Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2014). Overfeat:
Integrated recognition, localization and detection using convolutional networks. International
Conference on Learning Representations. 68
Shilov, G. (1977). Linear Algebra. Dover Books on Mathematics Series. Dover Publications. 20
Siegelmann, H. (1995). Computation beyond the Turing limit. Science, 268(5210), 545–548.
189
Siegelmann, H. and Sontag, E. (1991). Turing computability with neural nets. Applied Mathe-
matics Letters, 4(6), 77–80. 189
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing,
volume 1, chapter 6, pages 194–281. MIT Press, Cambridge. 141, 148
Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011a). Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS’2011. 200
Socher, R., Manning, C., and Ng, A. Y. (2011b). Parsing natural scenes and natural language
with recursive neural networks. In Proceedings of the Twenty-Eighth International Conference
on Machine Learning (ICML’2011). 200
Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011c). Semi-
supervised recursive autoencoders for predicting sentiment distributions. In EMNLP’2011.
200
Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C.
(2013). Recursive deep models for semantic compositionality over a sentiment treebank. In
EMNLP’2013 . 200
Solla, S. A., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural networks.
Complex Systems, 2, 625–639. 101
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15, 1929–1958. 125, 127, 265
Sutskever, I. and Tieleman, T. (2010). On the Convergence Properties of Contrastive Divergence.
In Y. W. Teh and M. Titterington, editors, Proc. of the International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 9, pages 789–795. 242
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Technical report, arXiv preprint arXiv:1409.3215. 10
Swersky, K., Ranzato, M., Buchman, D., Marlin, B., and de Freitas, N. (2011). On autoencoders
and score matching for energy based models. In ICML’2011. ACM. 248
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2014). Going deeper with convolutions. Technical report, arXiv preprint
arXiv:1409.4842. 10
Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. 91, 211
295