
Microcontroller principles

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

Resources and methods for learning about these subjects (list a few here, in preparation for your
research):

1

Questions

Question 1

Read the following quotation, and then research the term microcontroller to see what relevance it has
to the quote:

I went to my first computer conference at the New York Hilton about 20 years ago. When somebody
there predicted the market for microprocessors would eventually be in the millions, someone else
said, “Where are they all going to go? It’s not like you need a computer in every doorknob!”

Years later, I went back to the same hotel. I noticed the room keys had been replaced by electronic
cards you slide into slots in the doors.

There was a computer in every doorknob.

– Danny Hillis

file 02581

2

Question 2

A microcontroller unit, or MCU, is a specialized type of digital computer used to provide automatic
sequencing or control of a system. Microcontrollers differ from ordinary digital computers in being very
small (typically a single integrated circuit chip), with several dedicated pins for input and/or output of
digital signals, and limited memory. Instructions programmed into the microcontroller’s memory tell it how
to react to input conditions, and what types of signals to send to the outputs.

The simplest type of signal ”understood” by a microcontroller is a discrete voltage level: either ”high”
(approximately +V) or ”low” (approximately ground potential) measured at a specified pin on the chip.
Transistors internal to the microcontroller produce these ”high” and ”low” signals at the output pins, their
actions being modeled by SPDT switches for simplicity’s sake:

Microcontroller

DC
power
source

+V

Gnd

. . .

+V

Gnd

+V

Gnd

+V

Gnd

Each output "switch"
controlled by instructions

contained in memory

. . .

Input signals acted
upon by instructions
contained in memory

Programmed
instructions

Input pin 0

Input pin 1

Input pin n

Output pin 0

Output pin 1

Output pin n

Microcontrollers may be programmed to emulate the functions of digital logic gates (AND, OR, NAND,
NOR, etc.) in addition to a wide variety of combinational and multivibrator functions. The only real limits
to what a microcontroller can do are memory (how large of a program may be stored) and input/output
pins on the MCU chip.

However, microcontrollers are themselves made up of many thousands (or millions!) of logic gate
circuits. Why would it make sense to use a microcontroller to perform a logic function that a small fraction
of its constituent gates could accomplish directly? In other words, why would anyone bother to program a
microcontroller to perform a digital function when they could build the logic network they needed out of
fewer gate circuits?

file 02596

3

Question 3

A student decides to build a light-flasher circuit using a microcontroller instead of a 555 timer or some
other hard-wired astable circuit. Unfortunately, there is a problem somewhere. When first powered up, the
LED lights on for 1 second, then turns off and never turns back on. The only way the LED ever comes back
on is if the MCU is reset or its power is cycled off and on:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

LED

Pseudocode listing

Declare Pin0 as an output

BEGIN

Set Pin0 HIGH

Pause for 1 second

Set Pin0 LOW

END

A fellow student, when asked for help, modifies the program listing and re-sends it from the personal
computer where it is being edited to the microcontroller, through a programming cable. The program listing
now reads as such:

Pseudocode listing

Declare Pin0 as an output

LOOP

Set Pin0 HIGH

Pause for 1 second

Set Pin0 LOW

ENDLOOP

When the MCU is reset with the new program, the LED starts blinking on and off . . . sort of. The
LED is ”on” most of the time, but once every second it turns off and then immediately comes back on. In
fact, the ”off” period is so brief it is barely noticeable.

What the student wanted was a 50% duty cycle: ”on” for 1 second, then ”off” for 1 second, repeating
that cycle indefinitely. First, explain the significance of the classmate’s program modification, and then
modify the program listing again so that the LED does what the student wants it to.

file 02597

4

Question 4

A student decides to build a light-flasher circuit using a microcontroller. The LED is supposed to blink
on and off only when the pushbutton switch is depressed. It is supposed to turn off when the switch is
released:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Rpulldown

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 as an input

WHILE Pin1 is HIGH

Set Pin0 HIGH

Pause for 0.5 seconds

Set Pin0 LOW

Pause for 0.5 seconds

ENDWHILE

The LED blinks on and off just fine as long as the pushbutton switch is held when the MCU is powered
up or reset. As soon as the switch is released, the LED turns off and never comes back on. If the switch
was never pressed during start-up, the LED never comes on! Explain what is happening, and modify the
program as necessary to fix this problem.

file 02598

5

Question 5

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is HIGH, set Pin0 HIGH

ELSEIF Pin2 is HIGH, set Pin0 HIGH

ELSE set Pin0 LOW

ENDIF

ENDLOOP

file 02582

6

Question 6

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is LOW, set Pin0 LOW

ELSEIF Pin2 is LOW, set Pin0 LOW

ELSE set Pin0 HIGH

ENDIF

ENDLOOP

file 02583

7

Question 7

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is LOW, set Pin0 HIGH

ELSEIF Pin2 is LOW, set Pin0 HIGH

ELSE set Pin0 LOW

ENDIF

ENDLOOP

file 02584

8

Question 8

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is HIGH, set Pin0 LOW

ELSEIF Pin2 is HIGH, set Pin0 LOW

ELSE set Pin0 HIGH

ENDIF

ENDLOOP

file 02585

9

Question 9

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is same as Pin2, set Pin0 LOW

ELSE set Pin0 HIGH

ENDIF

ENDLOOP

file 02586

10

Question 10

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 and Pin2 as inputs

LOOP

IF Pin1 is same as Pin2, set Pin0 HIGH

ELSE set Pin0 LOW

ENDIF

ENDLOOP

file 02587

11

Question 11

Examine the following schematic diagram and program listing (written in ”pseudocode” rather than a
formal programming language) to determine what type of basic logic function is being implemented in this
microcontroller unit:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Pseudocode listing

Declare Pin0 as an output

Declare Pin1, Pin2, and Pin3 as inputs

LOOP

IF Pin1 is HIGH, set Pin0 HIGH

ELSEIF Pin2 is HIGH, set Pin0 HIGH

ELSEIF Pin3 is HIGH, set Pin0 HIGH

ELSE set Pin0 LOW

ENDIF

ENDLOOP

file 02599

12

Question 12

A microcontroller is a specialized type of digital computer used to provide automatic sequencing or
control of a system. Microcontrollers differ from ordinary digital computers in being very small (typically
a single integrated circuit chip), with several dedicated pins for input and/or output of digital signals, and
limited memory. Instructions programmed into the microcontroller’s memory tell it how to react to input
conditions, and what types of signals to send to the outputs.

The simplest type of signal ”understood” by a microcontroller is a discrete voltage level: either ”high”
(approximately +V) or ”low” (approximately ground potential) measured at a specified pin on the chip.
Transistors internal to the microcontroller produce these ”high” and ”low” signals at the output pins, their
actions being modeled by SPDT switches for simplicity’s sake:

Microcontroller

DC
power
source

+V

Gnd

. . .

+V

Gnd

+V

Gnd

+V

Gnd

Each output "switch"
controlled by instructions

contained in memory

. . .

Input signals acted
upon by instructions
contained in memory

Programmed
instructions

Input pin 0

Input pin 1

Input pin n
Output pin 0

Output pin 1

Output pin n

It does not require much imagination to visualize how microcontrollers may be used in practical systems:
turning external devices on and off according to input pin and/or time conditions. Examples include
appliance control (oven timers, temperature controllers), automotive engine control (fuel injectors, ignition
timing, self-diagnostic systems), and robotics (servo actuation, sensory processing, navigation logic). In fact,
if you live in an industrialized nation, you probably own several dozen microcontrollers (embedded in various
devices) and don’t even realize it!

One of the practical limitations of microcontrollers, though, is their low output drive current limit:
typically less than 50 mA. The miniaturization of the microcontroller’s internal circuitry prohibits the
inclusion of output transistors having any significant power rating, and so we must connect transistors
to the output pins in order to drive any significant load(s).

Suppose we wished to have a microcontroller drive a DC-actuated solenoid valve requiring 2 amps of
current at 24 volts. A simple solution would be to use an NPN transistor as an ”interposing” device between
the microcontroller and the solenoid valve like this:

13

Microcontroller
DC

power
source

+V

Gnd

In 0

In 1

Out 0

In 2

In 3

In 4

In 5

In 6

In 7

Out 1
Out 2
Out 3
Out 4
Out 5
Out 6
Out 7

24 VDC

Solenoid
coil

(8 input pins, 8 output pins)

Unfortunately, a single BJT does not provide enough current gain to actuate the solenoid. With 20 mA
of output current from the microcontroller pin and a β of only 25 (typical for a power transistor), this only
provides about 500 mA to the solenoid coil.

A solution to this problem involves two bipolar transistors in a Darlington pair arrangement:

Microcontroller
DC

power
source

+V

Gnd

In 0

In 1

Out 0

In 2

In 3

In 4

In 5

In 6

In 7

Out 1
Out 2
Out 3
Out 4
Out 5
Out 6
Out 7

24 VDC

Solenoid
coil

(8 input pins, 8 output pins)

However, there is another solution yet – replace the single BJT with a single MOSFET, which requires
no drive current at all. Show how this may be done:

Microcontroller
DC

power
source

+V

Gnd

In 0

In 1

Out 0

In 2

In 3

In 4

In 5

In 6

In 7

Out 1
Out 2
Out 3
Out 4
Out 5
Out 6
Out 7

24 VDC

Solenoid
coil

(8 input pins, 8 output pins)

file 02422

14

Question 13

Digital computers communicate with external devices through ports: sets of terminals usually arranged
in groups of 4, 8, 16, or more (4 bits = 1 nybble, 8 bits = 1 byte, 16 bits = 2 bytes). These terminals may
be set to high or low logic states by writing a program for the computer that sends a numerical value to
the port. For example, here is an illustration of a microcontroller being instructed to send the hexadecimal
number F3 to port A and 2C to port B:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

01 1 1 1 0 1 1

($F3) ($2C)

0 0 1 0 1 1 0 0

Microcontroller

Suppose we wished to use the upper four bits of port A (pins 7, 6, 5, and 4) to drive the coils of a
stepper motor in this eight-step sequence:

Step 1: 0001
Step 2: 0011
Step 3: 0010
Step 4: 0110
Step 5: 0100
Step 6: 1100
Step 7: 1000
Step 8: 1001

As each pin goes high, it drives a power MOSFET on, which sends current through that respective coil
of the stepper motor. By following a ”shift” sequence as shown, the motor will rotate a small amount for
each cycle.

Write the necessary sequence of numbers to be sent to port A to generate this specific order of bit shifts,
in hexadecimal. Leave the lower four bit of port A all in the low logic state.

file 02895

15

Question 14

Digital computers communicate with external devices through ports: sets of terminals usually arranged
in groups of 4, 8, 16, or more. These terminals may be set to high or low logic states by writing a program for
the computer that sends a numerical value to the port. For example, here is an illustration of a microcontroller
being instructed to send the hexadecimal number 2B to port A and A9 to port B:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 1 0 1 10 0

Microcontroller

($2B) ($A9)

0 1 0 1 1 1 0 1

Suppose we wished to use the first seven bits of each port (pins 0 through 6) to drive two 7-segment,
common-cathode displays, rather than use BCD-to-7-segment decoder ICs:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Microcontroller
a

b

c
d

e

f

g

a b c d e f g

a
b

c
d

e

f

g

a b c d e f g

Write the necessary hexadecimal values to be output at ports A and B to generate the display ”42” at
the two 7-segment display units.

file 03042

16

Question 15

One method of driving pixels in a grid-based display is to organize the pixels into rows and columns, then
select individual pixels for illumination by the intersection of a specific row line and a specific column line.
In this example, we are controlling an 8 × 8 grid of LEDs with two 8-bit (1-byte) ports of a microcontroller:

Port A Port B
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Microcontroller

($02)

1 0000000

($BF)

11111 1 10

Note that a high state is required on one of port B’s pins to activate a row, and a low state is required on
one of port A’s pins to activate a column, because the LED anodes connect to port A and the LED cathodes
connect to port B.

Determine the hexadecimal codes we would need to output at ports A and B to energize the LED in
the far lower-left corner of the 8 × 8 grid.

Port A =

Port B =

file 04053

17

Question 16

A student builds a microcontroller circuit to turn on an LED once for every five actuations of the input
switch. The circuit is simple, with the microcontroller using a conditional loop to increment a variable each
time the switch is pressed:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

VDD

Rpulldown

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 as an input

Declare X as an integer variable

LOOP

WHILE Pin1 is HIGH

Add 1 to X (X=X+1)

ENDWHILE

IF X is equal to 5, set Pin0 HIGH and set X to 0

ELSE set Pin0 LOW

ENDIF

ENDLOOP

Unfortunately, the program does not execute as planned. Instead of the LED coming on once every five
switch actuations, it seems to come on randomly when the switch is released. Sometimes the LED turns on
after the first switch actuation, while other times it takes more than five pushes of the switch to get it to
turn on.

After some careful analysis, it occurs to the student that the problem lies in the WHILE loop. As the
microcontroller is much faster than the human hand, that loop executes many times while the switch is being
pressed rather than only once, meaning that the variable X counts from 0 to 5 many times around for each
switch actuation. It is only by chance, then, that X will be equal to five after the WHILE loop exits.

What the student needs is for the switch to increment by 1 only for an off-to-on switch transition: at
the positive edge of the input pulse. The problem is how to do this using programming.

Another student, when faced with the same problem, chose to solve it this way and it worked just fine:

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 as an input

18

Declare Switch as a Boolean (0 or 1) variable

Declare Last Switch as a Boolean (0 or 1) variable

Declare X as an integer variable

LOOP

Set Last Switch equal to Switch

Set Switch equal to Pin1

IF Switch = 1 and Last Switch = 0 THEN add 1 to X (X=X+1)

ELSE do nothing to X

ENDIF

IF X is equal to 5, set Pin0 HIGH and set X to 0

ELSE set Pin0 LOW

ENDIF

ENDLOOP

Explain how this program successfully increments X only on each off-to-on transition of the pushbutton
switch while the other program increments X rapidly during the entire duration the pushbutton switch is
pressed.

file 03191

19

Question 17

This microcontroller is programmed to vary the perceived brightness of an LED by means of pulse-width
modulation (PWM) control of pin 0’s output:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

Pseudocode listing

Declare Pin0 as an output

Declare X as an integer variable

LOOP

Set Pin0 LOW

Pause for 100 - X microseconds

Set Pin0 HIGH

Pause for X microseconds

ENDLOOP

Determine what the value of X must be to set the LED’s brightness at 80%, and also what the frequency
of the PWM signal is.

file 03990

Question 18

Many microcontrollers come equipped with a built-in PWM function, so that you do not have to code a
custom PWM algorithm yourself. This fact points to the popularity of pulse-width modulation as a control
scheme. Explain why PWM is so popular, and give a few practical examples of how it may be used.

file 03991

20

Question 19

Pulse-width modulation (PWM) is not only useful for generating an analog output with a
microcontroller, but it is also useful for receiving an analog input through a pin that only handles on-
off (high-low) digital voltage levels. The following circuit takes an analog voltage signal in to a comparator,
generates PWM, then sends that PWM signal to the input of a microcontroller:

Microcontroller

+V

Gnd

(8 input/output pins)

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

VDD

−

+ Vin

Ramp-wave
oscillator

Comparator

Pseudocode listing

Declare Pin0 as an input

Declare Last Pin0 as a boolean variable

Declare Time High as an integer variable

Declare Time Low as an integer variable

Declare Duty Cycle as a floating-point variable

Set Time High and Time Low both to zero

LOOP

Set Last Pin0 equal to Pin0

If Pin0 is HIGH, increment Time High by one

If Pin0 is LOW, increment Time Low by one

If Last Pin0 is not equal to Pin0, go to SUBROUTINE

ENDLOOP

SUBROUTINE

Set Duty Cycle equal to (Time High / (Time High + Time Low))

Set Time High and Time Low both to zero

Return to calling loop

ENDSUBROUTINE

Explain how this program works. Hint: the Last Pin0 boolean variable is used to detect when the state
of Pin0 has changed from 0 to 1 or from 1 to 0.

file 03992

21

Question 20

A microcontroller is used to provide automatic power factor correction for an AC load:

Relay Relay Relay Relay

+V

Microcontroller

Output pins

ADC

12

ADC
12

CT

PT

AC line

To
AC load

10 µF 20 µF 40 µF 80 µF

A B C D

(240 volts)

Examine this schematic diagram, then answer the following questions:

• How can the microcontroller sense the power factor of the AC load?
• How many discrete steps of power factor correction can the microcontroller engage through its four
output pins?

• What would the MCU’s output be to correct for a load drawing 15 amps with a lagging power factor
of 0.77? Assume a line frequency of 60 Hz, and a correction algorithm that adjusts for the best lagging
power factor (i.e. it will never over-correct and produce a leading power factor).

• What is the corrected (total) power factor with those capacitors engaged?

file 04025

22

Answers

Answer 1

I’ll let you do your homework on this question!

Answer 2

Ease of configuration and flexibility!

Answer 3

A ”loop” is necessary for the MCU to repeat the on/pause/off sequence. What is needed now is another
time delay within the loop:

Pseudocode listing

Declare Pin0 as an output

LOOP

Set Pin0 HIGH

Pause for 1 second

Set Pin0 LOW

Pause for 1 second (new line of code)
ENDLOOP

Answer 4

The conditional ”WHILE” loop needs to be placed inside an unconditional loop:

Pseudocode listing

Declare Pin0 as an output

Declare Pin1 as an input

LOOP

WHILE Pin1 is HIGH

Set Pin0 HIGH

Pause for 0.5 seconds

Set Pin0 LOW

Pause for 0.5 seconds

ENDWHILE

ENDLOOP

Follow-up question: what purpose does the resistor Rpulldown serve in the pushbutton circuit?

Answer 5

This microcontroller implements the logical OR function.

Answer 6

This microcontroller implements the logical AND function.

Answer 7

This microcontroller implements the logical NAND function.

Answer 8

This microcontroller implements the logical NOR function.

Answer 9

This microcontroller implements the logical Exclusive-OR function.

23

Answer 10

This microcontroller implements the logical Exclusive-NOR function.

Answer 11

This microcontroller implements a 3-input logical OR function.

Answer 12

Microcontroller
DC

power
source

+V

Gnd

In 0

In 1

Out 0

In 2

In 3

In 4

In 5

In 6

In 7

Out 1
Out 2
Out 3
Out 4
Out 5
Out 6
Out 7

24 VDC

Solenoid
coil

(8 input pins, 8 output pins)

Answer 13

Step 1: 1016

Step 2: 3016

Step 3: 2016

Step 4: 6016

Step 5: 4016

Step 6: C016

Step 7: 8016

Step 8: 9016

Follow-up question: write the same sequence in decimal rather than hexadecimal:

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

24

Answer 14

Port A = 5B16 Port B = 6616

Note that the following answers are also valid:
Port A = DB16 Port B = E616

Follow-up question: write these same numerical values in decimal rather than hexadecimal.

Answer 15

Port A = $FE

Port B = $80

Answer 16

The key to understanding how this algorithm works is to realize the variable Last Switch will always
be one scan (loop execution) behind the variable Switch.

Challenge question: does it matter where in the program the following two lines go? Must they be
placed immediately prior to the IF/THEN conditional statement?

Set Last Switch equal to Switch

Set Switch equal to Pin1

Answer 17

This question is probably best answered by drawing a timing diagram of Pin 0’s output, noting the
times of 100 - X µs and X µs.

Follow-up question: what is the resolution of this PWM control, given that X is an integer variable?
How might we improve the resolution of this PWM control scheme?

Answer 18

I’ll let you do your own research for this question! The answer(s) is/are not hard to find.

Answer 19

The trickiest part of this program is figuring out the Last Pin0 variable’s function, and how it determines
when to execute the subroutine. I strongly recommend you perform a ”thought experiment” with a slow
square-wave input signal to the microcontroller, examining how the Time High and Time Low variables
become incremented with the square wave’s state.

Answer 20

I’ll let you and your classmates discuss how the MCU might detect power factor. There is more than
one valid solution for doing so!

The 20 µF and 80 µF capacitors would both be engaged: MCU output DCBA would be 0101 (note that
the outputs must go low to energize their respective relays!). With this output, the corrected power factor
would be 0.99939 rather than the original 0.77.

25

Notes

Notes 1

Not only is the quotation funny, but it is startling as well, especially to those of us who were born
without any computers in our homes at all, much less multiple personal computers.

A point I wish to make in having students research the term ”microcontroller” is to see that most
of the computers in existence are not of the variety one ordinarily thinks of by the label ”computer.”
Those doorknob computers – as well as engine control computers in automobiles, kitchen appliances, cellular
telephones, biomedical implants, talking birthday cards, and other small devices – are much smaller and
much more specialized than the ”general purpose” computers people use at their desks to write documents
or surf the internet. They are the silent, unseen side of the modern ”computer revolution,” and in many ways
are more appropriate for beginning students of digital electronics to explore than their larger, general-purpose
counterparts.

Notes 2

Note that I did not bother to explain my extremely terse answer. This is a subject I desire students to
think long and hard about, for the real answer(s) to this question are the reasons driving all development of
programmable digital devices.

Notes 3

The purpose of this question is for students to realize that the microcontroller must be told to ”loop”
through the light blinking instructions. Really, this is just an illustration of loops in a practical context.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

26

Notes 4

The purpose of this question is for students to understand what a ”WHILE” loop represents in practical
terms: a loop with condition(s). It also contrasts conditional looping against unconditional looping, and
shows how both play a part in interactive systems such as this one.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 5

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

27

Notes 6

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 7

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

28

Notes 8

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 9

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

29

Notes 10

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 11

Although this logic function could have been implemented easier and cheaper in hard-wired (gate) logic,
the purpose is to get students to think of performing logical operations by a sequenced set of instructions
inside a programmable device (the MCU). This is a conceptual leap, basic but very important.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 12

The purpose of this long-winded question is not just to have students figure out how to replace a BJT
with a MOSFET, but also to introduce them to the concept of the microcontroller, which is a device of
increasing importance in modern electronic systems.

Some students may inquire as to the purpose of the diode in this circuit. Explain to them that this
is a commutating diode, sometimes called a free-wheeling diode, necessary to prevent the transistor from
being overstressed by high-voltage transients produced by the solenoid coil when de-energized (”inductive
kickback”).

30

Notes 13

Although the root of this question is nothing more than binary-to-hexadecimal conversion, it also
introduces students to the concept of controlling bit states in microcomputer ports by writing hex values.
As such, this question is very practical!

In case students ask, let them know that a dollar sign prefix is sometimes used to denote a hexadecimal
number. Other times, the prefix 0x is used (e.g., $F3 and 0xF3 mean the same thing).

Notes 14

The root of this question is little more than binary-to-hexadecimal conversion, but it also introduces
students to the concept of controlling bit states in microcomputer ports by writing hex values. As such, this
question is very practical! Although it is unlikely that someone would omit BCD-to-7-segment decoders when
building a two-digit decimal display (because doing it this way uses so many more precious microcontroller
I/O pins), it is certainly possible! There are many applications other than this where you need to get the
microcontroller to output a certain combination of high and low states, and the fastest way to program this
is to output hex values to the ports.

In case students ask, let them know that a dollar sign prefix is sometimes used to denote a hexadecimal
number. Other times, the prefix 0x is used (e.g., $F3 and 0xF3 mean the same thing).

Notes 15

Notes 16

This pulse-detection algorithm is very commonly used in programs dealing with real-world switch inputs.
It performs in software what the pulse detection network does inside edge-triggered flip-flops, for the same
effect: to initiate some kind of action only at the edge of a pulse signal.

Notes 17

Pulse-width modulation (PWM) is a very common and useful way of generating an analog output from
a microcontroller (or other digital electronic circuit) capable only of ”high” and ”low” voltage level output.
With PWM, time (or more specifically, duty cycle) is the analog domain, while amplitude is the digital
domain. This allows us to ”sneak” an analog signal through a digital (on-off) data channel.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 18

Pulse-width modulation (PWM) is a very common and useful way of generating an analog output from
a microcontroller (or other digital electronic circuit) capable only of ”high” and ”low” voltage level output.
With PWM, time (or more specifically, duty cycle) is the analog domain, while amplitude is the digital
domain. This allows us to ”sneak” an analog signal through a digital (on-off) data channel.

31

Notes 19

Pulse-width modulation (PWM) is a very common and useful way of generating an analog output from
a microcontroller (or other digital electronic circuit) capable only of ”high” and ”low” voltage level output.
Here, we also see it used as a form of input signal modulation. With PWM, time (or more specifically, duty
cycle) is the analog domain, while amplitude is the digital domain. This allows us to ”sneak” an analog
signal through a digital (on-off) data channel.

In case you’re wondering why I write in pseudocode, here are a few reasons:

• No prior experience with programming required to understand pseudocode
• It never goes out of style
• Hardware independent
• No syntax errors

If I had decided to showcase code that would actually run in a microcontroller, I would be dooming the
question to obsolescence. This way, I can communicate the spirit of the program without being chained to
an actual programming standard. The only drawback is that students will have to translate my pseudocode
to real code that will actually run on their particular MCU hardware, but that is a problem guaranteed for
some regardless of which real programming language I would choose.

Of course, I could have taken the Donald Knuth approach and invented my own (imaginary) hardware
and instruction set . . .

Notes 20

This question poses some interesting concepts for review, as well as synthesizing old and new concepts
in electronics for your students to consider. Be sure to allow plenty of time for discussion on this question,
as well as any necessary review time for power factor calculations!

32

