
v2000.05 HDL Compiler for Verilog Reference Manual
6
Register, Multibit, Multiplexer, and
Three-State Inference 6

HDL Compiler can infer registers (latches and flip-flops), multiplexers,
and three-state cells. This chapter explains inference behavior and
results, in the following sections:

• Register Inference

• Multibit Inference

• Multiplexer Inference

• Three-State Inference
/ 6-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Register Inference

Register inference allows you to use sequential logic in your designs
and keep your designs technology-independent. A register is a
simple, 1-bit memory device, either a latch or a flip-flop. A latch is a
level-sensitive memory device. A flip-flop is an edge-triggered
memory device.

The register inference capability can support coding styles other than
those described in this chapter. However, for best results,

• Restrict each always block to a single type of memory-element
inferencing:

- Latch

- Latch with asynchronous set or reset

- Flip-flop

- Flip-flop with asynchronous reset

- Flip-flop with synchronous reset

• Use the templates provided in “Inferring Latches” on page 6-10
and “Inferring Flip-Flops” on page 6-25.

Reporting Register Inference

HDL Compiler provides the following controls for reporting register
inference:

• Configuring the inference report

• Selecting the latch inference warnings
/ 6-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The following sections describe these controls.

Configuring the Inference Report

HDL Compiler can generate an inference report that shows the
information HDL Compiler passes on to Design Compiler about the
inferred devices. Use the following variables to configure an inference
report:

hdlin_report_inferred_modules = true

This variable controls the generation of the inference report. You
can select from the following settings for this variable:

false
HDL Compiler does not generate an inference report.

true
HDL Compiler generates a general inference report when building
a design. This is the default setting. Example 6-1 shows a general
inference report for a JK flip-flop.

verbose
HDL Compiler generates a verbose inference report when
building a design. It provides the asynchronous set or reset,
synchronous set or reset, and synchronous toggle conditions of
each latch or flip-flop, expressed as Boolean formulas. Example
6-2 shows a verbose inference report for a JK flip-flop.

hdlin_reg_report_length = 60

This variable indicates the length of the Boolean formulas
reported in the verbose inference report. You must specify an
integer value for this variable. The default setting is 60.
/ 6-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-1 General Inference Report for a JK Flip-Flop

Example 6-2 Verbose Inference Report for a JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

In the inference reports in Example 6-1 and Example 6-2,

• Y indicates that the flip-flop has a synchronous reset (SR) and a
synchronous set (SS)

• N indicates that the flip-flop does not have an asynchronous reset
(AR), an asynchronous set (AS), or a synchronous toggle (ST)

In the verbose inference report (Example 6-2), the last part of the
report lists the objects that control the synchronous reset and set
conditions. In this example, a synchronous reset occurs when J is
low (logic 0) and K is high (logic 1). The last line of the report indicates
the register output value when both set and reset are active:

zero(0)

Indicates that the reset has priority and that the output goes to
logic 0.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y N

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y N
/ 6-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
one (1)

Indicates that the set has priority and that the output goes to logic
1.

X

Indicates that there is no priority and that the output is unstable.

“Inferring Latches” on page 6-10 and “Inferring Flip-Flops” on page
6-25 provide inference reports for each register template. After you
input a Verilog description, check the inference report to verify that
HDL Compiler passes the correct information to Design Compiler.

Selecting Latch Inference Warnings

Use the hdlin_check_no_latch variable to control whether HDL
Compiler generates warning messages when inferring latches.

If hdlin_check_no_latch is set true, HDL Compiler generates a
warning message when it infers a latch. This is useful for verifying
that a combinational design does not contain memory components.
The default setting of the hdlin_check_no_latch variable is false.

Controlling Register Inference

Use HDL Compiler directives or dc_shell variables to direct HDL
Compiler to the type of sequential device you want inferred. HDL
Compiler directives give you control over individual signals, and
dc_shell variables apply to an entire design.
/ 6-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Attributes That Control Register Inference

HDL Compiler provides the following directives for controlling register
inference:

async_set_reset

When a signal has this directive set to true, HDL Compiler
searches for a branch that uses the signal as a condition.
HDL Compiler then checks whether the branch contains an
assignment to a constant value. If the branch does, the signal
becomes an asynchronous reset or set.

Attach this directive to single-bit signals, using the following
syntax:

// synopsys async_set_reset ”signal_name_list”

async_set_reset_local

HDL Compiler treats listed signals in the specified block as if they
have the async_set_reset directive set to true.

Attach this directive to a block label, using the following syntax:

/* synopsys async_set_reset_local block_label
 ”signal_name_list” */

async_set_reset_local_all

HDL Compiler treats all signals in the specified blocks as if they
have the async_set_reset directive set to true.

Attach this directive to block labels, using the following syntax:

/* synopsys async_set_reset_local_all
 ”block_label_list” */
/ 6-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
sync_set_reset

When a signal has this directive set to true, HDL Compiler checks
the signal to determine whether it synchronously sets or resets a
register in the design.

Attach this directive to single-bit signals, using the following
syntax:

//synopsys sync_set_reset ”signal_name_list”

sync_set_reset_local

HDL Compiler treats listed signals, in the specified block as if they
have the sync_set_reset directive set to true.

Attach this directive to a block label, using the following syntax:

/* synopsys sync_set_reset_local block_label
 ”signal_name_list” */

sync_set_reset_local_all

HDL Compiler treats all signals in the specified blocks as if they
have the sync_set_reset directive set to true.

Attach this directive to block labels, using the following syntax:

/* synopsys sync_set_reset_local_all
 ”block_label_list” */

one_cold

A one-cold implementation means that all signals in a group are
active-low and that only one signal can be active at a given time.
The one_cold directive prevents Design Compiler from
implementing priority encoding logic for the set and reset signals.

Add a check to the Verilog code to ensure that the group of signals
has a one-cold implementation. HDL Compiler does not produce
any logic to check this assertion.
/ 6-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_cold ”signal_name_list”

one_hot

A one-hot implementation means that all signals in a group are
active-high and that only one signal can be active at a given time.
The one_hot directive prevents Design Compiler from
implementing priority encoding logic for the set and reset signals.

Add a check to the Verilog code to ensure that the group of signals
has a one-hot implementation. HDL Compiler does not produce
any logic to check this assertion.

Attach this directive to set or reset signals on sequential devices,
using the following syntax:

// synopsys one_hot ”signal_name_list”

Variables That Control Register Inference

You can use the following dc_shell variables to control register
inference:

hdlin_ff_always_async_set_reset = true

When this variable is true, HDL Compiler automatically checks for
asynchronous set and reset conditions of flip-flops.

hdlin_ff_always_sync_set_reset = false

When this variable is true, HDL Compiler automatically checks for
synchronous set and reset conditions of flip-flops.
/ 6-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
hdlin_latch_always_async_set_reset = false

When this variable is true, HDL Compiler automatically checks for
asynchronous set and reset conditions of latches. When this
variable is false, HDL Compiler interprets each control object of
a latch as synchronous.

Setting the variable to true is equivalent to specifying every object
in the design in the object list for the async_set_reset directive.
When true for a design subsequently analyzed, every constant 0
loaded on a latch is used for asynchronous reset and every
constant 1 loaded on a latch is used for asynchronous set. HDL
Compiler does not limit checks for assignments to a constant 0 or
constant 1 to a single block. That is, HDL Compiler performs
checking across blocks.

hdlin_keep_feedback = false

When this variable is false, HDL Compiler removes all flip-flop
feedback loops. For example, HDL Compiler removes feedback
loops inferred from a statement such as Q=Q. Removing the state
feedback from a simple D flip-flop creates a synchronous loaded
flip-flop. Set this variable to true if you want to keep feedback loops.

hdlin_keep_inv_feedback = true

When this variable is false, HDL Compiler removes all inverted
flip-flop feedback loops. For example, HDL Compiler removes
feedback loops inferred from a statement such as Q=Q. Removing
the inverted feedback from a simple D flip-flop creates a toggle
flip-flop. Set this variable to true if you want to keep feedback loops.
/ 6-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Inferring Latches

In simulation, a signal or variable holds its value until that output is
reassigned. In hardware, a latch implements this holding-of-state
capability. HDL Compiler supports inference of the following types of
latches:

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring SR Latches

Use SR latches with caution, because they are difficult to test. If you
decide to use SR latches, verify that the inputs are hazard-free (that
they do not glitch). During synthesis, Design Compiler does not
ensure that the logic driving the inputs is hazard-free.

Example 6-3 shows the Verilog code that implements the inferred SR
latch shown in Figure 6-1 on page 6-12 and described in Table 6-1
on page 6-11. Because the output y is unstable when both inputs
have a logic 0 value, you might want to include a check in the Verilog
code to detect this condition during simulation. Synthesis does not
support such checks, so you must put the translate_off and
translate_on directives around the check. See “translate_off and
translate_on Directives” on page 9-6 for more information about
special comments in the Verilog source code.
/ 6-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-4 shows the inference report HDL Compiler generates.

Example 6-3 SR Latch
module sr_latch (SET, RESET, Q);
 input SET, RESET;
 output Q;
 reg Q;

//synopsys async_set_reset ”SET, RESET”
always @(RESET or SET)
 if (~RESET)
 Q = 0;
 else if (~SET)
 Q = 1;
endmodule

Example 6-4 Inference Report for an SR Latch

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Table 6-1 SR Latch Truth Table (NAND Type)

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
/ 6-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-1 SR Latch

Inferring D Latches

When you do not specify the resulting value for an output under all
conditions, as in an incompletely specified if or case statement, HDL
Compiler infers a D latch.

For example, the if statement in Example 6-5 infers a D latch
because there is no else clause. The Verilog code specifies a value
for output Qonly when input enable has a logic 1 value. As a result,
output Q becomes a latched value.

Example 6-5 Latch Inference Using an if Statement
always @ (DATA or GATE) begin
 if (GATE) begin
 Q = DATA;
 end
end

The case statement in Example 6-6 infers D latches, because the
case statement does not provide assignments to decimal for values
of I between 10 and 15.
/ 6-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-6 Latch Inference Using a case Statement
always @(I) begin
 case(I)
 4’h0: decimal= 10’b0000000001;
 4’h1: decimal= 10’b0000000010;
 4’h2: decimal= 10’b0000000100;
 4’h3: decimal= 10’b0000001000;
 4’h4: decimal= 10’b0000010000;
 4’h5: decimal= 10’b0000100000;
 4’h6: decimal= 10’b0001000000;
 4’h7: decimal= 10’b0010000000;
 4’h8: decimal= 10’b0100000000;
 4’h9: decimal= 10’b1000000000;
 endcase
end

To avoid latch inference, assign a value to the signal under all
conditions. To avoid latch inference by the if statement in
Example 6-5, modify the block as shown in Example 6-7 or
Example 6-8. To avoid latch inference by the case statement
in Example 6-6, add the following statement before the endcase
statement:

default: decimal= 10’b0000000000;

Example 6-7 Avoiding Latch Inference
always @ (DATA, GATE) begin
 Q = 0;
 if (GATE)
 Q = DATA;
end
/ 6-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-8 Another Way to Avoid Latch Inference
always @ (DATA, GATE) begin
 if (GATE)
 Q = DATA;
 else
 Q = 0;
end

Variables declared locally within a subprogram do not hold their value
over time, because every time a subprogram is called, its variables
are reinitialized. Therefore, HDL Compiler does not infer latches for
variables declared in subprograms. In Example 6-9, HDL Compiler
does not infer a latch for output Q.

Example 6-9 Function: No Latch Inference
function MY_FUNC
 input DATA, GATE;
 reg STATE;

 begin
 if (GATE) begin
 STATE = DATA;
 end
 MY_FUNC = STATE;
 end
end function
. . .
Q = MY_FUNC(DATA, GATE);

The following sections provide truth tables, code examples, and
figures for these types of D latches:

• Simple D Latch

• D Latch With Asynchronous Set or Reset

• D Latch With Asynchronous Set and Reset
/ 6-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Simple D Latch

When you infer a D latch, make sure you can control the gate and
data signals from the top-level design ports or through combinational
logic. Controllable gate and data signals ensure that simulation can
initialize the design.

Example 6-10 provides the Verilog template for a D latch. HDL
Compiler generates the verbose inference report shown in
Example 6-11. Figure 6-2 shows the inferred latch.

Example 6-10 D Latch
module d_latch (GATE, DATA, Q);
 input GATE, DATA;
 output Q;
 reg Q;

always @(GATE or DATA)
 if (GATE)
 Q = DATA;

endmodule

Example 6-11 Inference Report for a D Latch

Q_reg
reset/set: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N N - - -
/ 6-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-2 D Latch

D Latch With Asynchronous Set or Reset

The templates in this section use the async_set_reset directive
to direct HDL Compiler to the asynchronous set or reset pins of the
inferred latch.

Example 6-12 provides the Verilog template for a D latch with an
asynchronous set. HDL Compiler generates the verbose inference
report shown in Example 6-13. Figure 6-3 shows the inferred latch.

Example 6-12 D Latch With Asynchronous Set
module d_latch_async_set (GATE, DATA, SET, Q);
 input GATE, DATA, SET;
 output Q;
 reg Q;

//synopsys async_set_reset ”SET”
always @(GATE or DATA or SET)
 if (~SET)
 Q = 1’b1;
 else if (GATE)
 Q = DATA;
endmodule
/ 6-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-13 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-set: SET’

Figure 6-3 D Latch With Asynchronous Set

Note:
Because the target technology library does not contain a latch
with an asynchronous set, Design Compiler synthesizes the set
logic by using combinational logic.

Example 6-14 provides the Verilog template for a D latch with an
asynchronous reset. HDL Compiler generates the verbose inference
report shown in Example 6-15. Figure 6-4 shows the inferred latch.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N Y - - -
/ 6-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-14 D Latch With Asynchronous Reset
module d_latch_async_reset (RESET, GATE, DATA, Q);
 input RESET, GATE, DATA;
 output Q;
 reg Q;

//synopsys async_set_reset ”RESET”
always @ (RESET or GATE or DATA)
 if (~RESET)
 Q = 1’b0;
 else if (GATE)
 Q = DATA;
endmodule

Example 6-15 Inference Report for D Latch With Asynchronous Set

Q_reg
Async-reset: RESET’

Figure 6-4 D Latch With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y N - - -
/ 6-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
D Latch With Asynchronous Set and Reset

Example 6-16 provides the Verilog template for a D latch with an
active-low asynchronous set and reset. This template uses the
async_set_reset_local directive to direct HDL Compiler to the
asynchronous signals in block infer. This template uses the
one_cold directive to prevent priority encoding of the set and reset
signals. For this template, if you do not specify the one_cold
directive, the set signal has priority, because it serves as the condition
for the if clause. HDL Compiler generates the verbose inference
report shown in Example 6-17. Figure 6-4 shows the inferred latch.

Example 6-16 D Latch With Asynchronous Set and Reset
module d_latch_async (GATE, DATA, RESET, SET, Q);
 input GATE, DATA, RESET, SET;
 output Q;
 reg Q;

// synopsys async_set_reset_local infer ”RESET, SET”
// synopsys one_cold ”RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
 if (!SET)
 Q = 1’b1;
 else if (!RESET)
 Q = 1’b0;
 else if (GATE)
 Q = DATA;
end

// synopsys translate_off
always @ (RESET or SET)
 if (RESET == 1’b0 & SET == 1’b0)
 $write (”ONE-COLD violation for RESET and SET.”);
// synopsys translate_on
endmodule
/ 6-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-17 Inference Report for D Latch With Asynchronous Set and
Reset

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Figure 6-5 D Latch With Asynchronous Set and Reset

Inferring Master-Slave Latches

HDL Compiler infers master-slave latches by using the
clocked_on_also signal_type attribute.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -
/ 6-20HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
In your Verilog description, describe the master-slave latch as a
flip-flop by using only the slave clock. Specify the master clock as an
input port, but do not connect it. In addition, attach the
clocked_on_also attribute to the master clock port (called MCKin
these examples).

This coding style requires that cells in the target technology library
have slave clocks defined in the library with the clocked_on_also
attribute in the cell’s state declaration. (For more information, see the
Synopsys Library Compiler documentation.)

If Design Compiler does not find any master-slave latches in the target
technology library, the tool leaves the master-slave generic cell
(MSGEN) unmapped. Design Compiler does not use D flip-flops to
implement the equivalent functionality of the cell.

Note:
Although the vendor’s component behaves as a master-slave
latch, Library Compiler supports only the description of a master-
slave flip-flop.

Master-Slave Latch With Single Master-Slave Clock Pair

Example 6-19 provides the Verilog template for a master-slave latch.
The template uses the dc_script_begin and dc_script_end
compiler directives. See “Embedding Constraints and Attributes” on
page 9-22 for more information. HDL Compiler generates the verbose
inference report shown in Example 6-20. Figure 6-6 shows the
inferred latch.
/ 6-21HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-18 Master-Slave Latch
module mslatch (SCK, MCK, DATA, Q);
 input SCK, MCK, DATA;
 output Q;
 reg Q;

// synopsys dc_script_begin
// set_signal_type ”clocked_on_also” MCK
// synopsys dc_script_end

always @ (posedge SCK)
 Q <= DATA;
endmodule

Example 6-19 Inference Report for a Master-Slave Latch

Q_reg
set/reset/toggle: none

Figure 6-6 Master-Slave Latch

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
/ 6-22HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Master-Slave Latch With Multiple Master-Slave Clock Pairs

If the design requires more than one master-slave clock pair, you must
specify the associated slave clock in addition to the
clocked_on_also attribute. Example 6-21 illustrates the use of the
clocked_on_also attribute with the -associated_clock option.

Example 6-20 Inferring Master-Slave Latches With Two Pairs of Clocks
module mslatch2 (SCK1, SCK2, MCK1, MCK2, D1, D2, Q1, Q2);
 input SCK1, SCK2, MCK1, MCK2, D1, D2;
 output Q1, Q2;
 reg Q1, Q2;

// synopsys dc_script_begin
// set_signal_type ”clocked_on_also” MCK1 -associated_clock SCK1
// set_signal_type ”clocked_on_also” MCK2 -associated_clock SCK2
// synopsys dc_script_end

always @ (posedge SCK1)
 Q1 <= D1;

always @ (posedge SCK2)
 Q2 <= D2;
endmodule

Master-Slave Latch With Discrete Components

If your target technology library does not contain master-slave latch
components, you can infer two-phase systems by using D latches.
Example 6-22 shows a simple two-phase system with clocks MCK
and SCK. Figure 6-7 shows the inferred latch.
/ 6-23HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-21 Two-Phase Clocks
module latch_verilog (DATA, MCK, SCK, Q);
 input DATA, MCK, SCK;
 output Q;
 reg Q;

 reg TEMP;

always @(DATA or MCK)
 if (MCK)
 TEMP <= DATA;

always @(TEMP or SCK)
 if (SCK)
 Q <= TEMP;
endmodule

Figure 6-7 Two-Phase Clocks
/ 6-24HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Inferring Flip-Flops

HDL Compiler can infer D flip-flops, JK flip-flops, and toggle flip-flops.
The following sections provide details about each of these flip-flop
types.

Inferring D Flip-Flops

HDL Compiler infers a D flip-flop whenever the sensitivity list of an
always block includes an edge expression (a test for the rising or
falling edge of a signal). Use the following syntax to describe a rising
edge:

posedge SIGNAL

Use the following syntax to describe a falling edge:

negedge SIGNAL

When the sensitivity list of an always block contains an edge
expression, HDL Compiler creates flip-flops for all the variables that
are assigned values in the block. Example 6-22 shows the most
common use of an always block to infer a flip-flop.

Example 6-22 Using an always Block to Infer a Flip-Flop
always @(edge)
begin
 .
end
/ 6-25HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Simple D Flip-Flop

When you infer a D flip-flop, make sure you can control the clock and
data signals from the top-level design ports or through combinational
logic. Controllable clock and data signals ensure that simulation can
initialize the design. If you cannot control the clock and data signals,
infer a D flip-flop with an asynchronous reset or set or with a
synchronous reset or set.

When you are inferring a simple D flip-flop, the always block can
contain only one edge expression.

Example 6-23 provides the Verilog template for a positive-edge-
triggered D flip-flop. HDL Compiler generates the verbose inference
report shown in Example 6-24. Figure 6-8 shows the inferred flip-flop.

Example 6-23 Positive-Edge-Triggered D Flip-Flop
module dff_pos (DATA, CLK, Q);
 input DATA, CLK;
 output Q;
 reg Q;

always @(posedge CLK)
 Q <= DATA;
endmodule

Example 6-24 Inference Report for a Positive-Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
/ 6-26HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-8 Positive-Edge-Triggered D Flip-Flop

Example 6-25 provides the Verilog template for a negative-edge-
triggered D flip-flop. HDL Compiler generates the verbose inference
report shown in Example 6-26. Figure 6-9 shows the inferred flip-flop.

Example 6-25 Negative-Edge-Triggered D Flip-Flop
module dff_neg (DATA, CLK, Q);
 input DATA, CLK;
 output Q;
 reg Q;

always @(negedge CLK)
 Q <= DATA;
endmodule

Example 6-26 Inference Report for a Negative-Edge-Triggered D Flip-Flop

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
/ 6-27HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-9 Negative-Edge-Triggered D Flip-Flop

D Flip-Flop With Asynchronous Set or Reset

When inferring a D flip-flop with an asynchronous set or reset, include
edge expressions for the clock and the asynchronous signals in the
sensitivity list of the always block. Specify the asynchronous
conditions by using if statements. Specify the branches for the
asynchronous conditions before the branches for the synchronous
conditions.

Example 6-27 provides the Verilog template for a D flip-flop with an
asynchronous set. HDL Compiler generates the verbose inference
report shown in Example 6-28. Figure 6-10 shows the inferred
flip-flop.

Example 6-27 D Flip-Flop With Asynchronous Set
module dff_async_set (DATA, CLK, SET, Q);
 input DATA, CLK, SET;
 output Q;
 reg Q;

always @(posedge CLK or negedge SET)
 if (~SET)
 Q <= 1’b1;
 else
 Q <= DATA;
endmodule
/ 6-28HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-28 Inference Report for a D Flip-Flop With Asynchronous Set

Q_reg
Async-set: SET’

Figure 6-10 D Flip-Flop With Asynchronous Set

Example 6-29 provides the Verilog template for a D flip-flop with an
asynchronous reset. HDL Compiler generates the verbose inference
report shown in Example 6-30. Figure 6-11 shows the inferred
flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N Y N N N
/ 6-29HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-29 D Flip-Flop With Asynchronous Reset
module dff_async_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;

always @(posedge CLK or posedge RESET)
 if (RESET)
 Q <= 1’b0;
 else
 Q <= DATA;
endmodule

Example 6-30 Inference Report for a D Flip-Flop With Asynchronous Reset

Q_reg
Async-reset: RESET

Figure 6-11 D Flip-Flop With Asynchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y N N N N
/ 6-30HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
D Flip-Flop With Asynchronous Set and Reset

Example 6-31 provides the Verilog template for a D flip-flop with active
high asynchronous set and reset pins. The template uses the
one_hot directive to prevent priority encoding of the set and reset
signals. For this template, if you do not specify the one_hot directive,
the reset signal has priority, because it is used as the condition for
the if clause. HDL Compiler generates the verbose inference report
shown in Example 6-32. Figure 6-12 shows the inferred flip-flop.

Example 6-31 D Flip-Flop With Asynchronous Set and Reset
module dff_async (RESET, SET, DATA, Q, CLK);
 input CLK;
 input RESET, SET, DATA;
 output Q;
 reg Q;

// synopsys one_hot ”RESET, SET”
always @(posedge CLK or posedge RESET or
 posedge SET)
 if (RESET)
 Q <= 1’b0;
 else if (SET)
 Q <= 1’b1;
 else Q <= DATA;

// synopsys translate_off
always @ (RESET or SET)
 if (RESET + SET > 1)
 $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule
/ 6-31HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-32 Inference Report for a D Flip-Flop With Asynchronous Set
and Reset

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Figure 6-12 D Flip-Flop With Asynchronous Set and Reset

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrate how to infer a D flip-flop with
asynchronous controls—one way to initialize or control the state of a
sequential device. You can also synchronously reset or set a flip-flop
(see Example 6-33 and Example 6-35). The sync_set_reset
directive directs HDL Compiler to the synchronous controls of the
sequential device.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y N N N
/ 6-32HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
When the target technology library does not have a D flip-flop
with synchronous reset, HDL Compiler infers a D flip-flop with
synchronous reset logic as the input to the D pin of the flip-flop. If the
reset (or set) logic is not directly in front of the D pin of the flip-flop,
initialization problems can occur during gate-level simulation of the
design.

Example 6-33 provides the Verilog template for a D flip-flop with
synchronous set. HDL Compiler generates the verbose inference
report shown in Example 6-34. Figure 6-13 shows the inferred
flip-flop.

Example 6-33 D Flip-Flop With Synchronous Set
module dff_sync_set (DATA, CLK, SET, Q);
 input DATA, CLK, SET;
 output Q;
 reg Q;

//synopsys sync_set_reset ”SET”
always @(posedge CLK)
 if (SET)
 Q <= 1’b1;
 else
 Q <= DATA;
endmodule

Example 6-34 Inference Report for a D Flip-Flop With Synchronous Set

Q_reg
Sync-set: SET

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N Y N
/ 6-33HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-13 D Flip-Flop With Synchronous Set

Example 6-35 provides the Verilog template for a D flip-flop with
synchronous reset. HDL Compiler generates the verbose inference
report shown in Example 6-36. Figure 6-14 shows the inferred
flip-flop.

Example 6-35 D Flip-Flop With Synchronous Reset
module dff_sync_reset (DATA, CLK, RESET, Q);
 input DATA, CLK, RESET;
 output Q;
 reg Q;

//synopsys sync_set_reset ”RESET”
always @(posedge CLK)
 if (~RESET)
 Q <= 1’b0;
 else
 Q <= DATA;
endmodule
/ 6-34HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-36 Inference Report for a D Flip-Flop With Synchronous Reset

Q_reg
Sync-reset: RESET’

Figure 6-14 D Flip-Flop With Synchronous Reset

D Flip-Flop With Synchronous and Asynchronous Load

D flip-flops can have asynchronous or synchronous controls. To infer
a component with synchronous as well as asynchronous controls,
you must check the asynchronous conditions before you check the
synchronous conditions.

Example 6-37 provides the Verilog template for a D flip-flop with a
synchronous load (called SLOAD) and an asynchronous load (called
ALOAD). HDL Compiler generates the verbose inference report
shown in Example 6-38. Figure 6-15 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y N N
/ 6-35HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-37 D Flip-Flop With Synchronous and Asynchronous Load
module dff_a_s_load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
 input ALOAD, ADATA, SLOAD, SDATA, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge ALOAD)
 if (ALOAD)
 Q <= ADATA;
 else if (SLOAD)
 Q <= SDATA;
endmodule

Example 6-38 Inference Report for a D Flip-Flop With Synchronous and
Asynchronous Load

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
/ 6-36HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-15 D Flip-Flop With Synchronous and Asynchronous Load

Multiple Flip-Flops With Asynchronous and Synchronous
Controls

If a signal is synchronous in one block but asynchronous in another
block, use the sync_set_reset_local and
async_set_reset_local directives to direct HDL Compiler to the
correct implementation.

In Example 6-39, block infer_sync uses the reset signal as a
synchronous reset and block infer_async uses the reset signal as
an asynchronous reset. HDL Compiler generates the verbose
inference reports shown in Example 6-40. Figure 6-16 shows the
resulting design.
/ 6-37HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-39 Multiple Flip-Flops With Asynchronous and Synchronous
Controls

module multi_attr (DATA1, DATA2, CLK, RESET, SLOAD,
 Q1, Q2);
 input DATA1, DATA2, CLK, RESET, SLOAD;
 output Q1, Q2;
 reg Q1, Q2;

//synopsys sync_set_reset_local infer_sync ”RESET”
always @(posedge CLK)
begin : infer_sync
 if (~RESET)
 Q1 <= 1’b0;
 else if (SLOAD)
 Q1 <= DATA1; // note: else hold Q
end

//synopsys async_set_reset_local infer_async ”RESET”
always @(posedge CLK or negedge RESET)
begin: infer_async
 if (~RESET)
 Q2 <= 1’b0;
 else if (SLOAD)
 Q2 <= DATA2;
end
endmodule
/ 6-38HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-40 Inference Reports for Example 6-39

Q1_reg
Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Figure 6-16 Multiple Flip-Flops With Asynchronous and Synchronous
Controls

Register Name Type Width Bus MB AR AS SR SS ST

Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST

Q2_reg Flip-flop 1 - - Y N N N N
/ 6-39HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Understanding the Limitations of D Flip-Flop Inference

If you use an if statement to infer D flip-flops, your design must meet
the following requirements:

• Set and reset conditions cannot use complex expressions.

The following reset condition is invalid, because it uses a complex
expression:

always @(posedge clk and negedge reset)
 if (reset == (1-1))
 .
end

HDL Compiler generates the VE-92 message when you use a
complex expression in a set or reset condition.

• An if statement must occur at the top level of the always block.

The following example is invalid, because the if statement does
not occur at the top level:

always @(posedge clk or posedge reset) begin
 #1;
 if (reset)
 .
end

HDL Compiler generates the following message when the if
statement does not occur at the top level:

Error: The statements in this ’always’ block are outside
the scope of the synthesis policy (%s). Only an ’if’
statement is allowed at the top level in this ’always’
block. Please refer to the HDL Compiler reference manual
for ways to infer flip-flops and latches from ’always’
blocks. (VE-93)
/ 6-40HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Inferring JK Flip-Flops

Use the case statement to infer JK flip-flops. Before reading in the
Verilog description, set the hdlin_keep_inv_feedback variable
to false.

Note:
If your inference report does not show a synchronous toggle (ST),
check that you have set this variable correctly.

This section describes JK flip-flops and JK flip-flops with
asynchronous set and reset.

JK Flip-Flop

When you infer a JK flip-flop, make sure you can control the J, K, and
clock signals from the top-level design ports to ensure that simulation
can initialize the design.

Example 6-41 provides the Verilog code that implements the JK
flip-flop described in Table 6-2. In the JK flip-flop, the J and K signals
act as active-high synchronous set and reset. Use the
sync_set_reset directive to indicate that the J and K signals are
the synchronous set and reset for the design. Example 6-42 shows
the verbose inference report generated by HDL Compiler. Figure 6-17
shows the inferred flip-flop.
/ 6-41HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-41 JK Flip-Flop
module JK(J, K, CLK, Q);
 input J, K;
 input CLK;
 output Q;
 reg Q;

// synopsys sync_set_reset ”J, K”
always @ (posedge CLK)
 case ({J, K})
 2’b01 : Q = 0;
 2’b10 : Q = 1;
 2’b11 : Q = ~Q;
 endcase
endmodule

Table 6-2 Truth Table for JK Flip-Flop

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn
/ 6-42HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-42 Inference Report for JK Flip-Flop

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Figure 6-17 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset

Example 6-43 provides the Verilog template for a JK flip-flop with
asynchronous set and reset. Use the sync_set_reset directive to
indicate the JK function. Use the one_hot directive to prevent priority
encoding of the J and K signals. HDL Compiler generates the verbose
inference report shown in Example 6-44. Figure 6-18 shows the
inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y Y
/ 6-43HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-43 JK Flip-Flop With Asynchronous Set and Reset
module jk_async_sr (RESET, SET, J, K, CLK, Q);
 input RESET, SET, J, K, CLK;
 output Q;
 reg Q;

// synopsys sync_set_reset ”J, K”
// synopsys one_hot ”RESET, SET”
always @ (posedge CLK or posedge RESET or
 posedge SET)
 if (RESET)
 Q <=1’b0;
 else if (SET)
 Q <=1’b1;
 else
 case ({J, K})
 2’b01 : Q = 0;
 2’b10 : Q = 1;
 2’b11 : Q = ~Q;
 endcase

//synopsys translate_off
always @(RESET or SET)
 if (RESET + SET > 1)
 $write (”ONE-HOT violation for RESET and SET.”);
// synopsys translate_on
endmodule
/ 6-44HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-44 Inference Report for JK Flip-Flop With Asynchronous Set and
Reset

 Q_reg
 Async-reset: RESET
 Async-set: SET
 Sync-reset: J’ K
 Sync-set: J K’
 Sync-toggle: J K
 Async-set and Async-reset ==> Q: X
 Sync-set and Sync-reset ==> Q: X

Figure 6-18 JK Flip-Flop With Asynchronous Set and Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y Y Y Y
/ 6-45HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style in the following
examples and set the hdlin_keep_inv_feedback variable to
false.

Note:
If your inference report does not show a synchronous toggle (ST),
check that you have set this variable correctly.

You must include asynchronous controls in the toggle flip-flop
description. Without them, you cannot initialize toggle flip-flops to a
known state.

This section describes toggle flip-flops with an asynchronous set or
reset and toggle flip-flops with an enable and an asynchronous reset.

Toggle Flip-Flop With Asynchronous Set or Reset

Example 6-45 shows the template for a toggle flip-flop with
asynchronous set. HDL Compiler generates the verbose inference
report shown in Example 6-46. Figure 6-19 shows the flip-flop.

Example 6-45 Toggle Flip-Flop With Asynchronous Set
module t_async_set (SET, CLK, Q);
 input SET, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge SET)
 if (SET)
 Q <= 1;
 else
 Q <= ~Q;
endmodule
/ 6-46HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-46 Inference Report for a Toggle Flip-Flop With Asynchronous
Set

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Figure 6-19 Toggle Flip-Flop With Asynchronous Set

Example 6-47 provides the Verilog template for a toggle flip-flop with
asynchronous reset. Example 6-48 shows the verbose inference
report. Figure 6-20 shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - N Y N N Y
/ 6-47HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-47 Toggle Flip-Flop With Asynchronous Reset
module t_async_reset (RESET, CLK, Q);
 input RESET, CLK;
 output Q;
 reg Q;

always @ (posedge CLK or posedge RESET)
 if (RESET)
 Q <= 0;
 else
 Q <= ~Q;
endmodule

Example 6-48 Inference Report: Toggle Flip-Flop With Asynchronous
Reset

TMP_Q_reg
Async-reset: RESET
 Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
/ 6-48HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-20 Toggle Flip-Flop With Asynchronous Reset

Toggle Flip-Flops With Enable and Asynchronous Reset

Example 6-49 provides the Verilog template for a toggle flip-flop with
an enable and an asynchronous reset. The flip-flop toggles only when
the enable (TOGGLE signal) has a logic 1 value. HDL Compiler
generates the verbose inference report shown in Example 6-50.
Figure 6-21 shows the inferred flip-flop.

Example 6-49 Toggle Flip-Flop With Enable and Asynchronous Reset
module t_async_en_r (RESET, TOGGLE, CLK, Q);
 input RESET, TOGGLE, CLK;
 output Q;
 reg Q;
always @ (posedge CLK or posedge RESET)
begin : infer
 if (RESET)
 Q <= 0;
 else if (TOGGLE)
 Q <= ~Q;
end
endmodule
/ 6-49HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-50 Inference Report: Toggle Flip-Flop With Enable and
Asynchronous Reset

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Figure 6-21 Toggle Flip-Flop With Enable and Asynchronous Reset

Getting the Best Results

This section provides tips for improving the results you achieve during
flip-flop inference. Topics include

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
/ 6-50HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Minimizing Flip-Flop Count

An always block that contains a clock edge in the sensitivity list
causes HDL Compiler to infer a flip-flop for each variable assigned a
value in that always block. It might not be necessary to infer as flip-
flops all variables in the always block. Make sure your HDL
description builds only as many flip-flops as the design requires.

The description in Example 6-51 builds six flip-flops, one for each
variable assigned a value in the always block (COUNT(2:0) ,
AND_BITS, OR_BITS, and XOR_BITS).

Example 6-51 Circuit With Six Implied Registers
module count (CLK, RESET, AND_BITS, OR_BITS, XOR_BITS);
 input CLK, RESET;
 output AND_BITS, OR_BITS, XOR_BITS;
 reg AND_BITS, OR_BITS, XOR_BITS;

 reg [2:0] COUNT;

always @(posedge CLK) begin
 if (RESET)
 COUNT <= 0;
 else
 COUNT <= COUNT + 1;

 AND_BITS <= & COUNT;
 OR_BITS <= | COUNT;
 XOR_BITS <= ^ COUNT;
end
endmodule

In this design, the outputs—AND_BITS, OR_BITS, and XOR_BITS—
depend solely on the value of the variable COUNT. If the variable
COUNTis inferred as a register, these three outputs are unnecessary.
/ 6-51HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To compute values synchronously and store them in flip-flops, set up
an always block with a signal edge trigger. Put the assignments you
want clocked in the always block with the signal edge trigger,
posedge CLK in the synchronous block in Example 6-52.

To let other values change asynchronously, put these assignments
in a separate always block with no signal edge trigger, as shown in
the asynchronous block in Example 6-52.

You avoid inferring extra flip-flops by using this style in your
description.

Example 6-52 Circuit With Three Implied Registers
module count (CLK, RESET,
 AND_BITS, OR_BITS, XOR_BITS);
 input CLK, RESET;
 output AND_BITS, OR_BITS, XOR_BITS;
 reg AND_BITS, OR_BITS, XOR_BITS;

 reg [2:0] COUNT;

//synchronous block
always @(posedge CLK) begin
 if (RESET)
 COUNT <= 0;
 else
 COUNT <= COUNT + 1;
end
//asynchronous block
always @(COUNT) begin
 AND_BITS <= & COUNT;
 OR_BITS <= | COUNT;
 XOR_BITS <= ^ COUNT;
end
endmodule
/ 6-52HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The technique of separating combinational logic from registered or
sequential logic is useful for describing state machines. See the
following examples in Appendix A:

• “Count Zeros—Combinational Version” on page A-2

• “Count Zeros—Sequential Version” on page A-5

• “Drink Machine—State Machine Version” on page A-8

• “Drink Machine—Count Nickels Version” on page A-13

• “Carry-Lookahead Adder” on page A-15

Correlating With Simulation Results

Using delay specifications with registered values can cause the
simulation to behave differently from the logic HDL Compiler
synthesizes. For example, the description in Example 6-53 contains
delay information that causes Design Compiler to synthesize a circuit
that behaves unexpectedly (the post-synthesis simulation results do
not match the pre-synthesis simulation results).
/ 6-53HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-53 Delays in Registers
module flip_flop (D, CLK, Q);

input D, CLK;
output Q;
.

endmodule

module top (A, C, D, CLK);
.
reg B;

always @ (A or C or D or CLK)
begin

B <= #100 A;
flip_flop F1(A, CLK, C);
flip_flop F2(B, CLK, D);

end
endmodule

In Example 6-53, Bchanges 100 nanoseconds after Achanges. If the
clock period is less than 100 nanoseconds, output D is one or more
clock cycles behind output Cduring simulation of the design. However,
because HDL Compiler ignores the delay information, Aand Bchange
values at the same time and so do C and D. This behavior is not the
same as in the post-synthesis simulation.

When using delay information in your designs, make sure that the
delays do not affect registered values. In general, you can safely
include delay information in your description if it does not change the
value that gets clocked into a flip-flop.
/ 6-54HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Understanding the Limitations of Register Inference

HDL Compiler cannot infer the following components. You must
instantiate these components in your Verilog description.

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note:

Although you can instantiate flip-flops with bidirectional pins,
Design Compiler interprets these cells as black boxes.

Multibit Inference

A multibit component (MBC), such as a 16-bit register, reduces the
area and power in a design. But the primary benefits of MBCs are
the creation of a more uniform structure for layout during place and
route and the expansion of the synthesized area of a design.

Multibit inference allows you to map registers, multiplexers, and three-
state cells to regularly structured logic or multibit library cells. Multibit
library cells (macro cells, such as 16-bit banked flip-flops) have these
advantages:
/ 6-55HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Smaller area and delay, due to shared transistors (as in select or
set/reset logic) and optimized transistor-level layout

In the use of single-bit components, the select or set/reset logic
is repeated in each single-bit component

• Reduced clock skew in sequential gates, because the clock paths
are balanced internally in the hard macro implementing the MBC

• Lower power consumption by the clock in sequential banked
components, due to reduced capacitance driven by the clock net

• Better performance, due to the optimized layout within the MBC

• Improved regular layout of the data path

Note:

The term multibit component refers, for example, to a 16-bit
register in your HDL description. The term multibit library cell
refers to a library macrocell, such as a flip-flop cell.

Controlling Multibit Inference

To direct HDL Compiler to infer multibit components, do one of the
following:

• Embed a directive in the Verilog description.

The directive gives you control over individual wire and register
signals.

• Use a dc_shell variable.

dc_shell variables apply to an entire design.
/ 6-56HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Directives That Control Multibit Inference

The directives for Verilog are infer_multibit and
dont_infer_multibit .

Set the Verilog directives on wire and register signals to infer multibit
components (see Example 6-54 on page 6-61 and Example 6-55 on
page 6-61).

Variable That Controls Multibit Inference

The following dc_shell variable controls multibit inference:

hdlin_infer_multibit

This variable controls multibit inference for all bused registers,
multiplexers, and three-state cells you input in the same dc_shell
session. Set this variable before reading in the HDL source. You
can select from the following settings for this variable.

default_none
Infers multibit components for signals that have the
infer_multibit directive in the Verilog description. This is the
default value.

default_all
Infers multibit components for all bused registers, multiplexers,
and three-state cells. Use the dont_infer_multibit directive
to disable multibit mapping for certain signals.

Design Compiler infers multibit components for all bused register,
multiplexer, or three-state cells that are larger than 2 bits. If you
want to implement as single-bit components all buses that are
more than 4 bits, use the following command:

set_multibit_options -minimum_width 4

This sets a minimum_multibit_width attribute on the design.
/ 6-57HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
never
Does not infer multibit components, regardless of the attributes
or directives in the HDL source.

Inferring Multibit Components

There are two methodologies for inferring multibit components:

• Directing multibit inference from the HDL source

This is the best methodology for designers who are familiar with
the design’s layout and able to determine where multibit
components have the largest impact.

• Directing multibit inference from a mapped design

This is the best methodology for designers who complete an initial
synthesis run and then a quick placement and routing.

At that point, it is easier to determine

- If multibit components would benefit certain areas of the design

- If the multibit components already inferred are causing routing
congestion

To adjust the design after layout, use the following commands:

create_multibit

Infers multibit components in a mapped design

remove_multibit

Removes multibit components from a mapped design

Figure 6-22 illustrates these methodologies.
/ 6-58HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-22 Design Flow of User-Directed Multibit Cell Inference

Inferring Multibit Cells From HDL Source With the
hdlin_infer_multibit variable

If you know where multibit components will work well in your design,
inferring multibit cells from HDL source is the best methodology to
use.

Use the hdlin_infer_multibit variable to indicate the default
behavior of all bused register, multiplexer, and three-state cells in your
design.

compile -incremental

HDL Source

compile

Met Target?

Placement
and/or Routing

No

Yes

Placement
and/or Routing

HDL Attributes
or Directives

create_multibit
remove_multibit

create_cluster
remove_clusters
/ 6-59HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Set the hdlin_infer_multibit variable before reading in the
HDL source. Unless you change the variable, it will control multibit
inferencing in all subsequent HDL files read in during the current
dc_shell session.

Inferring Multibit Cells From HDL Source With infer_multibit and
dont_infer_multibit Directives

In conjunction with the hdlin_infer_multibit variable
(described in “Variable That Controls Multibit Inference” on page
6-57), use the infer_multibit and dont_infer_multibit
directives to describe designs that are primarily multibit or primarily
single-bit.

Multibit components may not be efficient in the following instances:

• As state machine registers

• In small bused logic that would benefit from single-bit design

Example 6-54 and Example 6-55 show the use of the
infer_multibit and dont_infer_multibit directives.

Example 6-54 shows the use of infer_multibit to infer multibit
inference of certain signals.

Example 6-55 shows the same HDL code but illustrates how to
prevent multibit inference of certain signals.
/ 6-60HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-54 Inferring a 6-Bit 4-to-1 Multiplexer
module mux4to1_6 (select, a, b, c, d, z);
input [1:0] select;
input [5:0] a, b, c, d;
output [5:0] z;
reg [5:0] z;
//synopsys infer_multibit "z"

always@(select or a or b or c or d)
begin

case (select) // synopsys infer_mux
2’b00: z <= a;
2’b01: z <= b;
2’b10: z <= c;
2’b11: z <= d;

endcase
end

endmodule

Example 6-55 Not Inferring a 6-Bit 4-to-1 Multiplexer
module mux4to1_6 (select, a, b, c, d, z);
input [1:0] select;
input [5:0] a, b, c, d;
output [5:0] z;
reg [5:0] z;
//synopsys dont_infer_multibit "z"

always@(select or a or b or c or d)
begin

case (select) // synopsys infer_mux
2’b00: z <= a;
2’b01: z <= b;
2’b10: z <= c;
2’b11: z <= d;

endcase
end

endmodule
/ 6-61HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Reporting Multibit Inference

HDL Compiler generates an inference report, which shows the
information HDL Compiler passes on to Design Compiler about the
inferred devices.

Example 6-56 shows a multibit inference report.

Example 6-56 Multibit Inference Report

Example 6-56 indicates which cells are inferred as multibit
components. The column MB, for sequential cells, indicates whether
the vectored component is inferred as a multibit component. The MB
column also appears in inference reports for three-state cells and
multiplexer cells.

Register Name Type Width Bus MB AR AS SR SS ST

q_reg Latch 4 Y Y N N - - -

block name/line Inputs Outputs # sel inputs MB

proc1/23 4 7 2 Y

Three-State Device Name Type MB

q_tri_0
s_tri_3
q_tri_1
s_tri_0

Three-State Buffer
Three-State Buffer
Three-State Buffer
Three-State Buffer

Y
N
Y
N

/ 6-62HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Using the report_multibit Command

In addition to receiving the inference report HDL Compiler generates,
you can issue the report_multibit command, which lets you
report all multibit components in the current design. The report,
viewable before and after compile, shows the multibit group name
and what cells implement each bit.

Example 6-57 shows a multibit component report.

Example 6-57 Multibit Component Report

The multibit group name for registers and three-state cells is set to
the name of the bus. In the cell names of the multibit registers with
consecutive bits, a colon separates the outlying bits.

If the colon conflicts with the naming requirements of your place and
route tool, you can change the colon to another delimiter by using the
bus_range_separator_style variable.

Multibit Component : alt178/syn11718

Cell Reference Library Area Width Attributes

U813 mx4a1x16 cba_core_mb 96.00 16

U9101 mx4a1x16 cba_core_mb 96.00 16

Total 2 cells 192.00 32

Multibit Component : data_reg

Cell Reference Library Area Width Attributes

data_reg[0:15] 1d1a2x16 cba_core_mb 48.00 16 n

data_reg[16:31] 1d1a2x16 cba_core_mb 48.00 16 n

Total 2 cells 96.00 32
/ 6-63HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
For multibit library cells with nonconsecutive bits, a comma separates
the nonconsecutive bits. This delimiter is controlled by the
bus_multiple_separator_style variable. For example, a 4-bit
banked register that implements bits 0, 1, 2, and 5 of bus data_reg
is named data_reg[0:2,5] .

For multiplexer cells, the name is set to the cell name of the MUX_OP
before optimization.

Listing All Multibit Cells in a Design

To generate a list of all multibit cells in the design, use the new Design
Compiler object multibit in a find command, as shown here:

find (multibit, “*”)

Understanding the Limitations of Multibit Inference

You can infer as multibit components only register, multiplexer, and
three-state cells that have identical structures for each bit.

Note:
Multibit inference of other combinational multibit cells occurs only
during sequential mapping of multibit registers. Multibit sequential
mapping does not pull in as many levels of logic as single-bit
sequential mapping. Thus, Design Compiler might not infer a
complex multibit sequential cell, such as a JK flip-flop, which could
adversely affect the quality of the design.

See the Design Compiler Reference Manual: Optimization and
Timing Analysis for more information about how Design Compiler
handles multibit components.
/ 6-64HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Multiplexer Inference

Hardware designers often use multiplexers to implement conditional
assignments to signals. HDL Compiler can infer a generic multiplexer
cell (MUX_OP) from case statements in your Verilog description.
Unlike with register inference, HDL Compiler also can infer MUX_OPs
from case statements in subprograms. Design Compiler maps
inferred MUX_OPs to multiplexer cells in the target technology library.

Note:
If you want to use the multiplexer inference feature, the target
technology library must contain at least a 2-to-1 multiplexer.

MUX_OPs are hierarchical cells similar to Synopsys DesignWare
components. Design Compiler determines the MUX_OP
implementation during compile, based on the design constraints. See
the Design Compiler Reference Manual: Optimization and Timing
Analysis for information about how Design Compiler maps MUX_OPs
to multiplexers in the target technology library.

Reporting Multiplexer Inference

HDL Compiler generates an inference report that shows the
information the compiler passes on to Design Compiler about the
inferred devices. The hdlin_report_inferred_modules
variable has no effect on the multiplexer inference report.

Example 6-58 shows a MUX_OP inference report.
/ 6-65HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-58 MUX_OP Inference Report

The first column of the report indicates the block that contains the
case statement for which the MUX_OP is inferred. The line number
of the case statement in Verilog also appears in this column. The
remaining columns indicate the number of inputs, outputs, and select
lines on the inferred MUX_OP.

Controlling Multiplexer Inference

You can embed an HDL Compiler directive in the Verilog description
or use dc_shell variables to direct HDL Compiler to infer MUX_OPs.
The directive gives you control over individual case statements,
whereas dc_shell variables apply to an entire design.

HDL Compiler Directive That Controls Multiplexer
Inference

Set the infer_mux directive on a block to direct HDL Compiler to
infer MUX_OPs for all case statements in that block. You can also set
the infer_mux directive on specific case statements to limit
MUX_OP inference to that case statement.

Attach the infer_mux directive to a block, by using the following
syntax:

// synopsys infer_mux block_label_list

Statistics for MUX_OPs

block name/line Inputs Outputs # sel inputs MB

blk1/20 2 1 1 N
/ 6-66HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Attach the infer_mux directive to a case statement by using the
following syntax:

case (var) //synopsys infer_mux

Variables That Control Multiplexer Inference

The following dc_shell variables control multiplexer inference:

hdlin_infer_mux = default

This variable controls MUX_OP inference for all designs you input
in the same dc_shell session. You can select from the following
settings for this variable:

Use default to infer MUX_OPs for case statements in blocks
that have the infer_mux directive attached. This is the default
value.

The value of none does not infer MUX_OPs, regardless of the
directives set in the Verilog description. HDL Compiler generates
the following message during MUX_OP inference when this
variable is set to none :

Warning: A mux for process %s was not inferred because
the variable hdlin_infer_mux was set to none. (HDL-384)

The value of all treats each case statement in the design as if
the infer_mux directive is attached to it. This can negatively
affect the quality of results, because it might be more efficient to
implement the MUX_OPs as random logic instead of using a
specialized multiplexer structure. Use this setting only if you want
MUX_OPs inferred for every case statement in your design.
/ 6-67HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
hdlin_dont_infer_mux_for_resource_sharing = true

When this variable is true, HDL Compiler does not infer a
MUX_OP when two or more synthetic operators drive the data
inputs of the MUX_OP. HDL Compiler generates the following
message during MUX_OP inference when this variable is true:

Warning: No mux inferred for the case %s because it would
lose the benefit of resource sharing. (HDL-380)

When this variable is false, HDL Compiler infers a MUX_OP but
resource sharing does not share the data pins that the synthetic
operators drive. This can have a negative impact on the area of
the final implementation. HDL Compiler generates the following
message during MUX_OP inference when this variable is false:

Warning: A mux has been inferred for case %s which may
lose the benefit of resource sharing. (HDL-381)

hdlin_mux_size_limit = 32

If the number of branches in a case statement exceeds the
maximum size specified by this variable, HDL Compiler generates
the following message:

Warning: A mux was not inferred because case statement
%s has a very large branching factor. (HDL-383)

This variable sets the maximum size of a MUX_OP that HDL
Compiler can infer. If you set this variable to a value greater than
32, HDL Compiler takes longer to process the design.
/ 6-68HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The following dc_shell variables control how Design Compiler maps
the MUX_OPs:

compile_create_mux_op_hierarchy = true

When this variable is true, the compile command creates all
MUX_OP implementations with their own level of hierarchy. When
it is false, the compile command removes this level of hierarchy.

compile_mux_no_boundary_optimization = false

When this variable is false, the compile command performs
boundary optimization on all MUX_OP implementations. When
true, the compile command does not perform these boundary
optimizations.

For more information about these variables, see the Design Compiler
Reference Manual: Optimization and Timing Analysis.

Inferring Multiplexers

This section contains Verilog examples that infer MUX_OPs.

The size of the inferred MUX_OP depends on the number of unique
values that are read in the case statement. During compilation,
Design Compiler attempts to map the MUX_OP to an appropriately
sized multiplexer in the target technology library. If the library does
not contain a large enough multiplexer, Design Compiler builds the
multiplexer with smaller multiplexer cells (such as 4-to-1 multiplexer
cells).

Example 6-59 attaches the infer_mux directive to the block blk1.
HDL Compiler infers a MUX_OP for each case statement in the block.
The first case statement reads eight unique values and infers an 8-
/ 6-69HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
to-1 MUX_OP. The second case statement reads four unique values
and infers a 4-to-1 MUX_OP. HDL Compiler generates the inference
report shown in Example 6-60.

Example 6-59 Multiplexer Inference for a Block
module muxtwo(DIN1, DIN2, SEL1, SEL2, DOUT1, DOUT2);
 input [7:0] DIN1;
 input [3:0] DIN2;
 input [2:0] SEL1;
 input [1:0] SEL2;
 output DOUT1, DOUT2;
 reg DOUT1, DOUT2;

//synopsys infer_mux ”blk1”

always @(SEL1 or SEL2 or DIN1 or DIN2)
begin: blk1
 // this case statement infers an 8-to-1 MUX_OP
 case (SEL1)
 3’b000: DOUT1 <= DIN1[0];
 3’b001: DOUT1 <= DIN1[1];
 3’b010: DOUT1 <= DIN1[2];
 3’b011: DOUT1 <= DIN1[3];
 3’b100: DOUT1 <= DIN1[4];
 3’b101: DOUT1 <= DIN1[5];
 3’b110: DOUT1 <= DIN1[6];
 3’b111: DOUT1 <= DIN1[7];
 endcase

 // this case statement infers an4-to-1 MUX_OP
 case (SEL2)
 2’b00: DOUT2 <= DIN2[0];
 2’b01: DOUT2 <= DIN2[1];
 2’b10: DOUT2 <= DIN2[2];
 2’b11: DOUT2 <= DIN2[3];
 endcase
end
endmodule
/ 6-70HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-60 Inference Report for a Block

Example 6-61 uses the infer_mux directive for a specific case
statement. This case statement reads eight unique values, and HDL
Compiler infers an 8-to-1 MUX_OP. HDL Compiler generates the
inference report shown in Example 6-62.

Example 6-61 Multiplexer Inference for a Specific case Statement
module mux8to1 (DIN, SEL, DOUT);
 input [7:0] DIN;
 input [2:0] SEL;
 output DOUT;
 reg DOUT;

always@(SEL or DIN)
begin: blk1
 case (SEL) // synopsys infer_mux
 3’b000: DOUT <= DIN[0];
 3’b001: DOUT <= DIN[1];
 3’b010: DOUT <= DIN[2];
 3’b011: DOUT <= DIN[3];
 3’b100: DOUT <= DIN[4];
 3’b101: DOUT <= DIN[5];
 3’b110: DOUT <= DIN[6];
 3’b111: DOUT <= DIN[7];
 endcase
end
endmodule

Statistics for MUX_OPs

block name/line Inputs Outputs # sel inputs MB

blk1/53

blk1/29

4

8

1

1

2

3

N
N

/ 6-71HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-62 Inference Report for case Statement

Understanding the Limitations of Multiplexer Inference

HDL Compiler does not infer MUX_OPs for

• if...else statements

• case statements that contain two or more synthetic operators,
unless you set the following variable to false before inputting the
Verilog description:
hdlin_dont_infer_mux_for_resource_sharing

• case statements in while loops

HDL Compiler does infer MUX_OPs for incompletely specified case
statements, but the resulting logic might not be optimal. HDL Compiler
generates the following message when inferring a MUX_OP for an
incompletely specified case statement:

Warning: A mux has been inferred for case %s which has either
a default clause or an incomplete mapping. (HDL-382)

HDL Compiler considers the following types of case statements
incompletely specified:

• case statements that have a missing case statement branch or
a missing assignment in a case statement branch

• case statements that contain an if statement or case
statements that contain other case statements

Statistics for MUX_OPs

block name/line Inputs Outputs # sel inputs MB

blk1/19 8 1 3 N
/ 6-72HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Three-State Inference

HDL Compiler infers a three-state driver when you assign the value
of z to a variable. The z value represents the high-impedance state.
HDL Compiler infers one three-state driver per block. You can assign
high-impedance values to single-bit or bused variables.

Reporting Three-State Inference

HDL Compiler can generate an inference report that shows the
information the compiler passes on to Design Compiler about the
inferred devices. The hdlin_report_inferred_modules
variable controls the generation of the three-state inference report.
See “Reporting Register Inference” on page 6-2 for more information
about the hdlin_report_inferred_modules variable. For
three-state inference, HDL Compiler generates the same report for
the default and the verbose reports.

Example 6-63 shows a three-state inference report.

Example 6-63 Three-State Inference Report

The first column of the report indicates the name of the inferred three-
state device. The second column indicates the type of three-state
device HDL Compiler inferred.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
/ 6-73HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Controlling Three-State Inference

HDL Compiler always infers a three-state driver when you assign the
value of z to a variable. HDL Compiler does not provide any means
of controlling the inference.

Inferring Three-State Drivers

This section contains Verilog examples that infer the following types
of three-state drivers:

• Simple three-state drivers

• Registered three-state drivers

Simple Three-State Driver

This section provides a template for a simple three-state driver. In
addition, it provides examples of how allocating high-impedance
assignments to different blocks affects three-state inference.

Example 6-64 provides the Verilog template for a simple three-state
driver. HDL Compiler generates the inference report shown in
Example 6-65. Figure 6-23 shows the inferred three-state driver.
/ 6-74HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-64 Simple Three-State Driver
module three_state (ENABLE, IN1, OUT1);
 input IN1, ENABLE;
 output OUT1;
 reg OUT1;

always @(ENABLE or IN1) begin
 if (ENABLE)
 OUT1 = IN1;
 else
 OUT1 = 1’bz; //assigns high-impedance state
end
endmodule

Example 6-65 Inference Report for Simple Three-State Driver

Figure 6-23 Schematic of Simple Three-State Driver

Example 6-66 provides an example of placing all high-impedance
assignments in a single block. In this case, the data is gated and HDL
Compiler infers a single three-state driver. Example 6-67 shows the
inference report. Figure 6-24 shows the schematic the code
generates.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
/ 6-75HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-66 Inferring One Three-State Driver From a Single Block
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;

always @(SELA or SELB or A or B) begin
 T = 1’bz;
 if (SELA)
 T = A;
 if (SELB)
 T = B;
end
endmodule

Example 6-67 Single Block Inference Report

Three-State Device Name Type MB

T_tri Three-State Buffer N
/ 6-76HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-24 One Three-State Driver Inferred From a Single Block

Example 6-68 provides an example of placing each high-impedance
assignment in a separate block. In this case, HDL Compiler infers
multiple three-statedrivers.Example 6-69 shows the inference report.
Figure 6-25 shows the schematic the code generates.
/ 6-77HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-68 Inferring Three-State Drivers From Separate Blocks
module three_state (A, B, SELA, SELB, T);
 input A, B, SELA, SELB;
 output T;
 reg T;

always @(SELA or A)
 if (SELA)
 T = A;
 else
 T = 1’bz;

always @(SELB or B)
 if (SELB)
 T = B;
 else
 T = 1’bz;
endmodule

Example 6-69 Inference Report for Two Three-State Drivers

Three-State Device Name Type MB

T_tri Three-State Buffer N

Three-State Device Name Type MB

T_tri2 Three-State Buffer N
/ 6-78HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Figure 6-25 Two Three-State Drivers Inferred From Separate Blocks

Registered Three-State Drivers

When a variable is registered in the same block in which it is defined
as three-state, HDL Compiler also registers the enable pin of the
three-state gate. Example 6-70 shows an example of this type of code.
Example 6-71 shows the inference report. Figure 6-26 shows the
schematic generated by the code.

Example 6-70 Three-State Driver With Registered Enable
module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;

always @ (posedge CLK) begin
 if (THREE_STATE)
 OUT1 = 1’bz;
 else
 OUT1 = DATA;
end
endmodule
/ 6-79HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-71 Inference Report for Three-State Driver With Registered
Enable

Figure 6-26 Three-State Driver With Registered Enable

In Figure 6-26, the three-state gate has a register on its enable pin.
Example 6-72 uses two blocks to instantiate a three-state gate, with
a flip-flop only on the input. Example 6-73 shows the inference report.
Figure 6-27 shows the schematic the code generates.

Three-state Device Name Type MB

OUT1_tri

OUT1_tr_enable_reg

Three-State Buffer

Flip-flop (width 1)

N
N

/ 6-80HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 6-72 Three-State Driver Without Registered Enable
module ff_3state (DATA, CLK, THREE_STATE, OUT1);
 input DATA, CLK, THREE_STATE;
 output OUT1;
 reg OUT1;

 reg TEMP;

always @(posedge CLK)
 TEMP <= DATA;

always @(THREE_STATE or TEMP)
 if (THREE_STATE)
 OUT1 = TEMP;
 else
 OUT1 = 1’bz;
endmodule

Example 6-73 Inference Report for Three-State Driver Without Registered
Enable

Figure 6-27 Three-State Driver Without Registered Enable

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
/ 6-81HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Understanding the Limitations of Three-State Inference

You can use the z value in the following ways:

• Variable assignment

• Function call argument

• Return value

You cannot use the z value in an expression, except for comparison
with z . Be careful when using expressions that compare with the z
value. Design Compiler always evaluates these expressions to false,
and the pre-synthesis and post-synthesis simulation results might
differ. For this reason, HDL Compiler issues a warning when it
synthesizes such comparisons.

This is an example of incorrect use of the z value in an expression:

OUT_VAL = (1’bz && IN_VAL);

This is an example of correct use of the z value in an expression:

if (IN_VAL == 1’bz) then
/ 6-82HOME CONTENTS INDEX

	Register, Multibit, Multiplexer, and Three-State Inference
	Register Inference
	Reporting Register Inference
	Configuring the Inference Report
	Selecting Latch Inference Warnings

	Controlling Register Inference
	Attributes That Control Register Inference
	Variables That Control Register Inference

	Inferring Latches
	Inferring SR Latches
	Inferring D Latches
	Simple D Latch
	D Latch With Asynchronous Set or Reset
	D Latch With Asynchronous Set and Reset
	Inferring Master-Slave Latches

	Inferring Flip-Flops
	Inferring D Flip-Flops
	Understanding the Limitations of D Flip-Flop Inference
	Inferring JK Flip-Flops
	JK Flip-Flop With Asynchronous Set and Reset
	Inferring Toggle Flip-Flops
	Getting the Best Results

	Understanding the Limitations of Register Inference

	Multibit Inference
	Controlling Multibit Inference
	Directives That Control Multibit Inference
	Variable That Controls Multibit Inference
	Inferring Multibit Components

	Reporting Multibit Inference
	Using the report_multibit Command
	Listing All Multibit Cells in a Design

	Understanding the Limitations of Multibit Inference

	Multiplexer Inference
	Reporting Multiplexer Inference
	Controlling Multiplexer Inference
	HDL Compiler Directive That Controls Multiplexer Inference
	Variables That Control Multiplexer Inference

	Inferring Multiplexers
	Understanding the Limitations of Multiplexer Inference

	Three-State Inference
	Reporting Three-State Inference
	Controlling Three-State Inference
	Inferring Three-State Drivers
	Simple Three-State Driver
	Registered Three-State Drivers

	Understanding the Limitations of Three-State Inference

