CPR E 465 LABORATORY

Tutorial Lab 1(v1.1)

Behavioral Modeling & Simulation
Week 2

(Authored byHon-Chi Ng, ECpE Dept, lowa State University)
(Modified by Charlie Boecker for Cadence v4.4.1)

0. Introduction

In the first part of this lab, you will learn how to create library, cells and cellvie@adences
design database call&ksign Framework [[DFII).

Next, you will learn how to design circuits abstractly throbghavioral modelingas well as
hierarchically throughstructural modeling. Behavioral modeling is described through
hardware description language(HDL). Currently, the 2 dominant general-purpose HDLs are
Verilog-HDL andVHDL (VHSIC HDL). You will learn one of them, nameWerilog, and
simulate your designs usit@adencss Verilog-XL simulator.

1. Design Management with Design Framework Il (DFII)

1.1 Now, let us create a directory caltetience . We will store all our designs of all the labs

in thecadence directory
> mkdir ~/cadence
> cd cadence

To runCadence
> cadence &

After a few seconds, @IW (Command Interpreter Window) should appear. Later, a
Welcome to Cadence 4.4iklog box will appear. Along with th&elcome to Cadence
4.4.1, aWhat's Newbox will appear. Click oclose button after reading the content of the
Welcome to Cadence 4.4tx. Then in th&Vhat's Newbox go toView | Off at Startup...

Tl — something from this step needs to be turned in Q — there is a question in the back that refers to this step
Copyright © 1997, Hon-Chi Ng.

Permission to duplicate and distribute this document is herewith granted for sole educational purpose without any commercial
advantage, provided this copyright message is accompanied in all the duplicates distributed. All other rights reserved.

All Cadence’s tools referred are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks
belong to their respective owners.

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 2 of 47

Click onYES in theTurn off What's New at Startupindow that pops up. This will disable
the display of the box when you log in next time.

As conventions for the rest of this handout and upcoming handsitsstands fofeft
mouse button Likewise,MMB andrRMB stand formiddle mouse buttoandright mouse
buttonrespectively.

1.2 Cadencekeeps all its designs in database format célesign Framework I{DFIl). The

1.3

top level organization is callddbrary . Each library has a technology, described in the
technology filg associated with it. All designs within the library are based on the same
technology file.

Before we start creating a new design library, let us look at what the default libraries that are
available. InCIW, chooseTools | Library Manager... In Library Managerwindow, there are

some libraries supplied as default. Only those libraries prefixedsestivill be used for

our labs, namelye6sref and465Pads, 465pads12. We will hereafter refer these libraries as
reference libraries. Pay no attention to other libraries.

Let us go tawesref library by clicking on it using thieft mouse butto(LMB). We want to

see the different categories available in the library, so we need to click 8hahe
Categoriesbutton in thelibrary Manager You will see a few categories listed under

465ref library. Within these categories, there is more sub-categories or cells. For example,
Gates category contains sub-categories s, NANDs, NORs, ORs, XNORs andXORs,

and cells likeouffer andinv. Within ANDs category, it contains cells liked2, and3, and4,

and5, andandé. Each of these cells has 2 different cellviews nametypol andverilog .

So far, you have been introduced to the terms library, category, cell and celédegory
allows us to organize our designs within a given libraegll is the actual design. Each cell
can have multipleellviews the representations of the design. The analogy is — think of
library as user account, category as directory, cell as file, and cellview as format. (I know it
is kind of awkward to have a file with multiple formats, but this is the best analogy | can
think of. :*))

Now, let us create a library nangate465 . The technology file we will use is written for
MOSIS Orbit 2.0 N-well, double-poly, double-metal CMOS prog¢&gsich complies with
MOSIS SCMOS (Scalable CMOS) Design Rukésncex = 1.Qu.

NOTE: All the libraries should be created usiRide | New | Library... under the CIW
there is also &ile | New | Library... command under the Library Managéf you use the

second method the Library won't be created correg@ydon't use it

In CIW, chooseFile | New | Library... In theNew Libraryform, typecpre465 in Library
Name field. The path should be /home/user/cadence . Ifie¢hbnology Fildield click on
Attach to an existing techfile Click onoK. An Attach Design Library to Technology File

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 3 of 47

form should appear. Since we will use the digital versiod©@SIS Orbit 2.Q: technology,
chooseOrbit20digital for theAttach to Technology Library field. Click onok.

The technology is being attached, and the status is shd@liin Upon completionCIW
will display the message

Created library "cpre465" as "home/user/cadence/cpre465"
Design library ‘cpre465' successfully attached to technology library
'Orbit20digital’

You will also notice thatpre465 library is now listed withirLibrary Managerwindow
along with other reference libraries. Click tb& mouse butto(LMB) on cpre465 library
we just created. Nothing is under it yet, but that will definitely change.

2. Concurrency of Hardware & HDL

How doesHardware Description LanguaggiDL) differ from general programming languages?

In another words, why can't general programming languages be used to described digital circuits?
Concurrency. Separate parts of a hardware samultaneouslyoperate either dependently or
independently, whereas a software program flows sequentiélfya §ide question, can multi-
threading in programming languages address such concurrency of hargware?

HDL also provides other features/constructs (syntax) to allow designers to describe digital
circuits more naturally and conveniently.

2.1 Design Concept using Verilog-HDL

Before we learn how to describe designbehavioral modelinglet us study some concepts
in Verilog.

a) Module
Module (also referred as block or entity) is bassic unit of a circuit design. It contains
logical functionalitythat is specified internally and exhibited throughrimutsand
outputs(port interface) to other modules (external world). By grouping the functionality
into a module and allowing inter-module communications through port interface, the
internal implementation of the module is hidden, i.e. implementation of the module may
beindependently modifiedithout affecting other modules and overall functionality.
(Timing and loading issues are ignored here.)

b) Instance
This may be an initially confusing concept. An instance istheaal objectcreated
based on a given module, thaster Multiple instances can be created from the same
module, where they share the same functionality as described by the modojeerate

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 4 of 47

independently The analogy to programming is — multiple variables can be declared
from the same data type, but each holds its own value of the type declared.

The process of creating an instance from a module is ¢afitxhtiation. A module is
just atemplatethat defines the functionality. An instance is sictual objectused in
forming the design.

This module-instance concept is similaotgect-oriented OO) paradigm in
programming. Perhaps, OO paradigm was originally "borrowed" from hardware.

c) Port
Port (also referred to as a pin or terminal) isitherface where a module exhibits its
functionality, and is the way modules (actually, instances)municatewith each other.
A module can have multiple ports or be portless (refer to Step 2.6). A port can be of
eitherinput, outputor bi-directional A port can also bsingle-bitor multiple-bit
(bus/vector) wide. It is similar to a formal parameter/argument in programming.

2.2 Hierarchy

It would be inefficient and extremely difficult to implement a complex design in a single flat
level. A more practical approach isdivide the design into small blocks and solve them
separately. These blocks can be further divided within themselves if they are still too
complex to handle until each block is manageable. Such recursive division is called
decomposition of hierarchy Hierarchy allows designers to solve a huge, complex problem
using adivide-and-conquetechnique.

The overall design is the highest level within the hierarchy, which is calledpgHevel

module. The lowest level blocks that make up the design are calléeaheells

Intermediate modules are those besides top-level module and leaf cells within the hierarchy.
Figure 2.2 illustrates a typical hierarchy representedti@eatructure.

Top-level

/N

Intermediate Leaf Leaf

T

Leaf Intermediate

N

Leaf Leaf Leaf
Figure 2.2: Example of Hierarchy Tree

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 5 of 47

A design can contain an arbitrary number of hierarchial levels, which depends on the
complexity of the design. The more complex the design is, the more levels of hierarchy it
usually needs.

2.3 Design Methodology

There are 2 basic design methodologies, natephdown andbottom-up.

a) Top-down design methodology
In a top-down decomposition approach, we start by defining the top-level block and
identify the sub-blocks necessary to build the top-level block. We further subdivide these
sub-blocks into leaf cells.

When do we stop sub-dividing a new level of hierarchy? There is no obvious rule.
Usually, we stop at the level when further subdividing/decomposing the blocks offer no
significant advantage ireusability andcomprehensibility of details

b) Bottom-up design methodology
In a bottom-up assembly approach, we begin from the leaf cells. We construct the higher
blocks using the leaf cells available to us. We continue building next higher blocks until
the final design is realized.

In practice, neither approach is used alond-yArid of both approaches is typically

applied. We are often given the top-level specification as well as the leaf cells standardly
available. Thdunctional architecture is defined top-down whereas thetual circuit is
implemented bottom-up.

2.4 Bit-slicing Technique in Hierarchical Decomposition

Usually, when decomposing a hierarchy, the design is partitioned into several submodules
based on their functionalities. This is sometimes knowegdgal partitioning

However, for themulti-bit / vector design, there is another approach for partitioning,
namely bit-slicing, or sometimes knowntawizontal partitioning Instead of partitioning
based on functionalities, the multi-bit design is decomposedrintople identical single-
bit design. Bit-slice technique enhancesdbalability of the design, and increases
reusability, particularly in wide-vector (32 bit or more) design.

2.5 Levels of Modeling Abstraction

This is the most interesting and subjective notion in HDL. Different books/authors have
different perspectives on categorizing the levels of modeling abstraction. My personal view
is — the lines between the levels are blurry, especially givermyiaid/mixed-mode
modelingabstraction exists.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 6 of 47

Some books, particularly older ones, define only 2 levels, nameélgvioral and
structural . Other levels defined adataflow, RTL , block-level, logic-level gate-level
andswitch-level The following is how | view and define these levels.

a) Behavioral
This is the highest level of abstraction. Functionality is expresseddlgauithmic
description that resembles programming languages. Timing and loading are usually
ignored at this very abstract level.

b) Dataflow & RTL
It is the next lower level of abstraction below behavioral. Dataflow and RTL (register
transfer level) are of the same modeling abstraction. However, some books consider RTL
as the combination of dataflow and behavioral levels (or more pregigbgesizable
behavioral level).

This level mostly describesynchronous designwhich is how all complex digital
circuits behave, The major components describetirate-state control logic,

datapath, andregisters All events take place in reference to clock edges of single or
morereference clocks

Whenlogic synthesiss discussed, the term RTL is more commonly used. RTL is
currently the highest level of abstraction that can be practically/efficiently synthesized
into lower level of abstraction. Hence, RTL is frequently referrexyathesizable
description Prior to era of logic synthesis, this level was treated as part of behavioral
level modeling abstraction.

c) Structural
This is the level that describbgerarchy. Structural modeling is always part of any
mixed-mode modelingecause its hierarchical characteristic allows different modeling
abstractions to be "glued" withinti@ee structure. It is the general term that encapsulates
block-level, logic-level, gate-level and switch-level because all of them are based on
hierarchy except with different depth of implementation details. In fact, some leaf cells
within the hierarchy may also contain behavioral or dataflow modeling.

A pure structural desigshould consist only component instantiations at all the higher
levels of its hierarchy except the leaf cells. Only the leaf cells can be of any other levels
of modeling abstractions. However, sometimes the term pure structural excludes
behavioral or dataflow to be even at the leaf cells.

d) Block-level & Logic-level
Both block-level and logic-level are the description of design basédhotional logic
blocks. Functional logic blocks can comprised of other smaller functional logic blocks or
primitive logic gates. However, some uses block-level to refer desigal ¢farge scale
integration) and logic-level faviSI (medium scale integration).

e) Gate-level

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 7 of 47

f)

Design at this level is described in termpamitive gates, namely AND, OR and NOT.
This is the lowest level of modeling abstraction that isistiépendent of transistor
logic to be implemented. Nevertheless, prelimirtaning andloadinginformations can
be estimated at this level of modeling abstraction.

Boolean expressiormaay vaguely be considered as gate-level since they are based on
AND, OR and NOT operations.

Besides AND, OR and NOT gates, Verilog also provides other gate-level primitives, e.g.
NAND, NOR, XOR, XNOR, buffer, tristate buffer and tristate inverter.

Switch-level

This is lowest level of modeling abstract that can be described in Verilog. In fact, not all
HDLs have this level of modeling — VHDL does not. This is also knowraasistor-

level modelingabstraction. However, Verilog only can only mobDS transistors.

Hence, the term switch-level, instead of transistor-level, is used to emphasize such
limitation.

Each MOS transistor is modeled abstractly awitch. Hence, the basic functionality is
either on or off. This level of modeling abstraction allows designers to more close
describe the designs to the actual transistor logic, e.g. CMOS, NMOS, pass transistor.
With optional attributes in Verilog, description of dynamic CMOS logic is also feasible.
Since static CMOS logic is ratioless, switch-level modeling may not sound that
appealing. However, the power of switch-level modeling becomes obvious in describing
ratio logic (NMOS, pseudo-NMOS), steering logic (pass transistor / transmission-gate)
and dynamic logic (dynamic / domino CMOS).

The switch-level primitives in Verilog are unidirectional switches, bidirectional pass
switches, tristate bidirectional switches, and resistive switches.

To more accurately model the MOS transistor, Verilog provides additional attributes to
switches. Each switch can havdraving strength associated. In fact, Verilog defines 8
different levels of signal strength. In the case of contention, signals with larger drive
strength dominate instead of resulting X state (unknown/don't daesjstive switches

are used to model MOS transistors with high source-to-drain impedance, where the signal
strengths are reduced when signals pass through.

Forcharge storage(capacitive) nodes, Verilog provides a special type of net, namely
trireg , to account for such characteristic.

Switch-RCoption forCadencés Verilog-XL simulator simulates by computing the rise
and fall delays based on gate, drain and sazapacitancesand the resistive strength of
giventransistor size which are specified through transistor technology macro (compiler
directive). Capacitance attribute can be associated ontordge net to account for
parasitic capacitancen the net.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 8 of 47

g) Mixed-mode modeling
Mixed-mode modeling describes a design with more than one modeling abstraction. This
is usually achieved using structural modeling and other level of modeling abstraction.

2.6 Test Benches / Test Fixtures / Stimuli / Test vectors

3.1

Test benches, test fixtures, stimuli and test vectors all refer to the set of conditionals that are
fed to the inputs of a module verify functionality of the module by examining its outputs.

The conventional way iexhaustive verification which supplies all possible inputs to the

module under test and makes sure the outputs behave as expected. This demands designers
to supply all conditions of inputs they can think of. Hence, even if a module passes the set

of test vectors/stimuli, it does not necessary infer that the module functions perfectly since
some cases may be inadvertently missed due to human errors. Such exhaustive test is also
very time consuming.

Nevertheless, this is the only verification method available famtiial verification , a
supposedly more robust and efficient method becomes mature and available.

The test bench is@ortless modulewhich instantiates the top-level module and supplies test
vectors to the top-level instance using behavioral statements.

Behavioral Modeling with Verilog

Now, we are ready to create our 1st design. We will design a 1-bit inverter, create a cell
namednverter . | know this is not very exciting, but it is an easy way to get started.

)

In Library Managerwindow, select thepre465 library, by clicking on it in thé.ibrary
Manager in theLibrary ManagerchooseFile | New | Cell View...In theCreate New File
form, theLibrary Name should becpre465. Typeinverter in Cell Name field and
behavioral in theView Namefield. Change th&ool field to Verilog-Editor and click
oNn oK.

An editor window with the following content appears.

/I Verilog HDL for "cpre465", "inverter" "_behavioral"
module inverter ;

endmodule

By default, your editor ismacs If emacss not your favorite, you may change your default
editor as explained in Step 2.5Rneparatory Lab O

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 9 of 47

Enter the followingverilog code. Note thaferilogis case-sensitive

/I Verilog HDL for "cpre465", "inverter" "_behavioral"

/I CprE 465 Lab 1 Step 3.2
/Il Your name

module inverter (a, abar);
input a;
output abar;

assign abar = ~a;

endmodule

/I is thecomment delimiter. Any characters betweéh and new-line are treated as
comments. Itis a good practice to document any design you do. You may add a detailed
explanation, but since this is a simple design, the lab number and your name suffice.
Besides this line-comment delimit&ferilog also supports thielock-comment delimiter

with the/* and*/ pair, similar to that irC.

There are Dorts for theinverter cell, wherea is the input, andbar is the output. All

ports must be declared with directions, eithenpsit , output , orinout . These

ports are default as a wire netire is one of the 2 basic physical data types. The other
one isreg , which must be explicitly declared if desired. There are other special types of
wire nets, such asor , wand, but we will learn about them latetri , trior , and

triand are just the aliases fanre , wor, wand for readability reasons.

Theassign statement is callecbntinuous assignment Continuous assignment is
alwaysactive, i.e. any changes in the RHS (right-hand side) expression is constantly
assigned/updated to LHS (left-hand side) net. LHS must be a scalar orwiegtonet.
Continuous assignment statement may only be used outside procedure statement, such as
initial oralways . (We will learn about them later.)

The tilde character is thebitwise negation operator i.e. 1 is returned if the operand is
0, and vice versa. For multi-bit / vector operand, each bit will be negated independently
since~ is bitwise operator.

Notice that except theodule andendmodule statements, the other statements are
indented with 2 spacesProper indentation increases the readability of yoderilog
code.

When done, save and close your editor.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 10 of 47

A dialog box titled Cellview inverter symbol does not ekappears. Click ones. A
symbol cellview will be created fonverter cell. We will learn aboutymbol cellview in
Tutorial Lab 2next week.

4. Simulation with Verilog-XL

4.1 Now, we are ready to test our inverter.Lilorary Managerwindow, onbehavioral cellview,
hold MMB and choos@pen(Read Only) . In theReadingwindow for behavioral cellview,
chooseTools | Verilog-XL . In Setup Environmeribrm, theRun Directory field should read
inverter.runl . Leave it untouched for now. This is where the simulation data is
stored. Click oroK.

TheVerilog-XL Integration Contro(VIC) window will appear. We need to write the test
bench to verify our design. ChooSmulus | Verilog... A window will come up asking
whether you want to create a testfixture template file or not. Clickesn TheStimulus
Optionswindow will pop up. In thé&timulus Optionsvindow change thode to Copy.
In theCopy From sub-window click ortestfixture.verilogso that it shows up ithe File
Namefield, you may need to scroll down in the sub-window to tesifixture.verilog In
the Copy To sub-window typéestfixture.newn the FileName field, if not already there.
Click onApply. Change th&lode to Edit, make sure thdéestfixture.news in theFile
Namefield, if not click on it so that it is. Also, make sure Make Current Test Fixture
andCheck Verilog Syntaxbuttons are on(near the bottom of the window).
TheMake Current Test Fixture option makes the current file in the File Name field,
testfixture.new, the file to be used for checking the cell during simulation. The Check
Verilog Syntax option checks testixture.new for syntax errors.

The reason we have to copy from the default testfixture, testfixture.verilog, to a new
testfixture, testfixture.new, is because when the design is renetlisted due to a change in
the code somewhere, the testfixture.verilog gets erased, so you would have to re-enter the
code into it everytime a change was made.

When you are asked to make/edit a testfixture, rememb&uapemode in the
Stimulus Optionsvindow. If you use the same testfixture name each time yqu
want a different testfixture, you will write over all of the older testfixtures. Then
for some reason if you need to change it back to the previous testfixture, ypu
already wrote over it. | advise making a seperate testfixture for each test you want
to run on a cell, so you don't have to rewrite code if you go back to an earligr
version of a testfixture. For example: testfixturel.new, testfixture2.new,...

Click onok. An editor window containing a template test fixture will appear.

/I Verilog stimulus file.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 11 of 47

/l Please do not create a module in this file.
/I Stimulus Name Mapped Table - Bus Netlisting mode.
/I Verilog Names --------- > Cadence Names

Il
/I a --> a

/I Default verilog stimulus.

initial
begin
a=1b0;

end
By default, all the inputs in the testfixture ané@ialized to 0. Thenitial statement is
one of the 2 structured procedure statements -- the othlevags statement. The
initial statement executes ordycein the simulation and becomiesctive upon
exhaustion. If there are multipiatial statements, they all start to execute concurrently
at time 0.

The assignment statement ipracedural assignment(more precisely, blocking procedural
assignment), which can only usednitial oralways statement. All inputs in the
testfixture created byIC are ofreg data type (declared in another file). Reg is the other
physical data typebesidesvire in Verilog. reg retains (remembers) the value last
assigned to it, therefore, unlikere , it needs not to be continuously driven. It is only used
in test fixture, behavioral, and dataflow modelings.

The notationl'b0 at RHS of the assignment mednbit of value Oexpressed ibinary.
All constantsfor physical data types Merilog are expressed in the format:
size' radix value
size is expressed in decimal integer. Default is inferred from value.
' radix is eitherb (binary),o (octal),d (decimal) oth (hexadecimal). Default is decimal.
value is the constant value based onithéix. If the value provided is has fewer bits
than thesize leading O are padded.
Thebegin-end pair of keywords denote ttlsequential blockstatement. Thparallel
block statement is delimited by the pair of keywofolk andjoin . Block statements
groupmultiple statementstogether. The statements within sequential block are executed in
the order they are specified except non-blocking assignments. Whereas, the statements in
parallel block are executedncurrently. Hence, the order which the statements appear in
parallel block is immaterial.

4.2 Let us change the default stimulus to the following.

/I Test fixture for inverter cell
/I Your name

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 12 of 47

initial

begin
a=1'b0;
#80 $finish;

end

always
#20 a = ~a;

The hash charactérspecifies thelelay. Hence#80 means delay for 80 time units. Since
this is within a sequential block, it means delay the execution of next stat@fir@eh()
for 80 time units from the previous statement(1'b0).

The$finish system task is thieuilt-in task in Verilog. Upon executing th#finish
task, the simulator wiknd and discard all other statements, analogoesit)) function
in programming,

Thealways statementontinuously repeatsitself throughout the simulation. If there are
multiple always statements, they all start to execute concurrently at time 0. The
procedural assignment statemenaiways is delayed for 20 time unifTHIS IS

IMPORTANT . Without the delay, the simulator will be caught inrd&mite loop at time 0.

So, if your simulation ever runs into what seems like an infinite loop, check if you have such
azero-delayalways statement. Tha value isnegatedevery 20 time units until

$finish is encountered. Henca will toggle 8 times, i.e. 4 cycles.

When done, save and close the editor. ChW should display the message
Analyzing testfixture file "testfixture.new"
Done

4.3 InVIC window, chooseimulation | Start Interactive to compile our behavior design and
testfixture. The following message will appeaVMi€ to indicate the completion of

compilation.
Highest level modules:
test
Type ? for help

Cl>

To run thesimulation, choosesimulation | Continue . The following message will appear in

VIC window to indicate the end of simulation.
35 simulation events
CPU time: 0.3 secs to compile + 0.4 secs to link + 0.1 in simulation
End of VERILOG-XL 2.5.20 Aug 28,1998 21:02:11

5. Digital Waveform Viewer with SimWave

5.1 To examine the simulation result, we will use@aelencss digital waveform viewer called
SimWave To invokeSimWavechoosedebug | Utilities-> | View Waveform... in VIC window.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 13 of 47

A SimWavevindow will appear. Choogsadit | Add Signals... In SimWave Browsdorm,
double click ortest in Instances field, andtop will appear in thenstances field. Double
click top, anda andabar will appear in theSignalssub-window. Highlight botla and
abar by clicking ona and then holding down shift and clicking albar . Click onDisplay
Signals button (looks like a clock waveform towards the top of the window). The two
signals should apppear in the window. Click onGhmsebutton to close th&imWave
Browser

The waveforms should appear in @ienwavenindow, however, they aren't centered within
the window. In th&Simwavewnindow, choose&’iew | zoom Fit . Verify that the output is in
fact correct.

TheMeasurement Regiaa located in the upper right-hand corner of Sn@Wavevindow.
Look for the fieldTime in ns . By default, the time unit for simulationisns Click LMB in
the middle of th&simWavevindow, you will notice a verticaCursorline appears, and the
position is updated to th&l field in Measurement Regiorpelta field tells the distance of
Clline from theC2 line. To moveC2, click MMB andC2 should go to that position. Let
us add a grid, so that the time is easier to read on the plot. @uitms | Grid-> | Show
Time Grid, a grid occurring every 10 ns should appear irSin@Vavevindow.

Add this grid to every plot that you turn in. It will make it easier to read.

When done, go t&ile | Exit to closeSimWave

5.2 (TI) Let us add some delay to our inverter. Back tdRbadingwindow of behavioral
cellview, choos®esign | Open... In Open Desigriorm, click onBrowse button. The
Library Browserwindow should come to the foreground. Click ondétevioral cellview
of inverter cell. Your selection should be reaffirmeddsi Name andview Name fields,
which should readhverter andbehavioral respectively. Leave thdode selection oredit.
Click onoK.

In the editor window that pops up, change the assignment statement to the following.

assign #2 abar = ~a;
This will delay theabar by 2 time units. Save and close the editor.

Back to theVIC window, chooseimulation | Start Interactive again. In thdrenetlist
Design?dialog box, click orves. Since you have changed your behavioral design, the
netlist will be different. Therefore, we want to renetlist the design. Upon completion of
compilation, choos8imulation | Continue . Upon completion of simulation, choasebug |
Utilities-> | View Waveform... In theSimWavevindow, add all the signals. Verify thalbar

is in fact delayed by 2 time units. US& andC2 to verify the delays thru theelta field in

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 14 of 47

5.3

6.1

Measurement RegionYou may want to choosgew | Zoom In By 2 to get a better
measurement.

There is no way of adding comments to the plot, so you will need to write your name and
any other comments on all the plots you turn in.

To plot the waveform, choosée | Print-> | Single-Page... In theGenerate Postscrigbrm
click onOK. Go to the terminal you started cadence from andlp/pem.ps This should
print your file out.

To plot the behavioral cellview, iReadingwindow for behavioral cellview, choosesign |
Print. When done, choo$zsign | Close Window .

More Behavioral Design

(Q) Let us design a 1-bit 2-to-1 multiplexer. Create a cell named®tol in thecpre465
library, and create a cellview namieehavioral for mux2to1l cell. Edit thebehavioral
cellview.

In the editor window, type in the followingerilog code.

/I Verilog HDL for "cpre465”, "mux2tol" "_behavioral"

/I CprE 465 Lab 1 Step 6.1
/I Your name

module mux2tol (s, a0, al,y);
input s, /Il 0 select a0. If 1 select al.
a0, al,;
output y;

assigny=s?al: a0;

endmodule

The Mux has 3 inputs and 1 output, wheris thecontrol input to choose which data input
(a0 oral) is to be assigned to the outgut The RHS of the assignment statement contains
aconditional operator, identified by the question mafkand colon . If s is evaluated to
true, i.e.1'bl , thenal is assigned tg. Otherwise, ik is evaluated to false, i.2'b0 ,

thenaO is assigned tg instead.

Save and close the editor. Read the behavioral cellview by haldiBgand choosing
Open(Read Only) in Library Managerwindow. InvokeVIC by choosingrools | Verilog-XL .
Create a new testfixture by choos®tgnulus | Verilog... in VIC window. Again, go through

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 15 of 47

the procedure described in step 4.1 to make and use testfixture.new. | Hope to come up with
some sort of code that will automate this process, but for now, you will have to do it
manually, sorry. Type in the test fixture below for testfixture.new.

/I Test fixture for mux2tol cell
/Il Your name

initial
begin
s = 1'b0;
{al1, a0} = 2'b01;

#10's = 1'b1;
#10 {al, a0} = 2'b10;
#10 s = 1'b0;

#10 $finish;
end

The curly braces are tlwencatenation operator i.e.al anda0O are grouped together. All
operands within the concatenation operator must be sized, i.e. their widths must be known.
Concatenation operator may be used in either LHS or RHS of assignment statement.

Compile the testfixture by choosiisgnulation | Start Interactive in VIC window. Upon
completion of compilation, chooSémulation | Continue to simulate. Upon completion of
simulation, chooseebug | Utilities-> | View Waveform... to invokeSimWave In SimWave
window, add all the signals. Verify that outputs in fact correct.

6.2 (Q & TI) Similarly, let us add some delay to our Mux. Back to the behavioral cellview
window, choos@®esign | Open... In Open Desigriorm, click onBrowse button. InLibrary
Browserwindow, click on thevehavioral cellview ofmux2tol cell. Back to thé@dpen Design
form, click onoOK.

In the editor window, change the assignment statement.

assign #2y=s?al: a0;

Save and close the editor. Before we re-simulate our Mux, let us try a slightly different way
of writing the testfixture. In th®¥IC window, choosestimulus | Verilog... In theStimulus
Optionswindow setMode to Copy, testfixture.nevshould be in th€opy From File Name

field. Typetestfixturel.nevior theCopy To File Nameand clickApply. ChangeVode to

Edit and make surtestfixturel.nevis in theFile Name Click onOK.

Let us change the sequential block to a parallel block.

initial
fork
s = 1'b0;

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 16 of 47

6.3

{al, a0} = 2'b01;

#10's = 1'b1;
#20 {al, a0} = 2'b10;
#30 s = 1'b0;

#40 $finish;
join

This parallel block is equivalent to the sequential block in the previous step. Since itis a
parallel block, we need to change the delay as shown because all statements are executed
concurrently.

Save and close the editor. Re-simulate. When it asks you if you want to renetlist, you
should clickYES, because we have changed the cell. Open waveforms. Everything should
look the same as before except the ougpistdelayed by 2 ns. Let us arrange the

waveforms before plotting. You may change the order of the signals by dragging them to
the desired position witkiMB (on left hand side of window, where the name of the waves are

located). We always want to arrange the waveforms in the ordewrdfol inputs, data

inputs anddata outputs, in this case, the orderss a0, al andy.

Plot the waveforms and close tBanWavevindow. Print the behavioral cellview. Close
the behavioral cellview.

(Q & TI) Now, let us create another Mux, but this time, a 1-bit 4-to-1 Mux. Create a cell
namedmux4tol , and create a cellview nambdhavioral ~ for mux4tol cell. Edit the
behavioral cellview.

In the editor window, type in the followingerilog code.

/I Verilog HDL for "cpre465”, "mux4tol" "_behavioral"

/I CprE 465 Lab 1 Step 6.3
/I Your name

module mux4tol (s, a0, al, a2, a3,y);
input [1:0] s; /I 2-bit select input
input a0, al, a2, a3;
output y;

assign #2y = (s == 2'b00) ? a0 :
(s==2h01)?al:
(s==2h1l0)? a2:
as3;

endmodule

In theVerilog code above, weascadethe conditional operators to allow 4 different
selections. We may also use a different wayasitedconditional operators as follow.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 17 of 47

assign #2 y = s[1] ? (s[0] ? a3 : a2) : (s[0] ? a1 : a0);

The selection input s is declared &&lait wide input port, with the MSB (most significant
bit) as 1 and LSB (least significant bit) as 0. The multi-bit net is caNedtar or bus. The
width (number of bits) of the vector is specified through the MSB and LSB declared, i.e.
Width=MSB- LSB+ 1, which must be non-negative integers.

To access the individual bit of the vector, use the square brlcketsown as theelect
operator, with the index of the bit. The index must be an integer within MSB and LSB
declared, inclusive.

input [3:0] b;
reg [7:0] x;

LHS expression = b[2];
X[5]= RHS expression ;

All the bits of thevector can be referred together without the square brackets.

LHS expression =b;
X = RHS_expression ;

A continuous range of the vector is callesliae. A slice can be accessed using part-select /
range-select.

LHS expression = b[2:1];
x[6:3] = RHS_expression

AlthoughVerilog does not restrict the indices and the order of veatoconvention we
always declare a vector with0afor LSB and the largest integer for the MSB.

Use either one of the methods listed previously for the conditional operator. Save and close
the editor. Invok&/IC. Create a testfixture as shown below.

/I Test fixture for mux4tol cell
/Il Your name

initial
begin
s = 2'b00;
{a3, a2, al, a0} = 4'b0001;

#10 s = 2'b01;

#10 s = 2'b10;

#10 s = 2'b11;

#10 {a3, a2, al, a0} = 4'b0010;
s = 2'b00;

#10 s = 2'b01;

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 18 of 47

#10 s = 2'b10;

#10 s = 2'b11;

#10 {a3, a2, al, a0} = 4'b0100;
s = 2'b00;

#10 s = 2'b01;

#10 s = 2'b10;

#10 s = 2'b11;

#10 {a3, a2, al, a0} = 4'b1000;
s = 2'b00;

#10 s = 2'b01;

#10 s = 2'b10;

#10 s = 2'b11;

#10 {a3, a2, al, a0} = 4'b0000;

#10 $finish;
end

Save and close the editor. Simulate and open the waveforms. Is the output correct?

6.4 (TI) Next, we will explore an alternate behavioral construct to model the same functionality,
namelyif-then-else statement, similarly to that in programming languages.

Theif statement can only be used witkiructured procedure statementsi.e.initial
andalways statements. Since we want the output to be continuously aklidys
statement is the choice.

In additional, since only procedural assignments are allowed valveys (as well as
initial) statement, outpyt has to be declared e=y instead of the defaultire .

/I CprE 465 Lab 1 Step 6.3
/Il Your name

module mux4tol (s, a0, al, a2, a3,y);
input [1:0] s; Il 2-bit select input
input a0, al, a2, a3;
output y;
regy;

always

#2 if (s == 2'b00)
y =ao0;

else if (s == 2'b01)
y=al;

else if (s == 2'b10)
y =az;

else
y=a3;

endmodule

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 19 of 47

As we learn in Step 4.2, there must be some delay withatvaays statement. Otherwise,
we will run into an infinite loop.

Re-simulate and open waveforms. Does the output look the same?

6.5 (TI) The output may look OK, but there isarious flawin our mux4tol design. To exhibit
such a bug, let us change the delay inallaays statement to 3 time units.

always

#3 if (s == 2'b00)
y = ao;

else if (s == 2'b01)
y =al,

else if (s == 2'b10)
y = az;

else
y =as3;

Re-simulate and open the waveforms. When it asks you if you want to renetlist, you should
click NO, because we haven't changed the cell, we have just changed the testfixture. If you
click onYES, it will give the same results, but it will take a little longer, because it will
renetlist that didn't need renetlisted. Naturally, we would expect the delay between the
inputs and output to be 3 ns, but it is NOT. In fact, at some events, the delays are 1 ns. At
other events, the delays are 2 ns and 3 ns. What is wrong?

6.6 (Q & Tl) Inthealways statement of our mux4tol, we actually asWedilog to re-
evaluate the outpwvery 3 ns instead of evaluating the output 3 ns after the inputs. To
account for such behavior, we need to modify the waglihays statement is triggered.

always @(s)

#3 if (s == 2'b00)
y = ao;

else if (s == 2'b01)
y =al,;

else if (s == 2'b10)
y = a2z,

else
y =as3;

The at characte@, is theevent capturer/recognizer i.e. wheneves value changes (either
s[1] ors[0]), thealways statement will be triggered and executed. Otherwise, nothing
is executed.

This sounds like it should fix the problem. In fact, a re-simulation will give the right
waveforms this time. This is deceiving, because it is still not correct. If you are not
convinced, try the following testfixture.

initial

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 20 of 47

begin
s = 2'b00;
{a3, a2, al, a0} = 4'b0001;

#4 a0 = 1'b0; #4 a0 = 1'bl;
#2 s =2'001; #4 al = 1'b1; #4 al = 1'b0;
#2 s =2'010; #4 a2 = 1'b1; #4 a2 = 1'b0;
#2 s =2'011; #4 a3 =1'b1; #4 a3 = 1'b0;

#2 s = 2'000; {a3, a2, al, a0} = 4'b0010;
#4 a0 = 1'b1; #4 a0 = 1'b0;

#2 s =2'001; #4 al = 1'b0; #4 al = 1'bl;

#2 s =2'010; #4 a2 = 1'b1; #4 a2 = 1'b0;

#2 s =2'011; #4 a3 =1'b1; #4 a3 = 1'b0;

#12 $finish;
end

What the above testfixture does is chamg@value whers is2'b00 , changeal value
whens is2'b01 , and so on. Since this is a Mux the output should follow the input that is
selected. Does the waveform appear to be correct?

6.7 (TI) To fix it, we need tanclude all the inputsin the event recognizing list.

always @(sora0Ooralora2ora3)
#3 if (s == 2'b00)
y =ao0;
else if (s == 2'b01)
y=al;
else if (s == 2'b10)
y =az;
else
y=a3;

Re-simulate and open waveforms. Is the output correct now?

In fact, there is another way of writing the nestetien-else statement. Similar to
programming languages, Verilog also supportsithéiway branching construct through
thecase statement. Hence, tlifethen-else statement above can be rewritten.

always @(sora0Ooralora2ora3)
#3 case (s)
2'b00: y = a0;
2'h0l1:y = al;
2'b10:y = a2;
2'bll:y=a3;
default: $display("Unknown select = %b", s);
endcase

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 21 of 47

Don't you agree that the code usingcthee statement is more readable and concise? The
default statement is executednbne of the alternatives match. You may wonder what
other possible values canbe. Well, there ar2'bOx , 2'bx1 , etc.

The$display is a system task thdisplaysthe string in its argument, the syntax is very
similar toprintf() in C. Theformat specifier, %b, is used to print the argument in
binary format and the width was declared, in this case, 2 bits.

6.8 (TI) We may also use thguasi-continuous(procedural continuous) assignment as follow,
instead of including the inputs in the event recognizing list above.

always @(s)
#3 case (s)
2'b00: assign y = a0;
2'b01: assigny = al;
2'b10: assigny = a2;
2'bl11: assigny = ag3;
default: $display("Unknown select = %b", s);
endcase

Modify your behavioral cellview and re-simulate. Does the output look ok?

When aquasi-continuous(procedural continuous) assignment is executed, it becomes
active — it continuously assigns the RHS to the LHS until daactivatedusing

deassign statement, or another quasi-continuous assignment of same LHS is executed,
which overrides the previous assignment. However, de¢ay associated with quasi-
continuous assignment is only applied during the activation of the assignment, but it does
not delay the changes of input to be assigned to the output. Hence, quasi-continuous does
not deliver what we want. Nevertheless, if delay is ignored, then quasi-continuous
assignment will work equivalently as the inputs in the event recognizing list.

However, if you use the testfixture in Step 6.3 instead (I Hope you followed my advice and
made seperate testfixtures or this will unnecessary busy work). The output will be the same
as that of Step 6.7. Why?

6.9 (TI) You may wonder why not take advantage of the 2-to-1 Mux we have designed earlier to
build a 4-to-1 Mux. Sure, we can. A 4-to-1 Mux can be built using 3 2-to-1 Mux's as shown
in Figure 6.9 below. Let us learn how to design circigtarchically usingstructural
modeling.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 22 of 47

So
a, S,
a,
S, y
a,
a,

Figure 6.9 Schematic for 4-to-1 Mux using 2-to-1 Mux's

We will usestructural cellview for structural modeling. Create a cellview named
structural for mux4tol cell. Edit thestructural cellview, useVerilog-Editor as the
Tool still. If a box comes up besides the editor, Click on YES.

In the editor window, type in the followingerilog code.

/I Verilog HDL for "cpre465", "mux4tol" " structural”

/I CprE 465 Lab 1 Step 6.9
/Il Your name

module mux4tol (s, a0, al, a2, a3,y);
input [1:0] s; Il 2-bit select input
input a0, al, a2, a3;
output y;

wire w0, wi;

mux2tol moO (s[0], a0, al, w0);
mux2tol m1 (s[0], a2, a3, wl);
mux2tol m2 (s[1], w0, w1, y);

endmodule

We need additionalire declaration for aninternal connection amonginstances
Although thewire declaration is optional iWerilog, explicit declaration is strongly
encouraged. Personally, this is one of the aspects I'Manlkog should enforce not only for
readability, but also for being less error-prone.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 23 of 47

7.1

Theinstantiation statementis first specified with thenaster module in this case
mux2tol . Following that is thénstance name which must be unique within the upper
module instantiated. There are 3 instances of mux2tol, nan@eiglandm?2

The parameters within the parentheses areahidist. This method of port connection is

known asconnection by order(or positional association), where the ports of the module to
which the signals/nets of the instance connect are based on the order the ports declared in the
module instantiated. For examps§Q] connects to inpwt of instancemQ w0 connects to

outputy of instancan(a2 connects to inpw0 of instancenl, wO connects to inpua0 of
instancem?2 etc.

Save and close the editor. Opendtnectural cellview in read mode and invokéC. In the
"VLOGIF DESIGN-SWITCHdialog box that pops up, click ofes.

Edit the testfixture since we already created it before. Use the testfixture shown in Step 6.3.
Simulate and open waveforms. Is the output correct? Why are there glitches (static
hazards)? Explain.

Behavioral Design for Synchronous Circuits

We have done quite a bit of combinational circuit behavioral design so far. Let us switch
gears tasequential / synchronous circuit We will design a D-flipflop. Create a cell
nameddff , and create a cellview nambedhavioral for dff cell. Edit thebehavioral
cellview.

/I Verilog HDL for "cpre465", "dff* " _behavioral"

/I CprE 465 Lab 1 Step 7.1
/Il Your name

module dff (clk, d, q);
input clk, /I Positive edge-triggered
d;
output g;
reg q;

always @(posedge clk)
q=d

endmodule

Since a D-flipflop is ardge-triggereddevice, we only want to update the outqut clock
edges. Let it be triggered positive (rising) edge of the clock. Treways statement is
specified to be triggered at the positive edge of the iclgutthrough the keyword
posedge in the event recognizing list. Hence, the procedural assigmredt will be

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 24 of 47

executed only at every rising edge of inplkt . Alternatively, to recognize a negative
(falling) edge, use the keyworatgedge .

Save and close the behavioral cellview. Invak& and simulate using the testfixture as
shown below.

/I Test fixture for dff cell
/Il Your name

initial

begin
clk = 1'h0;
d = 1'bO0;

#25d = 1'bl;
#10 d = 1'b0;
#40d = 1'bl;
#30 d = 1'b0;
#10d = 1'bl;

#30 $finish;
end

always
#10 clk = ~clk; /I Free-running clock at 50 MHz

Is the output correct?

7.2 You should have noticed that the 1st 10 ns of ogtpsix (undefined/unknown). This is
because thdefault initialized value for reg is undefined, until a new value is assigned
to it. In real life, a register / flipflop circuit will start with a definite value, but undetermined
(can be 0 or 1) during power up, insteac ofHence, we can modify our D-flipflop, so that
the outpul starts with a definite value, let's s@y

Modify the behavioral cellview of your dff and re-simulate.

module dff (clk, d, q);
input clk, /I Positive edge-triggered
d;
output g;
reg q;
initial
g =1'b0; // Initialized to O

always @(posedge clk)
q=d;

endmodule

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 25 of 47

7.3

As you learned in Step 4.1, thmtial statement will only be executed once at the
beginning of simulation (since no delay is imposed). Hence, the aptpilltstart with
valueO instead of undefinex.

How is the output now?
(Q) Well, a 2nd thought — maybe it is better to adésynchronous reseto our D-
flipflop instead of just initialization to 0. This gives us more control and extends the

usefulness of our D-flipflop.

Modify the behavioral cellview of your dff again.

module dff (ar, clk, d, g);

input ar, /I Active-low
clk, I/l Positive edge-triggered
d;

output g;

reg q;

always @(negedge ar or posedge clk)
if (lar)
g =1'h0;
else
q=d;

endmodule

Let's make thar (asynch reset) input to laetive low, i.e. when inpuar is 0 @sserted,
the outputg will be forced to O until inpuér changes to ldgasserted. Now, the outpug
will be changed by 2 different events, i.e. wiaenis asserted, and at the rising edgelkf .
Sincear is active low, we detect tHalling edgeof ar as well as rising edge ofk ,
which will execute the body of trdways statement.

Since there are 2 different possible events that triggexltveys statement, we need to
checkwhich event. We check the valueanf because it hgsrecedenceover theclk

edge. Therefore, dr is assertedy will be assigned to 0. Otherwise, it is the rising edge of
clk, andq is assigned to input. Save and close the dff behavioral. A Port Order Mismatch
window will pop up. Click on the Regenerate symbol button (near the bottom). Since we
added an input to the cell, the symbol needs to be updated.

We also need to include the additioaal input to the testfixture. Re-simulate with the
testfixture below.

initial

begin
{ar, clk} = 2'b10;
d = 1'b0;

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 26 of 47

#5 ar = 1'b0;
#5 ar = 1'b1;

#15d = 1'bl;
#10 d = 1'b0;
#40d = 1'bl;
#30 d = 1'b0;
#10d = 1'bl;

#30 ar = 1'b0;
#10 ar = 1'b1;

#20 ar = 1'b0;
#10 ar = 1'b1;

#30 $finish;
end

always
#10 clk = ~clk; I/l Free-running clock at 50 MHz

Is the output correct?

7.4 In the cases which outpgitdepends omultiple events the event recognizing list of the
always statement can become quite long, and the body @fitveeys statement needs to
check all possible combinations of events. Wesgih both events into 2 different
always statements. Modify the behavioral cellview of your dff again.

module dff (ar, clk, d, q);

input ar, /I Active-low
clk, /I Positive edge-triggered
d;

output q;

reg q;

always @(ar)
if (lar)

assign g = 1'b0; /I Quasi-continuous assignment
else
deassign q; /I Disable quasi-continuous

always @(posedge clk)
q=d; /I Procedural assignment

endmodule

Wheneveilar is asserted, outpgt must be forced to 0, regardless of the valua af the
rising edge otlk . Andar should remain O untdr is deasserted. Therefore, we need to
use aguasi-continuous assignmentwhich will override the procedural assignment to the
same register in this case]. Hence, whear is asserted, even though the 2hdays

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 27 of 47

statement is also triggered at rising edgellof, the procedural assignment has no effect on
g because the quasi-continuous assignmegt isractive.

However, most of time, we tend to forget to disable the quasi-continuous assignment when it
is no longer needed, which results in the outptd be 0 even whear has been deasserted.
Hence, we need wisable/deactivatethe quasi-continuous assignmengtd ar is 1

(deasserted), so that the outguwill follow input d at the next rising edge ofk .

Re-simulate. Is output the same as that in Step 7.37?

7.5 Now, we want to add an additional outgbar , which is thecomplementof outputg.

Modify the behavioral cellview of your dff again.

module dff (ar, clk, d, g, gbar);

input ar, /I Active-low
clk, [/l Positive edge-triggered
d;

output g, gbar;

reg g, gbar;

always @(ar)
if (1ar)

assign {q, gbar} = 2'b01; /I Quasi-continuous assignment
else
deassign {q, gbar}; // Disable quasi-continuous

always @(posedge clk)

begin
g=d; /I Procedural assignment
gbar = ~d;

end

endmodule

In thealways statement that recognizas, we use theoncatenation operatorto

combine bothg andgbar for quasi-continuous assignment as well as deassignment.
Alternatively, we can use separate assign and deassign statemgbtx forHowever, if

we use more than one statement withinitheandelse clauses, we need to enclose them
within ablock (either sequential or parallel). Such usage is shown ialteys statement
that recognizes positive edgeatk . Since assignments ¢pandgbar are concurrently,
we may also ustrk-join (parallel block) instead dfegin-end (sequential block).

Since we only added an output port, we don’t need to modify our testfixture. Re-simulate.
Are the outputs correct?

7.6 In fact, since the outpgbar is always the negation of outpytwe can describe it in a
more concise way.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 28 of 47

Modify the behavioral cellview of your dff as again.

module dff (ar, clk, d, g, gbar);
input ar, /I Active-low
clk, /I Positive edge-triggered
d;
output g, gbar;
reg g;

always @(ar)
if (1ar)
assign g = 1'b0; /I Quasi-continuous assignment
else
deassign q; /I Disable quasi-continuous

always @(posedge clk)

q=d; /I Procedural assignment
assign gbar = ~q; I/l Continuous assignment
endmodule

Instead of specifyingbar in every placey is specified, we can usecantinuous
assignmentto drivegbar as the negation @f. However, aontinuous assignment
requires the LHS, i.@bar , to be avire netinstead of aeg .

Is outputgbar the same as that in Step 7.5?

7.7 (TI) Next, we will add some delay to our D-flipflop. Instead of specifying delay as constant,
let us explore the use of tharameter type.

Modify the behavioral cellview of your dff again.

module dff (ar, clk, d, g, gbar);

input ar, /I Active-low
clk, I/l Positive edge-triggered
d;

output g, gbar;

reg q;

parameter dly = 2; I/l Constant for delay

always @(ar)

#dly if (lar)

assign g = 1'b0; /I Quasi-continuous assignment
else

deassign q; /I Disable quasi-continuous

always @(posedge clk)
q = #dly d; /I Procedural assignment,

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 29 of 47

/I intra-assignment delay
assign #dly gbar = ~q; I/l Continuous assignment

endmodule

The delay associated with the procedural assignmentrothealways statement

triggered by positive edge ofk is called anntra-assignment delay i.e. the RHS is

evaluated immediately when executed, but there is a wait after the delay before assignment
to the RHS. Therefore, the intra-assignment delay is equivalent to the following.

reg tmp;

always @(posedge clk)
begin

tmp =d;

#dly q = tmp;
end

Use ofparameter for aconstantis strongly encouraged. One advantage of using
parameter is — if we decide to use a different value for delay, we can just maxtieit

instead of everywhere it is used. Another main advantage is — values of the parameter can
beoverridden separatelyfor different instancesof the same modules throughfparam
statement, or through module-instance-parameter-value-assignment. This allows separate
customization of instances based on a single module declaration. Rather than discussing
here, | will leave it to you to further explore this powerful feature.

We have examined the output through waveforms. We can alsedklg-XL to log the
changes of signals as an ASCII text file. We will §is®onitor system task to help us
capture the changes Edit your testfixture and add the following:

initial
$monitor($time, ", ar = %b, clk = %b, d = %b, q = %b, gbar = %b",
ar, clk, d, g, gbar);
initial
begin

NOTE: Do not break the initial statement into two lines with
enter, if it spills over into the next line, that is ok.

The signals to be monitored are listed as arguments 8htbbaitor system task. The
system task$time , $stime and$realtime will not trigger$monitor . Hence,
whenever any of these signals changes v&menitor will be executed and print the
current time. The binarfprmat specifier is %b, which tellssmonitor to display the
signals in binary format. Other format specifiers%egoctal),%d(decimal),%h
(hexadecimal)%ov (strength) %t (time), %s (string),%c (character)%f (floating), %e

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 30 of 47

(scientific), %g(floating or scientific, whichever is shorter). There is a specifier that needs
no argument%mwhich displays the hierarchical name that contains the specifier.

An optionalwidth specifier may be used in conjunction with the format specifier, %8
displays the signal in decimal format and pad leading spaces if the value is fewer than 8
digits in decimal ;%0Hdisplays signal in hexadecimal and uses uppercase for hex digits,
and does not pad any leading spaéé.3f displays a real variable with 3 digits after the
decimal point, etc.

After the$monitor system task is activated, it can therdeactivatedandre-activated
using$monitoroff and$monitoron system tasks respectively during the simulation.

Save and close your testfixture. Re-simulate.

To view the simulation log, choosée | View Log File from VIC window. To print the

simulation log, 1st choodsdle | Save Astype your favorite file name in tHale Name

field. Open the file and edit it so that only thgortant data is present (tre@mulation

results), you may also want to add your name, etc. Save and print it. | also plan on making
this step so that it will be more automated in the future, but don't have enough time, right
now.

Besides thelistributed delays shown aboveyerilog also provides another way of

annotating delays, nametyodule path delays through thespecify block (specify-
endspecify keywords pair). Instead of associating delays at assignments, delays are
specified between changes at inputs and changes at corresponding outputs. Each input to
output path can be specified separately. These path delays are commonly used for
characterizing standard cells Nevertheless, there are restrictions on the input and output
ports to be dualified' for path delay — the output ports must only be driven by a non-bi-
directionalVerilog primitive gates. Hence, our behavioral design here does not "qualify".
Therefore, you will be left to explore this feature, if you wish.

7.8 (Q & TI) Let us say we want a 4-bit D-flipflop instead of 1-bit. Well, we can build it using
the 1-bit D-flipflop we have designed. Create a cell nadfi@d , and create a cellview
namedstructural for dff4 cell. Edit thestructural cellview.

Instantiate the 1-bit D-flipflop and wire them together.

/I Verilog HDL for "cpre465", "dff4" " _structural”

/I CprE 465 Lab 1 Step 7.8
/I Your name

module dff4 (ar, clk, d, g, gbar);

input ar, /I Active-low
clk; /I Positive edge-triggered
input [3:0] d;

output [3:0] q, gbar;

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 31 of 47

dff dO (ar, clk, d[0], q[0], gbar[Q]);
dff d1 (ar, clk, d[1], q[1], gbar[1]);
dff d2 (ar, clk, d[2], q[2], gbar[2]);
dff d3 (ar, clk, d[3], q[3], gbar[3]);

endmodule

Save and close the structural cellview. Invdk€, and simulate with the testfixture below.
Note that even though podsq, andgbar are not scalars, tlébspecifier will
automatically print them in the size they were declared, in this case, 4-bit vectors.

/I Test fixture for dff4 cell
/Il Your name

initial
$monitor($time, ", ar = %b, clk = %b, d = %b, q = %b, gbar = %b",
ar, clk, d, q, gbar);

initial

begin
{ar, clk} = 2'b10;
d = 4'h6;
#5 ar = 1'b0;
#5 ar = 1'b1;
#15d = 4'hA;
#10 d = 4'h4;
#40 d = 4'hD;
#30d = 4'h3;
#10 d = 4'hE;
#30 ar = 1'b0;
#10 ar = 1'b1;
#20 ar = 1'b0;
#10 ar = 1'b1;
#30 $finish;

end

always
#10 clk = ~clk;

Open waveforms. For synchronous circuits, we always arrange our signals in the order of
asynch inputs clock inputs, control inputs, data inputs anddata outputs, in this case,

the order isar , clk ,d, g, gbar . Rearrange the waveforms by dragging (holding MMB)
them to the appropriate positions.

Are the outputs correct?

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 32 of 47

7.9 (TI) Instead of structural modeling, we can also design our 4-bit D-flipflop using behavioral
modeling. Create a cellview namieehavioral for dff4 cell. Edit thebehavioral
cellview.

The behavioral model of 4-bit D-flipflop is similar to the 1-bit D-flipflop in Step 7.7 with
the inputd and outputg] andgbar extended td-bit vectors.

/I Verilog HDL for "cpre465", "dff4" " _behavioral"

/I CprE 465 Lab 1 Step 7.9
/Il Your name

module dff4 (ar, clk, d, g, gbar);

input ar, /I Active-low
clk; I/l Positive edge-triggered
input [3:0] d;
output [3:0] q, gbar;
reg [3:0] q;

parameter dly = 2;

always @(ar)
#dly if (lar)
assign q = 4'b0;
else
deassign q;

always @(posedge clk)
q = #dly d;

assign #dly gbar = ~q;

endmodule

Save and close the behavioral cellview. Invaké. In the VLOGIF DESIGN-SWITCH
dialog box that pops up, click ores. We will use the same testfixture, hence, no
modification is necessary. Re-simulate. Similarly, rearrange the waveforms. Are the
outputs the same?

8. Cell Organization using Categories

8.1 Before we quiCadencelet us organize all the cells we created intategory called
Labl. As convention, we alwayspitalize the leading alphabet for category name.

In Library Managerwindow click theLMB oncpre465to highlight it. In theLibrary
Manager go toEdit | Category-> | New... In theNew Categoryform, typeLabl in
Category Name Highlight all the cells in thlot In Category sub-window and click the --
---> arrow. Now they all should appear in theCategory sub-window. Click orOK.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 33 of 47

Now in theLibrary Managerwindow, there should belabl category undecpre465
library.

What if we didn't get all the cells we wanted in the category? Double clicklahin the
Library Manager Now we could add more cells into the category if we had to.

8.2 When done, quitadencebefore logging out frortiP-UX by choosingFile | Exit... in CIW.
Click onYES.

9. Summary of Verilog Syntax

9.1 Module & Instantiation of Instances

A Module in Verilog is declared within the pair of keyword®dule andendmodule .
Following the keywordnodule are thenodule nameandport interface list.

module my_module (a, b, ¢, d);
input a, b;
output ¢, d;

endmodule

All instancesmust benamed except the instances of primitives. Only primitivesverilog
can haveanonymous instancesi.e.and, or , nand, nor , xor , xnor , buf , not ,
bufifl , bufi0 ,notifl ,notif0 , nmos, pmos, cmos, tran , tranifl |, tranifO
rnmos, rpmos, rcmos , rtran |, rtranifl | rtranifO

Port Connections at Instantiations
In Verilog, there are 2 ways of specifying connections among ports of instances.

a) By ordered list (positional association)

This is the more intuitive method, where the signals to be connected must appear in the

module instantiation in the same order as the ports listed in module definition.

b) By name(named association)

When there are too many ports in the large module, it becomes difficult to track the order.

Connecting the signals to the ports by the port names incnesskbility and reduces
possible errors.
module top;

reg A, B;

wire C, D;

my_module m1 (A, B, C, D); // By order
my_module m2 (.b(B), .d(D), .c(C), .a(A)); /l By name

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 34 of 47

endmodule

Parameterized Instantiations

The values of parameters candwerridden during instantiation, so that each instance can
be customized separately. Alternativelgfparam statement can be used for the same
purpose.

module my_module (a, b, ¢, d);
parameter x = 0;

input a, b;
output ¢, d;

parametery =0, z = 0;
endmodule

module top;
reg A, B;
wire C, D;

my_module #(2, 4, 3) m1 (A, B, C, D);
/I x=2,y=4,z=3ininstance ml

my_module #(5, 3, 1) m2 (.b(B), .d(D), .c(C), .a(A));
/I x=5,y=3,z=1ininstance m2

defparam m3.x =4, m3.y =2, m3.z = 5;
my_module m3 (A, B, C,D); //x=4,y=2,z=5ininstance m3

endmodule

9.2 Data Types
There are 2 groups of data typed/erilog, namelyphysical andabstract.

a) Physical data type
* Net wire ,wand, wor, tri ,triand ,trior). Default value igz. Used mainly in
structural modeling.
* Register feg). Default value ix. Used in dataflow/RTL and behavioral modelings.
» Charge storage nodeifeg). Default value ix. Used in gate-level and switch-
level modelings.

b) Abstract data type — used only in behavioral modeling and test fixture.
* Integer (nteger) stores 32-bit signed quantity.
* Time {ime) stores 64-bit unsigned quantity from system ttgke .
* Real ¢eal) stores floating-point quantity.
» Parametergarameter) substitutes constant.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 35 of 47

* Event gevent) is only name reference — does not hold value.

Unfortunately, the current standard\grilog does not support user-defined types, unlike

VHDL. :/\(

9.3 Values & Literals

Verilog provides 4 basic values,

a) 0 — logic zero or false condition

b) 1 — logic one, or true condition

c) x — unknown/undefined logic value. Only for physical data types.
d) z — high-impedance/floating state. Only for physical data types.

Constants iVerilog are expressed in the following format:
width' radix value
width — Expressed in decimal integer. Optional, default is inferred from value.
' radix — Binary(), octal@), decimall), or hexadecimah(). Optional, default is decimal.
value — Any combination of the 4 basic values can be digits for radix octal, decimal or
hexadecimal.

4'h1011
234
2'h5a
3'0671
4b'1x0z
3.14
1.28e5

/I 4-bit binary of value 1011
I/l 3-digit decimal of value 234
/I 2-digit (8-bit) hexadecimal of value 5A
/I 3-digit (9-bit) octal of value 671
Il 4-bit binary. 2nd MSB is unknown. LSB is Hi-Z.
Il Floating point
/I Scientific notation

There are 8 different strength levels that can be associated by values 0 and 1.

Strength -~
Level Abbreviation Type Degree

supplyO Su0 driving strongest
supplyl Sul
strongO St0 driving A
strongl Stl

pullo Pu0 driving

pulll Pul

large0 La0 charge storage

largel Lal

weak0 We0 driving

weakl Wel
mediumO MeO charge storage
medium1 Mel

small0 SmO charge storage

smalll Sm1 Y
highz0 Hiz0 weakest
highz1 Hiz1

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 36 of 47

In the case ofontention, thestronger signal dominates Combination of 2 opposite
values of same strength results in a value.of

St0, Pul = St0

Sul,lLal = Sul

PuO, Pul = PuX

9.4 Nets & Registers

Net is theconnectionbetween ports of modules within a higher module. Net is used in test
fixtures and all modeling abstraction including behavioral. Default value of mghiZ

(z). Nets just onlypass valuesrom one end to the other, i.e. it does not store the value.
Once the output device discontinues driving the net, the value in the net becomesZjigh-Z (
Besides the usual netife), Verilog also provides special netsdr , wand) to resolve the
final logic when there is logic contention by multiple drivexis. , trior andtriand are

just the aliases fawire , wor andwand for readability reason.

Register is thatoragethat retains (remembers) the value last assigned to it, therefore,
unlikewire , it needs not to be continuously driven. Itis only used in the test fixture,
behavioral, and dataflow modelings. The default value of a registekimown (x).

Other special nets Merilog are the supplies like MV, (supplyl), Gnd gupplyO),
pullup (pullup) and pulldown gulldown), resistive pullupt¢il) and resistive
pulldown ¢ri0), and charge storage/capacitive nddeey) which hasstorage
strength associated with it.

9.5 Vectors & Arrays

Physical data typeqwire ,reg ,trireg) can be declared aector/bus (multiple bit

widths). AnArray is a chunk of consecutive values of the same type. Datargges

integer andtime can be declared as an array. Multidimensional arrays are not permitted
in Verilog, however, arrays can be declared for vectored register type.

wire [3:0] data; /I 4-bit wide vector
reg bit [1:8]; I/ array of 8 1-bit scalar
reg [3:0] mem [1:8]; [l array of 8 4-bit vector

Therange of vectors and arrays declared can start from any integer, and in either ascending
or descending order. However, when accessing the vector or arralcét{subrange)
specified must be within the range and in the same order as declared.

data[4] [/l Out-of-range
bit[5:2] /' Wrong order

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 37 of 47

There is no syntax available to access a bit slice of an array element — the array element has
to be stored to eemporary variable.

/I Can't do mem[7][2]

reg [3:0] tmp; /I Need temporary variable
tmp = mem[7];

tmp[2];

9.6 Tasks & Functions

Tasks and functions Merilog closely resemble the procedures and functions in
programming languages. Both tasks and functiondefieed locallyin the module in
which the tasks and functions will be invoked. iNitial oralways statement may be
defined within either tasks or functions.

Tasks and functions are differenttask may have 0 or more arguments of typaut ,

output orinout ;function must have at least one input argument. Tasks do not
return value but pass values throughput andinout arguments; functions always

return a single value, but cannot hawgput orinout arguments. Tasks may contain
delay, event or timing control statements; functions may not. Tasks can invoke other tasks
and functions; functions can only invoke other functions, but not tasks.

module m;
reg [1:0] r1;
reg [3:0] r2;
reg r3;

always
begin
r2 = my_func(rl); /I Invoke function
my_task (r2, r3); /I Invoke task
end
task my_task;
input [3:0] i;
output o;
begin
end
endtask

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 38 of 47

function [3:0] my_func;
input [1:0] §;
begin
my_func = ...; /I Return value

end
endfunction

endmodule

9.7 System Tasks & Compiler Directives

System tasks are thoeiilt-in tasks standard inVerilog. All system tasks are preceded with
$. Some useful system tasks commonly used are:

$display(" format ", v1, v2,..);/l Similar format to printf() in C

$write(* format ", v1, v2,..); [l $display appends newline at the end,
/I but $write does not.
$strobe(" format ", v1, v2,..); Il $strobe always executes last among

/I assignment statements of the same
/I time. Order for $display among

/I assignment statements of the same
/[time is unknown.

$monitor(" format ", v1, v2,..);/l Invoke only once, and execute (print)
/I automatically when any of the
/I variables change value.

$monitoron; /I Enable monitoring from here

$monitoroff; /I Disable monitoring from here

$stop; /I Stop the simulation

$finish; /I Terminate and exit the simulation

$time; /I Return current simulation time in 64-bit integer
$stime; /l Return current simulation time in 32-bit integer
$realtime; /l Return current simulation time in 64-bit real
$random(seed); /I Return random number. Seed is optional.

Compiler directives are instructions\erilog duringcompilation instead of simulation.
All compiler directives are preceded with

‘define alias text /I Create an alias. Aliases are replaced/substituted
/I prior to compilation.

“include file /I Insert another file as part of the current file.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 39 of 47

“ifdef cond
“else
“endif

9.8 Operators

/l'If cond is defined, compile the following.

Operator . Precedence
Symbol Function Group Operands Rank
! logical negation Logical unary 1
~ bitwise negation Bitwise unary
& reduction and Reduction unary
| reduction or Reduction unary
A reduction xor Reduction unary
~& reduction nand Reduction unary
~| reduction nor Reduction unary
~N reduction xnor reduction unary
+ unary positive arithmetic unary
- unary negative arithmetic unary
* multiplication arithmetic binary 2
/ division arithmetic binary
% modulus arithmetic binary
+ addition arithmetic binary 3
- subtraction arithmetic binary
<< left shift shift binary 4
>> right shift shift binary
< less than relational binary 5
<= less than or equal relational binary
> greater than relational binary
>= greater than or equal relational binary
== equality equality binary 6
I= inequality equality binary
=== case equality equality binary
== case inequality equality binary
& bitwise and bitwise binary 7
A bitwise xor bitwise binary 8
N~ bitwise xnor bitwise binary
| bitwise or bitwise binary 9
&& logical and logical binary 10
Il logical or logical binary 11

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 40 of 47

?: conditional ternary 12
= blocking assignment assignment binary 13
<= non-blocking assignment assignment binary
1 bit-select

[:] part-select
{ concatenation

{{} replication

Operators within the same precedence rank are assoftiatedeft to right .

Verilog hasspecial syntax restrictionon using bothieduction andbitwise operators within
the same expression — even though reduction operator has higher precedence, parentheses
must be used to avoid confusion with a logical operator.

a & (&b)
a|(|b)

Since bit-select, part-select, concatenation and replication operatopsinssef delimiters

to specify their operands, there is no notion of operator precedence associated with them.

9.10 Structured Procedures

There are 2 structured procedure statements, nanitedy andalways . They are the
basic statements for behavioral modeling from which other behavioral statements are
declared. Thegannot be nestegdbut many of them can be declared within a module.

a) initial statement
initial statement executexactly onceand becomemactive upon exhaustion. If
there are multiplénitial statements, they all start to execute concurrently at time 0.

b) always statement
always statementontinuously repeatsitself throughout the simulation. If there are
multiple always statements, they all start to execute concurrently at tinad@ays
statements may be triggered by events usingvant recognizing list@() .

9.11 Sequential & Parallel Blocks
Block statements groupultiple statementstogether. Block statements can be either
sequential or parallel. Block statements candmtedor named for direct access, and
disabledif named.

a) Sequential block

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 41 of 47

Sequential blocks are delimited by the pair of keywbkelsin andend. The
statements in sequential blocks are executed iartter they are specified, except non-
blocking assignments.

b) Parallel block
Parallel blocks are delimited by the pair of keywdi@®& andjoin . The statements in
parallel blocks are executedncurrently. Hence, the order of the statements in parallel
blocks are immaterial.

9.12 Assignments

a) Continuous assignment
Continuous assignments are alwagive — changes in RHS (right hand side)
expression is assigned to is LHS (left hand side) net.

LHS must be a scalar or vectorradts and assignment must be perfornoeiside

procedure statements.
assign #delay net = expression;

Delay may be associated with the assignment, where new changes in expression is
assigned to net after the delay. However, note that such delay isicatte delay, i.e.

if the expression changes again within the delay after the 1st change, only the latest
change is assigned to net after the delay from 2nd change. The 1st change within the
delay is not assigned to net.

b) Procedural assignment
LHS must be a scalar or vectorrefjisters and assignment must be perfornreside
procedure statementsiial oralways). Assignment is only active (evaluated and
loaded) when control is transferred to it. After that, the value of register remains until it
is reassigned by another procedural assignment.

There are 2 types of procedural assignments:

* Blocking assignment
Blocking assignments are executed in the order specified in the sequential block, i.e. a
blocking assignment waits for previous blocking assignment of the same time to

complete before executing.
register = expression;

* Nonblocking assignment
Nonblocking assignments are executed concurrently within the sequential blocks, i.e. a
nonblocking assignment executes without waiting for other nonblocking assignments of

occurring at the same time to complete.
register <= expression;

Intra-assignment delaymay be used for procedural assignment.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 42 of 47

register = #delay expression;

The expression is evaluated immediately, but the value is assigned to register after the
delay. This is equivalent to

reg temporary;

temporary = expression;

#delay register = temporary;

¢) Quasi-continuous(procedural continuoug)ssignment
The LHS must be a scalar or vectoregisters and assignment must mside
procedure statements.

Similar to procedural assignment, however quasi-continuous assignment bactvees
andstays activefrom the point of the assignment until itdsactivatedthrough
deassignment. When active, quasi-continuous assigrowemitdes any procedural
assignment to the register.

begin
assign register = expressionl; // Activate quasi-continuous

register = expression2; /I No effect. Overridden by active
/I quasi-continuous

assign register = expression3; // Becomes active and overrides
/I previous quasi-continuous

deassign register; // Disable quasi-continuous
register = expression4; /I Executed.
end

There isno delayassociated with quasi-continuous assignment. . Only the activation may
be delayed. However, once itastivated, any changes in expression will be assigned to the
registenimmediately.

9.13 Timing Controls

a) Delay-based
Execution of a statement can be delayed by a fixed-time period using the # operator.

#num statement; // Delay num time from previous statement before
/I executing

Intra-assignment delay

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 43 of 47

This evaluates the RHS expression immediately, but delays for a fixed-time period before
assigning to LHS, which must be a register.

register = #num expr; // Evaluate expr now, but delay num time unit
/I before assigning to register

b) Event-based
Execution of a statement is triggered by the change of value in a register or a n@. The
operator captures such change of value withireitegnizing list To allow multiple
triggers, us@r between each event.

@(signal) statement; /I Execute whenever signal changes values
@(posedge signal) statement;// Execute at positive edge of signal
@(negedge signal) statement;// Execute at negative edge of signal
register = @(signal) expr; // Similar to intra-assignment
always @(s1 or s2 or s3) /I Enter always block when either s1, s2

/I or s3 changes value

Level-sensitive
The @is edge-sensitive. To achieve level-sensitive, use additfonstiatement to check
the values of each event.

always @(signal)
if (' signal)

else

Alternatively, combination oflways andwait can be used. But, note theit is a
blocking statement, i.evait blocks following statement until the condition is true.

always
wait (event) statement; // Execute statement when event is true

c) Named-event
Event isexplicitly triggered (with -> operator) andecognized(with @operator). Note
that the named event cannot hold any data.

event my_event; /I Declare an event

always @(my_event) // Execute when my_event is triggered
begin

end
always

begin

if (..

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 44 of 47

-> my_event; /I Trigger my_event
end
9.14 Conditional Statements

The body only allows a single statement. If multiple statements are desired, block
statements may be used to enclose multiple statements in place of the body.

a) If-Then-Else
if (expr)
statement;

if (expr)
statement;

else
statement;

if (expr) statement;

else if (expr) statement;
else if (expr) statement;
else statement;

b) Case
case (expr)
valuel : statement;
value?2 : statement;
value3 : statement;

default : statement;
endcase

9.15 Loop Statements

The body only allows a single statement. If multiple statements are desired, block
statements may be used to enclose multiple statements in place of the body.

a) While
while (‘expr)
statement;

b) For
for ((init ; expr ; step)
statement;

c) Repeat
Iterations are based on a constant instead of conditional expression.
repeat (constant) /I Fix number of loops
statement;

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 45 of 47

d) Forever
forever /I Same as while (1)
statement;

References:

[1] "Verilog-XL Reference Manual ver 2.2." OpenBook, Cadence Design Systems, 1995.

[2] Samir Palnitkar. "Verilog HDL: A Guide to Digital Design and Synthesis." SunSoft Press,
1996.

[3] Donald Thomas, Phil Moorby. "The Verilog Hardware Description Language, 2nd ed."”
Kluwer Academic Publishers, 1994.

[4] Eli Sternheim, Rajvir Singh, Rajeev Madhavan, Yatin Trivedi. "Digital Design and
Synthesis with Verilog HDL." Automata Publishing Company, 1993.

Problem:

(T1) Design &-bit synchronous up/down counter with preset (loadand asynchronous reset
using

a) behavioral modeling

b) structural modeling witbit-slicing, i.e. instantiate 1-bit counters.

Use delay of 1 time unit in all assignments.

Begin with the following module declaration
module counter4 (ar, clk, load, up, d, q);

Hint for (b): You may need to add extra ports to your 1-bit “synchronous” counter.

Your grade depends on

a) efficiency of your designs, e.g. concise modeling using Verilog,
b) readability of your designs, e.g. proper indentations, comments,
c) effectiveness of your test benches, e.g. exhibition of worst-case.

Note If you choose to copy a design from a book, make sure you cite the reference.
Otherwise, you are plagiarizing. Your TA may ask you to explain the design to
demonstrate your understanding.

Questions:

1. Comment on the effectiveness of the test benches used in Steps 6.1, 6.2, 6.3, 6.6, 7.3 and
7.8. e.g., do they exhibit the worst case? How? Justify your comments, i.e. explain why you
think so.

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 46 of 47

2. What is the one thing all designs in a given library sha@agtencés DFII?

3. Given a design, is there a definite way to define the hierarchy? If yes, how? If no, why? If
necessary, support your argument with example.

4. Why are all complex digital circuits synchronous?

5. Go to the library or the web and search for articles or books, find out why and how someone
claimsVerilogis better thatvHDL and vice versa. Collect at least 3 justifications for both
sides of arguments. Limit each justification to maximum 2 sentences with optional example.
Cite your references.

6. Explain the differences between the 2 equality operatersand===. (Likewise, for
inequality operatord= and!==). lllustrate using simple examples\ferilog.

7. What are logical, bitwise, and reduction operators? Show a simple example for each type.

8. How does th&strobe system task differ from thedisplay = system task? Explain.

When are they typically used?

9. We know the outputs @ind gate andr gate given any combination 8fandl. Find out
the outputs of aand gate and aor gate if one or both the inputs are eitkesrz. Show
your answers in tabular form.

10. Let's say we replace the testfixture of Step 6.3 with the following testfixture. What is wrong
with the following testfixture? How can you fix it without changing the intended test?

reg [3:0] a;

initial

begin
assign {a3, a2, al, a0} = a;
for(a=0;a<16;a=a+1)

for(s=0;s<4;s=s+1)
#10;

#10 $finish;

end

11. Comment on the efficiency of the testfixture in the previous problem, assuming you fixed
the testfixture.

Turn-in List:

Last Updated: 01/11/99 9:54 AM

Cpr E 465 Laboratory: Tutorial Lab 1 (v1.1) — Behavioral Modeling and Simulation Page 47 of 47

1. Answers to questions above.

2. Waveforms of Steps 5.2, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.7, 7.8 and 7.9, and simulation
logs of Step 7.7, 7.8, 7.9. Include a caption for each waveform printed. State the
comparisons if asked in the given steps for all simulations.

3. Thebehavioral andstructural cellviews forcounter4 , behavioral cellview forcounterl , and
their test benches, simulation logs and waveforms.

This document is available at the following URLs

http://visi.ee.iastate.edu/~boke/cpre465/ps/labl.ps (postscript)
http://visi.ee.iastate.edu/~boke/cpre465/pdf/labl.pdfAadobe™ pdf)
http://visi.ee.iastate.edu/~boke/cpre465/doc/labl.do@s™ word)

Last Updated: 01/11/99 9:54 AM

