
Open and Closed Systems are Equivalent
(that is, in an ideal world)

Ross Anderson

Cambridge University, England; email rja14@cl.cam.ac.uk

1 Introduction

People in the open source and free software community often argue that making
source code available to all is good for security. Users and experts can pore over
the code and find vulnerabilities: ‘to many eyes, all bugs are shallow’, as Eric
Raymond puts it [1]. This idea is not entirely new. In the world of cryptography,
it has been standard practice since the nineteenth century to assume that the
opponent knows the design of your system, so the only way you can keep him
out is by denying him knowledge of a temporary variable, the key [2].

However, open design is not an idea that everyone accepts, even now. Oppo-
nents of free software argue that ‘if the software is in the public domain, then
potential hackers have also had the opportunity to study the software closely to
determine its vulnerabilities’ [3]. This issue is now assuming economic and polit-
ical importance, as the antitrust settlement between Microsoft and the Depart-
ment of Justice compels Microsoft to make a lot of information about interfaces
available to its competitors – but with the provision that data whose disclosure
might prejudice security may be withheld [4]). Unsurprisingly, Microsoft is now
discovering that many more aspects of its systems are security-relevant than had
previously been thought.

There is a related issue: whether information about discovered vulnerabilities
may be published. In February 2003, Citibank obtained an injunction prohibiting
any reporting of security vulnerabilities of automatic teller machine systems
disclosed by myself and two colleagues at a trial which we were attending as
expert witnesses. This was counterproductive for the bank, as it compelled us
to publish our attacks in an invited talk and a technical report in the days just
before the gagging hearing. We were slashdotted and the technical report was
downloaded over 110,000 times [5, 6]. But this is unlikely to be the last time
that gagging orders are used against security vulnerabilities; if anything, the
US Digital Millennium Copyright Act and the EU Intellectual Property Rights
Enforcement Directive [7] will make them even more common.

So there is growing public interest in the question of whether openness is of
more value to the attacker or the defender.

This question is much more general than whether software source code should
be available to users. A wide range of systems and components can be either eas-
ier, or more difficult, to test, inspect and repair depending on the available tools
and access. Hardware devices can often be reverse engineered with surprisingly

little effort – although the capital resources needed to fabricate a compatible
clone might be scarce. The difference between ‘open’ and ‘closed’ may also be
legal rather than technical; if laws prohibit the reporting of defects, or the man-
ufacture of compatible products, this can have much the same effect as logical or
physical tamper-resistance. So in what follows I will talk about ‘open systems’
versus ‘closed systems’, which differ simply in the difficulty in finding and fixing
a security vulnerability.

In May 2002, I proved a controversial theorem [8]: that, under the standard
assumptions of reliability growth theory, it does not matter whether the system is
open or closed. Opening a system enables the attacker to discover vulnerabilities
more quickly, but it helps the defenders exactly as much.

This caused consternation in some circles, as it was interpreted as a general
claim that open systems are no better than closed ones. But that is not what
the theorem implies. Most real systems will deviate in important ways from
the assumptions of the standard reliability growth model, and it will often be
the case that open systems (or closed systems) will be better in some particular
application. My theorem lets people concentrate on the differences between open
and closed systems that matter in a particular case.

2 An illustration: auction equivalence

Computer scientists are familiar with some kinds of equivalence theorem. For
example, Turing’s work teaches us that, in some sense, all computers are equal. A
machine that is Turing-powerful can be used to simulate any other such machine;
a TRS-80 can in theory emulate an Ultrasparc CPU. But no computerist would
understand that as a claim that any old toy computer can take over the hosting
of our University’s research grant database.

The equivalence of open and closed systems is a different kind of result, more
like some equivalence theorems found in economics. To illustrate how such results
work, let’s consider the revenue equivalence theorem in auction theory.

Auctions have been around for thousands of years, and have long been a
standard way of selling things as diverse as livestock, fine art, mineral rights and
government bonds. How to run them has recently become a hot topic among both
technologists and economists. Huge amounts have been raised in many countries
from spectrum auctions, and eBay has become one of the most successful Internet
companies. Auctions are also proposed as a means of allocating scarce resources
in distributed systems. However, it’s not always obvious how to design the most
appropriate type of auction. Consider the following three schemes.

1. In the sealed-bid auction, everyone submits a sealed envelope containing their
bid. The auctioneer opens them and awards the contract to the highest
bidder.

2. In the English auction, the auctioneer starts out the bidding at some reserve
price, and keeps on raising it until one bidder remains, who is the winner.
The effect of this is that the bidder who places the highest valuation on the

2

contract wins, but at the valuation of the next-highest bidder (plus the bid
increment).

3. The all-pay auction is similar to the English auction, except that at each
round all the bidders have to pay the current price. Eventually, there is only
one bidder left, who gets the contract – but the losers don’t get a refund.
(This scheme models what happens in litigation, or in a symmetric war of
attrition.)

The fundamental result about auctions is the revenue equivalence theorem
which says that under ideal conditions, you get the same revenue from any well-
behaved auction [9]. The bidders will adjust their strategies to the rules set by
the auctioneer, and the auctioneer will end up with the same amount of money
on average.

Yet, in practice, the design of auctions matters enormously. During the recent
spectrum auctions, very small changes in the rules imposed by different govern-
ments led to huge differences in outcomes. The UK and Danish governments
raised huge amounts of money, while the Dutch and the Austrians got peanuts.
How can this be squared with theory?

The answer is that auctions are often not well-behaved, and conditions are
rarely ideal. For example, revenue equivalence assumes that bidders are risk-
neutral – they are indifferent between a certain profit of $1bn and a 50% chance
of a profit of $2bn. But established phone companies may be risk-averse; they
may see a failure to get into the 3g market as a threat to their existence, and
pay more at a sealed-bid auction out of fear. Another problem is that bidders
were often able to abuse the bidding mechanism to signal their intentions to
each other [10]. Yet another is entry deterrence; incumbents in an industry may
be able to scare away new entrants by a variety of tactics. Yet another is that
if the private information of the bidders is correlated rather than independent,
the English auction should raise more money than the sealed-bid auction [11].
Yet another is that if some of the bidders have budgetary constraints, the all-
pay auction may raise more money (which may help to explain why litigation
consumes such a large share of America’s GDP).

So the revenue equivalence theorem is important for auction designers. It
should not be seen as claiming that auction rules don’t matter, but rather as
identifying those conditions which do matter.

With this insight, let’s return to the equivalence of open and closed systems.
First, we’ll take a look at the standard assumptions and results of reliability
growth theory.

3 Security Reliability Growth

Safety-critical software engineers have known for years that for a large, complex
system to have a mean time to failure (MTTF) of 100,000 hours, it must be
subject to at least that many hours of testing [12]. This was first observed by
Adams in 1985 in a study of the bug history of IBM mainframe operating sys-
tems [13], and has been confirmed by extensive empirical investigations since.

3

The first theoretical model explaining it was published in 1996 by Bishop and
Bloomfield [14], who proved that under standard assumptions this would be the
worst-case behaviour. Brady, Anderson and Ball tightened this result by showing
that, up to a constant factor, it was also the expected behaviour [15].

Such reliability growth models were developed for software reliability in gen-
eral, but they can be applied to bugs of any particular type – such as defects
that might cause loss of life, or loss of mission, or the breach of a security policy.
They only require that there are enough bugs for statistical arguments to work,
and that a consistent definition of ‘bug’ is used throughout.

When we test software, we first find the most obvious bugs – that is, the
bugs with the lowest mean time to failure. After about ten minutes, we might
find a bug with a 10-minute MTTF. Then after half an hour we might get lucky
and find a bug with an MTTF of 42 minutes, and so on. In a large system,
luck cancels out and we can use statistics. A hand-waving argument would go
as follows: after a million hours of testing, we’d have found all the bugs with an
MTTF of less than a million hours, and we’d hope that the software’s overall
reliability would be proportional to the effort invested.

Reliability growth models make this more precise. Suppose that the proba-
bility that the i-th bug remains undetected after t random tests is e−Eit. The
Brady-Anderson-Ball model shows that, after a long period of testing and bug
removal, the net effect of the remaining bugs will under certain assumptions
converge to a polynomial rather than exponential distribution. In particular,
the probability E of a security failure at time t, at which time n bugs have been
removed, is

E =
∞∑

i=n+1

e−Eit ≈ K/t (1)

over a wide range of values of t. In the appendix, I sketch the proof of why this is
the case. For present purposes, note that this explains the slow reliability growth
observed in practice. The failure time observed by a tester depends only on the
initial quality of the code (the constant of integration K) and the time spent
testing it thus far.

Does this theory apply to security vulnerabilities? Recently, Rescorla has
studied the available bug databases and concluded that the rate at which vul-
nerabilities are depleted by discovery is very low [16]. The visual trends one can
see for bugs introduced in any particular year and then discovered in subsequent
years show a slow decline; and in fact, once one allows for possible sampling
bias it is even possible that the rate of vulnerability discovery is constant. The
available data support the assumption that vulnerabilities can be considered
independent, and are consistent with the model’s prediction of very slow relia-
bility growth as a result of vulnerability discovery and removal. The numbers
of vulnerabilities per product (dozens to low hundreds) are also sufficient for
statistical assumptions to hold.

4

4 Equivalence of open and closed systems

Consider now what happens if we make the tester’s job harder. Suppose that
after the initial alpha testing of the product, all subsequent testing is done by
beta testers who have no access to the source code, but can only try out various
combinations of inputs in an attempt to cause a failure. If this makes the tester’s
job on average λ times harder – the bugs are λ times more difficult to find –
then the probability that the i-th bug remains undetected becomes e−Eit/λ, and
the probability that the system will fail the next test is

E =
∞∑

i=n

e−Eit/λ ≈ K/λt (2)

In other words, the system’s failure rate has just dropped by a factor of λ,
just as we would expect.

However, what if all the testing to date had been carried out under the more
difficult regime? In that case, only 1/λ the amount of effective testing would have
been carried out, and the λ factors would cancel out. Thus the failure probability
E would be unchanged.

Going back to our intuitive argument, making bugs five times more difficult
to find will mean that we now work almost an hour to find the bug whose MTTF
was previously 10 minutes, and over three hours for the 42-minute bug (Fenton
and Neil suggest that λ lies between 3 and 5 for mature systems [17]). But
the reliability of software still grows as the time spent testing, so if we needed
10,000 hours of testing to get a 10,000-hour-MTTF product before, that should
still hold now. We will have removed a smaller set of bugs, but the rate at which
we discover them will be the same as before.

Consider what happens when proprietary software is first tested by insiders
with access to source code, then by outsiders with no such access. With a large
commercial product, dozens of testers may work for months on the code, after
which it will go out for beta testing by outsiders with access to object code only.
There might be tens of thousands of beta testers, so even if λ were as large as
100, the effect of the initial, open, alpha-testing phase will be quickly swamped
by the very much greater overall effort of the beta testers.

Then a straightforward economic analysis can in principle tell us the right
time to roll out a product for beta testing. Alpha testers are more expensive,
being paid a salary; as time goes on, they discover fewer bugs and so the cost
per bug discovered climbs steadily. At some threshold, perhaps once bug removal
starts to cost more than the damage that bugs could do in a beta release product,
alpha testing stops. Beta testing is much cheaper; testers are not paid (but may
get discounted software, and still incur support costs). Eventually – in fact, fairly
quickly – the beta test effort comes to dominate reliability growth.

So, other things being equal, we expect that open and closed systems will
exhibit similar growth in reliability and in security assurance. This assumes that
there are enough bugs to do statistics, that they are independent and identically

5

distributed, that they are discovered at random, and that they are fixed as soon
as they are found.

5 Symmetry Breaking

This does not of course mean that, in a given specific situation, proprietary and
open source are evenly matched. A vendor of proprietary software may have other
reasons for not making source code available. Microsoft managers once argued
that they feared an avalanche of lawsuits by people holding software patents
with little or no merit, but who hoped to extract a settlement by threatening
expensive litigation. The technical assumptions of reliability growth theory could
also fail to hold for many reasons, some of which I’ll discuss below. If the analogy
with the revenue equivalence theorem is sound, then this is where we expect the
interesting economic and social effects to be found.

Even though open and closed systems are equally secure in an ideal world,
the world is not ideal, and is often adversarial. Attackers are likely to search for,
find and exploit phenomena that break the symmetry between open and closed
models. (This is also similar to the auction theory case; phone companies spent
considerable sums of money on hiring economists to find ways in which spectrum
auctions could be gamed [10].)

5.1 Transients

Transient effects may matter, as K/t holds only at equilibrium. Suppose that a
new type of abstract attack is found by an academic researcher and published. It
may be simple to browse the GNU/Linux source code to see if it can be applied,
but much more complex to construct test cases, write debugging macros etc,
to see if an exploit can be made for Windows. So there may be time-to-market
issues for the attacker.

According to Adams, IBM fixed mainframe operating system bugs the eighth
time they were reported [13]. Leung studied the optimal frequency of security
updates from the customer perspective: because of the risk that applying a ser-
vice pack may cause critical systems to stop working, it may be quite rational
for many customers to delay application [18]. Vendors also delay fixing bugs,
because it costs money to test fixes, bundle them up into a service pack and
ship them to millions of customers. So there may be time-to-market issues for
the defenders too, and at several levels.

Transient effects may be the dominant factor in network security at present,
as most network exploits use vulnerabilities that have already been published
and for which patches are already available. If all patches were applied to all
machines as soon as they were shipped, then the pattern of attacks would change
radically. This is now rightly an area of active research, with engineers developing
better patching mechanisms and security economists engaged in controversy. For
example, Rescorla argues that, in order to optimise social welfare, vulnerability
disclosure should be delayed [16], while Arora, Telang and Xu argue that either
disclosure should be accelerated, or vendor liability increased [19].

6

5.2 Transaction costs

Time-to-market issues largely depend on the effects of a more general problem,
namely transaction costs.

Transaction costs may persuade some vendors to remain closed. For example,
if source code were made available to beta testers too, then the initial reliability
of beta releases would be worse, as the testers would be more efficient. Fairly
soon, the reliability would stabilise at the status quo ante, but a much larger
number of bugs would have had to be fixed by the vendor’s staff. Avoiding this
cost might sometimes be a good argument against open systems.

5.3 Complexity growth

Software becomes steadily more complex, and reliability growth theory leads
us to expect that the overall dependability will be dominated by newly added
code [15]. Thus, while we may never get systems that are in equilibrium in the
sense of the simple model, there may be a rough second-order equilibrium in
which the amount of new code being added in each cycle is enough to offset the
reliability gains from bug-fixing activities since the last cycle. Then the software
will be less dependable in equilibrium if new code is added at a faster rate.

So commercial featuritis can significantly undermine code quality. But soft-
ware vendors tend to make their code just as complex as they can get away with,
while collaborative developers are more likely to be ‘scratching an itch’ than try-
ing to please as many prospective customers as possible [1]. Certainly products
such as OpenOffice appear to lag their commercial competitors by several years
in terms of feature complexity.

5.4 Correlated bugs

Just as correlated private information can break the equivalence of different
types of auction, so also can correlations between security vulnerabilities cause
the equivalence of attack and defence to fail.

Recently, most reported vulnerabilities in operating systems and middleware
have related to stack overflow attacks. This may have helped the attackers in
the beginning; an attacker could write a test harness to bombard a target sys-
tem with unsuitable inputs and observe the results. More recently, technological
changes may have tilted the playing field in favour of the defenders: the typical
information security conference now has a number of papers on canaries, static
code analysis tools and compiler extensions to foil this type of attack, while Mi-
crosoft’s programmers have been trained in their own way of doing things [22].
There is also the prospect that better implementation of execute permissions in
future processors may eventually make stack overflow attacks obsolete.

Correlated bugs are not, however, the defender’s friend. In extreme cases,
they may make security systems very brittle. The cryptographic processors used
by banks to protect cash machine PINs, for example, have been around for
some 20 years. Their design was relatively obscure; some products had manuals

7

available online, but few people outside the payment industry paid them any
attention. After the first attacks were published in late 2000, this changed. Many
further attacks were soon found and the technology has been rendered largely
ineffective [5, 20].

5.5 Code quality

In the ideal case, system dependability is a function only of the initial code
quality K and the amount of testing t. However, it is not clear that code quality
is a constant. Many people believe that open systems tend to have higher quality
code to begin with, that is, a lower value of K.

Knowing that one’s code may be read and commented on widely can motivate
people to code carefully, while there may also be selection effects: for example,
programmers with greater skill and motivation may end up working on open sys-
tems. A lot of labour is donated to open system projects by graduate students,
who are typically drawn from the top quartile of computer science and engi-
neering graduates. Meanwhile, commercial deadlines can impose pressures that
cause even good coders to work less carefully (see section 5.8 below for more on
this). Open systems may therefore start out with a constant-factor advantage.

5.6 Effectiveness of testing

Just as K can vary, so can t. It is quite conceivable that the users of open
products such as GNU/Linux and Apache are more motivated to report system
problems effectively, and it may be easier to do so, compared with Windows
users who respond to a crash by rebooting and would not know how to report a
bug if they wanted to.

An issue that may push in the other direction is that security testing is much
more effective if the testers are hostile [21]. Evaluators paid by the vendor are
often nowhere near as good at finding flaws as the people who attack a system
once it’s released – from competitors to research students motivated by glory.
In many cases, this effect may simply tweak the value of λ. However, there
have been occasional step-changes in the number and hostility of attackers. For
example, after Sky-TV enciphered the channel containing ‘Star Trek’ in the early
1990s, students in Germany could no longer get legal access to the programme,
so they spent considerable energy breaking its conditional access system [20]. In
the case of Windows versus GNU/Linux, people may be more hostile to Windows
both for ideological reasons and because an exploit against Windows allows an
attacker to break into more systems.

What is the net effect on t (and K)? Recently, both Windows and GNU/Linux
have been suffering about fifty reported security vulnerabilities a year (for pre-
cise figures by product and release, see [16]). Given that Windows has perhaps
10-20 times as many users, one would expect t to be larger and thus K/t to be
smaller by this amount; in other words, we would expect Windows to be 10-20
times more reliable. As it clearly isn’t, one can surmise that different values of

8

K and of testing effectiveness (in effect, a multiplier of t) help GNU/Linux to
make back the gap.

5.7 Policy incentives on the vendor

In addition to the code and testing quality effects, which work through individual
programmers and testers, there are also incentive issues at the corporate level.

The motivation of the vendor to implement fixes for reported bugs can be af-
fected in practice by many factors. The US government prefers vulnerabilities in
some products to be reported to authority first, so that they can be exploited by
law enforcement or intelligence agencies for a while. Vendors are only encouraged
to ship patches once outsiders start exploiting the hole too.

5.8 Time-to-market incentives on the vendor

There are also the issues discussed in [31]: the economics of the software industry
(high fixed costs, low variable costs, network effects, lock-in) lead to dominant-
firm markets with strong incentives to ship products quickly while establishing a
leading position. Firms will therefore tend to ship a product as soon as it’s good
enough; similarly, given that fixing bugs takes time, they may fix only enough
bugs for their product to keep up with the perceived competition. For example,
Microsoft takes the perfectly pragmatic approach of prioritising bugs by severity,
and as the ship date approaches the bug categories are allowed to slip. So more
severe bugs are allowed through into the product if they are discovered at the
last minute and if fixing them is non-trivial [24].

5.9 Industry structure issues for the vendor

The size of the vendor and the nature of sectoral competition can be the source
of a number of interesting effects. Gal-Or and Ghose show that larger firms
are more likely to benefit from information sharing than smaller ones, as are
firms in larger industries; and that information sharing is more valuable in more
competitive industries [23]. The critical observation is that openness saves costs
– so the biggest spenders save the most.

The extent to which industries are vertically integrated may also matter.
Many vulnerabilities affecting Windows PCs can be blamed on Microsoft as the
supplier of the most common operating system and the dominant productivity
application, as well as web server and database products. On the other hand,
smartcards are typically designed by one firm, fabricated by a second using
components licensed from multiple specialists, then loaded with an operating
system from a third firm, a JVM from a fourth, and a crypto library from a fifth
– with power analysis countermeasures bought in from yet another specialist. On
top of this, an OEM will write some applications, and the customer still more.

The security of the resulting product against a given attack – say, fault
induction – may depend on the interaction between hardware and software com-
ponents from many different sources. Needless to say, many of the component

9

vendors try to dump liability either upstream or downstream. In such an environ-
ment, obscure proprietary designs can undermine security as they facilitate such
behaviour. Laws such as the EU electronic signature directive, which make the
cardholder liable for security failures, may compound the perverse incentive by
leading all the other players to favour closed design and obscure mechanisms [25].

5.10 PR incentives on the vendor

Firms care about their image, especially when under pressure from regulators or
anti-trust authorities. Our team has long experience of security hardware and
software vendors preferring to keep quiet about bugs, and only shipping patches
once their hand is forced (e.g., by TV publicity). They may feel that shipping a
patch undermines previous claims of absolute protection. Even if ‘unbreakable
security’ is not company policy, managers may not want to undermine assurances
previously given to their bosses. So there may be information asymmetries and
principal-agent effects galore.

The argument is now swinging in favour of policies of vulnerability disclosure
after a fixed notice period; without the threat of eventual disclosure, little may
get done [26, 27]. This is not going to be a panacea, though; on at least one
occasion, a grace period that we gave a vendor before publication was consumed
entirely by internal wrangling about which department was to blame for the
flaw. In another case, vendors reassured their customers that attacks colleagues
and I had published were ‘not important’, so the customers had done nothing
about them.

5.11 Operational profile

Another set of issues have to do with the operational profile, which is how the
reliability community refers to test focus. The models discussed above assume
that testing is random, yet in practice a tester is likely to focus on a particular
subset of test cases that are of interest to her or are easy to perform with her
equipment.

However, the individual preferences and skills of testers still vary. It is well
known that software may be tested extensively by one person, until it appears to
be very reliable, only to show a number of bugs quickly when passed to a second
tester [28]. This provides an economic argument for parallelism in testing [15].
It is also a strong argument for extensive beta testing; a large set of testers is
more likely to be representative of the ultimate user community.

Experienced testers know that most bugs are to be found in recently added
code, and will focus on this. In fact, one real advantage that source code access
gives to an attacker is that it makes it easier to identify new code. In theory,
this does not affect our argument, as the effects are subsumed into the value of
λ. In practice, with systems that depart from the ideal in other ways, it could
be important.

10

5.12 Adverse selection

Operational profile issues can combine with adverse selection in an interesting
way. Security failures often happen in the boring bits of a product, such as
device drivers and exception handling. The tempting explanation is that low-
status programmers in a development team – who may be the least experienced,
the least motivated, the least able (or all of the above) – are most likely to get
saddled with such work.

5.13 Coase’s Penguin and the Wild West

A related argument for closed systems is as follows. Think of the Wild West; the
bandits can concentrate their forces to attack any bank on the frontier, while
the sherriff’s men have to defend everywhere. Now, the level of assurance of a
given component is a function of the amount of scrutiny that it actually gets,
not of what it might get in theory. As testing is boring, and volunteers generally
only want to fix failures that irritate them, the amount of concentrated attention
paid by random community members to (say) the smartcard device drivers for
GNU/Linux is unlikely to match what an enemy government might invest [29].

A counter-argument can be drawn from Benkler’s model, that large commu-
nities can include individuals with arbitrarily low reservation prices for all sorts
of work [30]. A different one arises in the context of reliability growth theory.
Efficacy of focus appears to assume that the attacker is more efficient than the
defender at selecting a subset of the code to study for vulnerabilities; if they
were randomly distributed, then no one area of focus should be more productive
for the attacker than any other.

The more relevant consideration for security assurance is, I believe, the one
in [31] – that a large number of low-probability bugs structurally favours attack
over defence. In an extreme case, a system with 106 bugs each with an MTTF of
109 hours will have an MTBF of 1000 hours, so it will take about that much time
to find an attack. But a defender who spends even a million hours has very little
chance of finding that particular bug before the enemy exploits it. This problem
was known in generic terms in the 1970s; the above model makes it more precise.
(It also leads to Rescorla’s disturbing argument that if vulnerabilities truly are
uncorrelated, then the net benefit of disclosing and fixing them may be negative
– patched software doesn’t get much harder to attack, while software that’s not
patched yet becomes trivial to attack [16].)

5.14 Do defenders cooperate or free-ride?

We mentioned above that the users of open systems might be better at reporting
bugs. Such factors are not restricted to the demand side of the bug-fixing busi-
ness, but can affect the supply side too. The maintainers of open systems might
take more pride in their work, and be more disposed to listen to complaints, while
maintainers working for a company might be less well motivated. They might
see bug reports as extra work and devise mechanisms – even subconsciously – to

11

limit the rate of reporting. On the other hand, a corps of paid maintainers may
be much easier to coordinate and manage, so it might get better results in the
long term once the excitement of working on a new software project has paled.
How might we analyse this?

We mentioned industries, such as the smartcard industry, where many de-
fenders have to cooperate for best esults. Varian presents an interesting analysis
of how defenders are likely to react when the effectiveness of their defence de-
pends on the sum total of all their efforts, the efforts of the most energetic de-
fender, or the efforts of the least energetic defender [32]. In the total-efforts case,
there is always too little effort exerted at the Nash equilibrium as opposed to
the optimum, but at least reliability continues to increase with the total number
of participants.

6 Conclusion

The debate about open versus closed systems started out in the nineteenth
century when Auguste Kerckhoffs pointed out the wisdom of assuming that
the enemy knew one’s cipher system, so that security could only reside in the
key. It has developed into a debate about whether access to the source code of
a software product is of more help to the defence, because they can find and fix
bugs more easily, or to attackers, because they can develop exploits with less
effort.

This paper gives a partial answer to that question. In a perfect world, and for
systems large and complex enough for statistical methods to apply, the attack
and the defence are helped equally. Whether systems are open or closed makes
no difference in the long run.

The interesting questions lie in the circumstances in which this symmetry can
be broken in practice. There are enough deviations from the ideal for the choice
between open and closed to be an important one, and a suitable subject for
researchers in the economics of information security. The balance can be pushed
one way or another by many things: transient effects, transaction costs, featuri-
tis, interdependent or correlated vulnerabilities, selection effects, incentives for
coders and testers, agency issues, policy and market pressures, changing oper-
ational profiles, and the effects of defenders who cheat rather than collaborate.
(This list is surely not complete.)

Although some of these effects can be modelled theoretically, empirical data
are needed to determine which effects matter more. It might be particularly
interesting, for example, to have studies of reliability growth for code that has
bifurcated, and now has an open and a closed version.

In conclusion, I have not proved that open and closed systems are always
equivalent. They are in an ideal world, but our world is not ideal. The significance
of this result is, I hope, to have made a start towards a better understanding of
the circumstances in which open systems (or closed systems) are best – and to
help us focus on the factors that actually matter.

12

Acknowledgements: I got useful comments from Rob Brady, Hal Varian,
Jacques Crémer, Peter Bishop, Richard Clayton, Paul Leach, Peter Wayner,
Fabien Petitcolas, Brian Behlendorf, Seth Arnold, Jonathan Smith, Tim Harris,
Andrei Serjantov, Mike Roe and Eric Rescorla; and from attendees at talks I gave
on this subject at the Toulouse conference on Open Source Software Economics;
at City University, London; at the National E-science Centre, Edinburgh; and
at the Cambridge Seminar on Economics, Networks and Security.

References

1. ES Raymond, “The Cathedral and the Bazaar”, 1998, at http://tuxedo.org/

~esr/writings/cathedral-bazaar/
2. A Kerckhoffs, “La Cryptographie Militaire”, in Journal des Sciences Militaires, 9

Jan 1883, pp 5–38; http://www.cl.cam.ac.uk/users/fapp2/kerckhoffs/
3. K Brown, “Opening the Open Source Debate”, 2002, Alexis de Toqueville Insti-

tution, at http://www.adti.net/html_files/defense/opensource_whitepaper.

pdf
4. Collar-Kotelly J, US District Court, District of Columbia, Civil Action No. 98-1232

(CKK), United States of America vs Microsoft Inc., Final Judgment (November
12 2002), at http://www.usdoj.gov/atr/cases/f200400/200457.htm

5. RJ Anderson, M Bond, “Protocol Analysis, Composability and Computation”, in
Computer Systems: Papers for Roger Needham, Microsoft Research, February 2003,
at http://cryptome.org/pacc.htm

6. M Bond, P Zielinski, “Decimalisation Table Attacks for PIN Cracking”, Cambridge
University Computer Laboratory Technical Report no. 560, at http://www.cl.

cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf
7. Draft ‘EU Directive on the enforcement of intellectual property rights’, at http:

//europa.eu.int/comm/internal_market/en/indprop/piracy/index.htm
8. RJ Anderson, “Security in Open Versus Closed Systems – the Dance of Boltzmann,

Coase and Moore”, at Open Source Software Economics 2002, at http://www.

idei.asso.fr/ossconf.html
9. P Klemperer, “Auction Theory: A Guide to the Literature”, in Journal of Eco-

nomic Surveys v 13 no 3 (1999); at http://www.paulklemperer.org/
10. P Klemperer, “Using and Abusing Economic Theory—Lessons from Auction De-

sign”, 2002 Alfred Marshall lecture to the European Economic Association, at
http://www.paulklemperer.org/

11. P Milgrom, R Weber, “A Theory of Auctions and Competitive Bidding”, Econo-
metrica v 50 no 5 (1982), pp 1089–1122

12. RW Butler, GB Finelli, “The infeasibility of experimental quantification of life-
critical software reliability”, ACM Symposium on Software for Critical Systems,
New Orleans ISBN 0-89791-455-4 pp 66–76 (Dec 1991)

13. Adams E. N., “Optimising preventive maintenance of software products”, lBM
Journal of Research & Development, Vol. 28, issue 1 pp 2–14 (1984)

14. P Bishop, R Bloomfield, “A Conservative Theory for Long-Term Reliability-
Growth Prediction’, IEEE Transactions on Reliability v 45 no 4 (Dec 96) pp 550–
560

15. RM Brady, RJ Anderson, RC Ball, ‘Murphy’s law, the fitness of evolving species,
and the limits of software reliability’, Cambridge University Computer Laboratory
Technical Report no. 471 (September 1999), available at http://www.cl.cam.ac.
uk/ftp/users/rja14/babtr.pdf

13

16. E Rescorla, “Is finding security holes a good idea?”, in Workshop on Economics
and Information Security, May 13–15 2004, Minneapolis, at http://www.rtfm.

com/bugrate.html and http://www.dtc.umn.edu/weis2004/agenda.html

17. NE Fenton, M Neil, “A Critique of Software Defect Prediction Mod-
els”, in IEEE Transactions on Software Engineering vol 25 no 5 (Sep/Oct
1999) pp 675–689; at http://www.dcs.qmul.ac.uk/~norman/papers/defects_

prediction_preprint105579.pdf

18. KS Leung, “Diverging economic incentives caused by innovation
for security updates on an information network”, available at
¡http://www.sims.berkeley.edu/resources/affiliates/workshops/econsecurity/¿

19. A Arora, R Telang, H Xu, “Timing Disclosure of Software Vulnerability for Optimal
Social Welfare”, in Workshop on Economics and Information Security, May 13–15
2004, Minneapolis, at http://www.dtc.umn.edu/weis2004/agenda.html

20. RJ Anderson, ‘Security Engineering – A Guide to Building Dependable Distributed
Systems’ Wiley (March 2001), ISBN 0-471-38922-6

21. RJ Anderson, SJ Beduidenhoudt, “On the Reliability of Electronic Payment Sys-
tems”, in IEEE Transactions on Software Engineering vol 22 no 5 (May 1996) pp
294–301; at http://www.cl.cam.ac.uk/ftp/users/rja14/meters.ps.gz

22. M Howard, D LeBlanc, ‘Writing Secure Code’, Microsoft Press 2002 (second edition
2003), ISBN 0-7356-1588-8

23. E Gal-Or, A Ghose, “The Economic Consequences of Sharing Security Informa-
tion”, to appear at Workshop on Economics and Information Security, 2003

24. N Myrhvold, personal communication
25. N Bohm, I Brown, B Gladman, “Electronic Commerce: Who Carries the Risk

of Fraud?”, Journal of Information Law and Technology, October 2000, at http:

//elj.warwick.ac.uk/jilt/00-3/bohm.html

26. Rain Forest Puppy, “Issue disclosure policy v1.1”, at http://www.wiretrip.net/

rfp/policy.html

27. D Fisher, “OIS Tackles Vulnerability Reporting”, Eweek.com, March 20 2003, at
http://www.eweek.com/article2/0,3959,950860,00.asp

28. PG Bishop, “Rescaling Reliability Bounds for a New Operational Profile”, in In-
ternational Symposium on Software Testing and Analysis (ISSTA 2002), Rome,
Italy, July 22-24, 2001

29. M Schaefer, Panel comments at Oakland 2001
30. Y Benkler, “Coase’s Penguin, or, Linux and the Nature of the Firm”, at Conference

on the Public Domain, Nov 9-11, Duke Law School, available at http://www.law.
duke.edu/pd/papers/Coase’s_Penguin.pdf

31. RJ Anderson, “Why Information Security is Hard – An Economic Perspective”, in
Proceedings of the Seventeenth Computer Security Applications Conference, IEEE
Computer Society Press (2001), pp 358–365; available at http://www.cl.cam.ac.
uk/ftp/users/rja14/econ.pdf

32. H Varian, “System Reliability and Free Riding”, available at http:

//www.sims.berkeley.edu/resources/affiliates/workshops/econsecurity/

econws/49.pdf

Appendix

The following exposition is taken from [15], and uses an argument familiar to
students of statistical mechanics. If there are N(t) bugs left after t tests, let the

14

probability that a test fails be E(t), where a test failure counts double if it is
caused by two separate bugs. Assume that no bugs are reintroduced, so that
bugs are removed as fast as they are discovered. That is:

dN = −Edt (3)

By analogy with thermodynamics, define a ‘temperature’ T = 1/t and ‘en-
tropy’ S =

∫
dE/T . Thus S =

∫
tdE = Et −

∫
Edt. This can be solved by

substituting equation 1, giving S = N +Et. The entropy S is a decreasing func-
tion of t (since dS/dt = tdE/dt and dE/dt < 0). So both S and N are bounded
by their initial value N0 (the number of bugs initially present) and the quantity
S −N = Et is bounded by a constant k (with k < N0), that is:

E ≤ k/t (4)

Et vanishes at t = 0 and t = W0, where W0 is the number of input states the
program can process. It has a maximum value Et = k. We now wish to show
that this maximum is attained over a wide range of values of t, and indeed that
Et ≈ k for N0 � t� W0. This will be the region of interest in most real world
systems.

We can write the above equation as Et = k − g(t) where 0 ≤ g(t) ≤ k.
Since g(t) is bounded, we cannot have g(t) ∼ tx for x > 0. On the other hand, if
g(t) = At−1, then this makes a contribution to N of −

∫
g(t)dt/t = A/t, which is

reduced to only one bug after A tests, and this can be ignored as A < k. Indeed,
we can ignore g(t) = At−x unless x is very small. Finally, if g(t) varies slowly
with t, such as g(t) = At−x for small x, then it can be treated as a constant in
the region of interest, namely N0 � t�W0. In this region, we can subsume the
constant and near-constant terms of g(t) into k and disregard the rest, giving:

E ≈ k/t (5)

Thus the mean time to failure is 1/E ≈ t/k in units where each test takes
one unit of time.

More precisely, we can consider the distribution of defects. Let there be ρ(ε)dε
bugs initially with failure rates in ε to ε + dε. Their number will decay exponen-
tially with characteristic time 1/ε, so that E =

∫
ερ(ε)e−εtdε ≈ k/t. The solution

to this equation in the region of interest is

ρ(ε) ≈ k/ε (6)

This solution is valid for N0 � 1/ε�W0, and is the distribution that will be
measured by experiment. It differs from the ab-initio distribution because some
defects will already have been eliminated from a well tested program (those in
energy bands with ρ(ε) ∼ εx for x > −1), and other defects are of such low
energy that they will almost never come to light in practical situations (those in
energy bands with ρ(ε) ∼ εx for x < −1).

15

