Level Mux Design

How many transistors are needed? 
1 0 (too many transistors)Y SD SD= +
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Gate-Level Mux Design

How many transistors are needed? 20
1 0 (too many transistors)Y SD SD= +
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Transmission Gate Mux
Nonrestoring mux uses two transmission gates
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Transmission Gate Mux
Nonrestoring mux uses two transmission gates
– Only 4 transistors
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Inverting Mux
Inverting multiplexer
– Use compound AOI22
– Or pair of tristate inverters
– Essentially the same thing

Noninverting multiplexer adds an inverter
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4:1 Multiplexer
4:1 mux chooses one of 4 inputs using two selects
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4:1 Multiplexer
4:1 mux chooses one of 4 inputs using two selects
– Two levels of 2:1 muxes
– Or four tristates
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D Latch
When CLK = 1, latch is transparent
– D flows through to Q like a buffer

When CLK = 0, the latch is opaque
– Q holds its old value independent of D

a.k.a. transparent latch or level-sensitive latch

CLK

D Q
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tc

h D

CLK

Q
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D Latch Design
Multiplexer chooses D or old Q

1

0

D

CLK

Q
CLK

CLKCLK

CLK

DQ Q

Q
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D Latch Operation

CLK = 1

D Q

Q

CLK = 0

D Q

Q

D

CLK

Q
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D Flip-flop
When CLK rises, D is copied to Q
At all other times, Q holds its value
a.k.a. positive edge-triggered flip-flop, master-slave 
flip-flop

Fl
op

CLK

D Q

D

CLK

Q
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D Flip-flop Design
Built from master and slave D latches

QM
CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

La
tc

h

La
tc

h

D Q
QM

CLK

CLK



22

1: Circuits & Layout Slide 43CMOS VLSI Design

D Flip-flop Operation

CLK = 1

D

CLK = 0
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D
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QM
Q

D

CLK

Q
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Race Condition
Back-to-back flops can malfunction from clock skew
– Second flip-flop fires late
– Sees first flip-flop change and captures its result
– Called hold-time failure or race condition

CLK1

D Q1

Fl
op

Fl
op

CLK2

Q2

CLK1

CLK2

Q1

Q2
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Nonoverlapping Clocks
Nonoverlapping clocks can prevent races
– As long as nonoverlap exceeds clock skew

You can use them if you like for safe design
– Industry manages skew more carefully instead 
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