

CS/EE 6710

- Digital VLSI Design
 - T Th 12:25-1:45, LCB 219
- Instructor: Prof. Erik Brunvand
 - MEB 3142
 - Office hours: After class, or by appointment
- ◆ TA: Vamshi Kadaru
 - Office hours: In the CADE lab times TBD

CS/EE 6710

- Web Page all sorts of information!
- http://www.cs.utah.edu/classes/cs6710
- Contact:
 - cs6710@cs.utah.edu
 - Goes to everyone in the class
 - You need to sign up go to http://mailman.cs.utah.edu/mailman/listinfo/cs6710
 - teach-cs6710@cs.utah.edu
 - Goes to instructor and TAs

Textbook • Principles of CMOS VLSI Design Weste and Harris (3nd edition) Mel H.E. WESTE DAVID HARRIS

Class Goal

- To learn about modern digital CMOS IC design
 - Class project teams will build moderate sized chip
 - · We'll form teams in a few weeks
 - Modulo funding constraints, these chips can be fabricated through MOSIS
 - Chip fabrication service for small-volume projects
 - Educational program funded entirely by MOSIS

Class Goal

- We'll use tools from Cadence and Synopsys
 - These only run on Solaris and Linux in the CADE lab, so you'll need a CADE account
 - I also assume you know something about UNIX
 - http://www.cs.utah.edu/classes/cs1010/

Prerequisites

- Digital design is required! (i.e. CS/EE 3700)
 - Boolean algebra
 - Combinational circuit design and optimization
 - K-map minimization, SOP, POS, DeMorgan, bubble-pushing, etc.
 - Arithmetic circuits, 2's complement numbers
 - Sequential Circuit design and optimization
 - Latch/flip-flop design
 - Finite state machine design/implementation
 - Communicating FSMs
 - Using FSMs to control datapaths

Assignment #1 – Review

- On the class web site is a review assignment
 - If you can do these problems, you probably have the right background
 - If you can't, you will struggle!!!!!
- Please take this seriously! Give this exam a try and make sure you remember what you need to know!
 - You also need to turn it in next week by Friday September 1st
 - Grading is pass/fail

Recommendations

- Computer Architecture experience is helpful
 - Instruction set architecture (ISA)
 - Assembly language execution model
 - Instruction encoding
 - Simple pipelining
- I assume you've used some sort of CAD tools for digital circuits
 - Schematic capture
 - Simulation

First Assignment

- ◆ CAD Assignment #1
 - Cadence Composer tutorial
 - Simple circuit design with simulation
 - Learn basic Verilog for testbench
 - Available on the web site
 - Due on Friday, September 1st, 5:00pm

Assignments/Grading • Labs (cell designs) & Homework (40%) • Design review (5%) • Mid-term exam (15%) • Final Project (40%) • See the syllabus (web page) for more details about grading breakdown

- We can fabricate the chips through MOSIS
 - Educational program sponsored by MOSIS' commercial activities
 - Chips are fabricated, packaged, and shipped back to us
- Then we get to test them to see what they do, or don't do
- Not necessarily a research area in its own right here at Utah
 - But, a powerful tool for hardware-related research projects!

IC Technology

- We'll use the AMI 0.6u 3-level-metal CMOS process
 - We have technology files that define the process
 - MOSIS Scalable CMOS Rev. 8 (SCMOS)
 - Tech files from NCSU CDK
 - NCSU toolkit is designed for custom VLSI layout
 - Design Rule Check (DRC) rules
 - Layout vs. Schematic (LVS) rules

Class Project

- Standard Cell Library
 - Each group will design a small, but useful, standard cell library
 - Use HDL synthesis with this library as a target
 - Use Cadence SOC Encounter for place and route
- Custom Datapath
 - Use ICC router to connect HDL-Synthesized control to custom-designed datapath
 - It will be VERY helpful to have a mix of knowledge on your team

Class Project

- Two complete design views: Schematic and Layout
 - Complete design in Composer schematics, simulated with Verilog
 - Complete design at layout level in Virtuoso with detailed simulation using Spectre
 - Validate they are the same with LVS
- Custom layout for datapath
- Synthesized controller using Synopsys, SOC Encounter, and your cell library
- Final assembly back in Virtuoso

Timetable

- This project will be a race to the finish!
 - There is no slack in this schedule!!!
- VLSI design always takes longer than you think
 - Even if you take that rule into account!
- After you have 90% finished, there's only 90% left...
 - All team members will have to contribute!
 - Team peer evaluations twice a semester

Electronics Summary Voltage is a measure of electrical potential energy Current is moving charge caused by voltage Resistance reduces current flow Ohm's Law: V = I R Power is work over time P = V I = I²R = V²/R Capacitors store charge It takes time to charge/discharge a capacitor It takes energy to charge a capacitor Energy stored in a capacitor is (1/2)CV²

