
CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

Blech! Ack! Oop! THPPFFT!

— Bill the Cat, “Bloom County” (1980)

14 Fast Fourier Transforms (November 7)

14.1 Polynomials

In this lecture we’ll talk about algorithms for manipulating polynomials: functions of one vari-
able built from additions subtractions, and multiplications (but no divisions). The most common
representation for a polynomial p(x) is as a sum of weighted powers of a variable x:

p(x) =

n
∑

j=0

ajx
j .

The numbers aj are called coefficients. The degree of the polynomial is the largest power of x; in
the example above, the degree is n. Any polynomial of degree n can be specified by a sequence
of n + 1 coefficients. Some of these coefficients may be zero, but not the nth coefficient, because
otherwise the degree would be less than n.

Here are three of the most common operations that are performed with polynomials:

• Evaluate: Give a polynomial p and a number x, compute the number p(x).

• Add: Give two polynomials p and q, compute a polynomial r = p + q, so that r(x) =
p(x) + q(x) for all x. If p and q both have degree n, then their sum p + q also has degree n.

• Multiply: Give two polynomials p and q, compute a polynomial r = p · q, so that r(x) =
p(x) · q(x) for all x. If p and q both have degree n, then their product p · q has degree 2n.

Suppose we represent a polynomial of degree n as an array of n + 1 coefficients P [0 .. n], where
P [j] is the coefficient of the xj term. We learned simple algorithms for all three of these operations
in high-school algebra:

Evaluate(P [0 .. n], x):

X ← 1 〈〈X = xj〉〉
y ← 0
for j ← 0 to n

y ← y + P [j] ·X
X ← X · x

return y

Add(P [0 .. n], Q[0 .. n]):

for j ← 0 to n
R[j]← P [j] + Q[j]

return R[0 .. n]

Multiply(P [0 .. n], Q[0 ..m]):

for j ← 0 to n + m
R[j]← 0

for j ← 0 to n
for k ← 0 to m

R[j + k]← P [j] ·Q[k]
return R[0 .. n + m]

Evaluate uses O(n) arithmetic operations.1 This is the best you can do in theory, but we can
cut the number of multiplications in half using Horner’s rule:

p(x) = a0 + x(a1 + x(a2 + . . . + xan)).

1I’m going to assume in this lecture that each arithmetic operation takes O(1) time. This may not be true
in practice; in fact, one of the most powerful applications of FFTs is fast integer multiplication. One of the
fastest integer multiplication algorithms, due to Schönhage and Strassen, multiplies two n-bit binary numbers in
O(n log n log log n log log log n log log log log n · · ·) time. The algorithm uses an n-element Fast Fourier Transform,
which requires several O(log n)-nit integer multiplications. These smaller multiplications are carried out recursively
(of course!), which leads to the cascade of logs in the running time. Needless to say, this is a can of worms.

1

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

Horner(P [0 .. n], x):

y ← P [n]
for i← n− 1 downto 0

y ← x · y + P [i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.
The multiplication algorithm, however, runs in O(n2) time. In the very first lecture, we saw a

divide and conquer algorithm (due to Karatsuba) for multiplying two n-bit integers in only O(n lg 3)
steps; precisely the same algorithm can be applied here. Even cleverer divide-and-conquer strategies
lead to multiplication algorithms whose running times are arbitrarily close to linear—O(n1+ε) for
your favorite value e > 0—but with great cleverness comes great confusion. These algorithms are
difficult to understand, even more difficult to implement correctly, and not worth the trouble in
practice thanks to large constant factors.

14.2 Alternate Representations: Roots and Samples

Part of what makes multiplication so much harder than the other two operations is our input
representation. Coefficients vectors are the most common representation for polynomials, but
there are at least two other useful representations.

The first exploits the fundamental theorem of algebra: Every polynomial p of degree n has n
roots r1, r2, . . . rn such that p(rj) = 0 for all j. Some of these roots may be irrational; some of these
roots may by complex; and some of these roots may be repeated. Despite these complications, we
do get a unique representation of any polynomial of the form

p(x) = s

n
∏

j=1

(x− rj)

where the rj’s are the roots and s is a scale factor. Once again, to represent a polynomial of degree
n, we need a list of n + 1 numbers: one scale factor and n roots.

Given a polynomial in root representation, we can clearly evaluate it in O(n) time. Given two
polynomials in root representation, we can easily multiply them in O(n) time by multiplying their
scale factors and just concatenating the two root sequences; in fact, if we don’t care about keeping
the old polynomials around, we can compute their product in O(1) time! Unfortunately if we want
to add two polynomials in root representation, we’re pretty much out of luck; there’s essentially
no correlation between the roots of p, the roots of q, and the roots of p + q. We could convert
the polynomials to the more familiar coefficient representation first—this takes O(n2) time using
the high-school algorithms—but there’s no easy way to convert the answer back. In fact, given a
polynomial in coefficient form, it’s usually impossible to compute its roots exactly.2

Our third representation for polynomials comes from the following consequence of the funda-
mental theorem of algebra. Given a list of n + 1 pairs {(x0, y0), (x1, y1), . . . , (xn, yn) }, there is
exactly one polynomial p of degree n such that p(xj) = yj for all j. This is just a generalization
of the fact that any two points determine a unique line, since a line is (the graph of) a polynomial
of degree 1. We say that the polynomial p interpolates the points (xj, yj). As long as we agree
on the sample locations xj in advance, we once again need exactly n + 1 numbers to represent a
polynomial of degree n.

2This is where numerical analysis comes from.

2

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

Adding or multiplying two polynomials in this sample representation is easy, as long as they use
the same sample locations xj . To add the polynomials, just add their sample values. To multiply
two polynomials, just multiply their sample values; however, if we’re multiplying two polynomials
of degree n, we need to start with 2n+1 sample values for each polynomial, since that’s how many
we need to uniquely represent the product polynomial. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer trivial. The following
formula, due to Lagrange, allows us to compute the value of any polynomial of degree n at any
point, given a set of n + 1 samples.

p(x) =

n−1
∑

j=0

(

yj

∏

k 6=j(x− xk)
∏

k 6=j(xj − xk)

)

=

n−1
∑

j=0





yj
∏

k 6=j(xj − xk)

∏

k 6=j

(x− xk)





Hopefully it’s clear that formula actually describes a polynomial, since each term in the rightmost
sum is written as a scaled product of monomials. It’s also not hard to check that p(xj) = yj for
all j. As I mentioned earlier, the fact that this is the only polynomial that interpolates the points
{(xj , yj)} is an easy consequence of the fundamental theorem of algebra. We can easily transform
this formula into an O(n2)-time algorithm.

We find ourselves in th following frustrating situation. We have three representations for poly-
nomials and three basic operations. Each representation allows us to almost trivially perform a
different pair of operations in linear time, but the third takes at least quadratic time, if it can be
done at all!

evaluate add multiply

coefficients O(n) O(n) O(n2)
roots + scale O(n) ∞ O(n)

samples O(n2) O(n) O(n)

14.3 Converting Between Representations?

What we need are fast algorithms to convert quickly from one representation to another. That way,
when we need to perform an operation that’s hard for our default representation, we can switch to
a different representation that makes the operation easy, perform that operation, and then switch
back. This strategy immediately rules out the root representation, since (as I mentioned earlier)
finding roots of polynomials is impossible in general, at least if we’re interested in exact results.

So how do we convert from coefficients to samples and back? Clearly, once we choose our sample
positions xj , we can compute each sample value yj = p(xj) in O(n) time from the coefficients.
So we can convert a polynomial of degree n from coefficients to samples in O(n2) time. The
Lagrange formula gives us an explicit conversion algorithm from the sample representation back
to the more familiar coefficient representation. If we use the näıve algorithms for adding and
multiplying polynomials (in coefficient form), this conversion takes O(n3) time.

This looks pretty bad, until we realize there’s a degree of freedom we haven’t exploited yet.
Whenever we convert from coefficients to samples, we get to choose the sample points!

Our slow algorithms may be slow only because we’re trying to be too general. Perhaps, if we choose
a set of sample points with just the right kind of recursive structure, we can do the conversion more
quickly. In fact, there is a set of sample points that’s perfect for the job.

14.4 The Discrete Fourier Transform

Given a polynomial of degree n−1, we’d like to find n sample points that are somehow as symmetric
as possible. The most natural choice for those n points are the nth roots of unity ; these are the

3

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

roots of the polynomial xn− 1 = 0. These n roots are spaced exactly evenly around the unit circle
in the complex plane.3 Every nth root of unity is a power of the primitive root

ωn = e2πi/n = cos
2π

n
+ i sin

2π

n
.

A typical nth root of unity has the form

ωj
n = e(2πi/n)j = cos

(

2π

n
j

)

+ i sin

(

2π

n
j

)

.

These complex numbers have several useful properties for any integers n and k:

• There are only n different nth roots of unity: ωk
n = ωk mod n

n .

• If n is even, then ω
k+n/2
n = −ωk

n; in particular, ω
n/2
n = −ω0

n = −1.

• 1/ωk
n = ω−k

n = ωk
n = (ωn)k, where the bar represents complex conjugation: a + bi = a− bi

• ωn = ωk
kn. Thus, every nth root of unity is also a (kn)th root of unity.

If we sample a polynomial of degree n− 1 at the nth roots of unity, the resulting list of sample
values is called the discrete Fourier transform of the polynomial (or more formally, of the coefficient
vector). Thus, given an array P [0 .. n − 1] of coefficients, the discrete Fourier transform computes
a new vector P ∗[0 .. n− 1] where

P ∗[j] = p(ωj
n) =

n−1
∑

k=0

P [k] · ωjk
n

We can obviously compute P ∗ in O(n2) time, but the structure of the nth roots of unity lets
us do better. But before we describe that faster algorithm, let’s think about how we might invert
this transformation.

It’s not hard to see that the discrete Fourier transform—in fact, any conversion from a vector
of coefficients to a vector of sample values—is a linear transformation. The DFT just multiplies
the coefficient vector by a matrix V to obtain the sample vector. Each entry in V is an nth root of

unity; specifically, vjk = ωjk
n for all j, k.

V =





















1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω

2(n−1)
n

1 ω3
n ω6

n ω9
n · · · ω

3(n−1)
n

...
...

...
...

. . .
...

1 ωn−1
n ω

2(n−1)
n ω

3(n−1)
n · · · ω

(n−1)2

n





















3In this lecture, i always represents the square root of −1. Most computer scientists are used to thinking of i as
an integer index into a sequence, an array, or a for-loop, but we obviously can’t do that here. The physicist’s habit
of using j =

√

−1 just delays the problem (how do physicists write quaternions?), and typographical tricks like I or
i or Mathematica’s ıı

◦ are just stupid.

4

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

To invert the discrete Fourier transform, we just have to multiply P ∗ by the inverse matrix V −1.
But this is almost the same as multiplying by V itself, because of the following amazing fact:

V −1 = V /n

In other words, if W = V −1 then wjk = vjk/n = ωjk
n /n = ω−jk

n /n. It’s not hard to prove this fact
with a little linear algebra.

Proof: We just have to show that M = V W is the identity matrix. We can compute a single entry
in this matrix as follows:

mjk =

n−1
∑

l=0

vjl · wlk =

n−1
∑

l=0

ωjl
n · ωn

lk/n =
1

n

n−1
∑

l=0

ωjl−lk
n =

1

n

n−1
∑

l=0

(ωj−k
n)l

If j = k, then ωj−k
n = 1, so

mjk =
1

n

n−1
∑

l=0

1 =
n

n
= 1,

and if j 6= k, we have a geometric series

mjk =

n−1
∑

l=0

(ωj−k
n)l =

(ωj−k
n)n − 1

ωj−k
n − 1

=
(ωn

n)j−k − 1

ωj−k
n − 1

=
1j−k − 1

ωj−k
n − 1

= 0.

That’s it! �

What this means for us computer scientists is that any algorithm for computing the discrete
Fourier transform can be easily modified to compute the inverse transform as well.

14.5 Divide and Conquer

The structure of the matrix V also allows us to compute the discrete Fourier transform efficiently
using a divide and conquer strategy. The basic structure of the algorithm is almost the same as
MergeSort, and the O(n log n) running time will ultimately follow from the same recurrence. The
Fast Fourier Transform algorithm, popularized by Cooley and Tukey in 19654, assumes that n is
a power of two; if necessary, we can just pad the coefficient vector with zeros.

To get an idea of how the divide-and-conquer strategy works, let’s look at the DFT matrixes
for n = 8. To simplify notation, let ω = ω8 =

√
2/2 + i

√
2/2.

























1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49

























=



























1 1 1 1 1 1 1 1

1 ω i ω −1 −ω −i −ω

1 i −1 −i 1 i −1 −i

1 ω i ω −1 −ω −i −ω

1 −1 1 −1 1 −1 1 −1
1 −ω i −ω −1 ω −i ω
1 −i −1 i 1 −i −1 i
1 −ω −i −ω −1 ω i ω



























4Actually, the FFT algorithm was previously published by Runge and König in 1924, and again by Yates in
1932, and again by Stumpf in 1937, and again by Danielson and Lanczos in 1942. But it was first used by Gauss
in the 1800s for calculating the paths of asteroids from a finite number of equally-spaced observations. By hand.
Fourier always did it the hard way. Cooley and Tukey apparently developed their algorithm to help detect Soviet
nuclear tests without actually visiting Soviet nuclear facilities, by interpolating off-shore seismic readings. Without
their rediscovery of the FFT algorithm, the nuclear test ban treaty would never have been ratified, and we’d all be
speaking Russian, or more likely, whatever language radioactive glass speaks.

5

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

The boxed entries actually form the DFT matrix for n = 4!









1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4









=









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









The input to the FFT algorithm is an array P [0 .. n − 1] of coefficients of a polynomial p(x)
with degree n− 1. We start by splitting p into two smaller polynomials u and v, each with degree
n/2− 1, by setting

U [k] = P [2k] and V [k] = P [2k − 1].

In other words, u has all the even-degree coefficients of p, and v has all the odd-degree coefficients.
For example, if p(x) = 3x3 − 4x2 + 7x + 5, then u(x) = −4x + 5 and v(x) = 3x + 7. These three
polynomials satisfy the equation

p(x) = u(x2) + x · v(x2).

In particular, if x is an nth root of unity, we have

P ∗[k] = p(ωk
n) = u(ω2k

n) + ωk
n · v(ω2k

n).

Now we can exploit those roots of unity again. Since n is a power of two, n must be even, so we

have ω2k
n = ωk

n/2 = ω
k mod n/2
n/2 . In other words, the values of p at the nth roots of unity depend on

the values of u and v at (n/2)th roots of unity. Those are just coefficients in the DFTs of u and v!

P ∗[k] = U∗[k mod n/2] + ωk
n · V ∗[k mod n/2]

So once we recursively compute U ∗ and V ∗, we can compute P ∗ in linear time. The base case for
the recurrence is n = 1. The overall running time satisfies the recurrence T (n) = Θ(n) + 2T (n/2),
which as we all know solves to T (n) = Θ(n log n).

Here’s the complete FFT algorithm, along with its inverse.

FFT(P [0 .. n− 1]):

if n = 1
return P

for j ← 0 to n/2− 1
U [j]← P [2j]
V [j]← P [2j + 1]

U∗ ← FFT(U [0 .. n/2 − 1])
V ∗ ← FFT(V [0 .. n/2 − 1])

ωn ← cos(2π
n) + i sin(2π

n)
ω ← 1

for j ← 0 to n/2− 1
P ∗[j] ← U∗[j] + ω · V ∗[j]
P ∗[j + n/2]← U ∗[j]− ω · V ∗[j]
ω ← ω · ωn

return P ∗[0 .. n − 1]

InverseFFT(P ∗[0 .. n− 1]):

if n = 1
return P

for j ← 0 to n/2− 1
U∗[j]← P ∗[2j]
V ∗[j]← P ∗[2j + 1]

U ← InverseFFT(U [0 .. n/2 − 1])
V ← InverseFFT(V [0 .. n/2 − 1])

ωn ← cos(2π
n)− i sin(2π

n)
ω ← 1

for j ← 0 to n/2− 1
P [j] ← 2(U [j] + ω · V [j])
P [j + n/2]← 2(U [j] − ω · V [j])
ω ← ω · ωn

return P [0 .. n − 1]

6

CS 373 Lecture 14: Fast Fourier Transforms Fall 2002

Given two polynomials p and q, each represented by an array of coefficients, we can multiply
them in Θ(n log n) arithmetic operations as follows. First, pad the coefficient vectors and with zeros
until the size is a power of two greater than or equal to the sum of the degrees. Then compute the
DFTs of each coefficient vector, multiply the sample values one by one, and compute the inverse
DFT of the resulting sample vector.

FFTMultiply(P [0 .. n− 1], Q[0 ..m − 1]):

`← dlg(n + m)e
for j ← n to 2` − 1

P [j]← 0
for j ← m to 2` − 1

Q[j]← 0

P ∗ ← FFT (P)
Q∗ ← FFT (Q)
for j ← 0 to 2` − 1

R∗[j]← P ∗[j] ·Q∗[j]

return InverseFFT(R∗)

14.6 Inside the FFT

FFTs are often implemented in hardware as circuits. To see the recursive structure of the circuit,
let’s connect the top-level inputs and outputs to the inputs and outputs of the recursive calls. On
the left we split the input P into two recursive inputs U and V . On the right, we compbine the
outputs U ∗ and V ∗ to obtain the final output P ∗.

FFT(n/2)

FFT(n/2)

P P*

U U*

V V*

bit reversal permutation butterfly network

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

The recursive structure of the FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally into
two parts. The left half computes the bit-reversal permuation of the input. To find the position
of P [k] in this permutation, write k in binary, adn then read the bits backwards. For example,
in an 8-element bit-reversal permutation, P [3] = P [0112] ends up in position 6 = 1102. The right
half of the FFT circuit is a butterlfy network. Butterfly networks are often used to route between
processors in massively-parallel computers, since they allow any processor to communicate with
any other in only O(log n) steps.

7

