Where are we?

» Subsystem Design

» Registers and Register Files

» Adders and ALUs

» Simple ripple carry addition
I » Transistor schematics

» Faster addition
. » Logic generation

» How it fits into the datapath

Data Path Design

ADORESD

» Block-diagram style data path description

Bit Slice Design

Control

<

Bit 3
< iz 3 & 2 &
b5 > = £ 2 | Bit1 =
a g < = = A

S Bit 0

Tile identical processing elements

» Layout Reality

Bit Slice Design

Control

<

Bit 3
A =—————— - O ¢
I — S = = Bit 1 b
&2 < = a

Bit 0

Tile identical processing elements

» Layout Reality

Bit Slice Plan

» Recall planning a DFF to make a register
» Inputs on top in M2
» Outputs on bottom in M2
» Clock and Clock-bar routed horizontally in M1

Bit Slice Plan

» Now extend this to a register file
» D inputs go to all cells
» Can select one register for writing by controlling the clock
» Q outputs go all the way through the register file
» Each cell can drive Q from enabled inverter

» Now you can select one register for reading by selecting
which cell is driving its output

D2 D1 DO

Bit Slice Plan

o) o) o <
Oog 05 o84 ©Cow

Q0

DO

D1

Q2

D2

Bit Slice Design

Control

<

Bit 3
s> 2 | &€& |32 C> ¢
= 2 ° | E £ |Bit1 <

x < & = al
> |Bito

Tile identical processing elements

Multi-Port Reqister

. . % i E
Write Data

Read Data

Bit Slice Design

Control
Bit 3
G 7 @ 3 K -
5 |::> > 3 £ S |Bit1 E:> 2
= 2 < & E a
= |[Bit0
Tile identical processing elements
» Where are power lines? .

Bit Slice Design

Control

Vs

Bit 3
= = . . $ | Bit2 E
sC>z | €& |3 C> ¢
8 2 | 2 | £ £ |sit1 =
4 < & = al

= |Bito

Tile identical processing elements
» Where are power lines? Basic Comb
scheme .

Chip-Wide View of Power

» Power
HEEEEEEENRENERN

Routing is a
global chip-
wide issue

» Here'’s
another
approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

Chip-Wide View of Power

» Power
HEEEEEEENRENERN

Routing is a

global chip- N

wide issue o
» Here’s

another

approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

power routing

Chip-Wide View of Power

» Another
view of the
same issue

» Watch out
for routing
blockages!

Vdd

Gnd

Vdd

Gnd

Vdd

Gnd

» Same basic
scheme

» But with no
internal
jumpers

» Jumpers are
restricted to
outer loops

Vdd

Gnd

Vdd

Gnd

Vdd

Gnd

Adders Etc.

» Check out Chapter 10 in your text

Basic Addition: Full Adder

A B
v
cin— al(:jl(Jj"er —~ Cout
o Al B |G| s ¢ | S
0 0 0 0 0 delete
0 0 1 1 0 delete
0 1 0 1 0 propagate
0 1 1 0 1 propagate
. 1 0 0 1 0 propagate
1 0 1 0 1 propagate
1 1 0 0 1 generate
1 1 1 1 1 generate

Boolean Equations

A B
v v

Cin—. Full |
adder Cout

'
Sum
SUM = A@Ba C
C(AB+ AB)+ C(AB+ AB)
CARRY = AB+AC+ BC
= AB+C(A+B)

Above equations may be implemented as complex
gates

These equations may be manipulated to yield:
SUM = ABC+ (A+ B+ C)CARRY

A Direct Implementation

A
¢ B CARRY
A
B

Fig 10.3 in your text...

(a)

::jﬂ[0 fidehs
. B[A— Bj| g E }n—_j
oA o
ST o SR
32 transistors K .

11

Use the Factored Equations

. = SUM = ABC+ (A+ B+ C)CARRY

28 Transistors

» Fully static, complex gate implementation

. Exploit Inversion Property

Note: need 2 different types of cells

» Can improve performance by removing
inverters from carry chain .

12

A Better Static Gate

» Combine gates and reuse subterms

A Better Static Gate

A — A
g C_ou:(B: 3D>i<{> S
| [D
(@) » Sometimes called
Cout a “mirror adder”
. MINORITY
A —H———F—]]
o — et
- e 45 14—
| Cou L 5
| 4 S
T ok 1>
! |] I T |
| H |J I |
. } i } I
| JIJ H Illji I Ll |
e ‘ '

® > u

13

Mirror Adder Considerations

*Feed the Carry-In to the inner inputs so the internal
capacitance is already discharged

*Make all transistors whose gates are connected to Cin
and carry logic minimum size — minimizes branching
effort on critical path (carry out)

*Determine gate widths by Logical Effort — reduce effort
from C to CoutB at the expense of Sum

*Use relatively large transistors on critical path so that
stray wiring cap is a small fraction of overall cap

Adder Layout

» Examples pLEERISAREAAGIAE
from Weste o IRimin] IEIEiEimin] | (8in giE
AR L o B
and Sl ; _
Eshraghian ot e
» “Standard : inf)
Cell” vs. inetaal
‘Datapath” LI

] » Definitely
worth looking .
at carefully | S —

14

Datapath Layout

= aa e e n o
Bl s
= e &

— e

» A little tricky to figure out
» You may not want to use this exact layout,
but it might give you ideas
» Start by identifying vdd and gnd paths
» Think about rotating it ccw...

» Think about a taller circuit that matches the
bit-pitch of your register...

Datapath La od‘t

= aa e e n o
mE 1A
= e &

— e

c—{[1
A—e B8 B—[1 A—q[t B[t c—[1 B[1
CE—TSJ A—qé Bl A—{[1

cHp A | Y A1
A—l4 B4 B[t |A-[1 B[t c[1 B[
v c—[1

[9p]

T COUt .

15

Example Datapath Layout

L Vpp (M2)

Control
slice

Bit3

Ly

Bit2

Bit1

Bito

s Y | GND (M2)
mux,/ reg) regl \ adder buffer
Jeedthrough routing channel

Addition and Subtraction

» Remember back to your logic design
class

» Add the two’s complement to subtract

» Take two’s complement by inverting all the
bits and adding one

» Use the carry-in to add one A Bl Oout
. » Use an XOR to invert or not o olo
0O 1|1
1 0|1
1 1|0

16

Two’s Complement Add/Sub

]
C<3>

B<3>

B<1>—

SUB_T-FMCT
if(SUBTRACT==0)
{S=A+B}
else
{S=A-Bi}

(b)

» Slightly tricky gate,
~AB + A~B

» Lots of different

I schematics...

17

Another XOR gate

» Not too bad if you already have A, ~A, B,
~B floating around

» If not, you’'ll need a couple inverters too...

Yét Another XOR Gate

» DCVSL (section 6.2.3 in your text)
» Differential Cascode Voltage Switch Logic

» Make sure that the combinational pull-down
networks are complementary

e

Out —

Differential —
Inputs —_

L ~QOut

18

DCVSL XOR/XNOR

» Generates both XOR/XNOR

» Still static, but might be slower than
others .

Another DCVSL Example

» Pull-down stacks
must be complementary

19

DCVSL Large XOR

o
=
nl

e

Four-input XOR
aka odd parity

| ~Out

Ea

R

B_| ~B_|

A

e

Four-input XOR
aka odd parity

L ~Out

[oA o
NETRER
B ~B_|"'B—_| -B |
fl ~A
A—I%]

20

DCVSL Large XOR

ﬁ E Four-input XOR
| >\/ | aka odd parity

Out —| || ~Out

oL L o0 <A
- o

] » Tiny, clever circuit
» If Ais high, N1, P1 act like inve

» If A'is low, B is passed to the output through

transmission gate

A®B

rter

21

Transmission Gate Adder

¢ Truth Table .
A B C| Sum Carry AD)_DQ v
00 of o 0 = sm
00 1| 1 0 ° DQ
0 1 of 1 0 2x1
01 1| o 1 Dq J";w
1 0 of 1 0 ..

1o 1| o 1 A;ﬂD— DQ
1 1 0| o 1 >
[O 1
. * When A®B = 0, SUM = (,and Carry = B.
* When A®@B =1, SUM = C,and Carry = C.
* Using the 6T XOR, this full adder uses 18T.

Another Version
P

4

_ Vbp
C T

PI "‘D S Sum Generation
GIF ™

B _ ﬂt Vbp
A
P C,Carry Generation
C.
_I__ —
P

= T—_=

Yet Another Version

An Example Layout...

» Not the same style we’re used to
seeing... L]

23

More Pass Transistors

» Complementary Pass Transistor Logic
(CPL)
» Slightly faster, but more area

Speeding Up Addition

» It all comes back to the carry circuit

» Ripple carry delay goes from low-order to
high-order bit

I » This determines the speed of the addition

Cout—| D ‘|_I‘ | Cin

v NN N NN N N S~

Delay is proportional to n

. » Many many ways to speed up the carry
calculation

Section 10.2.2 in your text

Carry Lookahead

* Acarryout (; is generated from bit position i,
when both A; and B; are ‘I’i.e. G; = A;B;

* A carry in is propagated to the carry out at bit position
i when either A; or B; is ‘1’ (if both are ‘1’ G; will

cover)e.g. P; = A;® B;

I . Sum =P @ Ci
== P

qL complex gate (6T)
. * Thus the carryout, (; = G;+ P_,-C,-_l
» Key is that the carry depends ONLY on A

and B, not the carry-in

» Catch is that the gates have large fan-in .

Carry Lookahead

p Restated: Ci = Gi + Pi C(i-1)
» CO=GO0 + PO Cin

»pC1l=G1l+P1CO
=Gl + P1(GO + PO Cin)
=G1+P1GO0+ P1POCin

» C2=G2+P2G2 + P2P1G0 + P2P1P0OCin

p C3 =G1+P3G2 + P3P2G1 + P3P2P1GO
+ P3P2P1P0Cin

p Or C3=G3+P3(G2 +P2(G1 + P1(GO + PO Cin)))

Carry Lookahead

» The C equations get larger with each
stage
» Usually do lookahead in small blocks (l.e. 4i

and the combine in a tree

Carry Lookahead Logic

26

Fast Carry Lookahead Logic

i an E:zn Jﬁ” R

W“ﬁ 41 @ L| 24/1
cin 2411

i o elith
e

Pseudo-nMOS

e 2
i 61 I 8pes P e Uses lots of
T

current!
9<1>“DE‘§: pé:'&wm;“;:h Jwg

Another Version

£
-
o
o
y T o T
o O O O

o

[N R S
1
—

L w

27

Another View

D P<3> \

Ce2> D‘ SUM<3>
B<3>
A<3> G<3>

D P<2> \
C<t> ——)D_ T
B<2>
A<2> Ge2>
D P<1> S
C<O> % SUM<1>
B<1>
Acl> Gel>
- D=
= D— SUM<0>
Belly——1
A<O> G<0>

PG Generator Carry Sum Generator
Generate
Block

Another View

C\n
1: Bitwise PG logi
‘ < logic
G, |P
2: Group PG logic
G30 Gz:o GlO Go:o
T T T T
f Cs ‘J/—‘ C, _J,—‘ C, _J/—‘ Co
N N N N 3: Sum logic

GO:O

-
S
&
@
Z
=
©
@
ks
O
QO
al

Buffer

Gray cell

Black cell

GH, DIH,
X
= — — =
GE DII ﬂ..u_ul.n.
o a®
x
=

29

t

ripple = Lpg T (N=Dt,o +t - BitPosiion

(5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

J{&F

|

l15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 50 40 3:0 2.0 1.0 0:0]

-Lookahead Adder

» Carry-lookahead adder computes G, for
many bits in parallel.

» Uses higher-valency cells with more than
two inputs.

30

CLA PG Diagram

(16 15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0)

u| QSRR

|16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 50 4:0 3.0 2:0 1.0 0:0

Higher-Valency Cells

G

ik

ik k-LI-Lm m-1; GE ik Gy
Ll
I:>k-]_‘l
Giim
P

-1:m

. i Gy L,

P

m-1j

.

31

-Select Adder

» Carry-Select

» Compute result for a block based on carry-in
of 1 and carry-in of 0, then select the right

Ay By A, By Ay By
| | | | | |
4-hit Adder 4-bit Adder 4-bit Adder
—1 Cin Cout 0 — Cin Cout 1 — Cin Cout
W 7 G
1
Complex gate
"] 1
s 2x1 Mux
s!:()

» Trick for critical paths dependent on late input X
» Precompute two possible outputs for X =0, 1
» Select proper output when X arrives

» Carry-select adder precomputes n-bit sums
» For both possible carries into n-bit group

32

» Compute the P and G for an entire block

» If the block generates or kills, don't
propagate

PG Diagram

(6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

o & & gﬁj’
nll o | o |
o | |

w
< w m |
T w m| | m

. |16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 50 40 3.0 220 1.0 0.0

tyip =ty +[2(N=1)+ (K1) Jtuo +1,,,

For k n-bit groups (N = nk)

33

Tree Adder

» If lookahead is good, lookahead across
lookahead!

» Recursive lookahead gives O(log N) delay
I » Many variations on tree adders

(151413121110987 6 5 4 3 2 10)

%_%7 7.6 %_%7 32 %Eg

74 3

70

ﬁ%?ﬁfgﬁfﬁf

[15:014:013:012:011:010:0 90 80 7:0 6:0 50 40 30 20 1.0 o:-

34

(1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

15:014:013:012:011:010:0 9.0 80 7:0 6:0 50 40 3.0 20 1.0 00

Kogge-Stone

(1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

15:014:013:012:011:010:0 9.0 80 7:0 6:0 50 40 3.0 20 1.0 00

35

Manchester Carry Chain

» Instead of changing the architecture of
the adder, use a clever circuit to ripple the
carry more effectively

* Propagate and generate sig-
nals computed in about two
gate delays

* Active low carry is propa-
gated through a chain of
transmission gates

* The three shaded areas of
the circuit are mutually
exclusive, and represent Pf,

G;,and P;G;.

Alternate Implementation

* The Manchester carry chain computation may also be

implemented with a 2x1 mux.

36

Four Bit Block

* Signal propagation through a chain of transmission
gates must be restored after about 4 gates

6, PR G; P, ?2’72 G_li Py

CPr - - D

-
™
R
o

G G

Al
O

* A block propagate (bypass) circuit may be added to
. further improve performance on wide adders

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture Classification | Logic Max Tracks | Cells
Levels Fanout
Carry-Ripple N-1 1 1 N
Carry-Skip n=4 N/4 +5 2 1 1.25N
Carry-Inc. n=4 N/4 + 2 4 1 2N
Brent-Kung (L-1,0,0) 2log,N -1 |2 1 2N
Sklansky (0, L-1,0) log,N N2+1 |1 0.5 Nlog,N
Kogge-Stone 0, 0, L-1) log,N 2 N/2 Nlog,N

37

Design as Trade-Off

80.0 T : T '
stati irror look-ahea
manchester select
60.0 bypass
_ 04
_ E static
(3) S
5 40.0 select 15
2 ©
£ e ypas
s < irro}
0.2
20.0 M
. manchestgr
0.0 0.0

. 0 10 N 20 2 1'0) 2'0
» Do you want speed or size?
» There’s always power to consider too...

How well does Synopsys do?

6
—_— Prefix Tree
[]
5
Carry Lookahead
4
=
= . [] Carry Select & 32-bit
® m 64-bit
= Ripple Carry
2
&
®
1
] 0 < .
0 20 40 60 80 100

Delay (FO4)

HEMUVEY] Area vs. delay of synthesized adders

» Design compiler using a 180nm library .

What should you use?

» Ripple if timing allows
» Compact, easy

» CLA or carry-skip work well for 8-16 bits
» For 32, and especially 64 bits tree adders

are faster

» Adders designed and tiled by hand will
be much smaller (and probably faster)

than synthesized adders

Logic Functioné

» Use the features * g[;
of the full adder
cell to generate

logic functions I HH:

» Lots of other

ideas in your

text. .. T

A5 .
|s=—|-DT-|P !

39

General Logic Generator

* 4x1 multiplexor can implement any function of two

variables

. * Simply place the truth table for F on the inputs of the
mux.

* The operands A and B will select the correct value of
the function

One Possible MUX Version

10 E o
11

Out it
12 2 ¥
13

S1 S1 S0 SO

* Note: Two t-gates in
series do not need the
. internal connection
between p-fet and
n-fet

40

Remember the Big Picture

Control

<

Bit 3
E [E Blt2
& 2 a 5 3
§E> = 3 | £ 2 BitlE:>
X < 5 5
S |Bito

» We want things to stack up nicely in the
datapath

Data-Out

l Bit-Slice i
[|

» Essentially a muxing operation... select
the shift you want (section 10.8)

41

Barrel Shifter

=
ol

>33

]

R} PRY| SR

I

Sho

» Shift any number of bits in one shot

R | TR
Ry | PR | HR]

» Clever layout is possible...

» Lots of wiring...

Barrel Shifter

> 5 A3

>Bz A3

—— : Data Wire

B TR TS T,
NS i (e
A
L g
Asm_uL_f'—F_F
'

Sho

» Shift any number of bits in one shot

» Clever layout is possible...
» Lots of wiring...

~—— : Data Wire

> B, A3_ : Control Wire
>— % A2

Four by Four Barrel Shifter

Sho Shl Sh2 Sh3

. Buffer

» Note the zig-zag control wire in poly

Logarithmic Shifter

Sh1Shl Sh2 Sh2 Sh4 Sh4

I A, fﬂ
T
& |

Al T

:.':_|
:.':_|

j_:_|

:.':_|
:.':_|

Ag 1'—r'_l

:I:_|

i
VAR VAR VAR V4

43

)
>
@
©

—l
S
O

=

e

p)

2
S

e

=
L S
©
@
@

—l

44

