Where are we?

» Subsystem Design
» Registers and Register Files
» Adders and ALUs
» Simple ripple carry addition
» Transistor schematics
» Faster addition
» Logic generation
» How it fits into the datapath

Data I#ath Design

REGISTER
FILE

MULTIFLY

tYE] v v

ROGR AM)
COUNT ER

5 !
ADORES: I oaTa

» Block-diagram style data path description

Bit Slice Design

Control

Y

Bit 3
. . =
_tI: = N _ 2 Bit 2 8
! Az} 3 & = &
8 2 g = 2 |Bit1 &
o 7] = o

= Bit 0

Tile identical processing elements

» Layout Reality

$it Slice Design

Control

Y

Bit3

Bit 2
= é =R

I:: > —= g:___ EB“ 1

—
>— 1Bit0

er

Data-In

Tile identical processing elements
» Layout Reality

Data-Out

Bit Slice Plan

» Recall planning a DFF to make a register
» Inputs on top in M2
» Outputs on bottom in M2
» Clock and Clock-bar routed horizontally in M1

Vdd

Ch
T=obal Q2 . Obl J_TF%QO D Vss

Bit Slice Plan

» Now extend this to a register file
» D inputs go to all cells
» Can select one register for writing by controlling the clock
» Q outputs go all the way through the register file
» Each cell can drive Q from enabled inverter

» Now you can select one register for reading by selecting
which cell is driving its output

D2 D1 DO

Cb
En

Ch
En

Q2 Q1 Q0

Bit Slice Plan

085 U85 085 0B

Qo0
DO

Q1
D1

H o
D2

Bit Slice Design

Control

o

Data-In

Tile identical processing elements

Y

Register
Adder
Shifter

Multiplexer

Bit3

Bit 2

Data-Out

Bit1
Bit0

Multi-Port Register

[y
wE__| T
Rel T
Re0 ¥ g
| _ % pg D1
Write Data Read Data

Multi-Port Reqister

oo

Read Data

Wﬁtgaia

Bit Slice Design

Control

Y

Data-In
Register
Adder

Shifter

Multiplexer

Bit3
Bit 2
Bit1
Bit0

Tile identical processing elements

» Where are power lines?

Data-Out

Control

{

Bit Slice Design

(=

Data-In

Register
Adder
Shifter

Bit3
Bit 2
Bit1
Bit0

Multiplexer
Data-Out

Tile identical processing elements
» Where are power lines? Basic Comb

scheme

Chip-Wide View of Power

» Power
Routing is a
global chip-
wide issue

» Here's
another
approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

Core power routing

Chip-Wide View of Power

r

same issue
» Watch out

for routing

blockages!

» Another /dd
view of the ‘

:

Al TH

 m— | Gnd Vdd

ngd

Chip-Wide View of Power

» Power
Routing is a
global chip-
wide issue

» Here's
another
approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

» Same basic
scheme

» But with no
internal
jumpers

» Jumpers are
restricted to
outer loops

A Tweak on the Scheme

=

Cind Vd

Cind

Adders Etc.

» Check out Chapter 10 in your text

Boolean Equations

A B

[}
Cin_,] Full .
adder Cout

\J
Sum

SUM = A@B® C
= C(AB+ AB)+ C(AB + AB)
CARRY = AB+ AC+ BC
= AB+ C(A+ B)

* Above equations may be implemented as complex
gates

* These equations may be manipulated to yield:
SUM = ABC+(A+ B+ C)CARRY

Basic Addition: Full Adder

A B
¥
sum Alslals |l ol
0 0 0 0 0 : delete
1] 0 1 1 0 delete
1] 1 0 1 0 propagate
1] 1 1 0 1 propagate
1 0 0 1 0 | propagate
1 0 | 1 0 | 1 | propagate
1 1 | 0 0 | 1 | generate
1 1 1 1 1 | generate

Use the Factored Equations

28 Transistors

» Fully static, complex gate impIementatioE

A Direct Implementation
=D -

] CARRY

32 transistors

Even Cell Odd Cell
Ay By A1 B A, B, As Bg
Lo i & 5 4
Cio Coo Cou Co2 Cos
— FA’ p——0q FA’ FA’ jo——o FA’ —>
! 3

Exploit Inversion Property

Note: need 2 different types of cells

» Can improve performance by removing
inverters from carry chain .

A Better Static Gate A Better Static \Gate

=m0

=B

» Sometimes called

S« a*mirror adder”
MINORITY
A l-.tl ,J_:iP—-j JI_‘[_"!;

. 1_;’ | o
. . C:'::ll -|.5 > s
- £ T J
» Combine gates and reuse subterms JH - ——
L} T I
L | I I .
. ®) H‘:;>—CM .

Mirror Adder Considerations

Adder Layout

*Feed the Carry-In to the inner inputs so the internal 14 Examples
capacitance is already discharged from Weste _ g
+Make all transistors whose gates are connected to Cin and | | gE
and carry logic minimum size — minimizes branching . pANEEEEY, |-
effort on critical path (carry out) Eshraghlan | Seviet ppmpete 2T
«Determine gate widths by Logical Effort — reduce effort » “Standard - Rliagme
from C to CoutB at the expense of Sum Cell” vs. g eEinnl B
*Use relatively large transistors on critical path so that “Datapath” -
stray wiring cap is a small fraction of overall cap . "
B » Definitely
worth looking
at carefully] 1 — Eal
® moaam n : =
" = " 2
B LR) LER RN

Datapath Layout

Datapath Layout

I » A little tricky to figure out I

» You may not want to use this exact layout, i
B but it might give you ideas u "“‘L%‘iﬁ ijg A“*EM :j:
» Start by identifying vdd and gnd paths - e ':i] 5 s
—1 I A—l1
» Think about rotating it ccw...
A B Bl |A ,;1 B[t c[i B[
» Think about a taller circuit that matches the = ;‘ i c:l :

bit-pitch of your register... L T L

Bir g

it GND (M2)
muy regilh

regl adder buffer
Jeeathrough " routing channel

Two’s Complement Add/Sub

=5 et
)
Beds
Ay —
D
T Sz
A<Z>
Bels A
T)I)I_/ i Bels
Acts—
M»——\""':
7L~ S<t
At —
A T
| SUBTRACT
e ISUBTRACT =0}
[EET e 4
A-B s
[B=A-B)

Addition and Subtﬁaction

» Remember back to your logic design
class
» Add the two’s complement to subtract

» Take two’s complement by inverting all the
bits and adding one

»Usethecarry-intoaddone 5 gl oyt
» Use an XOR to invert or not o olo

0 1|1

1 0|1

1 1|0

Another XOR gate

» Not too bad if you already have A, ~A, B,
~B floating around
» If not, you'll need a couple inverters too...

"V "V .

Aside: XOR Gates

» Slightly tricky gate, &1L ;
~AB + A~B e

» Lots of different
schematics...

Yet Another XOR Gate

» DCVSL (section 6.2.3 in your text)
» Differential Cascode Voltage Switch Logic

» Make sure that the combinational pull-down
networks are complementary

~Out

Differential
Inputs

DCVSL XOR/XNOR

» Generates both XOR/XNOR

» Still static, but might be slower than
others

DCVSL Large XOR

Four-input XOR
aka odd parity

DCVSL Large XOR

ﬁ E Four-input XOR
> i aka odd parity

Another bCVSL Example

» Pull-down stacks
must be complementary

DCVSL Large XOR

Four-input XOR
aka odd parity

| |
E a1 |:|P2—s
i —|: b]

» Tiny, clever circuit
» If Ais high, N1, P1 act like inverter

» If Ais low, B is passed to the output through

transmission gate

Transmission Gate Adder
+ Truth Table

x1
Mux
A B C| Sum Carry
[1 a ‘
0 ol 1 |
o 1 1 0
1 of 1 .
1 1 e |
1
1

>

0
1
0
1
1
|

+ When A@ B = 0, SUM = C,and Carry = B.

*+ When A©B = 1, SUM = C,and Carry = C.
+ Using the 6T XOR, this full adder uses 18T.

Yet Another Version

Another Versid)n
P

_ 4 Vop
Ci

PI S sum Generation
G
_ i Voo
A

P C, Carry Generation|
C.

= =

=]

More Pass Transistors

» Complementary Pass Transistor Logic
(CPL)
» Slightly faster, but more area

An Example Layout...

» Not the same style we're used to
seeing... |

Speeding Up Addition

» It all comes back to the carry circuit
» Ripple carry delay goes from low-order to
high-order bit
» This determines the speed of the addition

B S
Delay is proportional to n

» Many many ways to speed up the carry
calculation

| Section 10.2.2 in your text |

Carry Lookahead
* Acarryout (; is generated from bit position i/,
when both A; and B; are ‘1'i.e. G; = A;B,

« A carry in is propagated to the carry out at bit position
i when either A; or B, is ‘1" (if both are ‘1’ G; will
cover)e.g. P; - A;®B;

I E'|_ > Sum=P@&Ci
0>
L complex gate (6T)
. * Thus the carryout, (; | G+ P;C,_l

» Key is that the carry depends ONLY on A

and B, not the carry-in
» Catch is that the gates have large fan-in .

Carry Lookahead

AoBo A1 By An-1:Bn-1

» The C equations get larger with each
stage

» Usually do lookahead in small blocks (l.e. Ai
and the combine in a tree

Lookahead Logic

i o g e
A g

'4% = e =

+

Pseudo-nMOS

w%%&@?g Uses lots of

b current!
et
et

Lobkahead

Restated: Ci = Gi + Pi C(i-1)
C0 =G0 + PO Cin
Cl=Gl1+P1CO
=G1 + P1(GO + PO Cin)
=G1+P1G0+P1POCin

C2=G2 +P2G2 + P2P1G0 + P2P1P0Cin

C3=G1+P3G2 + P3P2G1 + P3P2P1GO
+ P3P2P1P0Cin

Or C3=G3 + P3(G2 +P2(G1 + P1(GO + PO Cin)))

Carry Lookahead Logic

Cio PJE‘
| Co3

Another View

e

P> | e
?)D‘ e
o { oo
PG Genoralor Cany Sum Generator
Gonsrate
Biock:

Another VieW

2: Group PG logic

: : : :
C. C, C. C,
\f . \J,_l : \J,_l t J,—l i 3: Sum logic
i i
SA Sz 2 1

PG Diagram Notation

Buffer
1
iij iii ifj
@ BT e >
e Guyy

k1

t

Tipple

=ty + (N =Dty +1,, . BiPosn
[

Carry-Lookahead Adder

» Carry-lookahead adder computes G;, for
many bits in parallel.

» Uses higher-valency cells with more than
two inputs.

Ass1s Brors

10

CLA PG Diagram

(6 15 14 13 12 11 10 8 7 4 0)

| N

F
l16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0 1.0 0:0

» Carry-Select

» Compute result for a block based on carry-in
of 1 and carry-in of 0, then select the right
one

L]
‘Complex gate

Higher-Valency Cells

(é:k
ik k-11-Lm m-Lj ik
Gy

A

k1l
-1m

Plim T

ij Gm-l:j I
P
ij ij

Carry-SKip

» Compute the P and G for an entire block

» If the block generates or kills, don’t
propagate

Carry-Select Adder

» Trick for critical paths dependent on late input X
» Precompute two possible outputs for X =0, 1
» Select proper output when X arrives

» Carry-select adder precomputes n-bit sums
» For both possible carries into n-bit group

Assas Busrs Aizg Bizg Ags Byg Ay By

o s S
S O s e

S Sia

Sur

PG Diagram

(s 5 B 209 5 7 6 5 13 7 10

o

]

[60150 140 30120110100 50 80 70 60 50 40 30 20 10 00

tp =t +[2(N 1)+ (K =1) [ty +1L,,
For k n-bit groups (N = nk)

Tree Adder

» If lookahead is good, lookahead across
lookahead!
» Recursive lookahead gives O(log N) delay

» Many variations on tree adders

(1514131211 10 9 8 7 6 5 4 3 2 1 0)

|15:014:013:012:011:010:0 90 80 7.0 60 50 40 30 20 1.0 O:O|

Manchester Carr

» Instead of changing the architecture of
the adder, use a clever circuit to ripple the
carry more effectively

* Propagate and generate sig- .
nals computed in about two

gated through a chain of P 6
. transmission gates
* The three shaded areas of
the circuit are mutually

gate delays P
« Active low carry is propa-
exclusive, and represent P;,]

G;,and P;G;.

(151413121110 9 8 7 6 5 4 3 2 1 0)

1514 1312 11:10| 98 76 54 32 10
1512 11:8| 74 30
158 70
11.0|
130 90 [{ 50 [{

15:014:013:012:011:010:0 9:0 80 7:0 6:0 50 4.0 3:0 20 1.0 0:.

Kogge-Stone

(15141312111098765432 10)

* The Manchester carry chain computation may also be
implemented with a 2x1 mux.

12

Four Bit Block

= Signal propagation through a chain of transmission
gates must be restored after about 4 gates

G, P, ﬁ| P\ G: P_' G.i P,
. A

] 1

Kyl
fa L
fa

+ A block propagate (bypass) circuit may be added to
. further improve performance on wide adders

Design as Trade-Off

80.0

stati look-ahea
manchester select
60.0 bypass
04
= e static
E 40.0 select %
£ Hy o
wol /T
manchest]
00 00

» Do you want speed or size?
» There’s always power to consider too...

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture Classification | Logic Max Tracks | Cells
Levels Fanout
Carry-Ripple N-1 1 1 N
Carry-Skip n=4 N/4 +5 2 1 1.25N
Carry-Inc. n=4 N/4 +2 4 1 2N
Brent-Kung (L-1,0,0) 2log,N-1 |2 1 2N
Sklansky (0,L-1,0) log,N N2+1 |1 0.5 Nlog,N
Kogge-Stone (0,0, L-1) log,N 2 N/2 Nlog,N

How well does Synopsys do?

Prefix Tree

Carry Lookahead

4
g
= 3 Carry Select & 32-bit
g m 64-bit
< Ripple Carry
2
1
| 0
0 20 40 60 80 100
Delay (FO4)
[HEWIVET] Area vs. delay of synthesized adders
» Design compiler using a 180nm library .

What should you use?

» Ripple if timing allows
» Compact, easy
» CLA or carry-skip work well for 8-16 bits
» For 32, and especially 64 bits tree adders
are faster

» Adders designed and tiled by hand will
| be much smaller (and probably faster)
than synthesized adders

» Use the features * —;E}
of the full adder o ||
cell to generate E
logic functions _,;ﬁ,; W sH

» Lots of other W
ideas in your . —L

text... =T

50

S

3
+

13

General Logic Generator

4x1 multiplexor can implement any function of two
variables

« Simply place the truth table for F on the inputs of the
. mux.
* The operands A and B will select the correct value of
the function

Remember the Big Picture

Control

Bit3
c - i g |Bit2 g
f Z 3 & 2) &
8 E:> g 2 E %* Bit 1 B

= Bit 0

» We want things to stack up nicely in the

datapath .

Barrel Shifter

A i
T >
N e e
o e T T >
S et et et — -eavire
T T bsl : Control Wire
PR i il
T TR >
B PP

» Shift any number of bits in one shot
» Clever layout is possible...
» Lots of wiring... .

One Possible MUX Nersion

Iﬂ:}_j\

12—

13 el Lok
S s s s
* Note: Two t-gates in

series do not need the

. internal connection
between p-fet and
n-fet

Right nop Left

| Lo
A . Tt >~ Bj
JTCl
-
A, Tr D_ Bis
L T T
l_ Bit-Slice i
-

» Essentially a muxing operation... select

the shift you want (section 10.8)

Barrel Shifter

A il

¢ T B,
T T D A3

R (i e 1

‘ s, A3
| -

N S'LJ_._F—__ | —— : Data Wire
u]_rl >31 A3 : Control Wire

]
it
S g
[
IR

hr {> " A2
. Sho Shi Sh2 Sh3

» Shift any number of bits in one shot
» Clever layout is possible...
» Lots of wiring...

14

Four by Four Barrel Shifter Lodrithmic Shifter

. Buffer .

» Note the zig-zag control wire in poly T | T _I”—_a

Ay s

s
T
)

Logarithmic Shifter Layout

