v2000.05 HDL Compiler for Verilog Reference Manual

Introducing HDL Compiler for Verilog

The Synopsys HDL Compiler for Verilog tool (referred to as

HDL Compiler) translates Verilog HDL descriptions into internal
gate-level equivalents and optimizes them. The Synopsys Design
Compiler products compile these representations to produce
optimized gate-level designs in a given ASIC technology.

This chapter introduces the main concepts and capabilities of the
HDL Compiler tool. It includes the following sections:

 What's New in This Release
* Hardware Description Languages
 HDL Compiler and the Design Process

* Using HDL Compiler With Design Compiler

HOME CONTENTS INDEX / 11

v2000.05 HDL Compiler for Verilog Reference Manual

» Design Methodology

* Verilog Example

What's New in This Release

Version 2000.05 of HDL Compiler includes solutions to Synopsys
Technical Action Requests (STARS) filed in previous releases.
Information about resolved STARSs is available in the HDL Compiler
Release Note in SolvNET.

To see the HDL Compiler Release Note,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNET.

2. If prompted, enter your user name and password. If you do not
have a SOLV-IT! user name and password, you can obtain them
at http://www.synopsys.com/registration.

3. Click Release Notes then open the HDL Compiler Release Note.

HOME CONTENTS INDEX / 1-2

v2000.05

HDL Compiler for Verilog Reference Manual

New Verilog Netlist Reader

The Verilog netlist reader incorporates algorithms that reduce the
memory usage and CPU run time of the read command.

To use the new reader,

1. Set the following hidden variable (whose default is false) as
shown:

enable_verilog_netlist_reader = true
2. Invoke the read command with the -netlist option as shown:

read -netlist -f verilog <file.v>

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture
and behavior of discrete electronic systems. Modern HDLs and their
associated simulators are very powerful tools for integrated circuit
designers.

A typical HDL supports a mixed-level description in which gate and
netlist constructs are used with functional descriptions. This mixed-
level capability enables you to describe system architectures ata very
high level of abstraction and then incrementally refine a design’s
detailed gate-level implementation.

HDL descriptions play an important role in modern design
methodology, for four main reasons:

HOME CONTENTS INDEX / 1-3

v2000.05

HDL Compiler for Verilog Reference Manual

Verification of design functionality can happen early in the design
process. A design written as an HDL description can be simulated
immediately. Design simulation at this higher level, before
implementation at the gate level, allows you to evaluate
architectural and design decisions.

Coupling HDL Compiler with Synopsys logic synthesis, you can
automatically convert an HDL description to a gate-level
implementation in a target technology. This step eliminates the
former gate-level design bottleneck, the majority of circuit design
time, and the errors that occur when you hand-translate an HDL
specification to gates.

With Synopsys logic optimization, you can automatically
transform a synthesized design into a smaller or faster circuit.
Logic synthesis and optimization are provided by Synopsys
Design Compiler.

HDL descriptions provide technology-independent
documentation of a design and its functionality. An HDL
description is easier to read and understand than a netlist or a
schematic description. Because the initial HDL design description
is technology-independent, you can reuse it to generate the
design in a different technology, without having to translate from
the original technology.

HOME CONTENTS INDEX / 1-4

v2000.05 HDL Compiler for Verilog Reference Manual

HDL Compiler and the Design Process

HDL Compiler translates Verilog language hardware descriptions to
the Synopsys internal design format. Design Compiler can then
optimize the design and map it to a specific ASIC technology library,
as Figure 1-1 shows.

Figure 1-1 HDL Compiler and Design Compiler

Verilog
Description

\
HDL Compiler

J/ (translated design)

ASIC Technology Library ~

Design Compiler

Optimized
Technology-Specific
Netlist or Schematic

HDL Compiler supports a majority of the Verilog constructs. (For
exceptions, see “Unsupported Verilog Language Constructs” on page

B-21.)

HOME CONTENTS INDEX / 1-5

v2000.05 HDL Compiler for Verilog Reference Manual

Using HDL Compiler With Design Compiler

The process of reading a Verilog design into HDL Compiler involves
converting the design to an internal database format so Design
Compiler can synthesize and optimize the design. When Design
Compiler optimizes a design, it might restructure part or all of the
design. You control the degree of restructuring. Options include

* Fully preserving a design’s hierarchy
* Allowing the movement of full modules up or down in the hierarchy
* Allowing the combination of certain modules with others

» Compressing the entire design into one module (called flattening
the design)

Synopsys Design Compiler can produce netlists and schematics in
many commercial formats, including Verilog. It can convert existing
gate-level netlists, sets of logic equations, or technology-specific
circuits in another supported format to Verilog descriptions. The new
Verilog descriptions document the original designs. In addition, a
Verilog HDL Simulator can use the Verilog descriptions to provide
circuit timing information.

The following section describes the design process that uses HDL
Compiler and Design Compiler with a Verilog HDL Simulator.

HOME CONTENTS INDEX / 1-6

v2000.05 HDL Compiler for Verilog Reference Manual

Design Methodology

Figure 1-2 shows a typical design process that uses HDL Compiler,
Design Compiler, and a Verilog HDL Simulator.

Figure 1-2 Design Flow

Verilog HDL
Description

4.

Synopsys HDL
Compiler

g

Synopsys Design
Compiler

Verilog
Test Drivers

Verilog Gate-
Level Description

3.

7.
Verilog HDL Verilog HDL
Simulator Simulator

. Compare ____
Output

Simulation
Output

Simulation
Output

HOME CONTENTS INDEX / 1-7

v2000.05

HDL Compiler for Verilog Reference Manual

The steps in the design flow shown in Figure 1-2 are

1. Write a design description in the Verilog language. This
description can be a combination of structural and functional
elements (as shown in Chapter 2, “Description Styles”). This
description is for use with both Synopsys HDL Compiler and the
Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL
simulator. For information on writing these drivers, see the
appropriate simulator manual. The drivers supply test vectors for
simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator. Verify that
the description is correct.

4. Translate the HDL description with HDL Compiler. HDL Compiler
performs architectural optimizations and then creates an internal
representation of the design.

5. Use Synopsys Design Compiler to produce an optimized gate-
level description in the target ASIC library. You can optimize the
generated circuits to meet the timing and area constraints wanted.
This optimization step must follow the translation (step 4) to
produce an efficient design.

6. Use Synopsys Design Compiler to output a Verilog gate-level
description. This netlist-style description uses ASIC components
as the leaf-level cells of the design. The gate-level description has
the same port and module definitions as the original high-level
Verilog description.

7. Pass the gate-level Verilog description from step 6 through the
Verilog HDL simulator. You can use the original Verilog simulation
test drivers from step 2, because module and port definitions are
preserved through the translation and optimization processes.

HOME CONTENTS INDEX / 1-8

v2000.05 HDL Compiler for Verilog Reference Manual

8. Compare the output of the gate-level simulation (step 7) with the
output of the original Verilog description simulation (step 3) to
verify that the implementation is correct.

Verilog Example

This section takes you through a sample Verilog design session,
starting with a Verilog description (source file). The design session
includes the following elements:

» Adescription of the design problem (count the Os in a sequentially
input 8-bit value)

» Alisting of a Verilog design description
* A schematic of the synthesized circuit

Note:

The “Count Zeros—Sequential Version” example in this section
is from Appendix A, “Examples.”

Verilog Design Description

The Count Zeros example illustrates a design that takes an 8-bit value
and determines that the value has exactly one sequence of Os and
counts the Os in that sequence.

Avalue is valid if it contains only one series of consecutive Os. If more
than one series appears, the value is invalid. A value consisting
entirely of 1s is a valid value. If a value is invalid, the zero counter is
reset (to 0). For example, the value 00000000 is valid and has eight
Os; the value 11000111 is valid and has three Os; the value
00111100 is invalid, however.

HOME CONTENTS INDEX / 1-9

v2000.05

HDL Compiler for Verilog Reference Manual

The circuit accepts the 8-bit data value serially, 1 bit per clock cycle,
by using the data and clk inputs. The other two inputs are reset
which resets the circuit, and read , which causes the circuit to begin
accepting the data bits.

The circuit’s three outputs are
is_legal

True if the data is a valid value.

data_ready

True at the first invalid bit or when all 8 bits have been processed.

Z€eros

The number of Os if is_legal is true.

Example 1-1 shows the Verilog source description for the Count Zeros
circuit.

HOME CONTENTS INDEX / 1-10

v2000.05

HDL Compiler for Verilog Reference Manual

Example 1-1 Count Zeros—Sequential Version

module count_zeros(data,reset,read,clk,zeros,is_legal,

data_ready);

parameter TRUE=1, FALSE=0;

input data, reset, read, clk;

output is_legal, data_ready;

output [3:0] zeros;

reg [3:0] zeros;

reg is_legal, data_ready;

reg seenZero, new_seenzZero;

reg seenTrailing, new_seenTrailing;
reg new_is_legal;

reg new_data_ready;

reg [3:0] new_zeros;

reg [2:0] bits_seen, new_bits_seen;

always @ (data or reset or read or is_legal

or data_ready or seenTrailing or

seenZero or zeros or bits_seen) begin
if (reset) begin

new_data ready = FALSE;

new_is legal = TRUE;

new_seenZero = FALSE;
new_seenTrailing = FALSE;
new_zeros =0;
new_bits_seen =0;

end

else begin
new_is_legal =is_legal;
new_seenZero = seenZero;
new_seenTrailing = seenTrailing;
new_zeros = zeros;

new_bits seen = bits_seen;
new_data ready = data ready;
if (read) begin

if (seenTrailing && (data ==0))

begin
new_is_legal = FALSE;
new zeros =0;

new_data ready = TRUE;

HOME CONTENTS INDEX

/

1-11

v2000.05 HDL Compiler for Verilog Reference Manual

end

else if (seenZero && (data == 1'b1))
new_seenTrailing = TRUE;

else if (data == 1'b0) begin
new_seenZero = TRUE;
new_zeros = zeros + 1;
end

if (bits_seen==7)
new_data ready = TRUE;
else
new_bits_seen = bits_seen+1,
end
end
end

always @ (posedge clk) begin
Zeros = new_zeros;
bits_seen = new_bits_seen;
seenZero = new_seenZero;
seenTrailing = new_seenTrailing;
is_legal = new_is_legal;
data_ready = new_data_ready;

end

endmodule

Synthesizing the Verilog Design

Synthesis of the design description in Example 1-1 results in the
circuit shown in Figure 1-3.

HOME CONTENTS INDEX / 1-12

v2000.05 HDL Compiler for Verilog Reference Manual

Figure 1-3 Count Zeros—Sequential Version

;i

[
5
:
o
N

F

's

T 7

:
i
e o

HOME CONTENTS INDEX / 1-13

v2000.05 HDL Compiler for Verilog Reference Manual

HOME CONTENTS INDEX / 1-14

	Introducing HDL Compiler for Verilog
	What’s New in This Release
	New Verilog Netlist Reader

	Hardware Description Languages
	HDL Compiler and the Design Process
	Using HDL Compiler With Design Compiler
	Design Methodology
	Verilog Example
	Verilog Design Description
	Synthesizing the Verilog Design

