
Time constant calculations

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

Resources and methods for learning about these subjects (list a few here, in preparation for your
research):
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Questions

Question 1

Qualitatively determine the voltages across all components as well as the current through all components
in this simple RC circuit at three different times: (1) just before the switch closes, (2) at the instant the
switch contacts touch, and (3) after the switch has been closed for a long time. Assume that the capacitor
begins in a completely discharged state:

R

C

R

C

switch closes:
Before the At the instant of

switch closure:

R

C

has closed:
Long after the switch

Express your answers qualitatively: ”maximum,” ”minimum,” or perhaps ”zero” if you know that to be
the case.

Before the switch closes:

VC =
VR =
Vswitch =
I =

At the instant of switch closure:

VC =
VR =
Vswitch =
I =

Long after the switch has closed:

VC =
VR =
Vswitch =
I =

Hint: a graph may be a helpful tool for determining the answers!
file 01811
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Question 2

Qualitatively determine the voltages across all components as well as the current through all components
in this simple LR circuit at three different times: (1) just before the switch closes, (2) at the instant the
switch contacts touch, and (3) after the switch has been closed for a long time.

R R

switch closes:
Before the At the instant of

switch closure:

R

has closed:
Long after the switch

LLL

Express your answers qualitatively: ”maximum,” ”minimum,” or perhaps ”zero” if you know that to be
the case.

Before the switch closes:

VL =
VR =
Vswitch =
I =

At the instant of switch closure:

VL =
VR =
Vswitch =
I =

Long after the switch has closed:

VL =
VR =
Vswitch =
I =

Hint: a graph may be a helpful tool for determining the answers!
file 01812
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Question 3

Calculate the final value of current through the inductor with the switch in the left-hand position
(assuming that many time constants’ worth of time have passed):

10 V

5 kΩ 91 kΩ

Now, assume that the switch is instantly moved to the right-hand position. How much voltage will the
inductor initially drop?

10 V

5 kΩ 91 kΩ

Explain why this voltage is so very different from the supply voltage. What practical uses might a
circuit such as this have?

file 01808

Question 4

Suppose a capacitor is charged to a voltage of exactly 100 volts, then connected to a resistor so it
discharges slowly. Calculate the amount of voltage remaining across the capacitor terminals at the following
points in time:

• 1 time constant (τ) after connecting the resistor:
• 2 time constants (2τ) after connecting the resistor:
• 3 time constants (3τ) after connecting the resistor:
• 4 time constants (4τ) after connecting the resistor:
• 5 time constants (5τ) after connecting the resistor:

file 03551
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Question 5

Determine the number of time constants (τ) that 7.5 seconds is equal to in each of the following reactive
circuits:

• RC circuit; R = 10 kΩ, C = 220 µF ; 7.5 sec =
• RC circuit; R = 33 kΩ, C = 470 µF ; 7.5 sec =
• RC circuit; R = 1.5 kΩ, C = 100 µF ; 7.5 sec =
• RC circuit; R = 790 Ω, C = 9240 nF ; 7.5 sec =
• RC circuit; R = 100 kΩ, C = 33 pF ; 7.5 sec =

• LR circuit; R = 100 Ω, L = 50 mH ; 7.5 sec =
• LR circuit; R = 45 Ω, L = 2.2 H ; 7.5 sec =
• LR circuit; R = 1 kΩ, L = 725 mH ; 7.5 sec =
• LR circuit; R = 4.7 kΩ, L = 325 mH ; 7.5 sec =
• LR circuit; R = 6.2 Ω, L = 25 H ; 7.5 sec =

file 01802

Question 6

Re-write this mathematical expression so that the exponent term (−x) is no longer negative:

e−x

Also, describe the calculator keystroke sequence you would have to go through to evaluate this expression
given any particular value for x.

file 01803
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Question 7

The decay of a variable (either voltage or current) in a time-constant circuit (RC or LR) follows this
mathematical expression:

e−
t
τ

Where,
e = Euler’s constant (≈ 2.718281828)
t = Time, in seconds
τ = Time constant of circuit, in seconds

Calculate the value of this expression as t increases, given a circuit time constant (τ) of 1 second.
Express this value as a percentage:

t = 1 second
t = 2 seconds
t = 3 seconds
t = 4 seconds
t = 5 seconds
t = 6 seconds
t = 7 seconds
t = 8 seconds
t = 9 seconds
t = 10 seconds

Based on your calculations, how would you describe the change in the expression’s value over time as t
increases?

file 00442
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Question 8

The decay of a variable (either voltage or current) in a time-constant circuit (RC or LR) follows this
mathematical expression:

e−
t
τ

Where,
e = Euler’s constant (≈ 2.718281828)
t = Time, in seconds
τ = Time constant of circuit, in seconds

Calculate the value of this expression as t increases, given a circuit time constant (τ) of 2 seconds.
Express this value as a percentage:

t = 1 second
t = 2 seconds
t = 3 seconds
t = 4 seconds
t = 5 seconds
t = 6 seconds
t = 7 seconds
t = 8 seconds
t = 9 seconds
t = 10 seconds

Also, express the percentage value of any increasing variables (either voltage or current) in an RC or
LR charging circuit, for the same conditions (same times, same time constant).

file 00450

Question 9

At a party, you happen to notice a mathematician taking notes while looking over the food table where
several pizzas are set. Walking up to her, you ask what she is doing. ”I’m mathematically modeling the
consumption of pizza,” she tells you. Before you have the chance to ask another question, she sets her
notepad down on the table and excuses herself to go use the bathroom.

Looking at the notepad, you see the following equation:

Percentage =
(

e−
t

6.1

)

× 100%

Where,
t = Time in minutes since arrival of pizza.

The problem is, you don’t know whether the equation she wrote describes the percentage of pizza eaten
or the percentage of pizza remaining on the table. Explain how you would determine which percentage this
equation describes. How, exactly, can you tell if this equation describes the amount of pizza already eaten
or the amount of pizza that remains to be eaten?

file 03549
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Question 10

At a party, you happen to notice a mathematician taking notes while looking over the food table where
several pizzas are set. Walking up to her, you ask what she is doing. ”I’m mathematically modeling the
consumption of pizza,” she tells you. Before you have the chance to ask another question, she sets her
notepad down on the table and excuses herself to go use the bathroom.

Looking at the notepad, you see the following equation:

Percentage =
(

1− e−
t

5.8

)

× 100%

Where,
t = Time in minutes since arrival of pizza.

The problem is, you don’t know whether the equation she wrote describes the percentage of pizza eaten
or the percentage of pizza remaining on the table. Explain how you would determine which percentage this
equation describes. How, exactly, can you tell if this equation describes the amount of pizza already eaten
or the amount of pizza that remains to be eaten?

file 03309

Question 11

The following expression is frequently used to calculate values of changing variables (voltage and current)
in RC and LR timing circuits:

e−
t
τ or

1

e
t
τ

If we evaluate this expression for a time of t = 0, we find that it is equal to 1 (100%). If we evaluate
this expression for increasingly larger values of time (t→∞), we find that it approaches 0 (0%).

Based on this simple analysis, would you say that the expression e−
t
τ describes the percentage that a

variable has changed from its initial value in a timing circuit, or the percentage that it has left to change
before it reaches its final value? To frame this question in graphical terms . . .

Time
Initial

Final

t

Voltage
or

Current
Percentage changed

from initial value

Percentage left to
change before reaching

final value

Time
Final

t

Voltage
or

Current

Percentage changed
from initial value

Percentage left to
change before reaching

final value

Initial

Increasing variable Decreasing variable

Which percentage does the expression e−
t
τ represent in each case? Explain your answer.

file 02946
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Question 12

The following two expressions are frequently used to calculate values of changing variables (voltage and
current) in RC and LR timing circuits:

e−
t
τ or 1− e−

t
τ

One of these expressions describes the percentage that a changing value in an RC or LR circuit has
gone from the starting time. The other expression describes how far that same variable has left to go before
it reaches its ultimate value (at t =∞).

The question is, which expression represents which quantity? This is often a point of confusion, because
students have a tendency to try to correlate these expressions to the quantities by rote memorization. Does
the expression e−

t
τ represent the amount a variable has changed, or how far it has left to go until it stabilizes?

What about the other expression 1 − e−
t
τ ? More importantly, how can we figure this out so we don’t have

to rely on memory?

Time
Initial

Final

t

Voltage
or

Current
Percentage changed

from initial value

Percentage left to
change before reaching

final value

Time
Final

t

Voltage
or

Current

Percentage changed
from initial value

Percentage left to
change before reaching

final value

Initial

Increasing variable Decreasing variable

file 03117
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Question 13

Write a mathematical expression for calculating the percentage value of any increasing variables (either
voltage or current) in an RC or LR time-constant circuit.

Hint: the formula for calculating the percentage of any decreasing variables in an RC or LC time-constant
circuit is as follows:

e−
t
τ

Where,
e = Euler’s constant (≈ 2.718281828)
t = Time, in seconds
τ = Time constant of circuit, in seconds

Here, the value of the expression starts at 1 (100%) at time = 0 and approaches 0 (0%) as time approaches
∞. What I’m asking you to derive is an equation that does just the opposite: start with a value of 0 when
time = 0 and approach a value of 1 as time approaches ∞.

file 00451

Question 14

Calculating variables in reactive circuits using time-constant formulae can be time consuming, due to
all the keystrokes necessary on a calculator. Even worse is when a calculator is not available! You should
be prepared to estimate circuit values without the benefit of a calculator to do the math, though, because a
calculator may not always be available when you need one.

Note that Euler’s constant (e) is approximately equal to 3. This is not a close approximation, but close
enough for ”rough” estimations. If we use a value of three instead of e’s true value of 2.718281828· · ·, we
may greatly simplify the ”decay” time constant formula:

Percentage of change ≈ 3−
t
τ

Suppose that a capacitive discharge circuit begins with a full-charge voltage of 10 volts. Calculate the
capacitor’s voltage at the following times as it discharges, assuming τ = 1 second:

t = 0 seconds ; EC =
t = 1 second ; EC =
t = 2 seconds ; EC =
t = 3 seconds ; EC =
t = 4 seconds ; EC =
t = 5 seconds ; EC =

Without using a calculator, you should at least be able to calculate voltage values as fractions if not
decimals!

file 01804

10



Question 15

Calculating variables in reactive circuits using time-constant formulae can be time consuming, due to
all the keystrokes necessary on a calculator. Even worse is when a calculator is not available! You should
be prepared to estimate circuit values without the benefit of a calculator to do the math, though, because a
calculator may not always be available when you need one.

Note that Euler’s constant (e) is approximately equal to 3. This is not a close approximation, but close
enough for ”rough” estimations. If we use a value of three instead of e’s true value of 2.718281828· · ·, we
may greatly simplify the ”increasing” time constant formula:

Percentage of change ≈ 1− 3−
t
τ

Suppose that a capacitive charging circuit begins fully discharged (0 volts), and charges to an ultimate
value of 10 volts. Calculate the capacitor’s voltage at the following times as it discharges, assuming τ = 1
second:

t = 0 seconds ; EC =
t = 1 second ; EC =
t = 2 seconds ; EC =
t = 3 seconds ; EC =
t = 4 seconds ; EC =
t = 5 seconds ; EC =

Without using a calculator, you should at least be able to calculate voltage values as fractions if not
decimals!

file 01805
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Question 16

Graph both the capacitor voltage (VC) and the capacitor current (IC) over time as the switch is closed
in this circuit. Assume the capacitor begins in a complete uncharged state (0 volts):

Time

IC

Switch
closes

VC

Then, select and modify the appropriate form of equation (from below) to describe each plot:

e−
t
τ 1− e−

t
τ

file 03550

Question 17

An unfortunate tendency that many new students have is to immediately plug numbers into equations
when faced with a time-constant circuit problem, before carefully considering the circuit. Explain why the
following steps are very wise to follow before performing any mathematical calculations:

• Step 1: Identify and list all the known (”given”) quantities.
• Step 2: Draw a schematic of the circuit, if none is given to you.
• Step 3: Label components in the schematic with all known quantities.
• Step 4: Sketch a rough plot of how you expect the variable(s) in the circuit to change over time.
• Step 5: Label starting and final values for these graphed variables, wherever possible.

file 03553

Question 18

Calculate the voltage across a 470 µF capacitor after discharging through a 10 kΩ resistor for 9 seconds,
if the capacitor’s original voltage (at t = 0) was 24 volts.

Also, express this amount of time (9 seconds) in terms of how many time constants have elapsed.
file 00452
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Question 19

The following circuit allows a capacitor to be rapidly charged and slowly discharged:

40 V

Charge Discharge

500µ

2k0

Suppose that the switch was left in the ”charge” position for some substantial amount of time. Then,
someone moves the switch to the ”discharge” position to let the capacitor discharge. Calculate the amount
of capacitor voltage and capacitor current at exactly 3 seconds after moving the switch to the ”discharge”
position.

VC = @ t = 3 seconds

IC = @ t = 3 seconds

Also, show the direction of discharge current in this circuit.
file 03552

Question 20

The following circuit allows a capacitor to be rapidly discharged and slowly charged:

Charge Discharge

15 V 2µ7

8k1

Suppose that the switch was left in the ”discharge” position for some substantial amount of time. Then,
someone moves the switch to the ”charge” position to let the capacitor charge. Calculate the amount of
capacitor voltage and capacitor current at exactly 45 milliseconds after moving the switch to the ”charge”
position.

VC = @ t = 45 ms

IC = @ t = 45 ms
file 03557
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Question 21

Calculate the current through a 250 mH inductor after ”charging” through a series-connected resistor
with 100 Ω of resistance for 6 milliseconds, powered by a 12 volt battery. Assume that the inductor is perfect,
with no internal resistance.

Also, express this amount of time (6 milliseconds) in terms of how many time constants have elapsed.
file 00453

Question 22

Plot the capacitor voltage and the capacitor current over time after the switch closes in this circuit, for
at least 4 time constants’ worth of time:

+
V

-

A

10 µF

33 kΩ

18 V

EC

IC

Time

Be sure to label the axes of your graph!
file 00456
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Question 23

Plot the inductor voltage and the inductor current over time after the switch closes in this circuit, for
at least 4 time constants’ worth of time:

+
V

-

A

Time

1.5 H

200 Ω

5 V

EL

IL

Be sure to label the axes of your graph!
file 01806

Question 24

Determine the capacitor voltage at the specified times (time t = 0 milliseconds being the exact moment
the switch contacts close). Assume the capacitor begins in a fully discharged state:

Switch

31 V

R = 27 kΩ

C = 2.2 µF

Time VC (volts)
0 ms
30 ms
60 ms
90 ms
120 ms
150 ms

file 03555
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Question 25

Determine the capacitor voltage and capacitor current at the specified times (time t = 0 milliseconds
being the exact moment the switch contacts close). Assume the capacitor begins in a fully discharged state:

Switch

20 V C = 15 µF

R = 4.7 kΩ

Time VC (volts) IC (mA)
0 ms
30 ms
60 ms
90 ms
120 ms
150 ms

file 03556

Question 26

Determine the inductor voltage and inductor current at the specified times (time t = 0 milliseconds
being the exact moment the switch contacts close):

Switch

20 V

R = 1.3 kΩ

L = 25 mH

Time VL (volts) IL (mA)
0 µs
10 µs
20 µs
30 µs
40 µs
50 µs

file 03589
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Question 27

Determine the inductor voltage and inductor current at the specified times (time t = 0 milliseconds
being the exact moment the switch contacts close):

Switch

L = 100 µH

R = 270 Ω

12 V

Time VL (volts) IL (mA)
0 ns
250 ns
500 ns
750 ns
1.00 µs
1.25 µs

file 03590

17



Question 28

A helpful technique for analyzing RC time-constant circuits is to consider what the initial and final

values for circuit variables (voltage and current) are. Consider these four RC circuits:

Figure 1 Figure 2

15 V

10 kΩ

Vinitial =

0 V

Vinitial =
1 kΩ

25 V

Figure 4Figure 3

3.3 kΩ

5 kΩ

1 kΩ

12 V
4 V

7 V

37 kΩ

C C

C
C

R
R

R

R

In each of these circuits, determine what the initial values will be for voltage across and current through
both the capacitor and (labeled) resistor. These will be the voltage and current values at the very first
instant the switch changes state from where it is shown in the schematic. Also, determine what the final
values will be for the same variables (after a large enough time has passed that the variables are all ”settled”
into their ultimate values). The capacitor’s initial voltage is shown in all cases where it is arbitrary.

file 01809
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Question 29

A helpful technique for analyzing LR time-constant circuits is to consider what the initial and final

values for circuit variables (voltage and current) are. Consider these four LR circuits:

Figure 1 Figure 2

15 V

10 kΩ

Figure 4Figure 3

37 kΩ

R

R

L

R

L24 V
7.1 kΩ

10 mA
L

22 kΩ

R

L 3 V

9 V

4.7 kΩ

In each of these circuits, determine what the initial values will be for voltage across and current through
both the inductor and (labeled) resistor. These will be the voltage and current values at the very first instant
the switch changes state from where it is shown in the schematic. Also, determine what the final values will
be for the same variables (after a large enough time has passed that the variables are all ”settled” into their
ultimate values).

Assume all inductors are ideal, possessing no coil resistance (Rcoil = 0 Ω).
file 01810
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Question 30

A formula I like to use in calculating voltage and current values in either RC or LR circuits has two
forms, one for voltage and one for current:

V (t) = (Vf − V0)

(

1−
1

e
t
τ

)

+ V0 (for calculating voltage)

I(t) = (If − I0)

(

1−
1

e
t
τ

)

+ I0 (for calculating current)

The ”0” subscript represents the condition at time = 0 (V0 or I0, respectively), representing the ”initial”
value of that variable. The ”f” subscript represents the ”final” or ”ultimate” value that the voltage or current
would achieve if allowed to progress indefinitely. Obviously, one must know how to determine the ”initial”
and ”final” values in order to use either of these formulae, but once you do you will be able to calculate any
voltage and any current at any time in either an RC or LR circuit.

What is not so obvious to students is how each formula works. Specifically, what does each portion of it
represent, in practical terms? This is your task: to describe what each term of the equation means in your
own words. I will list the ”voltage” formula terms individually for you to define:

V (t) =

(Vf − V0) =

(

1−
1

e
t
τ

)

=

file 01813

Question 31

Determine the voltage across the capacitor three seconds after the switch is moved from the upper
position to the lower position, assuming it had been left in the upper position for a long time:

22 µF

75 kΩ

3 V 9 V

file 00457
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Question 32

Assume that the switch in this circuit is toggled (switched positions) once every 5 seconds, beginning
in the ”up” (charge) position at time t = 0, and that the capacitor begins in a fully discharged state at that
time. Determine the capacitor voltage at each switch toggle:

Switch

10 V 470 µF

10 kΩ

Time Switch motion VC (volts)
0 s discharge → charge 0 volts
5 s charge → discharge
10 s discharge → charge
15 s charge → discharge
20 s discharge → charge
25 s charge → discharge

file 03668

Question 33

This passive integrator circuit is powered by a square-wave voltage source (oscillating between 0 volts
and 5 volts at a frequency of 2 kHz). Determine the output voltage (vout) of the integrator at each instant
in time where the square wave transitions (goes from 0 to 5 volts, or from 5 to 0 volts), assuming that the
capacitor begins in a fully discharged state at the first transition (from 0 volts to 5 volts):

10 kΩ

0 V

+5 V

2 kHz

0.022 µF

Passive integrator

vout

Transition vout
#1 (0 → 5 volts) 0 volts
#2 (5 → 0 volts)
#3 (0 → 5 volts)
#4 (5 → 0 volts)
#5 (0 → 5 volts)
#6 (5 → 0 volts)
#7 (0 → 5 volts)
#8 (5 → 0 volts)

file 03669
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Question 34

Calculate the voltage across the switch contacts the exact moment they open, and 15 milliseconds after
they have been opened:

9 V

1k5

10

330

file 00458

Question 35

Calculate the voltage across a 2.5 H inductor after ”charging” through a series-connected resistor with
50 Ω of resistance for 75 milliseconds, powered by a 6 volt battery. Assume that the inductor has an internal
resistance of 14 Ω.

Also, express this amount of time (75 milliseconds) in terms of how many time constants have elapsed.

Hint: it would be helpful in your analysis to draw a schematic diagram of this circuit showing the
inductor’s inductance and 14 ohms of resistance as two separate (idealized) components. This is a very
common analysis technique in electrical engineering: to regard the parasitic characteristics of a component
as a separate component in the same circuit.

file 00454

Question 36

The decay of a variable over time in an RC or LR circuit follows this mathematical expression:

e−
t
τ

Where,
e = Euler’s constant (≈ 2.718281828)
t = Time, in seconds
τ = Time constant of circuit, in seconds

For example, if we were to evaluate this expression and arrive at a value of 0.398, we would know the
variable in question has decayed from 100% to 39.8% over the period of time specified.

However, calculating the amount of time it takes for a decaying variable to reach a specified percentage
is more difficult. We would have to manipulate the equation to solve for t, which is part of an exponent.

Show how the following equation could be algebraically manipulated to solve for t, where x is the number
between 0 and 1 (inclusive) representing the percentage of original value for the variable in question:

x = e−
t
τ

Note: the ”trick” here is how to isolate the exponent −t
τ
. You will have to use the natural logarithm

function!
file 02001
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Question 37

Design an experiment to calculate the size of a capacitor based on its response in a time-constant circuit.
Include in your design an equation that gives the value of the capacitor in farads, based on data obtained
by running the experiment.

file 00455

Question 38

Calculate the amount of time it takes for a 33 µF capacitor to charge from 0 volts to 20 volts, if powered
by a 24 volt battery through a 10 kΩ resistor.

file 01814

Question 39

Calculate the amount of time it takes for a 10 µF capacitor to discharge from 18 volts to 7 volts if its
ultimate (final) voltage when fully discharged will be 0 volts, and it is discharging through a 22 kΩ resistor.

file 02941

Question 40

A 470 µF capacitor begins in a charged state of 270 volts, and discharges through a 100 kΩ resistor.
How long will it take before the capacitor’s voltage will fall to a relatively safe value (30 volts or less)?

file 04072

Question 41

Complete this table of values for inductor voltage and current. Consider time = 0 to be the precise
moment the switch closes:

250 mH

2.2 kΩ

1 kΩ16 V

Time (µs) VL (V) IL (mA)
0
50
100
150
200
250
300
350
400

file 01815
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Question 42

Determine the amount of time needed after switch closure for the capacitor voltage (VC) to reach the
specified levels:

40 VDC C = 4.7 µF

R = 220 kΩ
Switch

+
−

VC Time
0 volts
10 volts
20 volts
30 volts
40 volts

Trace the direction of electron flow in the circuit, and also mark all voltage polarities.
file 02942

Question 43

Determine the amount of time needed after switch closure for the capacitor voltage (VC) to reach the
specified levels:

Switch

20 VDC

R = 47 kΩ

C = 2.2 µF

VC Time
0 volts
-5 volts
-10 volts
-15 volts
-19 volts

Trace the direction of current in the circuit while the capacitor is charging, and be sure to denote
whether you are using electron or conventional flow notation.

Note: the voltages are specified as negative quantities because they are negative with respect to (positive)
ground in this particular circuit.

file 03118
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Question 44

Determine the amount of time needed for the capacitor voltage (VC) to fall to the specified levels after
the switch is thrown to the ”discharge” position, assuming it had first been charged to full battery voltage:

Switch

12 V

R = 190 kΩ

C = 17 µF

VC Time
10 volts
8 volts
6 volts
4 volts
2 volts

Trace the direction of electron flow in the circuit, and also mark all voltage polarities.
file 02943
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Question 45

A submarine sonar system uses a ”bank” of parallel-connected capacitors to store the electrical energy
needed to send brief, powerful pulses of current to a transducer (a ”speaker” of sorts). This generates
powerful sound waves in the water, which are then used for echo-location. The capacitor bank relieves the
electrical generators and power distribution wiring aboard the submarine from having to be rated for huge
surge currents. The generator trickle-charges the capacitor bank, and then the capacitor bank quickly dumps
its store of energy to the transducer when needed:

Gen Transducer

Capacitor bank

Submarine

As you might well imagine, such a capacitor bank can be lethal, as the voltages involved are quite high
and the surge current capacity is enormous. Even when the DC generator is disconnected (using the ”toggle”
disconnect switch shown in the schematic), the capacitors may hold their lethal charge for many days.

To help decreases the safety risk for technical personnel working on this system, a ”discharge” switch is
connected in parallel with the capacitor bank to automatically provide a path for discharge current whenever
the generator disconnect switch is opened:

Capacitor bank
. . .

. . .

to transducer

. . .

. . .

to generator
R

Suppose the capacitor bank consists of forty 1500 µF capacitors connected in parallel (I know the
schematic only shows three, but . . .), and the discharge resistor is 10 kΩ in size. Calculate the amount of
time it takes for the capacitor bank to discharge to 10 percent of its original voltage and the amount of time
it takes to discharge to 1 percent of its original voltage once the disconnect switch opens and the discharge
switch closes.

file 03119
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Question 46

A simple time-delay relay circuit may be built using a large capacitor connected in parallel with the
relay coil, to temporarily supply the relay coil with power after the main power source is disconnected. In
the following circuit, pressing the pushbutton switch sounds the horn, which remains on for a brief time after
releasing the switch:

Vsupply

Pushbutton switch
Relay

Horn

C

To calculate the amount of time the horn will remain on after the pushbutton switch is released, we
must know a few things about the relay itself. Since the relay coil acts as a resistive load to the capacitor,
we must know the coil’s resistance in ohms. We must also know the voltage at which the relay ”drops out”
(i.e. the point at which there is too little voltage across the coil to maintain a strong enough magnetic field
to hold the relay contacts closed).

Suppose the power supply voltage is 24 volts, the capacitor is 2200 µF, the relay coil resistance is 500
Ω, and the coil drop-out voltage is 6.5 volts. Calculate how long the time delay will last.

file 03554
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Question 47

The model ”555” integrated circuit is a very popular and useful ”chip” used for timing purposes in
electronic circuits. The basis for this circuit’s timing function is a resistor-capacitor (RC) network:

555
Disch

Thresh

Trig

Gnd

Vcc RST

Out

Ctrl

R1

R2

C

In this configuration, the ”555” chip acts as an oscillator: switching back and forth between ”high” (full
voltage) and ”low” (no voltage) output states. The time duration of one of these states is set by the charging
action of the capacitor, through both resistors (R1 and R2 in series). The other state’s time duration is set
by the capacitor discharging through one resistor (R2):

555
Disch

Thresh

Trig

Gnd

Vcc RST

Out

Ctrl

R1

R2

C

Capacitor charging through R1 and R2 (series)

555
Disch

Thresh

Trig

Gnd

Vcc RST

Out

Ctrl

R1

R2

C

Capacitor discharging through R2 only

Note: all currents shown in the direction of conventional flow

Obviously, the charging time constant must be τcharge = (R1+R2)C, while the discharging time constant
is τdischarge = R2C. In each of the states, the capacitor is either charging or discharging 50% of the way
between its starting and final values (by virtue of how the 555 chip operates), so we know the expression

e
−t
τ = 0.5, or 50 percent.†

† For those who must know why, the 555 timer in this configuration is designed to keep the capacitor
voltage cycling between 1

3 of the supply voltage and
2
3 of the supply voltage. So, when the capacitor is
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Develop two equations for predicting the ”charge” time and ”discharge” time of this 555 timer circuit,
so that anyone designing such a circuit for specific time delays will know what resistor and capacitor values
to use.
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Question 48

Calculate the rate of change of voltage ( dv
dt
) for the capacitor at the exact instant in time where the

switch moves to the ”charge” position. Assume that prior to this motion the switch had been left in the
”discharge” position for some time:

Charge Discharge

22 V

1k5

3µ3
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Question 49

Calculate the rate of change of current ( di
dt
) for the inductor at the exact instant in time where the

switch moves to the ”charge” position.

Charge Discharge

50m

470

14 V

file 03559

charging from 1
3VCC to its (final) value of full supply voltage (VCC), having this charge cycle interrupted

at 2
3VCC by the 555 chip constitutes charging to the half-way point, since

2
3 of half-way between

1
3 and 1.

When discharging, the capacitor starts at 2
3VCC and is interrupted at

1
3VCC , which again constitutes 50%

of the way from where it started to where it was (ultimately) headed.
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Question 50
∫

f(x) dx Calculus alert!

Differential equations may be used to model the charging behavior of an L/R circuit. Take, for instance,
this simple L/R circuit:

2 H

50 Ω

40 VDC

We may develop a loop equation based on Kirchhoff’s Voltage Law, knowing that the voltage of the
power source is constant (40 volts), and that the voltage drops across the inductor and resistor are VL = LdI

dt

and VR = IR, respectively:

40− IR− L
dI

dt
= 0

Show that the specific solution to this differential equation, assuming an initial condition of I = 0 at
t = 0, is as follows:

I = 0.8(1− e−25t)
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Question 51
∫

f(x) dx Calculus alert!

Differential equations may be used to model the charging behavior of an RC circuit. Take, for instance,
this simple RC circuit:

2 kΩ

10 µF30 VDC

We may develop a loop equation based on Kirchhoff’s Voltage Law, knowing that the voltage of the
power source is constant (30 volts), and that the voltage drops across the capacitor and resistor are VC =

Q
C

and VR = IR, respectively:

30− IR−
Q

C
= 0

To turn this into a true differential equation, we must express one of the variables as the derivative of
the other. In this case, it makes sense to define I as the time-derivative of Q:

30−
dQ

dt
R−

Q

C
= 0

Show that the specific solution to this differential equation, assuming an initial condition of Q = 0 at
t = 0, is as follows:

Q = 0.0003(1− e−50t)

Also, show this solution in a form where it solves for capacitor voltage (VC) instead of capacitor charge
(Q).
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Question 52

Don’t just sit there! Build something!!

Learning to mathematically analyze circuits requires much study and practice. Typically, students
practice by working through lots of sample problems and checking their answers against those provided by
the textbook or the instructor. While this is good, there is a much better way.

You will learn much more by actually building and analyzing real circuits, letting your test equipment
provide the ”answers” instead of a book or another person. For successful circuit-building exercises, follow
these steps:

1. Carefully measure and record all component values prior to circuit construction.
2. Draw the schematic diagram for the circuit to be analyzed.
3. Carefully build this circuit on a breadboard or other convenient medium.
4. Check the accuracy of the circuit’s construction, following each wire to each connection point, and
verifying these elements one-by-one on the diagram.

5. Mathematically analyze the circuit, solving for all values of voltage, current, etc.
6. Carefully measure those quantities, to verify the accuracy of your analysis.
7. If there are any substantial errors (greater than a few percent), carefully check your circuit’s construction
against the diagram, then carefully re-calculate the values and re-measure.

Avoid very high and very low resistor values, to avoid measurement errors caused by meter ”loading”.
I recommend resistors between 1 kΩ and 100 kΩ, unless, of course, the purpose of the circuit is to illustrate
the effects of meter loading!

One way you can save time and reduce the possibility of error is to begin with a very simple circuit and
incrementally add components to increase its complexity after each analysis, rather than building a whole
new circuit for each practice problem. Another time-saving technique is to re-use the same components in a
variety of different circuit configurations. This way, you won’t have to measure any component’s value more
than once.
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Answers

Answer 1

Before the switch closes:

VC = zero
VR = zero
Vswitch = maximum
I = zero

At the instant of switch closure:

VC = zero
VR = maximum
Vswitch = zero
I = maximum

Long after the switch has closed:

VC = maximum
VR = zero
Vswitch = zero
I = zero

Follow-up question: which of these variables remained the same immediately before and immediately
after switch closure? Explain why.

Answer 2

Before the switch closes:

VL = zero
VR = zero
Vswitch = maximum
I = zero

At the instant of switch closure:

VL = maximum
VR = zero
Vswitch = zero
I = zero

Long after the switch has closed:

VL = zero
VR = maximum
Vswitch = zero
I = maximum

Follow-up question: which of these variables remained the same immediately before and immediately
after switch closure? Explain why.

Answer 3

Iswitch−left = 2 mA
Vswitch−right = 182 V

Follow-up question: suppose this circuit were built and tested, and it was found that the voltage
developed across the inductor at the moment the switch moved to the right-hand position far exceeded 182
volts. Identify some possible problems in the circuit which could account for this excessive voltage.
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Answer 4

• 1 time constant (τ) after connecting the resistor: VC = 36.79 volts
• 2 time constants (2τ) after connecting the resistor: VC = 13.53 volts
• 3 time constants (3τ) after connecting the resistor: VC = 4.979 volts
• 4 time constants (4τ) after connecting the resistor: VC = 1.832 volts
• 5 time constants (5τ) after connecting the resistor: VC = 0.6738 volts

Follow-up question: write an equation solving for these voltages at the specified times.

Answer 5

• RC circuit; R = 10 kΩ, C = 220 µF ; 7.5 sec = 3.41 τ

• RC circuit; R = 33 kΩ, C = 470 µF ; 7.5 sec = 0.484 τ

• RC circuit; R = 1.5 kΩ, C = 100 µF ; 7.5 sec = 50.0 τ

• RC circuit; R = 790 Ω, C = 9240 nF ; 7.5 sec = 1027 τ

• RC circuit; R = 100 kΩ, C = 33 pF ; 7.5 sec = 2,272,727 τ

• LR circuit; R = 100 Ω, L = 50 mH ; 7.5 sec = 15,000 τ

• LR circuit; R = 45 Ω, L = 2.2 H ; 7.5 sec = 153.4 τ

• LR circuit; R = 1 kΩ, L = 725 mH ; 7.5 sec = 10,345 τ

• LR circuit; R = 4.7 kΩ, L = 325 mH ; 7.5 sec = 108,462 τ

• LR circuit; R = 6.2 Ω, L = 25 H ; 7.5 sec = 1.86 τ

Answer 6

e−x =
1

ex

Answer 7

t = 1 second ; e−
t
τ = 36.788%

t = 2 seconds ; e−
t
τ = 13.534%

t = 3 seconds ; e−
t
τ = 4.979%

t = 4 seconds ; e−
t
τ = 1.832%

t = 5 seconds ; e−
t
τ = 0.6738%

t = 6 seconds ; e−
t
τ = 0.2479%

t = 7 seconds ; e−
t
τ = 0.09119%

t = 8 seconds ; e−
t
τ = 0.03355%

t = 9 seconds ; e−
t
τ = 0.01234%

t = 10 seconds ; e−
t
τ = 0.004540%
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Answer 8

t = 1 second ; e−
t
τ = 60.65% ; increasing variable = 39.35%

t = 2 seconds ; e−
t
τ = 36.79% ; increasing variable = 63.21%

t = 3 seconds ; e−
t
τ = 22.31% ; increasing variable = 77.69%

t = 4 seconds ; e−
t
τ = 13.53% ; increasing variable = 86.47%

t = 5 seconds ; e−
t
τ = 8.208% ; increasing variable = 91.79%

t = 6 seconds ; e−
t
τ = 4.979% ; increasing variable = 95.02%

t = 7 seconds ; e−
t
τ = 3.020% ; increasing variable = 96.98%

t = 8 seconds ; e−
t
τ = 1.832% ; increasing variable = 98.17%

t = 9 seconds ; e−
t
τ = 1.111% ; increasing variable = 98.89%

t = 10 seconds ; e−
t
τ = 0.6738% ; increasing variable = 99.33%

Answer 9

This equation models the percentage of pizza remaining on the table at time t, not how much has already
been eaten.

Answer 10

This equation models the percentage of pizza eaten at time t, not how much remains on the table.

Answer 11

Whether the variable in question is increasing or decreasing over time, the expression e−
t
τ describes the

percentage that a variable has left to change before it reaches its final value.

Follow-up question: what could you add to or modify about the expression to make it describe the
percentage that a variable has already changed from its initial value? In other words, alter the expression
so that it is equal to 0% at t = 0 and approaches 100% as t grows larger (t→∞).

Answer 12

Here is a hint: set x to zero and evaluate each equation.

Answer 13

(1− e−
t
τ )(100%)

Answer 14

t = 0 seconds ; EC = 10 V

t = 1 second ; EC =
10
3 V = 3.33 V

t = 2 seconds ; EC =
10
9 V = 1.11 V

t = 3 seconds ; EC =
10
27 V = 0.370 V

t = 4 seconds ; EC =
10
81 V = 0.123 V

t = 5 seconds ; EC =
10
243 V = 0.0412 V

Follow-up question: without using a calculator to check, determine whether these voltages are over-
estimates or under-estimates.
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Answer 15

t = 0 seconds ; EC = 0 V
t = 1 second ; EC =

20
3 V = 6.67 V

t = 2 seconds ; EC =
80
9 V = 8.89 V

t = 3 seconds ; EC =
260
27 V = 9.63 V

t = 4 seconds ; EC =
800
81 V = 9.88 V

t = 5 seconds ; EC =
2420
243 V = 9.96 V

Follow-up question: without using a calculator to check, determine whether these voltages are over-
estimates or under-estimates.

Answer 16

Time
Switch
closes

IC

VC
Vmax Imax

0

IC = Imax

(

e−
t
τ

)

VC = Vmax

(

1− e−
t
τ

)

Answer 17

I’ll let you discuss this question with your classmates and instructor!

Answer 18

EC = 3.537 volts @ t = 9 seconds.

9 s = 1.915 time constants (1.915τ)
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Answer 19

VC = 1.9915 volts @ t = 3 seconds

IC = 995.74 µA @ t = 3 seconds

40 V

Charge Discharge

Arrows pointing in the direction
of conventional flow

500µ

2k0

Answer 20

VC = -13.08 volts @ t = 45 ms

IC = 236.6 µA @ t = 45 ms

Follow-up question: show the directions of charge and discharge current in this circuit.

Answer 21

IL = 109.11 mA @ t = 6 milliseconds

6 ms = 2.4 time constants (2.4τ)

Answer 22

EC IC

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5

Time (seconds)

3

6

9

12

15

18

0

600

500

400

300

200

100

0

(µA)(V)
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Answer 23

0

0 0

(V)

EL IL
(mA)

1

2

3

4

5 25

20

15

10

5

Time (milliseconds)
7.5 15 22.5 30 37.5

Answer 24

Time VC (volts)
0 ms 0
30 ms 12.29
60 ms 19.71
90 ms 24.19
120 ms 26.89
150 ms 28.52

Answer 25

Time VC (volts) IC (mA)
0 ms 0 4.255
30 ms 6.932 2.781
60 ms 11.46 1.817
90 ms 14.42 1.187
120 ms 16.35 0.7757
150 ms 17.62 0.5069

Answer 26

Time VL (volts) IL (mA)
0 µs 20 0
10 µs 11.89 6.238
20 µs 7.069 9.947
30 µs 4.203 12.15
40 µs 2.499 13.46
50 µs 1.485 14.24
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Answer 27

Time VL (volts) IL (mA)
0 ns 12 0
250 ns 6.110 21.82
500 ns 3.111 32.92
750 ns 1.584 38.58
1.00 µs 0.8065 41.46
1.25 µs 0.4106 42.93

Answer 28

Figure 1:

VC(initial) = 0 V (given) VC(final) = 15 V
IC(initial) = 1.5 mA IC(final) = 0 mA
VR(initial) = 15 V VR(final) = 0 V
IR(initial) = 1.5 mA IR(final) = 0 mA

Figure 2:

VC(initial) = 25 V (given) VC(final) = 0 V
IC(initial) = 25 mA IC(final) = 0 mA
VR(initial) = 25 V VR(final) = 0 V
IR(initial) = 25 mA IR(final) = 0 mA

Figure 3:

VC(initial) = 4 V VC(final) = 7 V
IC(initial) = 81 µA IC(final) = 0 µA
VR(initial) = 3 V VR(final) = 0 V
IR(initial) = 81 µA IR(final) = 0 µA

Figure 4:

VC(initial) = 10 V VC(final) = 12 V
IC(initial) = 606 µA IC(final) = 0 µA
VR(initial) = 2 V VR(final) = 0 V
IR(initial) = 606 µA IR(final) = 0 µA

Follow-up question: explain why the inductor value (in Henrys) is irrelevant in determining ”initial”
and ”final” values of voltage and current.

Answer 29

Figure 1:

VL(initial) = 15 V VL(final) = 0 V
IL(initial) = 0 mA IL(final) = 1.5 mA
VR(initial) = 0 V VR(final) = 15 V
IR(initial) = 0 mA IR(final) = 1.5 mA

Figure 2:

VL(initial) = 50.4 V VL(final) = 0 V
IL(initial) = 3.38 mA IL(final) = 825 µA
VR(initial) = 74.4 V VR(final) = 18.1 V
IR(initial) = 3.38 mA IR(final) = 825 µA
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Figure 3:

VL(initial) = 370 V VL(final) = 0 V
IL(initial) = 10 mA IL(final) = 0 mA
VR(initial) = 370 V VR(final) = 0 V
IR(initial) = 10 mA IR(final) = 0 mA

Figure 4:

VL(initial) = 6 V VL(final) = 0 V
IL(initial) = 638 µA IL(final) = 1.91 mA
VR(initial) = 3 V VR(final) = 9 V
IR(initial) = 638 µA IR(final) = 1.91 mA

Follow-up question: explain why the inductor value (in Henrys) is irrelevant in determining ”initial”
and ”final” values of voltage and current.

Answer 30

The term V (t) uses symbolism common to calculus and pre-calculus, pronounced ”V of t,” meaning
”voltage at time t”. It means that the variable V changes as a function of time t.

(Vf − V0) represents the amount of change that the voltage would go through, from the start of the
charge/discharge cycle until eternity. Note that the sign (positive or negative) of this term is very important!

(

1− 1

e
t
τ

)

is the fractional value (between 0 and 1, inclusive) expressing how far the voltage has changed

from its initial value to its final value.

Follow-up question: why is it important to add the final V0 term to the expression? Why not leave the

formula at V (t) = (Vf − V0)
(

1− 1

e
t
τ

)

?

Answer 31

EC = 3.974 V @ 3 seconds

Follow-up question: identify at least one failure in this circuit which would cause the capacitor to remain
completely discharged no matter what position the switch was in.

Answer 32

Time Switch motion VC (volts)
0 s discharge → charge 0 volts
5 s charge → discharge 6.549 volts
10 s discharge → charge 2.260 volts
15 s charge → discharge 7.329 volts
20 s discharge → charge 2.529 volts
25 s charge → discharge 7.422 volts
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Answer 33

Transition vout
#1 (0 → 5 volts) 0 volts
#2 (5 → 0 volts) 3.395 volts
#3 (0 → 5 volts) 1.090 volts
#4 (5 → 0 volts) 3.745 volts
#5 (0 → 5 volts) 1.202 volts
#6 (5 → 0 volts) 3.781 volts
#7 (0 → 5 volts) 1.214 volts
#8 (5 → 0 volts) 3.785 volts

Challenge question: what are the final (ultimate) values for the integrator output’s sawtooth-wave peak
voltages?

Answer 34

Eswitch = 40.91 V @ t = 0 seconds
Eswitch = 9.531 V @ t = 15 milliseconds

Follow-up question: predict all voltage drops in this circuit in the event that the inductor fails open
(broken wire inside).

Answer 35

Equivalent schematic:

6 V2.5 H

50 Ω

14 ΩInductor
with coil

resistance

EL = 2.00 V @ t = 75 milliseconds
75 ms = 1.92 time constants (1.92τ)
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Answer 36

Showing all the necessary steps:

x = e−
t
τ

lnx = ln
(

e−
t
τ

)

lnx = −
t

τ

t = −τ lnx

Answer 37

I recommend the following circuit for testing the capacitor:

+
V

-

The equation is yours to develop – I will not reveal it here. However, this does not mean there is no
way to verify the accuracy of your equation, once you write it. Explain how it would be possible to prove
the accuracy of your algebra, once you have written the equation.

Answer 38

0.591 seconds

Answer 39

0.208 seconds

Answer 40

It will take 103.3 seconds for the voltage to fall to 30 volts.

Answer 41

Time (µs) VL (V) IL (mA)
0 5.00 5.00
50 3.22 5.81
100 2.07 6.33
150 1.34 6.67
200 0.860 6.88
250 0.554 7.02
300 0.357 7.11
350 0.230 7.17
400 0.148 7.21
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Answer 42

40 VDC C = 4.7 µF

R = 220 kΩ
Switch

(electron flow)

+
−

VC Time
0 volts 0 ms
10 volts 297.5 ms
20 volts 716.7 ms
30 volts 1.433 s
40 volts > 5 s

Answer 43

VC Time
0 volts 0 ms
-5 volts 29.75 ms
-10 volts 71.67 ms
-15 volts 143.3 ms
-19 volts 309.8 ms

While the capacitor is charging, electron flow moves clockwise and conventional flow moves counter-
clockwise.

Answer 44

Switch

(electron flow)12 V

R = 190 kΩ

C = 17 µF

VC Time
10 volts 588.9 ms
8 volts 1.31 s
6 volts 2.24 s
4 volts 3.55 s
2 volts 5.79 s
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Answer 45

Time to reach 10% ≈ 23 minutes

Time to reach 1% ≈ 46 minutes

Follow-up question: without using the time constant formula again, calculate how long it will take to
discharge to 0.1% of its original voltage. How about 0.01%?

Answer 46

tdelay = 1.437 seconds

Answer 47

tcharge = − ln 0.5(R1 +R2)C

tdischarge = − ln 0.5R2C

Answer 48
dv
dt
= 4.44 kV/s or 4.44 V/ms

Answer 49
di
dt
= 280 A/s or 0.28 A/ms

Follow-up question: does the resistor value have any effect on this initial di
dt
? Explain why or why not.
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Answer 50

40− IR− L
dI

dt
= 0

40− IR = L
dI

dt

40− IR

L
=

dI

dt

dt

L
=

dI

40− IR

∫

1

L
dt =

∫

1

40− IR
dI

Substitution: u = 40− IR ;
du

dI
= −R ; dI = −

1

R
du

1

L

∫

dt = −
1

R

∫

1

u
du

t

L
+K1 = −

1

R
| lnu|

−
tR

L
+K2 = | lnu|

e−
tR
L

+K2 = |u|

K3e
− tR

L = u

K3e
− tR

L = 40− IR

IR = 40−K3e
− tR

L

I =
40

R
−K4e

− tR
L

Given the initial condition of zero current (I = 0) at time zero (t = 0), the constant of integration must
be equal to 40

R
in our specific solution:

I =
40

R
−
40

R
e−

tR
L

I =
40

R
(1− e−

tR
L )

Substituting the given component values into this specific solution gives us the final equation:

I = 0.8(1− e−25t)
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Answer 51

30−
dQ

dt
R−

Q

C
= 0

30−
Q

C
=

dQ

dt
R

30− Q
C

R
=

dQ

dt

30C
C
− Q

C

R
=

dQ

dt

30C −Q

RC
=

dQ

dt

dt

RC
=

dQ

30C −Q

∫

1

RC
dt =

∫

1

30C −Q
dQ

Substitution: u = 30C −Q ;
du

dQ
= −1 ; dQ = −du

1

RC

∫

dt = −

∫

1

u
du

t

RC
+K1 = −| lnu|

−
t

RC
−K1 = | lnu|

e−
t

RC
−K1 = |u|

K2e
− t

RC = u

K2e
− t

RC = 30C −Q

General solution: Q = 30C −K2e
− t

RC

Given the initial condition that the charge stored in the capacitor is zero (Q = 0) at time zero (t = 0),
the constant of integration must be equal to 30C in our specific solution:

Q = 30C − 30Ce−
t

RC

Q = 30C(1− e−
t

RC )

Substituting the given component values into this specific solution gives us the final equation:

Q = 0.0003(1− e−50t)
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Showing a final equation in terms of capacitor voltage instead of capacitor charge:

Q

C
=
30C

C
(1− e−

t
RC )

VC = 30(1− e−50t)

Answer 52

Let the electrons themselves give you the answers to your own ”practice problems”!
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Notes

Notes 1

The purpose of this question is to preview the concept of ”initial” and ”final” values in RC circuits,
before they learn to use the ”universal time constant formula.”

Notes 2

The purpose of this question is to preview the concept of ”initial” and ”final” values in RC circuits,
before they learn to use the ”universal time constant formula.”

Notes 3

The main purpose of this question is to get students thinking in terms of ”initial” and ”final” values
for LR circuits, and how one might calculate them. It is largely a conceptual question, with just a bit of
calculation necessary.

One practical application of this circuit is for ”stepping up” DC voltage. The circuit topology shown in
the question is that of an inverting converter circuit. This form of DC-DC converter circuit has the ability
to step voltage up or down, depending on the duty cycle of the switch’s oscillation.

Notes 4

Although students should be able to look up approximate answers to this question from almost any
beginning electronics textbook, the point here is to get them to relate the question to an actual formula so
they may calculate this on their own.

Notes 5

An interesting thing to note here is the span of time constant values available from common
capacitor/inductor/resistor sizes. As students should notice, the capacitor-resistor combinations (all very
practical values, I might add) create both longer and shorter time constant values than the inductor-resistor
combinations, and that is even including the 25 Henry - 6.2 Ohm combination, which would be difficult
(read: expensive) to achieve in real life.

Notes 6

I am usually not a fan of discussing calculator keystroke sequences to college-level students, but I have
resorted to this at the college where I teach because so many of my students have no idea of how to evaluate
exponential expressions! Of course, the actual keystrokes one must push to evaluate this expression depend
on the brand of calculator used.

Notes 7

The purpose of this question is for students to learn the significance of the expression e−
t
τ by ”playing”

with the numbers. The negative exponent may confuse some students, so be sure to discuss its significance
with all students, so that all understand what it means.

Another concept for students to grasp in this question is that of an asymptotic function: a function that
approaches a final value in incrementally smaller intervals.
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Notes 8

Do not simply tell your students how to calculate the values of the increasing variable. Based on their
qualitative knowledge of time-constant circuit curves and their ability to evaluate the downward (decay)
expression, they should be able to figure out how to calculate the increasing variable’s value over time as
well.

Some students will insist that you give them an equation to do this. They want to be told what to
do, rather than solve the problem on their own based on an observation of pattern. It is very important
that students of any science learn to recognize patterns in data, and that they learn to fit that data into a
mathematical equation. If nothing else, these figures given in the answer for both decreasing and increasing
variables should be plain enough.

Notes 9

While some may wonder what this question has to do with electronics, it is an exercise in qualitative
analysis. This skill is very important for students to master if they are to be able to distinguish between the
equations e−

t
τ and 1− e−

t
τ , both used in time-constant circuit analysis.

The actual procedure for determining the nature of the equation is simple: consider what happens as t
begins at 0 and as it increases to some arbitrary positive value. Some students may rely on their calculators,
performing actual calculations to see whether the percentage increases or decreases with increasing t.
Encourage them to analyze the equation qualitatively rather than quantitatively, though. They should
be able to tell which way the percentage changes with time without having to consider a single numerical
value!

Notes 10

While some may wonder what this question has to do with electronics, it is an exercise in qualitative
analysis. This skill is very important for students to master if they are to be able to distinguish between the
equations e−

t
τ and 1− e−

t
τ , both used in time-constant circuit analysis.

The actual procedure for determining the nature of the equation is simple: consider what happens as t
begins at 0 and as it increases to some arbitrary positive value. Some students may rely on their calculators,
performing actual calculations to see whether the percentage increases or decreases with increasing t.
Encourage them to analyze the equation qualitatively rather than quantitatively, though. They should
be able to tell which way the percentage changes with time without having to consider a single numerical
value!

Notes 11

It is very important for students to understand what this expression means and how it works, lest they
rely solely on memorization to use it in their calculations. As I always tell my students, rote memorization
will fail you! If a student does not comprehend why the expression works as it does, they will be helpless to
retain it as an effective ”tool” for performing calculations in the future.

A good way to suggest students approach a problem such as this is to imagine t increasing in value. As
t grows larger, what happens to the expression’s overall value? Then, compare which of the two percentages
(percentage traversed, or percentage remaining) follow the same trend. One not need touch a calculator to
figure this out!

Notes 12

It is very important for students to understand what this expression means and how it works, lest they
rely solely on memorization to use it in their calculations. As I always tell my students, rote memorization
will fail you! If a student does not comprehend why the expression works as it does, they will be helpless to
retain it as an effective ”tool” for performing calculations in the future.
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Notes 13

Being able to derive an equation from numerical data is a complex, but highly useful, skill in all
the sciences. Sure, your students will be able to find this mathematical expression in virtually any basic
electronics textbook, but the point of this question is to derive this expression from an examination of data
(and, of course, an examination of the other time-constant expression: e−

t
τ ).

Be sure to challenge your students to do this, by asking how they obtained the answer to this question.
Do not ”settle” for students simply telling you what the equation is – ask them to explain their problem-
solving techniques, being sure that all students have contributed their insights.

Notes 14

Calculating the voltage for the first few time constants’ worth of time should be easy without a calculator.
I strongly encourage your students to develop their estimation skills, so that they may solve problems without
being dependent upon a calculator. Too many students depend heavily on calculators – some are even
dependent on specific brands or models of calculators!

Equally important as being able to estimate is knowing whether or not your estimations are over or
under the exact values. This is especially true when estimating quantities relevant to safety and/or reliability!

Notes 15

Calculating the voltage for the first few time constants’ worth of time should be easy without a calculator.
I strongly encourage your students to develop their estimation skills, so that they may solve problems without
being dependent upon a calculator. Too many students depend heavily on calculators – some are even
dependent on specific brands or models of calculators!

Equally important as being able to estimate is knowing whether or not your estimations are over or
under the exact values. This is especially true when estimating quantities relevant to safety and/or reliability!

Notes 16

Have your students explain why the voltage and current curves are shaped as they are.

Notes 17

This is advice I always give my students, after seeing so many students get themselves into trouble by
blindly plugging numbers into equations. Think before you act, is the motto here!

Actually, this general advice applies to most all physics-type problems: identify what it is you’re trying
to solve and what you have to work with before jumping into calculations.

Notes 18

Here, students must choose which equation to use for the calculation, calculate the time constant for
the circuit, and put all the variables in the right place to obtain the correct answer. Discuss all these steps
with your students, allowing them to explain how they approached the question.

Notes 19

Here, students must choose which equation(s) to use for the calculation, calculate the time constant for
the circuit, and put all the variables in the right place to obtain the correct answers. Discuss all these steps
with your students, allowing them to explain how they approached the question.

If anyone asks, let them know that the capacitor symbol shown represents a polarized (electrolytic)
capacitor.
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Notes 20

Here, students must choose which equation(s) to use for the calculation, calculate the time constant for
the circuit, and put all the variables in the right place to obtain the correct answers. Discuss all these steps
with your students, allowing them to explain how they approached the question.

If anyone asks, let them know that the capacitor symbol shown represents a polarized (electrolytic)
capacitor.

Notes 21

Here, students must choose which equation to use for the calculation, calculate the time constant for
the circuit, and put all the variables in the right place to obtain the correct answer. Discuss all these steps
with your students, allowing them to explain how they approached the question.

Notes 22

I intentionally left the graph unscaled in the problem, so that students might determine their own scales
to plot the points in. The scaling shown in the answer is obviously not ideal, as the graphs have reached
their terminal values (for all practical purposes) well before the horizontal axis is complete.

Notes 23

I intentionally left the graph unscaled in the problem, so that students might determine their own scales
to plot the points in. The scaling shown in the answer is obviously not ideal, as the graphs have reached
their terminal values (for all practical purposes) well before the horizontal axis is complete.

Notes 24

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class.

Notes 25

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class.

Notes 26

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class.

Notes 27

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class.

Notes 28

Once students grasp the concept of initial and final values in time-constant circuits, they may calculate
any variable at any point in time for any RC or LR circuit (not for RLC circuits, though, as these require
the solution of a second-order differential equation!). All they need is the universal time-constant equation:

x = xinitial + (xfinal − xinitial)
(

1− e
−t
τ

)

(x, of course, represents either voltage or current, depending on what is being calculated.)

One common mistake new students often commit is to consider ”initial” values as those values of voltage
and current existing in the circuit before the switch is thrown. However, ”initial” refers to those values at
the very first instant the switch moves to its new position, not before.
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Notes 29

Once students grasp the concept of initial and final values in time-constant circuits, they may calculate
any variable at any point in time for any RC or LR circuit (not for RLC circuits, though, as these require
the solution of a second-order differential equation!). All they need is the universal time-constant equation:

x = xinitial + (xfinal − xinitial)
(

1− e
−t
τ

)

(x, of course, represents either voltage or current, depending on what is being calculated.)

One common mistake new students often commit is to consider ”initial” values as those values of voltage
and current existing in the circuit before the switch is thrown. However, ”initial” refers to those values at
the very first instant the switch moves to its new position, not before.

Notes 30

This so-called ”universal time-constant formula” is my own (Tony R. Kuphaldt’s) invention. A product
of frustration from trying to teach students to calculate variables in RC and LR time-constant circuits using
one formula for decay and another one for increasing values, this equation works for all conditions. Vitally
important to this formula’s accuracy, however, is that the student correctly assesses the initial and final
values. This is the biggest problem I see students having when they go to calculate voltages or currents in
time-constant circuits.

In my Lessons In Electric Circuits textbook, I introduce this formula in a slightly different form:

∆V = (Vf − V0)

(

1−
1

e
t
τ

)

This explains the purpose of my follow-up question: to challenge students who might simply read the
book’s version of the formula and not consider the difference between it and what is presented here!

Notes 31

This problem is unique in that the capacitor does not discharge all the way to 0 volts when the switch is
moved to the lower position. Instead, it discharges down to a (final) value of 3 volts. Solving for the answer
requires that students be a bit creative with the common time-constant equations (e−

t
τ and 1− e−

t
τ ).

The follow-up question is simply an exercise in troubleshooting theory.

Notes 32

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class. See how many of them notice that the exponential portion of the equation
(e

t
τ ) is the same for each calculation, and if they find an easy way to manage the calculations by storing

charge/discharge percentages in their calculator memories!

Notes 33

Be sure to have your students share their problem-solving techniques (how they determined which
equation to use, etc.) in class. See how many of them notice that the exponential portion of the equation
(e

t
τ ) is the same for each calculation, and if they find an easy way to manage the calculations by storing

charge/discharge percentages in their calculator memories!
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Notes 34

There is quite a lot to calculate in order to reach the solutions in this question. There is more than one
valid way to approach it, as well. An important fact to note: the voltage across the switch contacts, in both
examples, is greater than the battery voltage! Just as capacitive time-constant circuits can generate currents
in excess of what their power sources can supply, inductive time-constant circuits can generate voltages in
excess of what their power sources can supply.

The follow-up question is simply an exercise in troubleshooting theory.

Notes 35

Although I have revealed a problem-solving technique in this question, it does not show the students
exactly how to separate the inductor’s 2.5 henrys of inductance and 14 ohms of resistance into two
components, nor does it give away the answer. Discuss the analytical technique of drawing idealized
components (”lumped parameters”) as a problem-solving technique, and encourage students to use it
whenever they are faced with analyzing a component exhibiting parasitic characteristics.

An excellent example of this technique is in ”modeling” transformers. Transformers exhibit much more
than just mutual inductance. They also exhibit self-inductance, leakage inductance, capacitance, resistance,
and hysteretic losses. A comprehensive model for a transformer is a very complex thing, and it appears on
a schematic to be a whole network of components connected together:

Equivalent circuit for a transformer

Each of these components is regarded as ideal (i.e., pure: possessing no parasitic characteristics), but
together they ”model” the behavior of a real transformer in terms readily applicable to existing mathematical
techniques.
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Notes 36

In my experience, most American high school graduates are extremely weak in logarithms. Apparently
this is not taught very well at the high school level, which is a shame because logarithms are a powerful
mathematical tool. You may find it necessary to explain to your students what a logarithm is, and exactly
why it ”un-does” the exponent.

When forced to give a quick presentation on logarithms, I usually start with a generic definition:

Given: ba = c

Logarithm defined: logb c = a

Verbally defined, the logarithm function asks us to find the power (a) of the base (b) that will yield c.

Next, I introduce the common logarithm. This, of course, is a logarithm with a base of 10. A few quick
calculator exercises help students grasp what the common logarithm function is all about:

log 10 =

log 100 =

log 1000 =

log 10000 =

log 100000 =

log
1

10
=

log
1

100
=

log
1

1000
=

After this, I introduce the natural logarithm: a logarithm with a base of e (Euler’s constant):

Natural logarithm defined: lnx = loge x

Have your students do this simple calculation on their calculators, and explain the result:

ln 2.71828 =

Next comes an exercise to help them understand how logarithms can ”undo” exponentiation. Have your
students calculate the following values:

e2 =

e3 =

e4 =
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Now, have them take the natural logarithms of each of those answers. They will find that they arrive
at the original exponent values (2, 3, and 4, respectively). Write this relationship on the board as such for
your students to view:

ln e2 = 2

ln e3 = 3

ln e4 = 4

Ask your students to express this relationship in general form, using the variable x for the power instead
of an actual number:

ln ex = x

It should now be apparent that the natural logarithm function has the ability to ”undo” a power of e.
Now it should be clear to your students why the given sequence of algebraic manipulations in the answer for
this question is true.

Notes 37

In developing equations, students often feel ”abandoned” if the instructor does not provide an answer
for them. How will they ever know if their equation is correct? If the phenomenon the equation seeks to
predict is well-understood, though, this is not a problem.

Notes 38

In order for students to solve this problem, they must algebraically manipulate the ”normal” time-
constant formula to solve for time instead of solving for voltage.

Notes 39

In order for students to solve this problem, they must algebraically manipulate the ”normal” time-
constant formula to solve for time instead of solving for voltage.

Notes 40

This question incorporates electrical safety into an RC circuit time calculation. Safety is something
you should periodically revisit with your students, because it is so important. Ask your students how a
”safe” value of voltage may be determined, and if there are any environmental circumstances impacting this
determination.

Notes 41

This circuit demands careful pre-analysis of the initial and final values. If students experience difficulty
calculating the voltage and current figures here, it is probably due to incorrect initial and final values for
voltage and/or current.

Notes 42

Some students may write 5.17 seconds as the time required to charge to 40 volts (5 time constants’ worth
of time). If so, remind them that the ”standard” of 5τ is arbitrary, and that theoretically the capacitor never
actually reaches full charge.

Notes 43

Ask your students to show how they algebraically solved the standard time constant equation for t using
logarithms.
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Notes 44

Ask your students to explain how they set up each calculation.

Notes 45

The follow-up question illustrates an important mathematical principle regarding logarithmic decay
functions: for every passing of a fixed time interval, the system decays by the same factor. This is most
clearly (and popularly) seen in the concept of half-life for radioactive substances, but it is also seen here for
RC (or LR) circuits.

Notes 46

In order for students to solve this problem, they must algebraically manipulate the ”normal” time-
constant formula to solve for time instead of solving for voltage.

Notes 47

Although it may seem premature to introduce the 555 timer chip when students are just finishing their
study of DC, I wanted to provide a practical application of RC circuits, and also of algebra in generating
useful equations. If you deem this question too advanced for your student group, by all means skip it.

Incidentally, I simplified the diagram where I show the capacitor discharging: there is actually another
current at work here. Since it wasn’t relevant to the problem, I omitted it. However, some students may be
adept enough to catch the omission, so I show it here:

555
Disch

Thresh

Trig

Gnd

Vcc RST

Out

Ctrl

R1

R2

C

Capacitor discharging through R2 only

Note that this second current (through the battery) does not go anywhere near the capacitor, and so is
irrelevant to the discharge cycle time.

Notes 48

Some students may think that a rate of change of 4.44 kilovolts per second harbors shock hazard,
because, well, 4.44 thousand volts is a lot of voltage! Remind them that this is a rate of change and not an
actual voltage figure. This number simply tells us how fast the voltage is changing, not how far it will rise
to. It is the difference between saying that a car travels at 75 miles per hour and that a car will travel 75
miles.
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Notes 49

Some students may think that a rate of change of 280 amps per second might burn up the wiring,
because 280 amps seems like a lot of current. Remind them that this is a rate of change and not an actual
current figure. This number simply tells us how fast the current is changing, not how far it will rise to. It is
the difference between saying that a car travels at 75 miles per hour and that a car will travel 75 miles.

Notes 50

L/R time constant circuits are an excellent example of how to apply simple differential equations. In this
case, we see that the differential equation is first-order, with separable variables, making it comparatively
easy to solve.

It should also be evident to students that any initial condition for current may be set into the general
solution (by changing the value of the constant).

Notes 51

RC time constant circuits are an excellent example of how to apply simple differential equations. In this
case, we see that the differential equation is first-order, with separable variables, making it comparatively
easy to solve.

It should also be evident to students that any initial condition of capacitor charge may be set into the
general solution (by changing the value of the constant).
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Notes 52

It has been my experience that students require much practice with circuit analysis to become proficient.
To this end, instructors usually provide their students with lots of practice problems to work through, and
provide answers for students to check their work against. While this approach makes students proficient in
circuit theory, it fails to fully educate them.

Students don’t just need mathematical practice. They also need real, hands-on practice building circuits
and using test equipment. So, I suggest the following alternative approach: students should build their
own ”practice problems” with real components, and try to mathematically predict the various voltage and
current values. This way, the mathematical theory ”comes alive,” and students gain practical proficiency
they wouldn’t gain merely by solving equations.

Another reason for following this method of practice is to teach students scientific method: the process
of testing a hypothesis (in this case, mathematical predictions) by performing a real experiment. Students
will also develop real troubleshooting skills as they occasionally make circuit construction errors.

Spend a few moments of time with your class to review some of the ”rules” for building circuits before
they begin. Discuss these issues with your students in the same Socratic manner you would normally discuss
the worksheet questions, rather than simply telling them what they should and should not do. I never
cease to be amazed at how poorly students grasp instructions when presented in a typical lecture (instructor
monologue) format!

A note to those instructors who may complain about the ”wasted” time required to have students build
real circuits instead of just mathematically analyzing theoretical circuits:

What is the purpose of students taking your course?

If your students will be working with real circuits, then they should learn on real circuits whenever
possible. If your goal is to educate theoretical physicists, then stick with abstract analysis, by all means!
But most of us plan for our students to do something in the real world with the education we give them.
The ”wasted” time spent building real circuits will pay huge dividends when it comes time for them to apply
their knowledge to practical problems.

Furthermore, having students build their own practice problems teaches them how to perform primary

research, thus empowering them to continue their electrical/electronics education autonomously.
In most sciences, realistic experiments are much more difficult and expensive to set up than electrical

circuits. Nuclear physics, biology, geology, and chemistry professors would just love to be able to have their
students apply advanced mathematics to real experiments posing no safety hazard and costing less than a
textbook. They can’t, but you can. Exploit the convenience inherent to your science, and get those students
of yours practicing their math on lots of real circuits!

58


