
CHAPTER 15

The regular polyhedra

A regular figure is one which is . . . well, more regular than most. A polyhedron is a shape in three dimensions
whose surface is a collection of flat polygons, and a regular polyhedron is one all of whose faces and vertices lookpolyhedron:regular:1

the same. It has been known for a very long time that there are exactly five regular polyhedra. Although they are
favourites for computer graphics, they are probably not clearly understood by those who draw them.

That there are no more than five is by no means a trivial fact, although it is one to which we have become
accustomed. The regular polyhedra have been known for a very long time as mathematical history goes—the
oldest extant Greek mathematical text, some scribbling on discarded pottery discovered on Elephantine Island
near the Aswan cataracts that dates to about 250 B.C., is concerned with them. Their properties are in fact not easy
to understand, and perhaps familiarity has made it more difficult to realize how remarkable they are. Although
it is perhaps not the most mathematically sophisticated part of Euclid, the regular polyhedra are discussed only
in the last book of the Elements, and the treatment is not at all transparent. In order to show how an extendedElements:Euclid’s:1

graphical reconstruction of Euclid can go, I will sketch his treatment in this Chapter.

There are two quite different parts of the story: (1) It is possible to construct five different regular polyhedra; (2)
it is not possible to construct any others. Exactly what these assertions mean, and how very distinct they are, will
be appreciated later on. For both, at least to start with, I shall follow Euclid rather closely. At an elementary level,
it is a hard act to beat.

I shall begin with part (2), and deal with the construction later on. But first a few more opening remarks.
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1. What exactly is a regular polyhedron?

It is important first to understand exactly what a regular polyhedron is. The first, and simplest condition, is that
its faces are to be regular polygons. Another is that all of these faces be congruent to each other. But there has to
be some extra condition to guarantee regularity. For example, these two conditions of facial congruence will be
satisfied by an icosahedron with some of its sides pushed in, which surely wouldn’t be considered to be all that
regular:

So there has to be something more required. For one thing, the figure should be convex, which means loosely
that it bulges out. Technically this means that any two points in the figure can be joined by a segment contained
completely inside the figure itself. At any rate, this new condition certainly excludes the mutant above. But it
isn’t sufficient to characterize regularity either, since the following figure, which is constructed by gluing two
regular tetrahedra together, shouldn’t qualify as regular.

This suggests that we impose the condition that all the vertices of the figure, as well as all its faces, ‘look alike’ in
the sense that they are congruent. We shall in all specify:

• By definition, a regular polyhedron is one satisfying all four of these conditions:
(a) All of its faces are regular polygons;
(b) they are all congruent to one another;
(c) the figure is convex;
(d) all of its vertices are congruent.

In fact, these conditions are unnecessarily strong. It is actually the case that we need only require that the
number of faces around each vertex be the same for all vertices. A remarkable theorem proven by the French
mathematician Cauchy in the early nineteenth century asserts that these conditions are redundant. But it is not aCauchy:A.:2

simple result, and it is better in an elementary treatment not to depend on it.
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2. There are no more than five regular solids

I shall first explain roughly why there cannot be more than five regular polyhedra, and then go over the argument
later in detail. Incidentally, this assertion is somewhat informally inserted at the end of Book XIII of Euclid’s:Euclid’s, Book XIII:2

Elements, even though many of his earlier results are clearly leading up to it.

That there cannot be more than five regular solids just depends essentially on what happens around one of the
vertices, call it P , of a regular polyhedron. Throw away all of the faces of the polyhedron which do not touch P .
Then flatten out the faces that are left. For the polyhedra we know about, we get the following pictures of what I
call the splayed vertices.

It is intuitively reasonably clear that when we do that, the vertex ‘opens up’ in the sense that in going around the
vertex we don’t go all around its image in the plane. In fact, this is a special case of Proposition XI.21 from Euclid,s, Proposition XI.21:3

which is much more general:

• (Euclid XI.21) In going once around the faces touching any convex vertex, the angles traversed always add
up to less than 360◦.

The word ‘convex’ here, as with the earlier use of the same word, means a vertex which always bulges out.
Convexity is clearly a necessary condition, since if we are allowed to fold up the faces around a vertex like an
accordion the proposition is no longer true. I shall come back later to give the details of the argument, nearly all
of which arise in the very beginning (Book I) of Euclid. Let’s assume for now that the result is true and see why
it implies that there can be no more than five regular polyhedra.
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Since all faces of a regular polyhedron are congruent, each one of them will be a regular polygon with some fixed
number of sides. Furthermore, all the vertices are congruent, which means that the number of faces touching
each vertex must be the same. Suppose that each face has m sides, and that each vertex is touched by n faces.
What are the possibilities?

• In a regular plane polygon of m sides, the angle at each corner is equal to 180◦ − 360◦/m.

360◦/m

m = 5

Since the inside angle at any corner is 180◦ less the angle turned at that corner, this follows immediately from a
more intuitive result:’s, Proposition I.32:4

• (Euclid I.32) If we follow around the outside of a convex plane polygon, the total angle turned is 360◦.

This is intuitively clear, but it can be reduced to something really apparent by translating these angles to one
vertex:

At any rate, if we have n polygons at a single convex vertex, each of m sides, then the total angle traversed as we
go around the faces next to the vertex will be n (180◦ − 360◦/m) and this must be less than 360:

n(1 − 2/m) 180◦ < 360◦

180◦ − 360◦

m
<

360◦

n

which leads to the inequality
1
2

<
1
m

+
1
n

.
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Each face must be at least a triangle, so m ≥ 3. The number of faces meeting a true vertex has to be at least three,
hence n ≥ 3 as well. Therefore

1
2

<
1
m

+
1
n

≤ 1
m

+
1
3

1
6

<
1
m

n < 6 .

Similarly, m < 6. So we have only a finite number of possibilities to look at, examined in the following table,
which shows 1/m + 1/n for 3 ≤ m, n < 6, except that those that don’t qualify are left out:

Values of 1/m + 1/n > 1/2
n 3 4 5 6

m
3 2/3 7/12 8/15 −
4 7/12 − − −
5 8/15 − − −
6 − − − −

We see that there are exactly five possibilities, each corresponding to one of the known regular polyhedra.

Another way to see which m and n qualify is to sketch the region 1/x+1/y > 1/2, x ≥ 3, y ≥ 3 in the (x, y)-plane,
and observe which points with integral coordinates lie inside it.

1
x

+ 1
y

= 1
2

y = 3

x = 3

3. The proof of Euclid XI.21

The proof that Euclid gives for Proposition XI.21 involves a sequence of subsidiary results, mostly taken froms, Proposition XI.21:5

Book I of the The Elements. Since the proposition itself seems, as do so many results in Euclid, almost obvious, I
should say a few words of comment about the argument.

One’s intuition about why XI.21 is true is based, presumably, on the nearly physical feeling involved in squashing
the vertex flat.
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Translated into mathematics this is probably equivalent to the idea that projecting one of the facial angles of a
convex vertex onto a plane spreads that angle out. And so it does, in the right circumstances, but not always.
So it is not apparently true that we can make a direct comparison of the angles on each face with those in a 2D
projection. Euclid must have been aware of this, although as usual he doesn’t tell you more than you have to
know. He manages, however, to get around the difficulties in a very elegant manner. I suppose his argument is a
natural one, and one which some would perhaps call obvious. Nonetheless, I believe it to be one of the highlights
in The Elements.

I shall present Euclid’s argument by a backwards progression. First of all, along with Euclid I shall assume that
the vertex is surrounded by three faces, in order to make the reasoning a little more concrete.

We need to label the figure. Cut off the faces by a plane Π intersecting them transversely. Each face becomes a
triangle, and the interior of Π cut off is also a triangle. To picture better what is going on, we can unfold and
spread these triangles out on a plane. Label the angles in these triangles like this:

A1

A2A3

B1

C1

D1

B2

D2

D3

Here A1, A2, A3 are the angles immediately surrounding the original vertex. Thus, each one of the lower vertices
in this tetrahedron will have angles B, C , D around it. This is the crucial fact:s, Proposition XI.20:6
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• (Euclid XI.20) If B, C , and D are any three angles around a trihedral vertex, then B + C > D.

I’ll postpone the proof of this for a moment, but right now let’s see why this implies Proposition XI.21. In each
triangle, the sum of its interior angles must be 180◦. Therefore

∑
(Ai + Bi + Ci) = 3 · 180◦ .

where the sum is taken over the three faces of the vertex. But in addition, according to the result we have yet to
prove ∑

(Ai + Bi + Ci) >
∑

Ai +
∑

Di

∑
Ai <

∑
(Ai + Bi + Ci) −

∑
Di

since Bi + Ci > Di. However ∑
Di = 180◦

since the Di are all the interior angles of a triangle. This gives us
∑

Ai <
∑

(Ai + Bi + Ci) −
∑

Di = 3 · 180◦ − 180◦ = 360◦ ,

which is just what Proposition XI.21 asserts.

Exercise 1. Work out the proof for an arbitrary convex vertex.

Suppose that, conversely, that one is given a collection of angles in the plane splayed out around a vertex, whose
sum is less than 360◦. When can one construct a vertex in 3D that gives rise to it? Can one design an algorithm for
doing this? First of all, this is not always possible. For example, for three angles α, β and γ with α+β +γ < 360◦

it is possible only if α + β > γ, for example (as we shall see later on). And if there are more than three angles the
vertex will not be unique—it will not in fact be rigid. This means that if one is given such a vertex that one can
always move the faces around as movable plates without changing their shape. This is just another way of saying
that polygons in the plane are similarly flexible—for example, one can always deform a square into a rhombus.

Exercise 2. Suppose that mα < 360◦. Explain how to construct a regular vertex with vertex angle α—i.e. one
whose orthogonal section is a regular polygon of m sides. (Hint: start with the regular polygon in a plane. The
vertex should be somewhere on the perpendicular line through its centre. The fact that mα < 360◦ guarantees
that the vertex can be located outide the plane.)

4. Trihedral angles

It remains to prove

• (Euclid XI.20) If B, C , and D are any three angles around a trihedral vertex, then B + C > D.

Before proving it, I will make it somewhat more plausible by translating it into a statement about geometry on a
sphere. A great circle on a sphere is the intersection of the sphere with a plane through its origin.
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Between any two points P and Q on a sphere which are not directly opposite to each other there passes a unique
great circle, that determined by the plane containing P and Q and the sphere’s centre O. The part of that great
circle lying between the two points is the shortest route between them that lies entirely on the sphere.—the
spherical geodesic line between them. Distance on the sphere along a great circle is proportional to the spanning
angle POQ at the centre of the sphere. If the radius of the sphere is 1 then that distance is exactly equal to that
angle measured in radians.

OQ

P

In particular, if R is a third point on the sphere which does not lie on the great circle arc between them, then the
spherical distance PQ must be less than the sum of PR and RQ.

R

Q

P

This is the spherical triangle inequality, analogous to the triangle inequality in the plane. Since spherical distances
are proportional to central angles, it is equivalent to the assertion we are trying to prove. So in effect, in proving
XI.21 we are proving the spherical analogue of a familiar inequality about paths on the plane (Euclid I.20, which
we’ll see in a moment).

How about the proof itself?

We follow Euclid. If all three of the vertex angles are the same, the claim is trivial. So suppose that one of the
angles is actually larger than another. In the following figure at the left, these are on the faces we are looking at.
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Lay a copy of the face with the smaller vertex angle on the face with the larger one, as in the figure on the right.
Then slice off a triangle on the face with the larger vertex angle. Mirror that slice back onto the face with the
smaller vertex angle, as in the figure on the left, just below:

A

B

C

D

P

Let P be the vertex, and label some other vertices as shown. The sum AB +BC is greater than AC = AD +DC ,
by a result from Euclid (I.20) that I have already mentioned. Since AD = AB, DC < BC. By another result from
Euclid (I.25), the angle DPC is less than the angle CPB. But then finallyd’s, Proposition I.25:9

APC = APD + DPC < APB + BPC .

Here are the results from Book I that we have used:

• (Euclid I.20) In any triangle, the length of one side is less than the sum of the lengths of the two other sides.’s, Proposition I.20:9

• (Euclid I.25) If we are given two triangles two of whose sides match in length, then the angle opposite the
third side is larger in the triangle with the longer third side.

I’ll recall their proofs in the next section.

5. The results we need from Book I

There are actually a number of results that we’ll need from Book I of Euclid before we’re through, since the proofs
of the results we need will in turn take us back to others. Since we are not concerned here with complete rigour,
but just with making the reasons as intuitively transparent as possible, the main difficulty is knowing where to
begin. For some of these early results in Euclid, pictures alone should suffice.

• (Euclid I.32) In any triangle, the exterior angle of one corner is equal to the sum of the opposite interior’s, Proposition I.32:9

angles.
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This will be applied in the next proof, but only in so far as it implies that the exterior angle is larger than either of
the interior ones. This weaker result, unlike that above, can be proven without using the axiom of parallels, and
is Euclid I.16.’s, Proposition I.16:10’s, Proposition I.18:10

• (Euclid I.18) In any triangle, the angle opposite a larger side is larger.

• (Euclid I.20) The length of any side of a triangle is less than the sum of the other two sides.

I leave this as an exercise, including pictures.

• (Euclid I.25) Given two triangles with two sides in each matching two sides in the other, the one with the
longer third side has the larger angle opposite the third side.

This we shall actually see proven. The demonstration I am about to give is attributed to Menelaus in Heath’s
comments on Proposition I.25. We start with the two triangles, pictured above. We translate the one with the
smaller side and then rotate it and reflect it so as to get this picture:
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Then we construct the isosceles triangle as shown below, and extend the line also. Finally, we apply the previous
Proposition.

This concludes the proof that there are no more than 5 regular solids. It remains to tell how to construct them.

6. Constructing the regular polyhedra

As far as showing that the regular solids can be constructed is concerned, the proof above is somewhat limited in
relevance. It says no more and no less than that a single vertex of each of the regular polyhedra can be constructed.
But constructing a vertex is not the same as constructing the whole figure, since it is not at all obvious that the
construction of a vertex can be extended to give the whole figure. Of course starting with one vertex we can go
on building new vertices attached to what we already have, but there is no obvious reason why at some point we
won’t get some kind of peculiar incompatibility between pieces we have constructed. In fact, one can do a lot of
calculations for each of the five regular solids and see that this problem does not arise. But an argument which
shows directly and uniformly in all cases that such an incompatibility never occurs was found, as far as I know,
only fairly recently. The argument we shall see here, following Euclid, looks at each case on its own. There is one
notable accidental feature, however—it turns out that all of the regular polyhedra can be constructed by starting
with cubes!

In the rest of this section I shall describe without proof the essentials of construction in all cases. In the next I
shall sketch the justification of the construction.

• Cube

This is easy. I make its side of length 2, aligned along the axes, with one corner at (−1,−1,−1). Then the cornerscube:11

are all points with either 1 or ε = −1 as coordinate, making eight in all.

(1, 1, 1)

(1, ε, 1)

(ε, 1, 1)

(ε, ε, 1)

(1, 1, ε)

(1, ε, ε)

(ε, 1, ε)

(ε, ε, ε)
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In the PostScript data file regular-polyhedron.incdescribing the regular polyhedra, these points are put into
an array:

[[-1 -1 -1]
[-1 1 -1]
[1 1 -1]
[1 -1 -1]
[-1 -1 1]
[-1 1 1]
[1 1 1]
[1 -1 1]]

That is to say, I go around the back square with z = −1 in the positive orientation as seen from behind, starting
from the origin, then around the front face z = 1 in a parallel track.

• Tetrahedron

The vertices of the cube (x, y, z) with x + y + z equal to −3 or 1 are the vertices of a regular tetrahedron, as aretrahedron:regular:12

those where the sum is 3 or −1.

Exercise 3. Prove this. Find an exact formula for the height of the tetrahedron, the distance from a vertex to the
opposite face. Find the length of an edge.

• Octahedron

The centres of the faces of a cube form a regular octahedron. The octahedron is therefore the dual of the cube.ctahedron:regular:12

Exercise 4. Find the length of an edge of this octahedron.
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• Dodecahedron

The tetrahedron and octahedron are relatively simple figures. Their analogues and that of the cube exist in allecahedron:regular:12

dimensions. It is perhaps more surprising that a dodecahedron can also be constructed by starting with a cube.

First construct a regular pentagon whose diagonal is equal to the side of the cube. Attach it along a diagonal to
an edge of the cube, in effect making the diagonal into a hinge. Attach another congruent pentagon to the edge
opposite, on the same face. You can check that if the two pentagons lie flat on the common face of the cube,
they will overlap. If they are rotated away from the cube, of course eventually they will have no intersection. So
somewhere in between they can be situated like this, so they just touch:

The remarkable thing is that you can attach a pair of pentagons to each face of the cube in this way, changing the
orientation if necessary, so as to have twelve pentagons making up a dodecahedron with the 12 pentagons for
faces.

Exercise 5. Find the coordinates (x, y, z) of the point P in 3D above the face of a cube making this work.

P
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• Icosahedron

The icosahedron is different. Assemble a band of ten equilateral triangles, and then add to this two pentagonalosahedron:regular:13

caps of five equilateral triangles.

The icosahedron can also be constructed as the dual of the dodecahedron.

Exercise 6. Find the coordinates of all the vertices, and in particular the vertical height of the top vertex and the
top pentagon.

Exercise 7. The icosahedron, too, can be constructed more directly from the cube. Write a PostScript program
to follow the recipe of H. Taylor described in the comments on Proposition XIII.16 in Heath’s English edition ofProposition XIII.16:14

Euclid.

7. Verifying regularity

The dodecahedron and icosahedron are not constructed uniformly, and it is not apparent that they are in fact
regular. I leave this as an exercise.

For the dodecahedron, in addition to showing that the vertices are all congruent, it must be shown that the
pentagons constructed on each face actually attach to the pentagons from other faces in the way they should.

For the icosahedron, the faces join together and are all congruent by definition. What remains to be shown is that
the vertices are congruent.

8. Code

The regular polyhedra are catalogued in the file regular-polyhedra.inc. Their vertices are listed, and then
their faces. Each face is an array of two items, first the the array of vertices on the face, traversed in a counter-
clockwise direction, and then the coefficients [A B C D] such that Ax + By + Cz + D ≥ 0 describes the outside
of that face.

Here, for example, is the listing for the cube:

/cube-vertex [
[-1 -1 -1]
[-1 1 -1]
[1 1 -1]
[1 -1 -1]
[-1 -1 1]
[-1 1 1]
[1 1 1]
[1 -1 1]

] def

/cube [
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[
[
cube-vertex 0 get
cube-vertex 1 get
cube-vertex 2 get
cube-vertex 3 get

] dup normal-function
]
[
[
cube-vertex 4 get
cube-vertex 7 get
cube-vertex 6 get
cube-vertex 5 get

] dup normal-function
]
[
[
cube-vertex 0 get
cube-vertex 4 get
cube-vertex 5 get
cube-vertex 1 get

] dup normal-function
]
[
[
cube-vertex 6 get
cube-vertex 7 get
cube-vertex 3 get
cube-vertex 2 get

] dup normal-function
]
[
[
cube-vertex 2 get
cube-vertex 1 get
cube-vertex 5 get
cube-vertex 6 get

] dup normal-function
]
[
[
cube-vertex 0 get
cube-vertex 3 get
cube-vertex 7 get
cube-vertex 4 get

] dup normal-function
]
] def

The file regular-polyhedron.inc contains enough data to describe all the regular polyhedra. There are
commands tetrahedron, octahedron, dodecahedron, and icosahedronwhich return for each figure an array
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of faces like the one shown above for the cube. In order to use it, you have to know the numbering scheme for
the vertices. Here are some diagrams which do that. We start off with one we have seen before.

(1, 1, 1)

(1, ε, 1)

(ε, 1, 1)

(ε, ε, 1)

(1, 1, ε)

(1, ε, ε)

(ε, 1, ε)

(ε, ε, ε)

0

1

2

3

4

5
6

7

0

1

2

3

0

1

23

4

5

15

0

1 2

3

4

5 6

7

8

9

10

11

1213

14
16

17

18

19

Finally, I just mention that the numbering of the icosahedron starts at the top and goes down. With this
information, it can be deduced from the facial structure.
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