Chapter 2

Boolean Functions

2.1 Representation

2.1.1 Boolean Algebra

Many important ideas about learning of functions are most easily presented
using the special case of Boolean functions. There are several important
subclasses of Boolean functions that are used as hypothesis classes for func-
tion learning. Therefore, we digress in this chapter to present a review of
Boolean functions and their properties. (For a more thorough treatment
see, for example, [Unger, 1989].)

A Boolean function, f(z1,z2, ..., z,) maps an n-tuple of (0,1) values to
{0,1}. Boolean algebra is a convenient notation for representing Boolean
functions. Boolean algebra uses the connectives -, +, and —. For example,
the and function of two variables is written #; - #5. By convention, the
connective, is usually suppressed, and the and function is written zixs.
x1x9 has value 1 if and only if both x1 and x4 have value 1; if either x1 or x5

[T

has value 0, #1229 has value 0. The (inclusive) or function of two variables
1s written xy + x2. x1 + 22 has value 1 if and only if either or both of x;
or x9 has value 1; if both z; and x4 have value 0, 1 + x5 has value 0. The
complement or negation of a variable, x, is written . T has value 1 if and
only if z has value 0; if z has value 1 has value 1, T has value 0.

These definitions are compactly given by the following rules for Boolean
algebra:

1+1=1,140=1,0+0=0,
1-1=1,1-0=0,0-0=0, and

17

18 CHAPTER 2. BOOLEAN FUNCTIONS

1=0,0=1.

Sometimes the arguments and values of Boolean functions are expressed
in terms of the constants 7' (True) and F (False) instead of 1 and 0, re-
spectively.

The connectives - and + are each commutative and associative. Thus,
for example, x;(z2x3) = (#122)xs, and both can be written simply as
x1xaw3. Similarly for +.

A Boolean formula consisting of a single variable, such as z; is called
an atom. One consisting of either a single variable or its complement, such
as T, 1s called a literal.

The operators - and 4+ do not commute between themselves. Instead,
we have DeMorgan’s laws (which can be verified by using the above defini-
tions):

T2 = %1 + T2, and

$1+l‘2:l‘_1l‘_2.

2.1.2 Diagrammatic Representations

We saw in the last chapter that a Boolean function could be represented
by labeling the vertices of a cube. For a function of n variables, we would
need an n-dimensional hypercube. In Fig. 2.1 we show some 2- and 3-
dimensional examples. Vertices having value 1 are labeled with a small
square, and vertices having value 0 are labeled with a small circle.

Using the hypercube representations, it is easy to see how many Boolean
functions of n dimensions there are. A 3-dimensional cube has 23 = 8
vertices, and each may be labeled in two different ways; thus there are
2(2*) = 256 different Boolean functions of 3 variables. In general, there are
22" Boolean functions of n variables.

We will be using 2- and 3-dimensional cubes later to provide some in-
tuition about the properties of certain Boolean functions. Of course, we
cannot visualize hypercubes (for n > 3), and there are many surprising
properties of higher dimensional spaces, so we must be careful in using
intuitions gained in low dimensions. One diagrammatic technique for di-
mensions slightly higher than 3 is the Karnaugh map. A Karnaugh map
is an array of values of a Boolean function in which the horizontal rows
are indexed by the values of some of the variables and the vertical columns
are indexed by the rest. The rows and columns are arranged in such a
way that entries that are adjacent in the map correspond to vertices that
are adjacent in the hypercube representation. We show an example of the
4-dimensional even parity function in Fig. 2.2. (An even parity function is

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

2.2. CLASSES OF BOOLEAN FUNCTIONS 19

X2 X2

X1X2)(1 + X2

Xl Xl

and or

X2)(3

Xl)g +)qxz X1X2X3 + X1X2X3

+ X1 XoX3 + XXXz

X1

xor (exclusive or)

even parity function

X1

Figure 2.1: Representing Boolean Functions on Cubes

a Boolean function that has value 1 if there are an even number of its argu-
ments that have value 1; otherwise it has value 0.) Note that all adjacent

cells in the table correspond to inputs differing in only one component. Also describe
general logic
diagrams,
[Wnek, et al., 1990].

2.2 Classes of Boolean Functions

2.2.1 Terms and Clauses

To use absolute bias in machine learning, we limit the class of hypotheses.
In learning Boolean functions, we frequently use some of the common sub-
classes of those functions. Therefore, it will be important to know about
these subclasses.

One basic subclass is called terms. A term is any function written
in the form {yls---l;, where the I; are literals. Such a form is called a
conjunction of literals. Some example terms are 127 and x122%4. The size
of a term 1s the number of literals it contains. The examples are of sizes 2
and 3, respectively. (Strictly speaking, the elass of conjunctions of literals

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

Probably I’ll
put in a simple
term-learning
algorithm
here—so we
can get started
on learning!
Also for DNF
functions and
decision
lists—as they
are defined in
the next few

pages.

20 CHAPTER 2. BOOLEAN FUNCTIONS

X3:%4
00{01(11/10
ooj1j/0(1]0
o1j0j1|0]1
Xq,X
172 111110 1|0
1010/ 1] 0] 1

Figure 2.2: A Karnaugh Map

is called the monomials, and a conjunction of literals itself is called a term.
This distinction is a fine one which we elect to blur here.)

It is easy to show that there are exactly 3" possible terms of n vari-
ables. The number of terms of size k or less 1s bounded from above by
Zf:o C(2n,i) = O(n*), where C(i,j) = (Z#'),], is the binomial coefficient.

A clause 1s any function written in the form Iy + {5 + - + [, where
the [; are literals. Such a form is called a disjunction of literals. Some
example clauses are x3 + x5 + @6 and @1 + T4. The size of a clause is the
number of literals it contains. There are 3" possible clauses and fewer than
Zf:o C'(2n, i) clauses of size k or less. If f is a term, then (by De Morgan’s
laws) f is a clause, and vice versa. Thus, terms and clauses are duals of
each other.

In psychological experiments, conjunctions of literals seem easier for
humans to learn than disjunctions of literals.

2.2.2 DNF Functions

A Boolean function is said to be in disjunctive normal form (DNF) if it
can be written as a disjunction of terms. Some examples in DNF are:
f = xixs + xowswy and f = 2173 + T3 T3 + #122T3. A DNF expression
is called a k-term DNF expression if it 1s a disjunction of k terms; it is in
the class k-DNF if the size of its largest term 1s k. The examples above are
2-term and 3-term expressions, respectively. Both expressions are in the
class 3-DNF.

Each term in a DNF expression for a function is called an implicant
because it “implies” the function (if the term has value 1, so does the

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

2.2. CLASSES OF BOOLEAN FUNCTIONS 21

function). In general, a term, ¢, is an implicant of a function, f, if f has
value 1 whenever ¢ does. A term, ¢, is a prime implicant of f if the term, ¢/,
formed by taking any literal out of an implicant ¢ is no longer an implicant
of f. (The implicant cannot be “divided” by any term and remain an
implicant.)

Thus, both z5%3 and F1 T3 are prime implicants of f = x2¥3 + 71 T3 +
Xox1T3, but xsx1T3 is not.

The relationship between implicants and prime implicants can be geo-
metrically illustrated using the cube representation for Boolean functions.
Consider, for example, the function f = xs%3 + T1 T3 + x2x173. We illus-
trate it in Fig. 2.3. Note that each of the three planes in the figure “cuts
oftf” a group of vertices having value 1, but none cuts off any vertices hav-
ing value 0. These planes are pictorial devices used to isolate certain lower
dimensional subfaces of the cube. Two of them isolate one-dimensional
edges, and the third isolates a zero-dimensional vertez. Each group of ver-
tices on a subface corresponds to one of the implicants of the function, f,
and thus each implicant corresponds to a subface of some dimension. A
k-dimensional subface corresponds to an (n — k)-size implicant term. The
function is written as the disjunction of the implicants—corresponding to
the union of all the vertices cut off by all of the planes. Geometrically,
an 1mplicant is prime if and only if its corresponding subface is the largest
dimensional subface that includes all of its vertices and no other vertices
having value 0. Note that the term z,2173 is not a prime implicant of
f. (In this case, we don’t even have to include this term in the function
because the vertex cut off by the plane corresponding to zs2173 1s already
cut off by the plane corresponding to #2%3.) The other two implicants are
prime because their corresponding subfaces cannot be expanded without
including vertices having value 0.

Note that all Boolean functions can be represented in DNF—trivially
by disjunctions of terms of size n where each term corresponds to one of the
vertices whose value is 1. Whereas there are 22" functions of n dimensions
in DNT (since any Boolean function can be written in DNF), there are just
20(n*) functions in k-DNF.

All Boolean functions can also be represented in DNF in which each
term is a prime implicant, but that representation is not unique, as shown
in Fig. 2.4.

If we can express a function in DNF form, we can use the consensus
method to find an expression for the function in which each term is a prime
implicant. The consensus method relies on two results:

o Consensus:

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

We may
replace this
section with
one describing
the Quine-
McCluskey
method
instead.

22 CHAPTER 2. BOOLEAN FUNCTIONS

X
3)\
0,01 1,0,1
1,1,1
1,0,0
X2
X
1 = xp0g + X155 + Xx1XG
= XoX3 + X1X3

XoX3 and XqXz are prime implicants

Figure 2.3: A Function and its Implicants

t-h+% - fo=x -H+T-fo+ 1o

where f; and f; are terms such that no literal appearing in f; appears
complemented in fa. f1- fo 1s called the consensus of x; - fi and z; - fs.
Readers familiar with the resolution rule of inference will note that
consensus 1s the dual of resolution.

Examples: x; 1s the consensus of zix9 and x1%3. The terms Tixs
and z1Z3 have no consensus since each term has more than one literal
appearing complemented in the other.

e Subsumption:

z-f+hH=nh

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

2.2. CLASSES OF BOOLEAN FUNCTIONS 23

X
3)\
0,01 1,0,1
d 1,0,0 %
4
X P
1 f= X2X3 + X1X3 + X1X2
=X1Xp + X X3

All of the terms are prime implicants, but there
is not a unique representation

Figure 2.4: Non-Uniqueness of Representation by Prime Implicants

where f; is a term. We say that f; subsumes z; - fi.

Example: 71 Tax5 subsumes T T4 Taxs

The consensus method for finding a set of prime implicants for a func-
tion, f, iterates the following operations on the terms of a DNF expression
for f until no more such operations can be applied:

1. initialize the process with the set, 7, of terms in the DNF expression

of f,

2. compute the consensus of a pair of terms in 7 and add the result to

T,

3. eliminate any terms in 7 that are subsumed by other terms in 7.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

24 CHAPTER 2. BOOLEAN FUNCTIONS

When this process halts, the terms remaining in 7 are all prime implicants
of f.

Example: Let f = T1wo+%1 T2x3+ 71 T2 T3 T425. We show a derivation
of a set of prime implicants in the consensus tree of Fig. 2.5. The circled
numbers adjoining the terms indicate the order in which the consensus and
subsumption operations were performed. Shaded boxes surrounding a term
indicate that it was subsumed. The final form of the function in which all
terms are prime implicantsis: f = Tixs +T1xs+ %1 Taxs. Its terms are all
of the non-subsumed terms in the consensus tree.

O) 2

X1%p X1XoX3 X XpX3X X5

f= Xpxp + Xgxg + X345
X1X4%5

Figure 2.5: A Consensus Tree

2.2.3 CNF Functions

Disjunctive normal form has a dual: conjunctive normal form (CNF). A
Boolean function is said to be in CNF if it can be written as a conjunction
of clauses. An example in CNF is: f = (21 4+ z2)(¥2 + 23 + #4). A CNF
expression is called a k-clause CNF expression if it is a conjunction of &
clauses; it is in the class k-CNF if the size of its largest clause is k. The
example is a 2-clause expression in 3-CNF. If f is written in DNF, an

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

2.2. CLASSES OF BOOLEAN FUNCTIONS 25

application of De Morgan’s law renders f in CNF, and vice versa. Because
CNF and DNF are duals, there are also 20(n") functions in k-CNF.

2.2.4 Decision Lists

Rivest has proposed a class of Boolean functions called decision lists
[Rivest, 1987]. A decision list is written as an ordered list of pairs:

(tq’ vq)

(tq—l’ vq—l)
(ti, vs)

(t2,v2)
(T, Ul)

where the v; are either 0 or 1, the ¢; are terms in (z1,...,2,), and T is a
term whose value is 1 (regardless of the values of the ;). The value of a
decision list is the value of v; for the first #; in the list that has value 1. (At
least one ¢; will have value 1, because the last one does; v; can be regarded
as a default value of the decision list.) The decision list is of size k, if the
size of the largest term in it is k. The class of decision lists of size k or less

is called &-DL.

An example decision list is:

f=

(x_le’ 1)

(71 Tz23,0)

Tars, 1)

(1,0)
f has value 0 for 21 = 0, 2 = 0, and 3 = 1. It has value 1 for z; = 1,
x5 = 0, and x3 = 1. This function is in 3-DL.

It has been shown that the class k-DL is a strict superset of the union of
k-DNF and k-CNF. There are 2007"#1o8(")] functions in k-DL [Rivest, 1987].

Interesting generalizations of decision lists use other Boolean functions
in place of the terms, ¢;. For example we might use linearly separable
functions in place of the ¢; (see below and [Marchand & Golea, 1993]).

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

26 CHAPTER 2. BOOLEAN FUNCTIONS

2.2.5 Symmetric and Voting Functions

A Boolean function is called symmetric if it is invariant under permutations
of the input variables. For example, any function that is dependent only on
the number of input variables whose values are 1 is a symmetric function.
The parity functions, which have value 1 depending on whether or not
the number of input variables with value 1 is even or odd is a symmetric
function. (The exelusive orfunction, illustrated in Fig. 2.1, is an odd-parity
function of two dimensions. The or and and functions of two dimensions
are also symmetric.)

An important subclass of the symmetric functions is the class of voting
funetions (also called m-of-n functions). A k-voting function has value 1 if
and only if £ or more of its n inputs has value 1. If £ = 1, a voting function
is the same as an n-sized clause; if £ = n, a voting function is the same as
an n-sized term; if k = (n + 1)/2 for n odd or k = 14 n/2 for n even, we
have the majority function.

2.2.6 Linearly Separable Functions

The linearly separable functions are those that can be expressed as follows:

f= thresh(z w;xg, 0)

i=1

where w;, i = 1,...,n, are real-valued numbers called weights, @ 1s a real-
valued number called the threshold, and thresh(o,6) is 1 if ¢ > 6 and 0
otherwise. (Note that the concept of linearly separable functions can be
extended to non-Boolean inputs.) The k-voting functions are all members
of the class of linearly separable functions in which the weights all have unit
value and the threshold depends on k. Thus, terms and clauses are special
cases of linearly separable functions.

A convenient way to write linearly separable functions uses vector no-
tation:

f = thresh(X - W 6)

where X = (21, ...,#,) is an n-dimensional vector of input variables, W =
(wy,...,wy) is an n-dimensional vector of weight values, and X - W is
the dot (or inner) product of the two vectors. Input vectors for which f
has value 1 lie in a half-space on one side of (and on) a hyperplane whose
orientation is normal to W and whose position (with respect to the origin)

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

2.3. SUMMARY 27

is determined by . We saw an example of such a separating plane in Fig.
1.6. With this idea in mind, it is easy to see that two of the functions in
Fig. 2.1 are linearly separable, while two are not. Also note that the terms
in Figs. 2.3 and 2.4 are linearly separable functions as evidenced by the
separating planes shown.

There is no closed-form expression for the number of linearly separable
functions of n dimensions, but the following table gives the numbers for n
up to 6.

n Boolean Linearly Separable
Functions Functions

1 4 4

2 16 14

3 256 104

4 65,536 1,882

5| ~4.3x10° 94,572

6 | ~ 1.8 x 1017 15,028,134

[Muroga, 1971] has shown that (for n > 1) there are no more than on”
linearly separable functions of n dimensions. (See also [Winder, 1961,

Winder, 1962].)

2.3 Summary

The diagram in Fig. 2.6 shows some of the set inclusions of the classes of
Boolean functions that we have considered. We will be confronting these
classes again in later chapters.

The sizes of the various classes are given in the following table (adapted
from [Dietterich, 1990, page 262]):

Class Size of Class
terms 3"
clauses 3"
k-term DNF 20 (kn)
k-clause CNF 20(kn)
k-DNF 20(n*)
k-CNF 20(n")
k-DL QO[nkk log(n)]
lin sep 20(n?)
DNF 22"

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

28 CHAPTER 2. BOOLEAN FUNCTIONS

Figure 2.6: Classes of Boolean Functions

2.4 Bibliographical and Historical Remarks

To be added.

Introduction to Machine Learning ©1996 Nils J. Nilsson. All rights reserved.

