
Enterprise Pharo

a Web Perspective

Damien Cassou

Stéphane Ducasse

Luc Fabresse

Johan Fabry

Sven Van Caekenberghe

December 2016, 16

commit (None)

Copyright 2015 by Damien Cassou, Stéphane Ducasse, Luc Fabresse, Johan Fabry, and
Sven Van Caekenberghe.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

[&] Published by Square Bracket Associates, Switzerland.
http://squarebracketassociates.org

ISBN 978-1-326-65097-1
First Edition, April 2016.

This book has been sponsored by ESUG.

Cover design by Liudmyla Dolia. Layout and typography based on the sbabook LATEX

class by Damien Pollet. The source code of the book itself lives at https://github.com/

SquareBracketAssociates/EnterprisePharo

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://squarebracketassociates.org
https://github.com/SquareBracketAssociates/EnterprisePharo
https://github.com/SquareBracketAssociates/EnterprisePharo

About this book

Enterprise Pharo is the third volume of the series, following Pharo by Example
and Deep into Pharo. It covers enterprise libraries and frameworks, and in
particular those useful for doing web development.

The book is structured in five parts.
The first part talks about simple web applications, starting with a mini-
mal web application in chapter 1 on Teapot and then a tutorial on building
a more complete web application in chapter 2.
Part two deals with HTTP support in Pharo, talking about character encod-
ing in chapter 3, about using Pharo as an HTTP Client (chapter 4) and server
(chapter 5), and about using WebSockets (chapter 6).
In the third part we discuss the handling of data for the application. Firstly
we treat data that is in the form of comma-separated values (CSV) in chap-
ter 7. Secondly and thirdly, we treat JSON (chapter 8) and its Smalltalk coun-
terpart STON (chapter 9). Fourthly, serialization and deserialization of object
graphs with Fuel is treated in chapter 10. Lastly, we discuss the Voyage per-
sistence framework and persisting to MongoDB databases in chapter 11.
Part four deals with the presentation layer. Chapter 12 shows how to use
Mustache templates in Pharo, and chapter 13 talks about programmatic gen-
eration of CSS files. The documentation of applications could be written in
Pillar, which is presented in chapter 14. How to generate PDF files from the
application with Artefact is shown in chapter 15.
The fifth part deals with deploying the web application. This is explained
in chapter 16 that talks not only about how to build and run the application,
but also other important topics like monitoring.

This book is a collective work The editors have curated and reformatted the
chapters from blog posts and tutorials written by many people. Here is the
complete list of contributors to the book, in alphabetical order:

Olivier Auverlot
Sven Van Caekenberghe
Damien Cassou
Gabriel Omar Cotelli
Christophe Demarey
Martín Dias

Liudmyla Dolia
Stéphane Ducasse
Luc Fabresse
Johan Fabry
Cyril Ferlicot Delbecque
Norbert Hartl

Guillaume Larchevêque
Max Leske
Esteban Lorenzano
Attila Magyar
Mariano Martinez-Peck
Damien Pollet

i

Contents

Illustrations viii

I Simple Web applications

1 Teapot 3

1.1 Getting Started . 3

1.2 A REST Example, Showing some CRUD Operations 4

1.3 Route . 5

1.4 Transforming Output from Actions . 7

1.5 Before and After Filters . 9

1.6 Error Handlers . 10

1.7 Serving Static Files . 10

1.8 Conclusion . 11

2 Building and Deploying a Small Web application 13

2.1 Saying Hello World . 14

2.2 Serving an HTML Page With an Image . 16

2.3 Allowing Users to Upload an Image . 19

2.4 Live Debugging . 21

2.5 Image Magic . 23

2.6 Adding Tests . 25

2.7 Saving Code to a Repository . 28

2.8 Running a Real Cloud Server . 34

2.9 Have Fun Extending this Web App . 37

2.10 Conclusion . 40

II HTTP

3 Character Encoding and Resource Meta Description 43

3.1 Character Encoding . 43

3.2 Mime-Types . 52

3.3 URLs . 55

iii

Contents

4 Zinc HTTP: The Client Side 59

4.1 HTTP and Zinc . 59

4.2 Doing a Simple Request . 60

4.3 HTTP Success ? . 64

4.4 Dealing with Networking Reality . 65

4.5 Building URL’s . 66

4.6 Submitting HTML Forms . 67

4.7 Basic Authentication, Cookies and Sessions 69

4.8 PUT, POST, DELETE and other HTTP Methods 70

4.9 Reusing Network Connections, Redirect Following and Checking for

Newer Data . 72

4.10 Content-Types, Mime-Types and the Accept Header 73

4.11 Headers . 74

4.12 Entities, Content Readers and Writers . 75

4.13 Downloading, Uploading and Signalling Progress 77

4.14 Client Options, Policies and Proxies . 78

4.15 Conclusion . 79

5 Zinc HTTP: The Server Side 81

5.1 Running a Simple HTTP Server . 81

5.2 Server Delegate, Testing and Debugging 83

5.3 Server Authenticator . 84

5.4 Logging . 85

5.5 Server Variants and Life Cycle . 86

5.6 Static File Server . 87

5.7 Dispatching . 89

5.8 Character Encoding . 90

5.9 Resource Protection Limits, Content and Transfer Encoding 91

5.10 Seaside Adaptor . 92

5.11 Scripting a REST Web Service with Zinc . 92

5.12 Conclusion . 97

6 WebSockets 99

6.1 An Introduction to WebSockets . 99

6.2 The WebSocket Protocol . 100

6.3 Source Code . 100

6.4 Using Client Side WebSockets . 101

6.5 Using Server-Side WebSockets . 102

6.6 Building a Pharo Statistics Web Page . 104

6.7 Building a Web Chat . 105

6.8 A Quick Tour of Zinc WebSocket Implementation 106

6.9 Live Demo . 106

6.10 Conclusion . 106

III Data

iv

Contents

7 NeoCSV 109

7.1 NeoCSV . 109

7.2 Generic Mode . 110

7.3 Customizing NeoCSVWriter . 111

7.4 Customizing NeoCSVReader . 112

8 NeoJSON 115

8.1 An Introduction to JSON . 115

8.2 NeoJSON . 116

8.3 Primitives . 116

8.4 Generic Mode . 117

8.5 Schemas and Mappings . 118

8.6 Emitting null Values . 120

8.7 Conclusion . 120

9 STON: a Smalltalk Object Notation 121

9.1 Introduction . 121

9.2 How Values are Encoded . 125

9.3 Custom Representations of Objects . 128

9.4 Usage . 131

9.5 Handling CR, LF inside Strings . 133

9.6 Conclusion . 134

9.7 Appendix: BNF . 134

10 Serializing Complex Objects with Fuel 137

10.1 General Information . 138

10.2 Getting Started . 140

10.3 Managing Globals . 142

10.4 Customizing the Graph . 144

10.5 Errors . 148

10.6 Object Migration . 149

10.7 Fuel Format Migration . 150

10.8 Built-in Header Support . 151

10.9 Conclusion . 152

11 Persisting Objects with Voyage 153

11.1 Setup . 154

11.2 Storing Objects . 156

11.3 Enhancing Storage . 160

11.4 Querying in Voyage . 164

11.5 Creating and Removing Indexes . 170

11.6 Conclusion . 172

IV Presentation

v

Contents

12 Mustache Templates for Pharo 175

12.1 Getting Started . 175

12.2 Tags as Variables . 176

12.3 Sections . 177

12.4 Partial templates . 181

12.5 Miscellaneous . 183

12.6 Templates made Easy . 183

13 Cascading Style Sheets with RenoirSt 185

13.1 Getting Started . 185

13.2 Defining the Rules . 186

13.3 Defining the selectors . 196

13.4 Important Rules . 204

13.5 Media Queries . 205

13.6 Vendor-Specific Extensions . 207

13.7 Font Face Rules . 207

13.8 Interaction with other Frameworks and Libraries 209

14 Documenting and Presenting with Pillar 211

14.1 Introduction . 211

14.2 5 Minutes Tutorial . 213

14.3 Writing Pillar Documents . 217

14.4 Configuring your Output . 227

14.5 Templating . 232

14.6 Command-Line Interface . 232

14.7 Pillar from Pharo . 233

14.8 Conclusion . 234

15 Generate PDF Documents with Artefact 235

15.1 Overview of Artefact . 235

15.2 Getting Started in 10 Minutes . 237

15.3 Document Definition . 239

15.4 Pages, Formats and Models . 242

15.5 Elements . 243

15.6 Stylesheets for Newbies . 250

15.7 Create your own PDF Composite Elements 254

15.8 Conclusion . 257

V Deployment

16 Deploying a Pharo Web Application in Production 261

16.1 Where to Host your Application? . 261

16.2 Which Operating System? . 262

16.3 Build your Image . 262

16.4 Run your Application . 263

16.5 Dealing with Crashes . 264

vi

Contents

16.6 Put an HTTP server in front of your web application 267

16.7 Conclusion . 268

vii

Illustrations

1-1 The Teapot welcome at http://localhost:1701/welcome 4

1-2 Teapot producing plain text http://localhost:1701/sometext 9

2-1 A simple Web application . 14

2-2 Defining a first version of the application 15

2-3 Your first hello world Web app in action . 16

2-4 Using the debugger to navigate execution 17

2-5 Returning an HTML response . 18

2-6 Serving the Pharo logo . 20

2-7 Changing the displayed image . 22

2-8 Debugging . 23

2-9 Live change . 24

2-10 Automatically create a test class . 26

2-11 Running a test case . 27

2-12 Opening Monticello on your package . 29

2-13 The Monticello browser . 30

2-14 Smalltalkhub project page . 31

2-15 Adding a Smalltalkhub repository in Monticello for your project. 32

2-16 Multiple repositories for a project in Monticello 33

2-17 Our Web app, running in the cloud . 37

4-1 Client/Server interacting via request/response 59

10-1 Example of changes to a class . 149

14-1 An example Pillar output . 212

14-2 This is the caption of the picture . 222

14-3 My script that works . 223

15-1 Page and Document Elements . 244

15-2 Composite Elements . 244

viii

http://localhost:1701/welcome
http://localhost:1701/sometext

Part I

Simple Web applications

CHA P T E R 1
Teapot

We begin the book in this first chapter by showing how basic web applica-
tions can be written using just a few lines of code. In the second chapter we
will treat the construction of web applications more in depth, also touching
on the fundamentals of web application building. But we start by keeping it
simple, which is possible thanks to Teapot.

Teapot is a micro web framework on top of the Zinc HTTP web server de-
scribed in Chapter Zinc Server. It focuses on simplicity and ease of use and
is itself small: around 600 lines of code, not counting unit tests. Teapot is de-
veloped by Attila Magyar and this chapter is heavily inspired from the origi-
nal documentation.

1.1 Getting Started

To get started, execute the following code snippet, it will load the latest sta-
ble version of Teapot.

Gofer it
smalltalkhubUser: 'zeroflag' project: 'Teapot'; configuration;
loadStable.

It is straightforward to launch Teapot and add a page:

Teapot on
GET: '/welcome' -> 'Hello World!'; start.

Opening a browser on http://localhost:1701/welcome results in the following:

3

http://localhost:1701/welcome

Teapot

Figure 1-1 The Teapot welcome at http://localhost:1701/welcome

Differences between Teapot and other Web Frameworks

Teapot is not a singleton and doesn’t hold any global state. You can run mul-
tiple Teapot servers inside the same image with their state being isolated
from each other.

• There are no thread locals or dynamically scoped variables in Teapot.
Everything is explicit.

• It doesn’t rely on annotations or pragmas, the routes are defined pro-
grammatically.

• It doesn’t instantiate objects (e.g. ”web controllers”) for you. You can
hook http events to existing objects, and manage their dependencies as
required.

1.2 A REST Example, Showing some CRUD Operations

Before getting into the details of Teapot. Here is a simple example for man-
aging books. With the following code, we can list books, add a book and delete
a book.

| books teapot |
books := Dictionary new.
teapot := Teapot configure: {

#defaultOutput -> #json. #port -> 8080. #debugMode -> true }.

4

http://localhost:1701/welcome

1.3 Route

teapot
GET: '/books' -> books;
PUT: '/books/<id>' -> [:req | | book |

book := {'author' -> (req at: #author).
'title' -> (req at: #title)} asDictionary.
books at: (req at: #id) put: book];

DELETE: '/books/<id>' -> [:req | books removeKey: (req at: #id)
];

exception:
KeyNotFound -> (TeaResponse notFound body: 'No such book');

start.

Now you can create a book with ZnClient or your web client as follows:

ZnClient new
url: 'http://localhost:8080/books/1';
formAt: 'author' put: 'SquareBracketAssociates';
formAt: 'title' put: 'Pharo For The Enterprise'; put

You can also list the contents using http://localhost:8080/books For a more
complete example, study the Teapot-Library-Example package.

Now that you get the general feel of Teapot, let us see the key concepts.

1.3 Route

The most important concept of Teapot is the Route. The template for route
definitions is as follows:

Method : '/url/*/pattern/<param>' -> Action

A route has three parts:

• an HTTP method (GET, POST, PUT, DELETE, HEAD, TRACE, CONNECT, OP-
TIONS, PATCH),

• an URL pattern (i.e. /hi, /users/<name>, /foo/*/bar/*, or a regular
expression),

• an action (a block, message send or any object).

In the expression below, the three rules are equivalent: The first one returns
directly the value of an instance value; the second the value returned by the
message; the third will send the message books: with as parameter the re-
quest as show below; the fourth will take a request as argument and execute
the block.

GET: '/books' -> books;
GET: '/books2' -> self books;
GET: '/books3' -> (Send message: #books: to: self);
GET: '/books4'-> [:req | self books]

5

http://localhost:8080/books

Teapot

books: aRequest
^ books

Here is another example:

Teapot on
GET: '/hi' -> 'Bonjour!';
GET: '/hi/<user>' -> [:req | 'Hello ', (req at: #user)];
GET: '/say/hi/*' -> (Send message: #greet: to: greeter); start.

A wildcard character (*), as in the last route, matches to one URL path seg-
ment. A wildcard terminated pattern is a greedy match; '/foo/*' for exam-
ple matches to '/foo/bar' and '/foo/bar/baz' too.

The second route shows that the action block optionally takes the HTTP re-
quest. The third route is an example of a message send, by using the Send
class. The selector of the message can take maximum 2 arguments, which
will be instances of a TeaRequest and TeaResponse.

It is also possible to use the Zinc client (see Chapter Zinc Client Side) to query
the server. The example below illustrates the use of parameters, which we
discuss next.

(ZnEasy get: 'http://localhost:1701/hi/user1') entity string.
--> "Hello user1"

Parameters in URLs

The URL pattern may contain named parameters (e.g., <user> above), whose
values are accessible via the request object. The request is an extension of
ZnRequest with some extra methods.

Query parameters and Form parameters can be accessed the same way as
path parameters (req at: #paramName). Teapot can perform conversions
of parameters to a number, for example as follows:

Teapot on
GET: '/user/<id:IsInteger>' -> [:req |

users findById: (req at: #id)];
output: #ston; start.

• IsIntegermatches digits (negative or positive) only and converts the
value to an Integer.

• IsNumbermatches any integer or floating point number and converts
the value to a Number.

See also the, IsInteger and IsNumber classes for information about intro-
ducing user defined conversions.

6

1.4 Transforming Output from Actions

Using Regular Expressions

Instead of < and > surrounded named parameters, the regexp pattern may
contain subexpressions between parentheses whose values are accessible via
the request object.

The following example matches any /hi/user followed by two digits.

Teapot on
GET: '/hi/([a-z]+\d\d)' asRegex -> [:req | 'Hello ', (req at:
1)];

start.

(ZnEasy get: 'http://localhost:1701/hi/user01') entity string.
--> "Hello user01"

ZnEasy get: 'http://localhost:1701/hi/user'
--> not found

How are Routes Matched?

The routes are matched in the order in which they are defined.

The first route that matches the request method and the URL is invoked.

• If a route matches but it returns a 404 error, the search will continue.

• If no route matches, the error 404 is returned.

• If a route was invoked, its return value will be transformed to a HTTP
response, e.g. if a string is returned it will be transformed to a re-
sponse with the text/html content-type.

• If a route returns a ZnResponse, no transformation will be performed.

• If a route has a response transformer defined (see below), the specified
transformation will be performed.

Aborting

An abort: message sent to the request object immediately stops a request
(by signaling an exception) within a route. For example:

Teapot on
GET: '/secure/*' -> [:req | req abort: TeaResponse unauthorized];
GET: '/unauthorized' -> [:req | req abort: 'go away']; start.

1.4 Transforming Output from Actions

The default output for Teapot is HTML: the output of an action is interpreted
as a string and the content-type of the HTML response is set to text/html.

7

Teapot

The output of an action may actually undergo any kind of transformations by
a response transformer. Response Transformers have the ultimate responsi-
bility for constructing the outgoing HTTP response (an instance of the class
ZnResponse). To clarify, HTTP requests take the following path through
Teapot:

ZnRequest -> [Router] -> TeaRequest -> [Route] -> response ->
[Resp.Transformer] -> ZnResponse

The response returned by the action can be:

• Any Object that will be transformed by the given response transformer
(e.g., HTML, STON, JSON, Mustache, stream) to an HTTP response (in-
stance of ZnResponse).

• A TeaResponse that allows additional parameters to be added (re-
sponse code, headers).

• A ZnResponse that will be handled directly by the ZnServer without
further transformation.

For example, the following three routes produce the same output.

GET: '/greet' -> [:req | 'Hello World!']
GET: '/greet' -> [:req | TeaResponse ok body: 'Hello World!']
GET: '/greet' -> [:req |

ZnResponse new
statusLine: ZnStatusLine ok;
entity: (ZnEntity html: 'Hello World!'); yourself]

Response Transformers

The responsibility of a response transformer is to convert the output of the
action block to HTML and to set the content-type of the response. Some re-
sponse transformers require external packages (e.g., NeoJSON, STON, Mus-
tache). See the TeaOutput class for more information, for example the HTML
transformer is TeaOutput html.

For example, with the following configuration:

Teapot on
GET: '/jsonlist' -> #(1 2 3 4); output: #json;
GET: '/sometext' -> 'this is text plain'; output: #text;
GET: '/download' -> ['/tmp/afile' asFileReference readStream];
output: #stream; start.

Figure 1-2 shows the result for the /sometext route.

If the NeoJSON package is loaded (See chapter NeoJSON.) the jsonlist trans-
former will return a JSON array:

8

1.5 Before and After Filters

Figure 1-2 Teapot producing plain text http://localhost:1701/sometext

(ZnEasy get: 'http://localhost:1701/jsonlist') entity string.
--> '[1,2,3,4]'"

If you have a file located /tmp/afile you can access it

ZnEasy get: 'http://localhost:1701/download'
--> a ZnResponse(200 OK application/octet-stream 35B)

If Mustache is installed (See chapter Mustache.) you can output templated
information.

Teapot on
GET: '/greet' -> {'phrase' -> 'Hello'. 'name' -> 'World'};
output: (TeaOutput mustacheHtml: '{{phrase}}
<i>{{name}}</i>!'); start.

1.5 Before and After Filters

Teapot also offers before and after filters. Before filters are evaluated be-
fore each request that matches the given URL pattern. Requests can also be
aborted (by sending the abort: message) in before and after filters.

In the following example a before filter is used to enable authentication: if
the session has no #user attribute, the browser is redirected to a login page.

9

http://localhost:1701/sometext

Teapot

Teapot on
before: '/secure/*' -> [:req |

req session
attributeAt: #user
ifAbsent: [req abort: (TeaResponse redirect location:

'/loginpage')]];
before: '*' -> (Send message: #logRequest: to: auditor);
GET: '/secure' -> 'I am a protected string';
start.

After filters are evaluated after each request and can read the request and
modify the response.

Teapot on
after: '/*' -> [:req :resp |

resp headers at: 'X-Foo' put: 'set by after filter'];
start.

1.6 Error Handlers

Teapot also handles exceptions of a configured type(s) for all routes and be-
fore filters. The following example illustrates how the errors raised in ac-
tions can be captured by exception handlers.

Teapot on
GET: '/divide/<a>/' -> [:req | (req at: #a) / (req at: #b)];
GET: '/at/<key>' -> [:req | dict at: (req at: #key)];
exception: ZeroDivide -> [:ex :req | TeaResponse badRequest];
exception: KeyNotFound -> {#result -> 'error'. #code -> 42};
output: #json; start.

The request /div/6/3 succeeds and returns 2. The request /div/6/0 raises
an error and it is caught and returns a bad request.

(ZnEasy get: 'http://localhost:1701/div/6/3') entity string.
--> 2

(ZnEasy get: 'http://localhost:1701/div/6/0').
--> "bad request"

You can use a comma-separated exception set to handle multiple exceptions.

exception: ZeroDivide, DomainError -> handler

The same rules apply for the return values of the exception handler as were
used for the Routes.

1.7 Serving Static Files

Teapot can straightforwardly serve static files. The following example serves
the files located on the file system at /var/www/htdocs at the /static URL.

10

1.8 Conclusion

Teapot on
serveStatic: '/static' from: '/var/www/htdocs'; start.

1.8 Conclusion

Teapot is a powerful and simple web framework. It is based on the notion
of routes and request transformations. It supports the definition of REST
application.

Now an important point: Where does the name come from? 418 I’m a teapot
(RFC 2324) is an HTTP status code. It was defined in 1998 as one of the tra-
ditional IETF April Fools’ jokes, in RFC 2324, Hyper Text Coffee Pot Control
Protocol, and is not expected to be implemented by actual HTTP servers.

11

CHA P T E R2
Building and Deploying a Small

Web application

This chapter details the whole development process of a Web application in
Pharo through a detailed example. Of course, there are an infinite number
of ways to make a Web application. Even in Pharo, there are multiple frame-
works approaching this problem, most notably Seaside, AIDAweb and Iliad.
However, the presented example is directly built on top of the foundational
framework called Zinc HTTP Components. By doing so, we’ll be touching the
fundamentals of HTTP and Web applications and you will understand the ac-
tual basic mechanics of building and deploying a Web application.

You will also discover that using nice objects abstracting each concept in
HTTP and related open standards makes the actual code easier than you
might expect. The dynamic, interactive nature of Pharo combined with its
rich IDE and library will allow us to do things that are nearly impossible us-
ing other technology stacks. By chronologically following the development
process, you will see the app growing from something trivial to the final re-
sult. Finally, we will save our source code in a repository and deploy for real
in the cloud.

The Web application that we are going to build, shown in Figure 2-1, will dis-
play a picture and allow users to change the picture by uploading a new one.
Because we want to focus on the basic mechanics, the fundamentals as well
as the build and deploy process, there are some simplifications. There will be
one picture for all users, no login and we will store the picture in memory.

In our implementation, the route /image will serve an HTML page contain-
ing the image and a form. To serve the raw image itself, we’ll add a parame-
ter, like /image?raw=true. These will be GET HTTP requests. The form will

13

Building and Deploying a Small Web application

Figure 2-1 A simple Web application

submit its data to /image as a POST request.

2.1 Saying Hello World

Let’s lay the groundwork for our new Web application by making a version
that only says ’Hello World!’. We’ll be extending the Web app gradually until
we reach our functional goal.

Open the Nautilus System Browser and create a new package (right click
in the first column) called something like ’MyFirstWebApp’. Now create a
new class (right click in the second column) with the same name, MyFirst-
WebApp. You will be given a template: edit ’NameOfSubclass’ and accept by
clicking ’OK’. Your definition should now appear in the bottom pane.

Object subclass: #MyFirstWebApp
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'MyFirstWebApp'

Any object can be a Web app, it only has to respond to the handleRequest:
message to answer a response based on a request. Now add the following
method:

MyFirstWebApp>>handleRequest: request
request uri path = #image

ifFalse: [^ ZnResponse notFound: request uri].
^ ZnResponse ok: (ZnEntity text: 'Hello World!')

14

2.1 Saying Hello World

Figure 2-2 Defining a first version of the application

Create a new protocol called public (by right-clicking in the third column).
When the new protocol is selected, a new method template will appear in the
bottom pane. Overwrite the whole template with the code above and accept
it as shown Figure 2-2.

What we do here is to look at the incoming request to make sure the URI
path is /image which will be the final name of our Web app. If not, we return
a Not Found (code 404) response. If so, we create and return an OK response
(code 200) with a simple text entity as body or payload.

Now we define the method value: to make it an alias of handleRequest: as
follows:

MyFirstWebApp>>value: request
^ self handleRequest: request

This is needed so our Web app object can be used more flexibly. To test our
Web app, we’ll add it as one of the pages of the default server, like this:

ZnServer startDefaultOn: 8080.
ZnServer default delegate map: #image to: MyFirstWebApp new.

15

Building and Deploying a Small Web application

Figure 2-3 Your first hello world Web app in action

The second expression adds a route from /image to an MyFirstWebApp in-
stance. If all is well, http://localhost:8080/image should show a friendly
message as shown in Figure 2-3. Note how we are not even serving HTML,
just plain text.

Debugging our Web App

Try putting a breakpoint in MyFirstWebApp>>handleRequest: (by insert-
ing self halt in the method source code). Then, if you refresh the page
from the web browser, a debugger will open in Pharo allowing you to inspect
things. You can just continue the execution by clicking on the proceed but-
ton. Or you can look into the actual request and response objects as shown in
Figure 2-4.

Note how Pharo is a live environment: you can change the behavior of the
application in the debugger window (such as changing the response’s text)
and the change is immediately used.

You can leave the server running. If you want you can enable logging, or
switch to debug mode and inspect the server instance as explained in Chap-
ter Zinc Server. Don’t forget to remove any breakpoints you set before con-
tinuing.

2.2 Serving an HTML Page With an Image

HTML generation can be done with some of existing high-level Pharo frame-
works such as Mustache (see Chapter Mustache). In the following, we manu-

16

2.2 Serving an HTML Page With an Image

Figure 2-4 Using the debugger to navigate execution

ally compose the HTML to focus on app building and deployment. Go ahead
and add a new method named html.

MyFirstWebApp>>html
^ '<html><head><title>Image</title>
<body>
<h1>Image</h1>
</body></html>'

Additionally, change the handleRequest: method to use the new method.

MyFirstWebApp>>handleRequest: request
request uri path = #image

ifFalse: [^ ZnResponse notFound: request uri].
^ ZnResponse ok: (ZnEntity html: self html)

Refresh the page in your web browser. You should now see an HTML page as
in Figure 2-5.

You have probably noted the red exclamation mark icon in front of our class
name in the browser. This is an indication that we have no class comment,
which is not good: documentation is important. Click the Comments but-

17

Building and Deploying a Small Web application

Figure 2-5 Returning an HTML response

ton and write some documentation. You can also use the class comment as
a notepad for yourself, saving useful expressions that you can later execute
in place such as the two expressions above to start the server.

Serving an Image

For the purpose of our Web app, images can be any of three types: GIF, JPEG
and PNG. The application will store them in memory as an object wrapping
the actual bytes together with a MIME type.

To simplify our app, we will arrange things so that we always start with a de-
fault image, then we always have something to show. Let’s add a little helper:
the downloadPharoLogomethod:

MyFirstWebApp>>downloadPharoLogo
^ ZnClient new

beOneShot;
get: 'http://pharo.org/files/pharo.png';
entity

Quickly test the code by selecting the method body (not including the name)
and inspecting the result. You should get the bytes of an image back. Now
add the accessor image defined as follow:

MyFirstWebApp>>image
^ image ifNil: [image := self downloadPharoLogo]

When you try to accept this method, you will get an error. The method is
trying to use an unknown variable named image. Select the option to auto-

18

2.3 Allowing Users to Upload an Image

matically declare a new instance variable.

Remember that we decided we were going to serve the raw image itself using
a query variable, like /image?raw=true. Make the following modification to
existing methods and add a new one as shown below.

MyFirstWebApp>>html
^ '<html><head><title>Image</title>
<body>
<h1>Image</h1>

</body></html>'

MyFirstWebApp>>handleRequest: request
request uri path = #image

ifFalse: [^ ZnResponse notFound: request uri].
^ self handleGetRequest: request

MyFirstWebApp>>handleGetRequest: request
^ (request uri queryAt: #raw ifAbsent: [nil])

ifNil: [ZnResponse ok: (ZnEntity html: self html)]
ifNotNil: [ZnResponse ok: self image]

The HTML code now contains an img element. The handleRequest: method
now delegates the response generation to a dedicated handleGetRequest:
method. This method inspects the incoming URI. If the URI has a non-empty
query variable raw, we serve the raw image directly. Otherwise, we serve the
HTML page like before.

When you refresh the page in the web browser, you should now see an image
as in Figure 2-6.

2.3 Allowing Users to Upload an Image

Interaction is what differentiates a Web site from a Web application. We will
now add the ability for users to upload a new image to change the one on the
server. To add this ability we need to use an HTML form. Let’s change our
HTML one last time.

MyFirstWebApp>>html
^ '<html><head><title>Image</title>
<body>
<h1>Image</h1>

<form enctype="multipart/form-data" action="image" method="POST">

<h3>Change the image:</h3>
<input type="file" name="file"/>
<input type="submit" value= "Upload"/>

</form> </body> </html>'

19

Building and Deploying a Small Web application

Figure 2-6 Serving the Pharo logo

The user will be able to select a file on the local disk for upload. When he
clicks on the Upload submit button, the web browser will send an HTTP POST
request to the action URL, /image, encoding the form contents using a tech-
nique called multi-part form-data. With the above change, you will see the
form but nothing will happen if you click the submit button: this is because
the server does not know how to process the incoming form data.

In our request handling, we have to distinguish between GET and POST re-
quests. Change handleRequest: one last time:

MyFirstWebApp>>handleRequest: request
request uri path = #image ifTrue: [

request method = #GET ifTrue: [
^ self handleGetRequest: request].

request method = #POST ifTrue: [
^ self handlePostRequest: request]].

^ ZnResponse notFound: request uri

Now we have to add an implementation of handlePostRequest: to accept
the uploaded image and change the current one.

MyFirstWebApp>>handlePostRequest: request
| part |
part := request entity partNamed: #file.
image := part entity.
^ ZnResponse redirect: #image

We start with a simple version without error handling. The entity of the
incoming request is a multi-part form-data object containing named parts.
Each part, such as the file part, contains another sub-entity: in our case, the

20

2.4 Live Debugging

uploaded image. Note how the response to the POST is a redirect to the main
page. You should now have a fully functional web application.

Nevertheless, we have taken a bit of a shortcut in the code above. It is pretty
dangerous to just accept what is coming in from the internet without doing
any checking. Here is an improved version.

MyFirstWebApp>>handlePostRequest: request
| part newImage badRequest |
badRequest := [^ ZnResponse badRequest: request].
request hasEntity ifFalse: badRequest.
(request contentType matches: ZnMimeType multiPartFormData)

ifFalse: badRequest.
part := request entity

partNamed: #file
ifNone: badRequest.

newImage := part entity.
(newImage notNil

and: [newImage contentType matches: 'image/*' asZnMimeType])
ifFalse: badRequest.

image := newImage.
^ ZnResponse redirect: #image

Our standard response when something is wrong will be to return a Bad Re-
quest (code 400). We define this behavior in a temporary variable so that we
can reuse it multiple times over. The first test makes sure the current POST
request actually contains an entity and that it is of the correct type. Next,
the code checks that there is no file part. Finally, the code makes sure the file
part is actually an image by matching with the wildcard image/*MIME type.
The user can now upload a new image through the application as can be seen
in Figure 2-7. This image is saved in memory and displayed for all visitors
until the application is restarted.

If you are curious, set a breakpoint in the handlePostRequest: method and
inspect the request object of an actual request. You will learn a lot from
inspecting and manipulating live objects.

2.4 Live Debugging

Let’s make a deliberate error in our code. Change handlePostRequest: so
that the last line reads like:

^ ZnResponse redirectTo: #image

The compiler will already complain, ignore the warning and accept the code
anyway. If you try to upload a new image, your browser window will display
a following text which corresponds to a Pharo error:

MessageNotUnderstood: ZnResponse class>>redirectTo:

21

Building and Deploying a Small Web application

Figure 2-7 Changing the displayed image

But, we can do better and activate the debug mode of the server. Let’s stop
and restart our Web app using:

ZnServer stopDefault.
(ZnServer startDefaultOn: 8080) debugMode: true.
ZnServer default delegate map: #image to: MyFirstWebApp new.

If you now try to upload an image through the Web browser, the debugger
will pop up in Pharo telling you that ZnResponse does not understand redi-
rectTo: and show you the offending code. You could fix the code and try
uploading again to see if it works as shown in Figure 2-8.

But we can do even better! Just fix the code directly within the debugger
window and accept it. Now you can restart and proceed the execution. The
same request is still active and the server will now do the correct thing. Have
a look at your Web browser: you will see that your initial action, the upload,
that first initially hung, has now succeeded.

22

2.5 Image Magic

Figure 2-8 Debugging

Up to now, the suggestion was that you can use the debugger and inspector
tools to look at requests and responses. But you can actually change them
while they are happening! Prepare for our experiment by making sure that
you change the image to be different from the default one. Now set a break-
point in handleGetRequest: and reload the main page. There will be two
requests coming in: the first request for /image and the second request for
/image?raw=true. Proceed the first one.

Now, with the execution being stopped for the second request, click on the
image instance variable in the bottom left pane (see Figure 2-9). The pane
next to it will show some image entity. Select the whole contents and replace
it with self downloadPharoLogo and accept the change. Now proceed the
execution. Your previously uploaded image is gone, replaced again by the
default Pharo logo. We just changed an object in the middle of the execution.
Imagine doing all your development like that, having a real conversation
with your application, while you are developing it. Be warned though: once
you get used to this, it will be hard to go back.

2.5 Image Magic

The abilities to look at the requests and responses coming in and going out
of the server, to set breakpoints, to debug live request without redoing the
user interaction or to modify data structure live are already great and quite
unique. But there is more. Pharo is not just a platform for server applica-
tions, it can be used to build regular applications with normal graphics as
well. In fact, it is very good at it. That is why it has built-in support to work

23

Building and Deploying a Small Web application

Figure 2-9 Live change

with JPEG, GIF or PNG.

Would it not be cool to be able to actually parse the image that we were ma-
nipulating as an opaque collection of bytes up till now? To make sure it is
real. To look at it while debugging. Turns out this is quite easy. Are you
ready for some image magick, pun intended?

The Pharo object that represents images is called a form. There are objects
called GIFReadWriter, PNGReadWriter and JPEGReadWriter that can parse
bytes into forms. Add two helper methods, formForImageEntity: and form.

MyFirstWebApp>>formForImageEntity: imageEntity
| imageType parserClassName parserClass parser |
imageType := imageEntity contentType sub.
parserClassName := imageType asUppercase, #ReadWriter.
parserClass := Smalltalk globals at: parserClassName asSymbol.
parser := parserClass on: imageEntity readStream.
^ parser nextImage

MyFirstWebApp>>form
^ self formForImageEntity: self image

24

2.6 Adding Tests

What we do is use the sub type of the mime type, like ”png” in image/png, to
find the parser class. Then we instantiate a new parser on a read stream on
the actual bytes and invoke the parser with sending nextImage, which will
return a form. The formmethod makes it easy to invoke all this logic on our
current image.

Now we can have a look at, for example, the default image like this:

MyFirstWebApp new form asMorph openInWindow.

Obviously you can do this while debugging too. We can also use the image
parsing logic to improve our error checking even further. Here is the final
version of handlePostRequest:

MyFirstWebApp>>handlePostRequest: request
| part newImage badRequest |
badRequest := [^ ZnResponse badRequest: request].
(request hasEntity

and: [request contentType matches: ZnMimeType
multiPartFormData])
ifFalse: badRequest.

part := request entity
partNamed: #file
ifNone: badRequest.

newImage := part entity.
(newImage notNil

and: [newImage contentType matches: 'image/*' asZnMimeType])
ifFalse: badRequest.

[self formForImageEntity: newImage]
on: Error
do: badRequest.
image := newImage.
^ ZnResponse redirect: #image

Before making the actual assignment of the new image to our instance vari-
able we added an extra expression. We try parsing the image. We are not
interested in the result, but we do want to reply with a bad request when the
parsing has failed.

Once we have a form object, the possibilities are almost endless. You can
query a form for its size, depth and other elements. You can manipulate the
form in various ways: scaling, resizing, rotating, flipping, cropping, com-
positing. And you can do all this in an interactive and dynamic environment.

2.6 Adding Tests

We all know that testing is good, but how do we actually test a Web app?
Writing some basic tests is actually not difficult, since Zinc HTTP Compo-
nents covers both the client and the server side with the same objects.

25

Building and Deploying a Small Web application

Figure 2-10 Automatically create a test class

Writing tests is creating objects, letting them interact and asserting some
conditions. Start by creating a new subclass MyFirstWebAppTest of Test-
Case. The Pharo browser helps you here using the ”Jump to test class” item
in the contextual menu on MyFirstWebApp (see Figure 2-10).

Add now the following helper method on MyFirstWebAppTest:

MyFirstWebAppTest>>withServerDo: block
| server |
server := ZnServer on: 1700 + 10 atRandom.
[

server start.
self assert: server isRunning & server isListening.
server delegate: MyFirstWebApp new.
block cull: server

] ensure: [server stop]

Since we will need a configured server instance with our Web app as delegate
for each of our tests, we move that logic into #withServerDo: and make
sure the server is OK and properly stopped afterwards. Now we are ready for
our first test.

26

2.6 Adding Tests

Figure 2-11 Running a test case

MyFirstWebAppTest>>testMainPage
self withServerDo: [:server |

| client |
client := ZnClient new.
client url: server localUrl; addPath: #image.
client get.
self assert: client isSuccess.
self assert: (client entity contentType matches: ZnMimeType

textHtml).
self assert: (client contents includesSubstring: 'Image').
client close]

In testMainPage we do a request for the main page, /image, and assert that
the request is successful and contains HTML. Make sure the test is green by
running it from the system browser by clicking on the round icon in front of
the method name in the fourth pane (see Figure 2-11).

Let’s try to write a test for the actual raw image being served.

MyFirstWebAppTest>>testDefaultImage
self withServerDo: [:server |

27

Building and Deploying a Small Web application

| client |
client := ZnClient new.
client url: server localUrl; addPath: #image; queryAt: #raw

put: #true.
client get.
self assert: client isSuccess.
self assert: (client entity contentType matches: 'image/*'

asZnMimeType).
self assert: client entity equals: server delegate image.
client close]

Note how we can actually test for equality between the served image and the
one inside our app object (the delegate). Run the test.

Our final test will actually do an image upload and check if the served image
did actually change to what we uploaded. Here we define the method image
that returns a new image.

MyFirstWebAppTest>>image
^ ZnClient new

beOneShot;
get: 'http://zn.stfx.eu/zn/Hot-Air-Balloon.gif';
entity

MyFirstWebAppTest>>testUpload
self withServerDo: [:server |

| image client |
image := self image.
client := ZnClient new.
client url: server localUrl; addPath: #image.
client addPart: (ZnMimePart fieldName: #file entity: image).
client post.
self assert: client isSuccess.
client resetEntity; queryAt: #raw put: #true.
client get.
self assert: client isSuccess.
self assert: client entity equals: image.
client close]

The HTTP client object is pretty powerful. It can do a correct multi-part
form-data POST, just like a browser. Furthermore, once configured, it can
be reused, like for the second GET request.

2.7 Saving Code to a Repository

If all is well, you now have a package called MyFirstWebApp containing two
classes, MyFirstWebApp and MyFirstWebAppTest. The first one should have
9 methods, the second 5. If you are unsure about your code, you can double

28

2.7 Saving Code to a Repository

Figure 2-12 Opening Monticello on your package

check with the full listing at the end of this document. Our Web app should
now work as expected, and we have some tests to prove it.

But our code currently only lives in our development image. Let’s change
that and move our code to a source code repository.

The Monticello Browser

For this we first have to use the Monticello Browser tool. In the first pane
of the Nautilus Browser, click on the icon in front of your package named
MyFirstWebApp as shown in Figure 2-12.

Once opened, Monticello shows on it left pane the list of loaded packages.
The currently selected one should be yours as depicted in Figure 2-13.

The left pane of Monticello shows the list of repositories in which the cur-
rently selected package can be saved. Indeed, Pharo uses distributed source
code management. Your code can live on your local file system, or it can
live on a server. As shown in Figure 2-13, by default, your MyFirstWebApp
package can only be saved locally in a directory. We can easily add a re-
mote repository. The main place for storing Pharo code is SmalltalkHub

29

Building and Deploying a Small Web application

Figure 2-13 The Monticello browser

http://www.smalltalkhub.com. Go over there and create yourself a new ac-
count. Once you have an account, create a 'MyFirstWebApp' project. You
can leave the public option checked, it means that you and others can down-
load the code without having to enter any credentials. Your project’s page
should look like the one on Figure 2-14.

On this page, select and copy the Monticello registration template (make
sure to copy the whole contents, including the username and password parts).
Now, go back to Pharo and in Monticello, click on the +Repository button (be
sure that your package is selected in the left pane).

Select Smalltalkhub.com as repository type and overwrite the presented
template with the one you just copied. It should look similar to Figure 2-15.
Before accepting, fill in your user(name) and password (between the single
quotes), the ones you gave during registration on SmalltalkHub.

Now, Monticello Browser shows you to select repositories to save your pack-
age as shown in Figure 2-16.

You may have noticed that there is an asterisk (*) in front of your package
name, indicating the package is dirty: i.e., it has uncommitted changes. By

30

http://www.smalltalkhub.com

2.7 Saving Code to a Repository

Figure 2-14 Smalltalkhub project page

clicking on the ’Changes’ button, Monticello will list everything that has
changed or will tell you nothing has changed (this happens sometimes when
Monticello gets out of sync). If Monticello finds actual changes, you will get a
browser showing all the changes you made. Since this is the first version, all
your changes are additions.

Committing to SmalltalkHub

Go back to the Monticello Browser and click the ’Save’ button (with your
package and repository selected). Leave the version name, something like
MyFirstWebApp-SvenVanCaekenberghe.1 alone, write a nice commit mes-
sage in the second pane and press Accept to save your code to SmalltalkHub.
When all goes well, you will see an upload progress bar and finally a version
window that confirms the commit. You can close it later on.

If something goes wrong, you probably made a typo in your repository spec-
ification. You can edit it by right-clicking on it in the Monticello Browser
and selecting ‘Edit repository info’. If a save fails, you will get a Version Win-
dow after some error message. Don’t close the Version Window. Your code
now lives in your local package cache. Click the ‘Copy’ button and select your
SmalltalkHub repository to try saving again.

31

Building and Deploying a Small Web application

Figure 2-15 Adding a Smalltalkhub repository in Monticello for your project.

You can now browse back to Smalltalkhub.com to confirm that your code
arrived there.

After a successful commit, it is a good idea to save your image. In any case,
your package should now no longer be dirty, and there should be no more
differences between the local version and the one on SmalltalkHub.

Defining a Project Configuration

Real software consists of several packages and will depend on extra external
libraries and frameworks. In practice, software configuration management,
including the management of dependencies and versions, is thus a neces-
sity. To solve this problem, Pharo is using Metacello (the book Deep into
Pharo http://deepintopharo.com contains a full chapter on it). And although
we don’t really need it for our small example, we are going to use it anyway.
Of course, we will not go into details as this is a complex subject.

To create a Metacello configuration, you define an object, what else did you
expect? But we must respect some name conventions so Monticello can
help us to generate part of this Metacello configuration. Open Monticello

32

http://deepintopharo.com

2.7 Saving Code to a Repository

Figure 2-16 Multiple repositories for a project in Monticello

and click on the +Config button to add the ConfigurationOfMyFirstWe-
bApp configuration. With a right click on it, you can ”Browse configuration”
which open a Nautilus browser on this newly created class. We are now going
to define three methods: one defining a baseline for our configuration, one
defining concrete package versions for that baseline, and one declaring that
version as the stable released version. Here is the code:

ConfigurationOfMyFirstWebApp>>baseline1: spec
<version: '1-baseline'>
spec for: #common do:[

spec
blessing: #baseline;
repository:

'http://smalltalkhub.com/mc/SvenVanCaekenberghe/MyFirstWebApp/main';
package: 'MyFirstWebApp']

ConfigurationOfMyFirstWebApp>>version1: spec
<version: '1' imports: #('1-baseline')>
spec for: #common do: [

spec

33

Building and Deploying a Small Web application

blessing: #release;
package: 'MyFirstWebApp'
with: 'MyFirstWebApp-SvenVanCaekenberghe.1']

ConfigurationOfMyFirstWebApp>>stable: spec
<symbolicVersion: #'stable'>
spec for: #common version: '1'

Once you committed the project (that consists in both the Metacello config-
uration and the Monticello package 'MyFirstWebApp'), you can test your
configuration by trying to load it.

ConfigurationOfMyFirstWebApp load.

Of course, not much will happen since you already have the specified version
loaded. For some feedback, make sure the Transcript is open and inspect the
above expression.

Now add your SmalltalkHub repository to the ConfigurationOfMyFirst-
WebAppMonticello package. Double-check the changes in the Monticello
Browser, remember we copied a whole class. Now commit by saving to your
SmalltalkHub repository. Use the Web interface to verify that all went well.

2.8 Running a Real Cloud Server

So we created our first Web app and tested it locally. We stored our source
code in the SmalltalkHub repository and created a Metacello configuration
for it. Now we need a real cloud server to run our Web app.

It used to be hard and expensive to get access to a real server permanently
connected to the internet. Not anymore: prices have comes down and op-
erating cloud servers has become a much easier to use service. If you just
want to test the deployment of this Pharo Web app, you can use cloud9 (http:
//c9.io). It freely provides some testing environments after creating an ac-
count. Note that cloud9 is for testing purpose only and that a real hosting
solution such as Digital Ocean (http://www.digitalocean.com) is better.

For this guide, we will be using Digital Ocean. The entry level server there,
which is more than powerful enough for our experiment, costs just $5 a
month. If you stop and remove the server after a couple of days, you will
only pay cents. Go ahead and make yourself an account and register a credit
card.

Create a Droplet

A server instance is called a Droplet. Click the ‘Create Droplet’ button and fill
in the form. Pick a hostname, select the smallest size, pick a region close to
you. As operating system image, we’ll be using a 32-bit Ubuntu Linux, ver-
sion 13.04 x32. You can optionally use an SSH key pair to log in - it is a good

34

http://c9.io
http://c9.io
http://www.digitalocean.com

2.8 Running a Real Cloud Server

idea, see How to Use SSH Keys with DigitalOcean Droplets - just skip this op-
tion for now if you are uncomfortable with it, it is not necessary for this tuto-
rial. Finally click the ‘Create Droplet’ button.

In less than a minute, your new server instance will be ready. Your root pass-
word will be emailed to you. If you look at your droplets, you should see your
new server in the list. Click on it to see its details.

The important step now is to get SSH access to your new server, preferably
through a terminal. With the IP address from the control panel and the root
password emailed to you, try to log in.

$ ssh root@82.196.12.54

Your server is freshly installed and includes only the most essential core
packages. Now we have to install Pharo on it. One easy way to do this is us-
ing the functionality offered by http://get.pharo.org. The following command
will install a fresh Pharo 2.0 image together with all other files needed.

curl get.pharo.org/40+vm | bash

Make sure the VM+image combination works by asking for the image ver-
sion.

./pharo Pharo.image printVersion
[version] 4.0 #40614

Let’s quickly test the stock HTTP server that comes with Pharo, like we did in
the third section of this guide.

./pharo Pharo.image eval --no-quit 'ZnServer startDefaultOn: 8080'

This command will block. Now access your new HTTP server. You should see
the Zinc HTTP Components welcome page. If this works, you can press ctrl-C
in the terminal to end our test.

Deploy for Production

We now have a running server. It can run Pharo too, but it is currently using
a generic image. How do we get our code deployed? To do this we use the
Metacello configuration. But first, we are going to make a copy of the stock
Pharo.image that we downloaded. We want to keep the original clean while
we make changes to the copy.

./pharo Pharo.image save myfirstwebapp

We now have a new image (and changes) file called myfirstwebapp.image
(and myfirstwebapp.changes). Through the config command line option
we can load our Metacello configuration. Before actually loading anything,
we will ask for all available versions to verify that we can access the reposi-
tory.

35

http://get.pharo.org

Building and Deploying a Small Web application

./pharo myfirstwebapp.image config \
http://smalltalkhub.com/mc/SvenVanCaekenberghe/MyFirstWebApp/main
\

ConfigurationOfMyFirstWebApp
'Available versions for ConfigurationOfMyFirstWebApp'
1
1-baseline
bleedingEdge
last
stable

You should have only one version, all the above are equivalent references to
the same version. Now we will load and install the stable version.

./pharo myfirstwebapp.image config \
http://smalltalkhub.com/mc/SvenVanCaekenberghe/MyFirstWebApp/main
\

ConfigurationOfMyFirstWebApp --install=stable
'Installing ConfigurationOfMyFirstWebApp stable'

Loading 1 of ConfigurationOfMyFirstWebApp...
...

After loading all necessary code, the config option will also save our image so
that it now permanently includes our code. Although we could try to write
a (long) one line expression to start our Web app in a server and pass it to
the eval option, it is better to write a small script. Create a file called ‘run.st’
with the following contents:

ZnServer defaultOn: 8080.
ZnServer default logToTranscript.
ZnServer default delegate

map: 'image' to: MyFirstWebApp new;
map: 'redirect-to-image' to: [:request | ZnResponse redirect:
'image'];

map: '/' to: 'redirect-to-image'.
ZnServer default start.

We added a little twist here: we changed the default root (/) handler to redi-
rect to our new /imageWeb app. Test the startup script like this:

./pharo myfirstwebapp.image run.st

2015-06-15 15:59:56 001 778091 Server Socket Bound 0.0.0.0:8080
2015-06-15 15:59:56 002 013495 Started ZnManagingMultiThreadedServer

HTTP port 8080
...

You can surf to the correct IP address and port to test you application. Note
that /welcome, /help and /image are still available too. Type ctrl-c to kill
the server again. You can then put the server in background, running for
real.

36

2.9 Have Fun Extending this Web App

Figure 2-17 Our Web app, running in the cloud

nohup ./pharo myfirstwebapp.image run.st &

Figure 2-17 shows how the deployment looks like on cloud9.

2.9 Have Fun Extending this Web App

Did you like the example so far? Would you like to take one more step? Here
is a little extension left as an exercise. Add an extra section at the bottom
of the main page that shows a miniature version of the previous image. Ini-
tially, you can show an empty image. Here are a couple of hints. Read only as
far as you need, try to figure it out by yourself.

Hint 1

You can scale a form object into another one using just one message taking a
single argument. You can use the same classes that we used for parsing as a
tool to generate PNG, JPEG or GIF images given a form.

When you are done, save your code as a new version. Then update your con-
figuration with a new, stable version. Finally, go to the server, update your
image based on the configuration and restart the running vm+image.

37

Building and Deploying a Small Web application

Hint 2

Change the htmlmethod referring to a new variant, /image?previous=true,
for the second image. Adjust handleGetRequest: to look for that attribute.
Add a helper method pngImageEntityForForm: and a previousImage ac-
cessor. It is easy to create an empty, blank form as default. Call a updatePre-
viousImage at the right spot in handlePostRequest: and implement the
necessary functionality there.

Hint 3

If you found it difficult to find the right methods, have a look at the following
ones:

• Form>>scaledIntoFormOfSize:

• Form class>>extent:depth:

• PNGReadWriter>>nextPutImage:

• ByteArray class>>streamContents:

• ZnByteArrayEntity class>>with:type:

Solution, Part 1, New Methods

Here are 3 new methods that are part of the solution.

pngImageEntityForForm: form
^ ZnByteArrayEntity

with: (ByteArray streamContents: [:out |
(PNGReadWriter on: out) nextPutImage: form])

type: ZnMimeType imagePng

previousImage
^ previousImage ifNil: [

| emptyForm |
emptyForm:= Form extent: 128 @ 128 depth: 8.
previousImage := self pngImageEntityForForm: emptyForm]

updatePreviousImage
| form scaled |
form := self form.
scaled := form scaledIntoFormOfSize: 128.
previousImage := self pngImageEntityForForm: scaled

Solution, Part 2, Changed Methods

Here are the changes to 3 existing methods for the complete solution.

38

2.9 Have Fun Extending this Web App

html
^ '<html><head><title>Image</title>
<body>

<h1>Image</h1>

<form enctype="multipart/form-data" action="image"

method="POST">
<h3>Change the image:</h3>
<input type="file" name="file"/>
<input type="submit" value= "Upload"/>

</form>
<h3>Previous Image</h3>

</body></html>'

handleGetRequest: request
(request uri queryAt: #raw ifAbsent: [nil])

ifNotNil: [^ ZnResponse ok: self image].
(request uri queryAt: #previous ifAbsent: [nil])

ifNotNil: [^ ZnResponse ok: self previousImage].
^ ZnResponse ok: (ZnEntity html: self html)

handlePostRequest: request
| part newImage badRequest |
badRequest := [^ ZnResponse badRequest: request].
(request hasEntity

and: [request contentType matches: ZnMimeType
multiPartFormData])
ifFalse: badRequest.

part := request entity
partNamed: #file
ifNone: badRequest.

newImage := part entity.
(newImage notNil

and: [newImage contentType matches: 'image/*' asZnMimeType])
ifFalse: badRequest.

[self formForImageEntity: newImage]
on: Error
do: badRequest.

self updatePreviousImage.
image := newImage.
^ ZnResponse redirect: #image

Solution, Part 3, Updated Configuration

To update our configuration, add 1 method and change 1 method.

39

Building and Deploying a Small Web application

version2: spec
<version: '2' imports: #('1-baseline')>
spec for: #common do: [

spec
blessing: #release;
package: 'MyFirstWebApp' with:

'MyFirstWebApp-SvenVanCaekenberghe.2']

stable: spec
<symbolicVersion: #'stable'>
spec for: #common version: '2'

Of course, you will have to substitute your name for the concrete version.

2.10 Conclusion

Congratulations: you have now built and deployed your first Web app with
Pharo. Hopefully you are interested in learning more. From the Pharo web-
site you should be able to find all the information you need. Don’t forget
about the Pharo by Example book and the mailing lists. This guide was an
introduction to writing Web applications using Pharo, touching on the fun-
damentals of HTTP. Like we mentioned in the introduction, there are a cou-
ple of high level frameworks that offer more extensive support for writing
Web applications. The three most important ones are Seaside, AIDAweb and
Iliad.

The code of the Web app, including tests and the Metacello configuration, is
on SmalltalkHub1. A similar example is also included in the Zinc HTTP Com-
ponents project itself, under the name ZnImageExampleDelegate[Tests].

1http://smalltalkhub.com/#!/~SvenVanCaekenberghe/MyFirstWebApp

40

http://smalltalkhub.com/#!/~SvenVanCaekenberghe/MyFirstWebApp
http://smalltalkhub.com/#!/~SvenVanCaekenberghe/MyFirstWebApp

Part II

HTTP

CHA P T E R3
Character Encoding and

Resource Meta Description

The rise of the Internet and of Open Standards resulted in the adoption of a
number of fundamental mechanisms to enable communication and collabo-
ration between different systems.

One such mechanism is the ability to encode strings or characters to bytes
or to decode strings or characters from bytes. Different encoding standards
have been developed over the years and Pharo supports many current and
legacy encodings.

Another important aspect of collaboration is the ability to describe resources
such as files. Both Mime-Type and URLs or URIs are basic building blocks
for creating meta descriptions of resources and Pharo also has objects that
implement these fundamental aspects.

In this chapter we discuss Character encoding, MIME types and URL/URIs.
They are essential for the correct implementation of HTTP, but they are in-
dependent from it, as they are used for many other purposes.

3.1 Character Encoding

We will first show how to get Unicode from characters and strings within
Pharo. We will then show how to decode and encode characters and strings
from and to bytes.

43

Character Encoding and Resource Meta Description

Characters and Strings use Unicode Internally

Proper character encoding and decoding is crucial in today’s international
world. Internally, Pharo stores characters and strings using Unicode. Uni-
code1 is a very large internationally standardized collection of code points
(integer numbers) representing all of the world languages’ characters.

We can obtain the code point (Unicode value) of a character by sending it the
codePointmessage, for example:

$H codePoint
--> 72

Here are some example strings in multiple languages with their Unicode
code points:

'Hello' collect: #codePoint as: Array.
--> #(72 101 108 108 111)

'Les élèves français' collect: #codePoint as: Array.
--> #(76 101 115 32 233 108 232 118 101 115

32 102 114 97 110 231 97 105 115)

'Ελλάδα' collect: #codePoint as: Array.
--> #(917 955 955 940 948 945)

For a simple language like English, all characters have code points below
128 (which fits in 7 bits, for historical reasons). These characters are part of
ASCII2. The very first part of the so called Basic Multilingual Plane of Unicode
(the first 128 code points of it) are identical to ASCII.

$a codePoint
--> 97

Next come a number of European languages, like French, which have code
points below 256 (fitting in 8 bits or one byte). These characters are part of
Latin-1 (ISO-8859-1)3, whose first 256 code points are identical in Unicode.

$é codePoint
--> 233

And finally, there are hundreds of other languages, like Chinese, Japanese,
Cyrillic, Arabic or Greek. You can see from the example above: Greece writ-
ten in Greek, that those code points are higher than 256 (and thus no longer
fit in one byte).

λ
$ codePoint

--> 955

1http://en.wikipedia.org/wiki/Unicode
2http://en.wikipedia.org/wiki/ASCII
3http://en.wikipedia.org/wiki/ISO/IEC_8859-1

44

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ISO/IEC_8859-1

3.1 Character Encoding

Unicode code points are often written using a specific hexadecimal notation.
For example, the previous character, the Greek lowercase lambda, is written
as U+03BB. The Pharo inspector also shows this value next to the codepoint.

The good thing is, we can work with text in any language in Pharo. However,
to display everything correctly a font must be used that is capable of showing
all the characters (or glyphs) needed, for example Arial Unicode MS.

Encoding and Decoding

For communication with the world outside Pharo, the operating system,
files, the internet, et cetera, we have to represent our strings as a collec-
tion of bytes. Yet code points are different to bytes, as will be shown below.
Therefore we need a way to transform our internal strings into external col-
lection of bytes and vice versa.

Character encoding is the standard way of converting a native Pharo string,
i.e. a collection of Unicode code points, to a series of bytes. Character de-
coding is the reverse process: interpreting a series of bytes as a collection of
Unicode code points, to create a Pharo string.

To implement character encoding or decoding, a concrete subclass of the
class ZnCharacterEncoder is used, e.g. ZnUTF8Encoder. Character encoders
do the following:

• encode a character (message nextPut:toStream:) or string (message
next:putAll:startingAt:toStream:) onto a binary stream

• convert a string (encodeString:) to a byte array

• decode a binary stream to a character (nextFromStream:) or string
(readInto:startingAt:count:fromStream:)

• convert a byte array to string (decodeBytes:)

• compute the number of bytes that are needed to encode a character
(encodedByteCountFor:) or string (encodedByteCountForString:)

• move a binary stream backwards one character (backOnStream:)

Character encoders do proper error handling, throwing an error of the class
ZnCharacterEncodingError when something goes wrong. The strict/le-
nient setting controls some behavior in this respect, and this will be dis-
cussed later in this chapter.

The recommended encoding is the primary internet encoding: UTF-84. It
is a variable length encoding that is optimized somewhat for ASCII and to a
lesser degree for Latin1 and some other common European encodings.

4http://en.wikipedia.org/wiki/UTF-8

45

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8

Character Encoding and Resource Meta Description

Converting Strings and ByteArrays

The first use of encoders is to convert Strings to ByteArrays and vice-versa.
We however deal only indirectly with character encoders. The ByteArray
and String classes have some convenience methods to do encoding and de-
coding:

'Hello' utf8Encoded.
--> #[72 101 108 108 111]

'Hello' encodeWith: #latin1.
--> #[72 101 108 108 111]

Our ASCII string, 'Hello' encodes identically using either UTF-8 or Latin-1.

'Les élèves français' utf8Encoded.
--> #[76 101 115 32 195 169 108 195 168 118 101 115

32 102 114 97 110 195 167 97 105 115]

'Les élèves français' encodeWith: #latin1.
--> #[76 101 115 32 233 108 232 118 101 115

32 102 114 97 110 231 97 105 115]

Our French string, 'Les élèves français', encodes differently though.
The reason is that UTF-8 uses two bytes for the accented letters like é, è and
ç. Note how for Latin-1, and only for Latin-1 and ASCII, the Unicode code
points are equal to the encoded byte values.

'éèç' utf8Encoded.
--> #[195 169 195 168 195 167]

'éèç' encodeWith: #latin1.
--> #[233 232 231]

'éèç' collect: #codePoint as: ByteArray
--> #[233 232 231]

'Ελλάδα' utf8Encoded.
--> #[206 149 206 187 206 187 206 172 206 180 206 177]

'Ελλάδα' encodeWith: #latin1.
--> ZnCharacterEncodingError: 'Character Unicode code point
outside encoder range'

Our greek string, 'Ελλάδα', gives an error when we try to encode it using
Latin-1. The reason is that the Greek letters are outside of the alphabet of
Latin-1. Still, UTF-8 manages to encode them using just two bytes.

The reverse process, decoding, is equally simple:

#[72 101 108 108 111] utf8Decoded.
--> 'Hello'

46

3.1 Character Encoding

#[72 101 108 108 111] decodeWith: #latin1.
--> 'Hello'

#[76 101 115 32 195 169 108 195 168 118 101 115
32 102 114 97 110 195 167 97 105 115] utf8Decoded.
--> 'Les élèves français'

#[76 101 115 32 195 169 108 195 168 118 101 115
32 102 114 97 110 195 167 97 105 115] decodeWith: #latin1.
--> 'Les Ã©lÃ¨ves franÃ§ais'

#[76 101 115 32 233 108 232 118 101 115
32 102 114 97 110 231 97 105 115] utf8Decoded.
--> ZnInvalidUTF8: 'Illegal continuation byte for utf-8 encoding'

#[76 101 115 32 233 108 232 118 101 115
32 102 114 97 110 231 97 105 115] decodeWith: #latin1.
--> 'Les élèves français'

#[206 149 206 187 206 187 206 172 206 180 206 177] utf8Decoded.
--> 'Ελλάδα'

#[206 149 206 187 206 187 206 172 206 180 206 177] decodeWith:
#latin1.

--> ZnCharacterEncodingError: 'Character Unicode code point
outside encoder range'

Our English 'Hello', being pure ASCII, can be decoded using either UTF-8
or Latin-1. Our French 'Les élèves français' is another story: using the
wrong encoding gives either gibberish or ZnInvalidUTF8 error. The same is
true for our Greek 'Ελλάδα'.

You might wonder why in the first case the latin1 encoder produced gib-
berish, while in the second case it gave an error. This is because in the sec-
ond case, there was a byte with value 149, which is outside its alphabet. So
called byte encoders, like Latin-1, take a subset of Unicode characters and
compress them in 256 possible byte values. This can be seen by inspecting
the character or byte domains of a ZnByteEncoder, as follows:

(ZnByteEncoder newForEncoding: 'iso-8859-1') byteDomain.
(ZnByteEncoder newForEncoding: 'ISO_8859_7') characterDomain.

Note that identifiers for encodings are interpreted flexibly (case and punctu-
ation do not matter).

There exists a special ZnNullEncoder that basically does nothing: it treats
bytes are characters and vice versa. This is actually mostly equivalent to
Latin-1 or ISO-8859-1. (And yes, that is a bit confusing.)

47

Character Encoding and Resource Meta Description

Converting Streams

The second primary use of encoders is when dealing with streams. More
specifically, when interpreting a binary read or write stream as a character
stream. Note that at their lowest level, all streams to and from the operat-
ing system or network are binary and thus need the use of an encoder when
treating them as character streams.

To treat a binary write stream as a character write stream, wrap it with a
ZnCharacterWriteStream. Similary, ZnCharacterReadStream should be
used to treat a binary read stream as a character stream. Here is an example:

'encoding-test.txt' asFileReference writeStreamDo: [:out |
(ZnCharacterWriteStream on: out binary encoding: #utf8)

nextPutAll: 'Hello'; space; nextPutAll: 'Ελλάδα'; crlf;
nextPutAll: 'Les élèves français'; crlf].

'encoding-test.txt' asFileReference readStreamDo: [:in |
(ZnCharacterReadStream on: in binary encoding: #utf8)

upToEnd]
--> 'Hello Ελλάδα

Les élèves français
'

We used the message on:encoding: here, but there is also a plain message
on: instance creation message that defaults to the UTF-8 encoding. Inter-
nally, the character streams will use an encoder instance to do the actual
work.

ByteStrings and WideStrings are Concrete Subclasses of String

Up until now we spoke about Strings as being a collection of Characters, each
of which is represented as a Unicode code point. And this is conceptually
totally how they should be thought about. However, in reality, the class
String is an abstract class with two concrete subclasses. This will show up
when inspecting String instances, so it is important to understand what is
going on. Consider the following example strings:

'Hello' class.
--> ByteString

'Les élèves français' class.
--> ByteString

'Ελλάδα' class.
--> WideString

Simple ASCII strings are ByteStrings. Strings using special characters may
be WideStrings or may still be ByteStrings. The explanation of the use of the

48

3.1 Character Encoding

WideString or ByteString class is very simple when considering the Uni-
code code points used for each character.

In the first case, for ASCII, the code points are always less than 128. Hence
they fit in one byte. The second string is using Latin-1 characters, whose
code points are less than 256. These still fit in a byte. A ByteString is a
String that only stores Unicode code points that fit in a byte, in an imple-
mentation that is very efficient. Note that ByteString is a variable byte sub-
class of String.

Our last example has code points that no longer fit in a byte. To be able to
store these, WideString allocates 32-bit (4 byte) slots for each character.
This implementation is necessarily less efficient. Note that WideString is a
variable word subclass of String.

In practice, the difference between ByteString and WideString should not
matter. Conversions are done automatically when needed.

'abc' copy at: 1 put: α$; class.
--> WideString

As the above example shows, in a ByteString 'abc' putting the Unicode
character $α, converts it to a WideString. (This is actually done using a
becomeForward: message.) When benchmarking, this conversion might
show up as taking significant time. If you know upfront that you will need
WideStrings, it can be better to start with the right type.

ByteString and ByteArray Equivalence is an Implementation De-

tail

There is another implementation detail worth mentioning: for the Pharo vir-
tual machine, more specifically, for a number of primitives, ByteString and
ByteArray instances are equivalent. Given what we now know, that makes
sense. Consider the following code:

'abcdef' asByteArray.
--> #[97 98 99 100 101 102]

'ABC' asByteArray.
--> #[65 66 67]

'abcdef' copy replaceFrom: 1 to: 3 with: #[65 66 67].
--> 'ABCdef'

#[97 98 99 100 101 102] copy replaceFrom: 1 to: 3 with: 'ABC'.
--> #[65 66 67 100 101 102]

In the third expression, we send the message replaceFrom:to:with: on a
ByteString, but give a ByteArray as third argument. So we are replacing
part of a ByteString with a ByteArray. And it works!

49

Character Encoding and Resource Meta Description

The last example goes the other way around: we replace part of a ByteArray
with a ByteString, which works as well.

What about doing the same mix up with elements ?

'abc' copy at: 1 put: 65; yourself.
--> Error: improper store into indexable object

#[97 98 99] copy at: 1 put: $A; yourself.
--> Error: improper store into indexable object

This is more what we expect: we’re not allowed to do this. We are mixing
two types that are not equivalent, like Character and Integer.

So although it is true that there is some equivalence between ByteString and
ByteArray, you should not mix up the two. It is an implementation detail
that you should not rely upon.

Beware of Bogus Conversions

Given a string, it is tempting to send it the message asByteArray to convert
it to bytes. Similary, it is tempting to convert a byte array by sending it the
message asString. These are however bogus conversions that should not be
used as for some strings they will work, but for others not. Success depends
on the code points of the characters in the string. Basically the conversion is
possible for strings for which the following property holds:

'Hello' allSatisfy: [:each | each codePoint < 256].
--> true

'Les élèves français' allSatisfy: [:each | each codePoint < 256].
--> true

'Ελλάδα' allSatisfy: [:each | each codePoint < 256].
--> false

Now, even though the first two can be converted, they will not be using the
same encoding. Here is a way to explicitly express this idea:

#(null ascii latin1 utf8) allSatisfy: [:each |
('Hello' encodeWith: each) = 'Hello' asByteArray].
--> true.

('Les élèves français' encodeWith: #latin1) = 'Les élèves français'
asByteArray.

--> true.

('Les élèves français' encodeWith: #null) = 'Les élèves français'
asByteArray.

--> true.

50

3.1 Character Encoding

'Les élèves français' utf8Encoded = 'Les élèves français'
asByteArray.

--> false.

For pure ASCII strings, with all code points below 128, no encoding (null en-
coding), ASCII, Latin-1 and UTF-8 are all the same. For other ByteString
instances, like 'Les élèves français', only Latin-1 works. In that case it
is also equivalent of doing no encoding.

The lazy conversion for proper Unicode WideStrings will give unexpected
results:

'Ελλάδα' asByteArray.
--> #[0 0 3 149 0 0 3 187 0 0 3 187 0 0 3 172 0 0 3 180 0 0 3 177]

This ’conversion’ does not correspond to any known encoding. It is the result
of writing 4-byte Unicode code points as Integers.

Note Using this is a bug no matter how you look at it. In this century
you will look silly for not implementing proper support for all languages.
When converting between strings and bytes, use a proper, explicit encod-
ing.

Strict and Lenient Encoding

No encoding (or the null encoder) and Latin-1 encoding are in fact not com-
pletely the same. This is because there are ’holes’ in the table: some byte
values are undefined, which a strict encoder won’t allow, and the default en-
coder is strict.

For example, the Unicode code point 150 is strictly speaking not in Latin-1:

ZnByteEncoder latin1 encodeString: 150 asCharacter asString.
--> ZnCharacterEncodingError: 'Character Unicode code point
outside encoder range'

ZnByteEncoder latin1 decodeBytes: #[150].
--> ZnCharacterEncodingError: 'Character Unicode code point
outside encoder range'

The encoder can however be instructed to beLenient, which will produce
a silent conversion (if that is possible). In this case, Unicode character 150
(U+0096) is an unprintable control character meaning ’Start of Protected
Area’ (SPA) and is strictly speaking not part of Latin-1.

ZnByteEncoder latin1 beLenient encodeString: 150 asCharacter
asString.

--> #[150]

ZnByteEncoder latin1 beLenient decodeBytes: #[150].
--> ''

51

Character Encoding and Resource Meta Description

You can explicity access both the allowed byte or character values, i.e. the
domain of encoder or decoder:

ZnByteEncoder latin1 characterDomain includes: 150 asCharacter.
--> false

ZnByteEncoder latin1 byteDomain includes: 150.
--> false

Note that the lower half of a byte encoding, the ASCII part between 0 and
127, is always treated as a one to one mapping.

Available Encoders

Pharo comes with support for the most important encodings currently used,
as well as with support for some important legacy encodings. Seen as the
classes implementing them, the following encoders are available:

• ZnUTF8Encoder

• ZnUTF16Encoder

• ZnByteEncoder

• ZnNullEncoder

Where ZnByteEncoder groups a large number of encodings. This list is avail-
able as ZnByteEncoder knownEncodingIdentifiers. Here is a list of all
recognized, canonical names: arabic, cp1250, cp1251, cp1252, cp1253, cp1254,
cp1255, cp1256, cp1257, cp1258, cp850, cp866, cp874, cyrillic, dos874, doslatin1,
greek, hebrew, ibm819, ibm850, ibm866, iso885910, iso885911, iso885913,
iso885914, iso885915, iso885916, iso88592, iso88593, iso88594, iso88595, iso88596,
iso88597, iso88598, iso88599, koi8, koi8r, koi8u, latin2, latin3, latin4, latin5,
latin6, mac, maccyrillic, macintosh, macroman, oem850, windows1250, win-
dows1251, windows1252, windows1253, windows1254, windows1255, win-
dows1256, windows1257, windows1258, windows874, xcp1250, xcp1251, xcp1252,
xcp1253, xcp1254, xcp1255, xcp1256, xcp1257, xcp1258, xmaccyrillic and
xmacroman.

3.2 Mime-Types

A mime-type is a standard, cross-platform definition of a file or document
type or format. The official term is an Internet media type5.

Mime-types are modeled using ZnMimeType objects, which have 3 compo-
nents:

1. a main type, for example text or image,

5http://en.wikipedia.org/wiki/Internet_media_type

52

http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Internet_media_type

3.2 Mime-Types

2. a sub type, for example plain or html, or jpeg, png or gif, and

3. a number of attributes, for example charset=utf-8.

The mime-type syntax is as follows:

<main>/<sub> [;<param1>=<value1>[,<param2>=<value2>]*].

Creating Mime-Types

Instances of ZnMimeType are created by explicitly specifying its components,
through parsing a string or by accessing predefined values. In any case, a
new instance is always created.

The class side of ZnMimeType has some convenience methods (in the protocol
convenience) for accessing well known mime-types, which is the recom-
mended way for obtaining these mime-types:

ZnMimeType textHtml.
--> text/plain;charset=utf-8

ZnMimeType imagePng
--> image/png

Here is an example of how to create a mime-type by explicitly specifying its
components:

ZnMimeType main: 'image' sub: 'png'.
--> image/png

The main parsing interface of ZnMimeType is the class side fromString:
message.

ZnMimeType fromString: 'image/png'.
--> image/png

To make it easier to write code that accepts both instances and strings, the
asZnMimeTypemessage can be used:

'image/png' asZnMimeType
--> image/png

ZnMimeType imagePng asZnMimeType = 'image/png' asZnMimeType
--> true

Finally, ZnMimeType also knows how to convert file name extensions to mime-
types using the forFilenameExtension: message. This mapping is based on
the Debian/Ubuntu /etc/mime.types file, which is encoded into the method
mimeTypeFilenameExtensionsSpec.

ZnMimeType forFilenameExtension: 'html'.
--> text/html;charset=utf-8

53

Character Encoding and Resource Meta Description

In most applications, the concept of a default mime-type exists. It basically
means: we don’t know what these bytes represent.

ZnMimeType default
--> application/octet-stream

Working with Mime-Types

Once you have a ZnMimeType instance, you can access its components using
the main, sub and parametersmessages.

An important aspect of mime-types is whether the type is textual or binary,
which is testable with the isBinarymessage. Typically, text, XML or JSON
are considered textual, while images are binary.

For textual (non-binary) types, the encoding (or charset parameter) defaults
to UTF-8, the prevalent internet standard. With the convencience messages
charSet:, setCharSetUTF8 and clearCharSet you can manipulate the
charset parameter.

Comparing mime-types using the standard =message takes all components
into account, including the parameters. Different parameters lead to differ-
ent mime-types. As a result, when charsets are involved it is often better to
compare using the matches: message, as follows:

'text/plain' asZnMimeType = ZnMimeType textPlain.
--> false

ZnMimeType textPlain = 'text/plain' asZnMimeType.
--> false

'text/plain' asZnMimeType matches: ZnMimeType textPlain.
--> true

ZnMimeType textPlain matches: 'text/plain' asZnMimeType.
--> true

The charset=UTF-8 that is part of what ZnMimeType textPlain returns is
not taken into account in the second set of comparisons.

The main or sub types can be a wildcard, indicated by a *. This allows for
matching. Obviously, everything matches */* (ZnMimeType any). Otherwise,
when the sub type is *, the main types must be equal. Here is an example.

ZnMimeType text.
--> text/*

ZnMimeType textHtml matches: ZnMimeType text.
--> true

ZnMimeType textPlain matches: ZnMimeType text.

54

3.3 URLs

--> true

ZnMimeType applicationXml matches: ZnMimeType text.
--> false

3.3 URLs

URLs (or URIs) are a way to name or identify an entity. Often, they also con-
tain information of where the entity they name or identify can be accessed.

We will be using the terms URL (Uniform Resource Locator6) and URI (Uni-
form Resource Identifier7) interchangeably, as is most commonly done in
practice. A URI is just a name or identification, while a URL also contains in-
formation on how to find or access a resource. Consider the following exam-
ple: the URI /documents/cv.html identifies and names a document, while
the URL http://john-doe.com/documents/cv.html also specifies that we
can use HTTP to access this resource on a specific server.

By considering most parts of an URL as optional, we can use one abstrac-
tion to implement both URI and URL using one class. The class ZnUrlmodels
URLs (or URIs) and has the following components:

1. scheme - like #http, #https , #ws, #wws, #file or nil

2. host - hostname string or nil

3. port - port integer or nil

4. segments - collection of path segments, ends with #/ for directories

5. query - query dictionary or nil

6. fragment - fragment string or nil

7. username - username string or nil

8. password - password string or nil

The syntax of the external representation of a ZnUrl informally looks like
this: scheme://username:password@host:port/segments?query#frag-
ment

Creating URLs

ZnUrls are most often created by parsing an external representation using
either the fromString: class message or by sending the asUrl or asZnUrl
convenience message to a string.

6http://en.wikipedia.org/wiki/Uniform_resource_locator
7http://en.wikipedia.org/wiki/Uniform_resource_identifier

55

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_identifier

Character Encoding and Resource Meta Description

ZnUrl fromString: 'http://www.google.com/search?q=Smalltalk'.
'http://www.google.com/search?q=Smalltalk' asUrl.

The same instance can also be constructed programmatically:

ZnUrl new
scheme: #http;
host: 'www.google.com';
addPathSegment: 'search';
queryAt: 'q' put: 'Smalltalk';
yourself.

ZnUrl components can be manipulated destructively. Here is an example:

'http://www.google.com/?one=1&two=2' asZnUrl
queryAt: 'three' put: '3';
queryRemoveKey: 'one';
yourself.
--> http://www.google.com/?two=2&three=3

External and Internal Representation of URLs

Some characters of parts of a URL are considered as illegal because includ-
ing them would interfere with the syntax and further processing. They thus
have to be encoded. The methods of ZnUrl in the accessing protocols do
not do any encoding, while those in parsing and printing do. Here is an
example:

'http://www.google.com'
addPathSegment: 'an encoding';
queryAt: 'and more' put: 'here, too';
yourself
--> http://www.google.com/an%20encoding?and%20more=here,%20too

The ZnUrl parser is somewhat forgiving and accepts some unencoded URLs
as well, like most browsers would.

'http://www.example.com:8888/a path?q=a, b, c' asZnUrl.
--> http://www.example.com:8888/a%20path?q=a,%20b,%20c

Relative URLs

ZnUrl can parse in the context of a default scheme, like a browser would do.

ZnUrl fromString: 'www.example.com' defaultScheme: #http
--> http://www.example.com/

Given a known scheme, ZnUrl knows its default port, and this is accessed by
portOrDefault.

A path defaults to what is commonly referred to as slash, which is testable
with isSlash. Paths are most often (but don’t have to be) interpreted as

56

3.3 URLs

filesystem paths. To support this, the isFilePath and isDirectoryPath
tests and file and directory accessors are provided.

ZnUrl has some support to handle one URL in the context of another one,
this is also known as a relative URL in the context of an absolute URL. This is
implemented using the isAbsolute, isRelative and inContextOf: meth-
ods. For example:

'/folder/file.txt' asZnUrl inContextOf:
'http://fileserver.example.net:4400' asZnUrl.

--> http://fileserver.example.net:4400/folder/file.txt

Operations on URLs

To add operations to URLs you could add an extension method to the ZnUrl
class. In many cases though, it will not work on all kinds of URLs but only on
a subset. In other words, you need to dispatch, not just on the scheme but
maybe even on other URL elements. That is where ZnUrlOperation comes
in.

The first step for its use is defining a name for the operation. For example,
the symbol #retrieveContents. Second, one or more subclasses of ZnUr-
lOperation need to be defined, each defining the class side message op-
eration to return the name, #retrieveContents in the example. Then all
subclasses with the same operation form the group of applicable implemen-
tations. Third, these handler subclasses overwrite performOperation to do
the actual work.

Given a ZnUrl instance, sending the message performOperation: or per-
formOperation:with: will send the message performOperation:with:on:
to ZnUrlOperation. In turn, it will look for an applicable handler subclass,
instanciate and invoke it.

Each subclass will be sent handlesOperation:with:on: to test if it can han-
dle the named operation with an optional argument on a specific URL. The
default implementation already covers the most common case: the operation
name has to match and the scheme of the URL has to be part of the collection
returned by schemes.

For our example, the message retrieveContents on ZnUrl is implemented
as an operation named #retrieveContents. The handler class is either the
class ZnHttpRetrieveContents for the schemes http and https or the class
ZnFileRetrieveContents for the scheme file.

This dispatching mechanism is more powerful than scheme specific ZnUrl
subclasses because other elements can be taken into account. It also ad-
dresses another issue with scheme specific ZnUrl subclasses, which is that
there are an infinite number of schemes which no hierarchy could cover.

57

Character Encoding and Resource Meta Description

Odds and Ends

Sometimes, the combination of a host and port are referred to as authority,
and this is accessable with the authoritymessage.

There are convenience methods to download the resource a ZnUrl points to:
retrieveContents and saveContentsToFile. The first retrieves the con-
tents and returns it directly, while the expression saves the contents directly
to a file.

'http://zn.stfx.eu/zn/numbers.txt' asZnUrl retrieveContents.
'http://zn.stfx.eu/zn/numbers.txt' asZnUrl saveContentsToFile:

'numbers.txt'.

ZnUrl can be used to handle file URLs. Use isFile to test for this scheme.

Given a file URL, it can be converted to a regular FileReference using the
asFileReferencemessage. In the other direction, you can get a file URL
from a FileReference using the asUrl or asZnUrlmessages. Do keep in
mind that there is no such thing as a relative file URL, only absolute file URLs
exist.

58

CHA P T E R4
Zinc HTTP: The Client Side

HTTP is arguably the most important application level network protocol
for what we consider to be the Internet. It is the protocol that allows web
browsers and web servers to communicate. It is also becoming the most pop-
ular protocol for implementing web services.

With Zinc, Pharo has out of the box support for HTTP. Zinc is a robust, fast
and elegant HTTP client and server library written and maintained by Sven
van Caekenberghe.

4.1 HTTP and Zinc

HTTP, short for Hypertext Transfer Protocol, functions as a request-response
protocol in the client-server computing model. As an application level pro-
tocol it is layered on top of a reliable transport such as a TCP socket stream.
The most important standard specification document describing HTTP ver-
sion 1.1 is RFC 26161. As usual, a good starting point for learning about HTTP
is its Wikipedia article2.

Figure 4-1 Client/Server interacting via request/response

1http://tools.ietf.org/html/rfc2616
2http://en.wikipedia.org/wiki/Http

59

http://tools.ietf.org/html/rfc2616
http://en.wikipedia.org/wiki/Http
http://tools.ietf.org/html/rfc2616
http://en.wikipedia.org/wiki/Http

Zinc HTTP: The Client Side

A client, often called user-agent, submits an HTTP request to a server which
will respond with an HTTP response (see Fig. 4-1). The initiative of the com-
munication lies with the client. In HTTP parlance, the client requests a re-
source. A resource, sometimes also called an entity, is the combination of
a collection of bytes and a mime-type. A simple text resource will consist
of bytes encoding the string in some encoding, for example UTF-8, and the
mime-type text/plain;charset=utf-8, in contrast, an HTML resource will
have a mime-type like text/html;charset=utf-8.

To specify which resource you want, a URL (Uniform Resource Locator) is
used. Web addresses are the most common form of URL. Consider for exam-
ple http://pharo.org/files/pharo-logo-small.png : it is a URL that refers to a PNG
image resource on a specific server.

The reliable transport connection between an HTTP client and server is used
bidirectionally: both to send the request as well as to receive the response.
It can be used for just one request/response cycle, as was the case for HTTP
version 1.0, or it can be reused for multiple request/response cycles, as is the
default for HTTP version 1.1.

Zinc, the short form for Zinc HTTP3 Components, is an open-source Smalltalk
framework to deal with HTTP. It models most concepts of HTTP and its re-
lated standards and offers both client and server functionality. One of its key
goals is to offer understandability (Smalltalk’s design principle number one).
Anyone with a basic understanding of Smalltalk and the HTTP principles
should be able to understand what is going on and learn, by looking at the
implementation. Zinc, or Zn, after its namespace prefix, is an integral part
of Pharo Smalltalk since version 1.3. It has been ported to other Smalltalk
implementations such as Gemstone.

The reference Zn implementation lives in several places:

• http://www.squeaksource.com/ZincHTTPComponents

• http://mc.stfx.eu/ZincHTTPComponents

• https://www.github.com/svenvc/zinc

Installation or updating instructions can be found on its web site4.

4.2 Doing a Simple Request

The key object to programmatically execute HTTP requests is called Zn-
Client. You instantiate it, use its rich API to configure and execute an HTTP
request and access the response. ZnClient is a stateful object that acts as a
builder.

3http://zn.stfx.eu/
4http://zn.stfx.eu/

60

http://pharo.org/files/pharo-logo-small.png
http://zn.stfx.eu/
http://www.squeaksource.com/ZincHTTPComponents
http://mc.stfx.eu/ZincHTTPComponents
https://www.github.com/svenvc/zinc
http://zn.stfx.eu/
http://zn.stfx.eu/
http://zn.stfx.eu/

4.2 Doing a Simple Request

Basic Usage

Let’s get started with the simplest possible usage.

ZnClient new get: 'http://zn.stfx.eu/zn/small.html'.

Select the expression and print its result. You should get a String back con-
taining a very small HTML document. The get: method belongs to the con-
venience API. Let’s use a more general API to be a bit more explicit about
what happened.

ZnClient new
url: 'http://zn.stfx.eu/zn/small.html';
get;
response.

Here we explicitly set the url of the resource to access using url:, then we
execute an HTTP GET using get and we finally ask for the response object
using response. The above returns a ZnResponse object. Of course you can
inspect it. It consists of 3 elements:

1. a ZnStatusLine object,

2. a ZnHeaders object and

3. an optional ZnEntity object.

The status line says HTTP/1.1 200 OK, which means the request was success-
ful. This can be tested by sending isSuccess to either the response object
or the client itself. The headers contain meta data related to the response,
including:

• the content-type (a mime-type), accessible with the contentTypemes-
sage

• the content-length (a byte count), accessible with the contentLength
message

• the date the response was generated

• the server that generated the response

The entity is the actual resource: the bytes that should be interpreted in
the context of the content-type mime-type. Zn automatically converts non-
binary mime-types into Strings using the correct encoding. In our example,
the entity is an instance of ZnStringEntity, a concrete subclass of ZnEn-
tity.

Like any Smalltalk object, you can inspect or explore the ZnResponse object.
You might be wondering how this response was actually transferred over
the network. That is easy with Zinc, as the key HTTP objects all implement
writeOn: that displays the raw format of the response i.e. what has been
transmitted through the network.

61

Zinc HTTP: The Client Side

| response |
response := (ZnClient new)

url: 'http://zn.stfx.eu/zn/small.html';
get;
response.

response writeOn: Transcript.
Transcript flush.

If you have the Transcript open, you should see something like the following:

HTTP/1.1 200 OK
Date: Thu, 26 Mar 2015 23:26:49 GMT
Modification-Date: Thu, 10 Feb 2011 08:32:30 GMT
Content-Length: 113
Server: Zinc HTTP Components 1.0
Vary: Accept-Encoding
Content-Type: text/html;charset=utf-8

<html>
<head><title>Small</title></head>
<body><h1>Small</h1><p>This is a small HTML document</p></body>
</html>

The first CRLF terminated line is the status line. Next are the headers, each
on a line with a key and a value. An empty line ends the headers. Finally, the
entity bytes follows, either up to the content length or up to the end of the
stream.

You might wonder what the request looked like when it went over the net-
work? You can find it out using the same technique.

| request |
request := (ZnClient new)

url: 'http://zn.stfx.eu/zn/small.html';
get;
request.

request writeOn: Transcript.
Transcript flush.

In an opened Transcript you will now see:

GET /zn/small.html HTTP/1.1
Accept: */*
User-Agent: Zinc HTTP Components 1.0
Host: zn.stfx.eu

A ZnRequest object consists of 3 elements:

1. a ZnRequestLine object,

2. a ZnHeaders object and

3. an optional ZnEntity object.

62

4.2 Doing a Simple Request

The request line contains the HTTP method (sometimes called verb), URL and
the HTTP protocol version. Next come the request headers, similar to the
response headers, meta data including:

• the host we want to talk to,

• the kind of mime-types that we accept or prefer, and

• the user-agent that we are.

If you look carefully at the Transcript you will see the empty line terminating
the headers. For most kinds of requests, like for a GET, there is no entity.

For debugging and for learning, it can be helpful to enable logging on the
client. Try the following.

ZnClient new
logToTranscript;
get: 'http://zn.stfx.eu/zn/small.html'.

This will print out some information on the Transcript, as shown below.

2015-03-26 20:32:30 001 Connection Established zn.stfx.eu:80
46.137.113.215 223ms

2015-03-26 20:32:30 002 Request Written a ZnRequest(GET
/zn/small.html) 0ms

2015-03-26 20:32:30 003 Response Read a ZnResponse(200 OK
text/html;charset=utf-8 113B) 223ms

2015-03-26 20:32:30 004 GET /zn/small.html 200 113B 223ms

In a later subsection about server logging, which uses the same mechanism,
you will learn how to interpret and customize logging.

Simplified HTTP Requests

Although ZnClient is absolutely the preferred object to deal with all the in-
tricacies of HTTP, you sometimes wish you could to a quick HTTP request
with an absolute minimum amount of typing, especially during debugging.
For these occasions there is ZnEasy, a class side only API for quick HTTP re-
quests.

ZnEasy get: 'http://zn.stfx.eu/zn/numbers.txt'.

The result is always a ZnResponse object. Apart from basic authentication,
there are no other options. A nice feature here, more as an example, is some
direct ways to ask for image resources as ready to use Forms.

ZnEasy getGif:
'http://esug.org/data/Logos+Graphics/ESUG-Logo/2006/gif/',
'esug-Logo-Version3.3.-13092006.gif'.

ZnEasy getJpeg: 'http://caretaker.wolf359.be/sun-fire-x2100.jpg'.
ZnEasy getPng: 'http://pharo.org/files/pharo.png'.

63

Zinc HTTP: The Client Side

(ZnEasy getPng: 'http://chart.googleapis.com/chart?cht=tx&chl=',
'a^2+b^2=c^2') asMorph openInHand.

When you explore the implementation, you will notice that ZnEasy uses a
ZnClient object internally.

4.3 HTTP Success ?

A simple view of HTTP is: you request a resource and get a response back
containing the resource. But even if the mechanics of HTTP did work, and
even that is not guaranteed (see the next section), the response could not be
what you expected.

HTTP defines a whole set of so called status codes to define various situa-
tions. These codes turn up as part of the status line of a response. The dictio-
nary mapping numeric codes to their textual reason string is predefined.

ZnConstants httpStatusCodes.

A good overview can be found in the Wikipedia article List of HTTP status
codes5. The most common code, the one that indicates success is numeric
code 200 with reason ’OK’. Have a look at the testing protocol of ZnRe-
sponse for how to interpret some of them.

So if you do an HTTP request and get something back, you cannot just as-
sume that all is well. You first have to make sure that the call itself (more
specifically the response) was successful. As mentioned before, this is done
by sending isSuccess to the response or the client.

| client |
client := ZnClient new.
client get: 'http://zn.stfx.eu/zn/numbers.txt'.
client isSuccess

ifTrue: [client contents lines collect: [:each | each asNumber
]]

ifFalse: [self inform: 'Something went wrong']

To make it easier to write better HTTP client code, ZnClient offers some
useful status handling methods in its API. You can ask the client to consider
non-successful HTTP responses as errors with the enforceHTTPSuccess op-
tion. The client will then automatically throw a ZnHTTPUnsuccesful excep-
tion. This is generally useful when the application code that uses Zinc han-
dles errors.

Additionally, to install a local failure handler, there is the ifFail: option.
This will invoke a block, optionally passing an exception, whenever some-
thing goes wrong. Together, this allows the above code to be rewritten as
follows.

5http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

64

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

4.4 Dealing with Networking Reality

ZnClient new
enforceHttpSuccess: true;
ifFail: [:ex | self inform: 'Cannot get numbers: ', ex
printString];

get: 'http://zn.stfx.eu/zn/numbers.txt'.

Maybe it doesn’t look like a big difference, but combined with some other op-
tions and features of ZnClient that we’ll see later on, the code does become
more elegant and more reliable at the same time.

4.4 Dealing with Networking Reality

As a network protocol, HTTP is much more complicated than an ordinary
message send. The famous Fallacies of Distributed Computing6 paper by
Deutsch et. al. eloquently lists the issues involved:

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn’t change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.

Zn will signal various exceptions when things go wrong, at different levels.
ZnClient and the underlying framework have constants, settings and op-
tions to deal with various aspects related to these issues.

Doing an HTTP request-response cycle can take an unpredictable amount
of time. Client code has to specify a timeout: the maximum amount of time
to wait for a response, and be prepared for when that timeout is exceeded.
When there is no answer within a specified timeout can mean that some net-
working component is extremely slow, but it could also mean that the server
simply refuses to answer.

Setting the timeout directly on a ZnClient is the easiest.

ZnClient new
timeout: 1;
get: 'http://zn.stfx.eu/zn/small.html'.

The timeout counts for each socket level connect, read and write operation,
separately. You can dynamically redefine the timeout using the ZnConnec-
tionTimeout class, which is a DynamicVariable subclass.

6http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

65

http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

Zinc HTTP: The Client Side

ZnConnectionTimeout
value: 5
during: [^ ZnClient new get: 'http://zn.stfx.eu/zn/small.html'].

Zn defines its global default timeout in seconds as a setting.

ZnNetworkingUtils defaultSocketStreamTimeout.
ZnNetworkingUtils defaultSocketStreamTimeout: 60.

This setting affects most framework level operations, if nothing else is speci-
fied.

During the execution of HTTP, various network exceptions, as subclasses
of NetworkError, might be thrown. These will all be caught by the ifFail:
block when installed.

To deal with temporary or intermittent network or server problems, Zn-
Client offers a retry protocol. You can set how many times a request should
be retried and how many seconds to wait between retries.

ZnClient new
numberOfRetries: 3;
retryDelay: 2;
get: 'http://zn.stfx.eu/zn/small.html'.

In the above example, the request will be tried up to 3 times, with a 2 second
delay between attempts. Note that the definition of failure/success is broad:
it includes for example the option to enforce HTTP success.

4.5 Building URL’s

Zn uses ZnUrl objects to deal with URLs. ZnClient also contains an API to
build URLs. Let us revisit our initial example, using explicit URL construction
with the ZnClient API.

ZnClient new
http;
host: 'zn.stfx.eu';
addPath: 'zn';
addPath: 'small.html';
get.

Instead of giving a string argument to be parsed into a ZnUrl, we now pro-
vide the necessary elements to construct the URL manually, by sending mes-
sages to our ZnClient object. With http we set what is called the scheme.
Then we set the hostname. Since we don’t specify a port, the default port for
HTTP will be used, port 80. Next we add path elements, extending the path
one by one.

A URL can also contain query parameters. Let’s do a Google search as an ex-
ample:

66

4.6 Submitting HTML Forms

ZnClient new
http;
host: 'www.google.com';
addPath: 'search';
queryAt: 'q' put: 'Pharo Smalltalk';
get.

Query parameters have a name and a value. Certain special characters have
to be encoded. You can build the same URL with the ZnUrl object, in several
ways.

ZnUrl new
scheme: #http;
host: 'www.google.com';
port: 80;
addPathSegment: 'search';
queryAt: 'q' put: 'Pharo Smalltalk';
yourself.

If you print the above expression, it gives you the printable representation of
the URL.

http://www.google.com/search?q=Pharo%20Smalltalk

This string version can easily be parsed again into a ZnUrl object

'http://www.google.com/search?q=Pharo%20Smalltalk' asZnUrl.
'http://www.google.com:80/search?q=Pharo Smalltalk' asZnUrl.

Note how the ZnUrl parser is forgiving with respect to the space, like most
browsers would do. When producing an external representation, proper en-
coding will take place. Please consult the class comment of ZnUrl for a more
detailed look at the capabilities of ZnUrl as a standalone object.

4.6 Submitting HTML Forms

In many web applications HTML forms are used. Examples are forms to enter
a search string, a form with a username and password to log in or complex
registration forms. In the classic and most common way, this is implemented
by sending the data entered in the fields of a form to the server when a sub-
mit button is clicked. It is possible to implement the same behavior program-
matically using ZnClient.

First you have to find out how the form is implemented by looking at the
HTML code. Here is an example.

<form action="search-handler" method="POST"
enctype="application/x-www-form-urlencoded">

67

Zinc HTTP: The Client Side

Search for: <input type="text" name="search-field"/>
<input type="submit" value="Go!"/>

</form>

This form shows one text input field, preceded by a ‘Search for:’ label and
followed by a submit button with ‘Go!’ as label. Assuming this appears on a
page with URL http://www.search-engine.com/, we can implement the
behavior of the browser when the user clicks the button, submitting or send-
ing the form data to the server.

ZnClient new
url: 'http://www.search-engine.com/search-handler';
formAt: 'search-field' put: 'Pharo Smalltalk';
post.

The URL is composed by combining the URL of the page that contains the
form with the action specified. There is no need to set the encoding of the
request here because the form uses the default encoding application/x-
www-form-urlencoded. By using the formAt:put: method to set the value
of a field, an entity of type ZnApplicationFormUrlEncodedEntity will be
created if needed, and the field name/value association will be stored in it.
When finally post is invoked, the HTTP request sent to the server will in-
clude a properly encoded entity. As far as the server is concerned, it will
seem as if a real user submitted the form. Consequently, the response should
be the same as when you submit the form manually using a browser. Be care-
ful to include all relevant fields, even the hidden ones.

There is a second type of form encoding called multipart/form-data. Here,
instead of adding fields, you add ZnMimePart instances.

<form action="search-handler" method="POST"
enctype="multipart/form-data">

Search for: <input type="text" name="search-field"/>
<input type="submit" value="Go!"/>

</form>

The code to submit this form would then be as follows.

ZnClient new
url: 'http://www.search-engine.com/search-handler';
addPart: (ZnMimePart

fieldName: 'search-field'
value: 'Pharo Smalltalk');

post.

In this case, an entity of type ZnMultiPartFormDataEntity is created and
used. This type is often used in forms that upload files. Here is an example.

<form action="upload-handler" method="POST"
enctype="multipart/form-data">

Photo file: <input type="file" name="photo-file"/>
<input type="submit" value="Upload!"/>

68

4.7 Basic Authentication, Cookies and Sessions

</form>

This would be the way to do the upload programmatically.

ZnClient new
url: 'http://www.search-engine.com/upload-handler';
addPart: (ZnMimePart

fieldName: 'photo-file'
fileNamed: '/Pictures/cat.jpg');

post.

Sometimes, the form’s submit method is GET instead of POST, just send get
instead of post to the client. Note that this technique of sending form data
to a server is different than what happens with raw POST or PUT requests
using a REST API. In a later subsection we will come back to this.

4.7 Basic Authentication, Cookies and Sessions

There are various techniques to add authentication, a mechanism to control
who accesses which resources, to HTTP. This is orthogonal to HTTP itself.
The simplest and most common form of authentication is called ’Basic Au-
thentication’.

ZnClient new
username: 'john@hacker.com' password: 'trustno1';
get: 'http://www.example.com/secret.txt'.

That is all there is to it. If you want to understand how this works, look at
how ZnRequest>>#setBasicAuthenticationUsername:password: is im-
plemented.

Basic authentication over plain HTTP is insecure because it transfers the
username/password combination obfuscated by encoding it using the triv-
ial Base64 encoding. When used over HTTPS, basic authentication is secure
though. Note that when sending multiple requests while reusing the same
client, authentication is reset for each request, to prevent the accidental
transfer of sensitive data.

Basic authentication is not the same as a web application where you have to
log in using a form. In such web applications, e.g an online store that has a
login part and a shopping cart per user, state is needed. During the interac-
tion with the web application, the server needs to know that your request-
s/responses are part of your session: you log in, you add items to your shop-
ping cart and you finally check out and pay. It would be problematic if the
server mixed the requests/responses of different users. However, HTTP is by
design a stateless protocol: each request/response cycle is independent. This
principle is crucial to the scalability of the internet.

The most commonly used technique to overcome this issue, enabling the
tracking of state across different request/response cycles is the use of so

69

Zinc HTTP: The Client Side

called cookies. Cookies are basically key/value pairs connected to a specific
server domain. Using a special header, the server asks the client to remem-
ber or update the value of a cookie for a domain. On subsequent requests to
the same domain, the client will use a special header to present the cookie
and its value back to the server. Semantically, the server manages a key/-
value pair on the client.

As we saw before, a ZnClient instance is essentially stateful. It not only tries
to reuse a network connection but it also maintains a ZnUserAgentSession
object, which represents the session. One of the main functions of this ses-
sion object is to manage cookies, just like your browser does. ZnCookie ob-
jects are held in a ZnCookieJar object inside the session object.

Cookie handling will happen automatically. This is a hypothetical example of
how this might work, assuming a site where you have to log in before you are
able to access a specific file.

ZnClient new
url: 'http://cloud-storage.com/login';
formAt: 'username' put: 'john.doe@acme.com';
formAt: 'password' put: 'trustno1';
post;
get: 'http://cloud-storage.com/my-file'.

After the post, the server will presumably set a cookie to acknowledge a suc-
cessful login. When a specific file is next requested from the same domain,
the client presents the cookie to prove the login. The server knows it can
send back the file because it recognizes the cookie as valid. By sending ses-
sion to the client object, you can access the session object and then the re-
membered cookies.

4.8 PUT, POST, DELETE and other HTTP Methods

A regular request for a resource is done using a GET request. A GET request
does not send an entity to the server. The only way for a GET request to
transfer information to the server is by encoding it in the URL, either in the
path or in query variables. (To be 100% correct we should add that data can
be sent as custom headers as well.)

PUT and POST Methods

HTTP provides for two methods (or verbs) to send information to a server.
These are called PUT and POST. They both send an entity to the server in
order to transfer data.

In the subsection about submitting HTML forms we already saw how POST is
used to send either a ZnApplicationFormUrlEncodedEntity or to send a
ZnMultiPartFormDataEntity containing structured data to a server.

70

4.8 PUT, POST, DELETE and other HTTP Methods

Apart from that, it is also possible to send a raw entity to a server. Of course,
the server needs to be prepared to handle this kind of entity coming in. Here
are a couple of examples of doing a raw PUT and POST request.

ZnClient new
put: 'http://zn.stfx.eu/echo' contents:'Hello there!'.

ZnClient new
post: 'http://zn.stfx.eu/echo' contents: #[0 1 2 3 4 5 6 7 8 9].

ZnClient new
entity: (ZnEntity

with: '<xml><object><id>42</id></object></xml>'
type: ZnMimeType applicationXml);

post.

In the last example we explicitly set the entity to be XML and do a POST. In
the first two examples, the convenience contents system is used to automat-
ically create a ZnStringEntity of the type ZnMimeType textPlain, respec-
tively a ZnByteArrayEntity of the type ZnMimeType applicationOctect-
Stream.

The difference between PUT and POST is semantic. POST is generally used to
create a new resource inside an existing collection or container, or to initi-
ate some action or process. For this reason, the normal response to a POST
request is to return the URL (or URI) of the newly created resource. Conven-
tionally, the reponse contains this URL both in the Location header accessi-
ble via the message location and in the entity part.

When a POST successfully created the resource, its HTTP response will be 201
Created. PUT is generally used to update an existing resource of which you
know the exact URL (or URI). When a PUT is successful, its HTTP response
will be just 200 OK and nothing else will be returned. When we will discuss
REST Web Service APIs, we will come back to this.

DELETE and other Methods

The fourth member of the common set of HTTP methods is DELETE. It is very
similar to both GET and PUT: you just specify an URL of the resource that you
want to delete or remove. When successful, the server will just reply with a
200 OK. That is all there is to it.

Certain HTTP based protocols, like WebDAV, use even more HTTP methods.
These can be queried explicitly using the method: setter and the execute
operation.

ZnClient new
url: 'http://www.apache.org';
method: #OPTIONS;
execute;

71

Zinc HTTP: The Client Side

response.

An OPTIONS request does not return an entity, but only meta data that are
included in the header of the response. In this example, the response header
contains an extra meta data named Allow which specifies the list of HTTP
methods that may be used on the resource.

4.9 Reusing Network Connections, Redirect Following and

Checking for Newer Data

ZnClient Lifecycle

HTTP 1.1 defaults to keeping the client connection to a server open, and the
server will do the same. This is useful and faster if you need to issue more
than one request. ZnClient implements this behavior by default.

Array streamContents: [:stream | | client |
client := ZnClient new url: 'http://zn.stfx.eu'.
(1 to: 10) collect: [:each | | url |

url := '/random/', each asString.
stream nextPut: (client path: url; get)].

client close].

The above example sets up a client to connect to a specific host. Then it col-
lects the results of 10 different requests, asking for random strings of a spe-
cific size. All requests will go over the same network connection.

Neither party is required to keep the connection open for a long time, as this
consumes resources. Both parties should be prepared to deal with connec-
tions closing, this is not an error. ZnClient will try to reuse an existing con-
nection and reconnect once if this reuse fails. The option connectionReuse-
Timeout limits the maximum age for a connection to be reused.

Note how we also close the client using the message close. A network con-
nection is an external resource, like a file, that should be properly closed
after use. If you don’t do that, they will get cleaned up eventually by the sys-
tem, but it is more efficient to do it yourself.

In many situations, you only want to do one single request. HTTP 1.1 has
provisions for this situation. The beOneShot option of ZnClient will do just
that.

ZnClient new
beOneShot;
get: 'http://zn.stfx.eu/numbers.txt'.

With the beOneShot option, the client notifies the server that it will do just
one request and both parties will consequently close the connection after
use, automatically. In this case, an explicit close of the ZnClient object is no
longer needed.

72

4.10 Content-Types, Mime-Types and the Accept Header

Redirects

Sometimes when requesting a URL, an HTTP server will not answer imme-
diately but redirect you to another location. For example, Seaside actually
does this on each request. This is done with a 301 or 302 response code. You
can ask a ZnResponse whether it’s a redirect with isRedirect. In case of a
redirect response, the Location header will contain the location the server
redirects you to. You can access that URL using location.

By default, ZnClient will follow redirects automatically for up to 3 redirects.
You won’t even notice unless you activate logging. If for some reason you
want to disable this feature, send a followRedirects: false to your client.
To modify the maximum number of redirects that could be followed, use
maxNumberOfRedirects:.

Following redirects can be tricky when PUT or POST are involved. Zn im-
plements the common behavior of changing a redirected PUT or POST into
a GET while dropping the body entity. Cookies will be resubmitted. Zn also
handles relative redirect URLs, although these are not strictly part of the
standard.

If-Modified-Since

A client that already requested a resource in the past can also ask a server if
that resource has been modified, i.e. is newer, since he last requested it. If
so, the server will give a quick 304 Not Modified response without sending
the resource over again. This is done by setting the If-Modified-Since header
using ifModifiedSince:. This works both for regular requests as well as for
downloads.

ZnClient new
url: 'http://zn.stfx.eu/zn/numbers.txt';
setIfModifiedSince: (Date year: 2011 month: 1 day: 1);
downloadTo: FileLocator imageDirectory.

ZnClient new
url: 'http://zn.stfx.eu/zn/numbers.txt';
setIfModifiedSince: (Date year: 2012 month: 1 day: 1);
get;
response.

For this to work, the server has to honor this particular protocol interaction,
of course.

4.10 Content-Types, Mime-Types and the Accept Header

Asking for a resource with a certain mime-type does not mean that the server
will return something of this type. The extension at the end of a URL has no

73

Zinc HTTP: The Client Side

real significance, and the server might have been reconfigured since last you
asked for this resource. For example, asking for http://example.com/foo,
http://example.com/foo.txt or http://example.com/foo.text could
all be the same or all be different, and this may change over time. This is why
HTTP resources (entities) are accompanied by a content-type: a mime-type
that is an official, cross-platform definition of a file or document type or for-
mat. Again, see the Wikipedia article Internet media type7 for more details.

Zn models mime-types using its ZnMimeType object which has 3 components:

• a main type, for example text or image,

• a sub type, for example plain or html, or jpeg, png or gif, and

• a number of attributes, for example charset=utf-8.

The class side of ZnMimeType has some convenience methods for accessing
well known mime-types, for example:

ZnMimeType textHtml.

Note that for textual (non-binary) types, the encoding defaults to UTF-8, the
prevalent internet standard. Creating a ZnMimeType object is also as easy as
sending asZnMimeType to a String.

'text/html;charset=utf-8' asZnMimeType.

The subtype can be a wildcard, indicated by a *. This allows for matching.

ZnMimeType textHtml matches: ZnMimeType text.

With ZnClient you can set the accept request header to indicate what you as
a client expect, and optionally enforce that the server returns the type you
asked for.

ZnClient new
enforceAcceptContentType: true;
accept: ZnMimeType textPlain;
get: 'http://zn.stfx.eu/zn/numbers.txt'.

The above code indicates to the server that we want a text/plain type re-
source by means of the Accept header. When the response comes back and it
is not of that type, the client will raise a ZnUnexpectedContentType excep-
tion. Again, this will be handled by the ifFail: block, when specified.

4.11 Headers

HTTP meta data, both for requests and for responses, is specified using head-
ers. These are key/value pairs, both strings. A large number of predefined

7http://en.wikipedia.org/wiki/Mime-type

74

http://en.wikipedia.org/wiki/Mime-type
http://en.wikipedia.org/wiki/Mime-type

4.12 Entities, Content Readers and Writers

headers exists, see this List of HTTP header fields8. The exact semantics
of each header, especially their value, can be very complicated. Also, al-
though headers are key/value pairs, they are more than a regular dictionary.
There can be more values for the same key and keys are often written using a
canonical capitalization, like Content-Type.

HTTP provides for a way to do a request, just like a regular GET but with a
response that contains only the meta data, the status line and headers, but
not the actual resource or entity. This is called a HEAD request.

ZnClient new
head: 'http://zn.stfx.eu/zn/small.html';
response.

Since there is no content, we have to look at the headers of the response
object. Note that the content-type and content-length headers will be set, as
if there was an entity, although none is transferred.

ZnClient allows you to easily specify custom headers for which there is not
yet a predefined accessor, which is most of them. At the framework level,
ZnResponse and ZnRequest offer some more predefined accessors, as well
as a way to set and query any custom header by accessing their headers sub
object. The following are all equivalent:

ZnClient new accept: 'text/*'.
ZnClient new request setAccept: 'text/*'.
ZnClient new request headers at: 'Accept' put: 'text/*'.
ZnClient new request headers at: 'ACCEPT' put: 'text/*'.
ZnClient new request headers at: 'accept' put: 'text/*'.

Once a request is executed, you can query the response headers like this:

client response isConnectionClose.
(client response headers at: 'Connection' ifAbsent: [''])

sameAs: 'close'.

4.12 Entities, Content Readers and Writers

As mentioned before, ZnMessages (ZnRequests and ZnResponses) can hold
an optional ZnEntity as body. By now we used almost all concrete subclasses
of ZnEntity:

• ZnStringEntity

• ZnByteArrayEntity

• ZnApplicationFormUrlEncodedEntity

• ZnMultiPartFormDataEntity

8http://en.wikipedia.org/wiki/HTTP_header

75

http://en.wikipedia.org/wiki/HTTP_header
http://en.wikipedia.org/wiki/HTTP_header

Zinc HTTP: The Client Side

• ZnStreamingEntity

Like all other fundamental Zn domain model objects, these can and are used
both by clients and servers. All ZnEntities have a content type (a mime-
type) and a content length (in bytes). Their basic behavior is that they can
be written to or read from a binary stream. All but the last one are classic,
in-memory objects.

ZnStreamingEntity is special: it contains a read or write stream to be used
once in one direction only. If you want to transfer a 10 Mb file, using a nor-
mal entity, this would result in the 10 Mb being taken into memory. With
a streaming entity, a file stream is opened to the file, and the data is then
copied using a buffer of a couple of tens of Kb. This is obviously more effi-
cient. The limitation is that this only works if the exact size is known up-
front.

Knowing that a ZnStringEntity has a content type of XML or JSON is how-
ever not enough to interpret the data correctly. You might need a parser
to convert the representation to Smalltalk or a writer to convert Smalltalk
into the proper representation. That is where the ZnClient options con-
tentReader and contentWriter are useful.

If the content reader is nil (the default), contents will return the contents
of the response object, usually a String or ByteArray.

To customize the content reader, you specify a block that will be given the
incoming entity and that is then supposed to parse the incoming representa-
tion, for example as below:

ZnClient new
systemPolicy;
url: 'http://zn.stfx.eu/zn/numbers.txt';
accept: ZnMimeType textPlain;
contentReader: [:entity |

entity contents lines
collect: [:each | each asInteger]];

get.

In this example, get (which returns the same as contents) will no longer
return a String but a collection of numbers. Note also that by using system-
Policy in combination with an accept: we handle most error cases before
the content reader start doing its work, so it does no longer have to check for
good incoming data. In any case, when the contentReader throws an excep-
tion, it can be caught by the ifFail: block.

If the content writer is nil (the default), contents: will take a Smalltalk
object and pass it to ZnEntity class’ with: instance creation method. This
will create either a text/plain String entity or an application/octect-
stream ByteArray entity.

76

4.13 Downloading, Uploading and Signalling Progress

You could further customize the entity by sending contentType: with an-
other mime type. Or you could completely skip the contents: mechanism
and supply your own entity to entity:.

To customize the content writer, you need to pass a one-argument block to
the contentWriter: message. The block should create and return an entity.
A theoretical example is given next.

ZnClient new
url: 'http://internet-calculator.com/sum';
contentWriter: [:numberCollection |

ZnEntity text:
(Character space join:

(numberCollection collect: [:each | each asString]))];
contentReader: [:entity | entity contents asNumber];
post.

Assuming there is a web service at http://internet-calculator.com
where you can send numbers to, we send a whitespace separated list of num-
bers to its sum URI and expect a number back. Exceptions occuring in the
content writer can be caught with the ifFail: block.

4.13 Downloading, Uploading and Signalling Progress

Often, you want to download a resource from some internet server and store
its contents in a file. The well known curl and wget Unix utilities are often
used to do this in scripts. There is a handy convenience method in ZnClient
to do just that.

ZnClient new
url: 'http://zn.stfx.eu/zn/numbers.txt';
downloadTo: FileLocator imageDirectory.

The example will download the URL and save it in a file named numbers.txt
next to your image. The argument to downloadTo: can be a FileRefer-
ence or a path string, designating either a file or a directory. When it is a
directory, the last component of the URL will be used to create a new file in
that directory. When it is a file, that file will be used as given. Additionally,
the downloadTo: operation will use streaming so that a large file will not be
taken into memory all at once, but will be copied in a loop using a buffer.

The inverse, uploading the raw contents of file, is just as easy thanks to the
convenience method uploadEntityFrom:. Given a file reference or a path
string, it will set the current request entity to a ZnStreamingEntity reading
bytes from the named file. The content type will be guessed based on the
file name extension. If needed you can next override that mime type using
contentType:. Here is a hypothetical example uploading the contents of the
file numbers.txt using a POST to the URL specified, again using an efficient
streaming copy.

77

Zinc HTTP: The Client Side

ZnClient new
url: 'http://cloudstorage.com/myfiles/';
username: 'john@foo.co.uk' password: 'asecret';
uploadEntityFrom: FileLocator imageDirectory / 'numbers.txt';
post.

Some HTTP operations, particularly those involving large resources, might
take some time, especially when slower networks or servers are involved.
During interactive use, Pharo Smalltalk often indicates progress during op-
erations that take a bit longer. ZnClient can do that too using the signal-
Progress option. By default this is off. Here is an example.

UIManager default informUserDuring: [:bar |
bar label: 'Downloading latest Pharo image...'.
[^ ZnClient new

signalProgress: true;
url: 'http://files.pharo.org/image/stable/latest.zip';
downloadTo: FileLocator imageDirectory]

on: HTTPProgress
do: [:progress |

bar label: progress printString.
progress isEmpty ifFalse: [bar current: progress

percentage].
progress resume]]

4.14 Client Options, Policies and Proxies

To handle its large set of options, ZnClient implements a uniform, generic
option mechanism using the optionAt:put: and optionAt:ifAbsent:
methods (this last one always defines an explicit default), storing them lazily
in a dictionary. The method category options includes all accessors to ac-
tual settings.

Options are generally named after their accessor, a notable exception is
beOneShot. For example, the timeout option has a getter named timeout
and setter named timeout: whose implementation defines its default

^ self
optionAt: #timeout
ifAbsent: [ZnNetworkingUtils defaultSocketStreamTimeout]

The set of all option defaults defines the default policy of ZnClient. For cer-
tain scenarios, there are policy methods that set several options at once. The
most useful one is called systemPolicy. It specifies good practice behavior
for when system level code does an HTTP call:

ZnClient>>systemPolicy
self

enforceHttpSuccess: true;

78

4.15 Conclusion

enforceAcceptContentType: true;
numberOfRetries: 2

Also, in some networks you do not talk to internet web servers directly, but
indirectly via a proxy. Such a proxy controls and regulates traffic. A proxy
can improve performance by caching often used resources, but only if there
is a sufficiently high hit rate.

Zn client functionality will automatically use the proxy settings defined in
your Pharo image. The UI to set a proxy host, port, username or password
can be found in the Settings browser under the Network category. Access-
ing localhost will bypass the proxy. To find out more about Zn’s usage of
the proxy settings, start by browsing the proxymethod category of ZnNet-
workingUtils.

4.15 Conclusion

Zinc is a solid and very flexible HTTP library. This chapter only presented
the client-side of Zinc i.e. how to use it to send HTTP requests and receive
responses back. Through several code examples, we demonstrated some of
the possibilities of Zinc and also its simplicity. Zinc relies on a very good
object-centric decomposition of the HTTP concepts. It results in an easy to
understand and extensible library.

79

CHA P T E R5
Zinc HTTP: The Server Side

Zinc is both a client and server HTTP library written and maintained by Sven
van Caekenberghe. HTTP clients and servers are each others’ mirror: An
HTTP client sends a request and receives a response. An HTTP server re-
ceives a request and sends a response. Hence the fundamental Zn framework
objects are used to implement both clients and servers.

This chapter focuses on the server-side features of Zinc and demonstrates
through small, elegant and robust examples some possibilities of this power-
ful library. The client side is described in Chapter Zinc Client side

5.1 Running a Simple HTTP Server

Getting an independent HTTP server up and running inside a Pharo image is
surprisingly easy.

ZnServer startDefaultOn: 1701.

Don’t try this just yet. To be able to see what is going on, it is better to enable
logging, as follows:

(ZnServer defaultOn: 1701)
logToTranscript;
start.

This starts the default HTTP server, listening on port 1701. We use 1701 in
the example because using a port below 1024 requires special OS level priv-
ileges, and ports like 8080 might already be in use. Visiting http://localhost:

1701 with a browser yields the Zn welcome page. The Transcript produces
output related to the server’s activities, for example:

81

http://localhost:1701
http://localhost:1701

Zinc HTTP: The Server Side

2015-06-11 18:06:31 001 565881 Server Socket Bound 0.0.0.0:1701
2015-06-11 18:06:31 002 275888 Started ZnManagingMultiThreadedServer

HTTP port 1701
2015-06-11 18:06:35 003 565881 Connection Accepted 127.0.0.1
2015-06-11 18:06:35 004 097901 Request Read a ZnRequest(GET /) 0ms
2015-06-11 18:06:35 005 097901 Request Handled a ZnRequest(GET /) 0ms
2015-06-11 18:06:35 006 097901 Response Written a ZnResponse(200 OK

text/html;charset=utf-8 977B) 2ms
2015-06-11 18:06:35 007 097901 GET / 200 977B 2ms
2015-06-11 18:06:35 008 097901 Request Read a ZnRequest(GET

/favicon.ico) 129ms
2015-06-11 18:06:35 009 097901 Request Handled a ZnRequest(GET

/favicon.ico) 0ms
2015-06-11 18:06:35 010 097901 Response Written a ZnResponse(200 OK

image/vnd.microsoft.icon 318B) 2ms
2015-06-11 18:06:35 011 097901 GET /favicon.ico 200 318B 2ms
2015-06-11 18:06:35 012 097901 Request Read a ZnRequest(GET

/favicon.ico) 32ms
2015-06-11 18:06:35 013 097901 Request Handled a ZnRequest(GET

/favicon.ico) 0ms
2015-06-11 18:06:35 014 097901 Response Written a ZnResponse(200 OK

image/vnd.microsoft.icon 318B) 0ms
2015-06-11 18:06:35 015 097901 GET /favicon.ico 200 318B 0ms
2015-06-11 18:07:05 016 097901 Server Read Error ConnectionTimedOut:

Data receive timed out.
2015-06-11 18:07:05 017 097901 Server Connection Closed 127.0.0.1

You can see the server starting and initializing its server socket on which
it listens for incoming connections. When a connection comes in, it starts
executing its request-response loop. Then it gets a GET request for / (the
home page), to which it answers a 200 OK response with 997 bytes of HTML.
The browser also asks for a favicon.ico, which the server supplies. The
request-response loop is kept alive for some time and usually closes when
the other end does. Although it looks like an error, it actually is normal, ex-
pected behavior.

The example uses the default server: Zn manages a default server to ease in-
teractive experimentation. The server object is obtained by: ZnServer de-
fault. The default server also survives image save and restart cycles and
needs to be stopped with ZnServer stopDefault. The Transcript output
will confirm what happens:

2015-06-11 18:11:07 018 565881 Server Socket Released 0.0.0.0:1701
2015-06-11 18:11:07 019 275888 Stopped ZnManagingMultiThreadedServer

HTTP port 1701

Note Due to its implementation, the server will print a debug notifica-
tion: Wait for accept timed out, every 5 minutes. Again, although it
looks like an error, it is by design and normal, expected behavior.

82

5.2 Server Delegate, Testing and Debugging

5.2 Server Delegate, Testing and Debugging

The functional behavior of a ZnServer is defined by an object called its del-
egate. A delegate implements the key method handleRequest: which gets
the incoming request as parameter and has to produce a response as re-
sult. The delegate only needs to reason in terms of a ZnRequest and a ZnRe-
sponse. The technical side of being an HTTP server, like the protocol itself,
the networking and the (optional) multiprocessing, is handled by the server
object.

This allows us to write what is arguably the simplest possible HTTP server
behavior:

(ZnServer startDefaultOn: 1701)
onRequestRespond: [:request |

ZnResponse ok: (ZnEntity text: 'Hello World!')].

Now go to http://localhost:1701 or do:

ZnEasy get: 'http://localhost:1701'.

This server does not look at the incoming request. It always answers 200 OK
with a text/plain string Hello World!. The onRequestRespond: method
accepts a block that takes a request and that should produce a response. It
is implemented using the helper object ZnValueDelegate, which converts
handleRequest: to value: on a wrapped block.

The Default Server Delegate

Out of the box, a ZnServer will have a certain functionality that is related to
testing and debugging. The ZnDefaultServerDelegate object implements
this behavior. Assuming a server is running locally on port 1701, this is the
list of URLs that are available.

• http://localhost:1701/ the default for /, equivalent to /welcome

• http://localhost:1701/bytes a collection of bytes

• http://localhost:1701/dw-bench a dynamically generated page for bench-
marking

• http://localhost:1701/echo a textual response echoing the request

• http://localhost:1701/favicon.ico nice Zn favicon used by browsers

• http://localhost:1701/form-test-1 to /form-test-3 are form test pages

• http://localhost:1701/help this list of URLs

• http://localhost:1701/random a random string of characters

• http://localhost:1701/session information about the session

83

http://localhost:1701
http://localhost:1701/
http://localhost:1701/bytes
http://localhost:1701/dw-bench
http://localhost:1701/echo
http://localhost:1701/favicon.ico
http://localhost:1701/form-test-1
http://localhost:1701/help
http://localhost:1701/random
http://localhost:1701/session

Zinc HTTP: The Server Side

• http://localhost:1701/status a textual page showing some server inter-
nals

• http://localhost:1701/unicode a UTF-8 encoded page listing the first 591
Unicode characters

• http://localhost:1701/welcome the standard Zn greeting page

The random handler normally returns 64 characters, you can specify your
own size as well. For example, /random/1024 will respond with a 1Kb ran-
dom string. The random pattern consists of hexadecimal digits and ends
with a linefeed. The standard, slower UTF-8 encoding is used instead of the
faster LATIN-1 encoding.

The bytes handler has a similar size option. Its output is in the form of a re-
peating BCDA pattern. When requesting equally sized byte patterns repeat-
ably, some extra server side caching will improve performance.

Testing and Debugging

The echo handler is used extensively by the unit tests. It not only lists the
request headers as received by the server, but even the entity if there is one.
In case of a non-binary entity, the textual contents will be included. This is
really useful to debug PUT or POST requests.

In general, to help in debugging a server, enabling logging is important to
learn what is going on. Breakpoints can be put anywhere in the server, but
interrupting a running server can sometimes be a bit hard or produce strange
results. This is because the server and its spawned handler subprocesses are
different from the UI process.

When logging is enabled, the server will also keep track of the last request
and response it processed. You can inspect these to find out what happened,
even if there was no debugger raised.

5.3 Server Authenticator

Similar to the delegate, a ZnServer also has an authenticator object whose
function is to authenticate requests. An authenticator has to implement
the authenticateRequest:do: method whose first argument is the in-
coming request and second argument a block. This method has to produce
a response, like handleRequest: does. If the request is allowed, the block
should be evaluated, which will produce the response. If the request is de-
nied, the authenticator should generate a 401 Unauthorized response. One
simple authenticator is available to add basic HTTP authentication:

(ZnServer startDefaultOn: 1701)
authenticator: (ZnBasicAuthenticator username: 'admin' password:
'secret').

84

http://localhost:1701/status
http://localhost:1701/unicode
http://localhost:1701/welcome

5.4 Logging

Now, when you try to visit the server at http://localhost:1701 you will have to
provide a username and password. Note that it is also possible to use ZnEasy
to send a get request to this URL with these credentials.

ZnEasy
get: 'http://localhost:1701'
username: 'admin'
password: 'secret'.

Note Using ZnBasicAuthenticator or implementing an alternative
authenticator is only one of several possibilities to address the problem of
adding security to a web site or web application.

5.4 Logging

Log output consists of a log message preceded by a number of fixed fields.
Here is an example of a server log.

2015-06-11 10:19:59 001 220937 Server Socket Bound 0.0.0.0:1701
2015-06-11 10:19:59 002 233075 Started ZnManagingMultiThreadedServer

HTTP port 1701
2015-06-11 10:25:36 003 220937 Connection Accepted 127.0.0.1
2015-06-11 10:25:36 004 879540 Request Read a ZnRequest(GET /help)

2ms
2015-06-11 10:25:36 005 879540 Request Handled a ZnRequest(GET

/help) 0ms
2015-06-11 10:25:36 006 879540 Response Written a ZnResponse(200 OK

text/html;charset=utf-8 867B) 0ms
2015-06-11 10:25:36 007 879540 GET /help 200 867B 0ms
2015-06-11 10:25:38 008 879540 Request Read a ZnRequest(GET /help)

1770ms
2015-06-11 10:25:38 009 879540 Request Handled a ZnRequest(GET

/help) 0ms
2015-06-11 10:25:38 010 879540 Response Written a ZnResponse(200 OK

text/html;charset=utf-8 867B) 0ms
2015-06-11 10:25:38 011 879540 GET /help 200 867B 0ms
2015-06-11 10:25:44 012 879540 Request Read a ZnRequest(GET

/unicode) 6082ms
2015-06-11 10:25:44 013 879540 Request Handled a ZnRequest(GET

/unicode) 5ms
2015-06-11 10:25:44 014 879540 Response Written a ZnResponse(200 OK

text/html;charset=utf-8 11454B) 2ms
2015-06-11 10:25:44 015 879540 GET /unicode 200 11454B 7ms

The first two fields are the date and time in a fixed sized format. The next
field is the id of the log entry. The next number is a fixed sized hash of the
process ID. Note how 3 different processes are involved: the one starting the
server (probably the UI process), the actual server listening process, and the
client worker process spawned to handle the request.

85

http://localhost:1701

Zinc HTTP: The Server Side

Both ZnClient and ZnServer implement logging using a similar mechanism
based on the announcements framework. ZnLogEvents are subclasses of
the Announcement class and are sent by an HTTP server or client containing
logging information. A log event has a TimeStamp, an id, and a message.

To log something, a server or client uses its own log methods. For example,
a server receives a logConnectionAccepted: message with the socket that
will process the request as argument. In ZnSingleThreadedServer, the im-
plementation of logConnectionAccepted: is:

logConnectionAccepted: socket
logLevel < 3 ifTrue: [^ nil].
^ (self newLogEvent: ZnConnectionAcceptedEvent)

address: ([socket remoteAddress] on: Error do: [nil]);
emit

This logging mechnism can be easily customized by implementing subclasses
of ZnLogEvent. For example, ZnConnectionAcceptedEvent is a subclass of
ZnLogEvent customized for connection acceptation.

You can also provide your own listener for ZnLogEvents. The following ex-
ample shows how to log events in a file named zn.log, next to the image.

| logger |
loggerStream := (Smalltalk imageDirectory / 'zn.log') writeStream.
ZnLogEvent announcer

when: ZnLogEvent
do: [:event | loggerStream lf; print: event].

(ZnServer defaultOn: 1701) start.

5.5 Server Variants and Life Cycle

The class side of ZnServer is actually a factory to instantiate a particular
concrete ZnServer subclass, as can be seen in defaultServerClass. The
hierarchy looks as follows.

ZnServer
+ ZnSingleThreadedServer

+ ZnMultiThreadedServer
+ ZnManagedMultiThreadedServer

ZnServer is an abstract class. ZnSingleThreadedServer implements the
core server functionality. It runs in one single process, which means it can
only handle one request at a time, making it easier to understand and debug.
ZnMultiThreadedServer spawns a new process on each incoming request,
possibly handling multiple request/response cycles on the same connection.
ZnManagedMultiThreadedServers keeps explicit track of which connec-
tions are alive so that they can be stopped when the server stops instead of
letting them die out.

86

5.6 Static File Server

Server instances can be started and stopped using start and stop. By regis-
tering a server instance, by sending it register, it becomes managed. That
means it will survive image save and restart. This only happens automati-
cally with the default server, for other server instances it needs to be en-
abled manually.

The main parameter a server needs is the port on which it will listen. Addi-
tionally, you can restrict the network interface the server should listen on
by setting its bindingAddress: to some IP address. The default, which is
nil or #[0 0 0 0], means to listen on all interfaces. With #[127 0 0 1],
the server will not respond to requests over its normal network, but only to
requests coming from the same host. This is often used to increase security
while proxying.

(ZnServer defaultOn: 1701)
bindingAddress: #[127 0 0 1];
logToTranscript;
start.

5.6 Static File Server

When most people think about a web server, they imagine what is techni-
cally called static file serving. There is a directory full of HTML, image, CSS,
and other files, somewhere on a machine, and the web server serves these
files over HTTP to web browser clients anywhere on the network. This is in-
deed what Apache does in its most basic form.

Zn can do this by using a ZnStaticFileServerDelegate. Given a directory
and an optional prefix, this delegate will serve all files it finds in that direc-
tory, for example:

(ZnServer startDefaultOn: 1701)
delegate: (

ZnStaticFileServerDelegate new
directory: '/var/www' asFileReference;
prefixFromString: 'static-files';
yourself).

If we suppose the contents of /var/www is

• index.html

• small.html

You can access these files with these URLs

• http://localhost:1701/static-files/index.html

• http://localhost:1701/static-files/small.html

87

http://localhost:1701/static-files/index.html
http://localhost:1701/static-files/small.html

Zinc HTTP: The Server Side

The prefix is added in front of all files being served, the actual directory
where the files reside is of course invisible to the end web user. If no prefix
is specified, the files will be served directly.

Note how all other URLs result in a 404 Not found error. Note that while the
ZnStaticFileServerDelegate is very simple, it does have a couple of capa-
bilities. Most importantly, it will do what most people expect with respect to
directories. Consider the following URLs:

• http://localhost:1701/static-files

• http://localhost:1701/static-files/

The first URL above will result in a redirect to the second. The second URL
will look for either an index.html or index.htm file and serve that. Auto-
matic generation of an index page when there is no index file is not imple-
mented.

As a static file server, the following features are implemented:

• automatic determination of the content mime-type based on the file
extension

• correct setting of the content length based on the file length

• usage of streaming

• addition of correct modification date based on the files’ last modifica-
tion date

• correct reaction to the if-modified-since protocol

• optional expiration and caching control

Here is a more complex example:

(ZnServer startDefaultOn: 1701)
logToTranscript;
delegate: (

ZnStaticFileServerDelegate new
directory: '/var/www' asFileReference;
mimeTypeExpirations: ZnStaticFileServerDelegate

defaultMimeTypeExpirations;
yourself);

authenticator: (
ZnBasicAuthenticator username: 'admin' password: 'secret').

In the above example, we add the optional expiration and caching control
based on default settings. Note that it is easy to combine static file serving
with logging and authentication.

88

http://localhost:1701/static-files
http://localhost:1701/static-files/

5.7 Dispatching

5.7 Dispatching

Dispatching or routing is HTTP application server speak for deciding what
part of the software will handle an incoming request. This decision can be
made on any of the properties of the request: the HTTP method, the URL or
part of it, the query parameters, the meta headers and the entity body. Dif-
ferent applications will prefer different kinds of solutions to this problem.

Zinc HTTP Components is a general framework that offers all the necessary
components to build your own dispatcher. Out of the box, there are the dif-
ferent delegates that we discussed before. Most of these have hand coded
dispatching in their handleRequest: method.

ZnDefaultServerDelegate can be configured to perform dispatching as
it uses a prefix map internally that maps URI prefixes to internal methods.
Configuration is by installing a block as the value to a prefix, which accepts
the request and produces a response. Here is an example of using that capa-
bility:

| staticFileServerDelegate |

ZnServer startDefaultOn: 8080.

(staticFileServerDelegate := ZnStaticFileServerDelegate new)
prefixFromString: 'zn';
directory: '/home/ubuntu/zn' asFileReference.

ZnServer default delegate prefixMap
at: 'zn'
put: [:request | staticFileServerDelegate handleRequest: request
];

at: 'redirect-to-zn'
put: [:request | ZnResponse redirect: '/zn/index.html'];
at: '/'
put: 'redirect-to-zn'.

This is taken from the configuration of what runs at http://zn.stfx.eu. A static
web server is set up under the zn prefix pointing to the directory /home-
/ubuntu/zn. The prefix map of the default delegate is kept as is, with its
standard functionality, but is modified, such that

• anything with a zn prefix is directly forwarded to the static file server

• a special redirect-to-zn prefix is set up which will issue a redirect to
/zn/index.html

• the default / handler is linked to redirect-to-zn instead of the de-
fault welcome:

Another option is to use ZnDispatcherDelegate.

89

http://zn.stfx.eu

Zinc HTTP: The Server Side

(ZnServer startDefaultOn: 9090) delegate: (
ZnDispatcherDelegate new

map: '/hello'
to: [:request :response |

response entity: (ZnEntity html: '<h1>hello!</h1>')]).

You configure the dispatcher using map:to: methods. First argument is the
prefix, second argument is a block taking two arguments: the incoming re-
quest and an already instantiated response.

5.8 Character Encoding

Proper character encoding and decoding is crucial in today’s international
world. Pharo Smalltalk encodes characters and strings using Unicode. The
primary internet encoding is UTF-8, but a couple of others are used as well.
To translate between these two, a concrete ZnCharacterEncoding subclass
like ZnUTF8Encoder is used.

ZnCharacterEncoding is an extension and reimplementation of regular
TextConverter. It only works on binary input and generated binary output
and it adds the ability to compute the encoded length of a source character,
a crucial operation for HTTP. It is more correct and will throw proper excep-
tions when things go wrong.

Character encoding is mostly invisible. Here are some code snippets using
the encoders directly, feel free to substitute any Unicode character to make
the test more interesting.

| encoder string |
encoder := ZnUTF8Encoder new.
string := 'any Unicode'.
self assert: (encoder decodeBytes: (encoder encodeString: string))

equals: string.
encoder encodedByteCountForString: string.

There are no automatic conversions in Zinc, so no defaults are assumed. In-
stead you should specify a proper Content-Type header including the charset
information. Otherwise Zinc has no chance of knowing what to use and the
default NullEncoder will make your string wrong.

Consider the following example:

ZnServer startDefaultOn: 1701.

ZnClient new
url: 'http://localhost:1701/echo';
entity: (ZnEntity with: 'An der schönen blauen Donau');
post.

ZnClient new

90

5.9 Resource Protection Limits, Content and Transfer Encoding

url: 'http://localhost:1701/echo';
entity: (

ZnEntity
with: 'An der schönen blauen Donau'

type: (ZnMimeType textPlain charSet: #'iso-8859-1';
yourself));

post;
yourself.

In the first case, a UTF-8 encoded string is POST-ed and correctly returned
(in a UTF-8 encoded response).

In the second case, an ISO-8859-1 encoded string is POST-ed and correctly
returned (in a UTF-8 encoded response).

In both cases the decoding was done correctly, using the specified charset
(if that is missing, the ZnNullEncoder is used). Now, ö is not a perfect test
example because its Unicode encoding value is 246 in decimal, U+00F6 in hex,
still fits in 1 byte and hence survives null encoding/decoding (it would not be
the case with € for example). That is why the following still works, although
it is wrong to drop the charset.

ZnClient new
url: 'http://localhost:1701/echo';
entity: (

ZnEntity
with: 'An der schönen blauen Donau'
type: (ZnMimeType textPlain clearCharSet; yourself));

post;
yourself.

5.9 Resource Protection Limits, Content and Transfer En-

coding

Internet facing HTTP servers will come under attack by malicious clients.
Good security is thus important. The first step is a correct and safe imple-
mentation of the HTTP protocol. Another way a server protects itself is by
implementing some resource limits.

Zinc HTTP Components currently implements and enforces the following
limits:

• maximumLineLength (4Kb), impacting mainly the size of a header pair

• maximumEntitySize (16Mb), the size of incoming entities

• maximumNumberOfDictionaryEntries (256), which is used in headers,
URLs and some entities

Of course these values may be customized if one needs to.

91

Zinc HTTP: The Server Side

Also, Zn implements two important techniques used by HTTP servers when
they send entity bodies to clients: Gzip encoding and chunked transfer en-
coding. The first one adds compression. The second one is used when the
size of an entity is not known up front. Instead chunks of certain sizes are
sent until the entity is complete.

All this is handled internally and invisibly. The main object dealing with
content and transfer encoding is ZnEntityReader. When necessary, the bi-
nary socket stream is wrapped with either a ZnChunkedReadStream and/or
a GZipReadStream. Zn also makes use of a ZnLimitedReadStream to make
sure there is no read beyond the boundaries of one single request’s body,
provided the content length is set.

5.10 Seaside Adaptor

Seaside1 is a well known, cross platform, advanced Smalltalk web application
framework. It does not provide its own HTTP server but relies on an exist-
ing one by means of an adaptor. It works well with Zn, through the use of a
ZnZincServerAdaptor. It comes already included with certain Seaside dis-
tributions and on Pharo Smalltalk it is the default.

Starting this adaptor can be done using the Seaside Control panel in the nor-
mal way. Alternatively, the adaptor can be started programmatically.

ZnZincServerAdaptor startOn: 8080.

Since Seaside does its own character conversions, the Zn adaptor is config-
ured to work in binary mode for maximum efficiency. There is complete sup-
port for POST and PUT requests with entities in form URL, multipart or raw
encoding.

There is even a special adaptor that combines being a Seaside adaptor with
static file serving, which is useful if you don’t like the WAFileLibrary machin-
ery and prefer plain static files served directly.

ZnZincStaticServerAdaptor startOn: 8080 andServeFilesFrom:
'/var/www/'.

5.11 Scripting a REST Web Service with Zinc

As a last example of the use of Zinc HTTP, we now show the implementation
of REST web services, both the client and the server parts. REST or Repre-
sentational State Transfer2 is an architectural style most easily described
as using HTTP verbs and URIs to deal with encoded resources. Some kind of
framework is needed to successfully implement a non-trivial REST service.

1http://www.seaside.st/
2http://en.wikipedia.org/wiki/Representational_state_transfer

92

http://www.seaside.st/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.seaside.st/
http://en.wikipedia.org/wiki/Representational_state_transfer

5.11 Scripting a REST Web Service with Zinc

There is one available in the Zinc-REST-Server package, for example. Here
we will implement a very small, simplified example by hand, for educational
purposes.

The service will allow arbitrary JSON3 objects to be stored on the server, each
identified by an URI allocated by the server. Here is the REST API exposed by
the server:

GET / Returns a list of all known stored object URIs;

GET /n Returns the JSON object known under URI /n;

POST / Creates a new entry with JSON as contents, returns the new URI;

PUT /n Updates (replaces) the contents of an existing JSON object known
under URI /n;

DELETE /n Removes the JSON object known under URI /n.

The Server Code

A proper implementation should best use a couple of classes. However for
brevity, the following implementation is written in a workspace, not using
any classes. It requires STON (see Chapter STON) and starts by creating two
global variables to hold the stored objects and the last ID used. The former is
a standard dictionary mapping string URIs to objects.

JSONStore := Dictionary new.
ServerLastId := 0.

The server implementation uses two helper objects: a jsonEntityBuilder
and a mapper. Both make use of block closures.

| jsonEntityBuilder mapper |

jsonEntityBuilder := [:object |
ZnEntity

with: ((String streamContents: [:stream |
STON jsonWriter

on: stream;
prettyPrint: true;
nextPut: object.

stream cr])
replaceAll: Character cr with: Character lf)

type: ZnMimeType applicationJson].

The jsonEntityBuilder block helps in transforming Smalltalk objects to a
JSON entity. We use the STON writer and reader here because they are back-
wards compatible with JSON. We use linefeeds to improve compatibility with

3http://www.json.org/

93

http://www.json.org/
http://www.json.org/

Zinc HTTP: The Server Side

internet conventions as well as pretty printing to help human interpretation
of the data.

mapper := {
[:request |

request uri isSlash and: [request method = #GET]]
->
[:request |

ZnResponse
ok: (jsonEntityBuilder value: JSONStore keys asArray)].

"--"
[:request |

request uri pathSegments size = 1 and: [request method = #GET
]]

->
[:request | | uri |

uri := request uri pathPrintString.
JSONStore

at: uri
ifPresent: [:object |

ZnResponse ok: (jsonEntityBuilder value: object)]
ifAbsent: [ZnResponse notFound: uri]].

"--"
[:request |

(request uri isSlash
and: [request method = #POST])
and: [request contentType = ZnMimeType applicationJson]]

->
[:request | | uri |

uri := '/', (ServerLastId := ServerLastId + 1) asString.
JSONStore at: uri put: (STON fromString: request contents).
(ZnResponse created: uri)

entity: (jsonEntityBuilder value: 'Created ', uri);
yourself].

"--"
[:request |

(request uri pathSegments size = 1
and: [request method = #PUT])
and: [request contentType = ZnMimeType applicationJson]]

->
[:request | | uri |

uri := request uri pathPrintString.
(JSONStore includesKey: uri)

ifTrue: [
JSONStore

at: uri
put: (STON fromString: request contents).

ZnResponse ok: (jsonEntityBuilder value: 'Updated')]
ifFalse: [ZnResponse notFound: uri]].

"--"

94

5.11 Scripting a REST Web Service with Zinc

[:request |
request uri pathSegments size = 1

and: [request method = #DELETE]]
->
[:request | | uri |

uri := request uri pathPrintString.
(JSONStore removeKey: uri ifAbsent: [nil])

ifNil: [ZnResponse notFound: uri]
ifNotNil: [

ZnResponse ok: (jsonEntityBuilder value: 'Deleted')]].
}.

The mapper is a dynamically created array of associations (not a dictionary).
Each association consists of two blocks. The first block is a condition: it tests
a request and returns true when it matches. The second block is a handler
that is evaluated with the incoming request to produce a response (if and
only if the first condition matched).

The associations in the mapper follow exactly the list of the REST API as
shown earlier. The server is set up with a block based delegate using the on-
RequestRepond: method. Again, a more object-oriented implementation
would use a proper delegate object here, but for this example, the block is
sufficient.

The server logic thus becomes: find a matching entry in the mapper and in-
voke it. If no matching entry is found, we have a bad request. Error handling
is of course rather limited in this small example.

(ZnServer startDefaultOn: 1701)
logToTranscript;
onRequestRespond: [:request |

(mapper
detect: [:each | each key value: request]
ifNone: [nil])

ifNil: [ZnResponse badRequest: request]
ifNotNil: [:handler | handler value value: request]].

Using the Server

Here is an example command line session using the Unix utility curl4, inter-
acting with the server.

$ curl http://localhost:1701/
[]

$ curl -X POST -d '[1,2,3]' -H'Content-type:application/json'
http://localhost:1701/

"Created /1"

4http://en.wikipedia.org/wiki/CURL

95

http://en.wikipedia.org/wiki/CURL
http://en.wikipedia.org/wiki/CURL

Zinc HTTP: The Server Side

$ curl http://localhost:1701/1
[

1,
2,
3

]

$ curl -X POST -d '{"bar":-2}' -H'Content-type:application/json'
http://localhost:1701/

"Created /2"

$ curl http://localhost:1701/2
{

"bar" : -2
}

$ curl -X PUT -d '{"bar":-1}' -H'Content-type:application/json'
http://localhost:1701/2

"Updated /2"

$ curl http://localhost:1701/2
{

"bar" : -1
}

$ curl http://localhost:1701/
[

"/1",
"/2"

]

$ curl -X DELETE http://localhost:1701/2
"Deleted /2"

$ curl http://localhost:1701/2
Not Found /2

A Zinc Client

It is trivial to use ZnClient to have the same interaction. But we can do bet-
ter: using a contentWriter and contentReader, we can customise the client to
do the JSON conversions automatically.

| client |

client := ZnClient new
url: 'http://localhost:1701';
enforceHttpSuccess: true;
accept: ZnMimeType applicationJson;

96

5.12 Conclusion

contentWriter: [:object |
ZnEntity

with: (String streamContents: [:stream |
STON jsonWriter on: stream; nextPut: object])

type: ZnMimeType applicationJson];
contentReader: [:entity | STON fromString: entity contents];
yourself.

Now we can hold the same conversation as above, only in this case in terms
of real Smalltalk objects.

client get: '/'
--> #()

client post: '/' contents: #(1 2 3)
--> 'Created /1'

client get: '/1'
--> #(1 2 3)

client post: '/' contents: (Dictionary with: #bar -> -2)
---> 'Created /2'

client put: '/2' contents: (Dictionary with: #bar -> -1)
--> 'Updated'

client get: '/2'
--> a Dictionary('bar'->-1)

client get: '/'
--> #('/1' '/2')

client delete: '/2'
--> 'Deleted'

client get: '/2'
--> throws a ZnHttpUnsuccessful exception

5.12 Conclusion

Zinc HTTP Components was written with the explicit goal of allowing users
to explore the implementation. The test suite contains many examples that
can serve as learning material. This carefulness while writing Zinc HTTP
Components code now enable users to customize it to their need or to build
on top of it. Zinc is indeed an extremely malleable piece of software.

97

CHA P T E R6
WebSockets

The WebSocket protocol defines a full-duplex single socket connection over
which messages can be sent between a client and a server. It simplifies much
of the complexity around bi-directional web communication and connection
management. WebSocket represents the next evolutionary step in Web com-
munication compared to Comet and Ajax. And of course, Zinc HTTP Compo-
nents supports Web sockets as you will discover throughout this chapter.

6.1 An Introduction to WebSockets

HTTP, one of the main technologies of the internet, defines a communication
protocol between a client and a server where the initiative of the commu-
nication lies with the client and each interaction consists of a client request
and a server response. When correctly implemented and used, HTTP is enor-
mously scaleable and very flexible.

With the arrival of advanced Web applications mimicking regular desktop
applications with rich user interfaces, as well as mobile Web applications, it
became clear that HTTP was not suitable or not a great fit for two use cases:

• When the server wants to take the initiative and send the client a mes-
sage. In the HTTP protocol, the server cannot take the initiative to
send a message, the only workaround is for the client to do some form
of polling.

• When the client wants to send (many) (possibly asynchronous) short
messages with little overhead. For short messages, the HTTP proto-
col adds quite a lot of overhead in the form of meta data headers. For
many applications, the response (and the delay waiting for it) are not
needed.

99

WebSockets

Previously, Comet and Ajax were used as (partial) solutions to these use
cases. The WebSocket protocol defines a reliable communication channel
between two equal parties, typically, but not necessarily, a Web client and
a Web server, over which asynchronous messages can be send with very lit-
tle overhead. Messages can be any String or ByteArray. Overhead is just a
couple of bytes. There is no such thing as a direct reply or a synchronous
confirmation.

Using WebSockets, a server can notify a client instantly of interesting events,
and clients can quickly send small notifications to a server, possibly multi-
plexing many virtual communications channels over a single network socket.

6.2 The WebSocket Protocol

Zinc WebSockets implements RFC 64551, not any of the previous develop-
ment versions. For an introduction, both the WebSocket Wikipedia article2

and websocket.org3 are good starting points.

As a protocol, WebSocket starts with an initial setup handshake that is based
on HTTP. The initiative for setting up a WebSocket lies with the client, who
is sending a so called connection upgrade request. The upgrade request con-
tains a couple of special HTTP headers. The server begins as a regular HTTP
server accepting the connection upgrade request. When the request con-
forms to the specification, a 101 Switching Protocols response is sent. This
response also contains a couple of special HTTP headers. From that point on,
the HTTP conversation over the network socket stops and the WebSocket
protocol begins.

WebSocket messages consist of one or more frames with minimal encoding.
Behind the scenes, a number of control frames are used to properly close the
WebSocket and to manage keeping alive the connection using ping and pong
frames.

6.3 Source Code

The code implementing Zinc WebSockets resides in a single package called
’Zinc-WebSocket-Core’ in the Zinc HTTP Components repository. There is
also an accompanying ’Zinc-WebSocket-Tests’ package containing the unit
tests. The ConfigurationOfZincHTTPComponents has a 'WebSocket' group
that you can load separately. Here is the loading code snippet:

Gofer new
smalltalkhubUser: 'SvenVanCaekenberghe' project:
'ZincHTTPComponents';

1http://tools.ietf.org/html/rfc6455
2http://en.wikipedia.org/wiki/WebSocket
3http://www.websocket.org

100

http://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/WebSocket
http://www.websocket.org
http://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/WebSocket
http://www.websocket.org

6.4 Using Client Side WebSockets

package: 'ConfigurationOfZincHTTPComponents';
load.

(Smalltalk globals at: #ConfigurationOfZincHTTPComponents) project
latestVersion load: 'WebSocket'.

6.4 Using Client Side WebSockets

An endpoint for a WebSocket is specified using an URL:

ws://www.example.com:8088/my-app

Two new schemes are defined, ws:// for regular WebSockets and wss:// for
the secure (TLS/SSL) variant. Zinc WebSockets supports the usage of client
side WebSockets of both the regular and secure variants. Note that the se-
cure variant requires loading the Zodiac TLS/SSL Pharo project4. The Zinc
WebSockets API is really simple: you use sendMessage:, readMessage and
finally close on an open socket.

Here is a client-side example talking to a public echo service:

| webSocket |
webSocket := ZnWebSocket to: 'ws://echo.websocket.org'.
[webSocket

sendMessage: 'Pharo Smalltalk using Zinc WebSockets !';
readMessage] ensure: [webSocket close].

Note that readMessage is blocking. It always returns a complete String or
ByteArray, possible assembled out of multiple frames. Inside readMessage
control frames will be handled automagically. Reading and sending are com-
pletely separate and independent.

For sending very large messages, there are sendTextFrames: and send-
ByteFrames: that take a collection of Strings or ByteArrays to be sent as
different frames of the same message. At the other end, these will be joined
together and seen as a single message.

In any non-trivial application, you will have to add your own encoding and
decoding to messages. In many cases, JSON will be the obvious choice as the
client end is often JavaScript. A modern, standalone JSON parser and writer
is NeoJSON.

To use secure Web sockets, just use the proper URL scheme wss:// as in the
following example:

| webSocket |
webSocket := ZnWebSocket to: 'wss://echo.websocket.org'.
[webSocket

sendMessage: 'Pharo Smalltalk using Zinc WebSockets & Zodiac !';
readMessage] ensure: [webSocket close].

4http://smalltalkhub.com/#!/~SvenVanCaekenberghe/Zodiac

101

http://smalltalkhub.com/#!/~SvenVanCaekenberghe/Zodiac
http://smalltalkhub.com/#!/~SvenVanCaekenberghe/Zodiac

WebSockets

Of course, your image has to contain Zodiac and your VM needs access to the
proper plugin. That should not be a problem with the latest Pharo releases.

6.5 Using Server-Side WebSockets

Since the WebSocket protocol starts off as HTTP, it is logical that a ZnServer
with a special delegate is the starting point. ZnWebSocketDelegate imple-
ments the standard handleRequest: to check if the incoming request is a
valid WebSocket connection upgrade request. If so, the matching 101 switch-
ing protocols response is constructed and sent. From that moment on, the
network socket stream is handed over to a new, server side ZnWebSocket
object.

ZnWebSocketDelegate has two properties. An optional prefix implements
a specific path, like /my-ws-app. The required handler is any object imple-
menting value: with the new Web socket as argument.

Let’s implement the echo service that we connected to as a client in the pre-
vious section. In essence, we should go in a loop, reading a message and
sending it back. Here is the code:

ZnServer startDefaultOn: 1701.
ZnServer default delegate: (ZnWebSocketDelegate handler:

[:webSocket |
[| message |

message := webSocket readMessage.
webSocket sendMessage: message] repeat]).

We start a default server on port 1701 and replace its delegate with an in-
stance of ZnWebSocketDelegate. This instance will pass each correct web
socket request on to its handler. In this example, a block is used as handler.
The handler is given a new connected ZnWebSocket instance. For the echo
service, we go into a repeat loop, reading a message and sending it back.

Finally, you can stop the server using:

ZnServer stopDefault.

The code above works but will eventually encounter two NetworkErrors:

ConnectionTimedOut
ConnectionClosed (or its more specific subclass ZnWebSocketClosed)

The readMessage call blocks on the socket stream waiting for input until
its timeout expires, which will be signaled with a ConnectionTimedOut ex-
ception. In most applications, you should just keep on reading, essentially
ignoring the timeout for an infinite wait on incoming messages.

This behavior is implemented in the ZnWebSocket>>runWith: convenience
method: it enters a loop reading messages and passing them to a block, con-
tinuing on timeouts. This simplifies our example:

102

6.5 Using Server-Side WebSockets

ZnServer startDefaultOn: 1701.
ZnServer default delegate: (ZnWebSocketDelegate handler:

[:webSocket |
webSocket runWith: [:message |

webSocket sendMessage: message]]).

That leaves us with the problem of ConnectionClosed. This exception can
occur at the lowest level when the underlying network connection closes
unexpectedly, or at the WebSocket protocol level when the other end sends
a close frame. In either case we have to deal with it as a server. In our trivial
echo example, we can catch and ignore any ConnectionClosed exception or
log it as follows:

ZnServer stopDefault.
ZnServer startDefaultOn: 1701.
ZnServer default delegate: (ZnWebSocketDelegate handler:

[:webSocket |
[webSocket runWith: [:message |

webSocket sendMessage: message]
]
on: ConnectionClosed
do: [self crLog: 'Ignoring connection close, done']]).

Although using a block as handler is convenient, for non-trivial examples a
regular object implementing value: will probably be better. You can find
such an implementation in ZnWebSocketEchoHandler.

ZnServer stopDefault.
ZnServer startDefaultOn: 1701.
ZnServer default

delegate: (
ZnWebSocketDelegate

handler: ZnWebSocketEchoHandler new).

The current process (thread) as spawned by the server can be used freely
by the handler code, for as long as the web socket connection lasts. The re-
sponsibility for closing the connection lies with the handler, although a close
from the other side will be handled correctly.

To test the service, you can use a client-side web socket, like we did in the
previous section. This is what the unit test ZnWebSocketTests>>testEcho
does. Another solution is to run some JavaScript code in a web browser. You
can find the necessary HTML page containing JavaScript code invoking the
echo service on the class side of ZnWebSocketEchoHandler. The following
setup will serve this code:

ZnServer stopDefault.
ZnServer startDefaultOn: 1701.
ZnServer default logToTranscript.
ZnServer default delegate

map: 'ws-echo-client-remote'

103

WebSockets

to: [:request | ZnResponse ok: (ZnEntity html:
ZnWebSocketEchoHandler clientHtmlRemote)];

map: 'ws-echo-client'
to: [:request | ZnResponse ok: (ZnEntity html:
ZnWebSocketEchoHandler clientHtml)];

map: 'ws-echo'
to: (ZnWebSocketDelegate map: 'ws-echo' to:
ZnWebSocketEchoHandler new).

Now, you can try the following URLs in your Web browser:

• http://localhost:1701/ws-echo-client-remote

• http://localhost:1701/ws-echo-client

The first one will connect to ws://echo.websocket.org as a reference, the
second one will connect to our implementation at ws://localhost:1701/ws-
echo.

6.6 Building a Pharo Statistics Web Page

Another simple example is available in ZnWebSocketStatusHandler where a
couple of Smalltalk image statistics are emitted every second for an efficient
live view in your browser. In this scenario, the server accepts each incom-
ing web socket connection and starts streaming to it, not interested in any
incoming messages. Here is the core loop:

ZnWebSocketStatusHandler>>value: webSocket
[

self crLog: 'Started status streaming'.
[

webSocket sendMessage: self status.
1 second asDelay wait.
webSocket isConnected] whileTrue

]
on: ConnectionClosed
do: [self crLog: 'Ignoring connection close'].
self crLog: 'Stopping status streaming'

Here is code to setup all examples:

ZnServer stopDefault.
ZnServer startDefaultOn: 1701.
ZnServer default logToTranscript.
ZnServer default delegate

map: 'ws-status-client'
to: [:request | ZnResponse ok: (ZnEntity html:
ZnWebSocketStatusHandler clientHtml)];

map: 'ws-status'
to: (ZnWebSocketDelegate map: 'ws-status' to:
ZnWebSocketStatusHandler new).

104

http://localhost:1701/ws-echo-client-remote
http://localhost:1701/ws-echo-client

6.7 Building a Web Chat

Visit http://localhost:1701/ws-status-client to see statistics (uptime, memory...)
of your running Pharo lively refreshed in a Web page.

What happened is that your Web browser contacted the Zinc server at the
URL http://localhost:1701/ws-status-client and got back the HTML and Javascript
code in ZnWebSocketStatusHandler class>>clientHtml. The execution
of this Javascript code by the Web browser sent an HTTP request to the Zinc
server on http://localhost:1701/ws-status asking for an upgrade to up a Web
socket connection. Then, the ZnWebSocketStatusHandler object can send
status updates through this Web socket connection directly to the Javascript
code that refreshes the HTML page content.

6.7 Building a Web Chat

Another available example is ZnWebSocketChatroomHandler. It implements
the core logic of a chatroom: clients can send messages to the server which
distributes them to all connected clients. In this case, the handler has to
manage a collection of all connected client Web sockets. Here is the core
loop:

ZnWebSocketChatroomHandler>>value: webSocket
[

self register: webSocket.
webSocket runWith: [:message |

self crLog: 'Received message: ', message printString.
self distributeMessage: message]

]
on: ConnectionClosed
do: [

self crLog: 'Connection close, cleaning up'.
self unregister: webSocket]

Distributing a message basically means iterating over each client:

ZnWebSocketChatroomHandler>>distributeMessage: message
clientWebSockets do: [:each |

each sendMessage: message].

Here is code to start this Web chat app:

ZnServer stopDefault.
ZnServer startDefaultOn: 1701.
ZnServer default logToTranscript.
ZnServer default delegate

map: 'ws-chatroom-client'
to: [:request | ZnResponse ok: (ZnEntity html:
ZnWebSocketChatroomHandler clientHtml)];

map: 'ws-chatroom'
to: (ZnWebSocketDelegate map: 'ws-chatroom' to:
ZnWebSocketChatroomHandler new).

105

http://localhost:1701/ws-status-client
http://localhost:1701/ws-status-client
http://localhost:1701/ws-status

WebSockets

Visit http://localhost:1701/ws-chat-client to access your Web chat application.
You can open multiple tabs on this same URL to simulate multiple users on
the Chat. You can also send chat messages directly from Pharo, much like a
moderator:

(ZnServer default delegate prefixMap at: 'ws-chatroom')
handler distributeMessage: 'moderator>>No trolling please!'.

6.8 A Quick Tour of Zinc WebSocket Implementation

All code resides in the 'Zinc-WebSocket-Core' package. The wire level pro-
tocol, the encoding and decoding of frames is in ZnWebSocketFrame. The key
methods are writeOn: and readFrom: as well as the instance creation pro-
tocol. Together with the testing protocol and printOn: these should give
enough information to understand the implementation.

ZnWebSocket implements the protocol above frames, either from a server
or a client perspective. The key methods are readMessage and readFrame,
sending is quite simple. Client-side setup can be found on the class side of
ZnWebSocket. Server-side handling of the setup is implemented in the class
ZnWebSocketDelegate. Two kinds of exceptions, ZnWebSocketFailed and
ZnWebSocketClosed and a shared ZnWebSocketUtils class round out the
core code.

6.9 Live Demo

There is a live demo available at http://websocket.stfx.eu with the basic Zinc-
WebSocket demos: echo, status & chatroom. A starting point to learn how
these demos were set up is the method installExamplesInServer: in the
ZnWebSocketDelegate class. Setting up a production demo is complicated
by the fact that most proxies and load balancers, most notably the market
leader Apache, do not (yet) deal correctly with the WebSocket protocol. It
is thus easier to organize things such that your client directly talks to your
Smalltalk image.

6.10 Conclusion

WebSockets integrate smoothly with Zinc HTTP Components to form another
part of the Pharo Web stack. It provides support for building modern single
page Web applications in Pharo. The implementation of Zinc WebSockets
as an add-on to Zinc HTTP Components was made possible in part through
financial backing by Andy Burnett of Knowinnovation Inc. and ESUG.

106

http://localhost:1701/ws-chat-client
http://websocket.stfx.eu

Part III

Data

CHA P T E R7
NeoCSV

CSV (Comma-Separated Values) is a popular data-interchange format. This
chapter presents NeoCSV, a library to parse and export CSV files. This chap-
ter has originally been written by Sven Van Caekenberghe the author of
NeoCSV and many other nicely designed Pharo libraries.

7.1 NeoCSV

NeoCSV is an elegant and efficient standalone Pharo library to read (resp.
write) CSV files converting to (resp. from) Pharo objects.

An Introduction to CSV

CSV is a lightweight text-based de facto standard for human-readable tabular
data interchange. Essentially, the key characteristics are that CSV (or more
generally, delimiter-separated text data):

• is text-based (ASCII, Latin1, Unicode);

• consists of records, 1 per line (any line ending convention);

• where records consist of fields separated by a delimiter (comma, tab,
semicolon);

• where every record has the same number of fields; and

• where fields can be quoted should they contain separators or line end-
ings.

Note References: http://en.wikipedia.org/wiki/Comma-separated_values,
http://tools.ietf.org/html/rfc4180

109

http://en.wikipedia.org/wiki/Comma-separated_values
http://tools.ietf.org/html/rfc4180

NeoCSV

Note that there is not one single official standard specification.

Hands On NeoCSV

NeoCSV contains a reader (NeoCSVReader) and a writer (NeoCSVWriter) to
parse and generate delimiter-separated text data to and from Smalltalk ob-
jects. The goals of NeoCSV are:

• to be standalone (have no dependencies and little requirements);

• to be small, elegant and understandable;

• to be efficient (both in time and space); and

• to be flexible and non-intrusive.

To load NeoCSV, evaluate the following or use the Configuration Browser:

Gofer it
smalltalkhubUser: 'SvenVanCaekenberghe' project: 'Neo';
configurationOf: 'NeoCSV';
loadStable.

To use either the reader or the writer, you instantiate them on a character
stream and use standard stream access messages.

The first example reads a sequence of data separated by , and containing
line breaks. The reader produces arrays corresponding to the lines with the
data (the withCRsmethod converts backslashes to new lines).

(NeoCSVReader on: '1,2,3\4,5,6\7,8,9' withCRs readStream) upToEnd.
--> #(#('1' '2' '3') #('4' '5' '6') #('7' '8' '9'))

The second proceeds from the inverse: given a set of data as arrays it pro-
duces comma separated lines.

String streamContents: [:stream |
(NeoCSVWriter on: stream)
nextPutAll: #((x y z) (10 20 30) (40 50 60) (70 80 90))].
-->

'"x","y","z"
"10","20","30"
"40","50","60"
"70","80","90"
'

7.2 Generic Mode

NeoCSV can operate in generic mode without any further customization.
While writing,

• record objects should respond to the do: protocol,

110

7.3 Customizing NeoCSVWriter

• fields are always sent asString and quoted, and

• CRLF line ending is used.

While reading,

• records become arrays,

• fields remain strings,

• any line ending is accepted, and

• both quoted and unquoted fields are allowed.

The standard delimiter is a comma character. Quoting is always done using
a double quote character. A double quote character inside a field will be es-
caped by repeating it. Field separators and line endings are allowed inside a
quoted field. Any whitespace is significant.

7.3 Customizing NeoCSVWriter

Any character can be used as field separator, for example:

neoCSVWriter separator: Character tab

or

neoCSVWriter separator: $;

Likewise, any of the three common line end conventions can be set. In the
following example we set carriage return:

neoCSVWriter lineEndConvention: #cr

There are 3 mechanisms that the writer may use to write a field (in increas-
ing order of efficiency):

quoted converting it with asString and quoting it (the default);

raw converting it with asString but not quoting it; and

object not quoting it and using printOn: directly on the output stream.

When disabling quoting, you have to be sure your values do not contain em-
bedded separators or line endings. If you are writing arrays of numbers for
example, this would be the fastest way to do it:

neoCSVWriter
fieldWriter: #object;
nextPutAll: #((100 200 300) (400 500 600) (700 800 900))

The fieldWriter option applies to all fields.

111

NeoCSV

Writing Objects

If your data is in the form of regular domain-level objects it would be waste-
ful to convert them to arrays just for writing them as CSV. NeoCSV has a
non-intrusive option to map your domain object’s fields: You add field speci-
fications based on accessors. This is how you would write an array of Points.

String streamContents: [:stream |
(NeoCSVWriter on: stream)

nextPut: #('x field' 'y field');
addFields: #(x y);
nextPutAll: { 1@2. 3@4. 5@6 }].

-->
'"x field","y field"
"1","2"
"3","4"
"5","6"
'

Note how nextPut: is used to first write the header (i.e., the first line). After
printing the header, the writer is customized: the messages addField: and
addFields: arrange for the specified selectors (here x and y) to be sent on
each incoming object to produce fields that will be written.

To change the writing behavior for a specific field, you have to use addQuot-
edField:, addRawField: and addObjectField:.

To specify different field writers for an array (actually any subclass of Se-
quenceableCollection), you can use the first, second, third, etc. meth-
ods as selectors:

String streamContents: [:stream |
(NeoCSVWriter on: stream)

addFields: #(first third second);
nextPutAll: { 'acb' . 'dfe' . 'gih' }].

-->
'"a","b","c"
"d","e","f"
"g","h","i"
'

7.4 Customizing NeoCSVReader

The parser is flexible and forgiving. Any line ending will do, quoted and non-
quoted fields are allowed.

Any character can be used as field separator, for example:

neoCSVReader separator: Character tab

or

112

7.4 Customizing NeoCSVReader

neoCSVReader separator: $;

NeoCSVReader will produce records that are instances of its recordClass,
which defaults to Array. All fields are always read as Strings. If you want,
you can specify converters for each field, to convert them to integers, floats
or any other object. Here is an example:

(NeoCSVReader on: '1,2.3,abc,2015/07/07' readStream)
separator: $,;
addIntegerField;
addFloatField;
addField;
addFieldConverter: [:string | Date fromString: string];
upToEnd.
--> an Array(an Array(1 2.3 'abc' 7 July 2015))

Here we specify 4 fields: an integer, a float, a string and a date field. Field
conversions specified this way only work on indexable record classes, like
Array.

Ignoring Fields

While reading from a CSV file, you can ignore fields using addIgnoredField.
In the following example, the third field of each record is ignored:

| input |
(NeoCSVReader on: '1,2,a,3\1,2,b,3\1,2,c,3\' withCRs readStream)

addIntegerField;
addIntegerField;
addIgnoredField;
addIntegerField;
upToEnd
--> #(#(1 2 3) #(1 2 3) #(1 2 3))

Adding ignored field(s) requires adding field types on all other fields.

Creating Objects

In many cases you will probably want your data to be returned as one of your
domain objects. It would be wasteful to first create arrays and then convert
all those. NeoCSV has non-intrusive options to create instances of your own
classes and to convert and set fields on them directly. This is done by spec-
ifying accessors and converters. Here is an example for reading Associa-
tions of Floats.

(NeoCSVReader on: '1.5,2.2\4.5,6\7.8,9.1' withCRs readStream)
recordClass: Association;
addFloatField: #key: ;
addFloatField: #value: ;
upToEnd.

113

NeoCSV

--> {1.5->2.2. 4.5->6. 7.8->9.1}

For each field you have to give the mutating accessor to use. You might also
want to pass a conversion block using addField:converter:.

Reading many Objects

Handling large CSV files is possible with NeoCVS. In the following, we first
create a large CSV file then read it partly (this takes a bit of time, be patient).

'paul.csv' asFileReference writeStreamDo: [:file |
ZnBufferedWriteStream on: file do: [:out | | writer |

writer := (NeoCSVWriter on: out).
writer writeHeader: { #Number. #Color. #Integer. #Boolean}.
1 to: 1e7 do: [:each |

writer nextPut: {
each.
#(Red Green Blue) atRandom.
1e6 atRandom.
#(true false) atRandom }]]].

Above code results in a 300Mb file:

$ ls -lah paul.csv
-rw-r--r--@ 1 sven staff 327M Nov 14 20:45 paul.csv
$ wc paul.csv
10000001 10000001 342781577 paul.csv

The following code selectively collects every record with a third field lower
than 1000 (this takes a bit of time, be patient):

Array streamContents: [:out |
'paul.csv' asFileReference readStreamDo: [:input |

(NeoCSVReader on: (ZnBufferedReadStream on: in))
skipHeader;
addIntegerField;
addSymbolField;
addIntegerField;
addFieldConverter: [:x | x = #true];
do: [:each |

each third < 1000
ifTrue: [out nextPut: each]]]].

114

CHA P T E R8
NeoJSON

JSON (JavaScript Object Notation) is a popular data-interchange format. Neo-
JSON is an elegant and efficient standalone Smalltalk library to read and
write JSON converting to and from Smalltalk objects. The library is devel-
oped and actively maintained by Sven Van Caekenberghe.

8.1 An Introduction to JSON

JSON is a lightweight text-based open standard designed for human-readable
data interchange. It was derived from the JavaScript scripting language
for representing simple data structures and associative arrays, called ob-
jects. Despite its relationship to JavaScript, it is language independent, with
parsers available for many languages.

Note References: http://www.json.org/, http://en.wikipedia.org/wiki/Json
and http://www.ietf.org/rfc/rfc4627.txt?number=4627.

There are only a couple of primitive types in JSON:

• numbers (integer or floating point)

• strings

• the boolean constants true and false

• null

Only two composite types exist:

• lists (an ordered sequenece of values)

• maps (an unordered associative array, mapping string property names
to values)

115

http://www.json.org/
http://en.wikipedia.org/wiki/Json
http://www.ietf.org/rfc/rfc4627.txt?number=4627

NeoJSON

That is really all there is to it. No options or additions are defined in the
standard.

8.2 NeoJSON

To load NeoJSON, evaluate the following:

Gofer it
smalltalkhubUser: 'SvenVanCaekenberghe' project: 'Neo';
configurationOf: 'NeoJSON';
loadStable.

The NeoJSON library contains a reader (the class NeoJSONReader) and a
writer (the class NeoJSONWriter) to parse, respectively generate, JSON to
and from Pharo objects. The goals of NeoJSON are:

• to be standalone (have no dependencies and little requirements);

• to be small, elegant and understandable;

• to be efficient (both in time and space);

• to be flexible and non-intrusive.

Compared to other Smalltalk JSON libraries, NeoJSON

• has less dependencies and little requirements;

• can be more efficient (be faster and use less memory);

• allows for the use of schemas and mappings.

8.3 Primitives

Obviously, the primitive types are mapped to corresponding Pharo classes.
While reading:

• JSON numbers become instances of Integer or Float

• JSON strings become instances of String

• JSON booleans become instances of Boolean

• JSON null becomes nil

While writing:

• Pharo numbers are converted to floats, except for instances of Integer
that become JSON integers

• Pharo strings become JSON strings

• Pharo booleans become JSON booleans

• Pharo nil becomes JSON null

116

8.4 Generic Mode

8.4 Generic Mode

NeoJSON can operate in a generic mode that requires no further configura-
tion.

Reading from JSON

While reading:

• JSON maps become instances of mapClass, Dictionary by default;

• JSON lists become instances of listClass, Array by default.

The following example creates a Pharo array from a JSON expression:

NeoJSONReader fromString: ' [1,2,3] '.

This expression can be decomposed to better control the reading process:

(NeoJSONReader on: ' [1,2,3] ' readStream)
listClass: OrderedCollection;
next.

The above expression is equivalent to the previous one except that a Pharo
ordered collection will be used in place of an array.

The next example creates a Pharo dictionary (with 'x' and 'y' keys):

NeoJSONReader fromString: ' { "x" : 1, "y" : 2 } '.

To automatically convert keys to symbols, pass true to propertyName-
sAsSymbols: like this:

(NeoJSONReader on: ' { "x" : 1, "y" : 2 } ' readStream)
propertyNamesAsSymbols: true;
next

The result of this expression is a dictionary with #x and #y as keys.

Writing to JSON

While writing:

• instances of Dictionary and SmallDictionary become maps;

• all other collections become lists;

• all other non-primitive objects are rejected.

Here are some examples writing in generic mode:

NeoJSONWriter toString: #(1 2 3).
NeoJSONWriter toString: { Float pi. true. false. 'string' }.
NeoJSONWriter toString: { #a -> '1' . #b -> '2' } asDictionary.

117

NeoJSON

Above expressions return a compact string (i.e., with neither indentation nor
new lines). To get a nicely formatted output, use toStringPretty: like this:

NeoJSONWriter toStringPretty: #(1 2 3).

In order to use the generic mode, you have to convert your domain objects to
and from Dictionary and SequenceableCollection. This is relatively easy
but not very efficient, depending on the use case.

8.5 Schemas and Mappings

NeoJSON allows for the optional specification of schemas and mappings to be
used when writing or reading.

When writing, mappings are used when arbitrary objects are seen. For exam-
ple, in order to write an array of points, you could do as follows:

String streamContents: [:stream |
(NeoJSONWriter on: stream)

prettyPrint: true;
mapInstVarsFor: Point;
nextPut: (Array with: 1@3 with: -1@3)].

Collections are handled automatically, like in the generic case. As a result,
the above expression returns a string containing:

[
{

"x" : 1,
"y" : 3

},
{

"x" : -1,
"y" : 3

}
]

When reading, a mapping is used to specify what Pharo object to instanti-
ate and how to instantiate it. Here is a very simple case, reading a map as a
point:

(NeoJSONReader on: ' { "x" : 1, "y" : 2 } ' readStream)
mapInstVarsFor: Point;
nextAs: Point.

Since JSON lacks a universal way to specify the class of an object, we have to
specify the target schema that we want to use as an argument to nextAs:.

To define the schema of the elements in a list, write something like the fol-
lowing:

118

8.5 Schemas and Mappings

(NeoJSONReader
on: ' [{ "x" : 1, "y" : 2 },

{ "x" : 3, "y" : 4 }] ' readStream)
mapInstVarsFor: Point;
for: #ArrayOfPoints

customDo: [:mapping | mapping listOfElementSchema: Point];
nextAs: #ArrayOfPoints.

The above expression returns an array of 2 points. As you can see, the argu-
ment to nextAs: can be a class (as seen previously) or any symbol, provided
the mapper knows about it.

To get an OrderedCollection instead of an array as output, you should use
the listOfType: message:

(NeoJSONReader on: ' [1, 2] ' readStream)
for: #Collection

customDo: [:mapping | mapping listOfType: OrderedCollection];
nextAs: #Collection.

To specify how values in a map should be instantiated, use the mapWithVal-
ueSchema::
(NeoJSONReader on: ' { "point1" : {"x" : 1, "y" : 2 } }' readStream)

mapInstVarsFor: Point;
for: #DictionaryOfPoints

customDo: [:mapping | mapping mapWithValueSchema: Point];
nextAs: #DictionaryOfPoints.

The above expression returns a Dictionary with 1 key-value pair 'point1'
-> (1@2).

You can go beyond pre-defined messages and specify a decoding block:

(NeoJSONReader on: ' "2015/06/19" ' readStream)
for: DateAndTime

customDo: [:mapping |
mapping decoder: [:string |

DateAndTime fromString: string]];
nextAs: DateAndTime.

The above expression returns an instance of DateAndTime. The message
encoder: is used to do the opposite, i.e. convert from a Smalltalk object to
JSON:

String streamContents: [:stream |
(NeoJSONWriter on: stream)

for: DateAndTime
customDo: [:mapping | mapping encoder: #printString];

nextPut: DateAndTime now].

The above expression returns a string representing the current date and
time.

119

NeoJSON

NeoJSON deals efficiently with mappings: the minimal amount of interme-
diary structures are created. On modern hardware, NeoJSON can write or
read tens of thousands of small objects per second. Several benchmarks are
included in the unit tests package.

8.6 Emitting null Values

For efficiency reasons, by default, NeoJSONWriter does not write nil values:

String streamContents: [:stream |
(NeoJSONWriter on: stream)

mapAllInstVarsFor: Point;
nextPut: Point new].

The above expression returns the '{}' string. If you want to see the unini-
tialized instance properties, pass true to the writeNil: message:

String streamContents: [:stream |
(NeoJSONWriter on: stream)

mapAllInstVarsFor: Point;
writeNil: true;
nextPut: Point new].

The above expression returns the '{"x":null,"y":null}' string.

8.7 Conclusion

NeoJSON is a powerful library to convert objects. Sven, the author of Neo-
JSON, also developed STON (Smalltalk object notation) which is closer to
Pharo syntax and handles cycles and references between serialized objects.

120

CHA P T E R9
STON: a Smalltalk Object

Notation

STON (for Smalltalk Object Notation) is a lightweight, text-based, and human-
readable data-interchange format. STON is developed by Sven Van Caeken-
berghe. STON can be used to serialize domain level objects, either for per-
sistency or for network transport. As its name suggests, it is based on JSON
(see also Chapter NeoJSON). It adds symbols as a primitive value, and class
tags for object values and references. Implementations for Pharo Smalltalk,
Squeak and Gemstone Smalltalk are available.

9.1 Introduction

JSON is very simple, yet just powerful enough to represent some of the most
common data structures across many different languages. JSON is very read-
able and relatively easy to type. If you have ever seen JSON Javascript Object
Notation1, you will be instantly familiar with STON as it uses similar primi-
tive values, with the addition of a symbol type. Some details are slightly dif-
ferent though.

Some of these differences are due to the fact that JSON knows only about lists
and maps, which means that there is no concept of object types or classes.
As a result it is not easy to encode arbitrary objects, and some of the possible
solutions are quite verbose. For example, the type or class is encoded as a
property and/or an indirection to encode the object’s contents is added. To
address this, STON extends JSON by adding a primitive value, and ’class’ tags
for object values and references, as we will see next.

1http://www.json.org

121

http://www.json.org
http://www.json.org
http://www.json.org

STON: a Smalltalk Object Notation

STON Features and Limitations

STON offers three main features:

• Symbols: STON extends JSON by adding symbols as a primitive value,
and class tags for object values and references. Adding a symbol (a
globally unique string) primitive type is a very useful addition. This
is because symbols help to represent constant values in a readable way
that is compact and fast, and because symbols allow for simpler and
more readable map keys.

• Circular structures: Allowing shared and circular object structures is
also ueseful simply because these structures are widely used and be-
cause they allow for naturally efficient object graphs.

• JSON backward compatible: Additionally, the current STON implemen-
tation is backward compatible with standard JSON.

Limitations of STON are that in its current form it cannot serialize a number
of objects that are more system or implementation than domain oriented,
such as Blocks and classes. STON is also less efficient than a binary encoding
such as Fuel.

Loading STON

A reference implementation for STON was implemented in Pharo and works
in versions 1.3, 1.4, 2.0, 3.0 and 4.0. The project contains a full complement of
unit tests.

STON is hosted on SmalltalkHub. To load STON, execute the following code
snippet:

Gofer new
smalltalkhubUser: 'SvenVanCaekenberghe' project: 'STON';
configurationOf: 'Ston';
loadStable.

You can also add the following repository to your package browser:

MCHttpRepository
location:
'http://smalltalkhub.com/mc/SvenVanCaekenberghe/STON/main'

user: ''
password: ''

A Gemstone (http://gemtalksystems.com/products/) port implemented by Dale
Henrichs is available at https://github.com/dalehenrich/ston .

Serializing and Materializing Objects

We now show how to serialize and materialize objects, starting with a simple
rectangle and then continuing with more complex objects.

122

http://gemtalksystems.com/products/
https://github.com/dalehenrich/ston

9.1 Introduction

Serializing a Rectangle

To generate a STON representation for an object, STON provides two mes-
sages toString: and toStringPretty:. The first message generates a com-
pact version and the second displays the serialized version in a more read-
able way. For example:

STON toString: (Rectangle origin: 10@10 corner: 100@50)
--> 'Rectangle{#origin:Point[10,10],#corner:Point[100,50]}'

STON toStringPretty: (Rectangle origin: 10@10 corner: 100@50)
-->
'Rectangle {

#origin : Point [10, 10],
#corner : Point [100, 50]

}'

What is shown above follows the default representation scheme for objects.
Each class can define its own custom representation, as discussed in section
9.3.

Materializing a Rectangle

Once you have the textual representation of an object you can obtain the
encoded objects using the STONReader class as follows:

(STONReader on: ('Rectangle {
#origin : Point [-40, -15],
#corner : Point [60, 35]
}') readStream) next
--> (-40@ -15) corner: (60@35)

Alternatively, you can also use the STON facade as follows

(STON reader on: ('Rectangle {
#origin : Point [-40, -15],
#corner : Point [60, 35]
}') readStream) next
--> (-40@ -15) corner: (60@35)

Serialization of Maps, Lists and Class Tags

This example shows how more complex data structures are represented in
STON. Maps are represented by curly braces { and }, with keys and values
separated by a colon : and items are separated by a comma , . Lists are de-
limited by [and] and their items are separated by a comma. Class tags are
represented by ClassName [...] or ClassName {...}.

Next is an example of what pretty printed STON for a simple object looks
like. Even without further explanation, the semantics should be clear.

123

STON: a Smalltalk Object Notation

TestDomainObject {
#created : DateAndTime ['2012-02-14T16:40:15+01:00'],
#modified : DateAndTime ['2012-02-14T16:40:18+01:00'],
#integer : 39581,
#float : 73.84789359463944,
#description : 'This is a test',
#color : #green,
#tags : [

#two,
#beta,
#medium

],
#bytes : ByteArray ['afabfdf61d030f43eb67960c0ae9f39f'],
#boolean : false

}

A Large Example: an HTTP Response

Here is a more complex example: a ZnResponse object. It is the result of se-
rializing the result of the following HTTP request (using Zinc, see Chapters
Zinc Client and Zinc Server). It also shows that curly braces are for dictionar-
ies and square brackets are for lists.

ZnResponse {
#headers : ZnHeaders {

#headers : ZnMultiValueDictionary {
'Date' : 'Sat, 21 Mar 2015 20:09:23 GMT',
'Modification-Date' : 'Thu, 10 Feb 2011 08:32:30 GMT',
'Content-Length' : '113',
'Server' : 'Zinc HTTP Components 1.0',
'Vary' : 'Accept-Encoding',
'Connection' : 'close',
'Content-Type' : 'text/html;charset=utf-8'

}
},
#entity : ZnStringEntity {

#contentType : ZnMimeType {
#main : 'text',
#sub : 'html',
#parameters : {

'charset' : 'utf-8'
}

},
#contentLength : 113,
#string :

'<html>\n<head><title>Small</title></head>\n<body><h1>Small</h1>
<p>This is a small HTML document</p></body>\n</html>\n',

#encoder : ZnUTF8Encoder { }
},

124

9.2 How Values are Encoded

#statusLine : ZnStatusLine {
#version : 'HTTP/1.1',
#code : 200,
#reason : 'OK'

}
}

Note that when encoding regular objects, STON uses Symbols as keys. For
Dictionaries, you can use Symbols, Strings and Numbers as keys.

9.2 How Values are Encoded

We will now go into detail on how the notation encodes Smalltalk values.
Values are either a primitive value or an object value. Note that the unde-
fined object nil and a reference to an already encountered object are consid-
ered values as well.

Primitive Values

The kinds of values which are considered as primitives are numbers, strings,
symbols, booleans and nil. We talk about each of these next, and we show an
example of their encoding.

Numbers

Numbers are either integers or floats.

• Integers can be of infinite precision.

• Floats can be simple fractions or use the full scientific base 10 expo-
nent notation.

(STON reader on: '123' readStream) next.
--> 123

(STON reader on: '-10e6' readStream) next.
--> -10000000

Strings

Strings are enclosed using single quotes and backslash is used as the escape
character. A general Unicode escape mechanism using four hexadecimal dig-
its can be used to encode any character. Some unreadable characters have
their own escape code, like in JSON. STON conventionally encodes all non-
printable non-ASCII characters.

(STON reader on: '''a simple string''' readStream) next.
--> 'a simple string'

125

STON: a Smalltalk Object Notation

(STON reader on: '''\u00E9l\u00E8ves Fran\u00E7aises''' readStream)
next.

--> 'élèves Françaises'

(STON reader on: '''a newline \n and \t a tab''' readStream) next.
-->

'a newline
and a tab'

Symbols

Symbols are preceded by a #. Symbols consisting of a limited character set
(letters, numbers, a dot, underscore, dash or forward slash) are written liter-
ally. Symbols containing characters outside this limited set are encoded like
strings, enclosed in single quotes.

(STON reader on: '#foo' readStream) next.
--> #foo

(STON reader on: '#''Foo-bar''' readStream) next.
--> #'Foo-bar'

Booleans

Booleans consist of the constants true and false.

(STON reader on: 'true' readStream) next.
--> true

The UndefinedObject

The undefined object is represented by the constant nil

(STON reader on: 'nil' readStream) next.
--> nil

Object Values

Values that are not primitives can be three kinds of objects. The first kind
is a collection of values: lists or maps, the second kind is a non-collection
object, and the last kind is a reference to another value.

Like in JSON, STON uses two primitive composition mechanisms: lists and
maps. Lists consist of an ordered collection of arbitrary objects. Maps consist
of an unordered collection of key-value pairs. Keys can be strings, symbols or
numbers, and values are arbitrary objects.

126

9.2 How Values are Encoded

Lists

Lists are delimited by [and]. Items are separated by a comma ,.

For example the following expression is a list with two numbers -40 and -15.

[-40, -15]

The serialization of an array is represented by a list.

STON toString: #(20 30 40)
--> '[20,30,40]'

STON toString: { 1. 0. -1. true. false. nil }.
--> '[1,0,-1,true,false,nil]'

Lists are also used to represent values of certain object instance variables, as
discussed in section 9.3.

STON toString: 20@30
--> 'Point[20,30]'

STON toString: Date today
--> 'Date[''2015-03-21'']'

Maps

Maps are delimited by { and }. Keys and values are separated by a colon :
and items are separated by a comma ,. Dictionaries are serialized as maps,
for example as below:

STON toStringPretty: (
Dictionary new

at: #blue
put: 'bluish';
at: #green
put: 'greenish';
yourself)

-->
'{

#green : ''greenish'',
#blue : ''bluish''

}'

Objects

An object in STON has a class tag and a representation. A class tag starts with
an alphabetic uppercase letter and contains alphanumeric characters only. A
representation is either a list or a map. The next example shows an instance
of the class ZnMimeType:

127

STON: a Smalltalk Object Notation

ZnMimeType {
#main : 'text',
#sub : 'html',
#parameters : {

'charset' : 'utf-8'
}

}

This is a generic way to encode arbitrary objects. Non-collection classes are
encoded using a map of their instance variables: instance variable name (a
symbol) mapped to instance variable value. Collection classes are encoded
using a list of their values.

For the list like collection subclass Array, the class tag is optional, given a list
representation. The following pairs are thus equivalent:

[1, 2, 3] = Array [1, 2, 3]

Also, for the map like collection subclass Dictionary the class tag is op-
tional, given a map representation:

{#a : 1, #b : 2} = Dictionary {#a : 1, #b : 2}

References

To support shared objects and cycles in the object graph, STON adds the con-
cept of references to JSON. Each object value encountered during a depth
first traversal of the graph is numbered from 1 up. If a object is encountered
again, only a reference to its number is recorded. References consist of the @
sign followed by a positive integer. When the data is materialized, references
are resolved after reconstructing the object graph.

Here is an OrderedCollection that shares a Point object three times:

| pt ar |
pt := 10@20.
ar := { pt . pt . pt }.
STON toString: ar

--> '[Point[10,20],@2,@2]'

A two element Array that refers to itself in its second element will look like
this:

[#foo, @1]

Note that strings are not treated as objects and are consequently never shared.

9.3 Custom Representations of Objects

In the current reference implementation in Pharo, a number of classes re-
ceived a special, custom representation, often chosen for compactness and

128

9.3 Custom Representations of Objects

readability. We give a list of them here and then discuss on how to imple-
ment such a custom representation.

Default Custom Representations

Time

Time is represented by a one element array with an ISO style HH:MM:SS string

STON toString: Time now
--> 'Time[''17:06:41.489009'']'

Date

Date is represented as a one element array with an ISO style YYYYMMDD string

STON toString: Date today
--> 'Date[''2015-03-21'']'

Date and Time

DateAndTime, TimeStamp is represented as a one element array with an ISO
style YYYY-MM-DDTHH:MM:SS.N+TZ.TZ string

STON toString: DateAndTime now
--> 'DateAndTime[''2015-03-21T17:46:01.751981-03:00'']'

Point

Point is represented as a two element array with the x and y values

STON toString: 100@200
--> 'Point[100,200]'

ByteArray

ByteArray is represented as a one element array with a hex string

STON toString: #(10 20 30) asByteArray
--> 'ByteArray[''0a141e'']'

Character

Character is represented as a one element array with a one element string

STON toString: $a
--> 'Character[''a'']'

129

STON: a Smalltalk Object Notation

Associations

Associations are represented as a pair separated by :.

STON toString: (42 -> #life)
--> '42:#life'

Nesting is also possible #foo : 1 : 2means #foo->(1->2).

Note that this custom representation does not change the way maps (either
for dictionaries or for arbitrary objects) work. In practice, this means that
there are now two closely related expressions:

STON fromString: '[#foo:1, #bar:2]'.
--> { #foo->1. #bar->2 }

STON fromString: '{ #foo:1, #bar:2 }'.
--> a Dictionary(#bar->2 #foo->1)

In the first case you get an Array of explicit Associations, in the second case
you get a Dictionary (which uses Associations internally).

Creating a Custom Representation

The choice of using a default STON mapping for objects or to prefer a custom
representation is up to you and your application. In the generic mapping in-
stance variable names (as symbols) and their values become keys and values
in a map. This is flexible: it won’t break when instance variables are added
or removed. It is however more verbose and exposes all internals of an ob-
ject, including ephemeral ones. Custom representations are most useful to
increase the readability of small, simple objects.

The key methods are instance method stonOn: and class or instance method
fromSton:. The former produces a STON representation of the object and
the latter creates a new object from a STON representation. If fromSton: is
implemented at instance side, STON will first create an instance of the object
before calling fromSton: e.g. as in Point. If implemented at class side, the
creation of the instance is the responsibility of the fromSton: method, e.g.
as in ByteArray.

During encoding, classes can output a one-line representation of themselves
by sending either the message #writeObject:listSingleton: or the mes-
sage #writeObject:streamShortList: to an instance of STONWriter. The
first argument of the message should be self and the second argument a
single element, or a collection of elements respectively.

Examples of this are below:

Date>>stonOn: stonWriter
"Use an ISO style YYYYMMDD representation"
stonWriter writeObject: self listSingleton: self yyyymmdd

130

9.4 Usage

Point>>stonOn: stonWriter
stonWriter writeObject: self streamShortList: [:array |

array add: x; add: y]

An instance of STONWriter also understands the #writeObject:stream-
List: and #writeObject:streamMap: messages, which generate a multi-
line representation. Also, classes can use another external name by overrid-
ing Object class>>stonName.

STON offers a way to control which instance variables get written and the
order in which they get written. This can be done by overwriting Object
class>>#stonAllInstVarNames to return an array of symbols. Each sym-
bol is the name of a variable and the order of the symbols determines write
order. Also, having Object>>#stonShouldWriteNilInstVars return true
causes instance variables to be written out when they are nil (the default is
to omit them).

Lastly, postprocessing on instance variables for resolving references is real-
ized by the Object>>stonProcessSubObjects: method. If custom postpro-
cessing is required, this method should be overwritten.

9.4 Usage

This section lists some code examples on how to use the current implemen-
tation and its API. The class STON acts as a class facade API to read/write
to/from streams/strings while hiding the actual parser or writer classes. It is
a central access point, but it is very thin: using the reader or writer directly
is perfectly fine, and offers some more options as well.

Simple Reading and Writing

Parsing is the simplest operation, use either the fromString: or from-
Stream: method, like this:

STON fromString: 'Rectangle { #origin : Point [-40, -15],
#corner : Point [60, 35]}'.

'/Users/sven/Desktop/foo.ston' asReference
fileStreamDo: [:stream | STON fromStream: stream].

Invoking the reader (parser) directly goes like this:

(STON reader on:
'Rectangle{#origin:Point[0,0],#corner:Point[1440,846]}'

readStream) next.

Writing has two variants: the regular compact representation or the pretty
printed one. The methods to use are toString: and toStringPretty: or
put:onStream: and put:onStreamPretty:, like this:

131

STON: a Smalltalk Object Notation

STON toString: World bounds.
STON toStringPretty: World bounds.
'/Users/sven/Desktop/bounds.ston' asReference

fileStreamDo: [:str |
STON put: World bounds onStream: str].

'/Users/sven/Desktop/bounds.ston' asReference
fileStreamDo: [:str |

STON put: World bounds onStreamPretty: str].

Supporting Comments

Like JSON, STON does not allow comments of any kind in its format. How-
ever, STON offers the possibility to handle comments using a special stream
named STONCStyleCommentsSkipStream. The following snippets illustrate
two ways to use this stream:

STON fromStream: (STONCStyleCommentsSkipStream on:
'Point[/* this is X*/ 1, /* this is Y*/ 2] // Nice huh ?'
readStream).

--> 1@2

STON fromStringWithComments: '// Here is how you create a point:
Point[

// this is X
1,
// this is Y
2]

// Nice huh ?'.
--> 1@2

This helper class is useable in other contexts too, like for NeoJSON. The ad-
vantage is that it does not change the STON (or JSON) syntax itself, it just
adds some functionality on top.

Configuring the Writer

The writer can be created explicitly as follows:

String streamContents: [:stream |
(STON writer on: stream) nextPut: World bounds].

When created, the reference policy of the writer can be set. The default for
STON is to track object references and generate references when needed.
Other options are to signal an error on shared references by sending the
writer referencePolicy: #error, or to ignore them (referencePolicy:
#ignore) with the risk of going into an infinite loop. An example of the error
reference policy is below:

| pt ar |
pt := 10@20.

132

9.5 Handling CR, LF inside Strings

ar := { pt . pt . pt }.
String streamContents: [:stream |

(STON writer on: stream)
referencePolicy: #error;
nextPut: ar]

--> STONWriterError: 'Shared reference detected'

Compatibility with JSON

The current STON implementation has a very large degree of JSON compati-
bility. Valid JSON input is almost always valid STON. The only exceptions are
the string delimiters (single quotes for STON, double quotes for JSON) and
nil versus null. The STON parser accepts both variants for full compatibil-
ity.

The STON writer has a jsonMode option so that generated output conforms
to standard JSON. That means the use of single quotes as string delimiters,
null instead of nil, and the treatment of symbols as strings. When using
JSON mode the reference policy should be set to #error or #ignore for full
JSON compatibility. Also, as JSON does not understand non-primitive values
outside of arrays or dictionaries, it is necessary to convert data structures to
an Array or Dictionary first. Attempting to write non primitive instances
that are not arrays or dictionaries will throw an error.

Next is an example of how to use the STON writer to generate JSON output.

| bounds json |
bounds := World bounds.
json := Dictionary

with: #origin -> (
Dictionary

with: #x -> bounds origin x
with: #y -> bounds origin y)

with: #corner -> (
Dictionary

with: #x -> bounds corner x
with: #y -> bounds corner y).

String streamContents: [:stream |
(STON writer on: stream)

prettyPrint: true;
jsonMode: true;
referencePolicy: #error;
nextPut: json].

9.5 Handling CR, LF inside Strings

STON also supports the conversion or not of CR, LF, or CRLF characters inside
strings and symbols as one chosen canonical newLine.

133

STON: a Smalltalk Object Notation

The message STONReader>>convertNewLines: aBoolean and the message
STONReader>>newLine: aCharacter read and convert CR, LF, or CRLF in-
side strings and symbols as one chosen canonical newLine. When true, any
newline CR, LF or CRLF read unescaped inside strings or symbols will be con-
verted to the newline convention chosen, see newLine:. The default is false,
not doing any convertions.

In the following example, any CR, LF or CRLF seen while reading Strings will
all be converted to the same EOL, CRLF.

(STON reader on: ..)
newLine: String crlf;
convertNewLines: true;
next.

The message STONWriter>>keepNewLines: aBoolean works as follows:
If true, any newline CR, LF or CRLF inside strings or symbols will not be es-
caped but will instead be converted to the newline convention chosen, see
newLine:. The default is false, where CR, LF or CRLF will be enscaped un-
changed.

(STON writer on: ...)
newLine: String crlf;
keepNewLines: true;
nextPut: ...

Any CR, LF or CRLF inside any String will no longer be written as \r, \n or
\r\n but all as CRLF, a normal EOL.

9.6 Conclusion

STON is a practical and simple text-based object serializer based on JSON
(see also Chapter NeoJSON). We have shown how to use it, how values are
encoded and how to define a custom representation for a given class.

9.7 Appendix: BNF

value
primitive-value
object-value
reference
nil

primitive-value
number
true
false
symbol
string

134

9.7 Appendix: BNF

object-value
object
map
list

object
classname map
classname list

reference
@ int-index-previous-object-value

map
{}
{ members }

members
pair
pair , members

pair
string : value
symbol : value
number : value

list
[]
[elements]

elements
value
value , elements

string
''
' chars '

chars
char
char chars

char
any-printable-ASCII-character-except-'-"-or-\
\'
\"
\\
\/
\b
\f
\n
\r
\t
\u four-hex-digits

symbol
chars-limited
' chars '

chars-limited
char-limited
char-limited chars-limited

char-limited

135

STON: a Smalltalk Object Notation

a-z A-Z 0-9 - _ . /
classname

uppercase-alpha-char alphanumeric-char
number

int
int frac
int exp
int frac exp

int
digit
digit1-9 digits
- digit
- digit1-9 digits

frac
. digits

exp
e digits

digits
digit
digit digits

e
e
e+
e-
E
E+
E-

136

CHA P T E R 10
Serializing Complex Objects with

Fuel

Fuel is a fast open-source general-purpose binary object serialization frame-
work developed by Mariano Martinez-Peck, Martìn Dias and Max Leske. It is
robust and used in many industrial cases. A fundamental reason for the cre-
ation of Fuel was speed: while there is a plethora of frameworks to serialize
objects based on recursive parsing of the object graphs in textual format as
XML, JSON, or STON, these approaches are often slow. (For JSON and STON
see also Chapters STON and NeoJSON.)

Part of the speed of Fuel comes from the idea that objects are loaded more
often than stored. This makes it worth to spend more time while storing to
yield faster loading. Also, its storage scheme is based on the pickle format
that puts similar objects into groups for efficiency and performance. As a re-
sult, Fuel has been shown to be one of the fastest object loaders, while still
being a really fast object saver. Moreover, Fuel can serialize nearly any ob-
ject in the image, it can even serialize a full execution stack and later reload
it!

The main features of Fuel are as follows:

• It has an object-oriented design.

• It does not need special VM-support.

• It is modularly packaged.

• It can serialize/materialize not only plain objects but also classes,
traits, methods, closures, contexts, packages, etc.

• It supports global references.

137

Serializing Complex Objects with Fuel

• It is very customizable: you can ignore certain instance variables, sub-
stitute objects by others, define pre and post serialization and materi-
alization actions, etc.

• It supports class renaming and class reshaping.

• It has good test coverage and a large suite of benchmarks.

10.1 General Information

Fuel has been developed and maintained over the years by the following peo-
ple: Martin Dias, Mariano Martinez Peck, Max Leske, Pavel Krivanek, Tristan
Bourgois and Stéphane Ducasse (as PhD advisor and financer).

The idea of Fuel was developed by Mariano Martinez Peck based on the work
by Eliot Miranda who worked on the ”parcels” implementation for Visual-
Works. Eliot’s work again was based on the original ”parcels” implementa-
tion by David Leib. ”Parcels” demonstrates very nicely that the binary pickle
format can be a good alternative to textual storage and that grouping of ob-
jects makes a lot of sense in object oriented systems.

Before going into details we present the ideas behind Fuel and it’s main fea-
tures and give basic usage examples.

Goals

Concrete Fuel doesn’t aspire to have a dialect-interchange format. This makes
it possible to serialize special objects like contexts, block closures,
exceptions, compiled methods and classes. Although there are ports
to other dialects, most notably Squeak, Fuel development is Pharo-
centric.

Flexible Depending on the context, there can be multiple ways of serializing
the same object. For example, a class can be considered either a global
or a regular object. In the former case, references to the class will be
encoded by name and the class is expected to be part of the environ-
ment upon materialization; in the latter case, the class will be encoded
in detail, with its method dictionary, etc.

Fast Fuel has been designed for performance. Fuel comes with a complete
benchmark suite to help analyse the performance with diverse sample
sets, as well as to compare it against other serializers. Fuel’s pickling
algorithm achieves outstanding materialization performance, as well
as very good serialization performance, even when compared to other
binary formats such as ImageSegment.

Object-Oriented A requirement from the onset was to have a good object-
oriented design and to avoid special support from the virtual machine.

138

10.1 General Information

Maintainable Fuel has a complete test suite (over 600 unit tests), with a high
degree of code coverage. Fuel also has well-commented classes and
methods.

Installation and Demo

Fuel 1.9 is available by default in Pharo since version 2.0 of Pharo. Therefore
you do not need to install it. The default packages work out of the box in
Pharo 1.1.1, 1.1.2, 1.2, 1.3, 1.4, 2.0, 3.0 and 4.0 and Squeak 4.1, 4.2, 4.3, 4.4, 4.5.
The stable version at the time of writing is 1.9.4.

Open the Transcript and execute the code below in a Playground. This
example serializes a set, the default Transcript (which is a global) and a
block. On materialization it shows that

• the set is correctly recreated,

• the global Transcript is still the same instance (hasn’t been modified)

• and the block can be evaluated properly.

| arrayToSerialize materializedArray |
arrayToSerialize :=

Array
with: (Set with: 42)
with: Transcript
with: [:aString | Transcript show: aString; cr].

"Store (serialize)"
FLSerializer serialize: arrayToSerialize toFileNamed: 'demo.fuel'.

"Load (materialize)"
materializedArray := FLMaterializer materializeFromFileNamed:

'demo.fuel'.

Transcript
show: 'The sets are equal: ';
show: arrayToSerialize first = materializedArray first;
cr;
show: 'But not the same: ';
show: arrayToSerialize first ~~ materializedArray first;
cr;
show: 'The global value Transcript is the same: ';
show: arrayToSerialize second == materializedArray second;
cr.

materializedArray third
value: 'The materialized block closure can be properly
evaluated.'.

139

Serializing Complex Objects with Fuel

Some Links

• The home page is http://rmod.inria.fr/web/software/Fuel.

• The source code is at http://smalltalkhub.com/#!/~Pharo/Fuel.

• The CI job is at https://ci.inria.fr/pharo-contribution/job/Fuel-Stable/.

10.2 Getting Started

Basic Examples

Fuel offers some class-side messages to ease more common uses of serializa-
tion (the serialize:toFileNamed: message) and materialization (the mes-
sage materializeFromFileNamed:). The next example writes to and reads
from a file:

FLSerializer serialize: 'stringToSerialize' toFileNamed: 'demo.fuel'.
materializedString := FLMaterializer materializeFromFileNamed:

'demo.fuel'.

Fuel also provides messages for storing into a ByteArray, namely the mes-
sages serializeToByteArray: and materializeFromByteArray:. This can
be interesting, for example, for serializing an object graph as a blob of data
into a database when using Voyage (see Chapter Voyage).

anArray := FLSerializer serializeToByteArray: 'stringToSerialize'.
materializedString := FLMaterializer materializeFromByteArray:

anArray.

FileStream

In the following example we work with file streams. Note that the stream
needs to be set to binary mode:

'demo.fuel' asFileReference writeStreamDo: [:aStream |
FLSerializer newDefault

serialize: 'stringToSerialize'
on: aStream binary].

'demo.fuel' asFileReference readStreamDo: [:aStream |
materializedString := (FLMaterializer newDefault

materializeFrom: aStream binary) root].

In this example, we are no longer using the class-side messages. Now, for
both FLSerializer and FLMaterializer, we first create instances by send-
ing the newDefaultmessage and then perform the desired operations. As we
will see in the next example, creating the instances allows for more flexibil-
ity on serialization and materialization.

140

http://rmod.inria.fr/web/software/Fuel
http://smalltalkhub.com/#!/~Pharo/Fuel
https://ci.inria.fr/pharo-contribution/job/Fuel-Stable/

10.2 Getting Started

Compression

Fuel does not care to what kind of stream it writes its data. This makes it
easy to use stream compressors. An example of use is as follows:

'number.fuel.zip' asFileReference writeStreamDo: [:aFileStream |
|gzip|
aFileStream binary.
gzip := GZipWriteStream on: aFileStream.
FLSerializer newDefault serialize: 123 on: gzip.
gzip close].

'number.fuel.zip' asFileReference readStreamDo: [:aFileStream |
|gzip|
aFileStream binary.
gzip := GZipReadStream on: aFileStream.
materializedString := (FLMaterializer newDefault

materializeFrom: gzip) root.
gzip close].

Showing a Progress Bar

Sometimes it is nice to see progress updates on screen. Use the message
showProgress in this case. The progress bar functionality is available from
the FuelProgressUpdate package, so load that first:

Gofer it
url: 'http://smalltalkhub.com/mc/Pharo/Fuel/main';
package: 'ConfigurationOfFuel';
load.

(ConfigurationOfFuel project version: #stable)
load: 'FuelProgressUpdate'.

The following example uses the message showProgress to display a progress
bar during operations.

'numbers.fuel' asFileReference writeStreamDo: [:aStream |
FLSerializer newDefault

showProgress;
serialize: (1 to: 200000) asArray
on: aStream binary].

'numbers.fuel' asFileReference readStreamDo: [:aStream |
materializedString :=

(FLMaterializer newDefault
showProgress;
materializeFrom: aStream binary) root].

141

Serializing Complex Objects with Fuel

10.3 Managing Globals

Sometimes we may be interested in storing just the name of a reference, be-
cause we know it will be present when materializing the graph. For exam-
ple when the current processor scheduler Processor is referenced from the
graph we do not want to serialize it as it does not make sense to materialize
it. Hence Fuel considers some objects as globals that may not be serialized. It
also allows for you to add to this set and lastly to use a different environment
when materializing globals.

Default Globals

By default, Fuel considers the following objects as globals, i.e., it will store
just their name:

• nil, true, false, and Smalltalk globals.

• Any Class, Trait, Metaclass or ClassTrait.

• Any CompiledMethod, except when either it answers false to the mes-
sage isInstalled or true to the message isDoIt. The latter happens,
for example, if this is code evaluated from a Workspace.

• Some well-known global variables: Smalltalk, SourceFiles, Tran-
script, Undeclared, Display, TextConstants, ActiveWorld, Ac-
tiveHand, ActiveEvent, Sensor, Processor, ImageImports, Syste-
mOrganization and World.

Duplication of Custom Globals

With this following code snippet, we show that by default a Smalltalk global
value is not serialized as a global. In such a case it is duplicated on material-
ization.

"Define a global variable named SomeGlobal."
SomeGlobal := Set new.

"Serialize and materialize the value of SomeGlobal."
FLSerializer

serialize: SomeGlobal
toFileNamed: 'g.fuel'.

"The materialized object *is not* the same as the global instance."
[(FLMaterializer materializeFromFileNamed: 'g.fuel') ~~ SomeGlobal

] assert.

We can tell Fuel to handle a new global and how to avoid global duplication
on materialization. The message considerGlobal: is used to specify that an
object should be stored as global, i.e. it should only be referenced by name.

142

10.3 Managing Globals

| aSerializer |

"Define a global variable named SomeGlobal."
SomeGlobal := Set new.

aSerializer := FLSerializer newDefault.

"Tell the serializer to consider SomeGlobal as global."
aSerializer analyzer considerGlobal: #SomeGlobal.

aSerializer
serialize: SomeGlobal
toFileNamed: 'g.fuel'.

"In this case, the materialized object *is* the same as the global
instance."

[(FLMaterializer materializeFromFileNamed: 'g.fuel') == SomeGlobal
] assert.

Changing the Environment

The default lookup location for globals is Smalltalk globals. This can be
changed by using the message globalEnvironment: during serialization
and materialization.

The following example shows how to change the globals environment dur-
ing materialization. It creates a global containing the empty set, tells Fuel
to consider it as a global and serializes it to disk. A new environment is then
created with a different value for the global: 42 and the global is then mate-
rialized in this environment. We see that the materialized global has as value
42, i.e. the value of the environment in which it is materialized.

| aSerializer aMaterializer anEnvironment |

"Define a global variable named SomeGlobal."
SomeGlobal := Set new.

"Tell the serializer to consider SomeGlobal as global."
aSerializer := FLSerializer newDefault.
aSerializer analyzer considerGlobal: #SomeGlobal.
aSerializer

serialize: SomeGlobal
toFileNamed: 'g.fuel'.

"Override value for SomeGlobal."
anEnvironment := Dictionary newFrom: Smalltalk globals.
anEnvironment at: #SomeGlobal put: {42}.

"In this case, the materialized object *is the same* as the global

143

Serializing Complex Objects with Fuel

instance."
'g.fuel' asFileReference readStreamDo: [:aStream |

| materializedGlobal |
aStream binary.
aMaterializer := FLMaterializer newDefault.

"Set the environment"
aMaterializer globalEnvironment: anEnvironment.

materializedGlobal := (aMaterializer materializeFrom: aStream)
root.

[materializedGlobal = {42}] assert.
[materializedGlobal == (anEnvironment at: #SomeGlobal)] assert
].

10.4 Customizing the Graph

When serializing an object you often want to select which part of the object’s
state should be serialized. To achieve this with Fuel you can selectively ig-
nore instance variables.

Ignoring Instance Variables

Under certain conditions it may be desirable to prevent serialization of cer-
tain instance variables for a given class. A straightforward way to do this
is to override the hook method fuelIgnoredInstanceVariableNames, at
class side of the given class. It returns an array of instance variable names
(as symbols) and all instances of the class will be serialized without these
instance variables.

For example, let’s say we have the class User and we do not want to serialize
the instance variables 'accumulatedLogins' and 'applications'. So we
implement:

User class>>fuelIgnoredInstanceVariableNames
^ #('accumulatedLogins' 'applications')

Post-Materialization Action

When materialized, ignored instance variables will be nil. To re-initialize
and set values to those instance variables, send the fuelAfterMaterializa-
tionmessage.

The message fuelAfterMaterialization lets you execute some action once
an object has been materialized. For example, let’s say we would like to set
back the instance variable 'accumulatedLogins' during materialization.
We can implement:

144

10.4 Customizing the Graph

User>>fuelAfterMaterialization
accumulatedLogins := 0.

Substitution on Serialization

Sometimes it is useful to serialize something different than the original ob-
ject, without altering the object itself. Fuel proposes two different ways to do
this: dynamically and statically.

Dynamically

You can establish a specific substitution for a particular serialization. Let’s
illustrate with an example, where the graph includes a Stream and you want
to serialize nil instead.

objectToSerialize := { 'hello' . '' writeStream}.

'demo.fuel' asFileReference writeStreamDo: [:aStream |
aSerializer := FLSerializer newDefault.
aSerializer analyzer

when: [:object | object isStream]
substituteBy: [:object | nil].

aSerializer
serialize: objectToSerialize
on: aStream binary].

'demo.fuel' asFileReference readStreamDo: [:aStream |
materializedObject := (FLMaterializer newDefault

materializeFrom: aStream binary) root]

After executing this code, materializedObject will contain #('hello'
nil), i.e. without the instance of a Stream.

Statically

You can also do substitution for each serialization of an object by overrid-
ing its fuelAccept: method. Fuel visits each object in the graph by sending
this message to determine how to trace and serialize it. The argument of the
message is an instance of a FLMapper subclass.

As an example, imagine we want to replace an object directly with nil. In
other words, we want to make all objects of a class transient, for example all
CachedResult instances. For that, we should implement:

CachedResult>>fuelAccept: aGeneralMapper
^ aGeneralMapper

visitSubstitution: self
by: nil

145

Serializing Complex Objects with Fuel

As another example, we have a Proxy class and when serializing we want
to serialize its target instead of the proxy. So we redefine fuelAccept: as
follows:

Proxy>>fuelAccept: aGeneralMapper
^ aGeneralMapper

visitSubstitution: self
by: target

The use of fuelAccept: also allows for deciding about serialization con-
ditionally. For example, we have the class User and we want to nil the in-
stance variable history when its size is greater than 100. A naive implemen-
tation is as follows:

User>>fuelAccept: aGeneralMapper
^ self history size > 100

ifTrue: [
aGeneralMapper

visitSubstitution: self
by: (self copy history: #())].

ifFalse: [super fuelAccept: aGeneralMapper]

Note We are substituting the original user by another instance of User,
which Fuel will visit with the same fuelAccept: method. Because of this
we fall into an infinite sequence of substitutions!

Using fuelAccept: we can easily fall into an infinite sequence of substitu-
tions. To avoid this problem, the message visitSubstitution:by:onRe-
cursionDo: should be used. In it, an alternative mapping is provided for the
case of mapping an object which is already a substitute of another one. The
example above should be written as follows:

User>>fuelAccept: aGeneralMapper
aGeneralMapper

visitSubstitution: self
by: (self copy history: #())
onRecursionDo: [super fuelAccept: aGeneralMapper]

In this case, the substituted user (i.e., the one with the empty history) will be
visited via its super implementation.

Substitution on Materialization

In the same way that we may want to customize object serialization, we may
want to customize object materialization. This can be done either by treat-
ing an object as a globally obtained reference, or by hooking into instance
creation.

146

10.4 Customizing the Graph

Global References

Suppose we have a special instance of User that represents the admin user,
and it is a unique instance in the image. In the case that the admin user is
referenced in our graph, we want to get that object from a global when the
graph is materialized. This can be achieved by modifying the serialization
process as follows:

User>>fuelAccept: aGeneralMapper
^ self == User admin

ifTrue: [
aGeneralMapper

visitGlobalSend: self
name: #User
selector: #admin]

ifFalse: [super fuelAccept: aGeneralMapper]

During serialization the admin user won’t be serialized but instead its global
name and selector are stored. Then, at materialization time, Fuel will send
the message admin to the class User, and use the returned value as the ad-
min user of the materialized graph.

Hooking into Instance Creation

Fuel provides two hook methods to customise how instances are created:
fuelNew and fuelNew:.

For (regular) fixed objects, the method fuelNew is defined in Behavior as:

fuelNew
^ self basicNew

But we can override it to our needs, for example:

fuelNew
^ self uniqueInstance

This similarly applies to variable sized objects through the method fuelNew:
which by default sends basicNew:.

Not Serializable Objects

You may want to make sure that some objects are not part of the graph dur-
ing serialization. Fuel provides the hook method named visitNotSerial-
izable: which signals an FLNotSerializable exception if such an object is
found in the graph that is to be serialized.

MyNotSerializableObject>>fuelAccept: aGeneralMapper
aGeneralMapper visitNotSerializable: self

147

Serializing Complex Objects with Fuel

10.5 Errors

We provide a hierarchy of errors which allows one to clearly identify the
problem when something went wrong:

• FLError

– FLSerializationError

* FLNotSerializable
* FLObjectNotFound
* FLObsolete

– FLMaterializationError

* FLBadSignature
* FLBadVersion
* FLClassNotFound
* FLGlobalNotFound
* FLMethodChanged
* FLMethodNotFound

As most classes of Fuel, they have class comments that explain their purpose:

FLError I represent an error produced during Fuel operation.

FLSerializationError I represent a serialization error.

FLNotSerializable I represent an error which may happen while tracing in the
graph an object that is forbidden of being serialized.

FLObjectNotFound I represent an error which may happen during serializa-
tion, when trying to encode on the stream a reference to an object that
should be encoded before, but it is not. This usually happens when the
graph changes during serialization. Another possible cause is a bug in
the analysis step of serialization.

FLObsolete I am an error produced during serialization, signaled when try-
ing to serialize an obsolete class as global. It is a prevention, because
such class is likely to be absent during materialization.

FLMaterializationError I represent a materialization error.

FLBadSignature I represent an error produced during materialization when
the serialized signature doesn’t match the materializer’s signature (ac-
cessible via FLMaterializer>>signature). A signature is a byte pre-
fix that should prefix a well-serialized stream.

FLBadVersion I represent an error produced during materialization when the
serialized version doesn’t match the materializer’s version (accessible
via FLMaterializer>>version). A version is encoded in 16 bits and is
encoded heading the serialized stream, after the signature.

148

10.6 Object Migration

Figure 10-1 Example of changes to a class

FLClassNotFound I represent an error produced during materialization when
a serialized class or trait name doesn’t exist.

FLGlobalNotFound I represent an error produced during materialization
when a serialized global name doesn’t exist (at Smalltalk globals).

FLMethodChanged I represent an error produced during materialization
when a change in the bytecodes of a method serialized as global is
detected. This error was born when testing the materialization of a
BlockClosure defined in a method that changed. The test produced a
VM crash.

FLMethodNotFound I represent an error produced during materialization
when a serialized method in a class or trait name doesn’t exist (in
Smalltalk globals).

10.6 Object Migration

We often need to load objects whose class has changed since it was saved. For
example, figure 10-1 illustrates typical changes that can happen to the class
shape. Now imagine we previously serialized an instance of Point and we
need to materialize it after Point class has changed.

Let’s start with the simple cases. If a variable was inserted, its value will be
nil. If it was removed, it is also obvious: the serialized value will be ignored.
The change of Order of instance variables is handled by Fuel automatically.

A more interesting case is when a variable was renamed. Fuel cannot auto-
matically guess the new name of a variable, so the change will be understood
by Fuel as two independent operations: an insertion and a removal. To re-
solve this problem, the user can tell the Fuel materializer which variables are
renamed by using the message migratedClassNamed:variables:. It takes
as first argument the name of the class and as second argument a mapping
from old names to new names. This is illustrated in the following example:

FLMaterializer newDefault
migrateClassNamed: #Point
variables: {'x' -> 'posX'. 'y' -> 'posY'}.

149

Serializing Complex Objects with Fuel

The last change that can happen is a class rename. Again the Fuel mate-
rializer provides a way to handle this: the migrateClassNamed:toClass:
message, and an example of its use is shown below:

FLMaterializer newDefault
migrateClassNamed: #Point
toClass: Coordinate.

Lastly, Fuel defines the message migrateClassNamed:toClass:variables:
that combines both class and variable rename.

Additionally, the method globalEnvironment:, shown in Section 10.3, is
useful for migration of global variables: you can prepare an ad-hoc environ-
ment dictionary with the same keys that were used during serialization, but
with the new classes as values.

Note A class could also change its layout. For example, Point could
change from being fixed to variable. Layout changes from fixed to vari-
able format are automatically handled by Fuel. Unfortunately, the inverse
(variable to fixed) is not supported yet.

10.7 Fuel Format Migration

Until now, each Fuel version has used its own stream format, which is not
compatible with the format of other versions. This means that when upgrad-
ing Fuel, we will need to convert our serialized streams. This is done by using
the old version of Fuel to materialize a stream, keeping a reference to this
object graph, and then loading the new version of Fuel and serializing the
object graph back to a file.

We include below an example of such a format migration. Let’s say we have
some files serialized with Fuel 1.7 in a Pharo 1.4 image and we want to mi-
grate them to Fuel 1.9.

| oldVersion newVersion fileNames objectsByFileName
materializerClass serializerClass |

oldVersion := '1.7'.
newVersion := '1.9'.
fileNames := #('a.fuel' 'b.fuel' 'c.fuel' 'd.fuel' 'e.fuel').
objectsByFileName := Dictionary new.

(ConfigurationOfFuel project version: oldVersion) load.
"Need to do it like this otherwise

the class is decided at compile time."
materializerClass := Smalltalk at: #FLMaterializer.

fileNames do: [:fileName |
objectsByFileName

at: fileName

150

10.8 Built-in Header Support

put: (materializerClass materializeFromFileNamed: fileName)].

(ConfigurationOfFuel project version: newVersion) load.
"Need to do it like this otherwise

the class is decided at compile time."
serializerClass := Smalltalk at: #FLSerializer.

objectsByFileName keysAndValuesDo: [:fileName :objects |
serializerClass

serialize: objects
toFileNamed: 'migrated-', fileName].

We assume in this example that the number of objects to migrate can be ma-
terialized all together at the same time. This assumption may be wrong. In
such case, you could adapt the script to split the list of files and do the migra-
tion in parts.

Note This script should be evaluated in the original image. We don’t
guarantee that Fuel 1.7 loads in Pharo 2.0, but we do know that Fuel 1.9
loads in Pharo 1.4.

10.8 Built-in Header Support

It can be useful to store additional information with the serialized graph or
perform pre and post materialization actions. To achieve this, Fuel supports
the possibility to customize the header, an instance of FLHeader.

The following example shows these features: first we add a property called
timestamp to the header using the message at:putAdditionalObject:. We
then define some pre and post actions using addPreMaterializationAc-
tion: and addPostMaterializationAction:, respectively. In the latter we
show how we can retrieve the property value by using the additionalOb-
jectAt: message.

| serializer |
serializer := FLSerializer newDefault.

serializer header
at: #timestamp
putAdditionalObject: DateAndTime now rounded.

serializer header
addPreMaterializationAction: [

Transcript show: 'Before serializing'; cr].

serializer header
addPostMaterializationAction: [:materialization |

Transcript

151

Serializing Complex Objects with Fuel

show: 'Serialized at ';
show: (materialization additionalObjectAt: #timestamp).

Transcript cr;
show: 'Materialized at ';
show: DateAndTime now rounded;
cr].

serializer
serialize: 'a big amount of data'
toFileNamed: 'demo.fuel'

Then, you can materialize the header info only, and obtain the timestamp
property, as follows:

| aHeader |
aHeader := FLMaterializer materializeHeaderFromFileNamed:

'demo.fuel'.
aHeader additionalObjectAt: #timestamp.

If we materialize the whole file, as below, the print string of the results is: 'a
big amount of data'.

FLMaterializer materializeFromFileNamed: 'demo.fuel'

And something similar to the following is shown in Transcript:

Before serializing
Serialized at 2015-05-24T22:39:18-03:00
Materialized at 2015-05-24T22:39:37-03:00

10.9 Conclusion

Fuel is a fast and stable binary object serializer for Pharo and is available
by default in Pharo since 2.0. It can serialize to and materialize from any
stream and the graph of objects to be serialized can be customized in multi-
ple ways. It can serialize nearly any object in the system. For example, cases
are known of an error occurring in a deployed application, the full stack be-
ing serialized and later materialized on a development machine for debug-
ging.

152

CHA P T E R 11
Persisting Objects with Voyage

Voyage is a small persistence framework developed by Esteban Lorenzano,
constructed as a small layer between the objects and a persistency mecha-
nism. It is purely object-oriented and has as a goal to present a minimal API
to most common development usages. Voyage is a common layer for differ-
ent backends but currently it supports just two: an in-memory layer and a
backend for the MongoDB database (http://mongodb.org1).

The in-memory layer is useful to prototype applications quickly and for
initial development without a database back-end, for example using the
Smalltalk image as the persistency mechanism.

The MongoDB database backend stores the objects in a document-oriented
database. In MongoDB each stored entity is a JSON-style document. This
document-centric nature allows for persisting complex object models in
a fairly straightforward fashion. MongoDB is not an object database, like
Gemstone, Magma or Omnibase, so there still is a small gap to be bridged be-
tween objects and documents. To bridge this gap, Voyage contains a mapper
converting objects to and from documents. This mapper is equivalent to an
Object-Relational Mapper (ORM) when using relational databases. While this
mapper does not solve all the known impedance mismatch issues when going
from objects to a database, we find that using a document database fits better
with the object world than a combination of a ORM and a relational database.
This is because document databases tend to provide better support for the
dynamic nature of the object world.

Voyage provides a default way in which objects are stored in the database.
Fine-grained configuration of this can be performed using Magritte descrip-
tions. Voyage also includes a query API, which allows specific objects to be

1http://mongodb.org/

153

http://mongodb.org/
http://mongodb.org/

Persisting Objects with Voyage

retrieved from a MongoDB database. We will discuss each of these features in
this text.

This text started as a number of blog posts by Esteban Lorenzano, which have
been extensively reworked by Johan Fabry, and including additional infor-
mation shared by Sabine Manaa and Norbert Hartl.

11.1 Setup

Load Voyage

To install Voyage, including support for the MongoDB database, go to the
Configurations Browser (in the World Menu/Tools) and load Configura-
tionOfVoyageMongo. Or alternatively execute in a workspace:

Gofer it
url: 'http://smalltalkhub.com/mc/estebanlm/Voyage/main';
configurationOf: 'VoyageMongo';
loadStable.

This will load all that is needed to persist objects into a Mongo database.

Install MongoDB

Next is to install the MongoDB database. How to do this depends on the op-
erating system, and is outside of the scope of this text. We refer to the Mon-
goDB website2 for more information.

Create A repository

In Voyage, all persistent objects are stored in a repository. The kind of repos-
itory that is used determines the storage backend for the objects.

To use the in-memory layer for Voyage, an instance of VOMemoryRepository
needs to be created, as follows:

repository := VOMemoryRepository new

In this text, we shall however use the MongoDB backend. To start a new
MongoDB repository or connect to an existing repository create an instance
of VOMongoRepository, giving as parameters the hostname and database
name. For example, to connect to the database databaseName on the host
mongo.db.url execute the following code:

repository := VOMongoRepository
host: 'mongo.db.url'
database: 'databaseName'.

2http://www.mongodb.org/downloads

154

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

11.1 Setup

Alternatively, using the message host:port:database: allows to specify
the port to connect to. Lastly, if authentication is required, this can be done
using the message host:database:username:password: or the message
host:port:database:username:password:.

Singleton Mode and Instance Mode

Voyage can work in two different modes:

• Singleton mode: There is an unique repository in the image, which
works as a singleton keeping all the data. When you use this mode, you
can program using a ”behavioral complete” approach where instances
respond to a certain vocabulary (see below for more details about vo-
cabulary and usage).

• Instance mode: You can have an undetermined number of repositories
living in the image. Of course, this mode requires you to make explicit
which repositories you are going to use.

By default, Voyage works in instance mode: the returned instance has to be
passed as an argument to all database API operations. Instead of having to
keep this instance around, a convenient alternative is to use Singleton mode.
Singleton mode removes the need to pass the repository as an argument to
all database operations. To use Singleton mode, execute:

repository enableSingleton.

Note Only one repository can be the singleton, hence executing this
line will remove any other existing repositories from Singleton mode!
In this document, we cover Voyage in Singleton mode, but using it in In-
stance mode is straightforward as well. See the protocol persistence of
VORepository for more information.

Voyage API

The following two tables show a representative subset of the API of Voyage.
These methods are defined on Object and Class, but will only truly perform
work if (instances of) the receiver of the message is a Voyage root. See the
voyage-model-core-extensions persistence protocol on both classes for
the full API of Voyage.

First we show Singleton mode:

save stores an object into repository (insert or update)
remove removes an object from repository
removeAll removes all objects of class from repository
selectAll retrieves all objects of some kind
selectOne: retrieves first object that matches the argument
selectMany: retrieves all objects that matches the argument

155

Persisting Objects with Voyage

Second is Instance mode. In Instance mode, the first argument is always the
repository on which to perform the operation.

save: stores an object into repository (insert or update)
remove: removes an object from repository
removeAll: removes all objects of class from repository
selectAll: retrieves all objects of some kind
selectOne:where: retrieves first object that matches the where clause
selectMany:where: retrieves all objects that matches the where clause

Resetting or Dropping the Database Connection

In a deployed application, there should be no need to close or reset the con-
nection to the database. Also, Voyage re-establishes the connection when the
image is closed and later reopened.

However, when developing, resetting the connection to the database may be
needed to reflect changes. This is foremost required when changing storage
options of the database (see section 11.3). Performing a reset is achieved as
follows:

VORepository current reset.

In case the connection to the database needs to be dropped, this is performed
as follows:

VORepository setRepository: nil.

11.2 Storing Objects

To store objects, the class of the object needs to be declared as being a root of
the repository. All repository roots are points of entry to the database. Voyage
stores more than just objects that contain literals. Complete trees of objects
can be stored with Voyage as well, and this is done transparently. In other
words, there is no need for a special treatment to store trees of objects. How-
ever, when a graph of objects is stored, care must be taken to break loops. In
this section we discuss such basic storage of objects, and in section 11.3 on
Enhancing Storage we show how to enhance and/or modify the way objects
are persisted.

Basic Storage

Let’s say we want to store an Association (i.e. a pair of objects). To do this, we
need to declare that the class Association is storable as a root of our repos-
itory. To express this we define the class method isVoyageRoot to return
true.

156

11.2 Storing Objects

Association class>>isVoyageRoot
^ true

We can also define the name of the collection that will be used to store doc-
uments with the voyageCollectionName class method. By default, Voyage
creates a MongoDB collection for each root class with name the name of the
class.

Association class>>voyageCollectionName
^ 'Associations'

Then, to save an association, we need to just send it the savemessage:

anAssociation := #answer->42.
anAssociation save.

This will generate a collection in the database containing a document of the
following structure:

{
"_id" : ObjectId("a05feb630000000000000000"),
"#instanceOf" : "Association",
"#version" : NumberLong("3515916499"),
"key" : 'answer',
"value" : 42

}

The stored data keeps some extra information to allow the object to be cor-
rectly reconstructed when loading:

• instanceOf records the class of the stored instance. This information
is important because the collection can contain subclass instances of
the Voyage root class.

• version keeps a marker of the object version that is committed. This
property is used internally by Voyage for refreshing cached data in the
application. Without a version field, the application would have to
refresh the object by frequently querying the database.

Note that the documents generated by Voyage are not directly visible us-
ing Voyage itself, as the goal of Voyage is to abstract away from the docu-
ment structure. To see the actual documents you need to access the database
directly. For MongoDB this can be done through Mongo Browser, which is
loaded as part of Voyage (World->Tools->Mongo Browser). Other options for
MongoDB are to use the mongo command line interface or a GUI tool such as
RoboMongo3 (Multi-Platform) or MongoHub4 (for Mac).

3http://robomongo.org
4http://mongohub.todayclose.com/

157

http://robomongo.org
http://mongohub.todayclose.com/
http://robomongo.org
http://mongohub.todayclose.com/

Persisting Objects with Voyage

Embedding Objects

Objects can be as simple as associations of literals or more complex: objects
can contain other objects, leading to a tree of objects. Saving such objects is
as simple as sending the savemessage to them. For example, let’s say that
we want to store rectangles and that each rectangle contains two points. To
achieve this, we specify that the Rectangle class is a document root as fol-
lows:

Rectangle class>>isVoyageRoot
^ true

This allows rectangles to be saved to the database, for example as shown by
this snippet:

aRectangle := 42@1 corner: 10@20.
aRectangle save.

This will add a document to the rectangle collection of the database with
this structure:

{
"_id" : ObjectId("ef72b5810000000000000000"),
"#instanceOf" : "Rectangle",
"#version" : NumberLong("2460645040"),
"origin" : {

"#instanceOf" : "Point",
"x" : 42,
"y" : 1

},
"corner" : {

"#instanceOf" : "Point",
"x" : 10,
"y" : 20

}
}

Referencing other Roots

Sometimes the objects are trees that contain other root objects. For instance,
you could want to keep users and roles as roots, i.e. in different collections,
and a user has a collection of roles. If the embedded objects (the roles) are
root objects, Voyage will store references to these objects instead of includ-
ing them in the document.

Returning to our rectangle example, let’s suppose we want to keep the points
in a separate collection. In other words, now the points will be referenced
instead of embedded.

After we add isVoyageRoot to Point class, and save the rectangle, in the
rectangle collection, we get the following document:

158

11.2 Storing Objects

{
"_id" : ObjectId("7c5e772b0000000000000000"),
"#instanceOf" : "Rectangle",
"#version" : 423858205,
"origin" : {

"#collection" : "point",
"#instanceOf" : "Point",
"__id" : ObjectId("7804c56c0000000000000000")

},
"corner" : {

"#collection" : "point",
"#instanceOf" : "Point",
"__id" : ObjectId("2a731f310000000000000000")

}
}

In addition to this, in the collection point we also get the two following enti-
ties:

{
"_id" : ObjectId("7804c56c0000000000000000"),
"#version" : NumberLong("4212049275"),
"#instanceOf" : "Point",
"x" : 42,
"y" : 1

}

{
"_id" : ObjectId("2a731f310000000000000000"),
"#version" : 821387165,
"#instanceOf" : "Point",
"x" : 10,
"y" : 20

}

Breaking Cycles in Graphs

When the objects to be stored contain a graph of embedded objects instead
of a tree, i.e. when there are cycles in the references that the embedded ob-
jects have between them, the cycles between these embedded objects must
be broken. If not, storing the objects will cause an infinite loop. The most
straightforward solution is to declare one of the objects causing the cycle as
a Voyage root. This effectively breaks the cycle at storage time, avoiding the
infinite loop.

For example, in the rectangle example say we have a label inside the rect-
angle, and this label contains a piece of text. The text also keeps a reference
to the label in which it is contained. In other words there is a cycle of refer-
ences between the label and the text. This cycle must be broken in order to

159

Persisting Objects with Voyage

persist the rectangle. To do this, either the label or the text must be declared
as a Voyage root.

An alternative solution to break cycles, avoiding the declaration of new voy-
age roots, is to declare some fields of objects as transient and define how the
graph must be reconstructed at load time. This will be discussed in the fol-
lowing section.

Storing Instances of Date in Mongo

A known issue of mongo is that it does not make a difference between Date
and DateAndTime, so even if you store a Date instance, you will retrieve a
DateAndTime instance. You will have to transform it back to Datemanually
when materializing the object.

11.3 Enhancing Storage

How objects are stored can be changed by adding Magritte descriptions to
their classes. In this section, we first talk about configuration options for the
storage format of the objects. Then we treat more advanced concepts such
as loading and saving of attributes, which can be used, for example, to break
cycles in embedded objects.

Configuring Storage

Consider that, continuing with the rectangle example but using embedded
points, we add the following storage requirements:

• We need to use a different collection named rectanglesForTest in-
stead of rectangle.

• We only store instances of the Rectangle class in this collection, and
therefore the instanceOf information is redundant.

• The origin and corner attributes are always going to be points, so the
instanceOf information there is redundant as well.

To implement this, we use Magritte descriptions with specific pragmas to
declare properties of a class and to describe both the origin and corner
attributes.

The method mongoContainer is defined as follows: First it uses the pragma
<mongoContainer> to state that it describes the container to be used for
this class. Second it returns a specific VOMongoContainer instance. This in-
stance is configured such that it uses the rectanglesForTest collection in
the database, and that it will only store Rectangle instances.

160

11.3 Enhancing Storage

Note that it is not required to specify both configuration lines. It is equally
valid to only declare that the collection to be used is rectanglesForTest, or
only specify that the collection contains just Rectangle instances.

Rectangle class>>mongoContainer
<mongoContainer>

^ VOMongoContainer new
collectionName: 'rectanglesForTest';
kind: Rectangle;
yourself

The two other methods use the pragma <mongoDescription> and return a
Mongo description that is configured with their respective attribute name
and kind, as follows:

Rectangle class>>mongoOrigin
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'origin';
kind: Point;
yourself

Rectangle class>>mongoCorner
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'corner';
kind: Point;
yourself

After resetting the repository with:

VORepository current reset

a saved rectangle, now in the rectanglesForTest collection, will look more
or less as follows:

{
"_id" : ObjectId("ef72b5810000000000000000"),
"#version" : NumberLong("2460645040"),
"origin" : {

"x" : 42,
"y" : 1

},
"corner" : {

"x" : 10,
"y" : 20

}
}

Other configuration options for attribute descriptions are:

161

Persisting Objects with Voyage

• beEager declares that the referenced instance is to be loaded eagerly
(the default is lazy).

• beLazy declares that referenced instances are loaded lazily.

• convertNullTo: when retrieving an object whose value is Null (nil),
instead return the result of evaluating the block passed as argument.

For attributes which are collections, the VOMongoToManyDescription needs
to be returned instead of the VOMongoToOneDescription. All the above con-
figuration options remain valid, and the kind: configuration option is used
to specify the kind of values the collection contains.

VOMongoToManyDescription provides a number of extra configuration op-
tions:

• kindCollection: specifies the class of the collection that is contained
in the attribute.

• convertNullToEmpty when retrieving a collection whose value is Null
(nil), it returns an empty collection.

Custom Loading and Saving of Attributes

It is possible to write specific logic for transforming attributes of an object
when written to the database, as well as when read from the database. This
can be used, e.g., to break cycles in the object graph without needing to de-
clare extra Voyage roots. To declare such custom logic, a MAPluggableAc-
cessor needs to be defined that contains Smalltalk blocks for reading the
attribute from the object and writing it to the object. Note that the names
of these accessors can be counter-intuitive: the read: accessor defines the
value that will be stored in the database, and the write: accessor defines
the transformation of this retrieved value to what is placed in the object.
This is because the accessors are used by the Object-Document mapper when
reading the object to store it to the database and when writing the object
to memory, based on the values obtained from the database.

Defining accessors allows, for example, a Currency object that is contained
in an Amount to be written to the database as its’ three letter abbreviation
(EUR, USD, CLP, ...). When loading this representation, it needs to be con-
verted back into a Currency object, e.g. by instantiating a new Currency ob-
ject. This is achieved as follows:

Amount class>>mongoCurrency
<mongoDescription>

^ VOMongoToOneDescription new
attributeName: 'currency';
accessor: (MAPluggableAccessor

read: [:amount | amount currency abbreviation]
write: [:amount :value | amount currency: (Currency

162

11.3 Enhancing Storage

fromAbbreviation: value)]);
yourself

Also, a post-load action can be defined for an attribute or for the containing
object, by adding a postLoad: action to the attribute descriptor or the con-
tainer descriptor. This action is a one-parameter block, and will be executed
after the object has been loaded into memory with as argument the object
that was loaded.

Lastly, attributes can be excluded from storage (and hence retrieval) by re-
turning a VOMongoTransientDescription instance as the attribute descrip-
tor. This allows to place cut-off points in the graph of objects that is being
saved, i.e. when an object contains a reference to data that should not be
persisted in the database. This may also be used to break cycles in the stored
object graph. It however entails that when retrieving the graph from the
database, attributes that contain these objects will be set to nil. To address
this, a post-load action can be specified for the attribute descriptor or the
container descriptor, to set these attributes to the correct values.

A few Words Concerning the OID

The mongo ObjectId (OID) is a unique field acting as a primary key. It is a 12-
byte BSON type, constructed using:

• a 4-byte value representing seconds passed since the Unix epoch,

• a 3-byte machine identifier,

• a 2-byte process id,

• a 3-byte counter, starting with a random value.

Objects which are added into a mongo root collection get a unique id, in-
stance of OID. If you create such an object and then ask it for its OID by send-
ing it voyageId, you get the OID. The instance variable value of the OID con-
tains a LargePositiveInteger that corresponds to the mongo ObjectId.

It is possible to create and use your own implementation of OIDs and put
these objects into the mongo database. But this is not recommended as you
possibly may no longer be able to query these objects by their OID (by us-
ing voyageId), since mongo expects a certain format. If you do, you should
check your format by querying for it in the mongo console, for example as
below. If you get the result Error: invalid object id: length, then
you will not be able to query this object by id.

> db.Trips.find({"person.__id" : ObjectId("190372")})
Fri Aug 28 14:21:10.815 Error: invalid object id: length

An extra advantage of the OID in the mongo format is that these are ordered
by creation date and time and as a result you have an indexed ”creationDate-

163

Persisting Objects with Voyage

AndTime” attribute for free (since there is a non deletable index on the field
of the OID _id).

11.4 Querying in Voyage

Voyage allows to selectively retrieve object instances though queries on the
database. When using the in-memory layer, queries are standard Smalltalk
blocks. When using the MongoDB back-end, the MongoDB query language is
used to perform the searches. To specify these queries, MongoDB uses JSON
structures, and when using Voyage there are two ways in which these can
be constructed. MongoDB queries can be written either as blocks or as dic-
tionaries, depending on their complexity. In this section, we first discuss
both ways in which queries can be created, and we end the section by talking
about how to execute these queries.

Basic Object Retrieval using Blocks or MongoQueries

The most straightforward way to query the database is by using blocks when
using the in-memory layer or MongoQueries when using the MongoDB back-
end. In this discussion we will focus on the use of MongoQueries, as the use
of blocks is standard Smalltalk.

MongoQueries is not part of Voyage itself but part of the MongoTalk layer
that Voyage uses to talk to MongoDB. MongoTalk was made by Nicolas Pet-
ton and provides all the low-level operations for accessing MongoDB. Mon-
goQueries transforms, within certain restrictions, regular Pharo blocks into
JSON queries that comply to the form that is expected by the database. In
essence, MongoQueries is an embedded Domain Specific Language to create
MongoDB queries. Using MongoQueries, a query looks like a normal Pharo
expression (but the language is much more restricted than plain Smalltalk).

Using MongoQueries, the following operators may be used in a query:

< <= > >= = ~= Regular comparison operators
& AND operator
| OR operator
not NOT operator
at: Access an embedded document
where: Execute a Javascript query

For example, a query that selects all elements in the database whose name is
John is the following:

[:each | each name = 'John']

A slightly more complicated query is to find all elements in the database
whose name is John and the value in orders is greater than 10.

164

11.4 Querying in Voyage

[:each | (each name = 'John') & (each orders > 10)]

Note that this way of querying only works for querying values of the object
but not values of references to other objects. For such case you should build
your query using ids, as traditionally done in relational database, which we
talk about next. However the best solution in the Mongo spirit of things is
to revisit the object model to avoid relationships that are expressed with
foreign keys.

Quering with Elements from another Root Document

With No-SQL databases, it is impossible to query on multiple collections (the
equivalent of a JOIN statement in SQL). You have two options: alter your
schema, as suggested above, or write application-level code to reproduce
the JOIN behavior. The latter option can be done by sending the voyageId
message to an object already returned by a previous query and using that
id to match another object. An example where we match colors color to a
reference color refCol is as follows:

[:each | (each at: 'color.__id') = refCol voyageId]

Using the at: Message to Access Embedded Documents

Since MongoDB stores documents of any complexity, it is common that one
document is composed of several embedded documents, for example:

{
"origin" : {

"x" : 42,
"y" : 1

},
"corner" : {

"x" : 10,
"y" : 20

}
}

In this case, to search for objects by one of the embedded document ele-
ments, the message at:, and the field separator ”.” needs to be used. For
example, to select all the rectangles whose origin x value is equal to 42, the
query is as as follows.

[:each | (each at: 'origin.x') = 42]

Using the where: Message to Perform Javascript Comparisons

To perform queries which are outside the capabilities of MongoQueries or
even the MongoDB query language, MongoDB provides a way to write queries

165

Persisting Objects with Voyage

directly in Javascript using the $where operand. This is also possible in Mon-
goQueries by sending the where: message:

In the following example we repeat the previous query with a Javascript ex-
pression:

[:each | each where: 'this.origin.x == 42'].

More complete documentation about the use of $where is in the MongoDB
where documentation5.

Using JSON Queries

When MongoQueries is not powerful enough to express your query, you can
use a JSON query instead. JSON queries are the MongoDB query internal rep-
resentation, and can be created straightforwardly in Voyage. In a nutshell: a
JSON structure is mapped to a dictionary with pairs. In these pairs the key is
a string and the value can be a primitive value, a collection or another JSON
structure (i.e., another dictionary). To create a query, we simply need to cre-
ate a dictionary that satisfies these requirements.

Note The use of JSON queries is strictly for when using the MongoDB
back-end. Other back-ends, e.g., the in-memory layer, do not provide sup-
port for the use of JSON queries.

For example, the first example of the use of MongoQueries is written as a
dictionary as follows:

{ 'name' -> 'John' } asDictionary

Dictionary pairs are composed with AND semantics. Selecting the elements
having John as name AND whose orders value is greater than 10 can be writ-
ten like this:

{
'name' -> 'John'.
'orders' -> { '$gt' : 10 } asDictionary

} asDictionary

To construct the ”greater than” statement, a new dictionary needs to be cre-
ated that uses the MongoDB $gt query selector to express the greater than
relation. For the list of available query selectors we refer to the MongoDB
Query Selectors documentation6.

Querying for an Object by OID

If you know the ObjectId for a document, you can create an OID instance with
this value and query for it.

5http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
6http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

166

http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors
http://docs.mongodb.org/manual/reference/operator/where/#op._S_where
http://docs.mongodb.org/manual/reference/operator/query/#query-selectors

11.4 Querying in Voyage

{('_id' -> (OID value: 16r55CDD2B6E9A87A520F000001))} asDictionary.

Note that both of the following are equivalent:

OID value: 26555050698940995562836590593. "dec"
OID value: 16r55CDD2B6E9A87A520F000001. "hex"

Note If you have an instance which is in a root collection, then you can
ask it for its voyageId and use that ObjectId in your query.

Using dot Notation to Access Embedded Documents

To access values embedded in documents with JSON queries, the dot notation
is used. For example, the query representing rectangles whose origin have 42
as their x values can be expressed this way:

{
'origin.x' -> {'$eq' : 42} asDictionary

} asDictionary

Expressing OR Conditions in the Query

To express an OR condition, a dictionary whose key is '$or' and whose val-
ues are the expression of the condition is needed. The following example
shows how to select all objects whose name is John that have more than ten
orders OR objects whose name is not John and has ten or less orders:

{ '$or' :
{

{
'name' -> 'John'.
'orders' -> { '$gt': 10 } asDictionary

} asDictionary.
{

'name' -> { '$ne': 'John'} asDictionary.
'orders' -> { '$lte': 10 } asDictionary

} asDictionary.
}.

} asDictionary.

Going Beyond MongoQueries Features

Using JSON queries allows to use features that are not present in Mongo-
Queries, for example the use of regular expressions. Below is a query that
searches for all documents with a fullname.lastName that starts with the
letter D:
{

'fullname.lastName' -> {
'$regexp': '^D.*'.

167

Persisting Objects with Voyage

'$options': 'i'.
} asDictionary.

} asDictionary.

The option i for a regular expression means case insensitivity. More options
are described in the documentation of the $regex operator7.

This example only briefly illustrates the power of JSON queries. Many more
different queries can be constructed, and the complete list of operators and
usages is in the MongoDB operator documentation8

Executing a Query

Voyage has a group of methods to perform searches. To illustrate the use
of these methods we will use the stored Point example we have presented
before. Note that all queries in this section can be written either as Mongo-
Queries or as JSON queries, unless otherwise specified.

Basic Object Retrieval

The following methods provide basic object retrieval.

• selectAll Retrieves all documents in the corresponding database col-
lection. For example, Point selectAll will return all Points.

• selectOne: Retrieves one document matching the query. This maps
to a detect: method and takes as argument a query specification (ei-
ther a MongoQuery or a JSON Query). For example, Point selectOne:
[:each | each x = 42] or alternatively Point selectOne: { 'x'
-> 42 } asDictionary.

• selectMany: Retrieves all the documents matching the query. This
maps to a select: method and takes as argument a query specifica-
tion, like above.

Limiting Object Retrieval and Sorting

The methods that query the database look similar to their equivalent in the
Collection hierarchy. However unlike regular collections which can operate
fully on memory, often Voyage collection queries need to be customized in
order to optimize memory consumption and/or access speed. This is because
there can be literally millions of documents in each collection, surpassing the
memory limit of Pharo, and also the database searches have a much higher
performance than the equivalent code in Pharo.

7http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
8http://docs.mongodb.org/manual/reference/operator

168

http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
http://docs.mongodb.org/manual/reference/operator
http://docs.mongodb.org/manual/reference/operator/query/regex/#op._S_regex
http://docs.mongodb.org/manual/reference/operator

11.4 Querying in Voyage

The first refinement to the queries consist in limiting the amount of results
that are returned. Of the collection of all the documents that match, a sub-
set is returned that starts at the index that is given as argument. This can
be used to only retrieve the first N matches to a query, or go over the query
results in smaller blocks, as will be shown next in the simple paginator exam-
ple.

• selectMany:limit: Retrieves a collection of objects from the database
that match the query, up to the given limit. An example of this is Point
selectMany: [:each | each x = 42] limit: 10

• selectMany:limit:offset: Retrieves a collection of objects from the
database that match the query. The first object retrieved will be at the
offset position plus one of the results of the query, and up to limit
objects will be returned. For example, if the above example matched 25
points, the last 15 points will be returned by the query Point select-
Many: [:each | each x = 42] limit: 20 offset: 10 (any limit
argument greater than 15 will do for this example).

The second customization that can be performed is to sort the results. To use
this, the class VOOrder provides constants to specify ascending or descend-
ing sort order.

• selectAllSortBy: Retrieves all documents, sorted by the specifica-
tion in the argument, which needs to be a JSON query. For example,
Point selectAllSortBy: { #x -> VOOrder ascending} asDic-
tionary returns the points in ascending x order.

• selectMany:sortBy: Retrieves all the documents matching the query
and sorts them. For example to return the points where x is 42, in
descending y order: Point selectMany: { 'x' -> 42 } asDic-
tionary sortBy: { #y -> VOOrder descending } asDictionary.

• selectMany:sortBy:limit:offset: Provides for specifying a limit
and offset to the above query.

A Simple Paginator Example

Often you want to display just a range of objects that belong to the collection,
e.g. the first 25, or from 25 to 50, and so on. Here we present a simple pagi-
nator that implements this behavior, using the selectMany:limit:offset:
method.

First we create a class named Paginator. To instantiate it, a Voyage root
(aClass) and a query (aCondition) need to be given.

Object subclass: #Paginator
instanceVariableNames: 'collectionClass where pageCount'
classVariableNames: ''
package: 'DemoPaginator'

169

Persisting Objects with Voyage

Paginator class>>on: aClass where: aCondition
^ self basicNew

initializeOn: aClass where: aCondition

Paginator>>initializeOn: aClass where: aCondition
self initialize.
collectionClass := aClass.
where := aCondition

Then we define the arithmetic to get the number of pages for a page size and
a given number of entities.

Paginator>>pageSize
^ 25

Paginator>>pageCount
^ pageCount ifNil: [pageCount := self calculatePageCount]

Paginator>>calculatePageCount
| count pages |
count := self collectionClass count: self where.
pages := count / self pageSize.
count \\ self pageSize > 0

ifTrue: [pages := pages + 1].
^ count

The query that retrieves only the elements for a given page is then imple-
mented as follows:

Paginator>>page: aNumber
^ self collectionClass

selectMany: self where
limit: self pageSize
offset: (aNumber - 1) * self pageSize

11.5 Creating and Removing Indexes

There are a number of useful features in MongoDB that are not present in
Voyage but still can be performed from within Pharo, the most important
one being the management of indexes.

Creating Indexes by using OSProcess

It is not yet possible to create and remove indexes from Voyage, but this can
nonetheless be done by using OSProcess.

For example, assume there is a database named myDB with a collection named
Trips. The trips have an embedded collection with receipts. The receipts

170

11.5 Creating and Removing Indexes

have an attribute named description. The following creates an index on
description:

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval ',
'"db.getSiblingDB(''myDB'').Trips.',
'createIndex({''receipts.description'':1})"'

Removing all indexes on the Trips collection can be done as follows:

OSProcess command:
'/{pathToMongoDB}/MongoDB/bin/mongo --eval ',
'"db.getSiblingDB(''myDB'').Trips.dropIndexes()"'

Verifying the use of an Index

To ensure that a query indeed uses the index, ".explain()" can be used
in the mongo console. For example, if we add the index on description as
above, run a query and add .explain() we see, that only a subset of docu-
ments were scanned.

> db.Trips.find({"receipts.description":"a"})
.explain("executionStats")

{
"cursor" : "BtreeCursor receipts.receiptDescription_1",
"isMultiKey" : true,
"n" : 2,
"nscannedObjects" : 2,
"nscanned" : 2,
"nscannedObjectsAllPlans" : 2,
"nscannedAllPlans" : 2,

[...]
}

After removing the index, all documents are scanned (in this example there
are 246):

> db.Trips.find({"receipts.description":"a"}
..explain("executionStats")

{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 246,
"nscanned" : 246,
"nscannedObjectsAllPlans" : 246,
"nscannedAllPlans" : 246,

[...]
}

171

Persisting Objects with Voyage

11.6 Conclusion

In this chapter we presented Voyage, a persistence programming framework.
The strength of Voyage lies in the presence of the object-document mapper
and MongoDB back-end. We have shown how to store objects in, and remove
object from the database, and how to optimise the storage format. This was
followed by a discussion of querying the database; showing the two ways
in which queries can be constructed and detailing how queries are ran. We
ended this chapter by presenting how we can construct indexes in MongoDB
databases, even though Voyage does not provide direct support for it.

172

Part IV

Presentation

CHA P T E R 12
Mustache Templates for Pharo

Mustache is a framework-agnostic, logic-free templating format that ”em-
phasizes separating logic from presentation: it is impossible to embed ap-
plication logic in this template language”. It is supported in many program-
ming languages, as shown at http://mustache.github.io. The full syntax docu-
mentation is available online at http://mustache.github.io/mustache.5.html.

Mustache is simple and versatile, its syntax is small and covers a wide range
of use cases. Although it was designed to be a templating engine for HTML
pages it is useful in different areas.

Norbert Hartl developed a Mustache package for Pharo. This chapter is an
introduction to this package and a mini tutorial to get started with Mus-
tache. This text is based on the original blog entries written by Norbert and
extended to offer a larger covering of the Mustache features.

12.1 Getting Started

To install Mustache, execute the following expression in a workspace:

Gofer it
smalltalkhubUser: 'NorbertHartl' project: 'Mustache';
configuration;
loadStable

A Mustache expression takes two arguments as input: (1) a template and (2)
a context object (which is a list of bindings). The latter is called a hash in
Mustache jargon.

Consider a simple Mustache template (taken literally from the documenta-
tion):

175

http://mustache.github.io
http://mustache.github.io/mustache.5.html

Mustache Templates for Pharo

templateString := 'Hello {{ name }}
You have just won ${{value}}!
{{#in_ca}}
Well, ${{taxed_value}}, after taxes.
{{/in_ca}}'.

The expression {{}} delimits a tag or variable inside a template. In the above
example, {{ name }} represents the variable name. When the template is
evaluated with a context, variables are replaced by their values given by a
context. A possible context for the template above is the following:

context := {
'name' -> 'Chris'.
'value' -> 10000.
'taxed_value' -> (10000 - (10000 * 0.4)).
'in_ca' -> true } asDictionary

Given a context object with some bindings, we can evaluate a template in two
different ways. The first one is as follows:

(MustacheTemplate on: templateString) value: context

The second way is through the asMustacheTemplatemessage:

templateString asMustacheTemplate value: context

For the above example, we get the following output in both cases:

'Hello Chris
You have just won $10000!

Well, $6000.0, after taxes.
'

As context object we can use Dictionaries and Objects. Dictionaries need to
have a key that is used in the template and Objects need a selector with the
same name. In this chapter we use Dictionaries for brevity.

12.2 Tags as Variables

Tags can be of different types: The first and simplest type is variable. We ex-
plain its working with an example: a {{age}} tag in a basic template tries
to find the age key in the current context. If there is no age key, the parent
contexts are looked up recursively. If the top context is reached and the age
key is still not found, nothing will be rendered.

The following example illustrates this. Since age is not defined, nothing is
present in the output (included below after the -->).

'* {{name}}
* {{age}}

176

12.3 Sections

* {{company}}' asMustacheTemplate value:
{

'name' -> 'Chris' .
'company' -> 'GitHub'

} asDictionary

-->
'* Chris
*
* GitHub'

The last line above shows that all variables are HTML escaped by default, e.g.
if a binding for that variable contains a < character it will be converted to
<. To return unescaped HTML, the triple mustache expression must be
used: {{{name}}}. Also, the character & can be used to unescape a variable
as in {{& name}}. This can be useful when changing delimiters, which is
discussed later in this chapter. The template below shows the different ways
in which company is escaped in the output (included below after the -->).

'* {{name}}
* {{age}}
* {{&company}}
* {{company}}
* {{{company}}}' asMustacheTemplate value:
{
'age' -> 33 .

'name' -> 'Chris' .
'company' -> 'GitHub'

} asDictionary

-->
'* Chris
* 33
* GitHub
* GitHub
* GitHub'

12.3 Sections

Sections render blocks of text a number of times if their key is present in
the context. A section is delimited by a hash sign and a slash. For example,
{{#number}} begins a section for the number variable while {{/number}}
ends it.

When a variable is not present in the context the section is not present in the
output:

| templateString context |
templateString := 'Shown.

177

Mustache Templates for Pharo

{{#number}}
Shown too!

{{/number}}'.
context := { 'foo' -> 'true' } asDictionary.
(MustacheTemplate on: templateString) value: context

-->
'Shown.
'

When the variable is set, the output depends on the contents of the variable
and there are three distinct cases, as we discuss next.

With the Variable Value being a ’simple’ Object

For values that are not collections nor blocks, the output will be present
once. For example, below number is bound to true which renders the text
'Shown too'. The same will happen when number is bound to another value,
e.g. 42.

| templateString context |
templateString := 'Shown.
{{#number}}

Shown too!
{{/number}}'.
context := { 'number' -> true } asDictionary.
(MustacheTemplate on: templateString) value: context

-->
'Shown.

Shown too!
'

There is one exception to this rule: when the variable is bound to false the
section is not present in the output:

| templateString context |
templateString := 'Shown.
{{#number}}

Shown too!
{{/number}}'.
context := { 'number' -> false } asDictionary.
(MustacheTemplate on: templateString) value: context

-->
'Shown.
'

178

12.3 Sections

With the Variable Value being a Collection

We can use collections to create loop constructs in templates. If a section
key is present in the context and it has a collection as a value, the text of the
section is present as many times as there are items in the collection. Keep in
mind that Strings are collections of characters.

| templateString context |
templateString := 'Shown.
{{#list}}

Shown too!
{{/list}}'.
context := { 'list' -> #(1 2 3) } asDictionary.
(MustacheTemplate on: templateString) value: context

-->
'Shown.

Shown too!

Shown too!

Shown too!
'

Note Consequently, if the collection is empty (or if it is the empty
string), the output is present 0 times, i.e. it is absent.

When processing collections, Mustache iterates over them and for each el-
ement of the collection the context of the section is set to the current item.
This allows a section to use variables that are contained in the elements of
the collection. For example, below we define a list binding that contains mul-
tiple number bindings. The section list is evaluated for each of the its number
bindings.

| templateString context |
templateString := 'A {{ label }} list of numbers
{{# list }}
Number: {{ number }}
{{/ list }}'.
context := {

'label' -> 'fine'.
'list' -> {

{ 'number' -> 1 } asDictionary.
{ 'number' -> 2 } asDictionary.

}
} asDictionary.
(MustacheTemplate on: templateString) value: context

-->

179

Mustache Templates for Pharo

'A fine list of numbers

Number: 1

Number: 2
'

With such behavior we can easily generate menus and lists in html, for exam-
ple:

'
{{#entries}}<li class="menuEntry{{#active}}
active{{/active}}">{{label}}

{{/entries}}
' asMustacheTemplate

value: { 'entries' -> {
{ 'label' -> 'first' } asDictionary.
{ 'label' -> 'second' . 'active' -> true } asDictionary.
{ 'label' -> 'third' } asDictionary } } asDictionary.

-->
'

<li class="menuEntry">first
<li class="menuEntry active">second
<li class="menuEntry">third

'

'{{#coolBooks}}
{{name}}

{{/coolBooks}}' asMustacheTemplate
value: {'coolBooks' -> {

{ 'name' -> 'Pharo By Example' } asDictionary.
{ 'name' -> 'Deep Into Pharo' } asDictionary.
{ 'name' -> 'Fun Wih Pharo' } asDictionary }
} asDictionary

-->
'

Pharo By Example

Deep Into Pharo

Fun Wih Pharo
'

With the Variable Value being a Block

We can use Pharo blocks in context objects as well. They are evaluated at the
time the template is filled out. For example,

180

12.4 Partial templates

'The alphabet: {{ alphabet }}' asMustacheTemplate
value: { 'alphabet' -> [Character alphabet] } asDictionary
-->

The alphabet: abcdefghijklmnopqrstuvwxyz

Now there is another interesting way of using blocks. With a block we can
get access to the value of a section and perform some operations on it.

This example shows that we can access the value of a section. Here the block
is expecting one argument: the value of this argument will be the section
with subsituted variables.

'{{#wrapped}} {{name}} is awesome {{/wrapped}}' asMustacheTemplate
value: {

'name' -> 'Willy'.
'wrapped' -> [:render | '', render value, ''] }

asDictionary.
-->

' Willy is awesome '.

Inverted Sections

A last use of sections is inverted sections. An inverted section begins with
a caret and ends with a slash: for example, {{^list}} begins a an inverted
section and {{/list}} ends it. While sections are used to render text one or
more times based on the value of the key, inverted sections may render text
once based on the inverse value of the key. That is, they will be rendered if
the key doesn’t exist, is false, or is an empty collection:

'list{{^ list }} is {{/ list}}displayed' asMustacheTemplate
value: { 'list' -> false } asDictionary.
-->

'list is displayed'

'list{{^ list }} is {{/ list}}displayed' asMustacheTemplate
value: { 'list' -> { } } asDictionary.
-->

'list is displayed'

'list{{^ list }} is {{/ list}}displayed' asMustacheTemplate
value: { 'list' -> { 1 } } asDictionary.
-->

'listdisplayed'

12.4 Partial templates

Mustache templates have a notion of sub-templates that are called partials.
Partial templates are useful for reusing and composing templates out of sim-
pler ones. Partials begin with a greater than sign, such as {{> user}}.

181

Mustache Templates for Pharo

The following example shows that the partial is replaced by its definition
which is then expanded.

| template |
template := 'This is a test for {{> partial }} .' asMustacheTemplate.
template

value: { 'name' -> 'partial template' } asDictionary
partials: { 'partial' -> '{{name}} rendering' } asDictionary.
-->

'This is a test for partial template rendering .'

Partials work similarly with lists:

| template |
template := MustacheTemplate on:

'We can have a list ({{# list}} [{{> partial }}] {{/ list}}) .'.
template

value: { 'list' -> {
{ 'name' -> 'first AAA' } asDictionary.
{ 'name' -> 'last BBB' } asDictionary } } asDictionary

partials:
(Dictionary new

at: 'partial' put: (MustacheTemplate on: 'including
{{name}} item');

yourself).
-->

'We can have a list ([including first AAA item] [including last
BBB item]) .'

The values of dictionary used as template are supposed to be MustacheTem-
plates. However, when strings are used instead of MustacheTemplates, strings
are transparently converted, as is the case for '{{name}}'
below:

| template |
template := '<h2>Names</h2>
{{# names }}

{{> user }}
{{/ names }}' asMustacheTemplate.
template

value: {
'names' -> {

{ 'name' -> 'Username' } asDictionary } } asDictionary
partials: {'user' -> '{{name}}'} asDictionary
-->

'<h2>Names</h2>

Username
'

182

12.5 Miscellaneous

12.5 Miscellaneous

When you want to use Mustache to generate LaTeX you face the problem
that LaTeX may need to contain {{ and }}, which conflicts with the Mus-
tache set delimiters. To avoid such conflicts the delimiters can be changed
using the = characters separated by a space. For example, {{=<% %>=}} de-
fines <% and %> as new delimiters. To replace the default separators, we can
simply use the previously defined ones: <%={{ }}=%>:

'{{ number }}
{{=<% %>=}}
<% number %>
<%={{ }}=%>
{{ number }}' asMustacheTemplate

value: { 'number' -> 42 } asDictionary
-->
'42

42

42'

Also, JSON is really easy to apply to the templates once NeoJSON is installed
(see Chapter NeoJSON.) After that it is just as simple as in the following ex-
ample:

'I can use {{name}} easily with {{format}}' asMustacheTemplate
value: (NeoJSONReader fromString:

'{ "name" : "Mustache", "format" : "JSON" }')
-->

'I can use Mustache easily with JSON'

12.6 Templates made Easy

Mustache can make template dependent tasks very easy from a simple token
replacement up to nested structures to create HTML pages. We use them
e.g., for generating SOAP templates. The strength of Mustache lays in the
syntax and the combination of context objects. So, there is more for you to
find what can be done with it. Happy templating !

183

CHA P T E R 13
Cascading Style Sheets with

RenoirSt

RenoirST is a DSL enabling programmatic cascading style sheet generation
for Pharo developed by Gabriel Omar Cotelli.

RenoirST aims to improve CSS integration with existing web frameworks.
To do that, RenoirST generates CSS out of Pharo code. Renoir features are:
common properties declaration, CSS3 selector support, important rules, font
face rules and media queries support. In this tutorial we will present the key
features of RenoirSt with a large set of examples. This tutorial assumes some
knowledge of CSS and Pharo. For a little introduction about CSS you can read
the Seaside’s book CSS chapter1.

13.1 Getting Started

To load the library in your image, evaluate:

Metacello new
configuration: 'RenoirSt';
githubUser: 'gcotelli' project: 'RenoirSt' commitish: 'master'
path: 'source';

load

download a ready to use image from the Pharo contribution CI Server2 or
install it using the Catalog/Configuration Browser.

1http://book.seaside.st/book/fundamentals/css
2https://ci.inria.fr/pharo-contribution/job/RenoirSt

185

http://book.seaside.st/book/fundamentals/css
https://ci.inria.fr/pharo-contribution/job/RenoirSt
http://book.seaside.st/book/fundamentals/css
https://ci.inria.fr/pharo-contribution/job/RenoirSt

Cascading Style Sheets with RenoirSt

The main entry point for the library is the class CascadingStyleSheet-
Builder. In a workspace or playground, inspect the result of the following
expression:

CascadingStyleSheetBuilder new build

You now have an inspector on your first (empty and useless) style sheet. Real
stylesheets are composed of rules (or rule-sets), where each one has a selec-
tor and a declaration group. The selector determines if the rule applies to
some element in the DOM, and the declaration group specifies the style to
apply.

Our first useful style sheet will simply assign a margin to every div element
in the DOM.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style margin: 2 px];
build

the expected result in CSS is:

div
{

margin: 2px;
}

The message declareRuleSetFor:with: is used to configure a rule-set in
the builder. The message requires two blocks: the first block defines the se-
lector and the second defines the style to apply to elements matching the
selector. The selector argument of the first block is an entry point to con-
struct the selector (more on this later). The style argument of the second
block is an entry point to declare CSS properties and values.

The properties API is mostly defined following this rules:

• Properties without dashes in the name are directly mapped: the mar-
gin CSS property is mapped to a margin: message send.

• Properties with one or more dashes are mapped using camel case: the
margin-top CSS property is mapped to the marginTop: message send.

13.2 Defining the Rules

We now present how the various CSS rules can be expressed with RenoirSt.
RenoirSt supports many CSS types, comments, and even functional notation.

186

13.2 Defining the Rules

Basic CSS Types

Lengths, Angles, Times and Frequencies

The library provides out-of-the-box support for the length, angle, time and
frequency units in the CSS spec. There are extensions for Integer and Float
classes allowing to obtain lengths.

The supported length units are:

• em relative to font size

• ex relative to ”x” height

• ch relative to width of the zero glyph in the element’s font

• rem relative to font size of root element

• vw 1% of viewport’s width

• vh 1% of viewport’s height

• vmin 1% of viewport’s smaller dimension

• vmax 1% of viewport’s larger dimension

• cm centimeters

• mmmillimeteres

• in inches

• pc picas

• pt points

• px pixels (note that CSS has some special definition for pixel)

The supported angle units are:

• deg degrees

• grad gradians

• rad radians

• turn turns

The supported time units are:

• s seconds

• msmilliseconds

The supported frequency units are:

• Hz Hertz

• kHz KiloHertz

187

Cascading Style Sheets with RenoirSt

RenoirST also supports the creation of percentages: 50 percent is mapped
to 50% in the resulting CSS.

Some properties require integer or floating point values. In these cases just
use the standard Pharo integer and float support. For example:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style zIndex: 2];
build

Colors

The library supports abstractions for properties requiring color values. The
shared pool CssSVGColors provides easy access to colors in the SVG 1.0 list,
and the abstractions CssRGBColor and CssHSLColor allow the creation of
colors in the RGB and HSL spaces including alpha support.

For example,

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style |

style
backgroundColor: CssSVGColors aliceBlue;
borderColor: (CssRGBColor red: 0 green: 128 blue: 0 alpha:

0.5)];
build

evaluates to:

div
{

background-color: aliceblue;
border-color: rgba(0,128,0,0.5);

}

Note In a real scenario you should avoid hard coding colors as in the
examples. It is recommended to put colors in objects representing a
theme or something that gives them a name related to your application.

RGB-Colors also support percentage values:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style |

style borderColor: (CssRGBColor red: 0 percent green: 50
percent blue: 0 percent)];

build

evaluates to:

188

13.2 Defining the Rules

div
{

border-color: rgb(0%,50%,0%);
}

Notice the difference in the used message because there is no alpha channel
specification.

Constants

A lot of values for CSS properties are just keyword constants. This support is
provided by the classes CssConstants and CssFontConstants.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style textAlign: CssConstants justify];
build

evaluates to:

div
{

text-align: justify;
}

Several Property Values

Some properties support a wide range of values. For example the margin
property can have 1, 2 , 3 or 4 values specified. If you only need one value,
just pass it as a parameter. For more than one value, use an array:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style margin: { 2 px. 4 px }];
build

evaluates to:

div
{

margin: 2px 4px;
}

URLs

ZnUrl instances can be used as the value for properties requiring an URI.
Both relative and absolute URLs are accepted. A relative URL is considered by
default relative to the site root.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div class: 'logo']

189

Cascading Style Sheets with RenoirSt

with: [:style | style backgroundImage: 'images/logo.png' asZnUrl
];

declareRuleSetFor: [:selector | selector div class: 'logo']
with: [:style | style backgroundImage:
'http://www.example.com/images/logo.png' asZnUrl];

build

Evaluates to:

div.logo
{

background-image: url("/images/logo.png");
}

div.logo
{

background-image: url("http://www.example.com/images/logo.png");
}

To use a URL relative to the style sheet, send to it the message relative-
ToStyleSheet.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div class: 'logo']
with: [:style | style backgroundImage: 'images/logo.png' asZnUrl
relativeToStyleSheet];

build

Evaluates to:

div.logo
{

background-image: url("images/logo.png");
}

Comments

When declaring rule sets, the library supports attaching comments to them
with the declareRuleSetFor:with:andComment: message:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style margin: 2 pc]
andComment: 'Two picas margin';
build

evaluates to:

/*Two picas margin*/
div
{

margin: 2pc;
}

190

13.2 Defining the Rules

RenoirST also supports defining stand-alone comments (not attached to any
rule):

CascadingStyleSheetBuilder new
comment: 'A general comment';
build

evaluates to:

/*A general comment*/

Functional Notation

A functional notation is a type of CSS component value that can represent
complex types or invoke special processing. Mathematical expressions, tog-
gling between values, attribute references, and gradients are all supported in
RenoirST.

Mathematical Expressions

The library provides support for math expressions using the CssMathEx-
pression abstraction:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style margin: (CssMathExpression on: 2 pc) / 3 +
2 percent];

build

evaluates to:

div
{

margin: calc(2pc / 3 + 2%);
}

Toggling Between Values

To let descendant elements cycle over a list of values instead of inheriting
the same value, one can use the CssToggle abstraction:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector unorderedList
unorderedList]

with: [:style | style listStyleType: (CssToggle cyclingOver: {
CssConstants disc. CssConstants circle. CssConstants square})];

build

evaluates to:

ul ul
{

191

Cascading Style Sheets with RenoirSt

list-style-type: toggle(disc, circle, square);
}

Attribute References

The attr() function is allowed as a component value in properties applied
to an element or pseudo-element. The function returns the value of an at-
tribute on the element. If used on a pseudo-element, it returns the value of
the attribute on the pseudo-element’s originating element. This function is
supported using the CssAttributeReference abstraction and can be used
simply providing an attribute name:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div before]
with: [:style | style content: (CssAttributeReference
toAttributeNamed: 'title')];

build

Evaluates to:

div::before
{

content: attr(title string);
}

RenoirST allows for providing the type or unit of the attribute (if no type or
unit is specified the string type is assumed):

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style |

style width: (CssAttributeReference
toAttributeNamed: 'height'
ofType: CssLengthUnits pixel)];

build

evaluates to:

div
{

width: attr(height px);
}

Additionally, it is possible to provide a value to use when the attribute is ab-
sent:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div before]
with: [:style |

style content: (CssAttributeReference
toStringAttributeNamed: 'title'
withFallback: 'Missing title')

192

13.2 Defining the Rules

];
build

evaluates to:

div::before
{

content: attr(title string, "Missing title");
}

Gradients

A gradient is an image that smoothly fades from one color to another. Gradi-
ents are commonly used for subtle shading in background images, buttons,
and many other places. The gradient notations described in this section al-
low an author to specify such an image in a terse syntax. This notation is
supported using CssLinearGradient and CssRadialGradient abstractions.

To represent a simple linear gradient from a color to another, send the fad-
ing: message to CssLinearGradient with the two colors in an array as a
parameter:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style background: (CssLinearGradient

fading: { CssSVGColors yellow. CssSVGColors blue })]

The above code evaluates to:

div
{

background: linear-gradient(yellow, blue);
}

By default, a gradient’s direction is from top to bottom. To specify a different
direction, the author can use the to:fading: message instead:

CssLinearGradient
to: CssConstants right
fading: { CssSVGColors yellow. CssSVGColors blue }

The above code will result in a gradient with yellow on the left side and blue
on the right side. The equivalent CSS is:

linear-gradient(to right, yellow, blue);

To specify a diagonal direction, an array must be passed as the to: argu-
ment:

CssLinearGradient
to: { CssConstants top. CssConstants right }
fading: { CssSVGColors yellow. CssSVGColors blue }

193

Cascading Style Sheets with RenoirSt

The above code will result in a gradient with blue in the top right corner and
yellow in the bottom left one. The equivalent CSS is:

linear-gradient(to top right, yellow, blue);

Directions can also be specified as an angle by sending the rotated:fading:
message:

CssLinearGradient
rotated: 45 deg
fading: { CssSVGColors yellow. CssSVGColors blue }

The above code maps to:

linear-gradient(45deg, yellow, blue);

Gradients can be fine-tuned by manipulating so-called color stops:

CssLinearGradient
to: CssConstants right
fading: {

CssSVGColors yellow.
CssColorStop for: CssSVGColors blue at: 30 percent }

The above code maps to:

linear-gradient(to right, yellow, blue 30%);

This results in a linear gradient from left to right with yellow at the left side
and plain blue from 30% (of the horizontal line) to the right side. More than
two colors can be passed as argument to fading:. This can be used to create
rainbows:

CssLinearGradient
to: CssConstants right
fading: {

CssSVGColors red.
CssSVGColors orange.
CssSVGColors yellow.
CssSVGColors green.
CssSVGColors blue.
CssSVGColors indigo.
CssSVGColors violet.

}

This maps to:

linear-gradient(to right, red, orange, yellow, green, blue, indigo,
violet);

To create radial gradients, the author must send messages to CssRadialGra-
dient. For example,

194

13.2 Defining the Rules

CssRadialGradient fading: { CssSVGColors yellow. CssSVGColors green }

maps to:

radial-gradient(yellow,green)

This results in a radial gradient with yellow at the center and green all around.
Coordinates can be passed to both the first and second parameters of the el-
liptical:at:fading: message:

(CssRadialGradient
elliptical: {20 px. 30 px}
at: { 20 px. 30 px}
fading: { CssSVGColors red. CssSVGColors yellow. CssSVGColors
green })

This maps to:

background: radial-gradient(20px 30px ellipse at 20px 30px, red,
yellow, green);

To make the gradient repeatable, just send to it the message beRepeating.
For Example:

(CssRadialGradient fading: { CssSVGColors yellow. CssSVGColors green
}) beRepeating

renders as:

repeating-radial-gradient(yellow, green);

Box Shadows

Box Shadows are supported with CssBoxShadow abstraction. This abstrac-
tion simplifies the use of the box-shadow property.

CssBoxShadow
horizontalOffset: 64 px
verticalOffset: 64 px
blurRadius: 12 px
spreadDistance: 40 px
color: (CssSVGColors black newWithAlpha: 0.4)

evaluates to:

64px 64px 12px 40px rgba(0,0,0,0.4)

Several shadows can be combined:

(CssBoxShadow horizontalOffset: 64 px verticalOffset: 64 px
blurRadius: 12 px spreadDistance: 40 px color: (CssSVGColors
black newWithAlpha: 0.4)) ,

(CssBoxShadow horizontalOffset: 12 px verticalOffset: 11 px
blurRadius: 0 px spreadDistance: 8 px color: (CssSVGColors

195

Cascading Style Sheets with RenoirSt

black newWithAlpha: 0.4)) beInset

Evaluates to:

64px 64px 12px 40px rgba(0,0,0,0.4), inset 12px 11px 0px 8px
rgba(0,0,0,0.4)

13.3 Defining the selectors

So far our focus was on the style part of the rule. Let’s focus now on the avail-
able selectors. Remember that a CSS selector represents a structure used to
match elements in the document tree. This chapter asume some familiarity
with the CSS selectors and will not go in detail about the exact meaning of
each one. For more details you can take a look at CSS3 selector documenta-
tion3.

Type Selectors

These selectors match a specific element type in the DOM. The library pro-
vides out-of-the-box support for HTML elements. One example is the div
selector used in the previous chapter:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | ...];
build

The following other example matches (ordered list) elements:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector orderedList]
with: [:style | ...]

evaluating to:

ol
{
...

}

To get a list of the supported type selectors evaluate CssSelector selec-
torsInProtocol: '*RenoirSt-HTML'.

Combinators

Selectors can be combined to represent complex queries. One of the most
common use cases is the descendant combinator:

3http://www.w3.org/TR/css3-selectors

196

http://www.w3.org/TR/css3-selectors
http://www.w3.org/TR/css3-selectors
http://www.w3.org/TR/css3-selectors

13.3 Defining the selectors

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div orderedList]
with: [:style | ...]

evaluating to:

div ol
{

...
}

This only matches if an ol element is a descendant (direct or not) of a div
element.

The child combinator only matches when an element is a direct child of an-
other one:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div > selector
orderedList]

with: [:style |]

evaluates to

div > ol
{

...
}

Siblings combinators can be created using + and ~:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div + selector
orderedList]

with: [:style |]
declareRuleSetFor: [:selector | selector div ~ selector
orderedList]

with: [:style |]

Class selectors can be created by sending class: and id selectors can be cre-
ated by sending id:. For example,

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | (selector div class: 'pastoral')
id: #account5]

with: [:style |]

evaluates to:

div.pastoral#account5
{

...
}

197

Cascading Style Sheets with RenoirSt

Note You should not hardcode the classes and ids, they should be ob-
tained from the same object that holds them for the HTML generation.
You probably have some code setting the class(es) and/or id(s) to a partic-
ular HTML element.

A comma-separated list of selectors represents the union of all elements
selected by each of the individual selectors in the list. For example, in CSS
when several selectors share the same declarations, they may be grouped
into a comma-separated list.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector paragraph , selector div
]

with: [:style | ...]

evaluates to:

p, div
{
...

}

Attribute Selectors

Attribute selectors are useful to match an element based on its attributes and
their values.

The attribute presence selector matches an element having an attribute (with-
out considering the value of the attribute):

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector h1 havingAttribute:
'title']

with: [:style | style color: CssSVGColors blue];
build

evaluates to:

h1[title]
{

color: blue;
}

The attribute value exact matching selectors matches an element having an
attribute with a specific value:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector span withAttribute:
'class' equalTo: 'example']

with: [:style | style color: CssSVGColors blue];
build

198

13.3 Defining the selectors

evaluates to:

span[class="example"]
{

color: blue;
}

The attribute value inclusion selector matches an element having an attribute
with a value including as a word the matching term:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector anchor attribute: 'rel'
includes: 'copyright']

with: [:style | style color: CssSVGColors blue];
build

a[rel~="copyright"]
{

color: blue;
}

Other attribute selectors are used for substring matching:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector anchor
firstValueOfAttribute: 'hreflang' beginsWith: 'en']

with: [:style | style color: CssSVGColors blue];
build

a[hreflang|="en"]
{

color: blue;
}

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector anchor attribute: 'type'
beginsWith: 'image/']

with: [:style | style color: CssSVGColors blue];
build

a[type^="image/"]
{

color: blue;
}

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector anchor attribute: 'type'
endsWith: '.html']

with: [:style | style color: CssSVGColors blue];
build

a[type$=".html"]
{

color: blue;

199

Cascading Style Sheets with RenoirSt

}

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector paragraph attribute:
'title' includesSubstring: 'hello']

with: [:style | style color: CssSVGColors blue];
build

p[title*="hello"]
{

color: blue;
}

Pseudo-Classes

The pseudo-class concept is introduced to allow selection based on informa-
tion that lies outside of the document tree or that cannot be expressed using
the simpler selectors. Most pseudo-classes are supported just by sending one
of the following messages link, visited, active, hover, focus, target,
enabled, disabled or checked.

Here is a small example that uses the pseudo-classes:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector anchor link]
with: [:style | style color: CssSVGColors blue];
declareRuleSetFor: [:selector | selector anchor visited active]
with: [:style | style color: CssSVGColors green];
declareRuleSetFor: [:selector | selector anchor focus hover
enabled]

with: [:style | style color: CssSVGColors green];
declareRuleSetFor: [:selector | (selector paragraph class:
'note') target disabled]

with: [:style | style color: CssSVGColors green];
declareRuleSetFor: [:selector | selector input checked]
with: [:style | style color: CssSVGColors green];
build

evaluates to:

a:link
{

color: blue;
}

a:visited:active
{

color: green;
}

a:focus:hover:enabled

200

13.3 Defining the selectors

{
color: green;

}

p.note:target:disabled
{

color: green;
}

input:checked
{

color: green;
}

Language Pseudo-Class:

The :lang(C) pseudo-class can be used by sending the message lang::

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | (selector lang: 'es') > selector
div]

with: [:style | style quotes: { '"«"'. '"»"' }];
build

evaluates to:

:lang(es) > div
{

quotes: "«" "»";
}

Negation Pseudo-Class:

The negation pseudo-class, :not(X), is a functional notation taking a sim-
ple selector (excluding the negation pseudo-class itself) as an argument. It
represents an element that is not represented by its argument. For more in-
formation take a look at the CSS spec.

This selector is supported sending the message not:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector button not: (selector
havingAttribute: 'DISABLED')]

with: [:style | style color: CssSVGColors blue];
build

button:not([DISABLED])
{

color: blue;
}

201

Cascading Style Sheets with RenoirSt

Structural Pseudo-Classes

These selectors allow selection based on extra information that lies in the
document tree but cannot be represented by other simpler selectors nor
combinators.

The :root pseudo-class represents an element that is the root of the docu-
ment. To build this kind of selector just send the message root to another
selector:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector root]
with: [:style | style color: CssSVGColors grey];
build

evaluates to:

:root
{

color: grey;
}

The :nth-child(an+b) pseudo-class notation represents an element that
has an+b-1 siblings before it in the document tree, for any positive integer
or zero value of n, and has a parent element. For values of a and b greater
than zero, this effectively divides the element’s children into groups of a el-
ements (the last group taking the remainder), and selecting the bth element
of each group. The a and b values must be integers (positive, negative, or
zero). The index of the first child of an element is 1.

In addition to this, :nth-child() can take a number, odd and even as argu-
ments. The value odd is equivalent to 2n+1, whereas even is equivalent to
2n.
CascadingStyleSheetBuilder new

declareRuleSetFor: [:selector | selector childAt: 3 n + 1]
with: [:style | style color: CssSVGColors blue];
declareRuleSetFor: [:selector | selector childAt: 5]
with: [:style | style color: CssSVGColors blue];
declareRuleSetFor: [:selector | selector childAt: CssConstants
even]

with: [:style | style color: CssSVGColors blue];
build

evaluates to:

:nth-child(3n+1)
{

color: blue;
}

:nth-child(5)
{

202

13.3 Defining the selectors

color: blue;
}

:nth-child(even)
{

color: blue;
}

All structural pseudo-classes can be generated using the following messages:

CSS pseudo-class RenoirST selector message

root() root
nth-child() childAt:
nth-last-child() childFromLastAt:
nth-of-type() siblingOfTypeAt:
nth-last-of-type() siblingOfTypeFromLastAt:
first-child firstChild
last-child lastChild
first-of-type firstOfType
last-of-type lastOfType
only-child onlyChild
only-of-type onlyOfType
empty empty

Pseudo-Elements

Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do
not offer mechanisms to access the first letter or first line of an element’s
content. Pseudo-elements allow authors to refer to this otherwise inaccessi-
ble information. Pseudo-elements may also provide authors a way to refer to
content that does not exist in the source document.

The firstLine pseudo-element describes the contents of the first formatted
line of an element.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector paragraph firstLine]
with: [:style | style textTransform: CssConstants uppercase];
build

evaluates to:

p::first-line
{

text-transform: uppercase;
}

203

Cascading Style Sheets with RenoirSt

The firstLetter pseudo-element represents the first letter of an element,
if it is not preceded by any other content (such as images or inline tables) on
its line.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector paragraph firstLetter]
with: [:style | style fontSize: 200 percent];
build

evaluates to:

p::first-letter
{

font-size: 200%;
}

The before and after pseudo-elements can be used to describe generated
content before or after an element’s content. The content property, in con-
junction with these pseudo-elements, specifies what is inserted.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | (selector paragraph class:
'note') before]

with: [:style | style content: '"Note: "'];
declareRuleSetFor: [:selector | (selector paragraph class:
'note') after]

with: [:style | style content: '"[*]"'];
build

evaluates to:

p.note::before
{

content: "Note: ";
}

p.note::after
{

content: "[*]";
}

13.4 Important Rules

CSS attempts to create a balance of power between author and user style
sheets. By default, rules in an author’s style sheet override those in a user’s
style sheet. However, for balance, an !important declaration takes prece-
dence over a normal declaration. Both author and user style sheets may con-
tain !important declarations, and user !important rules override author
!important rules. This CSS feature improves accessibility of documents by
giving users with special requirements control over presentation.

204

13.5 Media Queries

RenoirSt supports this feature through the beImportantDuring: message
sent to the style.

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector paragraph]
with: [:style |

style beImportantDuring: [:importantStyle |
importantStyle

textIndent: 1 em;
fontStyle: CssConstants italic].

style fontSize: 18 pt];
build

evaluates to:

p
{

text-indent: 1em !important;
font-style: italic !important;
font-size: 18pt;

}

Note that the important properties must be created by sending the mes-
sages to the inner argument importantStyle instead of the outer argument
style.

13.5 Media Queries

A @media rule specifies the target media types of a set of statements. The
@media construct allows style sheet rules that apply to various media in the
same style sheet. Style rules outside of @media rules apply to all media types
that the style sheet applies to. At-rules inside @media are invalid in CSS2.1.

The most basic media rule consists of specifying just a media type:

CascadingStyleSheetBuilder new
declare: [:cssBuilder |

cssBuilder
declareRuleSetFor: [:selector | selector div]
with: [:style |]]

forMediaMatching: [:queryBuilder |
queryBuilder type: CssMediaQueryConstants print];

build

evaluates to:

@media print
{

div { }
}

205

Cascading Style Sheets with RenoirSt

To use media queries in the library just send the message declare:forMe-
diaMatching: to the builder. The first block is evaluated with an instance of
a CascadingStyleSheetBuilder and the second one with a builder of media
queries.

The media query builder will match any media type by default. To specify
a media type just send it the message type: with the corresponding me-
dia type. The class CssMediaQueryConstants provides easy access to the
following media types: braille, embossed, handheld, print, projection,
screen, speech, tty and tv.

The media query builder supports a variety of messages for additional con-
ditions (called media features). Media features are used in expressions to
describe requirements of the output device.

The following media feature messages are supported:

• Accepting a CssMeasure with length units: width:, minWidth:, maxWidth:,
height:, minHeight:, maxHeight:, deviceWidth:, minDeviceWidth:,
maxDeviceWidth:, deviceHeight:, minDeviceHeight:, maxDevice-
Height:;

• orientation: accepting CssMediaQueryConstants portrait or
CssMediaQueryConstants landscape;

• Accepting fractions as aspect ratios: aspectRatio:, minAspectRa-
tio:, maxAspectRatio:, deviceAspectRatio:, minDeviceAspectRa-
tio:, maxDeviceAspectRatio:;

• Accepting integers: color: (the argument describes the number of
bits per color component of the output device), minColor:, maxColor:,
colorIndex: (the argument describes the number of entries in the
color lookup table of the output device), minColorIndex:, maxCol-
orIndex:, monochrome: (the argument describes the number of bits
per pixel in a monochrome frame buffer), minMonochrome:, maxMonochrome:,
grid: (the argument must be 1 or 0);

• Accepting a CssMeasure with resolution units: resolution:, minRes-
olution:, maxResolution:;

• scan: accepting CssMediaQueryConstants progressive or CssMe-
diaQueryConstants interlace.

New units for resolutions are added using the CssMeasure abstraction. This
kind of measures can be created sending the messages dpi (dots per inch),
dpcm (dots per centimeter) or dppx (dots per pixel unit) to an integer or float.

Here is a final example to better understand the media features support:

CascadingStyleSheetBuilder new
declare: [:cssBuilder |

cssBuilder

206

13.6 Vendor-Specific Extensions

declareRuleSetFor: [:selector | selector id: #oop]
with: [:style | style color: CssSVGColors red]]

forMediaMatching: [:queryBuilder |
queryBuilder

orientation: CssMediaQueryConstants landscape;
resolution: 300 dpi];

build

evaluates to:

@media all and (orientation: landscape) and (resolution: 300dpi)
{

#oop
{

color: red;
}

}

13.6 Vendor-Specific Extensions

The library doesn’t provide out of the box support for non standard proper-
ties. Nevertheless, the message vendorPropertyAt:put: is available to ease
the creation of this kind of properties by the end user:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div]
with: [:style | style vendorPropertyAt: 'crazy-margin' put: 1 px
];

build

evaluates to:

div
{

crazy-margin: 1px;
-moz-crazy-margin: 1px;
-webkit-crazy-margin: 1px;
-o-crazy-margin: 1px;
-ms-crazy-margin: 1px;

}

Note If you really want to use a vendor specific extension, It’s better to
create an extension method sending the vendorPropertyAt:put: mes-
sage.

13.7 Font Face Rules

The @font-face rule allows for linking to fonts that are automatically fetched
and activated when needed. This allows authors to select a font that closely

207

Cascading Style Sheets with RenoirSt

matches the design goals for a given page rather than limiting the font choice
to a set of fonts available on a given platform. A set of font descriptors define
the location of a font resource, either locally or externally, along with the
style characteristics of an individual face.

This support is implemented in the builder:

CascadingStyleSheetBuilder new
declareFontFaceRuleWith: [:style |

style
fontFamily: 'Gentium';
src: 'http://example.com/fonts/gentium.woff' asZnUrl];

build

evaluates to:

@font-face
{

font-family: Gentium;
src: url("http://example.com/fonts/gentium.woff");

}

This kind of rule allows for multiple src definitions specifying the resources
containing the data. This resources can be external (fonts fetched from a
URL) or local (available in the user system). This kind of resources are sup-
ported using CssLocalFontReference and CssExternalFontReference
abstractions:

CascadingStyleSheetBuilder new
declareFontFaceRuleWith: [:style |

style
fontFamily: 'MainText';
src: (CssExternalFontReference

locatedAt: 'gentium.eat' asZnUrl relativeToStyleSheet);
src: (CssLocalFontReference toFontNamed: 'Gentium'),

(CssExternalFontReference locatedAt: 'gentium.woff'
asZnUrl relativeToStyleSheet withFormat: CssFontConstants woff);

src: (CssExternalFontReference svgFontLocatedAt:
'fonts.svg' asZnUrl relativeToStyleSheet withId: 'simple')];

build

@font-face
{

font-family: MainText;
src: url("gentium.eat");
src: local(Gentium), url("gentium.woff") format("woff");
src: url("fonts.svg#simple") format("svg");

}

208

13.8 Interaction with other Frameworks and Libraries

13.8 Interaction with other Frameworks and Libraries

Units

The Units package (available using the ConfigurationBrowser in Pharo) in-
cludes some extensions colliding with RenoirSt. RenoirST can automatically
load a compatibility package if it’s loaded after the Units package. To test
this integration there’s a specific continuous integration job4, that loads
Units first and then RenoirSt.

Seaside

RenoirSt includes an optional group including some useful extensions. The
Seaside5 framework includes its own class modeling URLs: when this group is
loaded the instances of WAUrl can be used in the properties requiring an URI:

CascadingStyleSheetBuilder new
declareRuleSetFor: [:selector | selector div class: 'logo']
with: [:style |

style backgroundImage: 'images/logo.png' seasideUrl];
build

evaluates to:

div.logo
{

background-image: url("/images/logo.png");
}

This optional group also loads extensions to CssDeclarationBlock so it can
be used as a JSObject in plugins requiring some style parameter or as the
argument in a component style: method.

To load these extensions in an image with Seaside already loaded, you need
to load the group Deployment-Seaside-Extensions, or Development-
Seaside-Extensions if you want the test cases (there is also a stable-
pharo-40 branch if needed):

Metacello new
baseline: 'RenoirSt';
repository: 'github://gcotelli/RenoirSt:stable-pharo-50/source';
load: 'Deployment-Seaside-Extensions'

4https://ci.inria.fr/pharo-contribution/job/RenoirSt-UnitsCompatibility
5http://www.seaside.st

209

https://ci.inria.fr/pharo-contribution/job/RenoirSt-UnitsCompatibility
http://www.seaside.st
https://ci.inria.fr/pharo-contribution/job/RenoirSt-UnitsCompatibility
http://www.seaside.st

CHA P T E R 14
Documenting and Presenting

with Pillar

This chapter describes Pillar version 4.0. The original author of Pillar and
current maintainer is Damien Cassou. Many people have also contributed:
Ben Coman, Stéphane Ducasse, Guillermo Polito, Lukas Renggli (original au-
thor of Pier from which Pillar has been extracted), Benjamin van Ryseghem,
Cyril Ferlicot-Delbecque, Thibault Arloing and Yann Dubois. Pillar is spon-
sored by ESUG1.

14.1 Introduction

Pillar (hosted at http://www.smalltalkhub.com/#!/~Pier/Pillar) is a markup syn-
tax and associated tools to write and generate documentation, books (such as
this one) and slide-based presentations. The Pillar screenshot in Figure 14-1
shows the HTML version of chapter 11.

Pillar has many features, helpful tools, and documentation:

• simple markup syntax with references, tables, pictures, captions, syntax-
highlighted code blocks;

• export documents to HTML, LaTeX, Markdown, AsciiDoc, ePuB and
Pillar itself, and presentations to Beamer and Deck.js;

• customization of the export through a dedicated STON configuration
file (see chapter 9) and Mustache templates (see chapter 12).

1http://www.esug.org

211

http://www.esug.org
http://www.smalltalkhub.com/#!/~Pier/Pillar
http://www.esug.org

Documenting and Presenting with Pillar

Figure 14-1 An example Pillar output

• many tests with good coverage (94% with more than a 2100 executed
tests), which are regularly run by a continuous integration job2

• a command-line interface and dedicated plugins for several text edi-
tors: Emacs3, Vim4, TextMate5, and Atom6

• a cheat sheet7

Pillar Users

This book was written in Pillar. If you want to see how Pillar is used, have a
look at its source code (http://books.pharo.org/enterprise-pharo/), or check the
following other real-world projects:

• the Updated Pharo by Example book (https://github.com/SquareBracketAssociates/

UpdatedPharoByExample),

• the Pharo MOOC - Massive open online course (https://github.com/

SquareBracketAssociates/PharoMooc ,

• the PillarHub open-access shared blog (http://pillarhub.pharocloud.com).

2https://ci.inria.fr/pharo-contribution/job/Pillar
3https://github.com/pillar-markup/pillar-mode
4https://github.com/cdlm/vim-pillar
5https://github.com/Uko/Pillar.tmbundle
6https://github.com/Uko/language-pillar
7http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet

212

https://ci.inria.fr/pharo-contribution/job/Pillar
https://github.com/pillar-markup/pillar-mode
https://github.com/cdlm/vim-pillar
https://github.com/Uko/Pillar.tmbundle
https://github.com/Uko/language-pillar
http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet
http://books.pharo.org/enterprise-pharo/
https://github.com/SquareBracketAssociates/UpdatedPharoByExample
https://github.com/SquareBracketAssociates/UpdatedPharoByExample
https://github.com/SquareBracketAssociates/PharoMooc
https://github.com/SquareBracketAssociates/PharoMooc
http://pillarhub.pharocloud.com
https://ci.inria.fr/pharo-contribution/job/Pillar
https://github.com/pillar-markup/pillar-mode
https://github.com/cdlm/vim-pillar
https://github.com/Uko/Pillar.tmbundle
https://github.com/Uko/language-pillar
http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet

14.2 5 Minutes Tutorial

14.2 5 Minutes Tutorial

In this section we give the basic steps to get you started with your first Pillar
document and exports. You first need to create a base directory inside which
we will put all your text, configuration files, and Pillar itself.

mkdir mydocument
cd mydocument

Installing and Exporting your First Document

You first need to get Pillar. For that, we recommend downloading and exe-
cuting the script available at https://raw.githubusercontent.com/pillar-markup/

pillar/master/download.sh in the base directory if you are on an Unix environ-
ment.

wget
https://raw.githubusercontent.com/pillar-markup/pillar/master/download.sh

chmod +x download.sh
./download.sh

Then, you can load an archetype (see Section 14.2) with command:

./pillar archetype welcome

Now you can just compile the welcome file

make book-result/welcome.html

You can see the result of the compilation as follow:

more welcome.html
<!DOCTYPE html>
<html lang="en">

<head>
<title>My first document while reading the 5 minutes Pillar
tutorial</title>

</head>
<body>
<div class="container">
<section>

<h1>1. Hello World</h1>
</section>

</div>
</body>

</html>

Changing the output folder

You have the possibility to rename the directory in which your files will be
exported. To do that you have to change the OUTPUTDIRECTORY variable in

213

https://raw.githubusercontent.com/pillar-markup/pillar/master/download.sh
https://raw.githubusercontent.com/pillar-markup/pillar/master/download.sh

Documenting and Presenting with Pillar

the Makefile:
OUTPUTDIRECTORY = result

Then, you can check everything is working fine by creating a first.pillar
file with this content:

!Hello World

And finally compiling it from a terminal (see Section 14.6 for more informa-
tion about the command-line interface).

make result/first.html

Pay attention if you did not change the output directory you should use:

make book-result/first.html

This should generate a first.html file you can open in a web browser. The con-
tent of this file will be something like:

<!DOCTYPE html>
<html lang="en">
<head>
<title></title>

</head>
<body>
<div class="container">

<section>
<h1>1. Hello World</h1>

</section>
</div>

</body>
</html>

Configuring a Document

As you can see, there is no document title in the generated first.html file. This
is because we did not specify any. To specify a title, we have to add it with a
configuration at the beginning of the first.pillar file:

{
"metadata": {
"title": "My first document while reading the 5 minutes Pillar
tutorial"
}

}

!Hello World

When you compile using the same command line,

make result/first.html

214

14.2 5 Minutes Tutorial

you should now get a web page with a title:

<!DOCTYPE html>
<html lang="en">

<head>
<title>My first document while reading the 5 minutes Pillar

tutorial</title>
</head>

Another way to achieve the same is to use a dedicated configuration file. This
configuration is typically named pillar.conf and is written in the STON
format (see Section 14.4 for more information about the configuration file).
Create your first pillar.conf file:

{
"metadata": {
"title" : "My first document from pillar.conf"

}
}

Meta-information specified in Pillar files take precedence over configuration
in the pillar.conf file. To see the new title, you thus have to remove the
one in first.pillar.

Exporting a Different Content Using a Template

If you want to tweak the content of the exported file, for example to refer-
ence your CSS or to add a footer, you need to create your own template (see
Section 14.5 for more information about templating). You must write such
template in its own file, e.g., myhtml.template:

<!DOCTYPE html>
<html lang="en">

<head>
<title>{{{title}}}</title>

</head>
<body>

<div class="container">
{{{content}}}

</div>
<footer>

<p>{{author}}, {{year}}</p>
</footer>

</body>
</html>

Then, to use this template, you need to replace the HTMLTEMPLATE variable in
the Makefile. So, edit your Makefile:

HTMLTEMPLATE = myhtml.template

215

Documenting and Presenting with Pillar

Now, write your name in first.pillar :

{
"metadata":{
"author": "Damien Cassou"

}
}

!Hello World

You can also write the year in the pillar.conf file:

{
"metadata":{
"title":"My first document from pillar.conf",
"year":"2016"

}
}

Finally, compile first.pillar one last time

make book-result/first.html

to generate a file containing:

<!DOCTYPE html>
<html lang="en">

<head>
<title>My first document from pillar.conf</title>

</head>
<body>

<div class="container"> [...]
<h1>Hello World</h1>

</div>
<footer>

<p>Damien Cassou, 2016</p>
</footer>

</body>
</html>

Look at how the HTML template (myhtml.template) references title, au-
thor and year. These variables are referenced by enclosing them in 3 curly
braces. The templating engine that transforms your templates in documents
is Mustache (see chapter 12. As you can see, I decided to put the author of
the document in the first.pillar file whereas the year and title are spec-
ified in pillar.conf: this is arbitrary and you can do whatever suits you
best: the differences being that the pillar.conf file applies to all Pillar files
of the project and that file meta-information takes precedence.

This concludes our 5 minutes tutorial.

216

14.3 Writing Pillar Documents

Archetype - A Pillar skeleton maker

An archetype is a project skeleton to well begin a pillar project. In an archetype
you have all the files you will need and an example.

Basically you have:

• Makefile

• pillar.conf

• templates

• ... with some differences between archetypes

To download a new archetype, launch this command :

./pillar archetype <archetypeName>

Here is the list of the current archetypes :

• book

• presentation

• welcome

Pay attention that you may have to restart from a fresh folder when you
change project style.

You can help us by creating your own archetype on the Github Project8.

To add an archetype, just create the file tree and put an empty file ”.keep” in
empty folders.

14.3 Writing Pillar Documents

In this section we show how to write Pillar documents by presenting the
Pillar syntax. You might want to have a look at the cheat sheet9 and even
download and print it.

Meta-Information

Meta-information of a particular file is written at the start of the file be-
tween curly braces using the STON syntax (see chapter 9). A meta-information
starts with a word between quotation marks acting as a key, is followed by a
colon :, and finishes with a value. For example, the following Pillar file,

{
"metadata":{
"title": "My first document from pillar.conf",

8https://github.com/pillar-markup/Pillar-Archetype
9http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet

217

https://github.com/pillar-markup/Pillar-Archetype
http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet
https://github.com/pillar-markup/Pillar-Archetype
http://pillarhub.pharocloud.com/hub/pillarhub/pillarcheatsheet

Documenting and Presenting with Pillar

"author": "Damien Cassou"
}

}

!Hello World

represents a Pillar document with the title and author set. You can use what-
ever keys you like. Use them by referencing them in templates (see section
14.5 for more information about templating). Only keys in the metadata field
can be referenced in the template.

Chapters & Sections

A line starting with ! represents a heading. Use multiple ! to create sections
and subsections. To refer to a section or chapter, put an anchor (equivalent
to \label{chapterAndSections} in Latex) using the @chapterAndSections
syntax on a separate line. Then, when you want to link to it (equivalent to
\ref{chapterAndSections} in Latex), use the *@chapterAndSections* syn-
tax. Anchors are invisible and links will be rendered as: 14.3.

Paragraphs and Framed Paragraphs

An empty line starts a new paragraph.

An annotated paragraph starts with @@ followed by a keyword such as todo
and note. For example,

@@note this is a note annotation.

generates

Note this is a note annotation.

And,

@@todo this is a todo annotation

generates a todo annotation

To do this is a todo annotation

The annotation (e.g., todo and note) can be any word that is meaningful to
the author. In HTML, an annotated paragraph triggers the generation of a
paragraph with the annotation as the paragraph class. In LaTeX, an envi-
ronment with the annotation name is generated. In HTML, you can tweak
the output to make it look nice, for example with such JavaScript code:

// Wraps paragraphs with class pClass inside a div and adds an H4
element with pTitle.

function transformAnnotatedParagraphs(pClass, pTitle) {

218

14.3 Writing Pillar Documents

$("p." + pClass).wrap("<div class='annotated-paragraph "
+ pClass + "' />").prepend("<h4>"+ pTitle +"</h4>");

}

transformAnnotatedParagraphs("note", "Note");
transformAnnotatedParagraphs("todo", "To do");

Above code will prepend the titles ”Note” and ”To do” to the @@note and
@@todo paragraphs. You can make that looks nice using a little bit of CSS:

.annotated-paragraph {
margin: 20px 0;
padding: 15px 30px 15px 15px;
border-left: 5px solid #eee;

}

.annotated-paragraph h4 {
margin-top: 0;

}

.annotated-paragraph p:last-child {
margin-bottom: 0;

}

.note {
background-color: #f0f7fd;
border-color: #d0e3f0;

}

.note h4 {
color: #3a87ad;

}

.todo {
background-color: #dff0d8;
border-color: #d6e9c6;

}

.todo h4 {
color: #3c763d;

}

Lists

Unordered Lists

-A block of lines,
-where each line starts with ==-==
-is transformed to a bulleted list

219

Documenting and Presenting with Pillar

generates

• A block of lines,

• where each line starts with -

• is transformed to a bulleted list

Ordered Lists

#A block of lines,
#where each line starts with ==#==
#is transformed to an ordered list

generates

1. A block of lines,

2. where each line starts with #

3. is transformed to an ordered list

Definition Lists

Definition lists (aka. description lists) are lists with labels:

;blue
:color of the sky
;red
:color of the fire

generates

blue color of the sky

red color of the fire

List Nesting

-Lists can also be nested.
-#Thus, a line starting with ==-#==
-#is an element of an unordered list that is part of an ordered list.

generates

• Lists can also be nested.

1. Thus, a line starting with -#

2. is an element of a bulleted list that is part of an ordered list.

220

14.3 Writing Pillar Documents

Formatting

There is some syntax for text formatting:

• To make something bold, write ""bold"" (with 2 double quotes)

• To make something italic, write ''italic'' (with 2 single quotes)

• To make something monospaced, write ==monospaced==

• To make something strikethrough, write --strikethrough--

• To make something subscript, write @@subscript@@

• To make something superscript, write ^^superscript^^

• To make something underlined, write __underlined__

Tables

To create a table, start the lines with | and separate the elements with |.
Each new line represents a new row of the table. Add a single ! to let the cell
become a table heading.

|!Language |!Coolness
|Smalltalk | Hypra cool
|Java | baaad

Language Coolness

Smalltalk Hypra cool
Java baaad

The contents of cells can be aligned left, centered or aligned right by using
|{, || or |} respectively.

||centered||!centered header||centered
|{ left |} right || center

generates

centered centered header centered
left right center

Links

Internal Links and Anchors

To put an anchor (equivalent to \label in Latex), use the @anchorName syntax
on a separate line. Then, when you want to link to it (equivalent to \ref in La-
tex), use the *@anchorName* syntax. Anchors are invisible and links will be
rendered as: 14.3.

221

Documenting and Presenting with Pillar

Figure 14-2 This is the caption of the picture

To create a link to an other pillar file, use the *Alias>path.pillar@an-
chorName*. The Alias and the anchor are optional but you will need them in
some cases (for example if you have an inter-file link and you export in La-
TeX, or if you have an inter-file link and you export all your file in the same
html file).

External Links

To create links to external resources, use the *Pharo>http://pharo.org/*
syntax which is rendered as Pharo10. The same syntax can also represent
email addresses: write *damien@cassou.me* to get damien@cassou.me.

Semantic Links

Semantic links are a way to simplify links to standard websites such as Wikipedia
and Youtube.

To create semantic links ressources, use the *Wikipedia Pharo>wikipedia:Pharo*
syntax which is rendered as Wikipedia Pharo11. To specify a language, you
can use the *Wikipedia Pharo>wikipedia:Pharo|lang=en* syntax which
is rendered as Wikipedia Pharo12

Same for Youtube links : *Youtube Pharo>youtube:KDvNuOjdjY4*, the re-
sult is : Youtube Pharo13.

Pictures

To include a picture, use the syntax +caption>file://filename|parame-
ters+:

+Caption of the
picture>file://figures/pharo-logo.png|width=50|label=pharoLogo+

generates Figure 14-2 (this reference has been generated using *@pharoL-
ogo*).

10http://pharo.org/
11https://en.wikipedia.org/wiki/Pharo
12https://en.wikipedia.org/wiki/Pharo
13https://www.youtube.com/watch?v=KDvNuOjdjY4

222

http://pharo.org/
mailto:damien@cassou.me
https://en.wikipedia.org/wiki/Pharo
https://en.wikipedia.org/wiki/Pharo
https://www.youtube.com/watch?v=KDvNuOjdjY4
http://pharo.org/
https://en.wikipedia.org/wiki/Pharo
https://en.wikipedia.org/wiki/Pharo
https://www.youtube.com/watch?v=KDvNuOjdjY4

14.3 Writing Pillar Documents

Listing 14-3 My script that works

self foo bar

Scripts

Use scripts when you want to add code blocks to your document.

[[[
foo bar
]]]

generates

foo bar

Script with a Label or Caption

If you want either a label (to reference the script later) or a caption (to give a
nice title to the script), write the following:

[[[label=script1|caption=My script that works|language=smalltalk
self foo bar
]]]

which produces script 14-3 (this reference is produced with *@script1*).

Syntax Highlighting

To specify the syntax a script is written in, you need to use the language pa-
rameter. For example on 14-3 we used the smalltalk value for the language
parameter.

Note The currently supported languages are bash, css, html, http, json,
javascript, pillar, sql, ston, shellcommands and smalltalk

If you don’t want syntax highlighting for a particular script, specify no lan-
guage as value to the language parameter.

Script with Line Numbers

If you need to explain a long piece of code, you may want a script to have line
numbers:

[[[lineNumber=true
self foo bar.
self bar foo.
]]]

223

Documenting and Presenting with Pillar

produces

1 self foo bar.
2 self bar foo.

Script from an External File

If you want you can also include a script from a external file. For example if
you have a file ‘myProject.html‘ and you want to take the code from line 15
to line 45, instead of copy/pasting the code you can use:

[[[language=html|fromFile=myProject.html|firstLine=15|lastLine=45
]]]

The firstLine and lastLine parameters are optional.

Generate a Part of your Document with a Script

If you want you can also evaluate a script to generate a part of your docu-
ment. For example if you write a project’s documentation and want to give
some metrics about its code, you can write something like this:

[[[eval=true
| packages classes |
packages := RPackageOrganizer default packages select: [:each |

each name includesSubstring: 'Pillar'].
classes := packages flatCollect: [:each | each classes].
stream

nextPutAll: 'The Pillar project contains:';
lf;
nextPutAll: '- ==';
print: packages size;
nextPutAll: ' packages==.';
lf;
nextPutAll: '- ==';
print: classes size;
nextPutAll: ' classes=='.

]]]

will generate:

The Pillar project contains:

• 29 packages.

• 359 classes

For example section 14.4 of this chapter is generated.

224

14.3 Writing Pillar Documents

Structures

You can create structures to render all structures with the same name as the
same object. Structures use the scripts syntax (see 14.3) with a particular
parameter structure

[[[structure=exercise
{

"question":"What is the answer to life, the universe and everything ?",
"answer":"42"

}
]]]

There is two kind of structures for the moment:

• exercise, rendered as a definition list

• city, rendered as a table

• country, rendered as a table

Raw

If you want to include raw text into a page you must enclose it between {{{
and }}}, otherwise Pillar ensures that text appears as you type it which
might require transformations.

A good practice is to always specify for which kind of export the raw text
must be outputted by starting the block with {{{latex: or {{{html:. For
example, the following shows a formula, either using LaTeX or plain text de-
pending on the kind of export.

{{{latex:
\begin{equation}

\label{eq:1}
\frac{1+\sqrt{2}}{2}

\end{equation}
}}}
{{{html:
(1+sqrt(2)) / 2
}}}

Take care: avoid terminating the verbatim text with a } as this will con-
fuse the parser. So, don’t write {{{\begin{scriptsize}}}} but {{{\be-
gin{scriptsize} }}} instead.

Annotations

Annotations are the Pillar way to have extensible syntax. An annotation has
this syntax:

225

Documenting and Presenting with Pillar

${tag:parameter=value|parameter2=value2}$

InputFile Annotation

You can include a file into another pillar file. The inputFile annotation
takes as parameter the path of the file relative to baseDirectory (if you
don’t change the base directory, it is your working directory). In this exam-
ple, 2 files are included:

${inputFile:test.pillar}$

${inputFile:chapter2/chapter2.pillar}$

Footnotes Annotation

You can add footnotes to explain or annotate words. The footnotes anno-
tation takes as parameter the note which will appear at the end of the docu-
ment. In this example, one footnote is added.

Foo${footnote:Some Explanation for Foo}$

Citations

Citations are only available for LaTeX. You can add citations to your docu-
ment to reference an element in a LaTeX bibliography. The cite annotation-
takes as parameter the key of the reference in the bibliography.

${cite:reference}$

The exemple above wil render as cite{reference}

If you want to use other type of citations like citep or citet, please over-
write the command in your LaTeX template: renewcommand{cite}{citep}

To do á vérifier

Slide Annotation

This annotation is used to create slides structure for a beamer or a deck.js
export. The parameter title is required. The label parameter can be used to
reference this slide in another slide:

${slide:title=My slide|label=sld:mySlide}$

Columns

With Pillar you can put text and other contents in columns. To do that, you
need to delimit an environment with the columns and endColumns annota-
tions. Then you can create columns with the column annotation. The column

226

14.4 Configuring your Output

annotation takes 1 required parameter: the width of the column. Here is an
example:

${columns}$
${column:width=60}$

bla
${column:40}$

bla
${endColumns}$

Note The column annotations currently works only for the beamer,
HTML and Deck.js export.

Preformatted (less used)

To create a preformatted block, begin each line with =. A preformatted block
uses equally spaced text so that spacing is preserved. In general you should
prefer scripts over preformatted blocks.

= this is preformatted text
= this line as well

Commented Lines

Lines that start with a % are considered comments and will not be rendered
in the resulting document.

Escaping Characters

Special characters (e.g., + and *) must be escaped with a backslash: to get a +,
you actually have to write \+. The list of characters to escape is:

^, _, :, ;, =, @, {, |, !, ", #, $, %, ', *, +, [, -

14.4 Configuring your Output

In this section we show how to configure the export.

Configuration File

Pillar exporting mechanism can be configured using STON14 (see chapter
@ston), a lightweight, text-based, human-readable data interchange format
(similar to the popular JSON15). Configuration is done either in pillar.conf
or at the beginning of Pillar files.

14http://smalltalkhub.com/#!/~SvenVanCaekenberghe/STON
15http://www.json.org

227

http://smalltalkhub.com/#!/~SvenVanCaekenberghe/STON
http://www.json.org
http://smalltalkhub.com/#!/~SvenVanCaekenberghe/STON
http://www.json.org

Documenting and Presenting with Pillar

Configuration Parameters

baseDirectory

Indicate where to look for files.

Default value: The current working directory

configurations

Each configuration can define several sub configurations, each of which in-
herits the properties of its parent.

Default value: A dictionary of default configurations from the exporters.

defaultExporters

Collection of exporters to use when none is explicitely specified. You can
specify the exporter you want through the --to= command-line argument.

Default value: By default only the text exporter is enabled.

defaultScriptLanguage

Indicate the language in scripts when none is specified. This language is used
for syntax highlighting. The currently supported languages are bash, css,
html, http, json, javascript, pillar, sql, ston, shellcommands and smalltalk.

Default value: An unspecified language

disabledPhases

Collection of phases that Pillar should ignore.

For exemple, a value of ["scriptEvaluator", "section", "transform"]
will disable script evaluation (useful when security is important), section-
ing (useful when generating HTML 4) and the transform phases (i.e. all the
transformers) .

Default value: By default the collection is empty, i.e., all phases are active.

headingLevelOffset

Indicate how to convert from the level of a Pillar heading to the level of
heading in your exported document. For example, a headingLevelOffset
of 3 converts a 1st level Pillar heading to an <h4> in HTML.

Default value: 0

228

14.4 Configuring your Output

inputFile

The Pillar file that must be exported. You can also specify an input file at the
end of the command-line interface.

Default value: nil

level1

Configure how headers at level 1 will be rendered. Value must be a diction-
nary. These keys are recognized:

numbering a boolean indicating if headers at this level must be numbered

size a positive number indicating how many parent levels should be visible
in the number: e.g., if 2, the parent header’s number and the current
header’s number will be shown (must be lower than or equal to 1)

renderAs a string indicating how the numbering is done (must be one of
"number", "roman", "letter" or "upperLetter")

Default value: All levels are numbered with digits and all parents are visible.

level2

Configure how headers at level 2 will be rendered. Value must be a diction-
nary. These keys are recognized:

numbering a boolean indicating if headers at this level must be numbered

size a positive number indicating how many parent levels should be visible
in the number: e.g., if 2, the parent header’s number and the current
header’s number will be shown (must be lower than or equal to 2)

renderAs a string indicating how the numbering is done (must be one of
"number", "roman", "letter" or "upperLetter")

Default value: All levels are numbered with digits and all parents are visible.

level3

Configure how headers at level 3 will be rendered. Value must be a diction-
nary. These keys are recognized:

numbering a boolean indicating if headers at this level must be numbered

size a positive number indicating how many parent levels should be visible
in the number: e.g., if 2, the parent header’s number and the current
header’s number will be shown (must be lower than or equal to 3)

renderAs a string indicating how the numbering is done (must be one of
"number", "roman", "letter" or "upperLetter")

Default value: All levels are numbered with digits and all parents are visible.

229

Documenting and Presenting with Pillar

level4

Configure how headers at level 4 will be rendered. Value must be a diction-
nary. These keys are recognized:

numbering a boolean indicating if headers at this level must be numbered

size a positive number indicating how many parent levels should be visible
in the number: e.g., if 2, the parent header’s number and the current
header’s number will be shown (must be lower than or equal to 4)

renderAs a string indicating how the numbering is done (must be one of
"number", "roman", "letter" or "upperLetter")

Default value: All levels are numbered with digits and all parents are visible.

level5

Configure how headers at level 5 will be rendered. Value must be a diction-
nary. These keys are recognized:

numbering a boolean indicating if headers at this level must be numbered

size a positive number indicating how many parent levels should be visible
in the number: e.g., if 2, the parent header’s number and the current
header’s number will be shown (must be lower than or equal to 5)

renderAs a string indicating how the numbering is done (must be one of
"number", "roman", "letter" or "upperLetter")

Default value: All levels are numbered with digits and all parents are visible.

metadata

Each document can have metadata like title or authors

Default value: A dictionary of default default metadata

newLine

The string that separates lines in the exported document. This is often either
LF or CR+LF but any string is possible.

Default value: Depend on the operating system.

outputDirectory

Indicate where Pillar will create generated files.

Default value: The value of baseDirectory

230

14.4 Configuring your Output

outputFile

If separateOutputFiles is false, indicate the name of the output file. This
can also be a write stream.

Default value: A file named ’output’ with an extension depending on output-
Type.

outputType

Indicate the kind of output desired. Can be any of text, html, asciidoc, pillar,
latex, mock, markdown, deckJS, xhtml, latex:sbabook, beamer, githubmark-
down, navmenu and tocmenu.

Default value: nil

renderStructureAsSlide

When true (the default), Pillar will create a dedicated slide for each Pillar
header. This parameter is meaningless when generating a written document.

Default value: true

scrambledEmailAddresses

Indicate if email addresses should appear scrambled to defeat the stupidest
spammers looking for them (the default). If false, email addresses will ap-
pear unscrambled.

Default value: true

separateOutputFiles

If true, each input file is exported to one output file. If false (the default),
all input files are exported to outputFile.

Default value: false

slideInTemplateForDeckJS

Indicate the number of slides created by the DeckJS template. This is impor-
tant to create anchors.

Default value: 1

verbose

Indicate whether Pillar should write a verbose log when exporting.

Default value: false

231

Documenting and Presenting with Pillar

14.5 Templating

Pillar generates json as output so you can use a templating engine to tweak
Pillar output. Pillar comes with the Mustache templating engine (see chapter
12). This means you can specify a preamble and postamble for your docu-
ment. Here is an example HTML template using Mustache:

<!DOCTYPE html>
<html lang="en">

<head>
<title>{{{title}}}</title>

</head>
<body>

<div class="container">
{{{content}}}

</div>
</body>

</html>

In this example, we can see the use of {{{title}}} and {{{content}}} to
refer to the title of the document and its actual content (the one exported
from Pillar). You have to put such a template in a dedicated file (named
chapter.html.template for example) and reference this file from the HTML-
TEMPLATE variable in the Makefile. Then when you will compile in HTML,
the Makefile will use this template.

You can also use mustache alone with command:

./mustache --data=file.html.json --template=myhtml.template >
file.html

14.6 Command-Line Interface

In this section we show how to use the Pillar command-line interface.

One of the basic uses of the command line is:

$./pillar export --to=latex PharoSound.pillar

You can select an export type with the parameter --to. The possible exports
are: text, html, asciidoc, pillar, latex, mock, markdown, deckJS, xhtml, la-
tex:sbabook, beamer, githubmarkdown, navmenu and tocmenu.

The Makefile will create a symbolic link named root referencing the out-
put directory into each directory containing output files. You can use this
symbolic link to reference files in specified in the support collection.

232

14.7 Pillar from Pharo

14.7 Pillar from Pharo

Pillar has a document model (the root of which being PRDocument), a parser
(PRPillarParser) and several export types (subclasses of PRDocumentWriter)
implemented as visitors over the document model. Pillar also has phases
(subclasses of PRPhase) that take a document model as input and produce a
modified document model as output.

How to Create a Pillar Document

It is possible to create a Pillar document by parsing a string or by instantiat-
ing the document model.

Creating a document by parsing a String requires using the PRPillarParser:

| wiki |
wiki := '!My Document'.
PRPillarParser parse: wiki

Or from a file:

PRPillarParser parse: (FileSystem workingDirectory / 'foo.pillar')
readStream

You can also instantiate the document model, one node after the other, start-
ing with PRDocument and adding sub-instances of PRDocumentItem:

| document title figure|
document := PRDocument new.
title := PRHeader new

level: 1;
add: (PRText content: 'foo');
yourself.

figure := PRFigure new
add: (PRText content: 'Alias');
reference: 'file://test.png';
yourself.

document add: title; add: figure.

How to Export a Document

Once you have your document, you may want to export it. But exporting,
there’s an optional step: transforming your document. A transformer is an
abstraction that visits a document and changes it. For instance, PRScriptE-
valuator replaces a script with eval=true by the result of its evaluation.
Exporting is done with a subclass of PRDocumentWriter, like this:

PRHTMLWriter write: document

To specify export parameters (see above for a comprehensive list), you may
want to use a configuration.

233

Documenting and Presenting with Pillar

| configuration |
configuration := PRPillarConfiguration new.
configuration outputType: PRHTMLWriter.
PRExportPhase executeOn: { document } with: configuration.

14.8 Conclusion

Pillar is still in active development because authors keep writing new docu-
ments. Because Pillar’s source code is of great quality (mainly due to Lukas
Renggli), features can be added easily by new developers. Pillar is different
from competition thanks to its notion of project that allows managing multi-
ple files coherently.

234

CHA P T E R 15
Generate PDF Documents with

Artefact

The Adobe PDF format is probably one of the most widespread electronic
document formats. Used daily, it is the basis for the production of exchange-
able documents that contain both text and graphics. If you receive a bill, fol-
low a purchase on a web site, download a report, a book or an administrative
form, these files will most likely be PDF documents. For programmers that
need to provide any such reporting functionality, supporting this format has
become a must and the generation of PDF documents is part of their toolkit.

In Pharo, Artefact is an innovative framework that supports the design and
generation of PDF documents and is developed by Olivier Auverlot and Guil-
laume Larcheveque.

15.1 Overview of Artefact

Artefact is a PDF framework whose design was guided by the goals of effi-
ciency, productivity and scalability. To achieve this, each document is de-
scribed by a tree of objects. A document is an object containing a collection
of other objects, each corresponding to a page. On each page both visible and
non-visible items are also objects. These objects then have the possibility
to be reused in the same document but also across documents. Objects are
elements that can be simple, e.g. a piece of text or an image, but also be com-
plex elements with advanced behavior and a special appearance, e.g. that
display data in a table or generate a barcode.

Artefact contains default elements such as paragraphs or tables that allow
to quickly generate reports. The strength of these elements is that they are

235

Generate PDF Documents with Artefact

independent of each other. The order in which you position them in the doc-
ument does not affect their appearance. This is in contrast to many PDF
frameworks that exploit the notion of stream in the definition of styles (a
piece of blue text will be followed by another piece of blue text in the ab-
sence of a directive to use a different style), Artefact considers that every
element includes its own style. If an attribute is not defined in the element,
Artefact then uses a style sheet that is set at the document level by default.

This autonomy of elements and style management is a strong feature of Arte-
fact. It makes it easy to generate a document and quickly customize it for a
particular operation.

Concepts, Key Aspects and Limits

After more than a year of development, the concepts used in Artefact are
considered stable and it is already used in industry. In this section we list its
current features and known limitations.

• Artefact has a simple architecture that facilitates scalability and new
features.

• It supports the definition of a PDF document and its contents.

• It can specify meta information such as title or author.

• It manages display options when opening a document in a reader that
is compatible with this feature.

• It supports compressed PDF document generation.

Each page of a PDF document can have its own particular format and orien-
tation. By default, Artefact supports a set of common formats, e.g. A3, A4,
or ebook. It can easily be extended to fit specific needs. Page location is de-
termined not when the page is created but when it is added to a document.
Hence each page is independent, which allows one to generate documents
with variable architecture.

On each page, Artefact places simple or complex elements. A complex ele-
ment is generally defined using simple elements or other complex elements.
Each element is independent and is positioned relative to the upper left cor-
ner of a page.

Artefact provides greyscale management and colors defined by the RGB
model (where each color component is represented by one byte). Charac-
ter fonts are those imposed by the PDF but Artefact does not support true
type fonts (TTF) specification. You can insert images into a PDF document
but only the JPEG format is currently supported. Artefact does not support
the definition of interactive input fields, integrating JavaScript or safety as-
pects of PDF such as certificates. Of course, these specifications are subject to
change as and when the framework changes.

236

15.2 Getting Started in 10 Minutes

15.2 Getting Started in 10 Minutes

Say, you already program in Pharo and you want to generate PDF documents.
This section will show you how to do so in less than 10 minutes.

First you should load the framework. The good news is that there is no need
for native libraries as Artefact is written entirely in Pharo. Whatever your
execution platform (Microsoft Windows, Mac OS X, Linux, Android, IOS, etc.),
Artefact will be available and usable.

Installing Artefact

Artefact is hosted on SmalltalkHub1. To install Artefact, execute the follow-
ing expressions:

Gofer new
smalltalkhubUser: '' project: 'RMoD/Artefact';
package: 'ConfigurationOfArtefact';
load.

ConfigurationOfArtefact load

Loading the configuration automatically load projets such as the Unit frame-
work (which supports the definition of different measurement units. By de-
fault the configuration loads the stable version that is production ready.

Once loaded, you can browse the main packages and classes.

• The Artefact-Examples package contains many usage examples.

• The Artefact-Core package contains the main elements such as doc-
uments, pages or style sheets but also electronic documentation that is
accessible via the Help Browser.

• The PDF objects (text, geometric shapes, images, etc.) offered by the
basic framework are in Artefact-Core-Elements-Basic and Artefact-
Core-Elements-Composites.

• The fonts are defined in the package Artefact-Core-Fonts and docu-
ment formats in the package Artefact-Core-Formats.

Executing the First Demo’s

The best way to start with Artefact is to have a look at the Artefact-Examples-
Demos package and to run each of PDFDemos class methods.

If you want to run all demos, just execute PDFDemos runAllDemos

1http://smalltalkhub.com/#!/~RMoD/Artefact

237

http://smalltalkhub.com/#!/~RMoD/Artefact
http://smalltalkhub.com/#!/~RMoD/Artefact

Generate PDF Documents with Artefact

By default each generation result is written in the default Pharo directory
but you can define your own by modifying the demoPath class method, e.g.
as follows:

PDFDemos class>>demoPath
^ '/Users/pharo/pdf/'

Finally ”Hello World!”

You will now create your first and simplest PDF document, which is a text
on a page. To do this, you must define an instance of a PDF document that
contains a page where you will position a text component.

PDFDocument new
exportTo: 'helloworld.pdf' asFileReference writeStream

Once the instance of PDFDocument is created, it is exported using a stream
to a file named helloworld.pdf. By default, the produced PDF document is
placed in the directory of Pharo. If you open the file, it is empty. This is nor-
mal since you have not yet defined and added any content to the document.

Let us enrich the previous example and add a page to the document.

PDFDocument new
add: PDFPage new;
exportTo: 'helloworld.pdf' asFileReference writeStream

Now if you open the file the result is different since the document contains
an empty page. Let us add a first text component to our page.

PDFDocument new add:
(PDFPage new add:

(PDFTextElement new text: 'Hello World!'; from: 10mm @ 10mm));
exportTo: 'helloworld.pdf' asFileReference writeStream

To place the text on the page we create a component of type PDFTextEle-
ment. We add it to the page and define its position using the message from:.
Note that we can specify dimensions using several units such as millimeters
(mm), centineters (cm) or inches (inch). These coordinates are defined from
the upper left corner of the page.

Artefact uses a set of defaults to get compact code when creating elements
that are part of a document. More specifically, style parameters are set to
what are considered the most common values. In this example the page for-
mat is set to A4, and its orientation to portrait. Also, text is by default writ-
ten in black using the Helvetica font.

This first example introduced some basic concepts and shows how simple it
is to produce a PDF document with Pharo. The following sections go deeper
in Artefact and show how to define more complex documents.

238

15.3 Document Definition

15.3 Document Definition

Artefact represents PDF documents as objects that are instance of the class
PDFDocument. They play the role of containers for receiving pages. A PDF-
Document also supports advanced options such as the document size, man-
agement of compression, the opening in the PDF reader and the definition of
meta information.

The order in which pages are added to the PDFDocument object define the
organization of data within the document, not the order in which the pages
are created. This mode of operation allows you to produce documents whose
contents can be dynamically generated and organized at a later time.

Page Addition

To add pages to a document, the message add: is used. It appends a page
after those already present in the document. When generating the PDF file,
Artefact traverses the list of pages starting from the earliest added to the
last. The following script defines a document with a single blank page.

PDFDocument new
add: PDFPage new;
exportTo: 'EmptyPage.pdf' asFileReference writeStream

Document Properties

A PDFDocument can be configured with a specific format, orientation, com-
pression and display mode, as we show next.

Document Format and Orientation

By default, a document is generated in the A4 format but other formats are
available. The Package Artefact-Core-Formats contains a list of prede-
fined formats covering many needs. Examples are: A3 (PDFA3Format), letter
size (PDFLetterFormat) and a format suitable for e-readers (PDFEbookFormat).
If you need a particular format, you can define it. A format is simply defined
by the value returned by the message defaultSize.

A PDFDocument accepts the message format: to specify the format of all
pages of the document. For each page, this value will be the default if not
redefined otherwise. Each page can specify a different format. The following
example creates a document using the A3 format:

PDFDocument new
format: PDFA3Format new;
add: PDFPage new;
exportTo: 'A3.pdf' asFileReference writeStream

239

Generate PDF Documents with Artefact

The abstract superclass of all formats (PDFFormat) is responsible for defining
the page orientation. There are two alternatives: portrait or landscape. Page
orientation is set by sending one of the two messages to the format object:
setPortrait and setLandscape.

The following example generates a document whose pages are in A3 format
and landscape orientation.

PDFDocument new
format: PDFA3Format new setLandscape;
add: PDFPage new;
exportTo: 'A3landscape.pdf' asFileReference writeStream

Note that setting the default landscape mode for a document does not ex-
clude the possibility for a particular page to be oriented in portrait mode.
Artefact fully supports pages of different sizes and different orientations
within a single document.

Compression

The PDF format allows you to compress the data, which is a good thing as a
PDF document can contain large amounts of data. To to minimize the weight
of generated documents Artefact defaults to compressing the data. If you
need to disable this option, you should send the uncompressedmessage to
the document.

The following example generates an uncompressed PDF document:

PDFDocument new
uncompressed;
add: PDFPage new;
exportTo: 'uncompressed.pdf' asFileReference writeStream

Another message, named compressed, sets the compression.

Controling Document Opening

Adobe Acrobat reader supports various display modes when opening a PDF
document. The selected mode is defined directly into the PDF document.
Note that if the PDF reader that is used to look at the document is not com-
patible with these options, they will be ignored.

Display mode properties are divided in two categories: those determining
the size of the pages and those related to the page organization on the screen.
The former are set using the messages fullPage, fullWidth, real and zoom:,
and the latter using singlepage, twoPages and continuousPages. These
messages should be sent to an PDFDocument instance.

With fullPage, each page of the document occupies the entire display space.
With fullWidth, the display is optimized to the page width. With real, the
display meets the dimensions specified in the PDF document.

240

15.3 Document Definition

The following example creates a document that will occupy all available dis-
play space:

pdfdoc := PDFDocument new fullPage.

With the message zoom:, you can define a zoming ratio, expressed in per-
centages. The following example defines that the document should be opened
with zoom of 400 percent.

pdfdoc := PDFDocument new zoom: 400.

You can also choose to display a single page (singlePage), pages two by two
(twoPages) or one after the other (continousPages) as in the following ex-
ample:

pdfdoc := PDFDocument new continousPages.

Theses messages can be combined as shown in the following example:

pdfdoc := PDFDocument new zoom: 200; continuousPages.

Setting Meta Information

Each PDF document contains a set of information about its origins. These
data are not to be overlooked, especially if your document is intended to con-
tribute to an EDM (Electronic Document Management) system or is part of
an editorial workflow. With this information it is possible to search among a
set of PDF documents and select, for example, those written by a particular
author or those for which certain keywords have been specified.

Artefact implements this information by using an instance of PDFMetaData.
To each instance of PDFDocument, an instance of PDFMetaData is associated
and is accessible using the message metaData. By default, the producer is set
to 'Artefact'. You can specify the document title, subject or a short sum-
mary, the name of the author, a list of keywords and the document creator.

The following example generates a new document and its meta data informa-
tion:

pdfdoc := PDFDocument new.

pdfdoc metaData
title: 'Document title';
subject: 'subject of the document';
author: 'The Pasta Team';
keywords: 'cool rock best';
creator: 'Pharo'.

241

Generate PDF Documents with Artefact

15.4 Pages, Formats and Models

Pages are the support for writing and drawing in your PDF documents. A
page defines a page size, orientation and position within a PDF document. A
page can be built from a model that provides an overlay on which the page
contents are deposited.

Page Creation

A page is represented by an instance of the class PDFPage. Creating is a page
is simply done by sending the message new to the class.

page := PDFPage new.

Sending the message add: to a document with a page as argument will ap-
pend the page to the document.

pdfdoc := PDFDocument new.
page := PDFPage new.
pdfdoc add: page.

By default, a page takes the dimensions and orientation of its document. If
your PDF document is A4 landscape, all added pages will use these settings.
However, Artefact can assign specific dimensions and orientation to each
page, allowing one document to have a mix of pages with different charac-
teristics. To allow this, each instance of PDFPage understands the message
format:, which takes an instance of PDFFormat as argument.

The following example creates a two-page document. The first uses the de-
fault format of the document, the second is in A4 landscape.

pdfdoc := PDFDocument new.
page1 := PDFPage new.
page2 := PDFPage new format: (PDFA3Format new setLandscape).
pdfdoc add: page1; add: page2.

Templates

A template is an instance of class PDFTemplate, which inherits from the
class PDFPage. It is a page with predefined contents that will act as the back-
ground page on which you will draw or add your components. For example,
it can be composed of a header for a letter, a header and a footer for a report,
or a delimited surface.

The package Artefact-Examples-Demos-Templates offers two example
of template to create CD or DVD sleeve pages. The following code snippet
produces a A4 page on which the outlines of a CD sleeve are drawn.

pdfdoc := PDFDocument new.
cover := PDFCompactDiscTemplate new.

242

15.5 Elements

A template is defined using the message drawTemplate which adds the Arte-
fact elements to the page. This builds the page background. For example, the
code of the CD template is below. (As it is relatively straightforward we do
not explain the code here.)

PDFCompactDiscTemplate>>drawTemplate
self add: ((PDFRectElement

from: 10 mm @ 10 mm
dimension: 240 mm @ 120 mm)
dotted: self dotted

).
self add: ((PDFLineElement

from: 130mm @ 10mm
to: 130mm @ 130mm)
dotted: self dotted

).

15.5 Elements

The contents of pages is defined using reusable components called elements.
Artefact has basic elements that perform simple operations such as drawing
a line, but also complex elements that can, for example, display data in a ta-
ble or generate a barcode. Of course, it is possible to identify and define new
components.

More specifically, a PDFElement is a reusable component that represents a
text, an image, a geometric shape or even a complex graph or table. There
are two kinds of PDFElement:

• Simple elements inherit from PDFBasic (a primitive operation in the
pdf specification).

• Composite elements inherit from PDFComposite (a wrapper around
multiple PDFElements whether they are basic or composite).

Simple elements are as follows, and their hierarchy is shown in Figure 15-1:

• PDFBezierCurveElement

• PDFCircleElement

• PDFLineElement

• PDFPolygonElement

• PDFRectElement

• PDFJpegElement

• PDFTextElement

Composite elements are as follows, and their hierarchy is shown in Figure
15-2:

243

Figure 15-1 Page and Document Elements

Figure 15-2 Composite Elements

15.5 Elements

• PDFFormattedTextElement

• PDFParagraphElement

• PDFArrowElement

• PDFDoubleArrowElement

• PDFCellElement

• PDFDataTableElement

• PDFDataTableWithColumnsCaptionElement

• PDFDataTableWithRowsCaptionElement

Each PDFElement has a set of properties that define its appearance (text
color, font, dots, etc). These properties are grouped in a stylesheet owned
by each element. Every element controls its own appearance and doesn’t af-
fect other elements. This is in contrast to many PDF frameworks that use a
flow logic. This behavior allows you to move an element around or even use
the same element in multiple pages or documents.

Composing and Placement

Artefact’s elements have a generic behavior that manages their location on
a page as well as their dimensions. The Artefact coordinate system is used to
place components. Values can be expressed in several units such as mm, cm
or inch. The origin of the coordinate system is the top left of a page.

Element Positioning

Sending the message from: to the class of an element instantiates it and sets
its position. The following example creates a PDFTextElement and places it
at 15 mm from the left border and 30 mm from the top

PDFTextElement from: 15 mm @ 30 mm

In addition, Artefact offers other constructors that fix the position and size
of the element, and we present them next.

Element Size

Artefact offers two ways to set the size of an element: either through the
from:to: message or through from:dimension:.

The message from:to: takes as arguments the start and the end position.
For example, the following code draws a rectangle whose origin is 15mm
from the left and 30mm from the top and its end is at 90 mm from the left
border and 80mm from the top of the page:

245

Generate PDF Documents with Artefact

PDFRectElement from: 15 mm @ 30 mm to: 90 mm @ 80 mm

The message from:dimension:, takes as arguments the start position and
the size of the component. For example, the following code sets the size of
the component to be 50 by 40 millimeters.

PDFRectElement from: 15mm @ 30 mm dimension: 50mm @ 40mm

The messages width and height return the width and height of the compo-
nent.

Simple Elements

The package Artefact-Core-Elements-Basic contains elementary com-
ponents. There are grouped in three categories: text, images, and geometric
forms.

Text and Images

To write text on a page, use instances of PDFTextElement. The method text:
sets the text to be displayed. The class method from:text: supports posi-
tioning and text definition.

PDFTextElement from: 15mm @ 30mm text: 'hello!'

Using the PDFJpegElement class, images in JPEG format can also be inserted
in a document, using the fromStream: and from:dimension:fromStream:
class messages. The messages width: and height: set the size of the image
while respecting its original aspect ratio.

The following example generates a PDF document with one page. This page
contains one image placed at two different locations. In the first case, the
image is 80mm in width and 30mm in height. In the second case, the width is
80mm and the height is automatically computed keeping the original image
ratio.

| pdf page |
pdf := PDFDocument new.
page := PDFPage new.
page add: (

PDFJpegElement
from: 10 mm @ 10 mm
dimension: 80 mm @ 30 mm
fromStream: (FileStream fileNamed:

'/home/enterprise/image.jpg')).
page add: ((

PDFJpegElement
fromStream: (FileStream fileNamed:

'/home/enterprise/image.jpg'))
from: 10 mm @ 50 mm; width: 80 mm).

pdf add: page;

246

15.5 Elements

pdf exportTo: (FileStream forceNewFileNamed:
'/home/enterprise/image.pdf')

Geometric Shapes

Artefact has the following components for geometric shapes:

The class PDFLineElement draws a line using from:to:.

PDFLineElement from: 15mm @ 30mm to: 90mm@170mm

The class message from:angle:length: draws a line with the given start
position, angle and length.

PDFLineElement from: 10mm @ 20mm angle: 70 length: 50mm

The class PDFRectElement represents a rectangle. Two messages are rele-
vant: from: dimension: and from: to: . The two following examples are
equivalent:

PDFRectElement from: 10 mm@10mm dimension: 100 mm @ 30 mm.

PDFRectElement from: 10mm@10mm to: 110mm@40mm

The class PDFPolygonElement draws polygons. To define a polygon, we set
the start point and a series of points using the message from:points:.

PDFPolygonElement
from: 10mm@10mm
points: { 30mm@30mm . 15mm@40mm . 5mm@20mm }

Circles are defined with the class PDFCircleElement and using the message
center:radius:.
PDFCircleElement center: 100mm@100mm radius: 50mm

Bezier curves are represented by the class PDFBezierCurveElement and
defined using the message from:points.

PDFBezierCurveElement
from: 10mm@50mm
points: { 0mm@0mm. 100mm@20mm. 150mm@0mm. 50mm@50mm }

Composite Elements

Artefact comes with a rich set of high-level components, grouped in the
package Artefact-Core-Elements-Composites. These components are
the result of the assembly of single components and other high-level compo-
nents. They are used to create layouts and complex contents with minimal
coding and a high degree of reuse. These components can be used in several
different applications and materials. They are divided in three areas: man-
agement of text, drawing arrows and reporting.

247

Generate PDF Documents with Artefact

Advanced Text

So far you have used the class PDFTextElement to place text on a page. This
component is limited in terms of functionality since it only handles the posi-
tion on the page. In addition to this, Artefact offers three high-level compo-
nents that support advanced features: PDFFormattedTextElement, PDFCel-
lElement and PDFParagrapElement.

The component PDFFormattedTextElement is similar to PDFTextElement
but includes managing the alignment (left, center, right). A PDFCellElement
is a PDFFormattedTextElement with a border. Finally, a PDFParagraphEle-
ment allows the insertion of a paragraph of text and automatically manages
the breaks at the end of lines.

Drawing Arrows

Arrows are very useful for generating sketches and diagrams. The compo-
nent PDFArrowElement draws an arrow with a tip at its end. The component
PDFDoubleArrowElement draws a tip at both extremities.

PDFArrowElement from: 10mm@10mm to: 100mm@30mm

PDFDoubleArrowElement from: 10mm@80mm to: 100mm@150mm

Report Creation

Components inheriting from PDFDatatable are the perfect illustration of
the power and comfort provided by the composite elements of Artefact. With
these data tables, you can quickly generate reports and customize them to
your needs.

With the class PDFDataTableElement you define a report with specific di-
mensions on the page and showing a given data set. The data is organized in
a tabular manner: a report contains a number of rows, each representing a
line of the report.

PDFDataTableElement new
data: #(

#('Smith' 'Peter' 43)
#('Jones' 'Mickael' 25)
#('washington' 'robert' 30));

from: 10mm @ 20mm;
dimension: 150mm @ 60mm

The subclass PDFDataTableWithColumnsCaptionElement extends the table
behavior to support captions. The message captions: takes an array as ar-
gument, which contains the title of each column of your report. It is impor-
tant to note that the number of column headings should be the same as the
number of columns and each line must have the same number of columns.

248

15.5 Elements

PDFDataTableWithColumnsCaptionElement new
captions: #('Name' 'Surname' 'Age');
data: #(

#('Smith' 'Peter' 43)
#('Jones' 'Mickael' 25)
#('washington' 'robert' 30)

);
from: 10 mm @ 20 mm;
dimension: 150 mm @ 60 mm

Finally Artefact also provides a PDFDataTableWithRowsCaptionElement
subclass, which is a variant of PDFDataTableWithColumnsCaptionElement.
Its behavior is different since the caption is used to give a title to each line.
In this case, the table given as argument to the caption: message must have
a number of elements equal to the number of rows.

Lastly, PDFDataTableElement offers a callback mechanism defined by the
message customizationBlock:. The associated block is activated for the
drawing of each cell. It takes four parameters that are the cell being drawn,
the vertical and horizontal position of the cell in the table and the data pre-
sented in the cell. Using a block of code, it is then possible to change the ap-
pearance of the table or to trigger special treatment.

The following example shows a use of the customizationBlock: message.
The block replaces the age of a person by the text 'Older than 30' if the
person is older than thirty. Note that the block only considers the third cell
of each line and excludes the title of each column.

(PDFDataTableWithColumnsCaptionElement new
captions: #('Name' 'Surname' 'Age');
data: #(

#('Smith' 'Peter' 43)
#('Jones' 'Mickael' 25)
#('washington' 'robert' 30)

);
from: 10 mm @ 20 mm;
dimension: 150 mm @ 60 mm;
customizationBlock: [:cell :x :y :data |

(x = 3 and: [y > 1]) ifTrue: [
(data > 30) ifTrue: [cell text: 'Older than 30']

]
])

Composite elements bring a lot of flexibility to PDF document creation. Ob-
viously, the default ones do not cover all needs and you will most likely need
to create your own components. We suggest to study the existing ones to see
how to proceed.

249

Generate PDF Documents with Artefact

15.6 Stylesheets for Newbies

A PDFStyleSheet is a dictionary that contains rendering properties, e.g.
the color or the font for pieces of text. Following the same logic for pages
and elements, a stylesheet can be reused across different elements or docu-
ments. When documents are created, they are automatically given a default
stylesheet that then applies to their elements. Consequently, you don’t have
to specify every rendering property for the elements of a document.

Following the hierarchy logic, a stylesheet defined at a lower level of a doc-
ument will override properties set at a higher level. For example, if you de-
fine a textColor in the document stylesheet, every piece of text will be writ-
ten in that color except for elements where textColor is defined in their own
stylesheet.

Artefact also includes a dictionary of styles that allows every PDFElement
to be given a specific, named style. For example the code below is given the
#title style.

PDFTextElement from: 10mm@15mm text: 'My title' style: #title

At any upper level (document, page, etc), you can define the named style
using the message >, e.g. as follows:

myDocument stylesheet > #title
at: #font
put: PDFCourierFont size: 32 pt

The message > gives access to the style attribute of PDFStyleSheet. Here we
specify the #title attribute of the document.

Stylesheet Elements

Defining a stylesheet allows one to specify specific presentation attributes
for a set of elements. These attributes can also be set directly for an element.
We show here the different attributes and how to set them for an element.

Fonts

Artefact supports integrated PDF fonts through different subclasses of PDF-
Font: PDFCourierFont, PDFHelveticaFont, PDFSymbolFont, PDFTimesFont
and PDFZapfdingbatsFont. These fonts are available in any PDF viewer. A
PDFFont instance supports the basic styles bold and italic.

As said above, fonts can be set directly for a piece of text, which is shown
below:

PDFTextElement
from: 10mm@15mm
text: 'My title'
font: ((PDFTimesFont size: 24 pt) bold).

250

15.6 Stylesheets for Newbies

The class PDFFont offers two extremely useful messages when creating a
document: getStringWidth: and getIdealFontSizeForTheString:width:.

With the message getStringWidth: you get the width of a string calculated
based on the attributes of the font used. For example, the following example
returns the width of the string 'hello' in Courier measuring 20 points:

(PDFCourierFont size: 20 pt) getStringWidth: 'hello'

The message getIdealFontSizeForTheString:width: returns the optimal
size for the used font based on the desired width. The following example de-
termines the required size for a Courier font to display the 'Hello' text if
the width should be 15 cm:

(PDFCourierFont new)
getIdealFontSizeForTheString: 'hello' width: 15 cm

Dots

All geometric shapes can use a dotted style. It is defined by a PDFDotted ob-
ject that specifies the length of each line segment and the space between
them, as shown below:

((PDFArrowElement from: 125 mm @ 40 mm to: 100 mm @ 80 mm)
dotted: (PDFDotted new length: 2 mm; space: 3 mm)).

Colors and Shades of Gray

Colors and shades of gray are represented by the class PDFColor. To define
a color, Artefact uses the traditional RGB schema where the ratio of each
color is expressed using a value from 0 to 255. A deep black corresponds to
the triple (0,0,0), the color red to (255,0,0), the color green to (0,255,0), blue
to (0,0,255) and white to (255,255,255). Grayscales are expressed with a sin-
gle value ranging from 0 to 255. A value of 0 corresponds to white, while the
value of 255 is equivalent to black.

To specify the color or grayscale used, the messages drawColor:, fill-
Color:, and textColor: are used. They respectively manage the drawing
color, fill color and text color.

For example, the following code draws a rectangle whose border will be blue
and will have a red fill:

PDFRectElement new
from: 10 mm @ 10 mm;
dimension: 100 mm @ 30 mm;
fillColor: (PDFColor r: 255 g: 0 b: 0);
drawColor: (PDFColor r: 0 g: 0 b: 255).

The code below produces a gray piece of text:

251

Generate PDF Documents with Artefact

PDFTextElement new
textColor: (PDFColor greyLevel: 128);
from: 10 mm @ 50 mm;
text: 'A text in blue';

Drawing Thickness

The thickness of a line, a segment, or a border, is controlled by the message
thickness:, as shown below:

(PDFRectElement from: 10 mm @ 10 mm dimension: 50 mm @ 50 mm)
thickness: 2 mm

Alignment

Text alignment is managed using the PDFAlignment class. Text can be aligned
left, center or right. Messages are left, center and right. The following
example creates a right-aligned text:

(PDFFormattedTextElement from: 0 mm @ 0 mm dimension: 100 mm @ 10 mm)
alignment: (PDFAlignment right);
text: 'At right!'

Abstracting a Style

A document is associated to a default stylesheet whose properties are applied
to any element that does not specify its own properties. For example, if you
create a PDFTextElement without setting a font and text color, the color of
text and the fonts set in the document will be used.

The default stylesheet is always filled up by Artefact with sensible defaults.
That’s why you did not have to specify values of style in the previous ex-
amples. You can access the stylesheet using the message styleSheet. To
change the values of the default style, you simply change the properties of
the stylesheet, for example as follows:

myDocument := PDFDocument new.
myDocument styleSheet

textColor: (PDFColor r: 0 g: 100 b: 200);
font: (PDFHelveticaFont size: 32pt) italic.

Artefact styles form a tree. Each sub style points to its parent and the root of
styles is the default style attached to the document. This way properties can
be customized and default behavior can be reused when needed.

Stylesheet Application

Often you want to apply a style to a set of elements but not to all the ele-
ments of a document. As said above, Artefact allows you to define a named

252

15.6 Stylesheets for Newbies

style and apply it to the elements that should follow this custom style.

For example, that you want to use a certain font and style for some text ele-
ment or quotes, you can define a style named #quote as follows:

myDocument := PDFDocument new.
myDocument styleSheet > #quote

textColor: (PDFColor r: 0 g: 50 b: 200);
font: (PDFCourierFont size: 8pt) italic.

This style is defined here as the sub-document style and it will be applied to
all elements of that use the #quote style. In the following example we assign
the #quote style to a piece of text using the message style:.

(PDFTextElement from: 5cm @ 5cm)
text: 'my Quote with the quote style'; style: #quote

In the above example, we only have one level of styles. However, Artefact
supports an infinite levels of styles. This behavior is essential for compos-
ite elements where the nesting of the elements implies the nesting of their
styles.

For example, below we create a data table with a title for each column.

(PDFDataTableWithColumnsCaptionElement
from: 10 mm @ 20 mm dimension: 190 mm @ 60 mm)

captions: #('Name' 'Surname' 'email');
data: #(

#('Smith' 'Peter' 'peter.smith@mail.org')
#('Jones' 'Mickael' 'mickael.jones@epr.com')
#('washington' 'robert' 'robert.washington@blif.com'));

style: #dataTableWithColoredCaption;
yourself).

PDFDataTableWithColumnsCaptionElement is a composite element. This
element uses as styles of its sub-elements #cell and #caption, respectively
for captions and cells. By using the specialisation based on style nesting, it
is then possible a to use a style uniquely for this table, in this case it will be
#dataTableWithColoredCaption

To define this style, the second expression below = access the caption style of
the dataTableWithColoredCaption style, and then customizes it.

pdfdoc := PDFDocument new.
pdfdoc styleSheet > #dataTableWithColoredCaption > #caption

fillColor: (PDFColor r: 158 g: 158 b: 79);
drawColor: (PDFColor r: 158 g: 158 b: 79).

pdfdoc styleSheet > #dataTableWithColoredCaption margin: 4 pt.
pdfdoc styleSheet > #dataTableWithColoredCaption > #cell

alignment: PDFAlignment right.

Here we see that we can change a nested element attribute: we change the
alignment of a cell in the table using a sequence of >messages. Style man-

253

Generate PDF Documents with Artefact

agement brings a lot of flexibility for the production of a document. It sep-
arates the presentation appearance from the component definition. This
distinction between structure and presentation allows users to easily create
their own components just as customizable as those provided with Artefact.

15.7 Create your own PDF Composite Elements

The spirit of Artefact is to reduce the complexity of pdf generation. When
you have to create a document, a good idea is to avoid wasting time rein-
venting the wheel. When you create a composite element, if your component
is based around a string, inherit from PDFCompositeText. Otherwise, your
component should be a subclass of PDFComposite.

In this tutorial we will create a clock, which is basically a circle and two ar-
rows. These elements will be drawn depending on the provided time and
properties (size, colors, thickness).

Clock Creation

First create the class of your element and generate accessors for its variable
time that will contain the time to display.

PDFComposite subclass: #PDFClockElement
instanceVariableNames: 'time'
classVariableNames: ''
category: 'Artefact-Tutorial'

The two relevant methods for Artefact are defaultStyle and getSubEle-
mentsWith:styleSheet:. The first one must return a collection of PDFEle-
ments (basic or composites). The second one must return a symbol that as-
sociates the elements with a style definition. However it’s not necessary to
define this style in your document, Artefact will use the default style instead.

Define the default style:

PDFClockElement>>defaultStyle
^ #clock

Then define the method that will draw the clock. As a first approximation,
this method just returns a circle:

PDFClockElement>>getSubElementsWith: aGenerator styleSheet:
aStyleSheet

^ { PDFCircleElement from: self from to: self to }

The circle will be drawn depending on this composite position and size. We
are using from: to: for the circle instead of center:radius: because it’s
easier for us to create a clock using the boundary box of the circle.

254

15.7 Create your own PDF Composite Elements

To complete the clock, we add the hands using two PDFArrowElements and a
filled little circle in the middle:

PDFClockElement>>getSubElementsWith: aGenerator styleSheet:
aStyleSheet

| hourAngle minuteAngle |
hourAngle := Float pi / 2 - (time hour12 * 2 * Float pi / 12).
minuteAngle := Float pi / 2 - (time minute * 2 * Float pi / 60).
^ {

(PDFCircleElement from: self from to: self to).
(PDFCircleElement

center: self center radius: self dimension x * 0.05).
(PDFArrowElement

from: self center angle: hourAngle length: dimension x
* 0.25).
(PDFArrowElement

from: self center angle: minuteAngle length: dimension
x * 0.45)

}

Don’t be afraid about the two angle calculus, it’s just to convert hours and
minutes to radian angles.

At this time, your PDFClockElement is already usable and fully integrated
into Artefact. We can insert it into a PDF document and export it:

PDFDocument new
add: (PDFPage new add: ((

PDFClockElement
from: 2 cm @ 2 cm
to: 10 cm @ 10 cm) time: Time current));

exportTo: 'clockTutorialStep1.pdf' asFileReference writeStream

Make the Clock Personalizable

Your clock is already personnalizable independently of other elements be-
cause you previously defined its style as #clock. This is shown below:

| doc |
doc := PDFDocument new.
doc add: (PDFPage new add:

((PDFClockElement from: 2 cm @ 2 cm to: 10 cm @ 10 cm)
time: Time current)).

doc styleSheet > #clock
drawColor: (PDFColor r:180 g: 24 b:24);
fillColor: (PDFColor r:230 g: 230 b:10).

doc exportTo: 'clockTutorialStep2.pdf' asFileReference writeStream

At this time, you don’t have defined specific styles for sub elements of your
clock. Consequently, you will not be able to personalize each element with
different styles (so you cannot have hands of differents colors for example).

255

Generate PDF Documents with Artefact

To increase personalization possibilities, you should define specific styles for
sub elements you reuse, as follows:

PDFClockElement>>getSubElementsWith: aGenerator styleSheet:
aStyleSheet

| hourAngle minuteAngle |
hourAngle := Float pi / 2 - (time hour12 * 2 * Float pi / 12).
minuteAngle := Float pi / 2 - (time minute * 2 * Float pi / 60).
^ {

(PDFCircleElement from: self from to: self to).
(PDFCircleElement

center: self center radius: self dimension min * 0.05).
((PDFArrowElement

from: self center angle: hourAngle
length: dimension min * 0.25) style: #hourHand).

((PDFArrowElement
from: self center angle: minuteAngle
length: dimension min * 0.45) style: #minuteHand)

}

As you can see, we just send the message style: to each subelement that we
want to define a specific style.

Now, we can personalize each hand as follows:

| doc |
doc := PDFDocument new.
doc add: (PDFPage new add: ((PDFClockElement

from: 2 cm @ 2 cm to: 10 cm @ 10 cm) time: Time current)).
doc styleSheet > #clock

drawColor: (PDFColor r:180 g: 24 b:24);
fillColor: (PDFColor r:230 g: 230 b:10).

doc styleSheet > #clock > #hourHand
drawColor: (PDFColor r:0 g: 45 b:200).

doc styleSheet > #clock > #minuteHand
drawColor: (PDFColor r:0 g: 200 b:45).

doc exportTo: 'clockTutorialStep4.pdf' asFileReference writeStream

This gives the clock hands have different colors. Moreover, like for any ele-
ment in Artefact, you can specify a style for a given instance of a PDFClock-
Element, allowing you to reuse and adapt each clock:

| doc |
doc := PDFDocument new.
doc add: (

PDFPage new
add: (

(PDFClockElement from: 2 cm @ 2 cm to: 10 cm @ 10 cm)
time: Time current);

add: (
(PDFClockElement from: 12 cm @ 2 cm to: 20 cm @ 10 cm)

256

15.8 Conclusion

time: Time current;
style: #apocalypseClock)).

doc styleSheet > #clock
drawColor: (PDFColor r: 180 g: 24 b: 24);
fillColor: (PDFColor r: 230 g: 230 b: 10).

doc styleSheet > #clock > #hourHand
drawColor: (PDFColor r: 0 g: 45 b: 200).

doc styleSheet > #clock > #minuteHand
drawColor: (PDFColor r: 0 g: 200 b: 45).

doc styleSheet > #apocalypseClock
fillColor: (PDFColor r: 244 g: 221 b: 25);
thickness: 2 mm;
roundCap: true.

doc styleSheet > #apocalypseClock > #minuteHand
drawColor: (PDFColor r: 240 g: 6 b: 7);
thickness: 1 mm.

doc exportTo: 'clockTutorialStep5.pdf' asFileReference writeStream

15.8 Conclusion

We presented the key aspects of Artefact, a powerful framework to gener-
ate PDF documents. It is based on innovative design aspects: it features an
object-oriented design where each element defines its own attributes. This
supports much stronger possibilities for reuse than traditional stream-based
approaches. With Artefact you can freely compose, customize and reuse your
PDF elements.

257

Part V

Deployment

CHA P T E R 16
Deploying a Pharo Web

Application in Production

In the previous chapters we discussed several frameworks and libraries for
facilitating the development of web applications. In this chapter, we focus on
deploying such a web application. While doing so, we will try to answer some
questions such as: which operating system should I use, how do I run my ap-
plication, how do I ensure my application will be restarted after a reboot or a
crash, and how do I log data.

16.1 Where to Host your Application?

The easiest and fastest way to host your application is to host it in the cloud.

PharoCloud1, for example, proposes pre-packaged solutions (including Sea-
side, Pier and database support) as well as the possibility to use your own
Pharo image. You could start very quickly from there but you do not have
full control of your Pharo stack. It is however enough in most cases as Pharo-
Cloud manages the defaults for you.

There are many other cloud providers including Amazon AWS2, Openshift3,
OVH4 and Microsoft Azure5. Many Pharo users use DigitalOcean6 as it is both
simple and cheap. Choose your cloud provider according to your needs.

1http://pharocloud.com
2https://aws.amazon.com/
3https://www.openshift.com/
4https://www.ovh.com/
5http://azure.microsoft.com
6https://www.digitalocean.com/

261

http://pharocloud.com
https://aws.amazon.com/
https://www.openshift.com/
https://www.ovh.com/
http://azure.microsoft.com
https://www.digitalocean.com/
http://pharocloud.com
https://aws.amazon.com/
https://www.openshift.com/
https://www.ovh.com/
http://azure.microsoft.com
https://www.digitalocean.com/

Deploying a Pharo Web Application in Production

In the rest of this chapter, we detail how to setup a server to host a Pharo
web application.

16.2 Which Operating System?

Many Pharo developers use Mac OS X to develop their applications but it is
not a popular solution for a production deployment due to a lack of dedi-
cated Apple server hardware. A popular deployment OS is GNU/Linux. De-
ploying on Windows is a bit more complex and less supported by cloud providers.

There are many Linux distributions to choose from. If you restrict your choice
to well-known free open-source distributions, competitors are Centos7, De-
bian8 and Ubuntu9. Most distributions will do the job, choose the most ap-
propriate for you. A long-term support (aka., LTS) version is a good option if
you do not want to update your operating system too often. The Pharo Vir-
tual Machine (VM) comes pre-packaged for some distributions. For other dis-
tributions, you will have to compile the VM sources yourself. Pay attention
that the Pharo VM is still 32bits as of early 2016 and you will have to install
32-bit libraries on your 64-bit Operating System.

16.3 Build your Image

The best option to obtain a clean image to deploy is to start from a fresh sta-
ble pharo image10 and to install the required packages through your appli-
cation’s Metacello configuration (read more in the Deep into Pharo book) and
the command line handler. The configuration has to explicitely describe all
dependencies used in your application.

First, create a copy of the clean image with your application name:

$./pharo Pharo.image save myapp

Then, install your dependencies:

$./pharo myapp.image config \
http://www.smalltalkhub.com/mc/Me/MyApp/main \
ConfigurationOfMyApp --install=stable

==
Notice: Installing ConfigurationOfMyApp stable
==
[...]

After loading all necessary code, the config option will also save the image
so that the image now permanently includes your code.

7http://www.centos.org
8http://www.debian.org
9http://www.ubuntu.com

10http://files.pharo.org/image/stable/latest.zip

262

http://www.centos.org
http://www.debian.org
http://www.debian.org
http://www.ubuntu.com
http://files.pharo.org/image/stable/latest.zip
http://files.pharo.org/image/stable/latest.zip
http://www.centos.org
http://www.debian.org
http://www.ubuntu.com
http://files.pharo.org/image/stable/latest.zip

16.4 Run your Application

To make sure that your deployment image is reproducible, the best approach
is to create a Continuous Integration job that automatically produces clean
deployment-ready images of your application.

16.4 Run your Application

When you have a Pharo image with your application inside, the next step
is to start the application. To make this process reproducible, it is recom-
mended to create a dedicated file (e.g., named myapp.st) with the instruc-
tions needed to start your application. Here is an example of a script used to
start a web application using Zinc.

ZnServer defaultOn: 8080.
ZnServer default logToStandardOutput.
ZnServer default delegate

map: 'image'
to: MyFirstWebApp new;

map: 'redirect-to-image'
to: [:request | ZnResponse redirect: 'image'];

map: '/'
to: 'redirect-to-image'.

ZnServer default start

This script starts an instance of the Zinc Web Server on localhost on the
port 8080 and stores it as the default instance. It configures the Zinc instance
to log on the standard output and changes the default root (/) handler to
redirect to your new /image web app. The MyFirstWebApp class is from
chapter Small Web Application, it handles HTTP requests by implementing
the #handleRequest: message.

You can test the startup script like this:

$./pharo myapp.image myapp.st
2013-07-10 11:46:58 660707 I Starting ZnManagingMultiThreadedServer

HTTP port 8080
2013-07-10 11:46:58 670019 D Initializing server socket
2013-07-10 11:47:12 909356 D Executing request/response loop
2013-07-10 11:47:12 909356 I Read a ZnRequest(GET /)
2013-07-10 11:47:12 909356 T GET / 302 16B 0ms
2013-07-10 11:47:12 909356 I Wrote a ZnResponse(302 Found

text/plain;charset=utf-8 16B)
2013-07-10 11:47:12 909356 I Read a ZnRequest(GET /image)
2013-07-10 11:47:12 909356 T GET /image 200 282B 0ms
2013-07-10 11:47:12 909356 I Wrote a ZnResponse(200 OK

text/html;charset=utf-8 282B)
2013-07-10 11:47:12 909356 I Read a ZnRequest(GET /image?raw=true)
2013-07-10 11:47:12 909356 T GET /image?raw=true 200 18778B 82ms
2013-07-10 11:47:12 909356 I Wrote a ZnResponse(200 OK image/png

18778B)

263

Deploying a Pharo Web Application in Production

Type Ctrl-c to kill the server.

In Unix systems, init scripts are used to automatically start services when
the server reboots and to monitor the status of these services. These scripts
typically have a start command, a stop command and a status command
(some init scripts have more than these 3 commands). Your application’s init
script should be configured to be automatically executed when the server
restarts. This init script is typically placed in the /etc/init.d directory.

You can find a template for such an init script in the GitHub pharo deploy-
ment scripts repository11, named pharo-service-script.sh. Give this
script the name of your application. This script is derived from the template
provided by the Ubuntu distribution in /etc/init.d/skeleton.

In the same repository, the pharo-run-script.sh is another useful script.
It runs a Pharo image with a pre-defined Smalltalk script file to evaluate (i.e.
the myapp.st you wrote above). You may need to edit this file to configure
the Pharo VM path and options. To use this script, create a folder with your
application name myapp, then copy the pharo-run-script.sh script into
this folder with name myapp as well. Give the script execution permissions:
chmod a+x ./myapp.

You should end with a file hierarchy like this one:

• /etc/init.d/myapp (init script)

• /opt/myapp

– myapp (generic pharo run script)

– myapp.st (image startup script)

– myapp.image

– myapp.changes

• /usr/bin/pharo-vm

When the file hierarchy is ready, you can start your application by executing
the ./myapp script or by using the init script at the command line by execut-
ing service myapp start.

16.5 Dealing with Crashes

When the Pharo image crashes (which will happen), there must be a way to
automatically recover from this crash. For this to work, the application data
must be backed up, there must be a way to know when the application has
crashed, and there must be a way to automatically restart the application.

11https://github.com/pharo-project/pharo-deployment-scripts

264

https://github.com/pharo-project/pharo-deployment-scripts
https://github.com/pharo-project/pharo-deployment-scripts
https://github.com/pharo-project/pharo-deployment-scripts

16.5 Dealing with Crashes

To avoid data loss, the simplest solution is to make your image stateless: if
your image crashes, no data should be lost because no data is in the image. If
your application requires persistent data (e.g., user accounts), the best is to
use a database (e.g., PostgreSQL, MongoDB). You must then make sure that
your database is backed up properly.

To automatically restart your application when it crashes, there must be a
way to detect that it has crashed. With a standard operating system’s init
script such as the one described above, you can use the status command to
detect if Pharo is running or not. We will later discuss how to handle a frozen
Pharo.

A simple solution to both monitor your application and take appropriate ac-
tions (e.g., restart) is to use the monit utility12. In the remainder of this sec-
tion we will show how to configure monit.

Monit Dashboard

You can first activate the embedded HTTP dashboard of monit. This monit
configuration, only allows local connections with a dedicated username and
password pair.

set httpd port 2812 and
use address localhost # only accept connection from localhost
allow localhost # allow localhost to connect to the server
allow admin:monit # require user 'admin' with pass 'monit'

Apply the new configuration:

$ sudo monit reload

To connect from a different place than localhost, use an SSH tunnel. For ex-
ample, if the server running both your application and monit is named my-
server.com, execute the following to connect to your server and open a lo-
cal port:

$ ssh -L 2812:localhost:2812 myserver.com

Keep the SSH connection open, and browse http://localhost:2812 to display the
monit dashboard.

Email Settings

If you want notifications from monit, you need to configure email settings so
that monit can send emails. Edit the monit configuration file again and add a
line to set the mail server:

set mailserver <smtp.domain>

For more monit configuration options, refer to the monit documentation.

12https://mmonit.com/monit

265

https://mmonit.com/monit
http://localhost:2812
https://mmonit.com/monit

Deploying a Pharo Web Application in Production

Monitor System Services

Configuration files related to an application (or a service) should be put into
the /etc/monit/monitrc.d directory (which is more modular than putting
everything in the core configuration file). To enable a configuration just
symlink it to conf.d. We will first enable a pre-defined configuration for
SSH.

$ sudo ln -s /etc/monit/monitrc.d/openssh-server
/etc/monit/conf.d/openssh-server

$ sudo monit reload

Warning: default configurations for well-known services are provided by
monit but may require some adaptations (e.g., wrong path to the PID file).

To check for errors, you may need to run monit in verbose mode:

$ sudo monit -v

and check the monit error log, by default in /var/log/monit.log.

Monit Configuration to Control a Pharo Application

Application-specific configuration files must be added to the /etc/monit/-
monitrc.d directory. Create a new myapp file in this directory:

alert me@domain.com

check process myapp with pidfile /var/run/myapp.pid
start program = "/etc/init.d/myapp start"
stop program = "/etc/init.d/myapp stop"
if 5 restarts within 5 cycles

then timeout

With this in place, when a problem occurs, the alert instruction makes sure
me@domain.com is notified by email. The kind of monitoring is described
with the check command. We ask monit to check a given PID file. If there is
no PID or no process associated to the PID, monit will start the program with
the given instruction. The last instruction prevents infinite loops if there is
a problem with the script. The following then activates the monitoring of
myapp:

$ sudo ln -s /etc/monit/monitrc.d/myapp /etc/monit/conf.d/myapp
$ sudo monit reload

At this point, you have ensured you have a running Pharo image at any time.

Monit Configuration for a Pharo Web Application

A Pharo image may be running, i.e. the process is alive, but not responding
to HTTP requests. In such cases, your application is unusable. This unrespon-
sive state can be verified by sending a simple HTTP request and checking for

266

16.6 Put an HTTP server in front of your web application

the response. We can ask monit to monitor your web server by doing regular
checks to a predifined URL and validating the HTTP response content:

alert me@domain.com

check process myapp with pidfile /var/run/myapp.pid
start program = "/etc/init.d/myapp start"
stop program = "/etc/init.d/myapp stop"
if failed (url http://localhost:8080/ping

and content == "pong"
and timeout 10 seconds)
then restart

if 5 restarts within 5 cycles
then timeout

This configuration will try to connect to the /ping URL on localhost. If monit
can not connect, or no answer arrives before 10 seconds, or the content is
not exactly pong, monit will restart the application.

You may also want to monitor Apache if there is an Apache server in front of
your application. You can do that by adapting the already existing apache2
monit configuration file:

if failed host localhost port 80 with protocol http with timeout 25
seconds for 4 times within 5 cycles then restart

Activate the Apache monitoring and reload the monit configuration:

$ sudo ln -s /etc/monit/monitrc.d/apache2 /etc/monit/conf.d/apache2
$ sudo monit reload

You are done! Your Pharo aplication is now monitored.

16.6 Put an HTTP server in front of your web application

It is a good idea to put a web server like Apache or Nginx in front of a Pharo
web application. Mature web servers fully implement standards and com-
moditized functionalities, e.g. virtual host handling (multiple domains on the
same IP address), URL rewriting, etc. They are also more stable, have built-in
mechanisms for binding to privileged ports below 1024 as root and then ex-
ecuting as a non-privileged user, and are more robust to attacks. They can
also be used to serve static content and to display a maintenance page.

Apache

Here is a simple Apache configuration that can be used to redirect the incom-
ing internet traffic on the default HTTP port (80) to your Pharo web applica-
tion running on the local interface on the port 8080.

267

Deploying a Pharo Web Application in Production

<VirtualHost *:80>
ServerName mydomain.com
#ServerAlias anothercooldomain.org

ProxyPreserveHost On
ProxyRequests Off
<Proxy *>

Order allow,deny
Allow from all

</Proxy>
ProxyPass / http://127.0.0.1:8080/
ProxyPassReverse / http://127.0.0.1:8080/

ErrorLog /var/log/apache2/myapp-error.log
CustomLog /var/log/apache2/myapp-access.log combined

</VirtualHost>

The first section declares the full server name (including the domain), the
second one activates the proxy to forward the traffic to your Pharo web ap-
plication, and the last one creates dedicated log files.

Nginx

The following configuration also redirects the incoming traffic to the default
HTTP port (80) of your Pharo web application running on the local interface
on the port 8080.

server {
listen 80;
server_name mydomain.com;

access_log /var/log/nginx/myapp-access.log;
error_log /var/log/nginx/myapp-error.log;

location / {
proxy_set_header Host $host;
proxy_pass http://127.0.0.1:8080;

}
}

With this simple configuration, you will get a more secure and flexible con-
figuration of your web application.

16.7 Conclusion

In this chapter we have seen how to deploy a Pharo web application. We pre-
sented places where to deploy and gave insights as to which operating sys-
tem to use. We then talked about how to deploy and run a Pharo web appli-

268

16.7 Conclusion

cation. Lastly we discussed how to monitor Pharo with monit and putting a
HTTP server in front of the web application.

This chapter ends the Enterprise Pharo book. We hope you enjoyed learning
about this set of libraries and frameworks, and that they prove useful for
you. We wish you success!

269

	Illustrations
	Simple Web applications
	Teapot
	Getting Started
	Differences between Teapot and other Web Frameworks

	A REST Example, Showing some CRUD Operations
	Route
	Parameters in URLs
	Using Regular Expressions
	How are Routes Matched?
	Aborting

	Transforming Output from Actions
	Response Transformers

	Before and After Filters
	Error Handlers
	Serving Static Files
	Conclusion

	Building and Deploying a Small Web application
	Saying Hello World
	Debugging our Web App

	Serving an HTML Page With an Image
	Serving an Image

	Allowing Users to Upload an Image
	Live Debugging
	Image Magic
	Adding Tests
	Saving Code to a Repository
	The Monticello Browser
	Committing to SmalltalkHub
	Defining a Project Configuration

	Running a Real Cloud Server
	Create a Droplet
	Deploy for Production

	Have Fun Extending this Web App
	Hint 1
	Hint 2
	Hint 3
	Solution, Part 1, New Methods
	Solution, Part 2, Changed Methods
	Solution, Part 3, Updated Configuration

	Conclusion

	HTTP
	Character Encoding and Resource Meta Description
	Character Encoding
	Characters and Strings use Unicode Internally
	Encoding and Decoding
	Converting Strings and ByteArrays
	Converting Streams
	ByteStrings and WideStrings are Concrete Subclasses of String
	ByteString and ByteArray Equivalence is an Implementation Detail
	Beware of Bogus Conversions
	Strict and Lenient Encoding
	Available Encoders

	Mime-Types
	Creating Mime-Types
	Working with Mime-Types

	URLs
	Creating URLs
	External and Internal Representation of URLs
	Relative URLs
	Operations on URLs
	Odds and Ends

	Zinc HTTP: The Client Side
	HTTP and Zinc
	Doing a Simple Request
	Basic Usage
	Simplified HTTP Requests

	HTTP Success ?
	Dealing with Networking Reality
	Building URL's
	Submitting HTML Forms
	Basic Authentication, Cookies and Sessions
	PUT, POST, DELETE and other HTTP Methods
	PUT and POST Methods
	DELETE and other Methods

	Reusing Network Connections, Redirect Following and Checking for Newer Data
	ZnClient Lifecycle
	Redirects
	If-Modified-Since

	Content-Types, Mime-Types and the Accept Header
	Headers
	Entities, Content Readers and Writers
	Downloading, Uploading and Signalling Progress
	Client Options, Policies and Proxies
	Conclusion

	Zinc HTTP: The Server Side
	Running a Simple HTTP Server
	Server Delegate, Testing and Debugging
	The Default Server Delegate
	Testing and Debugging

	Server Authenticator
	Logging
	Server Variants and Life Cycle
	Static File Server
	Dispatching
	Character Encoding
	Resource Protection Limits, Content and Transfer Encoding
	Seaside Adaptor
	Scripting a REST Web Service with Zinc
	The Server Code
	Using the Server
	A Zinc Client

	Conclusion

	WebSockets
	An Introduction to WebSockets
	The WebSocket Protocol
	Source Code
	Using Client Side WebSockets
	Using Server-Side WebSockets
	Building a Pharo Statistics Web Page
	Building a Web Chat
	A Quick Tour of Zinc WebSocket Implementation
	Live Demo
	Conclusion

	Data
	NeoCSV
	NeoCSV
	An Introduction to CSV
	Hands On NeoCSV

	Generic Mode
	Customizing NeoCSVWriter
	Writing Objects

	Customizing NeoCSVReader
	Ignoring Fields
	Creating Objects
	Reading many Objects

	NeoJSON
	An Introduction to JSON
	NeoJSON
	Primitives
	Generic Mode
	Reading from JSON
	Writing to JSON

	Schemas and Mappings
	Emitting null Values
	Conclusion

	STON: a Smalltalk Object Notation
	Introduction
	STON Features and Limitations
	Loading STON
	Serializing and Materializing Objects
	Serializing a Rectangle
	Materializing a Rectangle
	Serialization of Maps, Lists and Class Tags
	A Large Example: an HTTP Response

	How Values are Encoded
	Primitive Values
	Numbers
	Strings
	Symbols
	Booleans
	The UndefinedObject

	Object Values
	Lists
	Maps
	Objects
	References

	Custom Representations of Objects
	Default Custom Representations
	Time
	Date
	Date and Time
	Point
	ByteArray
	Character
	Associations

	Creating a Custom Representation

	Usage
	Simple Reading and Writing
	Supporting Comments
	Configuring the Writer
	Compatibility with JSON

	Handling CR, LF inside Strings
	Conclusion
	Appendix: BNF

	Serializing Complex Objects with Fuel
	General Information
	Goals
	Installation and Demo
	Some Links

	Getting Started
	Basic Examples
	FileStream
	Compression
	Showing a Progress Bar

	Managing Globals
	Default Globals
	Duplication of Custom Globals
	Changing the Environment

	Customizing the Graph
	Ignoring Instance Variables
	Post-Materialization Action
	Substitution on Serialization
	Dynamically
	Statically

	Substitution on Materialization
	Global References
	Hooking into Instance Creation

	Not Serializable Objects

	Errors
	Object Migration
	Fuel Format Migration
	Built-in Header Support
	Conclusion

	Persisting Objects with Voyage
	Setup
	Load Voyage
	Install MongoDB
	Create A repository
	Singleton Mode and Instance Mode
	Voyage API
	Resetting or Dropping the Database Connection

	Storing Objects
	Basic Storage
	Embedding Objects
	Referencing other Roots
	Breaking Cycles in Graphs
	Storing Instances of Date in Mongo

	Enhancing Storage
	Configuring Storage
	Custom Loading and Saving of Attributes
	A few Words Concerning the OID

	Querying in Voyage
	Basic Object Retrieval using Blocks or MongoQueries
	Quering with Elements from another Root Document
	Using the at: Message to Access Embedded Documents
	Using the where: Message to Perform Javascript Comparisons

	Using JSON Queries
	Querying for an Object by OID
	Using dot Notation to Access Embedded Documents
	Expressing OR Conditions in the Query
	Going Beyond MongoQueries Features

	Executing a Query
	Basic Object Retrieval
	Limiting Object Retrieval and Sorting
	A Simple Paginator Example

	Creating and Removing Indexes
	Creating Indexes by using OSProcess
	Verifying the use of an Index

	Conclusion

	Presentation
	Mustache Templates for Pharo
	Getting Started
	Tags as Variables
	Sections
	With the Variable Value being a 'simple' Object
	With the Variable Value being a Collection
	With the Variable Value being a Block
	Inverted Sections

	Partial templates
	Miscellaneous
	Templates made Easy

	Cascading Style Sheets with RenoirSt
	Getting Started
	Defining the Rules
	Basic CSS Types
	Lengths, Angles, Times and Frequencies
	Colors
	Constants
	Several Property Values
	URLs

	Comments
	Functional Notation
	Mathematical Expressions
	Toggling Between Values
	Attribute References
	Gradients
	Box Shadows

	Defining the selectors
	Type Selectors
	Combinators
	Attribute Selectors
	Pseudo-Classes
	Language Pseudo-Class:
	Negation Pseudo-Class:
	Structural Pseudo-Classes

	Pseudo-Elements

	Important Rules
	Media Queries
	Vendor-Specific Extensions
	Font Face Rules
	Interaction with other Frameworks and Libraries
	Units
	Seaside

	Documenting and Presenting with Pillar
	Introduction
	Pillar Users

	5 Minutes Tutorial
	Installing and Exporting your First Document
	Changing the output folder

	Configuring a Document
	Exporting a Different Content Using a Template
	Archetype - A Pillar skeleton maker

	Writing Pillar Documents
	Meta-Information
	Chapters & Sections
	Paragraphs and Framed Paragraphs
	Lists
	Unordered Lists
	Ordered Lists
	Definition Lists
	List Nesting

	Formatting
	Tables
	Links
	Internal Links and Anchors
	External Links
	Semantic Links

	Pictures
	Scripts
	Script with a Label or Caption
	Syntax Highlighting
	Script with Line Numbers
	Script from an External File
	Generate a Part of your Document with a Script

	Structures
	Raw
	Annotations
	InputFile Annotation
	Footnotes Annotation
	Citations
	Slide Annotation
	Columns

	Preformatted (less used)
	Commented Lines
	Escaping Characters

	Configuring your Output
	Configuration File
	Configuration Parameters
	baseDirectory
	configurations
	defaultExporters
	defaultScriptLanguage
	disabledPhases
	headingLevelOffset
	inputFile
	level1
	level2
	level3
	level4
	level5
	metadata
	newLine
	outputDirectory
	outputFile
	outputType
	renderStructureAsSlide
	scrambledEmailAddresses
	separateOutputFiles
	slideInTemplateForDeckJS
	verbose

	Templating
	Command-Line Interface
	Pillar from Pharo
	How to Create a Pillar Document
	How to Export a Document

	Conclusion

	Generate PDF Documents with Artefact
	Overview of Artefact
	Concepts, Key Aspects and Limits

	Getting Started in 10 Minutes
	Installing Artefact
	Executing the First Demo's
	Finally 34Hello World!34

	Document Definition
	Page Addition
	Document Properties
	Document Format and Orientation
	Compression
	Controling Document Opening

	Setting Meta Information

	Pages, Formats and Models
	Page Creation
	Templates

	Elements
	Composing and Placement
	Element Positioning
	Element Size

	Simple Elements
	Text and Images
	Geometric Shapes

	Composite Elements
	Advanced Text
	Drawing Arrows
	Report Creation

	Stylesheets for Newbies
	Stylesheet Elements
	Fonts
	Dots
	Colors and Shades of Gray
	Drawing Thickness
	Alignment

	Abstracting a Style
	Stylesheet Application

	Create your own PDF Composite Elements
	Clock Creation
	Make the Clock Personalizable

	Conclusion

	Deployment
	Deploying a Pharo Web Application in Production
	Where to Host your Application?
	Which Operating System?
	Build your Image
	Run your Application
	Dealing with Crashes
	Monit Dashboard
	Email Settings
	Monitor System Services
	Monit Configuration to Control a Pharo Application
	Monit Configuration for a Pharo Web Application

	Put an HTTP server in front of your web application
	Apache
	Nginx

	Conclusion

