|
DATA MINING
Desktop Survival Guide by Graham Williams |
|
|||
# Based on code from demo(ROCR)
library(ROCR)
data(ROCR.hiv)
pp <- ROCR.hiv$hiv.svm$predictions
ll <- ROCR.hiv$hiv.svm$labels
pred <- prediction(pp, ll)
perf <- performance(pred, "tpr", "fpr")
pdf("graphics/rplot-rocr-4plots.pdf")
par(mfrow = c(2, 2))
plot(perf, avg = "threshold", colorize = T, lwd = 3,
main = "Standard ROC curve.")
plot(perf, lty = 3, col = "grey78", add = T)
perf <- performance(pred, "prec", "rec")
plot(perf, avg = "threshold", colorize = T, lwd = 3,
main = "Precision/Recall graph.")
plot(perf, lty = 3, col = "grey78", add = T)
perf <- performance(pred, "sens", "spec")
plot(perf, avg = "threshold", colorize = T, lwd = 3,
main = "Sensitivity/Specificity plot.")
plot(perf, lty = 3, col = "grey78", add = T)
perf <- performance(pred, "lift", "rpp")
plot(perf, avg = "threshold", colorize = T, lwd = 3,
main = "Lift chart.")
plot(perf, lty = 3, col = "grey78", add = T)
dev.off()
|