
v2000.05 HDL Compiler for Verilog Reference Manual
3
Structural Descriptions 3

A Verilog structural description defines a connection of components
that form a physical circuit. This chapter details the construction of
structural descriptions, in the following major sections:

• Modules

• Macromodules

• Port Definitions

• Module Statements and Constructs

• Module Instantiations
/ 3-1HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Modules

The principal design entity in the Verilog language is the module. A
module consists of the module name, its input and output description
(port definition), a description of the functionality or implementation
for the module (module statements and constructs), and named
instantiations. Figure 3-1 illustrates the basic structural parts of a
module.

Figure 3-1 Structural Parts of a Module

Example 3-1 shows a simple module that implements a 2-input NAND
gate by instantiating an AND gate and an INV gate. The first line of
the module definition gives the name of the module and a list of ports.
The second and third lines give the direction for all ports. (Ports are
either inputs, outputs, or bidirectionals.)

Module

Definitions:
Port, Wire, Register,
Parameter, Integer,
Function

Module Statements
and Constructs

Module Instantiations

Module Name
and Port List
/ 3-2HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
The fourth line of the description creates a wire  variable. The next
two lines instantiate the two components, creating copies named
instance1  and instance2  of the components AND and INV .
These components connect to the ports of the module and are finally
connected by use of the variable and_out .

Example 3-1 Module Definition
module NAND(a,b,z);

input a,b;     //Inputs to NAND gate
output z;       //Outputs from NAND gate
wire and_out; //Output from AND gate

AND instance1(a,b,and_out);
INV instance2(and_out, z);

endmodule

Macromodules

The macromodule construct makes simulation more efficient, by
merging the macromodule definition with the definition of the calling
(parent) module. However, HDL Compiler treats the macromodule
construct as a module construct. Whether you use module or
macromodule, the synthesis process, the hierarchy that synthesis
creates, and its result are the same. Example 3-2 shows how to use
the macromodule construct.

Example 3-2 Macromodule Construct
macromodule adder (in1,in2,out1);

input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule
/ 3-3HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Note:
When Design Compiler instantiates a macromodule, a new level
of hierarchy is created. To eliminate this new level of hierarchy,
use the ungroup  command. See the Design Compiler User
Guide for information on the ungroup  command.

Port Definitions

A port list consists of port expressions that describe the input and
output interfaces for a module. Define the port list in parentheses after
the module name, as shown here:

module name ( port_list );

A port expression in a port list can be any of the following:

• An identifier

• A single bit selected from a bit vector declared within the module

• A group of bits selected from a bit vector declared within the
module

• A concatenation of any of the above

Concatenation is the process of combining several single-bit or
multiple-bit operands into one large bit vector. For more information,
see “Concatenation Operators” on page 4-13.

Declare each port in a port list as input, output, or bidirectional in the
module by use of an input , output , or inout  statement. (See
“Concatenation Operators” on page 4-13.) For example, the module
/ 3-4HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
definition in Example 3-1 on page 3-3 shows that module NAND has
three ports: a, b, and z , connected to 1-bit nets a, b, and z . Declare
these connections in the input  and output  statements.

Port Names

Some port expressions are identifiers. If the port expression is an
identifier, the port name is the same as the identifier. A port expression
is not an identifier if the expression is a single bit, a group of bits
selected from a vector of bits, or a concatenation of signals. In these
cases, the port is unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate
the use of port names. The ports for module ex1 , named a, b, and
z , are connected to nets a, b, and z , respectively. The first two ports
of module ex2 are unnamed; the third port is named z . The ports are
connected to nets a[1] , a[0] , and z , respectively. Module ex3 has
two ports: the first port, unnamed, is connected to a concatenation
of nets a and b; the second port, named z , is connected to net z .

Example 3-3 Module Port Lists
module ex1( a, b, z );

input a, b;
output z;

endmodule

module ex2( a[1], a[0], z );
input [1:0] a;
output z;

endmodule

module ex3( {a,b}, z );
input a,b;
output z;

endmodule
/ 3-5HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Renaming Ports

You can rename a port by explicitly assigning a name to a port
expression by using the dot (.) operator. The module definition
fragments in Example 3-4 show how to rename ports. The ports for
module ex4  are explicitly named in_a , in_b , and out  and are
connected to nets a, b, and z . Module ex5 shows ports named i1 ,
i0 , and z  connected to nets a[1] , a[0] , and z , respectively. The
first port for module ex6  (the concatenation of nets a and b) is
named i .

Example 3-4 Renaming Ports in Modules
module ex4( .in_a(a), .in_b(b), .out(z) );

input a, b;
output z;

endmodule

module ex5( .i1(a[1]), .i0(a[0]), z );
input [1:0] a;
output z;

endmodule

module ex6( .i({a,b}), z );
input a,b;
output z;

endmodule

Module Statements and Constructs

The Synopsys HDL Compiler tool recognizes the following Verilog
statements and constructs when they are used in a Verilog module:

• parameter  declarations

• wire , wand, wor, tri , supply0 , and supply1  declarations
/ 3-6HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
• reg  declarations

• input  declarations

• output  declarations

• inout  declarations

• Continuous assignments

• Module instantiations

• Gate instantiations

• Function definitions

• always blocks

• task statements

Data declarations and assignments are described in this section.
Module and gate instantiations are described in “Module
Instantiations” on page 3-16. Function definitions, always blocks, and
task statements are described in Chapter 5, “Functional
Descriptions.”

Structural Data Types

Verilog structural data types include wire , wand, wor , tri ,
supply0 , and supply1 . Although parameter does not fall into the
category of structural data types, it is presented here because it is
used with structural data types.
/ 3-7HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
You can define an optional range for all the data types presented in
this section. The range provides a means for creating a bit vector.
The syntax for a range specification is

[msb : lsb]

Expressions for most significant bit (msb) and least significant bit
(lsb ) must be nonnegative constant-valued expressions. Constant-
valued expressions are composed only of constants, Verilog
parameters, and operators.

parameter

Verilog parameters allow you to customize each instantiation of a
module. By setting different values for the parameter when you
instantiate the module, you can cause constructions of different logic.
For more information, see “Parameterized Designs” on page 3-19.

A parameter represents constant values symbolically. The definition
for a parameter consists of the parameter name and the value
assigned to it. The value can be any constant-valued integer or
Boolean expression. If you do not set the size of the parameter with
a range definition or a sized constant, the parameter is unsized and
defaults to a 32-bit quantity. See “Constant-Valued Expressions” on
page 4-2 for a discussion of constant formats.

You can use a parameter wherever a number is allowed, except when
declaring the number of bits in an assignment statement, which will
generate a syntax error as shown in Example 3-5.

Example 3-5 parameter Declaration Syntax Error
parameter size = 4;
assign out = in ? 4’b0000 : size’b0101; // syntax error
/ 3-8HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
You can define a parameter anywhere within a module definition.
However, the Verilog language requires that you define the parameter
before you use it.

Example 3-6 shows two parameter declarations. Parameters true and
false are unsized and have values of 1 and 0, respectively. Parameters
S0, S1, S2, and S3 have values of 3, 1, 0, and 2, respectively, and
are stored as 2-bit quantities.

Example 3-6 parameter Declarations
parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

wire

A wire  data type in a Verilog description represents the physical
wires in a circuit. A wire  connects gate-level instantiations and
module instantiations. The Verilog language allows you to read a
value from a wire from within a function or a begin...end block,
but you cannot assign a value to a wire  within a function or a
begin...end  block. (An always  block is a specific type of
begin...end  block.)

A wire does not store its value. It must be driven in one of two ways:

• By connecting the wire  to the output of a gate or module

• By assigning a value to the wire  in a continuous assignment

In the Verilog language, an undriven wire  defaults to a value of Z
(high impedance). However, HDL Compiler leaves undriven wires
unconnected. Multiple connections or assignments to a wire simply
short the wires  together.
/ 3-9HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
In Example 3-7, two wires are declared: a is a single-bit wire , and
b is a 3-bit vector of wires . Its most significant bit (msb) has an index
of 2, and its least significant bit (lsb ) has an index of 0.

Example 3-7 wire Declarations
wire a;
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use
the Verilog keywords scalared and vectored for simulation. HDL
Compiler accepts the syntax of these constructs, but they are ignored
when the circuit is synthesized.

Note:
You can use delay information for modeling, but Design Compiler
ignores delay information. If the functionality of your circuit
depends on the delay information, Design Compiler might create
logic whose behavior does not agree with the behavior of the
simulated circuit.

wand

The wand (wired-AND ) data type is a specific type of wire.

In Example 3-8, two variables drive the variable c . The value of c is
determined by the logical AND of a and b.
/ 3-10HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Example 3-8 wand (wired-AND)
module wand_test(a, b, c);

input a, b;
output c;

wand c;

assign c = a;
assign c = b;

endmodule

You can assign a delay value in a wand declaration, and you can use
the Verilog keywords scalared and vectored for simulation. HDL
Compiler accepts the syntax of these constructs but ignores the
constructs during synthesis of the circuit.

wor

The wor  (wired-OR ) data type is a specific type of wire.

In Example 3-9, two variables drive the variable c . The value of c is
determined by the logical OR of a and b.

Example 3-9 wor (wired-OR)
module wor_test(a, b, c);

input a, b;
output c;

wor c;

assign c = a;
assign c = b;

endmodule
/ 3-11HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
tri

The tri  (three-state ) data type is a specific type of wire. All
variables that drive the tri must have a value of Z (high-impedance),
except one. This single variable determines the value of the tri .

Note:
HDL Compiler does not enforce the previous condition. You must
ensure that no more than one variable driving a tri has a value
other than Z.

In Example 3-10, three variables drive the variable out .

Example 3-10 tri (Three-State)
module tri_test (out, condition);

input [1:0] condition;
output out;

reg a, b, c;
tri out;

always @ ( condition ) begin
a = 1’bz;             //set all variables to Z
b = 1’bz;
c = 1’bz;

case ( condition ) //set only one variable to non-Z
2’b00 : a = 1’b1;
2’b01 : b = 1’b0;
2’b10 : c = 1’b1;

endcase
end

assign out = a;         //make the tri connection
assign out = b;
assign out = c;

endmodule
/ 3-12HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
supply0 and supply1

The supply0 and supply1 data types define wires tied to logic 0
(ground ) and logic 1 (power ). Using supply0 and supply1 is the
same as declaring a wire  and assigning a 0 or a 1 to it. In
Example 3-11, power  is tied to logic 1 and gnd  (ground ) is tied to
logic 0.

Example 3-11 supply0 and supply1 Constructs
supply0 gnd;
supply1 power;

reg

A reg represents a variable in Verilog. A reg can be a 1-bit quantity
or a vector of bits. For a vector of bits, the range indicates the most
significant bit and least significant bit of the vector. Both must be
nonnegative constants, parameters, or constant-valued expressions.
Example 3-12 shows some reg  declarations.

Example 3-12 reg Declarations
reg x; //single bit
reg a,b,c; //3 1-bit quantities
reg [7:0] q; //an 8-bit vector

Port Declarations

You must explicitly declare the direction (input, output, or bidirectional)
of each port that appears in the port list of a port definition. Use the
input , output , and inout statements, as described in the following
sections.
/ 3-13HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
input

You declare all input ports of a module with an input statement. An
input is a type of wire and is governed by the syntax of wire. You can
use a range specification to declare an input that is a vector of signals,
as in the case of input b in the following example. The input
statements can appear in any order in the description, but you must
declare them before using them. For example,

input a;
input [2:0] b;

output

You declare all output ports of a module with an output statement.
Unless otherwise defined by a reg , wand, wor , or tri declaration,
an output is a type of wire and is governed by the syntax of wire. An
output statement can appear in any order in the description, but you
must declare the statement before you use it.

You can use a range specification to declare an output that is a vector
of signals. If you use a reg  declaration for an output, the reg must
have the same range as the vector of signals. For example,

output a;
output [2:0]b;
reg [2:0] b;
/ 3-14HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
inout

You can declare bidirectional ports with the inout  statement. An
inout is a type of wire and is governed by the syntax of wire . HDL
Compiler allows you to connect only inout ports to module or gate
instantiations. You must declare an inout before you use it. For
example,

inout a;
inout [2:0]b;

Continuous Assignment

If you want to drive a value onto a wire , wand, wor , or tri , use a
continuous assignment to specify an expression for the wire value.
You can specify a continuous assignment in two ways:

• Use an explicit continuous assignment statement after the wire ,
wand, wor , or tri  declaration.

• Specify the continuous assignment in the same line as the
declaration for a wire .

Example 3-13 shows two equivalent methods for specifying a
continuous assignment for wire a .

Example 3-13 Two Equivalent Continuous Assignments
wire a;             //declare
assign a = b & c;   //assign
wire a = b & c;     //declare and assign
/ 3-15HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
The left side of a continuous assignment can be

• A wire , wand, wor , or tri

• One or more bits selected from a vector

• A concatenation of any of these

The right side of the continuous assignment statement can be any
supported Verilog operator or any arbitrary expression that uses
previously declared variables and functions. You cannot assign a
value to a reg  in a continuous assignment.

Verilog allows you to assign drive strength for each continuous
assignment statement. HDL Compiler accepts drive strength, but it
does not affect the synthesis of the circuit. Keep this in mind when
you use drive strength in your Verilog source.

Assignments are done bitwise, with the low bit on the right side
assigned to the low bit on the left side. If the number of bits on the
right side is greater than the number on the left side, the high-order
bits on the right side are discarded. If the number of bits on the left
side is greater than the number on the right side, operands on the
right side are zero-extended.

Module Instantiations

Module instantiations are copies of the logic in a module that defines
component interconnections.

module_name instance_name1 (terminal, terminal, ...),
instance_name2 (terminal, terminal, ...);
/ 3-16HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
A module instantiation consists of the name of the module
(module_name ) followed by one or more instantiations. An
instantiation consists of an instantiation name (instance_name )
and a connection list. A connection list is a list of expressions called
terminals, separated by commas. These terminals are connected to
the ports of the instantiated module. Module instantiations have this
syntax:

(terminal1, terminal2, ...),
(terminal1, terminal2, ...);

Terminals connected to input ports can be any arbitrary expression.
Terminals connected to output and inout ports can be identifiers,
single- or multiple-bit slices of an array, or a concatenation of these.
The bit-widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is
implicitly declared as a scalar (1-bit) wire. After the variable is implicitly
declared as a wire, it can appear wherever a wire is allowed.

Example 3-14 shows the declaration for the module SEQ with two
instantiations (SEQ_1 and SEQ_2).
/ 3-17HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Example 3-14 Module Instantiations
module SEQ(BUS0,BUS1,OUT); //description of module SEQ

input BUS0, BUS1;
output OUT;
...

endmodule

module top( D0, D1, D2, D3, OUT0, OUT1 );
input D0, D1, D2, D3;
output OUT0, OUT1;

SEQ SEQ_1(D0,D1,OUT0), //instantiations of module SEQ
SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));

endmodule

Named and Positional Notation

Module instantiations can use either named or positional notation to
specify the terminal connections.

In name-based module instantiation, you explicitly designate which
port is connected to each terminal in the list. Undesignated ports in
the module are unconnected.

In position-based module instantiation, you list the terminals and
specify connections to the module according to each terminal’s
position in the list. The first terminal in the connection list is connected
to the first module port, the second terminal to the second module
port, and so on. Omitted terminals indicate that the corresponding
port on the module is unconnected.

In Example 3-14, SEQ_2is instantiated by the use of named notation,
as follows:

• Signal OUT1 is connected to port OUT of the module SEQ.
/ 3-18HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
• Signal D3 is connected to port BUS1.

• Signal D2 is connected to port BUS0.

SEQ_1 is instantiated by the use of positional notation, as follows:

• Signal D0 is connected to port BUS0 of module SEQ.

• Signal D1 is connected to port BUS1.

• Signal OUT0 is connected to port OUT.

Parameterized Designs

The Verilog language allows you to create parameterized designs by
overriding parameter values in a module during instantiation. You can
do this with the defparam  statement or with the following syntax:

module_name #(parameter_value, parameter_value,...)
instance_name (terminal_list)

HDL Compiler does not support the defparam statement but does
support the previous syntax.

The module in Example 3-15 contains a parameter  declaration.
/ 3-19HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Example 3-15 parameter Declaration in a Module
module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3-15, the default value of the parameter width  is 8,
unless you override the value when the module is instantiated. When
you change the value, you build a different version of your design.
This type of design is called a parameterized design.

Parameterized designs are read into dc_shell as templates with the
read command. These designs are stored in an intermediate format
so that they can be built with different (nondefault) parameter values
when they are instantiated.

If your design contains parameters, you can indicate that the design
will be read in as a template, in either of two ways:

• Add the pseudocomment // synopsys template to your code.

• Set the dc_shell variable hdlin_auto_save_templates =
true .

Note:

If you use parameters as constants that never change, do not
read in your design as a template.

One way to build a template into your design is by instantiating the
template in your Verilog code. Example 3-16 shows how to do this.
/ 3-20HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Example 3-16 Instantiating a Parameterized Design in Verilog Code
module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4) U1(a,b,c); //instantiate foo

endmodule

Example 3-16 instantiates the parameterized design foo, which has
one parameter, assigned the value 4.

Because module foo is defined outside the scope of module param ,
errors such as port mismatches and invalid parameter assignments
are not detected until the design is linked. When Design Compiler
links module param , it searches for template foo in memory. If foo
is found, it is automatically built with the specified parameters. HDL
Compiler checks that foo has at least one parameter and three ports
and that the bit-widths of the ports in foo match the bit-widths of ports
a, b, and c . If template foo  is not found, the link fails.

Another way to build a parameterized design is with the elaborate
command in dc_shell. The syntax of the command is

elaborate template_name  -parameters parameterized

Using Templates—Naming

Templates instantiated with different parameter values are different
designs and require unique names. Three variables control the
naming convention for the templates:
/ 3-21HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
template_naming_style = “%s_%p”

The template_naming_style variable is the master variable
for renaming a template. The %sfield is replaced by the name of
the original design, and the %pfield is replaced by the names of
all the parameters.

template_parameter_style = “%s%d”

The template_parameter_style  variable determines how
each parameter is named. The %s field is replaced by the
parameter name, and the %dfield is replaced by the value of the
parameter.

template_separator_style = “_”

The template_separator_style  variable contains a string
that separates parameter names. This variable is used only for
templates that have more than one parameter.

When a template is renamed, only the parameters you select when
you instantiate the parameterized design are used in the template
name. For example, template ADD has parameters N, M, and Z. You
can build a design where N = 8 , M = 6 , and Z is left at its default
value. The name assigned to this design is ADD_N8_M6. If no
parameters are selected, the template is built with default values and
the name of the created design is the same as the name of the
template.

Using Templates—list -templates Command

To see which templates are available, use the list -templates
command. The report_templates  command lists all templates
that reside in memory and the parameters you can select for each.
The remove_template command deletes a template from memory.
/ 3-22HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Gate-Level Modeling

Verilog provides several basic logic gates that enable modeling at the
gate level. Gate-level modeling is a special case of positional notation
for module instantiation that uses a set of predefined module names.
HDL Compiler supports the following gate types:

• and

• nand

• or

• nor

• xor

• xnor

• buf

• not

• tran

Connection lists for instantiations of a gate-level model use positional
notation. In the connection lists for and , nand , or , nor , xor , and
xnor gates, the first terminal connects to the output of the gate and
the remaining terminals connect to the inputs of the gate. You can
build arbitrarily wide logic gates with as many inputs as you want.

Connection lists for buf , not , and tran  gates also use positional
notation. You can have as many outputs as you want, followed by only
one input. Each terminal in a gate-level instantiation can be a 1-bit
expression or signal.
/ 3-23HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
In gate-level modeling, instance names are optional. Drive strengths
and delays are allowed, but Design Compiler ignores them. Example
3-17 shows two gate-level instantiations.

Example 3-17 Gate-Level Instantiations
buf (buf_out,e);
and and4(and_out,a,b,c,d);

Note:
HDL Compiler parses but ignores delay options for gate primitives.
Because Design Compiler ignores the delay information, it can
create logic whose behavior does not agree with the simulated
behavior of the circuit. See “D Flip-Flop With Asynchronous Set
or Reset” on page 6-28.

Three-State Buffer Instantiation

HDL Compiler supports the following gate types for instantiation of
three-state gates:

• bufif0  (active-low enable line)

• bufif1  (active-high enable line)

• notif0  (active-low enable line, output inverted)

• notif1  (active-high enable line, output inverted)

Connection lists for bufif and notif gates use positional notation.
Specify the order of the terminals as follows:

• The first terminal connects to the output of the gate.

• The second terminal connects to the input of the gate.
/ 3-24HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
• The third terminal connects to the control line.

Example 3-18 shows a three-state gate instantiation with an
active-high enable and no inverted output.

Example 3-18 Three-State Gate Instantiation
module three_state (in1,out1,cntrl1);

input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule
/ 3-25HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
/ 3-26HOME CONTENTS INDEX


	Structural Descriptions
	Modules
	Macromodules
	Port Definitions
	Port Names
	Renaming Ports

	Module Statements and Constructs
	Structural Data Types
	parameter
	wire
	wand
	wor
	tri
	supply0 and supply1
	reg

	Port Declarations
	input
	output
	inout

	Continuous Assignment

	Module Instantiations
	Named and Positional Notation
	Parameterized Designs
	Using Templates—Naming
	Using Templates—list -templates Command

	Gate-Level Modeling
	Three-State Buffer Instantiation



