Where are we?

- Lots of Layout issues
 - Line of diffusion style
 - Power pitch
 - Bit-slice pitch
 - Routing strategies
 - Transistor sizing
 - Wire sizing

Layout - Line of Diffusion

- Very common layout method
 - Start with a "line of diffusion" for each type
 - Cross with poly to make transistors
 - This is the "type 2" NOR gate

Line of Diffusion in General

- Start with lines of diffusion for each transistor type

Stick Diagrams

- You can plan things with paper and pencil using Stick Diagrams
 - You’ll need colored pencils
 - Draw lines for layers instead of rectangles
 - Then you can translate to layout
Gate Layout

- Layout can be very time consuming
- Design gates to fit together nicely
- Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 \lambda by 40 \lambda

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- A wiring track is the space required for a wire
 - 4 \lambda width, 4 \lambda spacing from neighbor = 8 \lambda pitch
- Transistors also consume one wiring track

Well spacing

- Wells must surround transistors by 6 \lambda
 - Implies 12 \lambda between opposite transistor flavors
 - Leaves room for one wire track
Area Estimation

- Estimate area by counting wiring tracks
- Multiply by 8 to express in λ

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 - $Y = (A + B + C) D$

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
 - $Y = (A + B + C) D$

Euler Paths

- A graphical method for planning complex gate layout
- Take the transistor netlist and draw it as a graph
- Note that the pull-up and pull-down trees can be duals of each other
- Find a path that traverses the graph with the same variable ordering for pull-up and pull-down graphs
- This guides you to a line of diffusion layout

Simple example: NOR

- Euler path is a tour of all edges
- Find a path that has the same ordering for pull-up and pull-down, i.e., A B
 - Vdd A 1 B Out GND A Out B GND
This Path Translates to Layout
- Find a path that has the same ordering for pull-up and pull-down, i.e. A B
- You can also include all the internal nodes
- Pull-up: Vdd A 1 B Out
- Pull-Down: GND A Out B GND
- Line of diffusion layout

Examples
- Switch to chalkboard for examples
- Also chalkboard examples of latches and feedback

Layout Example: Flip Flop
- Simple D-type edge triggered flip flop

Zoom in on Latch
- Need two copies of this for a full D flip flop

Stick Diagram of Latch
- First add the gates
 - Note where outputs can be shared
 - Ignore details of signal crossings for now…

Stick Diagram of Latch
- First add the gates
 - Note where outputs can be shared
 - Ignore details of signal crossings for now…
Stick Diagram of Latch

- First add the gates
- Note where the signals are relative to the schematic

Start With First Enabled Inv

- I'm using 5µ power wires, 29µ vertical pitch based on the C5x standard cell model
 - Probably overkill…
 - Add DIF for N- and P-type transistors
 - Note 2x standard size because of serial connection

Add Next Enabled Inverter

- Add two more poly gates for second enabled inverter
- Note that the two enabled inverters share an output (not connected yet)
- Note that I've added vdd! and gnd! For DRC
- I'll deal with C-Cb crossover later…

Aside: Multiple Contacts

- Look at a model of transistor resistance

Contact Option #1

- Total equivalent resistance = 56.1 Ohms
 - Metal resistance = 0.05 Ohm/square
 - Contact resistance = 5 Ohm/contact
 - Active resistance = 70 Ohm/square
 - Gate resistance = 50 Ohm/square
 - Active resistance 70 - contact to gate
Contact Option #2

- Total equivalent resistance = 105.1 Ohms

Contact Option #3

- Total equivalent resistance = 24.7 Ohms
- So, put in as many contacts as will fit along side a wide gate...

Meanwhile, Add inverter

- Note that it's back to standard size
- Shares vdd/gnd connection with enabled inverter
- Minimum spacing for all transistors so far
- Incremental DRC at EVERY step!

Finish Inverter (mostly)

- Make inverter output connections
 - Don't connect yet
 - I'm going to use M1 as a horizontal layer
 - Which means being careful about vertical use of M1

Make Feedback Connections

- Output of inverter (connected in M1 for now) goes to input of 2nd enabled inverter
- Output of enabled inverters goes to input of inverter
- Note that outputs of enabled inverters goes through POLY

Deal With C/Cb Crossover

- Start by cutting the "select" gates of the enabled inverters
Connect the C Input

- Prepare for M1 crossover in C wire
 - C is N-type in first enabled inverter, P-type in second enabled inverter
 - Use M1PLY contacts
- PROBLEM! We need to squeeze a poly wire in between those contacts...
 - Use design rules to plan for space

Look at Gap

- You need to have enough space for minimum width poly to fit through gap

Start Making Room

- Push D-signal poly out of the way with minimum spacing to DIF
 - We'll move it back later
 - Make sure to continue to DRC at every step!

Fit Things Back Together

- Now put big D-poly jog back as close as you can

Add M1PLY contacts for future connections

- Need to get Cb, C, D signals into the latch in the future
- Those will most likely be routed on some type of metal
- So we need the M1 metal connection at the bottom
Plan For Clock Routing

- Break M1 output connection on inverter to leave room for horizontal M1 routing
- I’ll eventually route C and Cb through the cell horizontally on M1

Bit Slice Plan

- Plan is to stitch these together to make a register
 - Inputs on top in M2
 - Outputs on bottom in M2
 - Clock and Clock-bar routed horizontally in M1

Need Second Latch

- Basically a copy of the first latch
 - But with reversed C and Cb connections
 - Copy the first layout...

Expand from Latch to F/F

- Select and copy the first latch
- Now I need to reverse the C and Cb connections

C/Cb Routing Plan

- Remember my C/Cb routing plan
 - Plan for where those wires can go

C/Cb Routing Plan

- Remember my C/Cb routing plan
 - Plan for where those wires can go
Connect Clocks to 1st Latch

- Adjust contact positions for the first enabled inverter

Connect Clocks to 2nd Latch

- Now shift the contacts the other way for the second latch
- Makes the complementary C/Cb connection

Connect Clocks to 2nd Latch

- Now shift the contacts the other way for the second latch
- Makes the complementary C/Cb connection

Connect the Two Latches

- Q of first goes to D of second
- Don’t really need both top and bottom connections, but it doesn’t hurt
- Lower resistance paths

Note Extra Routing Channels

- Note that this vertical pitch, and this cell contents have left two additional M1 horizontal routing channels through the middle of the cell

Now Consider Output Inverters

- Two more inverters
- Make them 2x size for output drive
Add the DIF for the output inverters
Remember I want to make them 2x size

Add vdd, gnd and output contacts
Add poly gates
Make output connections in M2
Connect to 2nd latch and to 2nd inverter

Select regions of the layout and stretch to move it all to a new spot

Now squeeze the power supply contacts

Output inverters squeezed together
Note that D, Q, And Qb are routed vertically in M2

Squeeze vertically since I don't need extra routing channels, and I don't need to match with standard cells
Add long TUB and SUB contacts
Add instances that abut
- Or use the "array" feature of the instance dialog
- Note that C and Cb are routed in horizontal M1

There's a little extra space
- Caused by wanting each latch to DRC on its own
- Could close this up by overlapping cells