Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets. Journal
of Computer and Systems Sciences, 50(1), 132–150. 156
Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing,
volume 1, chapter 6, pages 194–281. MIT Press, Cambridge. 167, 177
Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011a). Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS’2011. 230
Socher, R., Manning, C., and Ng, A. Y. (2011b). Parsing natural scenes and natural language
with recursive neural networks. In Proceedings of the Twenty-Eighth International Conference
on Machine Learning (ICML’2011). 230
Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011c). Semi-
supervised recursive autoencoders for predicting sentiment distributions. In EMNLP’2011.
230
Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C.
(2013). Recursive deep models for semantic compositionality over a sentiment treebank. In
EMNLP’2013 . 230
Solla, S. A., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural networks.
Complex Systems, 2, 625–639. 110
Srivastava, N. and Salakhutdinov, R. (2012). Multimodal learning with deep Boltzmann ma-
chines. In NIPS’2012 . 197
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15, 1929–1958. 146, 148, 310
Sutskever, I. (2012). Training Recurrent Neural Networks. Ph.D. thesis, Departement of com-
puter science, University of Toronto. 236, 243
Sutskever, I. and Tieleman, T. (2010). On the Convergence Properties of Contrastive Divergence.
In Y. W. Teh and M. Titterington, editors, Proc. of the International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 9, pages 789–795. 287
Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization
and momentum in deep learning. In ICML. 236, 243
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Technical report, arXiv preprint arXiv:1409.3215. 10, 240, 241
Swersky, K., Ranzato, M., Buchman, D., Marlin, B., and de Freitas, N. (2011). On autoencoders
and score matching for energy based models. In ICML’2011. ACM. 293
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2014). Going deeper with convolutions. Technical report, arXiv preprint
arXiv:1409.4842. 9
Tenenbaum, J., de Silva, V., and Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. 100, 256
345