
CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

15 Number Theoretic Algorithms (November 12 and 14)

And it’s one, two, three,
What are we fighting for?
Don’t tell me, I don’t give a damn,
Next stop is Vietnam; [or: This time we’ll kill Saddam]
And it’s five, six, seven,
Open up the pearly gates,
Well there ain’t no time to wonder why,
Whoopee! We’re all going to die.

— Country Joe and the Fish
“I-Feel-Like-I’m-Fixin’-to-Die Rag” (1967)

There are 0 kinds of mathematicians:
Those who can count modulo 2 and those who can’t.

— anonymous

15.1 Greatest Common Divisors

Before we get to any actual algorithms, we need some definitions and preliminary results. Unless
specifically indicated otherwise, all variables in this lecture are integers.

The symbol ZZ (from the German word “Zahlen”, meaning ‘numbers’ or ‘to count’) to denote
the set of integers. We say that one integer d divides another integer n, or that d is a divisor of n,
if the quotient n/d is also an integer. Symbolically, we can write this definition as follows:

d | n ⇐⇒
⌊n

d

⌋

=
n

d

In particular, zero is not a divisor of any integer—∞ is not an integer—but every other integer is
a divisor of zero. If d and n are positive, then d | n immediately implies that d ≤ n.

Any integer n can be written in the form n = qd+r for some non-negative integer 0 ≤ r ≤ |d−1|.
Moreover, the choices for the quotient q and remainder r are unique:

q =
⌊n

d

⌋

and r = n mod d = n− d
⌊n

d

⌋

.

Note that the remainder n mod d is always non-negative, even if n < 0 or d < 0 or both.1

If d divides two integers m and n, we say that d is a common divisor of m and n. It’s trivial to
prove (by definition crunching) that any common divisor of m and n also divides any integer linear
combination of m and n:

(d | m) and (d | n) =⇒ d | (am + bn)

The greatest common divisor of m and n, written gcd(m,n),2 is the largest integer that divides
both m and n. Sometimes this is also called the greater common denominator. The greatest
common divisor has another useful characterization as the smallest element of another set.

Lemma 1. gcd(m,n) is the smallest positive integer of the form am + bn.

1The sign rules for the C/C++/Java % operator are just plain stupid. I can’t count the number of times I’ve had
to write x = (x+n)%n; instead of x %= n;. Idiots.

2Do not use the notation (m,n) for greatest common divisor. Ever.

1

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

Proof: Let s be the smallest positive integer of the form am + bn. Any common divisor of m and
n is also a divisor of s = am + bn. In particular, gcd(m,n) is a divisor of s, which implies that

gcd(m,n) ≤ s .

To prove the other inequality, let’s show that s|m by calculating m mod s.

m mod s = m− s
⌊m

s

⌋

= m− (am + bn)
⌊m

s

⌋

= m
(

1− a
⌊m

s

⌋)

+ n
(

−b
⌊m

s

⌋)

We observe that m mod s is an integer linear combination of m and n. Since m mod s < s, and
s is the smallest positive integer linear combination, m mod s cannot be positive. So it must be
zero, which implies that s | m, as we claimed. By a symmetric argument, s | n. Thus, s is a
common divisor of m and n. A common divisor can’t be greater than the greatest common divisor,

so s ≤ gcd(m,n) .

These two inequalities imply that s = gcd(m,n), completing the proof. �

15.2 Euclid’s GCD Algorithm

The first part of this lecture is about computing the greatest common divisor of two integers.
Our first algorithm for computing greatest common divisors follows immediately from two simple
observations:

gcd(m,n) = gcd(m,n−m) and gcd(n, 0) = n

The algorithm uses the first observation as a way to reduce the input and recurse; the second
observation provides the base case.

SlowGCD(m,n):

m← |m|; n← |n|
if m < n

swap m↔ n

while n > 0
m← m− n
if m < n

swap m↔ n
return m

The first few lines just ensure that m ≥ n ≥ 0. Each iteration of the main loop decreases one of
the numbers by at least 1, so the running time is O(m + n). This bound is tight in the worst case;
consider the case n = 1. Unfortunately, this is terrible. The input consists of just log m + log n
bits; as a function of the input size, this algorithm runs in exponential time.

Let’s think for a moment about what the main loop computes between swaps. We start with
two numbers m and n and repeatedly subtract n from m until we can’t any more. This is just a
(slow) recipe for computing m mod n! That means we can speed up the algorithm by using mod
instead of subtraction.

EuclidGCD(m,n):

m← |m|; n← |n|
if m < n

swap m↔ n

while n > 0
m← m mod n (?)
swap m↔ n

return m

2

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

This algorithm swaps m and n at every iteration, because m mod n is always less than n. This is
usually called Euclid’s algorithm, because the main idea is included in Euclid’s Elements.3

The easiest way to analyze this algorithm is to work backward. First, let’s consider the number
of iterations of the main loop, or equivalently, the number times line (?) is executed. To keep
things simple, let’s assume that m > n > 0, so the first three lines are redundant, and the algorithm
performs at least one iteration. Recall that the Fibonacci numbers(!) are defined as F0 = 0, F1 = 1,
and Fk = Fk−1 + Fk−2 for all k > 1.

Lemma 2. If the algorithm performs k iterations, then m ≥ Fk+2 and n ≥ Fk+1.

Proof (by induction on k): If k = 1, we have the trivial bounds n ≥ 1 = F2 and m ≥ 2 = F3.
Suppose k > 1. The first iteration of the loop replaces (m,n) with (n,m mod n). Since the

algorithm performs k − 1 more iterations, the inductive hypothesis implies that n ≥ Fk+1 and
m mod n ≥ Fk. We’ve assumed that m > n, so m ≥ m + n(1 − bm/nc) = n + (m mod n). We
conclude that m ≥ Fk+1 + Fk = Fk+1. �

Theorem 1. EuclidGCD(m,n) runs in O(log m) iterations.

Proof: Let k be the number of iterations. Lemma 2 implies that m ≥ Fk+2 ≥ φk+2/
√

5− 1, where
φ = (1 +

√
5)/2 (by the annihilator method). Thus, k ≤ logφ(

√
5(m + 1))− 2 = O(log m). �

What about the actual running time? Every number used by the algorithm has O(log m)
bits. Computing the remainder of one b-bit integer by another using the grade-school long division
algorithm requires O(b2) time. So crudely, the running time is O(b2 log m) = O(log3 m). More

careful analysis reduces the time bound to O(log2 m) . We can make the algorithm even faster by

using a fast integer division algorithm (based on FFTs, for example).

15.3 Modular Arithmetic and Algebraic Groups

Modular arithmetic is familiar to anyone who’s ever wondered how many minutes are left in an
exam that ends at 9:15 when the clock says 8:54.

When we do arithmetic ‘modulo n’, what we’re really doing is a funny kind of arithmetic on
the elements of following set:

ZZn = {0, 1, 2, . . . , n− 1}

Modular addition and subtraction satisfies all the axioms that we expect implicitly:

• ZZn is closed under addition mod n: For any a, b ∈ ZZn, their sum a + b mod n is also in ZZn

3However, Euclid’s exposition was a little, erm, informal by current standards, primarily because the Greeks didn’t
know about induction. He basically said “Try one iteration. If that doesn’t work, try three iterations.” In modern
language, Euclid’s algorithm would be written as follows, assuming m ≥ n > 0.

ActualEuclidGCD(m, n):
if n | m

return n
else

return n mod (m mod n)

This algorithm is obviously incorrect; consider the input m = 3, n = 2. Nevertheless, mathematics and algorithms
students have applied ‘Euclidean induction’ to a vast number of problems, only to scratch their heads in dismay when
they don’t get any credit.

3

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

• Addition is associative: (a + b mod n) + c mod n = a + (b + c mod n) mod n.

• Zero is an additive identity element: 0 + a mod n = a + 0 mod n = a mod n.

• Every element a ∈ ZZn has an inverse b ∈ ZZn such that a+b mod n = 0. Specifically, if a = 0,
then b = 0; otherwise, b = n− a.

Any set with a binary operator that satisfies the closure, associativity, identity, and inverse
axioms is called a group. Since Zn is a group under an ‘addition’ operator, we call it an additive

group. Moreover, since addition is commutative (a+b mod n = b+a mod n), we can call (ZZn,+ mod
n) is an abelian additive group.

What about multiplication? ZZn is closed under multiplication mod n, multiplication mod n
is associative (and commutative), and 1 is a multiplicative identity, but some elements do not
have multiplicative inverses. Formally, we say that ZZn is a ring under addition and multiplication
modulo n.

If n is composite, then the following theorem shows that we can factor the ring ZZn into two
smaller rings. The Chinese Remainder Theorem is named for Sun Tsu (or Sun Zi), the author of
the Art of War, who proved a special case. (See the quotation for Lecture 1!)

The Chinese Remainder Theorem. If p ⊥ q, then ZZpq
∼= ZZp × ZZq.

Okay, okay, before we prove this, let’s define all the notation. The product ZZp×ZZq is the set of
ordered pairs {(a, b) | a ∈ ZZp, b ∈ ZZq}, where addition, subtraction, and multiplication are defined
as follows:

(a, b) + (c, d) = (a + c mod p, b + d mod q)

(a, b)− (c, d) = (a− c mod p, b− d mod q)

(a, b) · (c, d) = (ac mod p, bd mod q)

It’s not hard to check that ZZp × ZZq is a ring under these operations, where (0, 0) is the additive
identity and (1, 1) is the multiplicative identity. The funky equal sign ∼= means that these two rings
are isomorphic: there is a bijection between the two sets that is consistent with the arithmetic
operations.

As an example, the following table describes the bijection between ZZ15 and ZZ3 × ZZ5:

0 1 2 3 4

0 0 6 12 3 9
1 10 1 7 13 4
2 5 11 2 8 14

For instance, we have 8 = (2, 3) and 13 = (1, 3), and

(2, 3) + (1, 3) = (2 + 1 mod 3, 3 + 3 mod 5) = (0, 1) = 6 = 21 mod 15 = (8 + 13) mod 15.

(2, 3) · (1, 3) = (2 · 1 mod 3, 3 · 3 mod 5) = (2, 4) = 14 = 104 mod 15 = (8 · 13) mod 15.

Proof: The functions n 7→ (n mod p, n mod q) and (a, b) 7→ aq(q mod p)+bp(p mod q) are inverses
of each other, and each map preserves the ring structure. �

We can extend the Chinese remainder theorem inductively as follows:

4

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

The Real Chinese Remainder Theorem. Suppose n =
∏r

i=1 pi, where pi ⊥ pj for all i and j.
Then ZZn

∼=
∏r

i=1 ZZpi
= ZZp1

× ZZp2
× · · · × ZZpr

.

If we want to perform modular arithmetic where the modulus n is very large, we can improve the
performance of our algorithms by breaking n into several relatively prime factors, and performing
modular arithmetic separately modulo each factor.

So we can do modular addition, subtraction, and multiplication; what about division? As I
said earlier, not every element of ZZn has a multiplicative inverse. The most obvious example is 0,
but there can be others. For example, 3 has no multiplicative inverse in ZZ15; there is no integer x
such that 3x mod 15 = 1. On the other hand, 0 is the only element of ZZ7 without a multiplicative
inverse:

1 · 1 ≡ 2 · 4 ≡ 3 · 5 ≡ 6 · 6 ≡ 1 (mod 7)

These examples suggest (I hope) that x has a multiplicative inverse in ZZn if and only if a and
x are relatively prime. This is easy to prove as follows. If xy mod n = 1, then xy + kn = 1 for
some integer k. Thus, 1 is an integer linear combination of x and n, so Lemma 1 implies that
gcd(x, n) = 1. On the other hand, if x ⊥ n, then ax + bn = 1 for some integers a and b, which
implies that ax mod n = 1.

Let’s define the set ZZ
∗
n to be the set of elements if ZZn that have multiplicative inverses.

ZZ
∗
n = {a ∈ ZZn | a ⊥ n}

It is a tedious exercise to show that ZZ
∗
n is an abelian group under multiplication modulo n. As

long as we stick to elements of this group, we can reasonably talk about ‘division mod n’.
We denote the number of elements in ZZ

∗
n by φ(n); this is called Euler’s totient function. This

function is remarkably badly-behaved, but there is a relatively simple formula for φ(n) (not sur-
prisingly) involving prime numbers and division:

φ(n) = n
∏

p|n

p− 1

p

I won’t prove this formula, but the following intuition is helpful. If we start with ZZn and throw
out all n/2 multiples of 2, all n/3 multiples of 3, all n/5 multiples of 5, and so on. Whenever we
throw out multiples of p, we multiply the size of the set by (p − 1)/p. At the end of this process,
we’re left with precisely the elements of ZZ

∗
n. This is not a proof! On the one hand, this argument

throws out some numbers (like 6) more than once, so our estimate seems too low. On the other
hand, there are actually dn/pe multiples of p in ZZn, so our estimate seems too high. Surprisingly,
these two errors exactly cancel each other out.

15.4 Toward Primality Testing

In this last section, we discuss algorithms for detecting whether a number is prime. Large prime
numbers are used primarily (but not exclusively) in cryptography algorithms.

A positive integer is prime if it has exactly two positive divisors, and composite if it has more
than two positive divisors. The integer 1 is neither prime nor composite. Equivalently, an integer
n ≥ 2 is prime if n is relatively prime with every positive integer smaller than n. We can rephrase
this definition yet again: n is prime if and only if φ(n) = n− 1.

The obvious algorithm for testing whether a number is prime is trial division: simply try every
possible nontrivial divisor between 2 and

√
n.

5

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

TrialDivPrime(n) :

for d← 1 to b√nc
if n mod d = 0

return Composite

return Prime

Unfortunately, this algorithm is horribly slow. Even if we could do the remainder computation in
constant time, the overall running time of this algorithm would be Ω(

√
n), which is exponential in

the number of input bits.
This might seem completely hopeless, but fortunately most composite numbers are quite easy to

detect as composite. Consider, for example, the related problem of deciding whether a given integer
n, whether n = me for any integers m > 1 and e > 1. We can solve this problem in polynomial
time with the following straightforward algorithm. The subroutine Root(n, i) computes bn1/ic
essentially by binary search. (I’ll leave the analysis as a simple exercise.)

ExactPower?(n):

for i← 2 to lg n
if (Root(n, i))i = n

return True

return False

Root(n, i):

r ← 0
for `← d(lg n)/ie down to 1

if (r + 2`)i ≤ n
r ← r + 2`

return r

To distinguish between arbitrary prime and composite numbers, we need to exploit some results
about ZZ

∗
n from group theory and number theory. First, we define the order of an element x ∈ ZZ

∗
n

as the smallest positive integer k such that xk ≡ 1 (mod n). For example, in the group

ZZ
∗
15 = {1, 2, 4, 7, 8, 11, 13, 14},

the number 2 has order 4, and the number 11 has order 2. For any x ∈ ZZ
∗
n, we can partition the

elements of ZZ
∗
n into equivalence classes, by declaring a ∼x b if a ≡ b ·xk for some integer k. The size

of every equivalence class is exactly the order of x. Since the equivalence classes must be disjoint,
we can conclude that the order of any element divides the size of the group . We can express this
observation more succinctly as follows:

Euler’s Theorem. aφ(n) ≡ 1 (mod n).4

The most interesting special case of this theorem is when n is prime.

Fermat’s Little Theorem. If p is prime, then ap ≡ a (mod p).5

This theorem leads to the following efficient pseudo-primality test.

4This is not Euler’s only theorem; he had thousands. It’s not even his most famous theorem. His second most
famous theorem is the formula v + e − f = 2 relating the vertices, edges and faces of any planar map. His most
famous theorem is the magic formula eπi +1 = 0. Naming something after a mathematician or physicist (as in ‘Euler
tour’ or ‘Gaussian elimination’ or ‘Avogadro’s number’) is considered a high compliment. Using a lower case letter
(‘abelian group’) is even better; abbreviating (‘volt’, ‘amp’) is better still. The number e was named after Euler.

5This is not Fermat’s only theorem; he had hundreds, most of them stated without proof. Fermat’s Last Theorem
wasn’t the last one he published, but the last one proved. Amazingly, despite his dislike of writing proofs, Fermat
was almost always right. In that respect, he was very different from you and me.

6

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

FermatPseudoPrime(n) :

choose an integer a between 1 and n− 1
if an mod n 6= a

return Composite!

else
return Prime?

In practice, this algorithm is both fast and effective. The (empirical) probability that a random
100-digit composite number will return Prime? is roughly 10−30, even if we always choose a = 2.
Unfortunately, there are composite numbers that always pass this test, no matter which value
of a we use. A Carmichael number is a composite integer n such that an ≡ a (mod n) for every
integer a. Thus, Fermat’s Little Theorem can be used to distinguish between two types of numbers:
(primes and Carmichael numbers) and everything else. Carmichael numbers are extremely rare; in
fact, it was proved only a decade ago that there are an infinite number of them.

To deal with Carmichael numbers effectively, we need to look more closely at the structure of
the group ZZ

∗
n. We say that ZZ

∗
n is cyclic if it contains an element of order φ(n); such an element is

called a generator. Successive powers of any generator cycle through every element of the group in
some order. For example, the group ZZ

∗
9 = {1, 2, 4, 5, 7, 8} is cyclic, with two generators: 2 and 5,

but ZZ
∗
15 is not cyclic. The following theorem completely characterizes which groups ZZ

∗
n are cyclic.

The Cycle Theorem. ZZ
∗
n is cyclic if and only if n = 2, 4, pe, or 2pe for some odd prime p and

positive integer e.

This theorem has two relatively simple corollaries.

The Discrete Log Theorem. Suppose ZZ
∗
n is cyclic and g is a generator. Then gx ≡ gy (mod n)

if and only if x ≡ y (mod φ(n)).

Proof: Suppose gx ≡ gy (mod n). By definition of ‘generator’, the sequence 〈1, g, g2, . . .〉 has
period φ(n). Thus, x ≡ y (mod φ(n)). On the other hand, if x ≡ y (mod φ(n)), then x =
y + kφ(n) for some integer k, so gx = gy+kφ(n) = gy · (gφ(n))k. Euler’s Theorem now implies that
(gφ(n))k ≡ 1k ≡ 1 (mod n), so gx ≡ gy (mod n). �

The
√

1 Theorem. Suppose n = pe for some odd prime p and positive integer e. The only

elements x ∈ ZZ
∗
n that satisfy the equation x2 ≡ 1 (mod n) are x = 1 and x = n− 1.

Proof: Obviously 12 ≡ 1 (mod n) and (n− 1)2 = n2 − 2n + 1 ≡ 1 (mod n).
Suppose x2 ≡ 1 (mod n) where n = pe. By the Cycle Theorem, ZZ

∗
n is cyclic. Let g be a

generator of ZZ
∗
n, and suppose x = gk. Then we immediately have x2 = g2k ≡ g0 = 1 (mod pe).

The Discrete Log Theorem implies that 2k ≡ 0 (mod φ(pe)). Since p is and odd prime, we have
φ(pe) = (p− 1)pe−1, which is even. Thus, the equation 2k ≡ 0 (mod φ(pe)) has just two solutions:
k = 0 and k = φ(pe)/2. By the Cycle Theorem, either x = 1 or x = gφ(n)/2. Because x = n− 1 is
also a solution to the original equation, we must have gφ(n)/2 ≡ n− 1 (mod n). �

This theorem leads to a different pseudo-primality algorithm:

Sqrt1PseudoPrime(n):

choose a number a between 2 and n− 2
if a2 mod n = 1

return Composite!

else
return Prime?

7

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

As with the previous pseudo-primality test, there are composite numbers that this algorithm
cannot identify as composite: powers of primes, for instance. Fortunately, however, the set of
composites that always pass the

√
1 test is disjoint from the set of numbers that always pass the

Fermat test. In particular, Carmichael numbers never have the form pe.

15.5 The Miller-Rabin Primality Test

The following randomized algorithm, adapted by Michael Rabin from an earlier deterministic algo-
rithm of Gary Miller∗, combines the Fermat test and the

√
1 test. The algorithm repeats the same

two tests s times, where s is some user-chosen parameter, each time with a random value of a.

MillerRabin(n):

write n− 1 = 2tu where u is odd
for i← 1 to s

a← Random(2, n− 2)
if EuclidGCD(a, n) 6= 1

return Composite! 〈〈obviously!〉〉
x0 ← au mod n
for j ← 1 to t

xj ← x2
j−1 mod n

if xj = 1 and xj−1 6= 1 and xj−1 6= n− 1

return Composite! 〈〈by the
√

1 Theorem〉〉
if xt 6= 1 〈〈xt = an−1 mod n〉〉

return Composite! 〈〈by Fermat’s Little Theorem〉〉
return Prime?

First let’s consider the running time; for simplicity, we assume that all integer arithmetic is
done using the quadratic-time grade school algorithms. We can compute u and t in O(log n) time
by scanning the bits in the binary representation of n. Euclid’s algorithm takes O(log2 n) time.
Computing au mod n requires O(log u) = O(log n) multiplications, each of which takes O(log2 n)
time. Squaring xj takes O(log2 n) time. Overall, the running time for one iteration of the outer loop
is O(log3 n + t log2 n) = O(log3 n), since t ≤ lg n. Thus, the total running time of this algorithm is

O(s log3 n) . If we set s = O(log n), this running time is polynomial in the size of the input.

Fine, so it’s fast, but is it correct? Like the earlier pseudoprime testing algorithms, a prime
input will always cause MillerRabin to return Prime?. Composite numbers, however, may not
always return Composite!; because we choose the number a at random, there is a small probability
of error.6 Fortunately, the error probability can be made ridiculously small—in practice, less than
the probability that random quantum fluctuations will instantly transform your computer into a
kitten—by setting s ≈ 1000.

Theorem 2. If n is composite, MillerRabin(n) returns Composite! with probability at least

1− 2−s.

6If instead, we try all possible values of a, we obtain an exact primality testing algorithm, but it runs in exponential
time. Miller’s original deterministic algorithm examined every value of a in a carefully-chosen subset of ZZ∗

n. If the
Extended Riemann Hypothesis holds, this subset has logarithmic size, and Miller’s algorithm runs in polynomial
time. The Riemann Hypothesis is a century-old open problem about the distribution of prime numbers. A solution
would be at least as significant as proving Fermat’s Last Theorem or P6=NP.

8

CS 373 Lecture 15: Number-Theoretic Algorithms Fall 2002

Proof: First, suppose n is not a Carmichael number. Let F be the set of elements of ZZ
∗
n that pass

the Fermat test:
F = {a ∈ ZZ

∗
n | an−1 ≡ 1 (mod n)}.

Since n is not a Carmichael number, F is a proper subset of ZZ
∗
n. Given any two elements a, b ∈ F ,

their product a · b mod n in ZZ
∗
n is also an element of F :

(a · b)n−1 ≡ an−1bn−1 ≡ 1 · 1 ≡ 1 (mod n)

We also easily observe that 1 is an element of F , and the multiplicative inverse (mod n) of any
element of F is also in F . Thus, F is a proper subgroup of ZZ

∗
n, that is, a proper subset that is also

a group under the same binary operation. A standard result in group theory states that if F is a
subgroup of a finite group G, the number of elements of F divides the number of elements of G.
(We used a special case of this result in our proof of Euler’s Theorem.) In our setting, this means
that |F | divides φ(n). Since we already know that |F | < φ(n), we must have |F | ≤ φ(n)/2. Thus,
at most half the elements of ZZ

∗
n pass the Fermat test.

The case of Carmichael numbers is more complicated, but the main idea is the same: at most
half the possible values of a pass the

√
1 test. See CLRS for further details. �

9

