
AC network analysis

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

Resources and methods for learning about these subjects (list a few here, in preparation for your
research):
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Questions

Question 1

Complex number arithmetic makes possible the analysis of AC circuits using (almost) the exact same
Laws that were learned for DC circuit analysis. The only bad part about this is that doing complex-number
arithmetic by hand can be very tedious. Some calculators, though, are able to add, subtract, multiply,
divide, and invert complex quantities as easy as they do scalar quantities, making this method of AC circuit
analysis relatively easy.

This question is really a series of practice problems in complex number arithmetic, the purpose being
to give you lots of practice using the complex number facilities of your calculator (or to give you a lot of
practice doing trigonometry calculations, if your calculator does not have the ability to manipulate complex
numbers!).

Addition and subtraction:

(5 + j6) + (2− j1) = (10− j8) + (4− j3) = (−3 + j0) + (9− j12) =

(3 + j5)− (0− j9) = (25− j84)− (4− j3) = (−1500 + j40) + (299− j128) =

(25 6 15o) + (10 6 74o) = (1000 6 43o) + (1200 6 − 20o) = (522 6 71o)− (85 6 30o) =

Multiplication and division:

(25 6 15o)× (12 6 10o) = (1 6 25o)× (500 6 − 30o) = (522 6 71o)× (33 6 9o) =

10 6 −80o

1 6 0o
= 25 6 120o

3.5 6 −55o
= −66 6 67o

8 6 −42o
=

(3 + j5)× (2− j1) = (10− j8)× (4− j3) = (3+j4)
(12−j2) =

Reciprocation:

1
(15 6 60o)

= 1
(750 6 −38o)

= 1
(10+j3) =

1
1

15 6 45o
+ 1

92 6 −25o

= 1
1

1200 6 73o
+ 1

574 6 21o

= 1
1

23k 6 −67o
+ 1

10k 6 −81o

=

1
1

110 6 −34o
+ 1

80 6 19o
+ 1

70 6 10

= 1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 1
1

512 6 34o
+ 1

1k 6 −25o
+ 1

942 6 −20

+ 1

2.2k 6 44o

=

file 00860
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Question 2

Is it safe to close the breaker between these two alternators if their output frequencies are different?
Explain why or why not.

Fuse Fuse

Alternator Alternator

Off On

Breaker

220 VAC 220 VAC
60 Hz 45 Hz

file 01057
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Question 3

Given the output voltages of the two alternators, it is not safe to close the breaker. Explain why.

+

-

Fuse Fuse

Alternator
+

-

Alternator

Off On

Breaker

218 V ∠ 0o 216.5 V ∠ 37o

file 01056
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Question 4

A remote speaker for an audio system is connected to the amplifier by means of a long, 2-conductor
cable:

2-conductor cable

Speaker

Amplifier

This system may be schematically modeled as an AC voltage source connected to a load resistor:

2-conductor cable
SpeakerAmplifier

Suppose we decided to use the 2-conductor cable for more than just conveying an audio (AC) signal –
we want to use it to carry DC power as well to energize a small lamp. However, if we were to simply connect
the DC power source in parallel with the amplifier output at one end, and the lamp in parallel with the
speaker at the other, bad things would happen:

2-conductor cable
SpeakerAmplifier

DC source
Light bulbThis will not work!!

If we were to connect the components together as shown above, the DC power source will likely damage
the amplifier by being directly connected to it, the speaker will definitely be damaged by the application of
significant DC voltage to its coil, and the light bulb will waste audio power by acting as a second (non-audible)
load. Suffice to say, this is a bad idea.

Using inductors and capacitors as ”filtering” components, though, we can make this system work:
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2-conductor cable
SpeakerAmplifier

DC source Light bulb

C

C C

C
L

L
L

L

Apply the Superposition Theorem to this circuit to demonstrate that the audio and DC signals will
not interfere with each other as they would if directly connected. Assume that the capacitors are of such
large value that they present negligible impedance to the audio signal (ZC ≈ 0 Ω) and that the inductors
are sufficiently large that they present infinite impedance to the audio signal (ZL ≈ ∞).

file 01856

Question 5

Explain why this bridge circuit can never achieve balance:

C1

R2

R3

R4

AC
detector

file 01862
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Question 6

Calculate the impedance value necessary to balance this AC bridge, expressing your answer in both
polar and rectangular forms:

Z

1 kΩ 350 Ω

275 mH

400 Hz

file 01863

Question 7

Calculate the impedance value necessary to balance this AC bridge, expressing your answer in both
polar and rectangular forms:

Z

1 kΩ

350 Ω

600 Hz

275 mH

Also, describe what sort of device might be appropriate to serve as a ”null detector” to indicate when
bridge balance has been achieved, and where this device would be connected to in the bridge circuit.

file 00861
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Question 8

An AC bridge circuit commonly used to make precision measurements of inductors is the Maxwell-Wien

bridge. It uses a combination of standard resistors and capacitors to ”balance out” the inductor of unknown
value in the opposite arm of the bridge:

Rx

Lx

The Maxwell-Wien bridge

Cs

Rs

R

R

Suppose this bridge circuit balances when Cs is adjusted to 120 nF and Rs is adjusted to 14.25 kΩ. If
the source frequency is 400 Hz, and the two fixed-value resistors are 1 kΩ each, calculate the inductance
(Lx) and resistance (Rx) of the inductor being tested.

file 00862

Question 9

Electrical engineers often represent impedances in rectangular form for the sake of algebraic manipula-
tion: to be able to construct and manipulate equations involving impedance, in terms of the components’
fundamental values (resistors in ohms, capacitors in farads, and inductors in henrys).

For example, the impedance of a series-connected resistor (R) and inductor (L) would be represented
as follows, with angular velocity (ω) being equal to 2πf :

Z = R+ jωL

Using the same algebraic notation, represent each of the following complex quantities:

• Impedance of a single capacitor (C) =
• Impedance of a series resistor-capacitor (R, C) network =
• Admittance of a parallel inductor-resistor (L, R) network =
• Admittance of a parallel resistor-capacitor (R, C) network =

file 02117
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Question 10

Mathematical analysis of the Maxwell-Wien bridge is as follows:

Rx

Lx

The Maxwell-Wien bridge

Cs

Rs

R

R

Zx = Rx + jωLx Impedance of unknown inductance/resistance arm

Zs =
1

1
Rs
+ 1
−j 1

ωCs

Impedance of standard capacitance/resistance arm

Ys =
1

Rs

+ jωCs Admittance of standard capacitance/resistance arm

Zx

ZR

=
ZR

Zs

or
Zx

ZR

= ZRYs Bridge balance equation

Zx = R2Ys

Rx + jωLx = R2

(

1

Rs

+ jωCs

)

Rx + jωLx =
R2

Rs

+ jωR2Cs

Separating real and imaginary terms . . .

Rx =
R2

Rs

(Real)

jωLx = jωR2Cs (Imaginary)

Lx = R2Cs
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Note that neither of the two equations solving for unknown quantities (Rx =
R2

Rs
and Lx = R2Cs)

contain the variable ω. What does this indicate about the Maxwell-Wien bridge?
file 01861

Question 11

Suppose we have two equivalent LR networks, one series and one parallel, such that they have the exact
same total impedance (Ztotal):

"equivalent to"Rs

Xs

RpXp

Zs = Zp

We may write an equation for the impedance of each network in rectangular form, like this:

Zs = Rs + jXs (series network)

Zp =
1

1
Rp
− j 1

Xp

(parallel network)

Since we are told these two networks are equivalent to one another, with equal impedances, these two
expressions in rectangular form must also be equal to each other:

Rs + jXs =
1

1
Rp
− j 1

Xp

Algebraically reduce this equation to its simplest form, showing how Rs, Rp, Xs, and Xp relate.

Challenge question: combine the result of that simplification with the equations solving for scalar
impedance of series and parallel networks (Z2

s = R2
s +X2

s for series and Z
2
p =

1
1

R2
p

+ 1

X2
p

for parallel) to prove

the following transformative equations, highly useful for ”translating” a series network into a parallel network
and visa-versa:

Z2 = RpRs

Z2 = XpXs

file 03291
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Question 12

Determine the phase shift of the output voltage (Vout) with reference to the source voltage (0
o) for each

of the two switch positions, assuming the source frequency is such that XC = R:

Vsignal

Vout

R

RC

C

Note: you should be able to do all the necessary math mentally, without the aid of a calculating device!
file 03662

Question 13

This interesting bridge circuit is a variable phase-shifter. It works best when the excitation frequency
is such that XC = R in each arm of the bridge:

R

C R

C

Vout

Supposing that XC does equal R in each arm of the bridge, and that the potentiometer resistance is
sufficiently high to limit current through it to a negligible level (in other words, Rpot >> R). Calculate the
phase shift of Vout with respect to the excitation source voltage when:

• The potentiometer wiper is fully left:
• The potentiometer wiper is fully right:
• The potentiometer wiper is perfectly centered:

file 01599
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Question 14

This phase-shifting bridge circuit is supposed to provide an output voltage with a variable phase shift
from -45o (lagging) to +45o (leading), depending on the position of the potentiometer wiper:

Vout

R = 
1

ω CRpot

Rpot >> R

R1
C2

C1 R2

Suppose, though, that there is a solder ”bridge” between the terminals of resistor R1 on the circuit
board. What effect will this fault have on the output of the circuit? Be as complete as you can in your
answer.

file 03670

Question 15

This phase-shifting bridge circuit is supposed to provide an output voltage with a variable phase shift
from -45o (lagging) to +45o (leading), depending on the position of the potentiometer wiper:

R

C R

C

Vout

R = 
1

ω CRpot

Rpot >> R

Suppose, though, that the output signal is stuck at +45o leading the source voltage, no matter where
the potentiometer is set. Identify a likely failure that could cause this to happen, and explain why this failure
could account for the circuit’s strange behavior.

file 03464
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Question 16

This phase-shifting bridge circuit is supposed to provide an output voltage with a variable phase shift
from -45o (lagging) to +45o (leading), depending on the position of the potentiometer wiper:

R

C R

C

Vout

R = 
1

ω CRpot

Rpot >> R

Suppose, though, that the output signal is stuck at -45o lagging the source voltage, no matter where the
potentiometer is set. Identify a likely failure that could cause this to happen, and explain why this failure
could account for the circuit’s strange behavior.

file 03465

Question 17

This phase-shifting bridge circuit is supposed to provide an output voltage with a variable phase shift
from -45o (lagging) to +45o (leading), depending on the position of the potentiometer wiper:

R

C R

C

Vout

R = 
1

ω CRpot

Rpot >> R

Suppose, though, that the output signal registers as it should with the potentiometer wiper fully to the
right, but diminishes greatly in amplitude as the wiper is moved to the left, until there is practically zero
output voltage at the full-left position. Identify a likely failure that could cause this to happen, and explain
why this failure could account for the circuit’s strange behavior.

file 03466
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Question 18

Complex quantities may be expressed in either rectangular or polar form. Mathematically, it does not
matter which form of expression you use in your calculations.

However, one of these forms relates better to real-world measurements than the other. Which of these
mathematical forms (rectangular or polar) relates more naturally to measurements of voltage or current,
taken with meters or other electrical instruments? For instance, which form of AC voltage expression, polar
or rectangular, best correlates to the total voltage measurement in the following circuit?

V Ω

COMA

V Ω

COMA

V Ω

COMA

file 01072

Question 19

Why are polarity marks (+ and -) shown at the terminals of the components in this AC network?

24 V ∠ 0o

15.46 V ∠ 49.88o

18.65 V ∠ -40.12o

0.29 V ∠ 139.9o

Are these polarity markings really necessary? Do they make any sense at all, given the fact that AC by
its very nature has no fixed polarity (because polarity alternates over time)? Explain your answer.

file 01054
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Question 20

You should know that the line voltage of a three-phase, Y-connected, balanced system is always greater
than the phase voltage by a factor of

√
3.

120 V ∠ 0o 120 V ∠ 120o

120 V ∠ 240o

208 V

Apply Kirchhoff’s Voltage Law (KVL) to the upper ”loop” in this Y-connected alternator schematic to
prove how 120 V 6 0o and 120 V 6 120o makes 208 V. Show the ”polarity” marks for each of the voltages
as part of your answer.

file 01055

Question 21

Draw a phasor diagram of the voltages in this Delta-connected polyphase system, and use trigonometry
to calculate the voltage between points G and B.

A

B

C

G

480 V ∠ 0o

480 V ∠ 120o480 V ∠ 240o

file 01059
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Question 22

Calculate the load impedance ”seen” by the source, through the ideal transformer with a winding turns
ratio of 4:1.

30 V
150 Hz

4:1

5 kΩ

0.47 µF

0.22 µF Zload = ???

file 01060

Question 23

Calculate all voltage drops in this circuit, expressing your answers in complex (polar) form:

100 mH

0.1 µF 0.1 µF 0.1 µF 0.1 µF

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

Load

k

V Ω

COMA

The load resistor’s color code is as follows:

Brown, Black, Black, Brown, Violet

Assume the resistor’s error is 0%. That is, its resistance value is precisely equal to what the ”digit” and
”multiplier” color bands declare. The signal generator’s output is 25 volts RMS, at a frequency of 2 kHz.

Challenge question: what practical function does this circuit perform?
file 01071
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Question 24

Don’t just sit there! Build something!!

Learning to mathematically analyze circuits requires much study and practice. Typically, students
practice by working through lots of sample problems and checking their answers against those provided by
the textbook or the instructor. While this is good, there is a much better way.

You will learn much more by actually building and analyzing real circuits, letting your test equipment
provide the ”answers” instead of a book or another person. For successful circuit-building exercises, follow
these steps:

1. Carefully measure and record all component values prior to circuit construction.
2. Draw the schematic diagram for the circuit to be analyzed.
3. Carefully build this circuit on a breadboard or other convenient medium.
4. Check the accuracy of the circuit’s construction, following each wire to each connection point, and
verifying these elements one-by-one on the diagram.

5. Mathematically analyze the circuit, solving for all voltage and current values.
6. Carefully measure all voltages and currents, to verify the accuracy of your analysis.
7. If there are any substantial errors (greater than a few percent), carefully check your circuit’s construction
against the diagram, then carefully re-calculate the values and re-measure.

For AC circuits where inductive and capacitive reactances (impedances) are a significant element in
the calculations, I recommend high quality (high-Q) inductors and capacitors, and powering your circuit
with low frequency voltage (power-line frequency works well) to minimize parasitic effects. If you are on
a restricted budget, I have found that inexpensive electronic musical keyboards serve well as ”function
generators” for producing a wide range of audio-frequency AC signals. Be sure to choose a keyboard ”voice”
that closely mimics a sine wave (the ”panflute” voice is typically good), if sinusoidal waveforms are an
important assumption in your calculations.

As usual, avoid very high and very low resistor values, to avoid measurement errors caused by meter
”loading”. I recommend resistor values between 1 kΩ and 100 kΩ.

One way you can save time and reduce the possibility of error is to begin with a very simple circuit and
incrementally add components to increase its complexity after each analysis, rather than building a whole
new circuit for each practice problem. Another time-saving technique is to re-use the same components in a
variety of different circuit configurations. This way, you won’t have to measure any component’s value more
than once.

file 00605
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Answers

Answer 1

Addition and subtraction:

(5 + j6) + (2− j1) = (10− j8) + (4− j3) = (−3 + j0) + (9− j12) =
7+ j5 14− j11 6− j12

(3 + j5)− (0− j9) = (25− j84)− (4− j3) = (−1500 + j40) + (299− j128) =
3+ j14 21− j81 −1201− j88

(25 6 15o) + (10 6 74o) = (1000 6 43o) + (1200 6 − 20o) = (522 6 71o)− (85 6 30o) =
31.35 6 30.87o 1878.7 6 8.311o 461.23 6 77.94o

Multiplication and division:

(25 6 15o)× (12 6 10o) = (1 6 25o)× (500 6 − 30o) = (522 6 71o)× (33 6 9o) =
300 6 25o 500 6 − 5o 17226 6 80o

10 6 −80o

1 6 0o
= 25 6 120o

3.5 6 −55o
= −66 6 67o

8 6 −42o
=

10 6 − 80o 7.142 6 175o 8.25 6 − 71o

(3 + j5)× (2− j1) = (10− j8)× (4− j3) = (3+j4)
(12−j2) =

11+ j7 16− j62 0.1892+ j0.3649

Reciprocation:

1
(15 6 60o)

= 1
(750 6 −38o)

= 1
(10+j3) =

0.667 6 − 60o 0.00133 6 38o 0.0917− j0.0275

1
1

15 6 45o
+ 1

92 6 −25o

= 1
1

1200 6 73o
+ 1

574 6 21o

= 1
1

23k 6 −67o
+ 1

10k 6 −81o

=

14.06 6 36.74o 425.7 6 37.23o 7.013k 6 − 76.77o

1
1

110 6 −34o
+ 1

80 6 19o
+ 1

70 6 10

= 1
1

89k 6 −5o
+ 1

15k 6 33o
+ 1

9.35k 6 45

= 1
1

512 6 34o
+ 1

1k 6 −25o
+ 1

942 6 −20

+ 1

2.2k 6 44o

=

29.89 6 2.513o 5.531k 6 37.86o 256.4 6 9.181o

Answer 2

When the frequencies of two or more AC voltage sources are different, the phase shift(s) between them
are constantly changing.

Follow-up question: what must be done to make the two alternators’ frequencies equal to each other?
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Answer 3

The greatest problem with closing the breaker is the 37o phase shift between the two alternators’ output
voltages.

Follow-up question: what must be done to bring the two alternator voltages into phase with each other?

Challenge question: once the breaker is closed, can the two alternators ever fall out of phase with each
other again?

Answer 4

As each source is considered separately, the reactive components ensure each load receives the correct
source voltage, with no interference.

Answer 5

Even though impedance magnitudes may be balanced, the phase angles cannot.

Follow-up question: explain why it would not work to use an oscilloscope as the ”detector” in this bridge
circuit:

A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Hint: beware of ground connections!

Challenge question: explain how you could use this same oscilloscope as the detector in this bridge
circuit without changing the ground location at the lower terminal of the AC source.

Answer 6

Z = 1.975 kΩ 6 90o (polar form)
Z = 0 + j1.975 kΩ (rectangular form)

Follow-up question: what type and size of component will provide this exact amount of impedance at
400 Hz?
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Answer 7

Z = 337.6 Ω 6 -90o (polar form)
Z = 0 - j337.6 Ω (rectangular form)

The simplest ”null detector” for this type of AC bridge would be a sensitive pair of audio headphones,
as 600 Hz is well within the audio range, and would be heard as a tone in the headphones.

Follow-up question: what type and size of component will provide this exact amount of impedance at
600 Hz?

Answer 8

Lx = 120 mH
Rx = 70.175 Ω

Answer 9

• Impedance of a single capacitor (C) = −j 1
ωC

• Impedance of a series resistor-capacitor (R, C) network = R− j 1
ωC

• Admittance of a parallel inductor-resistor (L, R) network = 1
R
− j 1

ωL

• Admittance of a parallel resistor-capacitor (R, C) network = 1
R
+ jωC

Answer 10

This means the source frequency is irrelevant to bridge balance.
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Answer 11

Due to the complexity of the algebra, I will show the complete solution here:

Rs + jXs =
1

1
Rp
− j 1

Xp

(Rs + jXs)

(

1

Rp

− j
1

Xp

)

= 1

Rs

Rp

− j
Rs

Xp

+ j
Xs

Rp

− j2
Xs

Xp

= 1

Rs

Rp

− j
Rs

Xp

+ j
Xs

Rp

+
Xs

Xp

= 1

Rs

Rp

+
Xs

Xp

+ j

(

Xs

Rp

−
Rs

Xp

)

= 1

Separating real and imaginary terms . . .

Rs

Rp

+
Xs

Xp

= 1 (Real)

j

(

Xs

Rp

−
Rs

Xp

)

= j0 (Imaginary)

Just working with the imaginary equation now . . .

j

(

Xs

Rp

−
Rs

Xp

)

= j0

Xs

Rp

−
Rs

Xp

= 0

Xs

Rp

=
Rs

Xp

XpXs = RpRs (Solution)

In answer to the challenge question, where we now introduce scalar relationships for series and parallel
networks:

Z2
s = R2

s +X2
s Series impedance

Z2
p =

1
1

R2
p
+ 1

X2
p

Parallel impedance

Solving each scalar impedance equation for reactance X. . .

X2
s = Z2

s −R2
s X2

p =
1

1
Z2

p
− 1

R2
p
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Preparing the original solution for subsitution . . .

XpXs = RpRs

(XpXs)
2 = (RpRs)

2

X2
pX

2
s = R2

pR
2
s

Subsituting these definitions for reactance into this prepared equation . . .

(

1
1

Z2
p
− 1

R2
p

)

(

Z2
s −R2

s

)

= R2
pR

2
s

Z2
s −R2

s = (R
2
pR

2
s)

(

1

Z2
p

−
1

R2
p

)

Z2
s −R2

s =
R2

pR
2
s

Z2
p

−
R2

pR
2
s

R2
p

Z2
s −R2

s =
R2

pR
2
s

Z2
p

−R2
s

Z2
s =

R2
pR

2
s

Z2
p

Z2
pZ

2
s = R2

pR
2
s

(ZpZs)
2 = (RpRs)

2

√

(ZpZs)2 =
√

(RpRs)2

ZpZs = RpRs

Since the two networks are known to be equivalent, Zp = Zs, which I will now simply label as Z. . .

ZZ = RpRs

Z2 = RpRs (Solution)

And since we know that RpRs = XpXs as well . . .

Z2 = XpXs (Solution)

Follow-up question: the original equivalent networks were comprised of a resistor (R) and an inductor
(L). Show that these solutions (Z2 = RpRs and Z2 = XpXs) hold true for resistor-capacitor series and
parallel equivalent networks as well.
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Answer 12

Switch left: Θ = -45o (Vout lagging behind the source voltage)

Switch right: Θ = +45o (Vout leading ahead of the source voltage)

Follow-up question: identify the effects of various component failures in this circuit.

Answer 13

• The potentiometer wiper is fully left: Θ = −45o

• The potentiometer wiper is fully right: Θ = 45o

• The potentiometer wiper is perfectly centered: Θ = 0o

Follow-up question: this circuit works best with the excitation frequency is such that XC = R. Write a
formula that solves for the necessary frequency (f) to achieve this condition given a certain value of R.

Answer 14

With such a ”shorted” failure onR1, there will be full source voltage at the output with the potentiometer
wiper at the full-left position (no attenuation, no phase shift). The output voltage at the full-right wiper
position will be mostly unaffected.

Follow-up question: identify another possible component failure that would exhibit the same symptoms.

Answer 15

A broken connection between the left-hand terminal of the potentiometer and the bridge could cause
this to happen:

R

C R

C

Vout

break!

I’ll let you figure out why!
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Answer 16

A broken connection between the right-hand terminal of the potentiometer and the bridge could cause
this to happen:

R

C R

C

Vout

break!

I’ll let you figure out why!

Answer 17

An open failure of the fixed resistor in the upper-left arm of the bridge could cause this to happen:

C R

C

Vout

fa
ile

d 
op

en
!

Follow-up question: identify another possible component failure that would exhibit the same symptoms.

Answer 18

Polar form relates much better to the voltmeter’s display of 5 volts.

Follow-up question: how would you represent the total voltage in this circuit in rectangular form, given
the other two voltmeter readings?

Answer 19

The polarity markings provide a frame of reference for the phase angles of the voltage drops.

24



Answer 20

(120 V 6 0o) - (120 V 6 120o) = 208 V 6 -30o

(120 V 6 120o) - (120 V 6 0o) = 208 V 6 150o

120 V ∠ 0o 120 V ∠ 120o

208 V ∠ -30o

120 V ∠ 0o 120 V ∠ 120o

208 V ∠ 150o

. . . or . . .

Answer 21

240 V

A G C

240 V

B
480 V

48
0 

V

VBG = 415.7 V

Answer 22

Zload = 541.7 Ω 6 -54.77o
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Answer 23

Hz

FUNCTION GENERATOR

1 10 100 1k 10k 100k 1M

outputDCfinecoarse

Load

k

13.9 V ∠ -95.7o

(each)

39.2 V ∠ 45.0o

(each)
16.6 V ∠ 12.9o

20.9 V ∠ 102.9o

This circuit is a high-pass filter.

Answer 24

Let the electrons themselves give you the answers to your own ”practice problems”!
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Notes

Notes 1

I suggest you let your students discover how to use the complex number facilities of their scientific
calculators on their own. My experience has been that students both young and old take to this challenge
readily, because they realize learning how to use their calculators will save them a tremendous amount of
hand calculations!

Notes 2

Ask your students to calculate how fast the voltages from these two alternators ”roll” in and out of
phase with each other.

Notes 3

Discuss the consequences of closing the breaker when there is such a large phase shift between the
two alternator output voltages. What will likely happen in the circuit if the breaker is closed under these
conditions?

Ask your students whether or not the discrepancy in output voltage (218 VAC versus 216.5 VAC) is of
any consequence in closing the breaker. Why is phase shift the only factor mentioned in the answer as a
reason not to close the breaker?

This question serves to illustrate alternator theory as well as AC network analysis principles. The
”phase-locking” phenomenon of two paralleled alternators is very important for students to understand if
they are to do any work related to AC power generation systems.

Notes 4

Such ”power-plus-data” strategies are made possible by the Superposition Theorem and the linearity of
resistors, capacitors, and inductors. If time permits, this would be a good opportunity to discuss ”power-line
carrier” systems, where high-frequency data is transmitted over power line conductors. The venerable X10
network system is an example for residential power wiring, while power distribution utilities have been using
this ”PLC” technology (the acronym not to be confused with Programmable Logic Controllers) for decades
over high-voltage transmission lines.

Notes 5

Explain to your students that AC bridges, while fundamentally the same as DC bridges, do have their
differences. Their knowledge of AC circuit calculations (with complex numbers) should be enough for them
to see why this is so.

Notes 6

So long as complex quantities are used, AC bridge circuits ”balance” just the same way that DC bridge
circuits balance. Consequently, this is really nothing new for your students if they’ve already studied DC
Wheatstone bridge circuits.

Notes 7

So long as complex quantities are used, AC bridge circuits ”balance” just the same way that DC bridge
circuits balance. Consequently, this is really nothing new for your students if they’ve already studied DC
Wheatstone bridge circuits.
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Notes 8

There is actually a way to solve for the values of Lx and Rx in a Maxwell-Wien bridge circuit without
using complex numbers at all. If one or more of your students find out how to do so through their research,
don’t consider it ”cheating.” Rather, applaud their research, because they found a quicker path to a solution.

This, of course, doesn’t mean you don’t ask them to work through the problem using complex num-
bers! The benefit of students researching other means of solution simply provides more alternative solution
strategies to the same problem, which is a very good thing.

Notes 9

One possible point of confusion here is the sign of j after inversion. If it is not evident from the
answers, 1

j
is equal to −j, so that the impedance of an inductor (jωL) becomes −j 1

ωL
when converted into

an admittance.

Notes 10

A rule that students will need to be aware of in order to follow all the algebra shown here is 1
j
= −j. A

brief proof is given here:

j2 = −1

1

j2
=
1

−1

j

j2
=

j

−1

j

j2
= −j

1

j
= −j

Otherwise, the admittance equation (Ys =
1

Rs
+ jωCs) will not make sense.

One type of AC bridge is called a noise bridge, using a ”noise” (broadly mixed frequencies) source as the
excitation voltage. Discuss with your students how the Maxwell-Wien bridge would be a suitable topology
for use with a noise source, whereas other bridge topologies might not.

Notes 11

Yes, it is out of character for me to show two pages of solution in the ”answer” section of one of my
questions! I usually do not provide this much information in my answers. However, in this case I believe
there is still much to be learned from examining a proof like this shown step-by-step.

You may wish to ask your students to explain the rationale behind each step, especially in the first
part where we deal with real and imaginary terms. One point that may be especially confusing is where I
separate the real and imaginary terms, setting the imaginary quantity equal to j0. Some students may not
see where the j0 comes from, since the preceding (complex) expression was simply equal to 1. Remind them
that ”1” is a real quantity, possessing an (implied) imaginary component of 0, and that it could very well
have been written as 1 + j0.

Notes 12

This is a very interesting circuit to built and test. You may build one using 1 µF capacitors and 2.7 kΩ
resistors that will successfully operate on 60 Hz power-line excitation.
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Notes 13

This is a very interesting circuit to built and test. You may build one using 1 µF capacitors, 2.7 kΩ
resistors, and a 100 kΩ potentiometer that will successfully operate on 60 Hz power-line excitation.

An interesting thing to note about using line power is that any distortions in the excitation sine-wave
will become obvious when the potentiometer wiper is turned toward the differentiating position (where Θ is
positive). If listened to with an audio detector, you may even hear the change in timbre while moving the
wiper from one extreme to the other. If excited by a ”clean” sine-wave, however, no change in timbre should
be heard because there are no harmonics present.

Notes 14

It is essential, of course, that students understand the operational principle of this circuit before they
may speculate at the effects of various component faults. You may find it necessary to discuss this circuit in
detail with your students before they are ready to troubleshoot it.

In case anyone asks, the symbolism Rpot >> R means ”potentiometer resistance is much greater than
the fixed resistance value.”

Notes 15

It is essential, of course, that students understand the operational principle of this circuit before they
may even attempt to diagnose possible faults. You may find it necessary to discuss this circuit in detail with
your students before they are ready to troubleshoot it.

In case anyone asks, the symbolism Rpot >> R means ”potentiometer resistance is much greater than
the fixed resistance value.”

Notes 16

It is essential, of course, that students understand the operational principle of this circuit before they
may even attempt to diagnose possible faults. You may find it necessary to discuss this circuit in detail with
your students before they are ready to troubleshoot it.

In case anyone asks, the symbolism Rpot >> R means ”potentiometer resistance is much greater than
the fixed resistance value.”

Notes 17

It is essential, of course, that students understand the operational principle of this circuit before they
may even attempt to diagnose possible faults. You may find it necessary to discuss this circuit in detail with
your students before they are ready to troubleshoot it.

In case anyone asks, the symbolism Rpot >> R means ”potentiometer resistance is much greater than
the fixed resistance value.”

Notes 18

While rectangular notation is mathematically useful, it does not apply directly to measurements taken
with real instruments. Some students might suggest that the 3.000 volt reading and the 4.000 volt reading on
the other two voltmeters represent the rectangular components (real and imaginary, respectively) of voltage,
but this is a special case. In cases where resistance and reactance are mixed (e.g. a practical inductor with
winding resistance), the voltage magnitude will be neither the real nor the imaginary component, but rather
the polar magnitude.

Notes 19

Ask your students why polarity markings need to be provided in DC electrical networks, as an essential
part of the voltage figures. Why is an answer for a voltage drop incomplete if not accompanied by polarity
markings in a DC circuit? Discuss this with your students, then ask them to extrapolate this principle to
AC circuits. When we are accounting for the phase shift of a voltage drop in our answer, does the ”polarity”
of the voltage drop matter?
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Notes 20

This question is highly effective in demonstrating why polarity markings are important in AC circuit
analysis. Without the polarity marks as ”frames of reference” for the phase angles, it is impossible to
determine the resultant line voltage from the two 120 VAC phase voltages.

Notes 21

Of course, complex numbers may also be used to calculate VAB , but the phasor approach has the benefit
of graphical intuitiveness.

Notes 22

Ask your students to describe the effect of the transformer’s step-up ratio on impedance magnitude
and on impedance phase angle. They may do this by comparing the impedance of the C-R-C circuit on
the transformer’s secondary side versus the impedance ”seen” at the voltage source terminals. Ask them to
explain why one of these parameters is affected but the other is not.

Then, pose the scenario of a real transformer, complete with leakage inductance. Ask your students to
explain what effect would leakage inductance have on the load impedance of this circuit.

Notes 23

The real ”answer” to this question is the circuit analysis technique employed. Ask your students, perhaps
working teams, to explain how to arrive at the different voltage drop figures. Note any similarities in analysis
technique to that of DC circuit analysis.
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Notes 24

It has been my experience that students require much practice with circuit analysis to become proficient.
To this end, instructors usually provide their students with lots of practice problems to work through, and
provide answers for students to check their work against. While this approach makes students proficient in
circuit theory, it fails to fully educate them.

Students don’t just need mathematical practice. They also need real, hands-on practice building circuits
and using test equipment. So, I suggest the following alternative approach: students should build their
own ”practice problems” with real components, and try to mathematically predict the various voltage and
current values. This way, the mathematical theory ”comes alive,” and students gain practical proficiency
they wouldn’t gain merely by solving equations.

Another reason for following this method of practice is to teach students scientific method: the process
of testing a hypothesis (in this case, mathematical predictions) by performing a real experiment. Students
will also develop real troubleshooting skills as they occasionally make circuit construction errors.

Spend a few moments of time with your class to review some of the ”rules” for building circuits before
they begin. Discuss these issues with your students in the same Socratic manner you would normally discuss
the worksheet questions, rather than simply telling them what they should and should not do. I never
cease to be amazed at how poorly students grasp instructions when presented in a typical lecture (instructor
monologue) format!

An excellent way to introduce students to the mathematical analysis of real circuits is to have them first
determine component values (L and C) from measurements of AC voltage and current. The simplest circuit,
of course, is a single component connected to a power source! Not only will this teach students how to set
up AC circuits properly and safely, but it will also teach them how to measure capacitance and inductance
without specialized test equipment.

A note on reactive components: use high-quality capacitors and inductors, and try to use low frequencies
for the power supply. Small step-down power transformers work well for inductors (at least two inductors
in one package!), so long as the voltage applied to any transformer winding is less than that transformer’s
rated voltage for that winding (in order to avoid saturation of the core).

A note to those instructors who may complain about the ”wasted” time required to have students build
real circuits instead of just mathematically analyzing theoretical circuits:

What is the purpose of students taking your course?

If your students will be working with real circuits, then they should learn on real circuits whenever
possible. If your goal is to educate theoretical physicists, then stick with abstract analysis, by all means!
But most of us plan for our students to do something in the real world with the education we give them.
The ”wasted” time spent building real circuits will pay huge dividends when it comes time for them to apply
their knowledge to practical problems.

Furthermore, having students build their own practice problems teaches them how to perform primary

research, thus empowering them to continue their electrical/electronics education autonomously.
In most sciences, realistic experiments are much more difficult and expensive to set up than electrical

circuits. Nuclear physics, biology, geology, and chemistry professors would just love to be able to have their
students apply advanced mathematics to real experiments posing no safety hazard and costing less than a
textbook. They can’t, but you can. Exploit the convenience inherent to your science, and get those students
of yours practicing their math on lots of real circuits!
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