|
DATA MINING
Desktop Survival Guide by Graham Williams |
|
|||
library(ROCR)
data(ROCR.xval)
pp <- ROCR.xval$predictions
ll <- ROCR.xval$labels
pred <- prediction(pp, ll)
perf <- performance(pred, "tpr", "fpr")
pdf("graphics/rplot-rocr-10xfold.pdf")
par(mfrow = c(2, 2))
plot(perf, colorize = T, lwd = 2,
main = "ROC: 10-fold cross-validation")
plot(perf, avg = "vertical", spread.estimate = "stderror",
lwd = 3, main = "Vertical avg + 1 std error",
col = "blue")
plot(perf, avg = "horizontal", spread.estimate = "boxplot",
lwd = 3, main = "Horizontal avg + boxplots",
col = "blue")
plot(perf, avg = "threshold", spread.estimate = "stddev",
lwd = 2, main = "Threshold avg + 1 std deviation",
colorize = T)
dev.off()
|