Where are we?

» Subsystem Design
» Registers and Register Files
» Adders and ALUs
» Simple ripple carry addition
» Transistor schematics
» Faster addition
» Logic generation
» How it fits into the datapath
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» Block-diagram style data path description
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Bit Slice Plan

» Recall planning a DFF to make a register
» Inputs on top in M2
» Outputs on bottom in M2
» Clock and Clock-bar routed horizontally in M1
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Bit Slice Plan

» Now extend this to a register file
» D inputs go to all cells
» Can select one register for writing by controlling the clock
» Q outputs go all the way through the register file
» Each cell can drive Q from enabled inverter

» Now you can select one register for reading by selecting
which cell is driving its output
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Bit Slice Plan
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Bit Slice Design
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» Where are power lines?
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Tile identical processing elements
» Where are power lines? Basic Comb

scheme




Chip-Wide View of Power

» Power
Routing is a
global chip-
wide issue

» Here's
another
approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

Core power routing

Chip-Wide View of Power
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Chip-Wide View of Power

» Power
Routing is a
global chip-
wide issue

» Here's
another
approach

» Note the
Vdd and
Gnd pads

» Global rings
with combs
for regions
of the chip

» Same basic
scheme

» But with no
internal
jumpers

» Jumpers are
restricted to
outer loops

A Tweak on the Scheme
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Adders Etc.

» Check out Chapter 10 in your text

Boolean Equations

A B

[}
Cin_,] Full .
adder Cout

\J
Sum

SUM = A@B® C
= C(AB+ AB)+ C(AB + AB)
CARRY = AB+ AC+ BC
= AB+ C(A+ B)

* Above equations may be implemented as complex
gates

* These equations may be manipulated to yield:
SUM = ABC+(A+ B+ C)CARRY

Basic Addition: Full Adder

A B
¥
sum Alslals |l ol
0 0 0 0 0 : delete
1] 0 1 1 0 delete
1] 1 0 1 0 propagate
1] 1 1 0 1 propagate
1 0 0 1 0 | propagate
1 0 | 1 0 | 1 | propagate
1 1 | 0 0 | 1 | generate
1 1 1 1 1 | generate

Use the Factored Equations

28 Transistors

» Fully static, complex gate impIementatioE

A Direct Implementation
=D -

] CARRY

32 transistors

Even Cell Odd Cell
Ay By A1 B A, B, As Bg
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Exploit Inversion Property

Note: need 2 different types of cells

» Can improve performance by removing
inverters from carry chain .




A Better Static Gate A Better Static \Gate
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» Sometimes called

S« a*mirror adder”
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» Combine gates and reuse subterms JH - ——
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Mirror Adder Considerations

Adder Layout

*Feed the Carry-In to the inner inputs so the internal 14 Examples
capacitance is already discharged from Weste _ g
+Make all transistors whose gates are connected to Cin and | | gE
and carry logic minimum size — minimizes branching . pANEEEEY, |-
effort on critical path (carry out) Eshraghlan | Seviet ppmpete 2T
«Determine gate widths by Logical Effort — reduce effort » “Standard - Rliagme
from C to CoutB at the expense of Sum Cell” vs. g eEinnl B
*Use relatively large transistors on critical path so that “Datapath” -
stray wiring cap is a small fraction of overall cap . "
B » Definitely
worth looking
at carefully ] 1 — Eal
®  moaam n : =
" = " 2
B LR ) LER RN

Datapath Layout

Datapath Layout

I » A little tricky to figure out I

» You may not want to use this exact layout, i
B but it might give you ideas u "“‘L%‘iﬁ ijg A“*EM :j:
» Start by identifying vdd and gnd paths - e ':i] 5 s
—1 I A—l1
» Think about rotating it ccw...
A B Bl |A ,;1 B[t c[i B[
» Think about a taller circuit that matches the = ;‘ i c:l :

bit-pitch of your register... L T L
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Two’s Complement Add/Sub
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Addition and Subtﬁaction

» Remember back to your logic design
class
» Add the two’s complement to subtract

» Take two’s complement by inverting all the
bits and adding one

»Usethecarry-intoaddone 5 gl oyt
» Use an XOR to invert or not o olo

0 1|1

1 0|1

1 1|0

Another XOR gate

» Not too bad if you already have A, ~A, B,
~B floating around
» If not, you'll need a couple inverters too...

"V "V .

Aside: XOR Gates

» Slightly tricky gate, &1L ;
~AB + A~B e

» Lots of different
schematics...

Yet Another XOR Gate

» DCVSL (section 6.2.3 in your text)
» Differential Cascode Voltage Switch Logic

» Make sure that the combinational pull-down
networks are complementary

~Out

Differential
Inputs




DCVSL XOR/XNOR

» Generates both XOR/XNOR

» Still static, but might be slower than
others

DCVSL Large XOR

Four-input XOR
aka odd parity

DCVSL Large XOR

ﬁ E Four-input XOR
> i aka odd parity

Another bCVSL Example

» Pull-down stacks
must be complementary

DCVSL Large XOR

Four-input XOR
aka odd parity

| |
E a1 |:|P2—s
i —|: b ]

» Tiny, clever circuit
» If Ais high, N1, P1 act like inverter

» If Ais low, B is passed to the output through

transmission gate




Transmission Gate Adder
+ Truth Table

x1
Mux
A B C| Sum Carry
[ 1 a ‘
0 ol 1 |
o 1 1 0
1 of 1 .
1 1 e |
1
1

>

0
1
0
1
1
|

+ When A@ B = 0, SUM = C,and Carry = B.

*+ When A©B = 1, SUM = C,and Carry = C.
+ Using the 6T XOR, this full adder uses 18T.

Yet Another Version
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More Pass Transistors

» Complementary Pass Transistor Logic
(CPL)
» Slightly faster, but more area

An Example Layout...

» Not the same style we're used to
seeing... |

Speeding Up Addition

» It all comes back to the carry circuit
» Ripple carry delay goes from low-order to
high-order bit
» This determines the speed of the addition

B S
Delay is proportional to n

» Many many ways to speed up the carry
calculation

| Section 10.2.2 in your text |




Carry Lookahead
* Acarryout (; is generated from bit position i/,
when both A; and B; are ‘1'i.e. G; = A;B,

« A carry in is propagated to the carry out at bit position
i when either A; or B, is ‘1" (if both are ‘1’ G; will
cover)e.g. P; - A;®B;

I E'|_ > Sum=P@&Ci
0>
L complex gate (6T)
. * Thus the carryout, (; | G+ P;C,_l

» Key is that the carry depends ONLY on A

and B, not the carry-in
» Catch is that the gates have large fan-in .

Carry Lookahead

AoBo A1 By An-1:Bn-1

» The C equations get larger with each
stage

» Usually do lookahead in small blocks (l.e. Ai
and the combine in a tree

Lookahead Logic

i o g e
A g
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Pseudo-nMOS

w%%&@?g Uses lots of

b current!
et
et

Lobkahead

Restated: Ci = Gi + Pi C(i-1)
C0 =G0 + PO Cin
Cl=Gl1+P1CO
=G1 + P1(GO + PO Cin)
=G1+P1G0+P1POCin

C2=G2 +P2G2 + P2P1G0 + P2P1P0Cin

C3=G1+P3G2 + P3P2G1 + P3P2P1GO
+ P3P2P1P0Cin

Or C3=G3 + P3(G2 +P2( G1 + P1(GO + PO Cin)))

Carry Lookahead Logic

Cio PJE‘
| Co3




Another View
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PG Diagram Notation
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Carry-Lookahead Adder

» Carry-lookahead adder computes G;, for
many bits in parallel.

» Uses higher-valency cells with more than
two inputs.

Ass1s Brors

10



CLA PG Diagram

(6 15 14 13 12 11 10 8 7 4 0)

| N

F
l16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0 1.0 0:0

» Carry-Select

» Compute result for a block based on carry-in
of 1 and carry-in of 0, then select the right
one

L]
‘Complex gate

Higher-Valency Cells

(é:k
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Carry-SKip

» Compute the P and G for an entire block

» If the block generates or kills, don’t
propagate

Carry-Select Adder

» Trick for critical paths dependent on late input X
» Precompute two possible outputs for X =0, 1
» Select proper output when X arrives

» Carry-select adder precomputes n-bit sums
» For both possible carries into n-bit group

Assas Busrs Aizg Bizg Ags Byg Ay By

o s S
S O s e

S Sia
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PG Diagram
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[60150 140 30120110100 50 80 70 60 50 40 30 20 10 00

tp =t +[2(N 1)+ (K =1) [ty +1L,,
For k n-bit groups (N = nk)




Tree Adder

» If lookahead is good, lookahead across
lookahead!
» Recursive lookahead gives O(log N) delay

» Many variations on tree adders

(1514131211 10 9 8 7 6 5 4 3 2 1 0)

|15:014:013:012:011:010:0 90 80 7.0 60 50 40 30 20 1.0 O:O|

Manchester Carr

» Instead of changing the architecture of
the adder, use a clever circuit to ripple the
carry more effectively

* Propagate and generate sig- .
nals computed in about two

gated through a chain of P 6
. transmission gates
* The three shaded areas of
the circuit are mutually

gate delays P
« Active low carry is propa-
exclusive, and represent P;, ]

G;,and P;G;.

(151413121110 9 8 7 6 5 4 3 2 1 0)

1514 1312 11:10| 98 76 54 32 10
1512 11:8| 74 30
158 70
11.0|
130 90 [{ 50 [{

15:014:013:012:011:010:0 9:0 80 7:0 6:0 50 4.0 3:0 20 1.0 0:.

Kogge-Stone

(15141312111098765432 10)

* The Manchester carry chain computation may also be
implemented with a 2x1 mux.

12



Four Bit Block

= Signal propagation through a chain of transmission
gates must be restored after about 4 gates

G, P, ﬁ| P\ G: P_' G.i P,
. A

] 1

Kyl
fa L
fa

+ A block propagate (bypass) circuit may be added to
. further improve performance on wide adders

Design as Trade-Off

80.0

stati look-ahea
manchester select
60.0 bypass
04
= e static
E 40.0 select %
£ Hy o
wol /T
manchest]
00 00

» Do you want speed or size?
» There’s always power to consider too...

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture Classification | Logic Max Tracks | Cells
Levels Fanout
Carry-Ripple N-1 1 1 N
Carry-Skip n=4 N/4 +5 2 1 1.25N
Carry-Inc. n=4 N/4 +2 4 1 2N
Brent-Kung (L-1,0,0) 2log,N-1 |2 1 2N
Sklansky (0,L-1,0) log,N N2+1 |1 0.5 Nlog,N
Kogge-Stone (0,0, L-1) log,N 2 N/2 Nlog,N

How well does Synopsys do?

Prefix Tree

Carry Lookahead

4
g
= 3 Carry Select & 32-bit
g m 64-bit
< Ripple Carry
2
1
| 0
0 20 40 60 80 100
Delay (FO4)
[HEWIVET] Area vs. delay of synthesized adders
» Design compiler using a 180nm library .

What should you use?

» Ripple if timing allows
» Compact, easy
» CLA or carry-skip work well for 8-16 bits
» For 32, and especially 64 bits tree adders
are faster

» Adders designed and tiled by hand will
| be much smaller (and probably faster)
than synthesized adders

» Use the features * —;E}
of the full adder o ||
cell to generate E
logic functions _,;ﬁ,; W sH

» Lots of other W
ideas in your . —L

text... =T

50

S

3
+
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General Logic Generator

4x1 multiplexor can implement any function of two
variables

« Simply place the truth table for F on the inputs of the
. mux.
* The operands A and B will select the correct value of
the function

Remember the Big Picture

Control

Bit3
c - i g |Bit2 g
f Z 3 & 2 ) &
8 E:> g 2 E %* Bit 1 B

= Bit 0

» We want things to stack up nicely in the

datapath .

Barrel Shifter

A i
T >
N e e
o e T T >
S et et et — -eavire
T T bsl : Control Wire
PR i il
T TR >
B PP

» Shift any number of bits in one shot
» Clever layout is possible...
» Lots of wiring... .

One Possible MUX Nersion

Iﬂ:}_j\

12—

13 el Lok
S s s s
* Note: Two t-gates in

series do not need the

. internal connection
between p-fet and
n-fet

Right nop Left

| Lo
A . Tt >~ Bj
JTCl
-
A, Tr D_ Bis
L T T
l_ Bit-Slice i
-

» Essentially a muxing operation... select

the shift you want (section 10.8)

Barrel Shifter

A il

¢ T B,
T T D A3

R (i e 1

‘ s, A3
| -

N S'LJ_._F—__ | —— : Data Wire
u]_rl >31 A3 : Control Wire

]
it
S g
[
IR

hr {> " A2
. Sho Shi Sh2 Sh3

» Shift any number of bits in one shot
» Clever layout is possible...
» Lots of wiring...
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Four by Four Barrel Shifter Lodrithmic Shifter

. Buffer .

» Note the zig-zag control wire in poly T | T _I”—_a

Ay s

s
T
)

Logarithmic Shifter Layout




