
Supplementary Note

Clipping

In Chapter 4 the Hodgman­Sutherland clipping algorithm was explained. Given an affine function f(x) and a

polygonal path γ, it returns the truncation of γ to the region f ≤ 0. It has one major fault, however—if the path
being clipped does not enclose a convex region and when clipped is really a union of distinct components, this

algorithm returns a single path instead of the collection of paths one would expect. We’ll see a new version in
this note, one that can also be used with minor modification to draw regions on spheres, clipping them to the

visible side of the sphere.

1. The problem

This figure explains the problem:

The Hodgman­Sutherland algorithm described in Chapter 4 returns here a single path instead of two—the figure

on the left instead of that on the right:



Clipping 2

2. A technical tool

In the procedures we’ll use, it will be useful to have available the notion of a stack in PostScript. This will be an

array of two items, an array a of the items on the stack and an integer n indicating the current height of the stack.
Relevant procedures associated to this are:

Arguments Command Left on stack; side effects
n stack a stack of potential size n

x s spush pushes x on the stack s

s spop pops the top item off s and returns it
s slength returns the current number of items on s

s sempty returns whether the size is 0 or not

s sfull returns whether s is about to overflow
s sextend doubles the potential size of s

s sarray returns an array made up of the current stack items

The stack doesn’t handle overflow or underflow automatically, but it is possible to detect them by using sempty

andsfull. If overflow is a problem usesextend to double the potential size of the stack. All of these implemented
purely by PostScript stack manipulations for efficiency. In many programs, a stack will be used primarily as an

extensible array. The procedure sarray returns the active stack as a fixed array.

3. The solution

Input: the path γ, the (oriented) boundary of a region Γ; and a function f with certain auxiliary properties: (1)
given a point, a procedure that returns a value; (2) given two points P and Q with values f(P ) ≤ 0, f(Q) > 0, a

function that returns a unique point of intersection where f = 0; (3) a way to sort any finite set of points on f = 0.
For a line, the first two are straightforward, and if the linear function is Ax + By + C then we sort according

to the value of −Bx + Ay, which is [A, B] rotated by 90◦. This idea can be used also in 3D where the region

is on a sphere, and the truncation takes place with respect to the visible part of the sphere, or across the plane
separating visible from invisible. In that case, as things move, say rotating the sphere with the region drawn on

it, the calculation will take place dynamically, so it had better be reasonably fast.

We proceed through the edges of the polygonal path γ, which is to say of pairs P , Q of successive points from γ,

starting with P = γn−1. I assume that γ is oriented positively, so that the region Γ lies to its left. I also assume

that γ is simple and closed. We then let Q be in turn γ0 etc., keeping track of f(P ) and f(Q). We maintain three
stacks as we go. The first A is of all points on the new paths, the second B classifies those in the first, according to

whether they are intersections of in,out; out,in; or neither, which means they are just inside. The third stack C is of

indices of the points which are of the first or second kind. The first array is made up of the points themselves,the
third of indices in the first (as well as second) array. All points in the third array are boundary points lying on

the curve f = 0 and are calculated as intersections of a segment with the boundary curve. Cases for P , Q:

(1) f(P ) ≤ 0, f(Q) ≤ 0: we add Q to our arrays A and B.

(2) f(P ) ≤ 0, f(Q) > 0: we add the point of intersection R to all three arrays.

(3) f(P ) > 0, f(Q) > 0: we do nothing.
(4) f(P ) > 0, f(Q) ≤ 0: if R is the point of intersection, then we add R and Q to the first two arrays, R to the

third.

These rules differ from the ones applied in the earlier version of Hodgman­Sutherland in the special case where

one of P and Q lie in the plane f = 0. In the previous algorithm, this was dealt with so as not to add a point twice,
but here, on the other hand, the rules will produce three copies of the same point if we get a triple of successive

vertices of γ where the first and last points lie in the region f > 0 but the middle point P satisfies f(P ) = 0. This

case is treated no differently from the case f(P ) < 0, and therefore places three copies of P on the curve to be
drawn, two of which are tagged as boundary points. Of course in the real world the probability that P will fall

exactly on the curve f = 0 is infinitesimal, but in theoretical constructions it happens often. One consequence of

the rules applied here here is that boundary points always come in pairs, one ingoing and one outgoing.



Clipping 3

At the end, after this pass through the edges of the polygon γ, we sort the points in the third array. This sorting
is first of all geometrical, compatible with The sorting has to be compatible with orientation—so if P is outgoing

and Q the next (ingoing) point in our sorted list, then PQ has the region on the left.

Make up a fourth array of the same length as the first, giving for every boundary point its index in the sorted
boundary point array, and ∅ for every point that’s not a boundary point.

We now want to locate the components of the original region cut off by f ≤ 0. We loop, building one component
in each loop. At the beginning of a loop we search through the boundary points to find an outgoing point that

hasn’t been assigned yet. Then we build the component boundary starting with this point, adding one point at
a time. How we choose the next point (i.e. its index) dpends on the type of the current point. If it is outgoing,

we choose the next (ingoing) point in the boundary list; if it is ingoing we just choose the next point in the path;

and similarly if it is an interior point. We stop when the next point is our starting point, in which case we have a
component path. As we add points we keep count, and when all point shave been put on some componnet we

stop.

When we add a point to a component, we mark it as used.

What we return finally is an array of polygons, the oriented boundaries γi of regions Γi.

4. Other applications

The same technique can be used to draw regions on a sphere, for example countries on a map. In this case, we first

calculate the plane separating the visible region of the sphere from the rest, and then truncate when a segment of

the path crosses this. As for sorting, we pick one outgoing point, and the sort by angular distance (clockwise, as
seen by the eye) away from this. This angular distance can be calculated by means of dot products with a plane

vector to this point and this vector rotated 90◦. Otherwise the whole algorithm looks pretty much the same. If
we use the path we get as a 2D clipping path, we can even produce good shading.

What surfaces will this work on? Presumably convex ones for which we can compute the horizon. It remains

difficult to find something that works for others.

5. Code

The relevant code for this new version of Hodgman­Sutherland is in the file hs.inc, which contains the single

procedure hs. This has the path and the line as arguments, and returns the array of component boundary paths
as polygons.

The stack procedures are contained in the file stack.inc. In order to access the code defined there after running
this file, place stackdict begin in your program as well, and (of course) an end when you don’t need stacks

anymore.


