Separating the Transfer Function Numerator and Denominator Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Separating the Transfer Function Numerator and Denominator

From Eq. (6.5) we have that the transfer function of a recursive filter is a ratio of polynomials in $ z$:

$\displaystyle H(z) = \frac{B(z)}{A(z)} \protect$ (8.3)

where

\begin{eqnarray*}
B(z) &=& b_0 + b_1 z^{-1}+ \cdots + b_M z^{-M}\\
A(z) &=& 1 + a_1 z^{-1}+ \cdots + a_N z^{-N}.
\end{eqnarray*}

By elementary properties of complex numbers, we have

\begin{eqnarray*}
G(\omega) &=& \frac{\left\vert B(e^{j\omega T})\right\vert}{\...
...a(\omega) &=& \angle B(e^{j\omega T}) - \angle A(e^{j\omega T}).
\end{eqnarray*}

These relations can be used to simplify calculations by hand, allowing the numerator and denominator of the transfer function to be handled separately.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]