
CHAPTER 13

PostScript in 3D

In this chapter I’ll explain a 3D extension to PostScript that I call ps3d, which you can find in the file ps3d.inc.

In order to make this extension available, just put a line (ps3d.inc) run at the top of your program, once you
have downloaded ps3d.inc. The 3D graphics environment you get in this way is as close to the usual 2D one as

I could make it, with a few unusual features I’ll mention later.

The underlying computations involved in 3D drawing are much more intensive than that for 2D, and in view of

that it was surprising to me that package ps3d has turned out to be acceptably efficient. As I have mentioned

already, I have used the usual PostScript routines in 2D as a model, except that instead of being restricted to
affine transformations, and therefore in this case to matrix arrays of size 32 + 3 = 12, the underlying code

works with arbitrary homogeneous 4 × 4 matrices, or arrays of size 16. There are several reasons for doing
this, among them that it makes the final perspective rendering simpler. It also makes it possible to cast shadows

easily. But the principal one, I have to confess, is mathematical simplicity. The disadvantage might be slowness,

but although noticeable in some circumstances it doesn’t seem to be a fatal problem. This whole package owes
much to Jim Blinn’s book A Trip Down the Graphics Pipeline, mostly for the rigourous use of homogeneous

coordinates throughout. On the other hand, using normal functions instead of just normal vectors is something

only a mathematician would suggest happily. The advantage of doing this is that nonorthogonal transformations
can be handled, although this is perhaps only a theoretical advantage, since most coordinate changes are in fact

orthogonal.

Still following graphics conventions (i.e. as opposed to mathematical ones) pointvectors are rows, and matrices

are applied to them on the right. Affine functions Ax + By + Cz + D will be expressed as column vectors.
Matrices multiply them on the left, and evaluation of such a function is a matrix product

Ax + By + Cz + D = [ x y z 1 ]







A
B
C
D






.

I recall that composition on the stack is the principal motivation for these conventions of order in PostScript
programming. Thus x S T conveniently applies S to x and then T . This conforms to the usual PostScript

convention of applying operators to the object operated on so as to be ready to apply the next operator.

In this package, four dimensional directions are expressed in homogeneous coordinates as [x, y, z, w]. Such a

point with w 6= 0 can be identified with the 3D point (x/w, y/w, z/w), and one with w = 0 can be identified

with a nonoriented direction in 3D. There is some inconsistency involved in this last point, because sometimes
the package implicitly uses oriented directions.
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1. A survey of the package

In beginning 3D drawing, after loading the file ps3d.inc, the programmer has the option of choosing a position

for his eye, by convention somewhere on the positive zaxis. He is then looking down towards the negative zaxis,
and what he sees is the projection of objects upon his viewing screen, which is the plane z = 0. On this plane x
and y are the usual 2D user coordinates. This projection of a point onto the viewing screen is the intersection of
the line from that point to the observer’s location with the plane z = 0. It is expected that most objects drawn

will be located with z < 0.

If the programmer does not choose an eye location, the default mode of projection is orthogonal projection onto

the plane z = 0, so that the eye is effectively at∞ on the zaxis, the 4D point [0, 0, 1, 0]. The point of the convention

that we are looking down (rather than up) the zaxis is to get the 3D orientation to be that of the right hand rule
as well as to have the usual 2D coordinates interpreted naturally. I recall that, according to the right hand rule, if

the right fist is curled so as to indicate how the positive xaxis is to be rotated towards the positive yaxis, then

the extended thumb points towards positive values of z.

This setup has some paradoxical features. The following figures are identical except for the location of the eye,
which is at z = 27, z = 9, and z = 3, respectively:

What’s odd here is that as we move closer the cube becomes smaller! The explanation for this is that moving the

eye in this model is not like moving your head back to change your view. When you move your head you move
the whole eye, which includes both the lens at the front and the retina at the back. The distance from the lens to

the retina—the focal length of the eye—does not change. Whereas in the graphics model I am using, moving the

eye really means changing the focal length as well as the location of the eye. We are looking at the plane z = 0
as though it were a window onto which the world in the region z ≤ 0 is projected, but as we move away our

focal length is increased, too. In effect the left picture is taken with a telephoto lens, the right hand one with a

wide angle lens. The two changes, location and focal length, compensate for each other, so that the grid, which is
located on the plane z = 0, remains constant. This behaviour might take getting used to. In the current version,
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the eye location is set once at the very beginning of a program and should never be changed again. In some
future version I’ll make it possible to move the eye around like a camera, changing location and also zooming in

and out.

There is another odd feature of these conventions. As I have already mentioned, normally the 3D objects drawn

will lie in the region z < 0, beyond the viewing screen.

Normal viewing Too close Behind the eye

If the object lies between the eye and z = 0, it will be enlarged. If it lies behind the eye, it will be placed in an odd

location. It is because of this unfamiliar behaviour that it is best to draw only objects behind the plane z = 0.

The most frequently used commands in ps3d.inc are those which construct 3D paths—moveto3d, lineto3d,

closepath3d and their relative versions. There are also 3D coordinate changes such as translate3d, scale3d,
and rotate3d. Rotations require an axis as well as an angle as argument. As with PostScript in 2D, there are

implicitly two 3D coordinate systems. One is the user’s 3D coordinate system, and the other the default 3D
system, which is also the user’s system when 3D programming starts. Part of the 3D graphics environment keeps

track of the transformation from the first to the second, by means of a 4×4 matrix. Thus when a program executes

a command like 0 0 0 moveto3d this transformation is applied to the 3D point (0, 0, 0) to get its default 3D
coordinates, and then the projection of this point upon the viewing plane is calculated. In this way, a 2D path is

constructed as the 3D drawing proceeds. The transformation from user 3D to default 3D coordinates is affected

by the 3D coordinate changes. As in 2D, coordinate changes affect directly the frame with respect to which the
user coordinates are interpreted. Thus:

[0 0 3 1] set-eye

[0 1 0] -45 rotate3d

newpath

-0.5 -0.5 0 moveto3d

0.5 -0.5 0 lineto3d

0.5 0.5 0 lineto3d

-0.5 0.5 0 lineto3d

-0.5 -0.5 0 lineto3d

closepath

gsave

0.7 0 0 setrgbcolor

fill

grestore

stroke
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Just as in ordinary 2D PostScript, we use a graphics stack to manage 3D graphics environments. The 3D graphics
environment at any moment amounts to two homogeneous linear transformations T (4 × 4) and D (4 × 3), the

first transforming user 3D coordinates to the default ones, and that determining the collapse from 3D onto the

viewing screen. The graphics stack is an array gstack3d of some arbitrary height gmax—it happens to be 64 in
ps3d. But the part of the stack that’s used bounces around. The current height of the stack at any moment is ght

and the current graphics data T and D are in gstack3d[ght]. The user will ordinarily not need to access the
3D graphics stack directly, because there are operators that access its components directly. The 3D graphics stack

is managed with commands gsave3d and grestore3d. One use for the 3D graphics stack is to move different

components of a figure independently, or even in linkage with other components. (This technique is explained
quite nicely in Chapter 3 of Blinn’s book.)

The 3D graphics environment really requires only T and D, but also, for efficiency and convenience, the inverse
matrix T−1 is part of the stored data. Thus an item on the 3D graphics stack is an array of 3 matrices; T , T−1, and

D. The first component is called the current 3D transformation matrix. The effect of transforming coordinates

by a matrix R (rotation, translation, scaling, projection, etc.) is to replace T by RT , T−1 by T−1R−1. The third
component D is called the display matrix, used to transform homogeneous 4vectors to homogeneous 3vectors.

At the moment the only display matrices used are those implementing perspective onto the plane z = 0 to an eye

located in homogeneous space. Also at the moment it is set once and for all at the beginning of 3D drawing.

We shall see later why we want quick access to T−1.

In Blinn’s terms, 3D graphics involves a pipeline: a composition of coordinate changes from user coordinates to

default 3D coordinates, then to the display plane (here z = 0), finally to the page. The last step is controlled by

the usual 2D PostScript commands. The first two are managed in this package.

Loading ps3d (with the command (ps3d.inc) run) causes a file matrix.inc of 3D matrix procedures to be

loaded as well. It also causes the variables gstack3d, gmax, ght that determine the 3D graphics environment to
be defined. Initially, �ght is 0, T and T−1 are the 4× 4 identity matrices, and D amounts to orthogonal projection

along the positive zaxis.

In addition ps3d defines variables cpt3d and lm3d, the current point and the last point moved to, 3D points

expressed in default 3D coordinates. Normally, the user will have no need to know them.

The usual 3D vectors are identified with a 4D vector whose last coordinate is 1.

Next I’ll explain the commands, grouped by subject.

2. The 3D graphics environment

Arguments Command Return value

• — gsave3d —

Puts a new copy of the current 3d environment on the graphics stack. It is extremely important to realize that

manipulating the 3d graphics stack has no effect whatsoever on the 2D graphics state. And vice versa.

• — grestore3d —

Restores the previous 3d graphics state.

• — cgfx3d [T U D]
• — ctm3d T
• — cim3d T −1

• — cdm3d D

• — currentpoint3d [x y z]

This returns the current point in user space, T−1 applied to cpt3d.

• — display-matrix D
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Returns a 4 × 3 homogeneous matrix.

• [x y z w] set-eye —

Sets the eye at (x, y, z, w). In practice, currently it is assumed that x = y = 0. Here, as elsewhere in 3D drawing,
w = 0 indicates a direction in space, whereas (x, y, z, 1) indicates an ordinary 3D point.

(x, y, z)

(X, Y, 0)

(e, 0, 0)

The 3D to 2D projection takes a point (x, y, z) to the intersection (X, Y ) of the line from that point to the eye with
the plane z = 0. Assuming the eye is at (ex, ey, ez) we can find it explicitly as

(1 − t)(ex, ey, ez) + t(x, y, z)

where (1 − t)ez + tz = 0. Therefore

t =
ez

ez − z

1 − t =
−z

ez − z

X =
xez − zex

ez − z
, Y =

yez − zey

e − z
.

If the eye is at (0, 0, e) this becomes

X =
ex

e − z
, Y =

ey

e − z
.

In terms of homogeneous coordinates it takes (x, y, z, w) to (xez − zex, yez − zey, ezw − zew). Equivalently, it
sets the display matrix to be







ez 0 0
0 ez 0

−ex −ey −ew

0 0 ez







• — get-eye [x y z w]
• — get-virtual-eye [x y z w]

This last will be explained later.

• [x y z w] render [X/W Y/W ]

This applies the display matrix to the original point, then turns the result [X Y W ] into a real 2D point in 2D user

coordinates.

• x y z transform2d x′ y′

Transforms from user 3D coordinates first to default 3D coordinates, then to 2D user coordinates.
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3. Coordinate transformations

A coordinate transformation multiplies the current transformation matrix by the matrix of the transformation.

The current matrix is an array of 16 numbers, interpreted as







T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15






.

Let U be the inverse of T .

• x y z translate3d —

The new current matrix becomes







1 0 0 0
0 1 0 0
0 0 1 0
x y z 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation becomes







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













1 0 0 0
0 1 0 0
0 0 1 0

−x −y −z 1







• [x y z] A rotate3d —

The arguments are axis and angle. The new current transformation matrix becomes







R0 R3 R6 0
R1 R4 R7 0
R2 R5 R8 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













R0 R1 R2 0
R3 R4 R5 0
R6 R7 R8 0
0 0 0 1







since the inverse of a rotation matrix is its transpose.

• a b c scale3d —

The new 3D transformation matrix is







a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15
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and the inverse transformation







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













a−1 0 0 0
0 b−1 0 0
0 0 c−1 0
0 0 0 1







• matrix concat3d —

The argument is a 3 × 3 matrix M , i.e. an array of 9 numbers. This replaces T by M (extended) T .

The new 3D transformation matrix is







M0 M3 M6 0
M1 M4 M7 0
M2 M5 M8 0
0 0 0 1













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15







and the inverse transformation is







U0 U4 U8 U12

U1 U5 U9 U13

U2 U6 U10 U14

U3 U7 U11 U15













M ′

0 M ′

3 M ′

6 0
M ′

1
M ′

4
M ′

7
0

M ′

2
M ′

5
M ′

8
0

0 0 0 1







• [A B C D] P plane-project —

Projects from the 3D homogeneous point P onto a plane. After this change, which is not invertible, paths are
projected onto the plane. Explicitly, the map here is Q 7→ f(P ) Q− f(Q) P .

The matrix transformation is







f(P ) − AP0 −AP1 −AP2 −AP3

−BP0 f(P ) − BP1 −BP2 −BP3

−CP0 −CP1 f(P ) − CP2 −CP3

−DP0 −DP1 −DP2 f(P ) − DP3













T0 T4 T8 T12

T1 T5 T9 T13

T2 T6 T10 T14

T3 T7 T11 T15






.

The inverse transformation is invalid.

• v = [x y z w] M transform3d vM
• M f dual-transform3d Mf

4. Drawing

• x y z moveto3d —
• x y z lineto3d —

• x y z rmoveto3d —

• x y z rlineto3d —
• x1 y1 z1 . . . curveto3d —

The input is nine numbers.

• x1 y1 z1 . . . rcurveto3d —

• — closepath3d —

It updates the current 3D point.

• [see below] mkpath3d —
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The arguments are t0, t1, N , an array of parameters, and the function /f. This function has two arguments, the
array of parameters and a single variable t. It returns an array made up of (1) a 3D point (x, y, z) and (2) a velocity

vector x′, y′, z′). This procedure draws the path in N pieces using f as parametrization.

• — 2d-path-convert —

This converts the current 2D path to a 3D path according to the current 3D environment. Thus

[0 0 5 1] set-eye

[0 1 0] 45 rotate3d

newpath

0 0 moveto

(ABC) true charpath

2d-path-convert

gsave

0.7 0 0.1 setrgbcolor

fill

grestore

stroke

5. Surfaces

I’ll deal with surface rendering in much more detail in the next chapter, but make a few preliminary remarks here.

Surfaces are most conveniently interpreted to be an assembly of flat plates, maybe very small ones to be sure.
To ensure an illusion of depth in 3D pictures, they are often shaded according to the position of some imaginary

light source. In mathematical graphics we are not interested in realistic rendering, which may even clutter up a

good diagram with irrelevant junk, and can settle for simple tricks. Still, a few things are important for the right
illusion.

• x [a0 a1] lshade —

• x [a0 a1 a2 a3] shade —

• x [a0 . . . an] bshade —

The number x lies in [−1, 1], and is usually the result of the calculation of the dotproduct of normal vector and

light direction. It is shifted to [0, 1] and then the weighting function is applied.

The coordinates a0, etc. are control values for a Bernstein polynomial determining the shading weight. The

values of a0 and an are minimum and maximum. The first two are duplicated by the last one, but they are
significantly more efficient. For shade itself, [0 1/3 2/3 1] would be neutral and [0 0 1 1] would be relatively

strong contrast. These things are discussed in detail in the next chapter.

• array of 3D points normal-function [A, B, C, D]

Returns the normal function Ax + By + Cz + D which is 0 on the points of the array, and increasing in the
direction determined by the righthand rule.

It is in dealing with matters affecting the appearance of surfaces—visibility and shading—that we need T−1. The
point x is outside the piece of surface Σ if and only if x · fΣ ≥ 0, where fΣ is the normal function associated to S.

We often want to know similarly if x is outside the transformed surface ST . This happens if and only if xT−1 is

outside S, or
xT−1 · fΣ = x · T−1fΣ ≥ 0 ,

from which we see that fΣT = T−1fΣ. We could calculate T−1fΣ for each Σ but in practice we shall want to

test ‘visibility’ for many bits of surface Σ and only one x (the ‘eye’, say). So we must be ready to calculate T −1x.
This, and similar calculations involving the light source, motivate the extra matrix T −1 on the graphics stack.

The command get-virtual-eye returns this point.
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6. Code

The ps3d package is in ps3d.inc. This incorporates a collection of generic matrix routines, imported from

matrix.inc. This package is documented separately in matrix.pdf. Sample 3D drawing is contained in
the files cube-frame.ps, cube-solid.ps, cube-shaded.ps, and cube-shadow.ps. The last two of these use

techniques discussed in the next chapter.
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